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A B S T R A C T

Two commercial 7–8 wt.% Yttria Stabilised Zirconia (YSZ) suspensions were sprayed by Suspension High
Velocity Oxy Fuel (SHVOF) thermal spraying for advanced high temperature coatings. Heat treatments of the
free-standing coatings were conducted at 800 °C and 1000 °C for 72 h. The SHVOF coatings using two liquid
carriers: water and ethanol, behaved differently in terms of micro-structure and phase stability. The ethanol
coatings retained a fully tetragonal composition after heat treatments; while the aqueous coatings, however,
underwent the undesirable tetragonal to monoclinic phase transformation at 1000 °C, which is lower than
previously reported temperatures (> 1200 °C) in thermal sprayed YSZ coatings. The heat treatments not only
resulted in densification of both coatings, but also caused excessive crystallite growth in aqueous coatings
promoting the undesirable phase transformation. On the contrary, the ethanol suspension improved the phase
stability by favouring the homogenization of yttrium during spraying.

1. Introduction

High-velocity oxy-fuel (HVOF) is a well-established thermal
spraying technique that has been widely used for various engineering
applications at high temperatures [1,2]. Molten or semi-molten parti-
cles are sprayed onto the surface of the components by means of a
supersonic combustion gas stream, producing a well-bonded and dense
coating. Modified HVOF thermal spraying using suspensions has been
rapidly developed since 1990s when synthesis technologies of nano-
materials became available [3]. Suspension enables the use of sub-
micron and nano-powders as a feedstock to form unique nano-struc-
tured coatings with significant improvement in density, strength and
durability over conventional thermal sprayed coatings [4,5]. In parti-
cular, suspensions of oxide ceramics such as alumina [6–8], zirconia
[9–11] and titania [12–14] have been widely sprayed by both plasma
and HVOF techniques designated for wear-resistant coatings, solid
oxide fuel cell (SOFC), thermal barrier coatings (TBC), and photo-
catalytic applications, etc. Unlike conventional powder-based spraying
processes, the preparation of suspensions is crucial for the coatings
properties, which involves de-agglomeration and stabilization of the
solid particles in an aqueous or organic solvent. The chosen type of
solvent strongly influences many aspects in the spraying process,
namely droplet size distribution, heat flux to substrate, the particle in-

flight behaviour and overall thermal level, coating porosity and hard-
ness, etc. [3]. Water is generally used as the medium for suspension that
can effectively disperse fine powders with a typical solid content 10-
40 wt.% or even higher. However, on the other hand, the particle
heating becomes less efficient due to the consumption of heat from the
flame by water vaporization (It requires 2.63 MJ/kg for water com-
pared to 1.01 MJ/kg for ethanol [15,16]). In case of high melting point
oxides like zirconia (2715 °C), a higher flame temperature is indis-
pensable, thus the use of organic solvent is more favourable owing to
the extra heat generated by the combustion of organic solvent as fuel
(the mass enthalpy generated by ethanol is 29.75 MJ/kg [3]).

Recent studies have looked into the behaviours of nano-structured
yttria-stabilized zirconia (YSZ) coatings which exhibit superior perfor-
mance in terms of phase stability and mechanical properties over
conventional YSZ coatings [17–19]. Ideally, YSZ containing 7–8 wt%
Y2O3 (hereinafter referred to as 8YSZ) is required to retain its as-de-
posited single-phase tetragonal (t) structure, designated as t’-phase,
through the whole coating lifetime [20]. The ZrO2–YO1.5 phase diagram
[21] (See Fig. 1) indicates that the t’-YSZ is in fact metastable, because
the t’ phase is supersaturated at all temperatures of interest [22]. It is
driven to decompose into a mixture of Y-lean (t) and Y-rich cubic (c)
phases [23]. The depleted t-phase would then be susceptible to trans-
form to monoclinic (m) phase on cooling after sufficiently extensive
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aging [22]. This deleterious t to m transformation would induce sig-
nificant volume change (3–5 vol.%) and subsequently lead to cracks
and spallation [24]. With increasing surface temperatures in future
turbines, the loss of t’-YSZ stability thus becomes more and more critical
[25]. A wide range of analytical techniques have been employed to
study the microstructural evolution and phase stability of 8YSZ de-
posited by electron beam physical vapour deposition (EBPVD) and air-
plasma spray (APS) [26–29]. Suspension sprayed YSZ coatings, how-
ever, are different from EBPVD and APS coatings, in terms of micro-
structure, porosity, crystallite size, etc., and also behave differently at
high temperatures [5].

In this study, we continued the investigations on the suspension
sprayed nano-structured YSZ coatings by studying the effect of sus-
pension medium on the microstructure and phase stability of coatings.
The aim is to provide a better understanding of the relationships be-
tween suspension properties and the performance of SHVOF sprayed
YSZ coatings for high temperature applications. Two solvents: water
and ethanol, were used as suspension media to produce coatings with
vastly different properties. Possible mechanisms were also discussed by
analysing the lattice parameter, phase composition, crystallite size and
micro-strain of coatings.

2. Experimental procedure

2.1. Materials

Two commercially available suspensions (Innovnano, Coimbra,
Portugal) containing ZrO2–4 mol% (7–8 wt.%) Y2O3 (YSZ) were used:
an aqueous suspension (hereafter referred to as A-YSZ), and an ethanol
suspension (hereafter referred to as E-YSZ). According to the supplier’s
information, both suspensions were prepared from the same sub-mi-
cron-powders, which had the particle size distribution (D50 = 0.47 μm)
and equal weight of YSZ per weight of suspension ratio of 25%. The
suspension was sprayed onto AISI 304 stainless steel substrates of di-
mensions 60 × 25 × 2 mm3 with a nominal composition of Fe-19.0Cr-
9.3Ni-0.05C (in wt.%). stainless steel. Free standing coatings were
achieved by spraying the coating onto aluminium substrates followed
by dissolving the aluminium substrates in Sodium Hydroxide leaving
behind only the YSZ coating. The use of free-standing coatings could
negate the coating-substrate interaction during heat treatments (in-
cluding heating and cooling) that may induce deformation, residual
stress and spallation.

2.2. Spray processes

A modified UTP/Miller Thermal HVOF system (Appleton, WI, USA)
with a direct injection at the centre of the gas mixing block was used to
spray the suspension. A schematic drawing of the SHVOF system is
shown in Fig. 2, and the spraying parameters are listed in Table 1. The
SHVOF setup has a modified mixing block and a modified gun back
body without any modification to the combustion chamber and the
nozzle. The suspension injector had a diameter of 0.3 mm to inject the
suspension into the centre of the combustion chamber. A 22 mm long
combustion chamber with 110 mm long barrel nozzle was used in this
study. The suspension was fed using a pressurised 2 L vessel equipped
with a mechanical stirrer. Both suspensions were homogenised for
45 min prior to spraying using a mechanical stirring system to ensure
uniform dispersion of the YSZ sub-micron particles in solution and
consistent flow onto the substrate without clogging of the nozzle. The
pressure of the feeding system was fixed at 6 bar during the spray. Prior
to spraying, the substrate were grit-blasted using F100 brown alumina
with size range from 0.125 to 0.149 mm, cleaned in an ultrasonic bath
to remove any embedded alumina particles and finally, cleaned in
acetone. The substrates were then mounted onto a carousel rotating at
73 rpm with a vertical axis of rotation. The rotation speed was set to
impart a surface velocity to the substrates of approximately 1 m/s
across the spray path. The SHVOF gun was mounted on a z-axis traverse
unit in front of the rotating carousel and it was set to a stand-off dis-
tance from the surface of the substrate of 85 mm. The gun was scanned

Fig. 1. Zirconia-rich portion of the ZrO2-YO1.5 phase diagram [21].

Fig. 2. Schematic drawings and photos showing the
experimental setup for SHVOF.
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vertically up and down at 5 mm/s to build up a coating of the required
thickness. The flow rates were set using a volume control system for
fuel gas (hydrogen) and oxygen. Hydrogen was used as a combustion
fuel which results in the cleanest combustion products and the chance
of carbon contamination in the coating is significantly reduced [12].
Both coatings were obtained after 40 passes. During and after the spray
run, compressed air jets were directed towards the substrates to provide
cooling. At the end of each spray run de-ionised water was supplied to
clean the nozzle.

2.3. Heat treatment

Heat treatments of the free-standing coating were conducted using a
Carbolite furnace (Bemaford, Sheffield, England) at temperatures of
800 °C and 1000 °C for 72 h in air. Although in previous studies on the
phase evolution of APS t’-YSZ, the as-sprayed coatings were treated at
relatively higher temperatures: 982–1482 °C [22,26]. Lower tempera-
tures were chosen because, for SHVOF coatings, nano-particles have
higher surface area/volume ratio and therefore can be easily sintered
and densified [30]. Upon completion of the heat treatment the samples
were allowed to furnace cooling to prevent unnecessary stresses and
thus preserving the coating’s structural integrity.

2.4. Characterization

The samples were sectioned transversely with a SiC slitting wheel in
a precision cutting saw, then mounted in conductive resin, grounded,
polished down to 1 μm surface finish, and finally carbon coated prior to
SEM investigations. The cross-sectional microstructure of the polished
coatings were analysed using a Phillips XL30 (Eindhoven, The
Netherlands) SEM in backscattered electron mode (BSE). The mor-
phology of the YSZ feedstock was analysed using secondary electron
(SE) imaging in the same SEM equipment, having dried the aqueous
suspension in a furnace at 150 °C for 4 h to obtain dried YSZ powder.
Quantitative analysis of the vertical micro-cracks in the A-YSZ and E-
YSZ as-sprayed coatings was based on the cross-sectional SEM images
with a coatings length of 1 mm. Mercury Intrusion Porosimetry (MIP)
Micrometric AutoPore IV 9500 (Texas, USA) was employed to study the
porosity of the two as-sprayed free-standing coatings, in which mercury

is forced into the sample pores under pressure from 0.53 to 60,000 psia.
This method has generally been used to characterise the interconnected
porosity over a size range of micrometers to nanometers, which was
reported in our previous work [31] and others [32,33]. Results are
presented in the form of intrusion volume of mercury per gram vs.
pressure where pore diameter (d) is calculated from the pressure values
using Washburn’s equation

=

−d σ θ
P

4 cos
(1)

Where σ is surface tension of mercury, and θ is the contact angle be-
tween mercury and the pore wall, and these values were assumed to be
0.485 N m−1 and 130°, respectively. Free standing deposits of dimen-
sion 10 × 8× 1 mm were used for the mercury intrusion tests. Total
mercury intrusion (mL/g) values were converted to volume percentages
of porosity of the deposits assuming that the density of both A-YSZ and
E-YSZ is 6.05 g/cm3. It is worth noting MIP can only be used to measure
the open porosity which is connected to the surface of the coatings. In
this case, the surface morphology of the coatings could largely affect
the pore size distribution and therefore, any pores larger than 1 μm are
not considered in this measurement. The porosity was also analysed by
Image Pro-Plus (6.0, Media Cybernetics, Rockville, USA) software with
Pseudo-Colour function to highlight features of interests with same
threshold on SEM images. Micro-hardness was measured on the po-
lished coatings cross-section using a Buehler 1600 Series Micro-hard-
ness Tester (Illinois Tool Works, USA) by a Vickers indenter at a load of
10gf. The chosen load was small enough to avoid any cracks during
indentation, and also large enough to create clear indentation on the
coating cross-section [34]. Surface roughness of the as-sprayed coatings
were measured by stylus surface profilometry (Talysurf CLI 1000 Pro-
filometer, Leicester, U.K.) with a resolution of 40 nm. Phase composi-
tion of each sample was achieved by XRD analysis using a Siemens
D500 (Germany) with CuKα produced at 40 kV and 25 mA. The 2θ
diffraction angle range was from 10° to 90° with step width of 0.05° and
time per step of 2 s. Rietveld refinement (TOPAS V5 software package)
was used to determine the c/a√2 parameter, where c and a are the unit
cell dimensions. Rietveld refinement is an analysis technique for the
calculation of lattice parameters [35–37]. Quantitative Rietveld re-
finement was employed to determine the quantity of each phase (t- and
m-phase), and principles of whole powder pattern modelling (WPPM)
were used for crystallite size and micro-strain calculations [36].

3. Results

3.1. Microstructure

In Fig. 3, feedstock YSZ particles dried from the aqueous suspen-
sions were observed in secondary electron (SE) mode in SEM showing
the size of individual particle. YSZ particles from suspensions form
agglomerates due to drying and the typical particle diameters were in
the order of 400–500 nm, which agrees with the measurement of the

Table 1
Spraying parameters for SHVOF of YSZ suspensions.

Parameter Value

Gun stand-off distance (mm) 85
Feed pressure (bar) 6
Substrate rotation (rpm) 73
Gun vertical velocity (mm/s) 5
Hydrogen flow (slpm) 624
Oxygen flow (slpm) 312

slpm = standard litre per minute.

Fig. 3. Feedstock YSZ particles as observed in sec-
ondary electron (SE) mode in SEM showing particle
agglomeration and the size of individual crystallites
(A) low and (B) high magnification.
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particle size distribution (D50 = 0.47 μm) as provided by the supplier.
The crystallite size determined from XRD patterns (discussed in section
4.2) is, however, much lower (∼20 nm). It indicates that each YSZ
particle is consisted of several smaller nano-crystallite, which could
even be identified from Fig. 3 (B) under a higher magnification.

Fig. 4 show the cross-sectional microstructure and surface mor-
phology of the as-sprayed SHVOF coatings: (A–C) A-YSZ (Aqueous) and
(D ∼ F) E-YSZ (Ethanol). Both coatings are dense and thick; while A-
YSZ is slightly thicker (130–135 μm) than E-YSZ (110–120 μm) in-
dicating a higher deposition efficiency with aqueous based suspension.
The dark contrast features at the coating substrate interface are em-
bedded alumina grit from the grit blasting operation. Vertical cracks are
observed in both coatings originating at the surface that propagated
part way through the coating thickness. The vertical micro-cracks are
more pronounced in the E-YSZ coating cross-section with a crack den-
sity of 10 cracks/mm than that of A-YSZ (5 cracks/mm) and the inter-
pass porosities are also clearly visible in E-YSZ coating. From the sur-
face morphology in Fig. 4 (B) and (E), the A-YSZ coating is composed of
large features and the E-YSZ coating is composed of much finer fea-
tures. The surface profilometry results show that A-YSZ
(Ra = 2.3 ± 0.3 μm) coating has a slightly lower surface roughness
than E-YSZ (Ra = 3.9 ± 0.4 μm). In Fig. 4 (C) and (F) under a higher
magnification, larger features are observed on A-YSZ; while the E-YSZ
has more spherical features with smaller size on the surface. The
spherical features are an indication of particle melting and solidifica-
tion of the smaller droplets in the process.

3.2. Porosity

MIP was used to characterise the open pore size distribution of the
as-sprayed A-YSZ and E-YSZ coatings, which is a reliable porosity
measurement method for ceramic coatings [38–40]. Fig. 5 plots the
incremental and cumulative porosity vs. pore diameter. The E-YSZ has
larger pores with the size range of 0.1–1.0 μm and 0.02–0.03 μm; while
A-YSZ has finer pores with a size below 0.025 μm. The cumulative
porosity of E-YSZ is 10.98 vol.% which is slightly lower than the value
from imaging analysis (14.9 ± 1.9%). The cumulative porosity of A-
YSZ is only 2.19 vol.%, which is much smaller than the value from
imaging analysis (12.6 ± 1.7%). Both the measurement techniques

show that A-YSZ has less porosity than that of E-YSZ. It should be noted
that MIP is a robust porosity measurement technique for surface con-
nected porosity and it cannot measure closed porosities. On the other
hand, image analysis can measure both open and close porosities al-
though it can suffer from issues related to thresholding and resolution
limit of the SEM images of sub-micrometre pores. The higher MIP value
indicates that the A-YSZ might have more closed pores than E-YSZ.
Fig. 6 shows the cross-sectional microstructures and porosity of both
coatings before and after heat treatments at 800 °C and 1000 °C for
72 h. The porosities of the coatings along with standard error in means
are presented in Fig. 6. The porosity of the as-sprayed E-YSZ is around
∼2.5% higher than that of the as-sprayed A-YSZ. After heat treatments,
both coating have experienced significant densification with decreased
porosity. Particularly in A-YSZ after the 72 h 1000 °C heat treatment as
shown in Fig. 6(C), the fine scale pores appear to have coalesced to form
micro-sized pores, and the lamellar microstructure has disappeared.
Micro-hardness of all the samples before and after heat treatment are
listed in Table 2, showing an increase in both coatings after heat
treatment. It also identifies the A-YSZ coating as harder than E-YSZ
after each heat treatment, as well as in the as-sprayed state. In general,
the micro-hardness of sintered YSZ materials largely depends on its
porosity or density [41]. Fig. 7 shows the micro-hardness as a function
of porosity for sintered YSZ as plotted according to the empirical curve-
fit equation [41–43]. The porosities of the SHVOF coatings are esti-
mated according to this equation (See Table 3). The calculated values
are slightly higher than the image analysis results but indicating the
same trend.

3.3. Phase stability

The XRD analysis as displayed in Fig. 8 identifies the phases present
in the dried YSZ suspension powder, and as-sprayed coatings A-YSZ and
E-YSZ. The XRD analysis identifies that the tetragonal phase, labelled as
‘t’, is present in the YSZ powder along with some presence
(14.1 ± 0.3 wt.%; please note that the calculated error is derived from
the mathematical algorithm employed, see Madsen et al. [44]) of the
monoclinic phase, labelled as ‘m’. The as-sprayed coatings of A-YSZ and
E-YSZ were identical in phase composition, both containing solely the
tetragonal phase. Fig. 9 shows the combined XRD patterns for both

Fig. 4. SEM images showing the cross-sectional microstructure and surface morphology of as-sprayed SHVOF coatings: (A–C) A-YSZ (Aqueous) and (D–F) E-YSZ (Ethanol).
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coatings after 72 h heat treatments at 800 °C and 1000 °C. The pattern
shows that heat treatments of 800 °C and 1000 °C have not affected the
phase composition of the E-YSZ coating, neither has the 800 °C heat
treatment affected the A-YSZ coating, as they have both retained their
entirely tetragonal composition. The 1000 °C 72 h heat treatment of the
A-YSZ coating, however, incurred phase transformation. Diffraction
peaks of the m-phase are identified and the Rietveld Refinement results
show that 4.5 ± 0.4 wt.% of the coating transformed to the monoclinic
phase. These results show that the A-YSZ and E-YSZ coatings did not
behave the same in phase stability when exposed to 1000 °C. This phase
transformation in plasma sprayed YSZ was demonstrated earlier by
Miller et al. [23] during cooling after exposure to temperatures greater
than 1200 °C. It was also reported by Trice et al. [45] that this trans-
formation did not occur until exposure to 1400 °C. This study shows
that the SHVOF coating sprayed from an aqueous suspension can un-
dergo this transformation after an exposure to 1000 °C, which is sig-
nificantly lower than previously reported temperatures on APS and
EBPVD YSZ.

4. Discussion

The above results show that the SHVOF coatings using different
suspensions behaved differently in terms of micro-structure and phase

stability during heat treatment. In this section, possible mechanisms for
the micro-structural and phase evolutions of SHVOF YSZ coating will be
discussed by examining the crystal structure, crystallite size, and micro-
strain.

4.1. Phase evolution

Previous studies employed XRD to investigate the phase evolution of
7–8 wt.% (3.8–4.4 mol% Y2O3) YSZ after aging at high temperatures
[46–49]. They have found a linear relationship between the con-
centration of Y2O3 and the lattice parameters c/a√2 (also referred to as
‘tetragonality’) over a large range of concentration of Y2O3. Ilavsky et al.
[50] has determined the cell parameter variations c/a√2 as a function of
the amount of Y2O3 in mol% (x) as the following equation over the

Fig. 5. Mercury intrusion porosimetry (MIP) results: (A) Incremental porosity and (B) cumulative porosity as a dependency of pore size of free-standing as-received A-YSZ and E-YSZ.

Fig. 6. BSE images showing the cross-sectional microstructure and porosity of (A–C) A-YSZ and (D–E) E-YSZ in as-sprayed state, after treatment at 800 °C and 1000 °C for 72 h,
respectively.

Table 2
Micro-hardness of the SHVOF coatings.

A-YSZ (GPa) E-YSZ (GPa)

As-sprayed 6.1 ± 0.5 5.6 ± 0.3
800 °C 72 h 9.1 ± 1.0 7.3 ± 1.1
1000 °C 72 h 9.2 ± 0.9 7.5 ± 0.6
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concentration of Y2O3 up to about 7 mol% (Data was retrieved from the
original plot and linear fitted with R2 = 1):

= −c a x/ 2 1.02257 0.0032 (2)

Eq. (2) can be used to estimate the Y2O3 composition (mol%) using
the tetragonality (c/a√2) obtained from the XRD patterns. The results
are plotted in Fig. 10 and the detailed data is summarized in Table 4. In
Fig. 10(A), it is obvious that the tetragonality of as-sprayed A-YSZ has a
distinctive lower value in comparison with those of the YSZ-suspension
particles and as-sprayed E-YSZ. The as-sprayed A-YSZ should therefore
contain a higher content of Y2O3 (4.94 mol%) than the YSZ suspension
(4.31 mol%) and as-sprayed E-YSZ (4.35 mol%) as plotted in Fig. 10(B).
The increase of the Y2O3 content in the as-sprayed A-YSZ can only be
caused by the inhomogeneous distribution. This is simply based on the
principle of mass conservation as both A-YSZ and E-YSZ coating are
both originated from the same the YSZ feedstock. It is also highly un-
likely that it will incur any loss of Y2O3 during SHVOF spraying by
decomposition or evaporation (the boiling point of Y2O3 is over
4300 °C). Accordingly, it can be argued that the less homogeneity of
Y2O3 (i.e., lower tetragonality and predicated overall higher Y2O3 mol
%) in the as-sprayed A-YSZ could be due to a combination of both Y-
rich and Y-lean t’-phases, which however cannot be distinguished using
XRD. Krogstad et al. [26] confirmed the non-even distribution of Y in
APS YSZ coatings after aged for 7.8 h at 1482 °C using a high angle
annular dark field (HAADF) scanning transmission electron microscopy
(STEM). TEM observation has provided key insight because of the en-
hanced sensitivity of electron diffraction to the anion lattice over XRD
analysis, which is able to separate the Y-rich and Y-lean areas but the
average concentrations of Y for both coatings should be equal due to
conversation of mass. As mentioned earlier, the Y-lean t’-phase in YSZ is

more susceptible to the deleterious transformation on cooling. On the
other hand, the as-sprayed E-YSZ has a similar Y2O3 content with the
YSZ suspension. This is plausible as the ethanol suspension has a higher
flame temperatures during spraying leading to more complete melting
of YSZ agglomerates and therefore results in more homogeneity of
Y2O3. In addition, the as-sprayed A-YSZ has a tetragonality value much
closer to 1 indicating a higher potential of the existence of a third
particular metastable tetragonal phase, called t”-phase (See Fig. 11).
Conventional XRD is unable to distinguish this t” phase from a cubic
phase since the cell parameters ratio of this tetragonal phase is equal to
the unity. However, it is still considered as a tetragonal phase because
of a slight distortion of the anionic network [24]. The potential ex-
istence of t”-phase in the as-sprayed A-YSZ could also deteriorate the
homogeneity of t’-phase and therefore contribute to a less stable t’-
phase than E-YSZ during heat treatment.

4.2. Crystallite size and micro-strain

The phase evolution of 7–8 wt.% YSZ can be rationalized on the
basis of a simple diffusion-limited kinetics argument, which assumes
that the destabilization of t’-YSZ is controlled by a critical diffusion
distance of Y3+ (toward the incipient cubic phase) [22]. At higher
operating temperatures, faster diffusion kinetics would lead to ac-
celerated segregation and crystallite growth, which would significantly
promote t to m transformation [22]. This phenomenon becomes es-
sential for the phase stability of SHVOF YSZ coatings, which is consisted
of nano-sized crystallites with a larger tendency to grow during heat
treatment. In this study, the crystallite size is determined by the co-
herent diffracting crystalline domains (CDD) as obtained by WPPM
incorporated Rietveld Refinement of the XRD patterns of YSZ free-
standing coatings, which is shown in Fig. 12. Significant crystallite
growth is observed in A-YSZ after 72 h’ heat treatment at 1000 °C in-
creasing from ∼55 nm to ∼100 nm; while the E-YSZ remains at
50–60 nm. The reason for the excessive crystallite growth in A-YSZ after
72 h treatment at 1000 °C can be explained by the difference in the
microstructures of A-YSZ and E-YSZ. As mentioned earlier, as-sprayed
A-YSZ is relatively denser with less porosity than E-YSZ, which there-
fore shortens the densification (sintering) process. It is worth noting
that the sintering and grain growth are two competing processes, in
which case, during the heat treatment at 800 °C and 1000 °C for 72 h,
the densification process in A-YSZ should have completed earlier than
E-YSZ which causes excessive crystallite growth in A-YSZ. On the other
hand, it is possible that the inhibited grain growth in the E-YSZ is at-
tributed to the higher levels of porosity and larger pore sizes (see MIP
results as shown earlier in Fig. 5) trapped in the grain boundaries,
which slowed down the grain boundary diffusion and subsequent grain
growth.

Suspension droplet size is a key factor in determining the coating
properties, as it plays a prominent role in determining the size of the of
the molten droplet which in turn directly correlates to the grain sizes in
the coatings. However, the atomization of the suspension inside the
combustion chamber is a highly complex process. Suspension properties
like viscosity and surface tension, as well as geometry and dimensions
of the atomization nozzle along with properties of the surrounding fuel
gas and oxygen flows all interact in the formation of the droplets and
their resulting coating microstructure and the grain size [51]. It is
worth mentioning that in SHVOF thermal spraying, particle injection is
directly inside the combustion chamber and thus a considerably good
heat transfer of the particles can be realised. This enables complete
melting and homogenisation of the YSZ nano-crystallite feedstock,
which completely removes the impurity m-phase. The molten droplet
then solidifies with the nucleation of stable t-phase upon impact on the
substrates. The solidification temperature at which the nucleation takes
place depends on the cooling rate [51–53]. SHVOF torches can reach
very high gas velocities (> 2000 m/s) [3], and the substrates are ty-
pically cooled with compressed air jets, which all contribute to rapid

Fig. 7. Micro-hardness as a function of porosity for sintered YSZ as plotted according to
the empirical curve-fit through the data, H= 16.807e−0.06P R2 = 0.95, which is re-
presentative of the micro-hardness dependence on porosity based on the experimental
data from Cottom et al. [41]. The micro-hardness of A-YSZ and E-YSZ are marked by solid
symbols, while conventional HVOF and APS YSZ coatings from Dobbins et al. [42] and
Jang et al. [43], are marked by open symbols.

Table 3
Calculated porosity of the SHVOF coatings according to the empirical curve-fit equation
H = 16.807e−0.06P, R2 = 0.95 and image analysis results.

Calculated Image analysis

A-YSZ (%) E-YSZ (%) A-YSZ (%) E-YSZ (%)

As-sprayed 16.9 18.3 12.6 ± 1.7 14.9 ± 1.9
800 °C 72 h 10.2 13.9 9.1 ± 1.0 11.7 ± 1.2
1000 °C 72 h 10.0 13.4 8.2 ± 1.1 11.9 ± 1.3
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Fig. 8. Combined XRD patterns for the dried YSZ suspensions powders and as-sprayed coatings: A-YSZ and E-YSZ. The inset is the result of Rietveld refinement of dried suspension powder
pattern showing tetragonal (t-ZrO2) and monoclinic (m-ZrO2) zirconia with corresponding quantities of ∼86 and ∼14 wt.% (the Rwp factor of the refinement is 11.3).

Fig. 9. Combined XRD patterns for A-YSZ and E-YSZ before and after heat treatment. The inset is the result of Rietveld refinement of A-YSZ pattern treated at 1000 °C for 72 h and shows
dominant presence of t-ZrO2 and ∼4 wt.% of m-ZrO2 (the Rwp factor of the refinement is 19.3).
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cooling of the molten droplets. This results in a high nucleation rate as
well as a low growth rate of crystallites as inhibited by the short re-
sidence time due to rapid acceleration in the flame and rapid cooling
upon impact, all of which contribute to the formation of nano-crystal-
lized YSZ coatings. Micro-strains (ε) are also very common in nano-
crystalline materials, which is mainly attributed to solid solution in-
homogeneity by creating a distribution of d-spacing for a crystal-
lographic plane [54]. Fig. 13 shows the micro-strain in YSZ SHVOF
coatings as obtained by WPPM approach from the XRD patterns. Both
coatings show a decreasing trend after heat treatments. In particular,
the as-sprayed A-YSZ possesses a larger micro-strain indicating a higher
degree of solid solution inhomogeneity than E-YSZ. This agrees well
with the previous discussion that the as-sprayed A-YSZ has lower
homogeneity in phase and compositions leading to a less stable t’-phase.

4.3. Aqueous and ethanol suspensions

Both suspensions used in this study are commercial products

possessing the same solid content and long-term stability, and main
physical properties of these two solvents are listed in Table 5. The main
difference here concerns with the flame temperatures, as ethanol has a
significant mass enthalpy of reaction at 29.75 MJ/kg; while in case of
water, particle heating is less efficient as gas temperatures are sig-
nificantly decreased. In addition, the vaporization of water would
consume more heat than ethanol as its mass enthalpy of vaporization is

Fig. 10. (A) Plot of the lattice parameter ratio of c/a√2 of YSZ coatings before and after treatment. (B) Effect of the composition of Y2O3 on the tetragonality (c/a√2) of as-sprayed A-YSZ
and E-YSZ coatings. The dashed line is plotted according to the results from Ilavsky et al. [50].

Table 4
Calculated concentration of Y2O3 (mol%) in the SHVOF coatings by Eq. (2).

A-YSZ (mol%) E-YSZ (mol%)

As-sprayed 4.94 4.31
800 °C 72 h 4.14 4.24
1000 °C 72 h 4.23 3.96
Suspension 4.35

Fig. 11. Schematic drawing of crystal lattice indicating the
transformation from t to t” phase.

Fig. 12. Plot of the average t-ZrO2 crystallite sizes in YSZ coatings as obtained by WPPM
(Whole Powder Pattern Modelling) incorporated Rietveld refinement of the XRD patterns.
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2.26 MJ/kg, nearly two times high than that of ethanol, which further
decreases the flame temperature. On the other hand, however, in case
of water, the chamber pressure and consequently gas velocity increased
due to the presence of water vapour resulting in a denser microstructure
[3]. In general, the type of solvent plays an important role in suspension
spraying. Primary atomization basically depends on nozzle geometry,
relative velocity of liquid to surrounding gas and gas/liquid properties
such as density, viscosity, and liquid surface tension [52]. The beha-
viour of a liquid during atomization can be described by the di-
mensionless Weber number We and Reynolds number Re. Basically, Re
number gives the relationship of fluid inertia to viscosity, and We
number expresses the ratio of the deforming inertia force of the medium
to surface tension of the droplet. In general, high values for both (Re
andWe) promote a more rapid and finer atomization. For water (w) and
ethanol (e), typical values can be found in the literature, which are in
the range of Re= 1500 (w), 3300 (e) andWe= 15 (w), 150 (e) [55]. In
this case, the ethanol should have finer atomization and smaller dro-
plets due to higher Re and We values, therefore resulting in the for-
mation of re-solidified agglomerates and increased porosity level in the
coatings; while the water should have larger droplets and denser
coatings.

Last but not the least, although the SHVOF YSZ coatings using
aqueous suspension has great advantages in microstructure with less
porosity and nano-sized crystallites (about 60 nm), it has a dis-
advantage in terms of phase stability after long-term exposure to ele-
vated temperatures (over 1000 °C) due to an accelerated densification
(sintering) rate and significant crystallite growth that would promote
the undesired phase transformation. For applications, considering the
SOFC industry is striving to operate at temperatures lower than 1000 °C
and require electrolytes with very dense microstructures [56], YSZ
SHVOF coatings using aqueous suspensions show promise in this area
but may be restricted to specific applications (e.g. coating on compo-
nents with complex shapes exclusively by thermal spraying). On the
other hand, the E-YSZ coating, obtained by spraying an ethanol sus-
pension demonstrated relatively higher porosity corresponding to lower

thermal conductivity [57], and better phase stability, indicating some
potential as an alternative for TBC applications although it might be too
dense to achieve sufficiently thermal protection.

5. Conclusions

In this study, we have investigated SHVOF thermal sprayed YSZ
coatings with two commercial 7–8 wt.% YSZ suspensions on the coating
microstructure and phase stability during heat treatment. The coatings
were further exposed to heat treatment at 800 °C and 1000 °C for 72 h
and then characterised in XRD with Rietveld refinement for phase
changes. Regarding the two types of coatings produced, the following
conclusions can be drawn:

• The as-sprayed coatings using aqueous suspensions had denser mi-
crostructure with less porosity than the coatings sprayed with
ethanol suspensions.

• Both as-sprayed coatings comprised entirely t’-phase but the aqu-
eous YSZ had a less stable t’-phase and a more rapid crystallite
growth at 1000°C, which led to the phase transformation to the
undesirable monoclinic phase after 72h treatment.

• Ethanol suspension stabilized t’-phase by favouring the homo-
genization of yttrium during spraying, and also inhibiting the crys-
tallites growth during heat treatment.
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