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Abstract

Evolutionary programming can solve black-box function optimisation problems by evolving a pop-

ulation of numerical vectors. The variation component in the evolutionary process is supplied by

a mutation operator, which is typically a Gaussian, Cauchy, or Lévy probability distribution. In

this paper, we use genetic programming to automatically generate mutation operators for an evo-

lutionary programming system, testing the proposed approach over a set of function classes, which

represent a source of functions. The empirical results over a set of benchmark function classes

illustrate that genetic programming can evolve mutation operators which generalise well from the

training set to the test set on each function class. The proposed method is able to outperform exist-

ing human designed mutation operators with statistical significance in most cases, with competitive

results observed for the rest.

Keywords: Evolutionary Programming; Genetic Programming; Automatic Design;

Hyper-heuristics; Continuous Optimization

1. Introduction

Black-box function optimisation is the task of finding the optima of an objective function for

which we do not have access to an analytical form. A generate-and-test approach can be used

to sample the domain of the function in order to identify potential optima. Different black-box

optimisation techniques have been proposed; the majority of which are the result of much manual

effort. In addition, each optimisation algorithm is designed in isolation from a problem environment.

A proposed algorithm is usually tested on a number of benchmark functions to demonstrate its

ability to identify the optima of a function. Unlike an individual function, a function class represents
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a parameterised function in which the parameters have a certain range of values. Thus a function

class represents an infinite source of functions, from which it is possible to draw sets of sample

functions from the same distribution.

This paper is concerned with evolutionary programming (EP) [1], which evolves a population

of real-valued input vectors for a function, a technique widely applied to real-world problems [2,

3, 4]. As EP has an evolutionary basis, each vector undergoes selection, evaluation, and mutation,

with the expectation that fitter and fitter vectors are obtained. Here we focus on the mutation

component of EP, which in the past has been designed manually. Real-valued optimisation is an

active research topic and several population-based metaheuristics have been applied to function

optimisation, including differential evolution and its variants [5, 6] , particle swarm optimisation

[7], covariance matrix adaptation evolution strategy (CMA-ES) [8] and hybrid methods [9]. We

acknowledge the existence of these algorithms. However, as this study is concerned specifically

with the modification of EP, a full review of all of these algorithms is beyond the scope of this

paper.

A hyper-heuristic is a search method or learning mechanism for selecting or generating heuristics

to solve computational search problems [10]. In addition to the broad distinction between selection

and generation hyper-heuristics, it is also possible to classify hyper-heuristics according to the

source of feedback during learning. Online hyper-heuristics learn while solving a given instance of

a problem, whilst hyper-heuristics which learn in an offline manner gather knowledge in the form

of rules or programs, from a set of training instances, that would hopefully generalise to the process

of solving unseen instances. genetic programming (GP) [11] is a population-based evolutionary

computation method for evolving program trees, that has frequently been used as a generation

hyper-heuristic in the literature [12].

In this paper, we use GP as an offline generation hyper-heuristic to automatically create mu-

tation operators for EP operating on function classes. A mutation operator in EP is a probability

distribution, represented as a random number generator. We present an algorithmic framework

which can not only express a number of currently existing EP mutation operators, but also gen-

erate novel variants of EP mutation operators. Using a train-and-test approach, GP is used to

evolve mutation operators for EP, using a training set drawn from a class of functions which is

then validated on a larger set of unseen instances taken from the same class. We use the term

automatically designed mutation operators (ADMs) to describe the mutation operators generated
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by GP. We demonstrate that the ADMs for EP are capable of comparable, and often superior,

performance to existing human designed operators. An additional set of experiments that takes

ADMs that are trained on one function class, but then tested on a different function class is also

conducted to further examine the performance of the evolved ADMs.

The outline of the remainder of this paper is as follows. In Section 2, we give the background

to the proposed approach of automatically designing algorithms using GP-based hyper-heuristics.

In Section 3 we consider the task of function optimisation and introduce the notion of a function

class. Section 4 presents our experimental results, which are analysed in Section 5. In Section 6

we discuss the research presented and in Section 7 we summarise the article and outline potential

further research directions.

2. Automated Design Using Hyper-Heuristics

The key distinction between metaheuristics and hyper-heuristics is that the former operate

directly on the solution search space, while the latter operate indirectly on the solution search

space, working with a set of low-level heuristics or heuristic components. Hyper-heuristics come in

two main types: heuristics to choose heuristics and heuristics to generate heuristics [10]. In this

paper we are concerned with the second of these two categories, heuristics to generate heuristics [12].

The automated generation of heuristics has received much attention in the last few years. Wood-

ward et al. [13] automatically search the space of genetic algorithm (GA) selection operators, which

contain fitness proportional and rank selection, where bitstrings in the population are chosen in

proportion to their fitness value or indexed position in the sorted population respectively. In a later

paper by the same authors, novel mutation operators were automatically constructed using random

search and multiple-restart hill-climbing to search the space of mutation operators [14]. The sys-

tem was capable of expressing two well-known mutation operators: one-point and uniform. While

random search and hill-climbing may not be considered to be particularly ‘sophisticated’, they

were sufficient to discover new selection and mutation operators which outperformed their human

designed counterparts. Diosan and Oltean [15] evolved crossover operators for genetic algorithms

outperforming existing crossover operators on some function optimisation problems.

As one of the main applications areas of metaheuristics is combinatorial optimisation problems,

it is not surprising that this type of problem has attracted the attention of automated design.

GP has been widely adopted to generate heuristics for a variety of problems. Nguyen et al. [16]
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used GP to automatically design algorithms for job-shop scheduling, Keller et al. [17] tackled the

travelling salesman problem, while Bader El Den et al. [18, 19] evolved timetabling heuristics.

Drake et al. [20] used GP to evolve a scoring mechanism to determine the order in which knapsack

items should be considered by a constructive heuristic for the multidimensional knapsack problem.

Hong et al. [21] used GP to automate the design of probability distributions as mutation operators

for evolutionary programming. GP was used to generate new data mining algorithms which were

tested on well-known machine learning benchmark datasets by Freitas and Pappa [22]. Their paper

showed that GP could outperform random search in searching the space of rules for data mining.

The rules evolved by GP were observed to be at least as good as human designed rules in terms

of classification. GP has also been used to automatically design schedule policies for dynamic

multi-objective job shop scheduling [23], to evolve ensembles of dispatching rules for the job shop

scheduling problem [24], and to automate the design of production scheduling heuristics [25]. Both

online and offline bin packing have attracted attention within the heuristic generation research

community [26]. Heuristic functions have been evolved to determine in which bin to place a given

item [27]. In this case, the evolved heuristic functions have been shown to perform well on problem

instances drawn from the same problem class used in the training phase, while a degradation in

performance is witnessed when heuristics are applied to problem instances drawn from different

problem classes. Heuristics have been evolved on problem instances containing a small number of

items, then applied to much larger problem instances containing many more items [28]. In these

approaches, a heuristic function is evolved as a GP syntax tree. However, more recently, both

a look-up table (referred to as a “matrix”) [29, 30] and function interpolation [31] have also been

used to represent a heuristic function. Other metaheuristics have been automatically designed using

hyper-heuristics, such as particle swarm optimisation [32] and variable neighbourhood search [33].

This current paper builds on previous papers. Hong et al. [21] first demonstrated that GP could

automatically construct random number generators which are typically used in EP. In a second

paper, it was shown that ADMs could be trained on collections of functions classes, showing good

performance across a broader range of functions [34], however a tradeoff between general training

and specific performance was observed. This paper presents a study of the design of 23 ADMs, for

23 functions classes, and then tests each of the 23 ADMs on each of the function classes.
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3. Optimisation and Function Classes

In this section we first discuss optimisation with EP, and then introduce function classes as

probability distributions over functions. Function classes are central to this paper, differentiating

our approach from the standard convention of benchmarking on arbitrary functions. Rather than

demonstrating the utility of an optimisation algorithm for specific arbitrary functions, we demon-

strate the utility of an ADM on a set of functions are drawn from a fixed probability distribution

(i.e. a function class).

3.1. Evolutionary Programming and Optimisation

We follow the formulation of optimisation as stated by Yao et al. [1, 35], which we repeat here.

Global minimisation can be formalised as a pair (X, f), where X ∈ Rn is a bounded set in Rn and

f : X → R is an n-dimensional real-valued function. The objective is to find a point xmin∈ X such

that f(xmin) is a global minimum in X. More specifically, it is required to find an xmin such that

∀x ∈ X : f(xmin) ≤ f(x).

Here, f does not need to be continuous or differentiable. While the aim of optimisation is to identify

global optima of the function, in practice we often settle for methods, such as EP, which identify

near-optima. EP is a widely used evolutionary algorithm for continuous optimisation introduced

by Bäck and Schwefel [36] as follows:

1. Generate the initial population of µ individuals. Each individual is taken as a pair of real-

valued vectors, (xi, ηi), ∀i ∈ {1, . . . , µ}, where xi’s are objective variables and ηi’s are standard

deviations for Gaussian mutations.

2. Evaluate the fitness value for each (xi, ηi), ∀i ∈ {1, . . . , µ}, of the population based on the

objective function, f(xi).

3. Each parent (xi, ηi), ∀i ∈ {1, . . . , µ}, creates λ / µ offspring on average, so that a total

of λ offspring are generated. Offspring are generated by: for i ∈ {1, . . . , µ}, j ∈ {1, . . . , n} and

p ∈ {1, . . . , λ},

η′i(j) = ηi(j)exp(γ
′N(0, 1) + γNj(0, 1)) (1)

x′p(j) = xi(j) + η′p(j)Dj (2)

where xi(j), x
′
p(j), ηi(j) and η′p(j) denote the j-th component of the vectors xi, x′p, ηi and η′p

respectively. N(0, 1) denotes a normally distributed one-dimensional random number with mean 0
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and standard deviation 1. Nj(0, 1) indicates that the random number is generated anew for each

value of j. The factors γ and γ′ are set to (
√

2
√
n)−1 and (

√
2n)−1 [36].

4. Calculate the fitness of each offspring (x′p, η
′
p), ∀p ∈ {1, . . . , λ}, according to f(x′p).

5. Conduct pairwise comparison over the union of parents (xi, ηi) and offspring (x′p, η
′
p), ∀i ∈

{1, . . . , µ}, ∀p ∈ {1, . . . , λ}. For each individual, q opponents are selected randomly from the parents

and offspring. For each comparison, if the individuals’ fitness is no smaller than the opponent’s it

receives a ‘win’.

6. Select the µ individuals out of the parents and offspring ((xi, ηi) and (x′p, η
′
p), ∀i ∈ {1, . . . , µ},

∀p ∈ {1, . . . , λ}) that have the most wins to be the parents of the next generation.

7. Stop if the halting criterion is satisfied; otherwise return to Step 3.

Different variants of EP can be obtained by using different probability distributions Dj in Step

3 above. If Gaussian distribution is used, then the algorithm is classical evolutionary programming

(CEP) [1], the Cauchy distribution is used in Fast EP (FEP) [1] whereas the Lévy distribution is

used in Lévy evolutionary programming (LEP) [37]. The Lévy distribution is parameterised with

a single parameter α, and corresponds to the Cauchy distribution when α=1.0 and the Gaussian

distribution when α=2.0. Where LEP is used in this paper, the Lévy Lα,γ(y) distribution is

implemented according to Mantegna [38] as given by Lee and Yao [37], with γ fixed at 1 (note that

γ here is independent from step 3 above):

Lα,γ(y) =
1

π

∫ ∞
0

e−γq
α

cos(qy)dq, y ∈ R. (3)

In this paper we will use genetic programming to evolve distributions to replace Dj as a mutation

operator in the EP system described above. In each case, we use the same parameters for EP as

previous publications [1, 35], using tournament selection with tournament size 10 on a population of

100 individuals. The initial value of the strategy parameter η is set to 3.0.The number of generations

is different for each function and is specified in Table 1 below.

3.2. Functions and Function Classes

In previous papers [35, 37, 39, 40], methods have been compared on functions from an arbitrary

set. Each method is executed multiple times on a single function to provide a statistical comparison.

Our method deviates from this approach in that we evolve a mutation operator for a function class,
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representing a probability distribution over a set functions. An example of a function class is

y = ax2 where a is uniformly distributed in the range [1, 2]. In this case, y = 1.3x2 is a function

from this function class, while y = 0.3x2 is not from this function class. For each of the 23 standard

functions often used in EP research [1, 35], we have constructed a corresponding function class.

The 23 benchmark function classes are given in Table 1. These can be classified as follows: f1–f7

are unimodal functions, f8–f13 are multimodal functions with many local optima, and f14–f23 are

multimodal function with few local optima [35].

Table 1: Function classes with number of dimensions n, domain S, and number of generations Gen. The parameters a, b
and c are uniformly distributed in [1 ,2], [-1, 1] and [-1, 1], respectively. For the values of w in f19 to f23, please see [35]

Function Class n S Generations

f1(x) =
∑n
i=1[(axi − b)

2 + c] 30 [−100, 100]n 1500

f2(x) = a
∑n
i=1 | xi | +b

∏n
i=1 | xi | 30 [−10, 10]n 2000

f3(x) =
∑n
i=1[

∑i
j=1(axj + b)]2 30 [−100, 100]n 5000

f4(x) = maxi{a | xi |, 1 ≤ i ≤ n} 30 [−100, 100]n 5000

f5(x) =
∑n
i=1[a(xi+1 − x

2
i )

2 + b(xi − 1)2 + c] 30 [−30, 30]n 1500

f6(x) =
∑n
i=1(baxi + 0.5c)2 30 [−100, 100]n 1500

f7(x) = a
∑n
i=1 ix

4
i + random[0, 1) 30 [−1.28, 1.28]n 3000

f8(x) =
∑n
i=1 −(xi sin(

√
|xi|) + a) 30 [−500, 500]n 1500

f9(x) =
∑n
i=1[ax2i + b(1 − cos(2πxi))] 30 [−5.12, 5.12]n 5000

f10(x) = −a exp(−0.2
√

1
n

∑n
i=1

x2
i
) − b exp( 1

n

∑n
i=1 cos 2πxi) + e + c 30 [−32, 32]n 1500

f11(x) = a
4000

∑n
i=1 x

2
i − b

∏n
i=1 cos(

xi√
i
) + c 30 [−600, 600]n 1500

f12(x) = aπ
n
{10sin2(πyi) +

∑n−1
i=1

(yi − 1)2[1 + 10sin2(πyi+1)

+ (yn − 1)2]} +
∑n
i=1 u(xi, 10, 100, 4),

yi = 1 + 1
4
(xi + 1)

u(xi, w, k,m) =


k(xi − w)m, xi > w,

0, −w ≤ xi ≤ w,

k(−xi − w)m, xi < −w.

30 [−50, 50]n 1500

f13(x) = 0.1a{sin2(3πx1) +
∑n−1
i=1

(xi − 1)2[1 + sin2(3πxi+1)] +

(xn − 1)[1 + sin2(2πxn)]} +
∑n
i=1 u(xi, 5, 100, 4)

30 [−50, 50]n 1500

f14(x) = [ 1
500

+ a
∑25
i=1

1
j+

∑2
i=1

(xi−wij)6
]−1 2 [−65.536, 65.536]n 100

f15(x) =
∑11
i=1[wi −

ax1(y2i+yix2)

b(y2
i
+yix3+x4)

]2 4 [−5, 5]n 4000

f16(x) = a(4x21 − 2.1x41 + 1
3
x61 + x1x2 − 4x22 + 4x42) + b 2 [−5, 5]n 100

f17(x) = a(x2 −
5.1
4π2 x

2
1 + 5

π
x1 − 6)2 + 10b(1 − 1

8π
)cosx1 + 10 2 [−5, 10] × [0, 15] 100

f18(x) = a[1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2

+ 6x1x2 + 3x22)] × [30 + (2x1 − 3x2)2(18 − 32x1

+ 12x21 + 48x2 − 36x1x2 + 27x22)] + b

2 [−2, 2]n 100

f19(x) = −
∑4
i=1 yiexp[−

∑4
j=1 awij(xj − pij)

2 + b] 3 [0, 1]n 100

f20(x) = −
∑4
i=1 yiexp[−

∑6
j=1 awij(xj − pij)

2 + b] 6 [0, 1]n 200

f21(x) = −
∑5
i=1[(x − wi)

T (x − wi) + yi]
−1 + a 4 [0, 10]n 100

f22(x) = −
∑7
i=1[a(x − wi)

T (x − wi) + yi + b]−1 4 [0, 10]n 100

f23(x) = −
∑10
i=1[a(x − wi)

T (x − wi) + yi + b]−1 where yi = 0.1 4 [0, 10]n 100

4. Experimental Design

In this section we describe the experimental set-up of GP and EP. With hyper-heuristic ap-

proaches, it is important to identify the two levels at which the heuristics operate. In a typical
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Figure 1: Overview of the hyper-heuristic framework used

hyper-heuristic, a metaheuristic operates on a space of (meta) heuristics, which operate directly

on the space of solutions. Here we use GP as a mutation operator generator at the hyper-level to

manipulate the mutation operators within a population of EP algorithms working at the base level.

The overall framework used is given in Figure 1.

Previous approaches manually build optimisation methods and test them on benchmark func-

tions [1, 35]. Here we employ a train-and-test approach, in which a first set of functions is used to

train a method before it is tested on a second independent set of functions drawn from the same

probability distribution to analyse performance.

4.1. The Training Phase

We call a program generated by GP an ‘automatically designed mutation operator’ (ADM),

which is in effect a random number generator. Each ADM is used as an EP mutation operator on

5 training functions drawn from a given function class. The fitness of an ADM is the average of

the best values obtained in each of the individual 5 EP runs on a given function class. We use the

same 5 functions from each function class for the entire run of GP on a given function class. For
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each function class, 10 functions are taken for training, 5 of which are used to calculate the fitness,

and 5 of which are used to monitor overfitting.

4.2. The Testing Phase

When the training phase of EP is complete for a given function class, the output is an ADM

intended solely for the function class on which it was trained. We then draw 50 new functions

from the given function class and test the ADM, comparing against 6 existing EP variants (CEP,

FEP and EP with 4 settings for the α parameter of the Lévy distribution). Note that training

is expensive, as many ADMs are evaluated, so a small set of functions is used when training. In

contrast, testing involves only a single ADM so is less costly, and a larger number of testing samples

allows a better comparison through statistical tests.

4.3. Parameter Settings for Genetic Programming

The GP implementation used in this paper is the genetic programming toolbox for Matlab

(GPLAB) [41]. The parameters for GP are given in Table 2. We use subtree crossover, in which

a node in each of the parent programs is chosen uniformly at random, and the respective subtrees

are swapped, creating two new offspring. One point mutation is also used, where a node is chosen

in the parent tree and substituted for a new tree created with the Grow initialisation method [11],

obeying the size and depth restrictions imposed by the GP parameters. The fitness of each GP

individual is calculated as the average best fitness values of the EP runs on each of the 5 training

functions, as described in Section 4.1 above. At each generation, the best individual from both

parents and offspring, along with the best offspring created during that generation are retained

in the population. The selection method used is ‘lexictour’, which uses lexicographic parsimony

pressure when two individuals are compared [42], if two individuals are of equal fitness, the tree

with a smaller number of nodes is chosen. As the evolutionary process is incredibly expensive

in computational terms (each GP individual has to perform 5 EP runs), the maximum number

of generations is initially set at a low value to reduce the amount of computational effort spent.

The maximum number of generations is set dynamically to try to ensure that a sufficient number

of evaluations are made to achieve convergence, whilst minimising the time spent on evaluating

poor quality runs. If the best individual in the population is found within the final three gen-

erations of a run, the maximum number of generations is increased by 5 in order to allow the
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evolutionary process to continue. The maximum number of generations is capped at 100, with the

evolutionary process terminated regardless of when the best individual in the population was found.

Table 2: Parameter settings for GP

Parameter Value

Population Size 10

Initial Number of Generations 5

Upper Bound of Number of Generations 100

Crossover Proportion 45%

Mutation Proportion 45%

Reproduction Proportion 10%

Selection Method lexictour [42]

Tournament Size 2

Maximum Initial Size of Tree 28

Maximum Size of Tree 512

Table 3: Function set for GP

Symbol Function Arity

+ addition 2

− subtraction 2

× multiplication 2

÷ protected division 2

pow power 2

log logarithm (base e) 1

sin sin 1

cos cos 1

sqr square root 1

Table 4: Terminal set for GP

Symbol Terminal

U ∼[0, 1]

N(µ, σ2) Normal Distribution

chy Cauchy Distribution

The function and terminal sets for GP are given in Tables 3 and 4, respectively. U is the

uniform distribution on [0, 1]. N(µ, σ2) is the normal distribution with mean µ and variance σ2.

Here we clarify that this µ is independent to that used in the EP descriptions in Section 3 In our

experiments, µ lies within the range [-2, 2] and σ2 is in [0, 10]. chy is the Cauchy distribution. ‘÷’ is

protected divide: if the numerator is divided by a zero denominator, then the numerator is returned.

The square root function is also the protected variant, taking the square root of the absolute value

of a single argument to ensure that no negative input is used. As the Lévy distribution can be

constructed from the normal distribution and arithmetic operators [38], it is also within the search

space that GP is operating in. In the terminal set there are no input variables, here we are using GP

to construct mutation operators which are effectively random number generators so do not require

any input variable.

5. Analysis of the Performance of the Automatically Designed Mutation Operators

Table 5 reports the average best values obtained over 50 EP runs of each of the 23 function

classes using a number of different mutation operators. The corresponding standard deviations are

shown underneath each mean value in parentheses. These values are displayed for Cauchy (FEP,
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Lévy with α = 1.0), Lévy with α = 1.2, α = 1.4, α = 1.6 and α = 1.8, and Gaussian (CEP, Lévy

with α = 2.0), as well as the best ADM evolved by GP for that function class. The best values

(lowest, as we are minimising) are in boldface.

Table 5: ADMs compared to human designed mutation operators, means and (standard deviations), averaged over 50 runs.
The best fitness values are in bold.

Cauchy α = 1.2 α = 1.4 α = 1.6 α = 1.8 Gaussian ADM

f1
6.012303 6.011758 6.011538 6.011426 6.011369 6.011267 6.011234

(15.5123) (15.5123) (15.5123) (15.5123) (15.5123) (15.5123) (15.5123)

f2
0.140 0.102 0.084 0.073 0.065 0.043 0.017

(2.8E-02) (2.0E-02) (1.7E-02) (1.5E-02) (1.3E-02) (8.6E-03) (3.5E-03)

f3
0.028 0.018 0.014 0.015 0.018 0.018 0.008

(2.0E-02) (2.2E-02) (1.8E-02) (3.4E-02) (5.3E-02) (2.6E-02) (1.4E-02)

f4
1.88 5.30 9.10 10.58 13.78 17.31 0.13

(1.87) (3.49) (4.36) (4.43) (6.56) (6.92) (0.21)

f5
-19.94 -19.87 -20.42 -20.21 -19.61 -20.22 -20.63

(26.13) (26.51) (26.94) (25.71) (26.44) (26.35) (27.15)

f6
0.0336 0.0134 0.0076 0.0724 0.9058 322.7146 0.0074

(3.0E-02) (1.3E-02) (8.2E-03) (2.4E-01) (2.87) (820.2) (9.4E-03)

f7
0.0586 0.0530 0.0506 0.0524 0.0554 0.0609 0.0486

(9.3E-03) (8.6E-03) (7.9E-03) (6.9E-03) (9.9E-03) (1.1E-02) (6.3E-03)

f8
-11058.28 -10642.83 -10009.65 -9530.88 -8818.26 -8053.96 -12469.12

(397.2) (507.5) (483.6) (586.8) (645.2) (603.5) (109.0)

f9
-10.953 -10.955 -10.956 -10.956 -10.357 -8.269 -10.958

(15.82) (15.82) (15.82) (15.82) (16.21) (16.29) (15.82)

f10
-27.8428 -27.8496 -27.8529 -27.8549 -27.8562 -27.7300 -27.8634

(6.86) (6.87) (6.87) (6.87) (6.87) (6.93) (6.87)

f11
-0.4963 -0.4839 -0.4704 -0.4534 -0.4554 -0.4465 -0.5030

(6.4E-01) (6.4E-01) (6.5E-01) (6.7E-01) (6.4E-01) (6.3E-01) (6.4E-01)

f12
1.72E-05 2.13E-02 1.82E-01 1.77E-01 1.01 2.37 3.57E-06

(8.8E-06) (5.9E-02) (4.7E-01) (3.7E-01) (2.0) (2.9) (2.5E-06)

f13
2.20E-04 5.20E-04 2.87E-01 5.67E-01 2.23 7.04 6.46E-05

(5.5E-05) (2.7E-03) (1.5) (1.6) (6.9) (13.0) (2.3E-05)

f14
1.32 0.98 1.24 1.08 1.11 0.90 0.78

(1.1) (6.9E-01) (8.1E-01) (7.1E-01) (6.0E-01) (5.1E-01) (2.9E-01)

f15
5.68E-04 5.13E-04 5.90E-04 6.03E-04 6.34E-04 5.39E-04 4.66E-04

(3.6E-04) (3.2E-04) (3.8E-04) (3.5E-04) (3.9E-04) (3.3E-04) (3.1E-04)

f16
-1.522775 -1.522775 -1.522776 -1.522776 -1.522776 -1.522777 -1.522779

(0.6049959) (0.6049966) (0.6049960) (0.6049964) (0.6049962) (0.6049962) (0.6049964)

f17
5.8792588 5.8792572 5.8792571 5.8792674 5.8792569 5.8792566 5.8792563

(2.9140509) (2.9140486) (2.9140487) (2.9140637) (2.9140487) (2.9140488) (2.9140489)

f18
4.615353 4.615353 4.615322 4.615324 4.615301 4.615228 4.615192

(0.9234) (0.9235) (0.9234) (0.9234) (0.9234) (0.9234) (0.9234)

f19
-3.353969 -3.354014 -3.354021 -3.354022 -3.354025 -3.354040 -3.354058

(1.7371) (1.7370) (1.7370) (1.7370) (1.7370) (1.7370) (1.7371)

f20
-3.67 -3.73 -3.83 -3.56 -3.76 -3.74 -3.86

(2.15) (2.30) (2.24) (2.13) (2.25) (2.18) (2.25)

f21
-4.33 -5.99 -5.59 -5.84 -6.44 -6.96 -7.26

(2.0) (2.7) (2.7) (2.8) (2.5) (2.4) (2.2)

f22
-11910.70 -23968.23 -20517.80 -20734.62 -12662.55 -68694.69 -85515.41

(25106.9) (70957.4) (36414.1) (35143.6) (20568.8) (193492.5) (195260.3)

f23
-20808.83 -19096.31 -14155.95 -18304.26 -20858.36 -27047.33 -111864.57

(86762.9) (39304.9) (23208.8) (46037.7) (36873.8) (40003.3) (178141.4)
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For all 23 of the function classes, the GP designed ADM outperform the 6 human designed

mutation operators. In Table 5 the evolved ADMs show the best performance on both unimodal

and multimodal functions generated by all listed function classes in Table 1. We retain 2, 3 or 4

digits after the decimal point for most of the results. To distinguish the difference of testing results

on f1, f16 and f18, we retain 6 digits after the decimal point. We retain 7 digits after the decimal

point for testing results on f17.

To determine which of these performances differ with statistical significance, we perform a

Wilcoxon signed-rank test, the results of which are presented in Table 6. Shown are the results

of the Wilcoxon signed-rank test within a 95% confidence interval of an ADM compared with

other mutation operators. In this table, ‘≥’ indicates that the ADM performs better than another

mutation operator on average. In the cases where this difference is statistically significant, ‘>’

is used. In the majority of the cases, the ADMs outperform human designed mutation operators

including Gaussian, Cauchy and Lévy, and this performance difference is statistically significant.

Table 6: Wilcoxon Signed-Rank Test of ADMs versus Gaussian, Cauchy and Lévy (with α = 1.2, 1.4, 1.6, 1.8) on f1–f23.

Function Class Cauchy α = 1.2 α = 1.4 α = 1.6 α = 1.8 Gaussian

f1 > > > > > >

f2 > > > > > >

f3 > > > ≥ ≥ >

f4 > > > > > >

f5 ≥ ≥ ≥ ≥ ≥ ≥

f6 > > ≥ > ≥ >

f7 > > > ≥ > >

f8 > > > > > >

f9 > > > > > >

f10 > > > > > >

f11 > > > > > >

f12 > > > > > >

f13 > > > > > >

f14 ≥ > > > > >

f15 > > > > > >

f16 > > > > > >

f17 > > > > > >

f18 > > > > > >

f19 > > > > > >

f20 > > > ≥ > >

f21 > > > > > ≥

f22 > > > > > >

f23 > > > > > >

There are only 2 (f5, f14), 1 (f5), 2 (f5, f6), 4 (f3, f5, f7, f20), 3 (f3, f5, f6) and 1 (f5)

function classes for which evolved ADMs perform slightly better than Cauchy, Levyα=1.2, Levyα=1.4,

Levyα=1.6, Levyα=1.8 and Gaussian respectively, with no statistical significance. This could be for

12



a number of reasons. It is possible that EP has been run for so many iterations that it does not

matter which mutation operator is used, and any difference in performance is negligible. It also

may be the case that GP would be able to find better mutation operators if it were allowed to run

for a longer period of time. One reason that GP can consistently find ADMs which perform at least

as well as human designed mutation operators is that they are easily expressed within the function

and terminal set used.

The best ADMs obtained with GP for each function class are listed in Table 7. Figure 2 provides

histograms for a subset of ADMs, showing 3000 samples taken from the ADM to give an indication

of the underlying probability distribution they represent.

Table 7: Evolved ADMs for all 23 function classes. These have been algebraically simplified where possible.

ADMs Automatically designed mutation operators

ADM1 (sin(+(chy chy)))

ADM2 (sin(−(U U)))

ADM3 (log(chy))

ADM4 (÷(−(chy chy) + (−(0 N(−1.8493, 2.288)) cos(log(N(−1.6403, 4.4607))))))

ADM5 (×(cos(+(÷(1 × (÷(−(U U) N(0.94108, 7.9111)) N(−0.5776, 0.10706)))

N(−1.0504, 5.9002))) N(−0.89638, 7.9277)))

ADM6 (N(−0.11984, 5.631))

ADM7 (N(−0.058664, 3.2512))

ADM8 (+(×(×(chy × (×(chy chy) chy)) × (chy + (chy U))) + (chy U)))

ADM9 (÷(sin(N(0.0078838, 0.17049)) − (cos(÷(chy chy)) chy)))

ADM10 (×(×(U U) × (U chy)))

ADM11 (÷(×(U ÷ (chy log(U))) U))

ADM12 (÷(chy − (N(−0.62528, 8.6422) sin(N(−1.3941, 5.1622)))))

ADM13 (÷(U chy))

ADM14 (÷(−(chy N(−0.77005, 1.7459)) + (chy N(0.7052, 4.8637))))

ADM15 (sin(N(−0.039909, 2.854)))

ADM16 (×(cos(log(U)) sin(sin(log(pow(cos(sqr(log(U))) × (cos(log(U))

sin(sin(log(pow(cos(sin(log(pow(cos(sqr(log(U))) U)))) U)))))))))))

ADM17 (×(log(N(0.29948, 0.99092)) U))

ADM18 (cos(N(1.6565, 0.8667)))

ADM19 (log(cos(÷(log(cos(÷(×(sin(U) U) pow((−(sqr(cos(chy)) cos(sin(N(1.904, 2.002)

)))) sin(chy))))) pow((−(sqr(cos(chy)) cos(sin(N(1.3206, 2.6021))))) sin(chy))))))

ADM20 (÷(U + (N(1.1209, 9.3713) N(−1.1291, 6.3921))))

ADM21 (log(sqr(N(0.41597, 1.3872))))

ADM22 (×(log(chy) U))

ADM23 (÷(+(N(−0.041901, 0.11743) cos(N(1.5605, 0.044548))) pow(sqr(U) chy)))

One might expect that for unimodal functions (e.g. f1 - f8) unimodal distributions make good

mutation operators. The intuition being, as one moves around the domain of the function, there are

corresponding changes in the objective value which can clearly guide the search. Similarly, one might

expect, multimodal probability distributions to be more suitable to search multimodal functions

than unimodal probability distributions. However, our results do not support this. For example,

in Figure 2, ADM1 clearly shows peaks at +1 and -1, which is due to the final application of the
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Figure 2: Histograms of the ADM1, ADM5, ADM15 and ADM22 for 3000 samples
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trigonometric function. In contrast, ADM5 is unimodal. Conversely, some multimodal functions

have resulted in symmetric unimodal probability distributions. For example, ADM15 is U-shaped

and not the traditional bell-shape typically used with EP. Not all of the ADMs are symmetric, for

example, ADM22, where the log function introduces asymmetry into the mutation operator.

In all but two cases (ADM6 and ADM7), the ADM is not a standard probability distribution

(normal, Cauchy, Lévy) but something more complex. It is worth noting that these standard

probability distributions are within the GP terminal set, however more ‘complex’ ADMs are the

best found by GP for each function class. This supports the case for the automatic design of

mutation operators. An alternative would be to automatically tune the numerical parameters of a

Lévy distribution (the α parameter), or normal distribution (i.e. the mean and standard deviation),

but this would only ever result in normal distributions which are a linearly scaled version of N(0, 1).

However, the automatic design process starts by defining a much broader search space than can be

done with numerical parameters alone. This allows GP to find new probability distributions which

perform better than the standard probability distributions as mutation operators for EP.

Figure 3 shows the performance of different mutation operators during an EP run, using a single

function for eight of the function classes tested.

The ADMs show significant improvement on f2, f3, f4, f20, f22, f23. The figures of f4, f19,

f20 and f23 shows that the ADMs not only perform well in early generations of the evolutionary

process, but also in later generations. The figure for f2 shows that ADM2 has good performance in

the early generations, poor performance towards the middle, but outperforms all other methods by

the end the run. This phenomenon was also found and discussed in previous references combining

Cauchy and Gaussian mutation operators together. This suggests that, as the performance of a

mutation operators varies at different stages of the search, using dynamic or multiple mutation

operators may be preferable to using a single operator.

5.1. Performance of Evolved Mutation Operators on Other Function Classes

As a result of the train-and-test approach used, each ADM evolved by GP is designed for a

specific function class. For example, ADM1 was designed for functions drawn from the function

class f1. Specifically, it was trained on 10 functions (although only 5 were used for evaluation)

drawn from f1 and tested on a further 50 functions also taken from f1. This presents the following

question: what happens when an ADM designed for one function class is used to optimise functions

15
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Figure 3: EP evolutionary process for ADM, Gaussian, Cauchy, and Lévy distribution with different value of α, the X axis
represents EP generation, the Y axis represents fitness value of EP.
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from a different function class? In other words, is the tailored ADM better than an arbitrary ADM?

We will now compare the performance of an ADM tailored to one function class with the other

22 ADMs which are intended for use on different function classes. The mean values and standard

deviations achieved by each ADM are presented in Tables 8 and 9. The diagonal is in boldface

and represents the performance of ADMi on the function class fi. For a given row (fi), the values

in boldface indicate the ADMs that have beaten ADMi on fi. For example, for f1, ADM1 is

outperformed only by ADM10. From both tables we can see that ADM8, ADM11, ADM12 and

ADM16 have the best performance on f8, f11, f12 and f16, respectively. ADM1, ADM4, ADM7,

ADM9, ADM13, ADM19 and ADM20 have the second best performance on f1, f4, f7, f9, f13,

f19 and f20, respectively. The worst performance of the tailored ADMs are ADM15, ADM18 and

ADM22: their ranks are 11th, 11th, and 12th, on f15, f18 and f22, respectively. Overall, as expected

an ADM tailored to a function class has better performance than the non-tailored ADMs. Table 10

shows the results of a Wilcoxon signed-rank test within a 95% confidence interval of a tailored ADM

(TADM) compared with non-tailored ADMs (with statistically significant differences in boldface).

The tailored ADM is an ADM trained for that specific function class. For example, ADM1 is the

TADM for function class 1, but ADM1 is a non-tailored ADM for function class 2. In this table,

‘≥’ and ‘≤’ indicate that an ADM performs better or worse than the other ADMs. In the case that

this difference is statistically significant, ‘>’ and ‘<’ are used. Although ADM16 shows the best

performance on f16, in Table 10 ‘=’ indicates that the performances of ADM16 and ADM19 are

equal on f16. For f8, ‘≥’ indicates that the performance of ADM8 is better than that of ADM23,

but that this is not significant. As can be seen from the last column in Table 10, in the majority of

cases, the tailored ADM outperforms all of the other ADMs.
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Table 8: Comparison (averaged over 20 runs) of each of the 23 ADMs on each of the 23 function classes (f1–f19). The fitness value of the TADM
is in bold, and those other fitness values that are better than the fitness value of the TADM are also in bold.

ADM1 ADM2 ADM3 ADM4 ADM5 ADM6 ADM7 ADM8 ADM9 ADM10 ADM11 ADM12 ADM13 ADM14 ADM15 ADM16 ADM17 ADM18 ADM19 ADM20 ADM21 ADM22 ADM23

f1

3.79604 3.79679 3.79617 3.80010 3.79822 3.79843 3.79682 2531.21 3.79606 3.79599 3.84599 3.79619 3.79628 3.79665 3.79612 1655.31 16670.68 3.80282 4.26045 3.79609 44.19 3.79607 3.81683

(15.53) (15.53) (15.53) (15.53) (15.53) (15.53) (15.53) (11290.26) (15.53) (15.53) (15.53) (15.53) (15.53) (15.53) (15.53) (2395.68) (7873.98) (15.53) (15.51) (15.53) (49.93) (15.53) (15.53)

f2

3.27E-02 1.73E-02 6.41E-02 2.44E-01 2.27E-01 2.42E-01 1.41E-01 10.89 1.26E-02 1.56E-02 8.78E-01 4.83E-02 6.82E-02 1.02E-01 3.30E-02 5.65 62.09 2.94E-02 3.08E-03 8.14E-03 2.69E-01 3.31E-02 3.96E-02

(6.2E-03) (3.2E-03) (1.2E-02) (5.3E-02) (4.2E-02) (4.5E-02) (2.7E-02) (29.6) (2.4E-03) (3.2E-03) (2.2E-01) (9.0E-03) (1.3E-02) (2.1E-02) (6.5E-03) (6.57) (15.77) (5.4E-03) (8.5E-04) (1.5E-03) (1.5E-01) (6.5E-03) (3.9E-02)

f3

0.0591 0.5426 0.0186 0.1031 0.0139 0.0142 0.0059 33.78 2.67 2.04 0.9379 0.2866 0.0641 0.0970 0.0849 3433.71 7087.02 0.1574 50.23 5.58 11.02 0.1992 182.15

(0.1276) (0.9071) (0.0388) (0.0522) (0.0062) (0.0059) (0.0031) (25.61) (3.03) (2.68) (0.4713) (0.4207) (0.1000) (0.1135) (0.1233) (3872.31) (4298.40) (0.1946) (47.12) (6.89) (7.78) (0.3809) (157.13)

f4

17.26 19.42 16.15 0.29 9.65 14.05 16.79 28.13 10.99 14.20 0.16 2.63 4.40 1.33 21.58 68.40 74.66 40.88 37.07 16.70 61.05 15.81 8.93

(4.97) (7.25) (4.89) (0.50) (5.40) (7.01) (7.26) (43.09) (5.90) (6.77) (0.13) (2.04) (2.85) (1.70) (7.95) (7.99) (7.26) (9.61) (14.01) (5.75) (8.86) (4.98) (5.60)

f5

-12.5987 -11.3929 -13.3862 -12.1777 -12.9862 -13.2639 -13.4344 4522608.39 -12.8065 -12.3842 -10.2108 -12.6180 -12.0733 -12.3406 -11.3735 768.5564 189434.0968 -11.6838 -10.2007 -10.9133 6.0180 -12.7928 -7.3536

(19.08) (16.78) (19.29) (20.18) (18.94) (19.31) (19.83) (4559249.52)(19.39) (17.83) (18.26) (18.51) (17.93) (17.08) (18.02) (1491.14) (135909.77) (18.82) (17.38) (18.05) (25.80) (19.30) (20.10)

f6

422.03 1143.00 12.17 0.135 0.058 0.054 0.11 9.298 0.107 0.015 0.326 0.039 0.035 0.032 195.78 17987.88 37431.70 424.44 375.22 0.017 4999.89 185.43 83.99

(1649.47) (2074.28) (38.35) (0.27) (0.22) (0.22) (0.30) (6.86) (0.25) (0.02) (0.16) (0.06) (0.07) (0.02) (490.12) (13480.82) (19447.52) (752.32) (888.00) (0.03) (5268.86) (446.24) (123.80)

f7

0.0655 0.0783 0.0562 0.0841 0.0470 0.0488 0.0487 2.8072 0.0635 0.0586 0.1949 0.0619 0.0537 0.0623 0.0702 0.5328 45.5222 0.0915 0.0870 0.0659 0.4786 0.0629 0.1865

(0.0108) (0.0243) (0.0116) (0.0196) (0.0061) (0.0065) (0.0077) (1.2139) (0.0128) (0.0093) (0.0418) (0.0107) (0.0081) (0.0107) (0.0105) (0.4611) (19.5016) (0.0228) (0.0255) (0.0123) (0.1751) (0.0157) (0.1112)

f8

-7476.80 -7873.51 -8371.09 -11531.08 -8638.19 -8567.79 -8461.85 -12471.54 -10836.76 -10864.24 -11921.11 -11261.25 -11017.46 -11363.52 -7712.38 -9103.97 -7289.48 -7716.48 -11715.12 -10802.04 -7922.38 -8271.94 -12347.43

(648.37) (503.11) (779.63) (307.06) (533.70) (489.80) (682.14) (158.44) (498.97) (528.49) (319.68) (332.98) (352.28) (396.68) (673.42) (629.07) (588.01) (519.33) (392.40) (383.83) (534.77) (686.29) (208.99)

f9

-6.3643 -6.6138 -7.2742 -8.8411 -6.5252 -6.6248 -6.1178 -7.4905 -8.8540 -8.8540 -8.7243 -8.8536 -8.8532 -8.8521 -5.7131 -8.4279 11.8005 -6.4276 -8.7550 -8.8541 -5.8654 -7.2526 -8.8323

(13.55) (14.20) (13.11) (11.28) (13.91) (14.12) (14.37) (11.30) (11.28) (11.28) (11.25) (11.28) (11.28) (11.28) (15.25) (11.22) (19.67) (13.48) (11.37) (11.28) (13.78) (13.43) (11.26)

f10

-26.5488 -27.6246 -27.8734 -28.5297 -28.4378 -27.4749 -28.1247 -7.2537 -28.5828 -28.5820 -23.8488 -28.5745 -28.5713 -28.5635 -27.3001 -16.8669 -4.3441 -26.5893 -28.4834 -28.5836 -23.4200 -27.4131 -28.5401

(8.64) (7.69) (7.11) (6.28) (6.45) (8.12) (6.63) (14.71) (6.29) (6.29) (13.26) (6.29) (6.29) (6.29) (7.78) (9.53) (2.23) (8.95) (6.39) (6.29) (9.54) (7.76) (6.29)

f11

-0.6511 -0.4304 -0.6994 -0.7322 -0.6968 -0.7229 -0.6814 -0.7159 -0.6402 -0.6742 -0.7384 -0.7172 -0.7353 -0.7251 -0.6194 72.6735 245.0964 -0.3781 -0.3158 -0.5856 5.0014 -0.5955 -0.7322

(0.55) (0.59) (0.53) (0.55) (0.57) (0.54) (0.55) (0.55) (0.56) (0.55) (0.55) (0.56) (0.54) (0.54) (0.53) (74.08) (108.70) (0.52) (0.64) (0.54) (4.93) (0.54) (0.55)

f12

2.38 1.52 8.18E-01 4.99E-05 1.14 1.08 2.61 2.95E+08 8.63E-02 4.90E-02 7.61E-04 2.74E-06 2.39E-02 9.89E-06 1.50 34.73 1.5E+07 2.15 2.01E-01 1.21E-01 18.16 1.13 4.26E+04

(2.85) (2.15) (1.30) (1.32E-05) (1.20) (2.17) (3.63) (5.62E+08) (2.99E-01) (1.77E-01) (2.36E-04) (1.09E-06) (5.98E-02) (3.88E-06) (1.33) (35.79) (2.46E+07) (1.76) (4.23E-01) (3.22E-01) (10.06) (1.06) (1.90E+05)

f13

7.53 11.54 5.38 6.69E-04 3.18 5.34 10.81 4.51E+08 3.80E-03 1.87E-03 1.01E-02 4.50E-05 6.35E-05 1.26E-04 3.66 333.02 7.36E+06 18.23 7.15E-01 2.86E-02 257.29 5.85 527.92

(11.5) (12.6) (10.3) (1.4E-04) (5.0) (5.6) (19.7) (611339756.7)(7.1E-03) (4.6E-03) (2.3E-03) (2.0E-05) (1.7E-05) (2.9E-05) (4.6) (304.3) (4.79E+06) (21.7) (1.6) (7.2E-02) (118.6) (7.5) (2359.9)

f14

1.73 1.77 1.23 1.07 1.69 1.81 1.17 0.75 1.29 1.05 0.78 0.83 1.24 0.84 1.46 2.63 0.99 1.35 1.25 1.65 1.54 1.05 0.87

(1.39) (1.52) (0.56) (0.66) (1.66) (1.35) (0.60) (0.17) (1.08) (0.57) (0.17) (0.31) (1.22) (0.34) (0.86) (3.71) (0.55) (0.87) (1.99) (1.30) (1.42) (0.68) (0.35)

f15

6.43E-04 1.55E-03 7.85E-04 7.66E-04 2.25E-03 1.92E-03 1.20E-03 1.64E-03 5.36E-04 4.18E-04 1.10E-03 5.80E-04 5.80E-04 6.34E-04 7.07E-04 1.55E-03 1.23E-03 1.41E-03 4.96E-04 4.42E-04 6.56E-04 4.79E-04 8.71E-04

(5.4E-04) (4.4E-03) (8.6E-04) (8.6E-04) (5.8E-03) (3.5E-03) (1.8E-03) (2.0E-03) (3.7E-04) (2.9E-04) (1.2E-03) (4.0E-04) (3.6E-04) (3.9E-04) (5.4E-04) (4.5E-03) (6.9E-06) (3.9E-03) (3.9E-04) (3.5E-04) (4.3E-04) (3.1E-04) (4.5E-04)

f16

-1.92447213 -1.924473263-1.924470875-1.924468207-1.924439114-1.924429001-1.924455664-1.924280681-1.924473516-1.924473529-1.924454275-1.924473348-1.924472904-1.924472224-1.924472113-1.924473543-1.92447336 -1.924472505-1.924473543-1.924473528-1.924473215-1.924473016-1.92447352

(0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58)

f17

3.786952682 3.786952414 3.786953089 3.786953821 3.786960153 3.786965855 3.786956682 3.787007025 3.7869523513.7869523473.78696211 3.786952403 3.78695256 3.786952596 3.786952688 3.7869523423.7869523953.78695256 3.786953207 3.7869523463.786952426 3.786952433 3.786952348

(2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37) (2.37)

f18

4.575031533 4.5749718194.575098811 4.575282035 4.5763558 4.577539016 4.575858015 4.588715133 4.5749584044.5749582054.576371722 4.5749678134.575001205 4.575011001 4.575028689 6.005761337 4.5749691994.5750089584.57495705 4.5749578134.5749747774.5749796924.57495876

(1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.11) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (6.14) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12)

f19

-3.552067105-3.552080968-3.552050408-3.551996944-3.551673503-3.538670434-3.551882996-3.55009538 -3.552083616-3.552083593-3.551749707-3.55208093 -3.552074315-3.552064298-3.552065788-3.552084117-3.552080969-3.552072265-3.552084001-3.552083898-3.552079811-3.552078513-3.552083673

(1.90) (1.90) (1.90) (1.90) (1.90) (1.92) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90) (1.90)
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Table 9: Comparison (averaged over 20 runs) of each of the 23 ADMs on each of the 23 function classes (f20–f23).

ADM1 ADM2 ADM3 ADM4 ADM5 ADM6 ADM7 ADM8 ADM9 ADM10 ADM11 ADM12 ADM13 ADM14 ADM15 ADM16 ADM17 ADM18 ADM19 ADM20 ADM21 ADM22 ADM23

f20

-4.0774 -4.0748 -3.8878 -4.0932 -4.0110 -3.4181 -4.0560 -3.9522 -4.1095 -4.1141 -3.8083 -4.1051 -4.1100 -3.8682 -4.0393 -4.0958 -4.0869 -4.0615 -4.1102 -4.1107 -4.0990 -4.0948 -4.1099

(2.02) (1.98) (1.95) (2.02) (2.10) (1.85) (2.03) (2.02) (2.04) (2.04) (1.97) (2.05) (2.04) (1.85) (2.07) (2.05) (1.99) (1.98) (2.05) (2.04) (2.05) (2.02) (2.04)

f21

-7.50 -8.26 -6.75 -3.69 -4.44 -4.58 -4.06 -3.64 -7.63 -7.12 -3.55 -7.50 -7.12 -5.96 -7.50 -3.99 -8.24 -6.87 -3.97 -8.14 -7.63 -7.24 -6.99

(2.4) (1.6) (2.9) (1.5) (1.9) (2.6) (1.7) (0.3) (2.3) (2.7) (0.7) (2.3) (2.7) (2.6) (2.1) (3.3) (1.5) (2.7) (2.7) (1.9) (2.4) (2.3) (2.5)

f22

-22690.01 -138764.16 -16262.26 -7564.46 -4081.24 -7710.71 -8391.89 -661.13 -138490.10 -156034.53 -2163.99 -121815.79 -75620.18 -21671.31 -184449.89 -20512221.26-71248.07 -53103.24 -3872071.64 -266869.50 -88299.30 -72258.79 -156292.70

(30957.5) (240207.8) (22759.7) (14484.9) (7046.2) (20971.9) (15850.7) (1197.4) (193997.9) (256068.3) (4065.4) (272880.3) (142754.5) (34334.5) (574931.9) (81568165.2)(109512.0) (85281.3) (7903902.6) (408822.5) (146589.9) (79909.2) (227462.4)

f23

-32152.70 -52174.33 -26607.57 -21922.82 -6153.03 -5790.76 -9617.22 -380.46 -103530.92 -132236.20 -2388.34 -50209.17 -29264.20 -14424.39 -24997.68 -3511793.67 -98707.40 -211246.70 -1024445.84 -290292.30 -107802.76 -36810.44 -111941.27

(61337.3) (93572.1) (68340.3) (54964.3) (11938.5) (11424.6) (19983.7) (657.0) (206684.0) (244626.7) (4202.0) (100548.3) (59321.4) (31387.8) (51026.8) (8105197.0) (235422.7) (642660.0) (2471291.7) (839727.1) (284455.3) (74288.9) (233075.7)

Table 10: Comparison of ADMs on different function classes.

FC TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM TADM WIN

-ADM1 -ADM2 -ADM3 -ADM4 -ADM5 -ADM6 -ADM7 -ADM8 -ADM9 -ADM10 -ADM11 -ADM12 -ADM13 -ADM14 -ADM15 -ADM16 -ADM17 -ADM18 -ADM19 -ADM20 -ADM21 -ADM22 -ADM23 TIMES

f1 N/A > > > > > > > ≥ < > > > > ≥ > > > > ≥ > ≥ > 21

f2 > N/A > > > > > > < < > > > > > > > > < < > > > 18

f3 ≥ > N/A > ≤ ≤ ≤ > > > > > > > > > > > > > > > > 19

f4 > > > N/A > > > > > > ≤ > > > > > > > > > > > > 21

f5 ≥ ≥ ≤ ≥ N/A ≤ ≤ > ≥ ≥ > ≥ ≥ ≥ > > > ≥ > > > ≥ > 19

f6 > > > > ≥ N/A ≥ > > ≤ > < < < > > > > > ≤ > > > 17

f7 > > > > ≤ ≥ N/A > > > > > > > > > > > > > > > > 21

f8 > > > > > > > N/A > > > > > > > > > > > > > > ≥ 22

f9 > > > > > > > > N/A > > > > > > ≥ > > > < > > > 21

f10 > ≥ > > > > > > < N/A > > > > > > > > > < > > > 20

f11 > > > ≥ > ≥ > > > > N/A > ≥ > > > > > > > > > > 22

f12 > > > > > > > > > ≥ > N/A > > > > > > > > > > > 22

f13 > > > > > > > > > ≥ > < N/A > > > > > > > > > > 21

f14 > > > ≥ > > ≥ ≤ ≥ ≥ ≤ ≤ ≥ N/A > > ≥ > ≥ ≥ ≥ ≥ ≥ 19

f15 ≤ ≥ ≥ ≥ ≥ > > > < < > ≤ ≥ ≤ N/A > > ≥ < < ≤ < ≥ 12

f16 > > > > > > > > > > > > > > > N/A > > = > > > > 22

f17 > ≥ > > > > > > < < > ≥ > > > < N/A > > < > ≥ > 18

f18 > < > > > > > > < < > < ≥ ≥ > > < N/A < < < < < 12

f19 > > > > > > > > > > > > > > > ≤ > > N/A > > > > 21

f20 > > > > > > > > > < > > > > > ≥ > > ≥ N/A > > > 21

f21 ≥ < > > > > > > ≥ ≥ > ≥ ≥ > ≥ > ≤ ≥ > ≤ N/A ≥ ≥ 19

f22 > ≤ > > > > > > < ≤ > ≤ ≤ > ≤ ≤ ≥ ≥ ≤ < ≤ N/A ≤ 11

f23 ≥ ≥ ≥ ≥ ≥ > > > ≥ ≤ > ≥ > ≥ ≥ ≤ ≥ ≤ ≤ ≤ ≥ ≥ N/A 17
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6. Discussion

One of the advantages of the new method presented here is that it eliminates the need for human

researchers to continually propose new distributions for use as mutation operators in EP. Instead, we

have a search space which contains a rich set of mutation operators, and we can let a metaheuristic,

such as GP, sample this space and select a suitable choice for the sample of functions at hand.

In addition, it designs an ADM within the context of a function class. In other words, it tailors

a mutation operator (random number generator) to a function class (probability distribution over

functions). The suitability of mutation operator depends on the function class. Rather than tuning

a numerical parameter to a function class, it tunes a program that generates random numbers to a

function class.

One of the apparent disadvantages of the proposed system is the time needed to evolve the

ADMs. This is because we have an EP algorithm at the base level, the mutation operator of

which is being evolved by a GP algorithm at the hyper-level. While this may appear to be a

superficial disadvantage, there are other advantages. Firstly, it is difficult to measure the amount

of human effort required in designing a new mutation operator, and therefore it is difficult to directly

compare the design phases of human and machine (GP in this case). We can only sensibly compare

the performance of two mutation operators at the testing phase. Secondly, the system can be used

to automatically generate new ADMs as and when needed to the demands of a new function class,

whereas the human designer would have to start the whole process over again.

It is important to note that the fact that the training and testing are drawn from the same

distribution is central to the train-and-test approach. In our case, this means that an ADM is

developed to be used as a mutation operator for a given function class, but also, importantly,

within a given EP algorithm, which includes a fixed EP population size and number of generations.

One of the current limitations of the proposed method is that not only must the training set

of functions be representative of the testing set of functions, but also the conditions under which

they are sampled must be similar. For example, when testing a function from function class f1, we

used the same population size and number of generations of EP as in the training phase. This is

a limitation which needs to be addressed. One possibility would be to use GP to train EP using a

different number of generations and population sizes. However, this would only partially address

the issue, since if we attempted to use an ADM with a population size and number of generations

outside the ranges seen in the training phase, there would be no guarantee of performance.
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7. Summary and Future Work

In this paper we have used genetic programming (GP) as an offline hyper-heuristic to automat-

ically evolve probability distributions, to use as mutation operators in evolutionary programming

(EP). This is in contrast to existing operators in the literature which are human designed. The

function and terminal set for GP was chosen to be able to express a number of currently existing

human designed mutation operators, namely Cauchy, Gaussian and Lévy, and also express novel

automatically designed mutation operators (ADMs). Each ADM is constructed from a function set

including arithmetic and trigonometric functions, and a terminal set of probability distributions

included as standard in many programming libraries and mathematical packages. Using a train-

and-test approach, where two independent sets of functions are drawn from the same function class

for training and testing, it is shown that GP is capable of generating ADMs which outperform

existing EP variants over a number of different function classes. As an additional validation exer-

cise, we have also presented experiments to show that the ADM tailored to a given function class

performs better that ADMs tailored to different function classes.

There are a number of possible directions for future work. As GP has been able to evolve good

variation operators for EP, further work will explore the ability of GP to generate variation operators

for other real-valued optimisation methods such as differential evolution (DE) and particle swarm

optimisation (PSO), particularly for the case of function classes where a train-and-test approach

can be used. Another direction within EP is to extend our hyper-heuristic approach beyond simple

static mutation operators. It has been observed previously that both Cauchy and Gaussian mutation

are effective in EP at different points of a search [35]. As both of these operators can be defined

as a parameterised version of the Lévy distribution, through the use of different α values, we will

evolve the value of α as a function over time, subsequently defining a family of adaptive mutation

operators which can be trained to specialise in solving different classes of functions.
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methodologies with genetic programming, in: C. Mumford, L. Jain (Eds.), Computational

22



Intelligence, Vol. 1 of Intelligent Systems Reference Library, Springer Berlin Heidelberg, 2009,

pp. 177–201.

[13] J. R. Woodward, J. Swan, Automatically designing selection heuristics, in: Proceedings of

the Genetic and Evolutionary Computation Conference Companion (GECCO 2011), ACM,

Dublin, Ireland, 2011, pp. 583–590.

[14] J. R. Woodward, J. Swan, The automatic generation of mutation operators for genetic algo-

rithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion

(GECCO 2012), ACM, Philadelphia, Pennsylvania, USA, 2012, pp. 67–74.
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