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Abstract 1 

Background and purpose. Evidence suggests that exercise decreases nicotine withdrawal 2 

symptoms in humans; however, the mechanisms mediating this effect are unclear. We 3 

investigate, in a mouse model, the effect of exercise intensity during chronic nicotine exposure 4 

on nicotine withdrawal severity, binding of α4β2*, α7 nicotinic acetylcholine (nAChR), μ-5 

opioid (μ receptors) and D2 dopamine receptors, and on brain-derived neurotrophic factor 6 

(BDNF) and plasma corticosterone levels.  7 

Experimental approach. Male C57Bl/6J mice treated with nicotine (minipump, 24 mg kg-1 8 

day-1) or saline for 14 days underwent one of three concurrent exercise regimes: 24, 2 or 0 hrs 9 

day-1 voluntary wheel running. Mecamylamine-precipitated withdrawal symptoms were 10 

assessed on day 14. Quantitative autoradiography of α4β2*, α7 nAChRs, μ receptors and D2 11 

receptor binding was performed in brain sections of these mice. Plasma corticosterone and 12 

brain BDNF levels were also measured.  13 

Key results. Nicotine-treated mice undertaking 2 or 24 hrs day-1 wheel running displayed a 14 

significant reduction of withdrawal symptom severity compared with the sedentary group. 15 

Wheel-running induced a significant upregulation of α7 nAChR binding in the CA2/3 area of 16 

the hippocampus of nicotine-treated mice. Neither exercise nor nicotine treatment affected μ 17 

or D2 receptor binding or BDNF levels. Nicotine withdrawal increased plasma corticosterone 18 

levels and α4β2* nAChR binding, irrespective of exercise regimen. 19 

Conclusions and implications. We demonstrate for the first time a profound effect of exercise 20 

on α7 nAChRs of nicotine-dependent animals, irrespective of exercise intensity. These findings 21 

shed light onto the mechanism underlining the protective effect of exercise in the development 22 

of nicotine dependence.  23 

 24 
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Non-standard abbreviations: BDNF (brain-derived neurotrophic factor); BLA (basolateral 3 

amygdale); CA1 or 2/3 (regions of the hippocampus); CgCx (cingulate cortex); D2 receptor 4 

(dopamine D2 receptor); DAMGO (D-Ala2-MePhe4-Gly-ol5 enkephalin); μ receptor (μ-opioid 5 

receptor); nAChR (nicotinic acetylcholine receptor); NSB (non-specific binding); PAG 6 

(periaqueductal grey); SEM (standard error of the mean); VTA (ventral tegmental area); ZT 7 

(zeitgeber).  8 

 9 

  10 



5 

 

Table of Links 1 

Targets    

GPCRa Ion Channelsb 
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Introduction 1 

 More than fifty percent of attempts to quit smoking in the UK are not successful, which 2 

is thought to be at least partly due to the limited efficacy of the substitution pharmacotherapies 3 

currently available (The Health and Social Care Information Centre, 2012). Exercise, however, 4 

has been shown to be of benefit as a non-pharmacological aid for treating nicotine dependence. 5 

In particular, clinical and laboratory studies provide some evidence that exercise prior to 6 

smoking cessation and/or during smoking cessation can reduce the severity of nicotine 7 

withdrawal and craving following cessation of drug-taking and might be protective against 8 

relapse (for reviews see Abrantes et al., 2009; Haasova et al., 2013; Taylor et al., 2007b). With 9 

regards to other drugs of abuse, in vivo animal studies showed that exercise can attenuate 10 

priming- and cue-induced reinstatement of cocaine self-administration (Smith et al., 2012; 11 

Thanos et al., 2013) and reduce morphine withdrawal symptoms (Balter & Dykstra, 2012; 12 

Miladi-Gorji et al., 2012), further supporting the beneficial effect of exercise in reducing drug 13 

withdrawal symptoms and preventing relapse. Nonetheless, the frequency and intensity of 14 

exercise needed, as well as the neurobiological mechanisms underpinning these beneficial 15 

effects of exercise on reducing drug withdrawal and preventing relapse remain unclear.  16 

 Since neuronal nicotinic acetylcholine receptors (nAChRs) are the primary target of 17 

nicotine (Barik & Wonnacott, 2009), the reinforcing compound in cigarettes (Picciotto & 18 

Kenny, 2013), nAChRs are a central candidate system that may underlie the beneficial effect 19 

of exercise in reducing nicotine withdrawal symptoms. Previous studies have shown that mice 20 

lacking the α4 or β2 subunits do not self-administer nicotine (Marubio et al., 1999; Picciotto et 21 

al., 1998), while mecamylamine (nAChR antagonist)-precipitated withdrawal symptoms are 22 

absent in β2 and α7 knockout mice (Jackson et al., 2008; Salas et al., 2007), indicating α4β2* 23 

and α7 nAChRs as essential mediators of nicotine dependence and withdrawal. However, the 24 
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effect of exercise on the nAChRs during chronic nicotine use and withdrawal has not yet been 1 

studied. 2 

The endogenous opioid system, and more specifically the μ-opioid system, has been 3 

implicated in the effects of exercise (e.g. de Oliveira et al., 2010), as well as during the different 4 

phases of nicotine addiction/withdrawal (see le Merrer et al., 2009). β-endorphin, an 5 

endogenous opioid ligand for the μ-opioid receptor (μ receptor), is thought to mediate the 6 

mood-enhancing effects of exercise via its actions on the the μ receptor (de Oliveira et al., 7 

2010), a concept referred to as “runner’s high”. With regards to nicotine addiction, nicotine 8 

administration in mice lacking the μ receptor gene does not produce rewarding properties and 9 

these mice have attenuated nicotine somatic withdrawal symptoms (Berrendero et al., 2002). 10 

Moreover, chronic nicotine administration results in higher expression of the μ receptor in the 11 

ventral tegmental area of the brain in mice (Walters et al., 2005) and naloxone, an opioid 12 

receptor antagonist, triggers withdrawal symptoms in nicotine-dependent rats (Malin et al., 13 

1993) and in daily smokers (Krishnan-Sarin et al., 1999). Although these findings clearly show 14 

a key role of the μ receptor system in the mediation of both the mood-enhancing effects of 15 

exercise and the addiction-related behavioural effects of nicotine administration and 16 

withdrawal, it is not clear if μ receptors are involved in the beneficial effects of exercise on 17 

nicotine dependence and abstinence. As a result, assessing if exercise in nicotine dependent 18 

individuals affects the regulation of μ receptors in the brain will shed light into the mechanisms 19 

underlining the beneficial effect of exercise on nicotine dependence and thus warrants further 20 

investigation. 21 

Nicotine withdrawal is associated with a reduction of dopaminergic tone in the striatum 22 

(see Hadjiconstantinou et al., 2011), and D2 receptors are acutely downregulated during 23 

nicotine withdrawal in rats (Scott et al., 2007). Since there is clinical and pre-clinical evidence 24 

to suggest that exercise may be able to counteract the hypofunction of the DAergic system by 25 
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specifically increasing brain D2 receptor levels in different psychiatric conditions  (Fisher et 1 

al., 2013; Vučcković et al., 2010), we postulated that exercise during drug exposure might be 2 

exerting its beneficial effects against the development of nicotine dependence by upregulating 3 

striatal D2 receptors as well.  4 

Another key mediator of drug addiction is brain-derived neurotrophic factor (BDNF). 5 

For example, BNDF levels are elevated in the ventral tegmental area and nucleus accumbens 6 

during withdrawal from chronic cocaine treatment (Tapia-Arancibia et al., 2001) and in the 7 

hippocampus following alcohol cessation in ethanol-dependent rats (Tapia-Arancibia et al., 8 

2001). Importantly, there is some evidence indicating that exercise decreases  accumbal BDNF 9 

expression (Strickland et al., 2016), suggesting that exercise might be manifesting its beneficial 10 

properties against nicotine dependence by reducing elevated BDNF levels. 11 

This study aimed to investigate the effect of three different intensities of exercise during 12 

chronic nicotine exposure on the development of physical dependence as measured by acute 13 

mecamylamine-precipitated somatic withdrawal in mice, and to assess the expression of α4β2* 14 

and α7 nAChRs, μ receptors, D2 receptors and BDNF in the brains of these mice. As there is 15 

some clinical evidence to suggest that exercise may be able to reduce nicotine withdrawal 16 

symptoms by attenuating the reduction in cortisol levels observed in temporarily abstinent 17 

smokers (Scerbo et al., 2010), we also measured plasma corticosterone levels in these mice.  18 

 19 

  20 
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Methods 1 

Animal Welfare and Ethical Statement 2 

A total of 80 male C57Bl/6 mice (B&K Universal, UK) aged 8 weeks were individually 3 

housed in Macrolom Type II Long cages fitted with a 13 cm diameter concentric free-turning 4 

running wheel (ClockLab, Actimetrics, Wilmette, IL) in light-tight, sound-attenuated cabinets. 5 

Mice were maintained in a 12:12 hr light/dark cycle in a reversean altered phase light protocol 6 

(lights off 11:00 AM). Animals had ad libitum access to food and water throughout the 7 

experiment. Animal work procedures were carried out in accordance with the Animal 8 

(Scientific Procedures) Act 1986 Amendment Regulations (SI 2012/3039) under the project 9 

licence PPL 70/7203, approved on 17th February 2011, and reported according to ARRIVE 10 

guidelines. A mouse model was used in this study as it is commonly used to assess the 11 

neurobiological mechanisms underpinning nicotine addiction and exercise. The exact group 12 

size for each treatment/exercise group is provided for each experiment in Table 1. The 13 

experimenter who performed the minipump surgeries and injected the animals was aware of 14 

the pharmacological treatments and exercise regimen. Running wheel responses were 15 

registered by an automated software, and the analysis of the behavioural and biochemical 16 

autoradiographic binding outcomes of the study were carried out by researchers who were 17 

blinded to the experimental/treatment groups. No animals were excluded from the analysis. 18 

However, three animals died following minipump implantation. 19 

Assessment of Running Wheel Activity 20 

Mice were randomly assigned to one of three running wheel conditions and treated with 21 

either nicotine or saline: wheels unlocked 24 hrs day-1 (n=13); wheels unlocked 2 hrs day-1 22 

(n=12–14); and wheels unlocked 0 hr day-1 (sedentary group, n=12–13). In the 2 hrs day-1 group 23 

wheels were unlocked at 13–15 zeitgeber time (ZT), as this is the peak activity time for 24 

C57Bl/6J male mice on a 12:12 hr light/dark cycle (Hasan et al., 2011). To determine profiles 25 
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of average running wheel activity, the total number of wheel revolutions day-1 was converted 1 

into distance run for the 7 days of habituation and 14 days of treatment (nicotine or saline 2 

delivered via minipumps). 3 

Minipump preparation and implantation 4 

After habituating the mice in their running wheel condition for 7 days (see above), mice 5 

were treated with a chronic, 14-day, nicotine administration regimen, as previously described 6 

(Zanos et al., 2015), with minor modifications. Briefly, mice were surgically implanted with 7 

subcutaneous osmotic minipumps (Model 2002, Alzet®, Cupertino, CA) containing saline or 8 

(-)-nicotine hydrogen tartrate (24 mg kg-1 day-1; Sigma Aldrich, Poole, UK) in sterile saline 9 

delivering a constant flow at a rate of 0.5 µl hour-1 for a period of 14 days. All nicotine 10 

concentrations are expressed as nicotine free base. Drug dose was selected to achieve blood 11 

nicotine levels comparable to the physiologically-relevant concentrations measured in plasma 12 

of human smokers (see Matta et al., 2007). For minipump implantation, animals were 13 

anaesthetised with a volatile isoflurane anaesthetic (4.0 %) (Isoflo, Abbott Laboratories Ltd., 14 

Kent, UK), which was vaporised in 95 % O2 / 5 % CO2 gas and delivered by a U400 anaesthetic 15 

unit (Univentor, Royem Scientific, Luton, UK) at a flow rate of approximately 450 ml min-1 16 

isoflurane/oxygen vapor mixture (3.5%–4.5%; Isoflo, Abbott Laboratories Ltd, Maidenhead, 17 

Berkshire, UK). The animals were placed in the anaesthetic chamber for 1 min until the righting 18 

reflex was lost and were subsequently placed under a mask delivering anaesthesia throughout 19 

the surgery. Mice were injected with a non-opioid analgesic (Metacam, 1.5 mg kg-1, s.c.). A 20 

single incision along the midline of the back of each animal was made and osmotic mini-pumps 21 

were placed in parallel position to the spine. The flow operator was pointing away from the 22 

incision site.  The incision was closed using 2–3 Michele clips (11 x 2.5 mm). Upon completion 23 

of the surgical procedure mice were allowed to recover in heated-recovery chambers until their 24 

righting reflex returned and were then placed back into their home cages. 25 

http://topics.sciencedirect.com/topics/page/Isoflurane
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Assessment of nicotine withdrawal severity 1 

Fourteen days after minipump implantation all animals were injected with 2 

mecamylamine (3 mg kg-1, subcutaneously (s.c.); Sigma Aldrich, Poole, UK) (Damaj et al., 3 

2003) and immediately assessed for nicotine somatic withdrawal symptoms. Mice were 4 

videotaped and observed for 30 mins in clear plastic activity cages for somatic withdrawal 5 

symptoms, according to the scale developed by Castañé et al. (2002). The following abstinence 6 

signs were evaluated during a 30-min period after mecamylamine injection: body tremor, 7 

ptosis, wet dog shakes, rearing, teeth chattering, paw tremor, scratching, genital licks, sniffing 8 

and piloerection. A global withdrawal score was calculated for each animal by giving each 9 

individual symptom a relative weight: 0.5 for each episode of wet dog shake, front paw tremor, 10 

sniffing, rearing and scratching; and 1 for appearance or 0 for non-appearance within each 5-11 

min bin for the presence of ptosis, genital licks, tremor, piloerection and teeth chattering. A 12 

composite of all these individual withdrawal symptoms was calculated to make up a global 13 

withdrawal symptom score. Scoring of behaviour was carried out by two independent observers 14 

blind to the treatment protocol.  15 

Thirty mins after the end of withdrawal assessment mice were euthanised with a 20-sec 16 

CO2 exposure, and trunk blood was collected, following decapitation, in EDTA-containing 17 

eppendorf tubes. Brains were excised and immediately frozen in isopentane solution (-20 °C) 18 

and then stored at -80 ˚C for autoradiography or BDNF measurements. Trunk blood was 19 

centrifuged (240 x g at 4 °C for 15 min) and the plasma stored at -20 °C for subsequent analysis 20 

of corticosterone content. 21 

Quantitative receptor autoradiography 22 

Brains from some animals used for the behavioural studies (for exact number, see Table 23 

1) were sectioned in a cryostat (Zeiss Hyrax C 25, Carl Zeiss AG, Oberkochen, Germany), at 24 

-21 °C. 20 µm coronal sections were cut at 300 µm intervals, from rostral to caudal levels, and 25 
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thaw-mounted onto gelatine coated ice-cold microscope slides and processed for 1 

autoradiography. Adjacent sections were cut for determination of total and non-specific (NSB) 2 

binding. Sections were stored at -20 °C prior to radioligand binding. 3 

Quantitative autoradiography was performed on brain sections for α4β2*, α7, μ 4 

receptors and D2 receptors using [125I]epibatidine (100 pM ± 20 nM cytisine), [125I]α-5 

bungarotoxin (α-Bgtx; 3 nM), [3H]D-Ala2-MePhe4-Gly-ol5 enkephalin (DAMGO; 4 nM) and 6 

[3H]raclopride (4 nM), respectively, according to established protocols (Georgiou et al., 2016; 7 

Metaxas et al., 2013; Wright et al., 2016), with minor modifications (see Supplemental 8 

Information). 9 

Plasma corticosterone and brain BDNF measurements 10 

Plasma corticosterone levels: Plasma samples from trunk blood were assayed for 11 

corticosterone content using a rat/mouse [125I]-corticosterone radioimmunoassay kit (MP 12 

Biomedicals, New York, NY), according to manufacturer’s instructions. 13 

Brain BDNF levels: Brains from some animals used for behavioural studies (for exact 14 

number, see Table 1) were defrosted in distilled water and the frontal cortex, striatum (i.e., 15 

nucleus accumbens and caudate putamen) and hippocampus dissected and weighed. The key 16 

role of BDNF in these brain regions has been extensively demonstrated in the drug addiction 17 

field (Li & Wolf, 2015). These brain regions were selected based on previous evidence for 18 

alterations of BDNF following chronic drug use (see McGinty et al., 2010). Each sample was 19 

homogenised by ultrasonification in lysis buffer containing 100 mM PIPES, 500 mM NaCl, 15 20 

mM NaN3, 20% BSA, 2.5 mM EDTA, 0.2 % TRITON X-100 and EDTA-free protease 21 

inhibitor cocktail (P8340, Sigma Aldrich, Poole, UK), pH 7 at room temperature. Total BDNF 22 

protein levels in homogenates were determined using the Promega BDNF Emax
® ImmunoAssay 23 

System with acid treatment according to manufacturer’s instructions (Promega, Madison, WI). 24 

Data analysis and statistical procedures 25 
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All data are presented as mean ± SEM and were analysed using Statistica (STATsoft, 1 

Inc., version 10, Tulsa, OK). ANOVAs were followed by Bonferroni post-hoc tests where 2 

significance was achieved (p<0.05). Withdrawal data were analysed using non-parametric tests 3 

followed by post-hoc tests where significance was p<0.05. For details on statistical analyses 4 

see Supplemental Information. ANOVA results and precise sample sizes are detailed in Table 5 

1. All the data and statistical analyses comply with the recommendations on experimental 6 

design and analysis in pharmacology (Curtis et al., 2015). 7 

Materials 8 

(-)-Nicotine hydrogen tartrate, mecamylamine, cytisine and sulpiride were purchased 9 

from Sigma Aldrich, Poole, UK. BDNF kits and corticosterone kits were purchased from 10 

Promega, Madison, WI, and MP Biomedicals, New York, NY, respectively. [125I]epibatidine 11 

(specific activity 2200 Ci mmol-1), [125I]α-Bungarotoxin (specific activity 108.8 Ci mmol-1), 12 

[3H]DAMGO (specific activity 51.5 Ci mmol-1) and [3H]raclopride (specific activity 60 Ci 13 

mmol-1) used for autoradiographic binding experiments were purchased from PerkinElmer, 14 

Waltham, MA.   15 
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Results 1 

Activity profiles of saline- and nicotine-treated mice 2 

As expected, no wheel-running activity was recorded for the 0 hrs day-1 wheel-running 3 

group. Total activity per day was determined for animals in the 2 and 24 hrs day-1 wheel-4 

running groups throughout the habituation and treatment periods in order to assess whether 5 

mice reached a steady-state of activity (Fig. 1A). Three-way repeated measures ANOVA 6 

revealed a significant effect of exercise; the 24 hrs day-1 group showed higher activity 7 

throughout the habituation and treatment phases of the experiment. There was no significant 8 

effect of nicotine treatment on wheel-running activity (Fig. 1A; see Table 1).   9 

Effect of different exercise regimes on severity of nicotine withdrawal syndrome 10 

Individual withdrawal symptoms were analysed and a composite total withdrawal 11 

factor was calculated (Fig. 1B). Non-parametric Kruskal-Wallis test revealed a significant 12 

effect of exercise on withdrawal in nicotine-treated mice. Multiple Mann-Whitney U-tests 13 

showed that precipitated withdrawal induced significantly higher withdrawal symptoms in 14 

nicotine-treated mice in the 0 hrs day-1 group only compared with the saline-treated controls 15 

(U=27.50, z=-2.75, p=0.003, 1-tailed), but showed no difference between saline- and nicotine-16 

treated mice within the 2 or 24 hrs day-1 groups. Moreover, mecamylamine administration 17 

induced higher severity of withdrawal symptoms in nicotine-treated mice in the sedentary 18 

group compared with nicotine-treated mice in the 2 or 24 hrs day-1 wheel access groups 19 

(U=26.50, z=2.63, p=0.004 and U=32.00, z=2.50, p=0.006, 1-tailed, respectively; Dunn’s 20 

corrected α-level=0.025). There was also no difference in severity of withdrawal between 21 

nicotine-treated mice in 2 and 24 hrs day-1 wheel access groups (Fig. 1B; see Table 1). 22 

Interestingly, when different components of the withdrawal symptoms were analysed, 23 

mecamylamine-precipitated withdrawal in nicotine treated sedentary animals induced an 24 
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increase of paw tremors, sniffing and rearing which was absent in the groups exposed to 1 

exercise regimes (Supplementary Fig. S1). 2 

Effect of exercise on α4β2* nAChR binding in nicotine-treated mice 3 

Levels of α4β2* nAChR binding were determined using cytisine-sensitive 4 

[125I]epibatidine binding in brain regions of mecamylamine-precipitated saline- or nicotine-5 

treated mice with 0, 2 and 24 hrs day-1 running wheel access (Fig. 2A,B; Supplementary Table 6 

S1). Cytisine-resistant binding was only present in the medial habenula (MHb) for all groups 7 

(Fig. S2), indicating a high level of non-α4β2* (most likely 4*) heteromeric nAChR 8 

binding in that region. A two-way ANOVA found no significant nicotine (p>0.05) or exercise 9 

(p>0.05) effects within that region (Table 1). Two-way ANOVA followed by Bonferroni post-10 

hoc in each region revealed significant, nicotine-induced upregulation of cytisine-sensitive 11 

[125I]epibatidine binding in the frontal association, as well as the prelimbic cortex, motor 12 

cortex, cingulate cortex, nucleus accumbens core and shell, hypothalamus, substantia nigra 13 

pars compacta and ventral tegmental area irrespective of exercise regimen (Fig. 2B). α4β2* 14 

nAChR binding was also upregulated in the motor, somatosensory, piriform, retrosplenial and 15 

auditory cortices, as well as the medial septum, ventral limb of the diagonal band of Broca, 16 

olfactory tubercle and subiculum of nicotine-treated animals compared with saline controls 17 

irrespective of exercise regimen (Supplementary Table S1). No significant treatment effect was 18 

observed in the nucleus accumbens core, thalamus or the hippocampus. There were no exercise 19 

or interaction effects in any of the brain regions analysed (see Table 1 and Supplementary Table 20 

S1). 21 

Effect of exercise on α7 nAChR binding in nicotine-treated mice 22 

α7 nAChR density was determined by [125I]α-bungarotoxin binding in the brain of 23 

mecamylamine-precipitated saline- or nicotine-treated mice that were permitted 0, 2 and 24 hrs 24 

day-1 running wheel access (Fig. 3A,B; Supplementary Table S2). Two-way ANOVA in each 25 
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brain region revealed a significant treatment effect in the cingulate cortex, endopiriform 1 

nucleus, motor cortex, clostrum, CA1 region of the hippocampus, amygdala and hypothalamus 2 

(Fig. 3B). In the motor cortex, where a significant ANOVA interaction between treatment and 3 

exercise was identified (see Table 1), we demonstrated a significant decrease in α7 binding in 4 

the 24 hrs day-1 exercise saline-treated group compared with their sedentary controls (p<0.05), 5 

which was absent in nicotine-treated animals (Fig. 3B). Moreover, saline-treated mice that were 6 

permitted 24-hour day-1 running-wheel access showed a significantly lower α7 binding 7 

compared to nicotine-treated mice which were permitted the same exercise schedule (Fig. 3B). 8 

Two-way ANOVA revealed a significant exercise effect (p<0.05), a significant 9 

treatment effect (p<0.05) and a significant exercise x treatment interaction effect (p<0.05) in 10 

the CA2/3, clearly demonstrating an interaction effect of nicotine and exercise on α7 nAChR 11 

upregulation in the CA2/3. Nicotine treatment elicited higher levels of α7 binding in the CA2/3 12 

hippocampal area of mice exposed to 2 or 24 hrs day-1 running wheel access (p<0.05), 13 

compared to nicotine-treated sedentary animals and compared to their saline, exercise-14 

matching controls. Mice with 24 hrs day-1 access to a running-wheel also displayed higher 15 

levels of α7 nAChR binding in the CA2/3 of saline-treated mice compared with mice in the 0 16 

hrs day-1 saline-treated group (Fig. 3B; Table 1).  17 

Effect of exercise on μ receptor binding in nicotine-treated mice 18 

Binding of the μ receptor was determined by [3H]DAMGO binding in brain regions of 19 

mecamylamine-precipitated saline- or nicotine-treated mice permitted 0, 2 and 24 hrs day-1 20 

running wheel access (Fig. 4A). Two-way ANOVA for each brain region did not reveal any 21 

effect of treatment or exercise, nor interactions between these factors (Fig. 4A; Table 1). 22 

Effect of exercise on D2 receptor binding in nicotine-treated mice 23 

Binding of D2 receptors was determined by [3H]raclopride binding in brain regions of 24 

mecamylamine-precipitated saline- or nicotine-treated mice permitted 0, 2 and 24 hrs day-1 25 



17 

 

running wheel access (Fig. 4B). Two-way ANOVA for each brain region revealed no 1 

significant changes in [3H]raclopride binding in any of the regions analysed (Fig. 4B; Table 1). 2 

Effect of exercise on brain BDNF in nicotine-treated mice 3 

The level of free BDNF in the prefrontal cortex, striatum and hippocampus of 4 

mecamylamine-precipitated saline- or nicotine-treated permitted 0, 2 and 24 hrs day-1 running 5 

wheel access was determined using an ELISA. Two-way ANOVA for each brain region 6 

showed no significant changes in any of the regions analysed (Fig. 5A; Table 1). 7 

Effect of exercise on plasma corticosterone in nicotine-treated mice 8 

Plasma corticosterone levels were determined by radioimmunoassay of 9 

mecamylamine-precipitated saline- or nicotine-treated mice permitted 0, 2 and 24 hrs day-1 10 

running wheel access (Fig. 5B). Two-way ANOVA revealed a significant increase of plasma 11 

corticosterone levels induced by nicotine treatment (treatment effect; Table 1) irrespective of 12 

exercise regimen. No effects of exercise were found. 13 

  14 
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Discussion 1 

The present study highlights the beneficial effect of exercise during nicotine exposure 2 

in markedly reducing the severity of nicotine somatic withdrawal symptoms, an effect that is 3 

accompanied by an upregulation of the hippocampal α7 nAChRs. These findings support the 4 

protective effect of exercise preceding smoking cessation against the development of physical 5 

dependence, which may aid smoking cessation by reducing withdrawal symptom severity. 6 

Moreover, we propose a novel mechanism of action of exercise involving hippocampal α7 7 

nAChRs. 8 

Two hrs day-1 access to a running wheel was equally effective in attenuating nicotine 9 

withdrawal symptoms as continuous 24 hrs day-1 access. This is consistent with human clinical 10 

studies showing that just 10 mins of moderate intensity exercise during smoking cessation is 11 

sufficient to reduce cigarette craving, withdrawal symptoms and cue-induced cravings (Scerbo 12 

et al., 2010; Taylor et al., 2007a; Ussher et al., 2001), supporting the translational validity of 13 

our mouse model. In rodent models, 2 hrs day-1 access to running wheels during a period of 14 

abstinence from nicotine self-administration decreased subsequent nicotine-seeking in rats 15 

(Sanchez et al., 2013), demonstrating a beneficial effect of exercise on nicotine craving during 16 

abstinence. However, 2-hr daily exercise failed to prevent cue-induced reinstatement of 17 

nicotine-seeking (Sanchez et al., 2013). This effect does not preclude the possibility that a more 18 

intense exercise schedule could have prevented reinstatement of nicotine-seeking after 19 

extinction; however, this hypothesis needs to be investigated further. Here, we show that 20 

exercise exposure concurrent with nicotine administration is able to significantly reduce 21 

physical symptoms of withdrawal, which might underlie its ability to reduce nicotine craving 22 

during abstinence. It is important to note that, based on our results, it is not possible to ascertain 23 

if exercise during the withdrawal phase (irrespective of exercise during the nicotine exposure 24 

phase) would be sufficient to decrease withdrawal severity, as mice were not exposed to an 25 



19 

 

exercise regime during the withdrawal phase. Studies assessing the effects of exercise during 1 

un-precipitated nicotine withdrawal are warranted to address this question. Nonetheless, the 2 

data clearly suggest that exercise preceding smoking cessation might be able to increase the 3 

chances of abstinence from smoking by reducing acute physical withdrawal symptom severity. 4 

We also aimed to identify possible neurobiological mechanisms underlying this effect. 5 

α4β2* nAChR upregulation was observed in most brain regions of mice exposed to 6 

chronic nicotine administration followed by mecamylamine-precipitated withdrawal, 7 

irrespective of exercise regimen, demonstrating that exercise does not influence nicotine-8 

induced α4β2* nAChR upregulation. Upregulation of α4β2* nAChR following prolonged 9 

exposure to nicotine has been consistently shown in cigarette smokers  (see Fowler et al., 10 

2008)(Breese et al., 1997; Cosgrove et al., 2009) and animal models of nicotine administration 11 

(e.g. Metaxas et al., 2013), and was associated with increased self-administration of the drug 12 

(Hambsch et al., 2014). The upregulation is almost certainly due to chronic nicotine treatment 13 

not ‘mecamylamine-precipitated withdrawal’ indicating that this α4β2* nAChR upregulation 14 

persists at least following acute precipitated withdrawal. The present results demonstrate that 15 

exercise does not influence nicotine-induced α4β2* nAChR upregulation and thus is unlikely 16 

to be involved in the mechanism underlying the beneficial effect of exercise during nicotine 17 

exposure on nicotine withdrawal symptoms.   18 

Moreover, we showed that α7 nAChRs are almost globally upregulated in most of the 19 

brain regions analysed in chronically nicotine-treated mice undergoing mecamylamine-20 

precipitated withdrawal compared with saline-treated controls. This finding is in line with 21 

previous studies showing that α7 nAChRs are upregulated in response to chronic nicotine 22 

exposure (Metaxas et al., 2013), indicating that this upregulation persists during acute 23 

precipitated withdrawal. Importantly, we demonstrated that hippocampal α7 nAChR binding 24 

is regulated by exercise since 2 or 24 hrs day-1, but not 0 hrs day-1 running wheel access induced 25 
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a significant upregulation of α7 nAChR binding in the CA2/3 region of the hippocampus 1 

irrespective of nicotine/saline treatment schedule, suggesting the presence of a specific 2 

exercise-induced effect on α7 nAChRs.  3 

While exercise increases α7 nAChRs binding in saline treated and nicotine treated 4 

animals, the upregulation in the exercise plus nicotine group was found to be significantly 5 

higher than the saline plus exercise group, indicating an exercise x nicotine interaction on α7 6 

nAChR upregulation in the CA2/3 of the hippocampus. This upregulation is concomitant with 7 

the complete abolition of somatic nicotine withdrawal symptoms in chronically nicotine treated 8 

mice exposed to exercise. Although, on the basis of the present data alone it would be wrong 9 

presumptuous to assume any causal relationship between the protective effect of exercise on 10 

somatic withdrawal symptoms and α7 nAChR hippocampal upregulation, there is considerable 11 

evidence linking α7 nAChRs and with at least some of the somatic symptoms of mecamylamine 12 

induced nicotine withdrawal. Salas et al. (2007) reported a decrease of shaking and scratching 13 

but not wet dog shakes and head nods in nicotine treated α7 knockout mice undergoing 14 

mecamylamine-precipitated withdrawal. Interestingly, we also show in the present study an 15 

abolition of mecamylamine-induced withdrawal paw shakes in nicotine treated mice exposed 16 

to exercise, an effect which was concomitant to a hippocampal CA2/3 α7 nAChR upregulation, 17 

suggesting that there may be a link between α7 nAChR upregulation and the protective effect 18 

of exercise on nicotine withdrawal symptoms. Moreover, the selective α7 nAChR agonist 19 

PNU282987 and the high α7/low α4β2* efficacy agonist varenicline (Chantix, New York, NY) 20 

have shown good efficacy in decreasing motivation to consume nicotine (Brunzell et al., 2010; 21 

Harmey et al., 2012) and in reducing withdrawal symptoms and craving (Rankin & Jones, 22 

2011). It is important to note that α7 nAChRs have also been implicated in nicotine withdrawal-23 

associated the anhedonia/affective disruptive effect associated with nicotine withdrawal 24 

(Stoker et al., 2012), which is entirely clinically relevant effects as it constitutes a potential 25 
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motivational trigger to relapse. Even more intriguingly, recent data points specifically to the 1 

hippocampal α7 nAChRs as key modulators of negative affect (Mineur et al., 2017) which 2 

makes our hypothesis for a direct link between the protective effect of exercise on the negative 3 

consequences of nicotine abstinence and α7 hippocampal upregulation even more appealing. It 4 

is of course impossible to know based on the current study whether those upregulated receptors 5 

are desensitized or active and if these lead to downstream adaptations that may protect the 6 

development of physical dependence. Future studies should focus on the biological 7 

significance of this upregulation in order to test this hypothesis. 8 

Interestingly, although α4β2* nAChRs have been recognised to play a key role in the 9 

cognitive impairment associated with nicotine withdrawal (Simmons & Gould, 2014), α7 10 

nAChR activation has been shown to improve cognition, which is impaired during nicotine 11 

withdrawal in both mice and humans (Dajas-Bailador et al., 2004; Parrott et al., 1996; 12 

Wilkinson et al., 2013).Administration of varenicline, a partial α4β2* agonist and a full 13 

α7/α3β4 nAChR agonist, has been found to attenuate contextual fear conditioning during 14 

nicotine withdrawal (Raybuck et al., 2008). In addition, upregulation of α7 nAChRs has been 15 

associated with the pro-cognitive effects of α7 agonists (Christensen et al., 2010). Therefore, 16 

given the key role of the hippocampus as a brain region involved in nicotine withdrawal 17 

mechanisms related to cognitive effects, future studies are warranted to directly investigate 18 

whether exercise exerts its beneficial effect in attenuating the cognitive deficits induced by 19 

nicotine withdrawal via an enhancement of hippocampal α7 nAChRs. It is important to note 20 

that many other nAChR subtypes have been implicated in somatic symptoms of withdrawal 21 

including α3, α5, α4 and α2 nAChR subtypes (see review by Jackson et al., 2015). Of particular 22 

interest is the emergence of the habenula-interpenduncular nucleus and cytisine resistant 23 

α3β4*nAChRs in the manifestation of somatic withdrawal symptoms (Salas et al., 2009; 24 

Baldwin et al., 2011). Nonetheless, no nicotine nor exercise effect was observed in habenular 25 
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cytisine resistant [125I]epibatidine binding sites which most likely represent α3β4*nAChRs 1 

(Fig. S2). This finding plausibly suggests that exercise is unlikely to affect α3β4* nAChR 2 

density in the habenula and thus may not play a key role in the protective effect of exercise on 3 

nicotine dependence. Future research should be directed in the investigation of α3 and α5 in 4 

the effect of exercise in decreasing nicotine withdrawal symptoms. 5 

BDNF, which has been shown to be increased in the hippocampus following exercise 6 

(Fuss et al., 2010) and chronic nicotine treatment (Aydin et al 2012; Czubak 2009; Kenny 7 

2009), has also been shown to specifically upregulate the intracellular pool of α7-, but not β2*-8 

, containing nAChRs in cultured hippocampal neurons (Massey et al., 2006; Zhou et al., 2004). 9 

As a result, we postulated that the observed exercise-induced region-specific upregulation of 10 

α7 nAChR in the brain of nicotine-treated mice might be mediated by an elevation of BDNF 11 

levels. However, in the present study, neither voluntary wheel-running nor nicotine treatment 12 

had any effect on BDNF levels in the hippocampus, striatum or prefrontal cortex. This 13 

discrepancy with the literature may be due to different species, exercise regimens, treatment 14 

period and nicotine doses tested. For instance, while nicotine downregulates BDNF in the 15 

short-term (2–24 hrs), there is a positive correlation between the amount of exercise and BDNF 16 

production (for review, see Erickson et al., 2011). The species differences between the 17 

published studies and our findings might also explain these discrepancies as environmental 18 

enrichment, including use of running wheels, increased hippocampal BDNF in rats (Ickes et 19 

al., 2000), but not in mice (Rueda et al., 2012). Nonetheless, our data do not support the 20 

hypothesis that exercise during nicotine exposure might affect nicotine withdrawal symptoms 21 

via a mechanism involving hippocampal, striatal or cortical BDNF upregulation, nor that 22 

changes in BDNF levels in these brain regions are involved in the observed exercise-induced 23 

upregulation of hippocampal α7 nAChRs following nicotine treatment.  24 
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Exercise has previously been shown to upregulate D2 receptors in humans (Fisher et 1 

al., 2013) and rodents (Vučcković et al., 2010), however the present study found no change in 2 

D2 receptor binding following either exercise or nicotine withdrawal. The reason behind this 3 

discrepancy may lie in the fact that exercise-induced D2 receptor upregulation was previously 4 

observed in a mouse model of Parkinsons’ disease (Vučcković et al., 2010), indicating that 5 

exercise-induced upregulation only occurs in compensation for loss of DAergic tone; this loss 6 

does not appear to happen in our mouse model of precipitated nicotine withdrawal. 7 

Nevertheless, our findings do not preclude the possibility that changes in the downstream D2 8 

receptor signalling pathway, or functional changes at the receptor, might be involved in the 9 

mechanism underpinning the effects of exercise during nicotine exposure on acute somatic 10 

withdrawal symptoms and warrants further investigation. 11 

In contrast to α7 nAChRs, no exercise or nicotine treatment interaction effects were 12 

observed in μ receptor binding in any of the regions analysed, suggesting that changes in this 13 

receptor system is unlikely to be part of the mechanism underpinning the beneficial effect of 14 

exercise during nicotine exposure on reducing nicotine withdrawal symptoms. This is 15 

somewhat surprising considering the plethora of evidence demonstrating a key role of the 16 

endogenous opioid system in the mechanism underlying the rewarding effect of exercise and 17 

nicotine (de Oliveira et al., 2010; Berrendero et al., 2002). Nonetheless, the findings from our 18 

study clearly suggest that any involvement of the opioid system is likely to be at the receptor 19 

signalling and/or the opioid peptide level rather than at the receptor expression level.  20 

Although exercise has been suggested to influence nicotine withdrawal and craving via 21 

a possible modulation of the hypothalamic-pituitary adrenal axis activity (Scerbo et al., 2010), 22 

here we show that exercise during nicotine exposure had no effect on corticosterone levels in 23 

saline- or nicotine-treated mice, indicating that its protective effects on nicotine dependence 24 

are not mediated by its actions on the hypothalamic-pituitary adrenal axis level. However, 25 
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consistent with the high levels of plasma cortisol observed in regular smokers (al'Absi et al., 1 

2003; Field et al., 1994), we found an elevation of corticosterone levels in mecamylamine-2 

precipitated nicotine-withdrawn mice irrespective of exercise regimen, supporting the 3 

translational validity of our mouse model of chronic nicotine administration.  4 

Other than the opioid, dopamine, nicotinic system, all investigated in this study, the 5 

endocannabinoid system may also play a key role in the mechanism underlining the effect of 6 

exercise in reducing nicotine withdrawal symptoms. Stimulation of the endogenous 7 

cannabinoid type-1 (CB₁) receptors is a prerequisite for voluntary running in mice (Dubreucg 8 

et al., 2013) and enhancement of two endogenous endocanabinoids (anandamide and 2-9 

arachidonylglycerol), by inhibition of their metabolic enzyme FAAH was shown to reduce 10 

nicotine withdrawal symptoms in rats (Cippitelle et al., 2011). Investigation of the role of the 11 

endocannabinoid system in the beneficial effect of exercise in nicotine dependence would be 12 

an important an interesting concept for future investigation. 13 

In conclusion, our results demonstrate the effectiveness of even a moderate amount of 14 

exercise during nicotine exposure in attenuating nicotine withdrawal symptoms and point 15 

toward the hippocampal α7 nAChR system as a potential mechanism underlining this effect. 16 

These findings may also have implications for the development of targeted interventions prior 17 

to smoking cessation which may increase the chances of smoking cessation. 18 

 19 
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Figures and figure legends 

 

 
Figure 1. Effect of wheel-running exercise regimen on severity of nicotine withdrawal syndrome. Mice underwent one 

of three exercise regimes: 0, 2 or 24 hrs day-1 running-wheel access. Withdrawal was precipitated by mecamylamine (3 mg 

kg-1, s.c.) following 14 days of either saline or nicotine (24 mg kg-1 day-1) treatment via subcutaneous minipumps. (A) Total 

wheel-running activity during habituation and treatment phases of the experiment. Wheel-running activity was recorded and 
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converted into distance run day-1 during the 7-day habituation and 14-day treatment periods. (B) Data for individual 

withdrawal symptoms were combined to give a total withdrawal measure. Data are presented as mean ± SEM. *p<0.05. 

Precise group sizes are reported in Table 1. 
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Figure 2. Effect of exercise on α4β2* nAChR binding in saline- and nicotine-withdrawn mice (A) Computer-enhanced colour autoradiograms of total and cytisine-

resistant [125I]epibatidine binding in coronal brain sections of C57Bl/6 mice treated with saline or nicotine (24 mg kg-1 day-1) via subcutaneous minipumps for 14 days, 

followed by mecamylamine-precipitated (3 mg kg-1) withdrawal. Mice underwent one of three exercise regimes: 0, 2 or 24 hrs day-1 running wheel access in their home 

cage. Coronal brain sections are shown cut at the level of the dorsal hippocampus and thalamus (Bregma -1.46 mm). The calibration bar presents pseudo-colour 

interpretation of black and white film images in fmol/mg tissue equivalent. (B) Cytisine-sensitive [125I]epibatidine binding in saline- and nicotine-withdrawn mice 

undergoing different exercise regimes in cortical brain regions. Data are presented as mean ± SEM. *p<0.05. Precise group sizes are reported in Table 1. Abbreviations: 

AcbC, nucleus accumbens core; AcbSh, nucleus accumbens shell; CgCx, cingulate cortex; Hip, hippocampus; Hyp, hypothalamus; SNc, substantia nigra pars compacta, 

Th, thalamus; VTA, ventral tegmental area. 
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Figure 3. Effect of exercise on α7nAChR binding in saline- and nicotine-withdrawn mice. (A) Computer-enhanced colour autoradiograms of total [125I]α-

bungarotoxin and non-specific (NSB)  binding in coronal brain sections of C57Bl/6 mice treated with chronic saline or nicotine via subcutaneous minipumps, followed 

by mecamylamine-precipitated (3 mg kg-1) withdrawal. Mice underwent one of three exercise regimes: 0, 2 or 24 hrs day-1 running wheel access in their home cage. 

Coronal brain sections are shown cut at the level of the dorsal hippocampus and thalamus (Bregma -1.46 mm). The calibration bar presents pseudo-colour interpretation 

of black and white film images in fmol/mg tissue equivalent. (B) Quantitative [125I]α-bungarotoxin binding in saline- and nicotine-withdrawn mice undergoing different 

exercise regimes. Data are presented as mean ± SEM. *p<0.05. Precise group sizes are reported in Table 1.  Abbreviations: Amy, amygdala; CgCx, cingulate cortex; 

CA1, CA1 layer of the hippocampus; CA2/3, CA2 and CA3 layers of the hippocampus; Cl, claustrum; DEn, dorsal endopiriform; Hyp, hypothalamus; MtCx, motor 

cortex. 



41 

 

 



42 

 

Figure 4. Effect of exercise on μ- and D2 receptor binding in saline- and nicotine-withdrawn mice. (A) [3H]DAMGO binding in non-cortical regions of saline- 

and nicotine-withdrawn mice undergoing different exercise regimes: 0, 2  or 24 hrs day-1 running wheel access in their home cage. (B) [3H]Raclopride binding of saline- 

and nicotine-withdrawn mice undergoing different exercise regimes: 0, 2 or 24  hrs day-1 running wheel access in their home cage. Data are presented as mean ± SEM. 

Precise group sizes are reported in Table 1. Abbreviations: AcbC, nucleus accumbens core; AcbSh, nucleus accumbens shell; Amy, amygdala; CL, centrolateral 

thalamic nuclei; CM, centromedial thalamic nuclei; CPu, caudate putamen; DEn, dorsal endopiriform; Hip, hippocampus; Hyp, hypothalamus; IMD, intermediate 

thalamic nuclei; MHb, medial habenula; Tu, tubercle.  
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Figure 5. Effect of exercise on brain BDNF and plasma corticosterone levels in saline- and nicotine-withdrawn mice. (A) Brain-derived neurotrophic factor 

(BDNF) levels in saline- and nicotine-withdrawn mice undergoing different exercise regimes. Total BDNF levels from acid-withdrawn samples were determined using 

an enzyme-linked radioimmunoassay for nicotine- and saline-withdrawn mice undergoing 0, 2 or 24 hrs day-1 running wheel access. (B) Plasma corticosterone levels 

in saline- and nicotine-withdrawn mice undergoing different exercise regimes. Plasma corticosterone content was determined using a [125I] radioimmunoassay for 
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nicotine- and saline-withdrawn mice undergoing 0, 2 or 24 hrs day-1. Data are presented as mean ± SEM. *p<0.05. Precise group sizes are reported in Table 1. 

Abbreviations: Hip, hippocampus; PFC, prefrontal cortex; Str, striatum. 



 

 

 

Tables 

Table 1: Statistical Analyses 

       
Sample size (figure 

order) 
Factorial effects   Interaction effects 

Overall effects for Figure 1 

Running wheel activity   Factor 'treatment' Factor 'time (days)'  Factor 'treatment' x 'time'  

 Habituation n=14,12,13,13 F[1,46]=0.784;  p>0.05 

.* 

F[6,276]=1.350 p>0.05  F[6, 276] = 0.590 p>0.05  
   Factor ‘exercise’ Factor 'exercise' x 'time'  Factor 'treatment' x ‘exercise’ x time' 
   F[1,46]=304.1;  p<0.05* 

.* 

F[1,46] =0.001 p>0.05  F[6, 276] = 0.515 p>0.05  
 Treatment n=14,12,13,13 Factor 'treatment' Factor 'time (days)'  Factor 'treatment' x 'time'  
   F[1,47]=0.010;  p>0.05 

.* 

F[13,611]=7.392  p<0.05*  F[13, 611] = 0.246 p>0.05  
   Factor ‘exercise’ Factor 'exercise' x 'time'  Factor 'treatment' x ‘exercise’ x time' 

   F[1,47]=204.1;  p<0.05* 
 

F[13,611] =0.708 p>0.05  F[13, 611] = 0.365 p>0.05  

Withdrawal score  n=13,14,13,12,12,13 H[2]=8.940† p<0.05*       

Overall effects for Figure 2 

a4β2* nAChR binding   Factor 'treatment' Factor 'exercise regimen' Factor 'treatment' x 'exercise’ 
regimen'  PrL   n=5,5,6,5,5,6 F[1,25]=5.362 p<0.05* F[2,25]=0.575 p>0.05  F[2,25]=0.134 p>0.05  

 CgCx   n=5,5,6,5,5,6 F[1,25]=9.144 p<0.05* F[2,25]=0.738 p>0.05  F[2,25]=0.971 p>0.05  
 AcbC   n=5,5,6,5,5,6 F[1,25]=2.415 p>0.05 

.* 

F[2,25]=1.017 p>0.05  F[2,25]=0.044 p>0.05  
 AcbSh   n=5,5,6,5,5,6 F[1,25]=5.199 p<0.05* F[2,25]=1.391 p>0.05  F[2,25]=0.168 p>0.05  
 Th   n=5,5,6,5,5,6 F[1,25]=1.101 p>0.05 

.* 
F[2,25]=2.243 p>0.05  F[2,25]=0.027 p>0.05  

 Hyp   n=5,5,6,5,5,6 F[1,25]=21.10 p<0.05* F[2,25]=1.051 p>0.05  F[2,25]=0.007 p>0.05  
 Hip   n=5,5,6,5,5,6 F[1,25]=4.198 p=0.05 

.* 
F[2,25]=0.158 p>0.05  F[2,25]=0.816 p>0.05  

 SNc   n=5,5,6,5,5,6 F[1,25]=11.51 p<0.05* F[2,25]=0.881 p>0.05  F[2,25]=0.202 p>0.05  

 VTA   
n=5,5,6,5,5,6 F[1,25]=39.09 p<0.05* F[2,25]=0.546 p>0.05  

F[2,25]=0.572 p>0.05 
 

Overall effects for Figure 3 

a7 nAChR binding  Factor 'treatment' Factor 'exercise regimen' Factor 'treatment' x 'exercise’ 
regimen'  CgCx   n=5,5,6,5,5,6 F[1,25]=6.588 p<0.05* 

.* 
F[2,25]=4.357 p<0.05*  F[2,25]=3.020 p>0.05  

 DEn   n=5,5,6,5,5,6 F[1,25]=7.059 p<0.05* F[2,25]=1.719 p>0.05  F[2,25]=0.629 p>0.05  
 MtCx   n=5,5,6,5,5,6 F[1,25]=1.618 p>0.05 F[2,25]=1.740 p>0.05  F[2,25]=5.178 p<0.05*  
 Cl   n=5,5,6,5,5,6 F[1,25]=6.661 p<0.05* F[2,25]=0.141 p>0.05  F[2,25]=1.218 p>0.05  
 CA1   n=5,5,6,5,5,6 F[1,25]=13.30 p<0.05* F[2,25]=8.299 p<0.05*  F[2,25]=2.447 p>0.05  
 CA2/3   n=5,5,6,5,5,6 F[1,25]=36.63 p<0.05* F[2,25]=21.80 p<0.05*  F[2,25]=4.005 p<0.05*  
 Amy   n=5,5,6,5,5,6 F[1,25]=20.61 p<0.05* F[2,25]=2.138 p>0.05  F[2,25]=0.022 p>0.05  

 Hyp   n=5,5,6,5,5,6 F[1,25]=8.764 p<0.05* F[2,25]=2.475 p>0.05  F[2,25]=0.480 p>0.05  

Overall effects for Figure 4 

μ receptor  binding   Factor 'treatment' Factor 'exercise regimen' Factor 'treatment' x 'exercise’ 

‘regimen'’  AcbC   n=5,5,5,5,5,6 F[1,24]=0.0002 p>0.05 F[2,24]=0.190 p>0.05  F[2,24]=0.323 p>0.05  
 AcbSh   n=5,5,5,5,5,6 F[1,24]=1.094 p>0.05 F[2,24]=0.807 p>0.05  F[2,24]=0.660 p>0.05  
 CPu   n=5,5,5,5,5,6 F[1,24]=0.105 p>0.05 F[2,24]=0.892 p>0.05  F[2,24]=0.156 p>0.05  
 DEn   n=5,5,5,5,5,6 F[1,24]=0.013 p>0.05 F[2,24]=0.539 p>0.05  F[2,24]=0.820 p>0.05  
 Hip   n=5,5,5,5,5,6 F[1,24]=0.160 p>0.05 F[2,24]=0.422 p>0.05  F[2,24]=0.527 p>0.05  
 MHb   n=5,5,5,5,5,6 F[1,24]=0.647 p>0.05 F[2,24]=1.329 p>0.05  F[2,24]=0.019 p>0.05  
 CL   n=5,5,5,5,5,6 F[1,24]=0.953 p>0.05 F[2,24]=0.626 p>0.05  F[2,24]=0.129 p>0.05  
 CM   n=5,5,5,5,5,6 F[1,24]=0.057 p>0.05 F[2,24]=0.602 p>0.05  F[2,24]=0.719 p>0.05  
 IMD   n=5,5,5,5,5,6 F[1,24]=2.465 p>0.05 F[2,24]=1.891 p>0.05  F[2,24]=0.243 p>0.05  
 Amy   n=5,5,5,5,5,6 F[1,24]=0.251 p>0.05 F[2,24]=0.027 p>0.05  F[2,24]=0.075 p>0.05  
 Hyp   n=5,5,5,5,5,6 F[1,24]=0.070 p>0.05 F[2,24]=3.205 p>0.05  F[2,24]=1.229 p>0.05  
             
D2 receptor binding   Factor 'treatment' Factor ‘exercise regimen’ Factor 'treatment' x 'exercise’ 

regimen'  AcbC   n=5,5,6,5,5,6 F[1,25]=0.097 p>0.05 F[2,25]=0.102 p>0.05  F[2,25]=1.414 p>0.05  
 AcbSh   n=5,5,5,5,5,6 F[1,25]=0.744 p>0.05 F[2,25]=0.320 p>0.05  F[2,25]=0.792 p>0.05  
 Tu   n=5,5,5,5,5,6 F[1,25]=0.328 p>0.05 F[2,25]=0.017 p>0.05  F[2,25]=0.229 p>0.05  
 CPu   n=5,5,5,5,5,6 F[1,25]=0.043 p>0.05 F[2,25]=0.066 p>0.05  F[2,25]=0.370 p>0.05  

Overall effects for Figure 5 

BDNF levels   Factor 'treatment' Factor 'exercise regimen' Factor 'treatment' x 'exercise’ 

regimen'  PFC   n=8,7,9,8,7,7 F[1,40]=0.0003 p>0.05 F[2,40]=0.089 p>0.05  F[2,40]=0.811 p>0.05  
 Str   n=8,7,9,8,7,7 F[1,40]=0.089 p>0.05 F[2,40]=0.796 p>0.05  F[2,40]=0.088 p>0.05  
 Hip   n=8,7,9,8,7,7 F[1,40]=0.003 p>0.05 F[2,40]=0.335 p>0.05  F[2,40]=1.219 p>0.05  
             Corticosterone levels            

 Plasma   n=7,8,7,7,7,8 F[1,34]=9.757 p<0.05* F[2,34]=1.429 p>0.05  F[2,25]=0.514 p>0.05  

Overall effects for Supplementary Figure S1 

a4β2* nAChR binding    Factor 'treatment' Factor ‘exercise regimen’  Factor 'treatment' x 'exercise 
regimen' 

 MHb (cytisine-sensitive)   n=5,5,5,5,5,6 F[1,26]=0.388 p>0.05 F[2,26]=1.848 p>0.05  F[2,26]=0.644 p>0.05  

 MHb (cytisine-resistant)   n=5,5,5,5,5,6 F[1,52]=0.060 p>0.05 F[2,52]=0.0690 p>0.05  F[2,52]=0.960 p>0.05  

Overall effects for Supplementary Table S1 

a4β2* nAChR binding            



 

 

 

 FrA   n=5,5,6,5,5,6 F[1,25]=25.34 p<0.05* 

.* 

F[2,25]=0.063 p>0.05  F[2,25]=1.479 p>0.05  
 MtCx   n=5,5,6,5,5,6 F[1,25]=13.23 p<0.05* 

.* 

F[2,25]=1.304 p>0.05  F[2,25]=0.287 p>0.05  
 SS   n=5,5,6,5,5,6 F[1,25]=24.82 p<0.05* 

.* 

F[2,25]=0.589 p>0.05  F[2,25]=0.150 p>0.05  
 Pir   n=5,5,6,5,5,6 F[1,25]=29.42 p<0.05* F[2,25]=0.504 p>0.05  F[2,25]=0.185 p>0.05  
 RS   n=5,5,6,5,5,6 F[1,25]=6.512 p<0.05* 

.* 

F[2,25]=0.589 p>0.05  F[2,25]=0.778 p>0.05  
 CPu   n=5,5,6,5,5,6 F[1,25]=7.022 p<0.05* 

.* 

F[2,25]=0.624 p>0.05  F[2,25]=0.010 p>0.05  
 MS   n=5,5,6,5,5,6 F[1,25]=16.50 p<0.05* 

.* 

F[2,25]=0.709 p>0.05  F[2,25]=0.651 p>0.05  
 VDB   n=5,5,6,5,5,6 F[1,25]=15.93 p<0.05* 

.* 
F[2,25]=0.266 p>0.05  F[2,25]=0.650 p>0.05  

 AuCx   n=5,5,6,5,5,6 F[1,25]=24.89 p<0.05* F[2,25]=0.470 p>0.05  F[2,25]=0.236 p>0.05  

Overall effects for Supplementary Table S2 

a7 nAChR binding   
         

 FrA   n=5,5,6,5,5,6 F[1,25]=2.145 p>0.05 F[2,25]=0.547 p>0.05  F[2,25]=0.165 p>0.05  
 CPu   n=5,5,6,5,5,6 F[1,25]=1.564 p>0.05 F[2,25]=1.327 p>0.05  F[2,25]=0.501 p>0.05  
 ZI   n=5,5,6,5,5,6 F[1,25]=2.275 p>0.05 F[2,25]=1.264 p>0.05  F[2,25]=0.718 p>0.05  
 VLG   n=5,5,6,5,5,6 F[1,25]=3.710 p>0.05 F[2,25]=1.302 p>0.05  F[2,25]=2.215 p>0.05  
              

Data were analysed with ANOVA unless otherwise indicated, with significance threshold of *p<0.05. 

† Non-parametric Kruskal-Wallis test, with significance threshold of *p<0.05. 

Abbreviations: AcbC, nucleus accumbens core; AcbSh, nucleus accumbens shell; Amy, amygdala; AuCx, auditory cotex; CA1, CA1 area of 

the hippocampus; CA2/3, CA2 and CA3 areas of the hippocampus; CgCx, cingulate cortex; Cl, clostrum; CL, centrolateral thalamic nuclei; 

CM, centromedial thalamic nuclei; CPu, caudate-putamen; D2 receptor; dopamine D2 receptor; DEn, dorsal endopiriform; FrA, frontal 

association; Hip, hippocampus; Hyp, hypothalamus; IMD, intermediate thalamic nuclei; MHb, medial habenula; MS, medial septum; MtCx, 

motor cortex; nAChR, nicotinic acetylcholine receptor; Pir, piriform cortex; PrL, prelimbic cortex; RS, retrosplenial cotex; SNc, Substantia 

nigra pars compacta; SS, somatosensory cortex; Th, thalamus; Tu, olfactory tubercle; VDB, vertical limb of the diagonal band of Broca; VLG, 

ventral lateral geniculate; VTA, ventral tegmental area; ZI, zona incerta. 

 


