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WILEY-VCH

A quantitative approach to predicting rate constants for aqueous
racemization allows pointless stereoselective synt
avoided.

Abstract: Racemization has a large impact upon the biological
properties of molecules but the chemical scope of compounds with
known rate constants for racemization in aqueous conditions was
hitherto limited. To address this remarkable blind spot, we have
measured the kinetics for racemization of 28 compounds using
circular dichroism and 'H NMR spectroscopy. We show that rate
constants for racemization (measured by ourselves and others)
correlate well with deprotonation energies from quantum mechanical
(QM) and group contribution calculations. Such calculations thus
provide predictions of the second-order rate constants for general-
base-catalyzed racemization that are usefully accurate. When
applied to recent publications describing the stereoselective
synthesis of compounds of purported biological value, the
calculations reveal that racemization would be sufficiently fast to
render these expensive syntheses pointless.

Thalidomide racemizes in a matter of hours and yet it remains, a
poster child for enantioselective synthesis which would not
saved its victims.['! The status quo in enantioselective syn
thus ignores the cruel blind spot that we address in this paper:
racemization.

Although necessary in dynamic kinetic resolution pp
racemization and epimerization can cause safe c
become toxic or lose efficacy," lead to misi
chiral compounds extracted from natural
Ignoring racemization leads to wasted mat
resources.

disclose rate constants for racemization under aqu
conditions.""*2% Chiral centers with
substituents have been posited to
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were derived for a range of 11 arylglycine derivatives (1, 2 and
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Figure 1. The ten substituents appearing most frequently adjacent to carbon
stereogenic centers in the GOSTAR database. Alk = alkyl, C = carbon-linked
alkyl or aromatic and X = any group. * = selected for experimental study.

For predictive modeling, a mechanistic understanding is
beneficial. Racemization of the stereogenic centers studied here
could occur by either an Sg1 or an Sg2 mechanism. For
hydantoins (e.g. 4-6) both the Sg1 and Sg2 mechanisms have
been proposed previously,'®*! but we have shown that these
reactions occur via the Sg1 mechanism.®® Further, Hammett
plots show a better correlation with 6~ than o suggesting that a
negative charge is formed on the stereogenic center in the rate-
determining step of the racemization reaction, in line with an Sg1
mechanism.?! The experimental data were correlated with
deprotonation energies (AAG(R1,R2,Rs), Scheme 1) from
B3LYP/6-31+G** calculations incorporating aqueous solvation
via the PCM protocol.”” Second-order rate constants for



general-base-catalyzed racemization, kg, correlate well with

AAG(R1,R2,R3) for 1-3 and 4-8.2
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R = phenyl (a); 4-fluorophenyl (b);
4-methoxyphenyl (c); tetrahydrofuran-3-yl (d);
OH (e); pyridin-3-yl (f); N-methylpyrrol-2-yl (g)

R = H (a); phenyl (b);
1H-indol-3-yl (¢);
methylthiomethyl (d)

The set of compounds was supplemented with literature data,®*
leading to the relationship with AAG(R+,R2,R3) shown at the top
of Figure 2. The line of best fit has equation log(kg,) = -0.20
xAAG(R1,R2,R3) -14.28, with an R? value of 0.68 and root mean
square error of 0.61, i.e. reproducing rate constants to within a
factor of ~4. Clopidogrel is excluded from this analysis due to
large experimental uncertainties.®"
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reflect the reduced ability of the second group to stabilize the
anion caused by the presence of the first.**

The 35 compounds studied fall in
types (A — N, Table 1) that have one
The second-order rate constants for
racemization are plotted against AAG
When a chiral center typ
compound, the mean value o
used and the full ra
This prevents any ce

rteen chiral carbon atom
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Figure 2. Second-order rate constants for racemization under aqueous
general-base-catalyzed conditions plotted against: computed AAG(R1,R2,R3)
values (top) and XAAG values (bottom) . Points are shown as Top: 1a (M), 1b
(*), 1c (A), 1d (@), 1e (), 1f (), 1g(A), 1h (O), 2 (M), 3a (M), 3b (¢), 4a
(), 4b (), 4c (4), 4d (@) 4e (1), 4f (), 4g (), 5a (M), 5b (¢), Sc (A), 5f
(<), 6 (M), 7a (|), 7b (¢), 7c (A), 7d (@), 8 (W), 9 (W), 10 (+), 11 (A), 12
(@), 13 (O), 14 (<), 15 (L), 16 (O). Bottom: A (M), B (¢), C (A), D (W), D’
(C),E(®),F(A),G(®),H(®),I1(),J (), K(H),L(A),M(O)andN (O).
Clopidogrel (16) is excluded from the line fitting.

Table 1. Stereogenic center types.

Center Non-H Substituents Representative

Type compounds [Number]
A Phenyl, Reversed 2° amide, Ester 1a-h [8]

B Phenyl, Reversed 2° amide, 1° amide 2[1]

C 5-Membered aromatic, Reversed 2° | 3[2]




amide, Ester

D/D’ Alkyl, Reversed 2° amide, Acidic 2° amide | D = 4a-g, 5a-c+f[11]

D'=141[1]

E Phenyl, Reversed 2° amide, Acidic 2° | 6[1]
amide

F Alkyl, Aminothiooxo imide, Acidic 2° | 7a-d [4]
amide

G Alkyl, Reversed 2° thioamide, Acidic 2° | 8[1]
amide

H Ketone, Dialkyl 3° amine, Alkyl 9[1]

| Ketone, 1" amine, Alkyl 10 [1]

J Carboxylic acid, 5-Membered aromatic, | 11 [1]
Alkyl

K Thioether, Alkyl, Acidic 2° amide 12 [1]

L Imide, Alkyl, Acidic 2° amide 13 [1]

M Phenyl, Phenyl, 5-Membered aromatic 15 [1]

N Ester, Dialkyl tertiary amine, Phenyl 16 [1]

For the phenylglycine esters (A), substituent effects can cause
up to a log unit variation from the line of best fit. This is likely to
be representative of general substituent effects.”” Grou
five-membered aromatic rings together (C) masks variati
1.6 log units, likely reflecting the more direct influence of

racemization. In general, variation caused by
structural variation within classes is less tha

non-aromatic anions (excludi
aromatic anions i.e. predic

pharmaceuticals, our
ict half lives of racemization in
onstants for racemization of

buffer concentrations
in terms of availability of
ral bases, blood is approximately
sphate buffer at pH 7.2. Therefore,
or group contribution method, the
ed.!"

analysis can be applied to p
physiological cONg
thalidomide at
compared to that in
catalytically active
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A comprehensive workflow has now arisen: rapid analysis with a

group contribution based method can trigger quantum
mechanical calculations, whic turn can trigger an
experimental protocol (Figure 3). ds at high risk of
racemization can be avoided and ra risk can be

suppressed by design.

(" Measurerate of H/D B

exchange using MS
analysis
(days) J

Perform group h (" Perform QM calculation )
contribution calculation

to more accurately assess
to identify possible risk the risk

(millseconds) ) L (hours) ) L

Racemization will be an
important influence on
biological properties
J

|

Design non-racemizing compounds

-

Low risk of racemization affecting biological properties

s at risk of racemization, in
s one compound at each step.

to which racemization in aqueous
problem, we have surveyed recent

editions of leadin journals, using our knowledge of

the group contributions, to identify several articles envisaging
bjological

apglications. This was not an exhaustive search.
s&scribed were subject to group contribution
ulations. 1t is disappointing to reveal (Table 2) that liability to
ize under physiological conditions is more commonplace
ould be possible if it were properly understood and
as many chemists seem to believe.

able 2% es of potentially pointless stereoselective syntheses from
recent literatUNg!

Reference Representative compound ZAAG Predicted %
(kcal/mol) | racemized
within 24
hours
1 | X -48.8 28 %
N “y =
@]
/g =
(I) @]
t-Bu
CN -50.7 40 %
| N CF;
_N
1341 Me, -54.1 70 %
N'N ¢
NS =
Me NHBnN
1331 NH, -46.9 19 %
II II Cl

In summary, we describe an approach to quantitative predictions
of racemization risk that is generally applicable and allows
synthetic chemists to avoid racemization-prone targets or



understand erosion of e.e. It allows users of chiral compounds,
as pharmaceuticals or otherwise, to assess the risk of them
becoming mixtures of compounds.
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