1 Pregnancy is detected via odour in a wild cooperative breeder

- 2 Mitchell, J.¹, Cant, M. A.², Nichols, H. J.^{1*}
- 3 ¹School of Natural Sciences and Psychology, Liverpool John Moores University
- 4 ²Centre for Ecology and Conservation, University of Exeter
- 5 ***corresponding author email: h.j.nichols@ljmu.ac.uk**
- 6
- 7

8 Abstract

9	Among mammals, scent has long been known to encode oestrus, however in many species detecting
10	pregnancy may also be important in terms of both competition and mate-choice. Here we show,
11	through odour presentation experiments, that pregnancy is discernible via scent by both sexes in the
12	cooperatively breeding banded mongoose. Males spent more time investigating and were more
13	likely to scent mark the odours of non-pregnant females, compared to pregnant females. Females
14	showed increased levels of scent marking when odours were of the same reproductive state as
15	themselves. These results present the first direct demonstration that pregnancy is detectable via
16	scent in wild cooperative breeders. Detecting pregnancy may be particularly important in
17	cooperative breeders as, in addition to the competition between males for receptive mates, there is
18	also intense competition between females for access to alloparental care. Consequently, dominant
19	females benefit from targeting reproductive suppression towards subordinates that represent direct
20	threats, such as pregnant females.
21	
22	Keywords: scent, pregnancy, reproductive competition, cooperative breeding
23	
24	Introduction
25	Scent cues are heavily used among mammals and are known to encode information on female
26	reproductive state, with many studies demonstrating that males can detect oestrus [1-3]. However,
27	relatively little is known about whether scent can communicate pregnancy status [4, 5]. Detecting
28	pregnancies may help males to avoid courting pregnant females, while it may help females assess
29	their competitive landscape [6]. This may be particularly beneficial among cooperative breeders,
30	where competition over access to breeding positions, and hence access to alloparental care, is
31	intense in both sexes [7]. Here, per-capita breeding success generally declines when multiple
32	females breed, and dominant females may respond by suppressing subordinates that may be a
33	particular threat, for example those that are pregnant or are likely to become pregnant [7-9]. In

addition, dominant males often invest highly in guarding females during fertile periods [7]. Thus in
 cooperative breeders the communication of pregnancy may benefit both mate-choice and intra sexual competition.

37

Studies investigating olfactory cues to pregnancy in mammals have so far focused on investigating the chemical profiles of female scents before and during pregnancy e.g. [4, 10, 11]. While these studies have discovered chemical differences between pregnant and non-pregnant females, they do not demonstrate whether these changes are detected or acted upon by conspecifics. It is therefore possible that differences in chemical profiles are simply a by-product of hormonal changes that occur during mammalian gestation [4] and are not used to detect pregnancy.

44

45 Here, we investigate behavioural responses to scents of pregnant and non-pregnant female banded 46 mongooses Mungos mungo. This species lives in mixed sex groups (mean group size = 29) where a 47 'core' of 1-5 dominant breeders of each sex breed up to 4 times per year, and younger subordinates 48 breed occasionally [12]. Reproduction is synchronised within groups, with all adult females entering 49 oestrus within the same week, and giving birth together, often on the same night [12]. The resulting 50 litter is raised communally by both breeders and non-breeders [12]. Dominant females benefit from 51 increased reproductive success when breeding alongside other females, probably due to reduced 52 levels of infanticide [8]. However, once the number of breeding females exceeds seven, per-capita 53 reproductive success declines due to increased pup mortality [8]. Dominant females in large groups 54 respond by evicting subordinate females, particularly targeting those that are pregnant [8]. Thus the 55 detection of pregnancies could provide a mechanism for assessing the competitive landscape of the 56 group. In addition, synchronous oestrus constrains the number of females a male can guard, so 57 dominant males invest highly in one or two mates per reproductive bout [12]. Pregnancy detection could therefore help males to avoid guarding already-mated females. 58

60 We predict that (1) if males use scent signals within mate-choice they should show heightened 61 responses to non-pregnant females and (2) if females use scent signals within reproductive 62 competition, they should show heightened responses to the odours of females representing direct 63 reproductive threats, in particular pregnant females should show a greater response to odours from 64 other pregnant females. 65 66 Methods 67 This study was conducted in Queen Elizabeth National Park, Uganda (0°8'2"S, 29°51'42"E) where a 68 population of wild but habituated banded mongooses have been studied continuously since 1995. Groups are visited by trained observers approximately every two days to collect life history and 69 70 behavioural data. Detailed descriptions of the population, habitat, and climate are provided by [12]. 71 72 Odour collection 73 Banded mongooses are prolific scent markers, engaging in conspicuous anal marking, urination and 74 defecation at latrine sites [13]. Previous work has found that anal marking plays a key role in within-75 group communication and intrasexual competition [13], so for this study we focused on anal gland 76 secretions (AGS). 77 78 AGS were collected from females in 4 social groups between April and July 2015 following [14]. We 79 obtained 111 samples (63 pregnant and 48 non-pregnant but non-oestrus) from 54 individual 80 females that were each sampled 1-3 times. In brief, animals were trapped in baited Tomahawk traps 81 and anaesthetized using isoflurane [13]. Pregnancy status was determined by an ultrasound scan 7-82 14 days after behavioural oestrus and AGS was collected in a clean 2ml snap-cap glass vial and was 83 transferred immediately to liquid nitrogen. Further details are provided in the Supplementary 84 Information.

86 *Odour presentations*

87 A total of 142 odour presentations were conducted from July to August 2015 on 32 males and 28 88 females from two well-habituated social groups. Recipients were presented with freshly defrosted 89 AGS samples from pregnant or non-pregnant females. AGS samples were spread upon a clean 90 ceramic tile using an autoclaved cotton swab, and presented directly to the recipient individual 91 following [14]. Presentations were conducted when the recipient was foraging at least 1m away 92 from other mongooses. Responses were filmed using a handheld camera and scored after the field 93 session. Three measures of response to odour presentations were considered (1) the time before 94 returning to foraging behaviour (2) the time spent inspecting the odour (within 30 cm), and (3) the 95 number of scent marks deposited on or around the odour. Previous research on banded mongooses 96 and other species suggests that direct over-marking can obliterate the original scent and is therefore 97 likely to function in competition [13, 15, 16]. For presentations to female recipients, who may use 98 scent cues for intra-sexual competition, we recorded the number of marks deposited directly on top of an odour. For presentations to male recipients, we recorded the number of marks deposited 99 100 within 30cm of the odour as vicinity marking is thought to function within mate-acquisition, rather 101 than competitive interactions [15]. The three measures of scent marking behaviour are not 102 fully independent of one another, both scent marking and time spent inspecting an odour 103 correlate with the time taken to return to foraging in male and female datasets. For full 104 details of this correlation see supplementary material table S4. Donors and recipients were 105 sexually mature adults (aged >12 months for females and >24 months for males [12]). Recipient 106 females were presented to within seven days of an ultrasound scan confirming their reproductive 107 state. Where individuals were presented to multiple times, a minimum of 48 hours lapsed between 108 presentations to prevent habituation to the protocol. Recipients were presented with odours from 109 non-neighbouring groups to avoid confounding results with previous information on the 110 reproductive state of odour donors.

General linear mixed effect models (GLMMs) were constructed in R (version 3.0.2) using the Ime4 package [17] to test the effect of odour donor pregnancy status on the response of male and female recipients. Where significant interactions were detected, the Multcomp package [18] was used to perform Tukey post-hoc comparison tests compare response measures. All models were fit with Gaussian assumptions as response variables conformed to normal distributions. For full model details and outputs see Supplementary Information, Tables S1-3.

118

119 **Results and Discussion**

120 Pregnancy appears discernible by scent in the banded mongoose, with both sexes responding 121 differently to odours from pregnant and non-pregnant females. In line with our first prediction, 122 males spent longer investigating non-pregnant odours (GLMM: t = -2.282, p = 0.029, Figure 1a) and took longer to return to foraging (GLMM: t = -2.454, p = 0.019, Figure 1b), suggesting that odours 123 124 encode information relevant to mate-choice. Detecting pregnancy via scent is likely to be beneficial 125 to males, as it could prevent them from wasting time and energy mate-guarding pregnant females. 126 Male banded mongooses also deposited more scent marks around the odours of non-pregnant females (GLMM: t = -3.275, p = 0.002, Figure 1c). Increased scent marking by males may function 127 128 in intra-sexual competition, whereby males that invest highly in scent marking are more effective 129 mate-guards [19]. Alternatively, scent marking may be involved in female-choice, as has been 130 demonstrated in other mammals [20]. Despite being mate-guarded while in oestrus, banded 131 mongoose females often refuse the mating attempts of their guards and 68% of pups are fathered

by a male not observed to guard the female [21]. Scent marking in the vicinity of receptive females

may therefore serve to advertise males to potential mates.

134

133

Female banded mongooses responded differently to pregnant and non-pregnant odours in their
 over-marking response depending on their own pregnancy status (GLMM: t = 3.231, p = 0.0017,

137 Figure 2), suggesting that they can detect pregnancy in other females. In line with our prediction, 138 pregnant odours received more over-marks from pregnant recipients than from non-pregnant 139 recipients (Tukey: z = 3.338, p = 0.004). Similarly, non-pregnant recipients marked the odours of non-pregnant females significantly more than they did the odours of pregnant females (Tukey; t = -140 141 2.811, p = 0.025). The finding that females show heightened over-marking when odours were from 142 females in the same reproductive state suggests that scent marking may be related to intra-sexual 143 competition, whereby the scents of potential competitors are over-marked in order to obliterate 144 their scent [13, 15].

145

The finding that pregnant females inspected scents for longer (GLMM: t = 2.686, p = 0.009) and 146 took longer to return to foraging (GLMM: t = 2.245, p = 0.027) than non-pregnant females 147 148 suggests that detecting the reproductive state of others could be particularly important when 149 pregnant. Indeed, evictions are most common when dominant females are pregnant [8]. We also 150 found that younger females spent longer inspecting odours (GLMM: t = -3.143, p = 0.002) and 151 deposited more scent marks around odours (GLMM: t = -2.313, p = 0.023) than older females, possibly as younger subordinate individuals are more likely to be targeted for eviction and their 152 153 litters are more vulnerable to infanticide than those of dominants [22]. Furthermore, abortion and 154 reabsorption of pregnancies are known to occur in the banded mongoose [8] and, as in other mammals [9], these may be adaptive strategies for mothers who find themselves out-competed or 155 156 out of synchrony with other breeders. Detecting pregnancies may therefore help females to avoid or 157 respond to reproductive competition.

158

In many territorial species, reproductive threats come not just from within the social group, but also
from competing social groups [9]. In the banded mongoose, neighbouring groups engage in frequent
aggressive encounters over territory, often resulting in severe injury and deaths [23]. As we

162	presented odours from individuals that recipients are unlikely to be familiar with, it is possible that
163	scents may be used to assess the competitive landscape between social groups. For example,
164	knowing the reproductive status of females in other groups could allow individuals to time
165	aggressive encounters to periods of vulnerability, such as when pups are present (young pups are
166	most likely to be present when females are non-pregnant and non-oestrus). In addition, mating
167	between groups sometimes occurs during aggressive encounters [23]. Through inspecting scent
168	marks, males may be able to assess potential inter-group mating opportunities. Future work
169	investigating the timing of inter-group interactions will shed light on these possibilities.
170	
171	Author contributions
172	JM conceived the study, collected data and conducted analyses. HJN and JM wrote the paper. HJN
173	supervised data collection and analyses. MAC coordinated the field project. All authors gave final
174	approval for publication and agree to be accountable for the all aspects of the work.
175	
176	Data accessibility
177	Data are available in Dryad (doi:10.5061/dryad.0ss0k). Temporary link:
178	http://datadryad.org/review?doi=doi:10.5061/dryad.0ss0k.
179	
180	Funding
181	JM was funded by a Liverpool John Moores University Postgraduate Scholarship.
182	
183	Competing interests
184	None
185	
186	Ethical statement

- 187 Research was approved by the Uganda National Council for Science and Technology and Uganda
 188 Wildlife Authority (EDO/35/01), and procedures were approved by the University of Exeter's Ethical
 189 Review Committee.
- 190

191

Figure 1: Differences in the response of males to the odours of pregnant and non-pregnant females in relation to (a) the length of time spent within 30 cm of the odour (b) the length of time before returning to foraging and (c) the number of scent marks deposited within 30cm of the odour. Error bars show standard error.

Female to Female Presentation Format

- 197 Figure 2: The number of scent marks deposited by pregnant and non-pregnant recipients on scents
- 198 from pregnant and non-pregnant donors. Brackets and asterisks illustrate significant differences
- 199 between conditions at either end of the bracket. Error bars show standard error.

200

201 References

- [1] Johnston, R.E. 1979 Olfactory preferences, scent marking, and "proceptivity" in female hamsters. *Horm. Behav.* 13, 21-39.
- 204 [2] Gildersleeve, K.A., Haselton, M.G., Larson, C.M. & Pillsworth, E.G. 2012 Body odor attractiveness
- as a cue of impending ovulation in women: Evidence from a study using hormone-confirmed
- 206 ovulation. *Horm. Behav.* **61**, 157-166.
- 207 [3] Müller, C.A. & Manser, M.B. 2008 Scent-marking and intrasexual competition in a cooperative
- 208 carnivore with low reproductive skew. *Ethology* **114**, 174-185.
- 209 [4] Crawford, J.C. & Drea, C.M. 2015 Baby on board: olfactory cues indicate pregnancy and fetal sex
- in a non-human primate. *Biol. Lett.* **11**, 20140831.
- 211 [5] Vaglio, S., Minicozzi, P., Bonometti, E., Mello, G. & Chiarelli, B. 2009 Volatile signals during
- pregnancy: A possible chemical basis for mother–infant recognition. J. Chem. Ecol. **35**, 131-139.
- [6] Stockley, P., Bottell, L. & Hurst, J.L. 2013 Wake up and smell the conflict: odour signals in female
- 214 competition. *Phil. Trans. R. Soc. B* **368**, 20130082.
- [7] Clutton-Brock, T.H. 2006 Cooperative breeding in mammals. In Cooperation in Primates and
- 216 *Humans* (eds. P.M. Kappeler & C.P. van Schaik). New York, USA, Springer.
- 217 [8] Cant, M.A., Hodge, S.J., Bell, M.B.V., Gilchrist, J.S. & Nichols, H.J. 2010 Reproductive control via
- eviction (but not the threat of eviction) in banded mongooses. Proc. R. Soc. Lond., Ser. B: Biol. Sci.
- **219 277**, 2219-2226.
- 220 [9] Stockley, P. & Bro-Jørgensen, J. 2011 Female competition and its evolutionary consequences in
- 221 mammals. *Biological Reviews* **86**, 341-366.

- [10] Theis, K.R., Venkataraman, A., Dycus, J.A., Koonter, K.D., Schmitt-Matzen, E.N., Wagner, A.P.,
- Holekamp, K.E. & Schmidt, T.M. 2013 Symbiotic bacteria appear to mediate hyena social odors.
- 224 Proceedings of the National Academy of Sciences **110**, 19832-19837.
- [11] Jemiolo, B., Andreolini, F., Wiesler, D. & Novotny, M. 1987 Variations in mouse (Mus musculus)
- urinary volatiles during different periods of pregnancy and lactation. J. Chem. Ecol. 13, 1941-1956.
- 227 [12] Cant, M.A., Vitikainen, E. & Nichols, H.J. 2013 Demography and Social Evolution of Banded
- 228 Mongooses. Advances in the Study of Behavior 45, 407-445. (doi:10.1016/B978-0-12-407186-
- 229 5.00006-9).
- [13] Jordan, N.R., Manser, M.B., Mwanguhya, F., Kyabulima, S., Rüedi, P. & Cant, M.A. 2011 Scent
- marking in wild banded mongooses: 1. Sex-specific scents and overmarking. Anim. Behav. 81, 31-42.
- 232 (doi:10.1016/j.anbehav.2010.07.010).
- 233 [14] Mitchell, J., Cant, M.A., Vitikainen, E.I. & Nichols, H.J. 2017 Smelling fit: scent marking exposes
- parasitic infection status in the banded mongoose. *Current Zoology* **63**, 237-247.
- [15] Rich, T.J. & Hurst, J.L. 1999 The competing countermarks hypothesis: reliable assessment of
- competitive ability by potential mates. *Anim. Behav.* **58**, 1027-1037.
- 237 [16] Wolff, J.O., Mech, S.G. & Thomas, S.A. 2002 Scent marking in female prairie voles: a test of
- alternative hypotheses. *Ethology* **108**, 483-494.
- [17] Bates, D., Machler, M. & Dai, B. 2008 Linear mixed-effects models using S4 classess. In R
- 240 package, Version 0.999375-28 (http://lmer4.r-forge.r-project.org/.

[18] Hothorn, T., Bretz, F. & Westfall, P. 2008 Simultaneous inference in general parametric models.

- 242 *Biometrical journal* **50**, 346-363.
- [19] Jordan, N.R., Mwanguhya, F., Furrer, R.D., Kyabulima, S., Rüedi, P. & Cant, M.A. 2011 Scent
- 244 marking in wild banded mongooses: 2. Intrasexual overmarking and competition between males.
- 245 Anim. Behav. **81**, 43-50. (doi:10.1016/j.anbehav.2010.07.009).
- [20] Hurst, J.L. 2009 Female recognition and assessment of males through scent. *Behav. Brain Res.*
- **200**, 295-303.

- 248 [21] Sanderson, J.L., Wang, J., Vitikainen, E.I., Cant, M.A. & Nichols, H.J. 2015 Banded mongooses
- avoid inbreeding when mating with members of the same natal group. *Mol. Ecol.* **24**, 3738-3751.
- 250 [22] Cant, M.A., Nichols, H.J., Johnstone, R.A. & Hodge, S.J. 2014 Policing of reproduction by hidden
- threats in a cooperative mammal. *Proceedings of the National Academy of Sciences of the United*
- 252 *States of America* **111**, 326-330. (doi:10.1073/pnas.1312626111).
- 253 [23] Nichols, H.J., Cant, M.A. & Sanderson, J.L. 2015 Adjustment of costly extra-group paternity
- according to inbreeding risk in a cooperative mammal. *Behav. Ecol.* **26**, 1486-1494.