
ALMOST IDEAL:
Computational Epistemology and the Limits

of Rationality for Finite Reasoners

By

Danilo Fraga Dantas
B.A. (Universidade Federal da Bahia) 2005
M.A. (Universidade Federal da Bahia) 2007

M.A. (Universidade Federal do Rio Grande do Sul) 2010
M.A. (University of California Davis) 2013

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Philosophy

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Bernard Molyneux, Chair

Hanti Lin

Adam Sennet

George J. Mattey II

Almerindo Ojeda

Committee in Charge

2016

-i-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/131215386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Para Emilly.

-ii-



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Introduction 1

1 The limits of finite reasoning 14

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Classical reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Nonmonotonic reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Stable beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Ideal reasoners don’t believe in zombies 35

2.1 Ideal negative conceivability . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Conclusive ideal conceiver . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Defeasible ideal conceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Someone is conscious! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Achilles and the truth-goal 57

3.1 The truth-goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Truth-goal as the maximization of function g . . . . . . . . . . . . 63

3.2 Maximum epistemic rationality . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Features of the function g model . . . . . . . . . . . . . . . . . . . 70

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Computational epistemology 81

4.1 Efficient reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

-iii-



4.2 Computational epistemology . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Class of problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Reason v the monster of uncertainty 98

5.1 Bayesian epistemology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Defeasible reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Wumpus World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Bayesian reasoner . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.2 Defeasible reasoner . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Space (memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A Accessible beliefs as modalities 128

B Concepts 132

B.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1.1 Asymptotic analysis . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1.2 Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C Proofs 135

-iv-



List of Figures

1.1 Mutually exclusive classes of reasoners: maximally and minimally and

irrational reasoners. Minimally rational reasoners are rational but not

maximally rational. According to goal (g1), none of these classes may be

a priori empty for finite reasoners. . . . . . . . . . . . . . . . . . . . . . . 20

3.1 The value of g(t, f) = t−f
t+f+c

for a number of true/false belief from 0 to 100

(left). Red for g(t, f) = 1, green for g(t, f) = 0, and blue for g(t, f) = −1.

In the right, the values of g(t, f) for f = 0 (red) and t = 0 (blue). The

value of g(t, f) tends to 1 when t increases and tends to -1 when f increases. 66

5.1 A typical belief network. In the graph, nodes represent sentences and

edges represent dependency between sentences. The table contain degrees

of belief for all nodes without parents and conditional degrees of belief for

all the other nodes given their parents. The sentence
∨
X(±x± y) means

X(x + 1, y) ∨ X(x − 1, y) ∨ X(x, y + 1) ∨ X(x, y − 1) and
∧
X(±x,±y)

means X(x+ 1, y) ∧X(x− 1, y) ∧X(x, y + 1) ∧X(x, y − 1). . . . . . . . 102

5.2 a) {φ1, φ2} is conclusive reason for {ψ}; (b) {φ1} and {φ2} are (indepen-

dent) defeasible reasons for ψ; (c) {φ1} and {φ2} are undercut defeaters

for {ψ} and rebut each other . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 A typical inference graph. In the graph, nodes represent sets of mental

states with content represented as sentences and edges represent depen-

dency relations between mental states. Arrow represent conclusive sup-

port, dashed arrows represent defeasible support, and red arrows represent

defeat. The labels ‘1’ and ‘0’ represent, respectively, undefeated and de-

feated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

-v-



5.4 From left to right, the full map of an instance of WW, the percepts that are

available in that map, and the known features of the map. The symbols

mean: • = pit, =Wumpus, $ = gold, . = agent, ≈= breeze, oo = stench,

and ∗ = glitter. The reasoner has visited the squares in the order (0,0),

(1,0), (2,0), (3,0), (2,0), (2,1), (1,1), (1,2), (1,3). Non-visited squares are

in gray. At this point, the reasoner may have a (high degree of) belief that

the Wumpus is located in square (3, 1) and that there exists a pit at (0, 2). 108

5.5 Two different configurations of the WW (lines). The percepts about

breeze and stench and the degrees of beliefs about pits and the Wum-

pus (columns). The symbols mean: ≈= breeze, oo = stench, and ∼=

approximately. Non-visited squares are in gray. . . . . . . . . . . . . . . 112

5.6 The epistemic state of the defeasible reasoner in two configurations of

WW. In the lines, two different configurations of WW. In the columns,

the percepts about breeze and stench and the beliefs about pits and the

Wumpus. The symbols mean: ≈= breeze, oo = stench. Non-visited squares

are in gray. Gray letters mean disjunctions. In (b), the reasoner believe

that the Wumpus either in square (1, 2) or (2, 1). . . . . . . . . . . . . . 115

5.7 The simulation works as a loop. In each iteration, the cave outputs the

available percepts for the agent. Then the agent updates its beliefs and

returns an action. Finally, the cave updates its current state given the

action. The loop stops when the agent dies or gets out of the cave. The la-

bels mean the following: ‘perc’= Perception, ‘eCog’= Epistemic Cognition,

‘mem’= Memory, and ‘pCog’= Practical Cognition. . . . . . . . . . . . . 117

5.8 Results of the Bayesian and defeasible agents for caves with size from 2

to 10. In blue, the score of both agents stabilizes around 2000 (2/3 of the

maximum). In magenta, both agents have a polynomial growth in space

requirements. In red, the defeasible reasoner has a polynomial growth in

time whereas the Bayesian reasoner has an exponential growth. The result

were averaged over 1000 trials for each size. . . . . . . . . . . . . . . . . 119

-vi-



5.9 Two possible situations for caves with size larger than 9 squares. In sit-

uation (a), the joint probability table for updating the degrees of beliefs

about pits has 512 lines. This is the case because the probability of pit in

each fringe square depends on every fringe square. In situation (b), it is

possible to update the degrees of beliefs about pits using two joint prob-

ability tables with 32 lines each. This is the case because it is possible to

divide the cave into two independent 5 × 5 partitions. In other words, x

and y are conditionally dependent in (a), but are independent in (b). . . 122

A.1 Graph of R = 〈L, KB, π〉, in which KB = ∅ and function π is such that

π(KBw, 1) adds φ to KBw, π(KBw, 2) adds ψ to KBw, and π(KBw, i) does

nothing for i > 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

-vii-



List of Tables

1 Traditional and naturalized epistemologies distinguished over their goal,

method, and opinion in relation to epistemology being part of another

discipline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Relation between properties of a logic and properties of a strictly idealac

reasoner for that logic. For a modal interpretations of these properties, see

appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The behaviour of some functions regarding requirements (i)−(iv). The

‘X’s indicate which requirements the functions fulfill. In the last function,

c > 0 is a constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Joint probability table for updating the degrees of belief on P (2, 0), P (1, 1),

and P (0, 2) given information that pr(P (0, 0)) = 0, pr(P (1, 0)) = 1, and

pr(P (0, 1)) = 1. This situation is represented in figures 5.1 and 5.5 ((a)).

The total probability is .2346. . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Joint probability tables for situations in figure 5.5. Table (a) is about

Wumpus in situation (a). The total probability is .1184, pr(W (2, 0)) =

pr(W (0, 2)) = .01, and pr(W (1, 1)) = .98. Table (b1) is about Wumpus in

situation (b). The total probability is .448, pr(W (2, 1)) = pr(W (1, 2)) =

.495. Table (b2) is for reasoning about pits in situation (b). The total

probability is .3664, pr(P (2, 1)) = pr(P (1, 2)) = .545. . . . . . . . . . . . 113

A.1 Relation between properties of a logic, properties of a function π which is

strictly idealac for that logic, and the modal formulas that π validates. . 129

-viii-



Abstract

ALMOST IDEAL:

Computational Epistemology and the Limits

of Rationality for Finite Reasoners

The notion of an ideal reasoner has several uses in epistemology. Often, ideal reasoners

are used as a parameter of (maximum) rationality for finite reasoners (e.g. humans).

However, the notion of an ideal reasoner is normally construed in such a high degree

of idealization (e.g. infinite/unbounded memory) that this use is unadvised. In this

dissertation, I investigate the conditions under which an ideal reasoner may be used as a

parameter of rationality for finite reasoners. In addition, I present and justify the research

program of computational epistemology, which investigates the parameter of maximum

rationality for finite reasoners using computer simulations.

In chapter 1, I investigate the use ideal reasoners for stating the maximum (and min-

imum) bounds of rationality for finite reasoners. I propose the notion of a strictly ideal

reasoner which coincides with the notion of maximum rationality. The notion of a strictly

ideal reasoner is relative to a logic and a notion of beliefs (explicit, implicit, etc). I

argue that, for some relevant logics, a finite reasoner may only approach maximum ra-

tionality at the limit of a reasoning sequence (stable beliefs)1. In chapter 2, I investigate

the use of ideal reasoners in the zombie argument against physicalism (Chalmers, 2010).

This notion is used in the principle that ideal negative conceivability entails possibility.

The conclusion is that the zombie argument is neither an a priori nor a conclusive ar-

gument against physicalism. In chapter 3, I investigate the notion of maximum (and

minimum) epistemic rationality for finite reasoners. Epistemic rationality is often related

to maximizing true beliefs and minimizing false beliefs. I argue that most of the exist-

ing models of maximum epistemic rationality have problems in dealing with blindspots

and propose a model in terms of the maximization of a function g, which evaluates sets

1Informally, the reasoning sequence of a reasoner is how the reasoner would reason from the available
information if it had enough cognitive resources (e.g. time for reasoning). The notion of a stable belief
is related to the beliefs that the reasoner would hold at the limit of a reasoning sequence.
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of beliefs regarding truth/falsehood. However, function g may only be maximized at

the limit of a reasoning sequence. In chapter 4, I argue that if maximum (epistemic)

rationality for finite reasoners must be understood in terms of the limit of a reason-

ing sequence, then issues about the computational complexity of reasoning are relevant

to epistemology. Then I propose the research program of computational epistemology,

which uses computer simulations for investigating maximum (epistemic) rationality for

finite reasoners and considers the computational complexity of reasoning. In chapter 5,

I provide an example of an investigation in computational epistemology. More specifically,

I compare two models of maximum rationality for situations of uncertain reasoning:

theory of defeasible reasoning (Pollock, 1995) and Bayesian epistemology (Joyce, 2011).
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Silva, Tânia Queiroz.

-xi-



Introduction

The notion of an ideal reasoner is used in epistemology for several purposes. First, the

notion of an ideal reasoner is used in the interpretation of some epistemic formalisms:

Modal logic of an ordinary sort, when construed as a logic of belief or judge-
ment, gives a schematic characterization of an ideally rational mind, or, as I
shall call it, an ideal knower (Binkley, 1968, p. 127).

Second, the notion of an ideal reasoner is employed in stating epistemic norms:

A logic provides a characterization of (at least a large subset of) the arguments
that we ought to endorse. A logic hence provides an account of how an ideal
reasoner reasons (Garfield, 1990, p. 103).

Third, the notion of an ideal reasoner is used in defining other notions in epistemology.

For example, the notion of an ideal reasoner is used in defining the notion of warrant:

Let us say that a proposition is warranted in an epistemic situation iff an
ideal reasoner starting from that situation would be justified in believing the
proposition (Pollock, 1987, p. 490).

For another example, ideal reasoners are used in the definition of ideal conceivability:

Given this notion, we can say that S is ideally conceivable when the hypothesis
expressed by S cannot be ruled out, a priori, even on ideal rational reflection
(Chalmers, 2010, p. 143)2.

In all three cases, an ideal reasoner is used as the parameter of (maximum) rationality.

This “ideally rational mind” would endorse all (and only?) the arguments that it ought to

endorse and would hold all (and only?) the beliefs which it has justification for holding3.

Epistemology is usually concerned with the (ir)rationality of finite reasoners (e.g. hu-

mans)4. In this case, an ideal reasoner is used as the parameter of (maximum) rationality

for finite reasoners. I think that this use is problematic for two reasons.

2The use of the notion of an ideal reasoner in the definition of ideal conceivability is even more explicit
in Menzies (1998, p. 269): “[I]t is possible that p if and only if an ideal conceiver could conceive that p”,
where ‘conceiving p’ is understood as ‘not being able to know ¬p on a priori basis’.

3I develop the connection between ideal conceivability and maximum rationality in chapter 2, note 8.
4Roughly, a finite reasoner is a reasoner with cognitive limitations such as finite perceptual input,

finite memory, and being able to execute only a finite number of inferential steps in a finite time interval.
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The first reason is that the phrase ‘ideal reasoner’ does not mean the same thing in

all its uses. There are at least two different notions of an ideal reasoner in the literature.

There is a cognitive notion of an ideal reasoner as a reasoner without cognitive limitations:

An ideal reasoner is unconstrained by a finite memory or processing capacity
(Pollock, 1987, p. 504).

This cognitive notion is also found in Chalmers (2010, p. 143) and Menzies (1998).

There also exists an epistemic notion of an ideal reasoner as a reasoner that believes

all logical consequences of its beliefs and does not have an inconsistent set of beliefs:

[The ideal reasoner] avoids contradiction, is aware of all logical truths, and
believes all the logical consequences of what he believes (Binkley, 1968).

This epistemic notion is also found in Halpern and Moses (1985), Grim (1988), Duc

(1995), Giunchiglia and Giunchiglia (2001), and Stalnaker (2006, p. 179).

The cognitive notion of an ideal reasoner is insufficient as a parameter of rationality

unless the notion specifies how that reasoner reasons. This is why most epistemologists

that use the cognitive notion of an ideal reasoner presuppose that the ideal reasoner

reasons in some way related to the epistemic notion (e.g. Chalmers, 2010, p. 193).

The second reason is that the notion of an ideal reasoner is sometimes construed in

such a high degree of idealization that its use as a parameter of (maximum) rationality for

finite reasoners is unadvised. This is the case for the cognitive notion of an ideal reasoner

(even when it is supplemented by the epistemic notion). How a reasoner without cognitive

limitations reasons is so different from how a finite reasoner reasons that the former may

hardly be used as a parameter for the latter5. Those which defend the cognitive notion of

an ideal reasoner seem to presuppose that an ideal reasoner in the epistemic sense must

also have unlimited cognitive capacities (e.g. Chalmers, 2010, p. 143). However, I do

not think that this is the case. An ideal reasoner in the epistemic sense may be a finite

reasoner depending on which notion of beliefs is considered.

5For example, if there exists a procedure for checking guesses, a reasoner which is able to perform
inferences instantaneously may solve any problem (instantaneously) by generating and checking (a large
number of) random guesses. This is hardly a parameter of rationality for finite reasoners.

2



The possibility of finite ideal reasoners is often overlooked in the literature, but a finite

ideal reasoner may be the relevant parameter of maximum rationality for finite reasoners.

In this dissertation, I investigate the conditions under which the (epistemic) notion of an

ideal reasoner may be used as a parameter of maximum rationality for finite reasoners.

Computational epistemology

This dissertation also has a methodological motivation: to present and justify the re-

search program of computational epistemology (CE), which investigates the parameter of

maximum rationality for finite reasoners using computer simulations.

In the last decades, the nature of epistemology has been subject to extensive discus-

sion. More specifically, it has been discussed whether: (a) epistemology is a normative

or a descriptive discipline; (b) epistemology is an a priori or an empirical (a posteriori)

discipline; (c) epistemology is autonomous or should be seen as part of a different dis-

cipline. These question where introduced to mainstream epistemology by Quine’s paper

‘Epistemology Naturalized’ (1969). In this paper, Quine recommends epistemologists to

abandon the conceptual analysis and use the empirical methods of cognitive psychology

in describing how humans form beliefs (Quine, 1969, p. 75):

The relation between the meager [sensory] input and the torrential output [of
beliefs] is a relation that we are prompted to study for somewhat the same
reasons that always prompted epistemology... But a conspicuous difference
between old epistemology and the epistemological enterprise in this new psy-
chological setting is that we can now make free use of empirical psychology
(Quine, 1969, p. 82-83).

Quine also defends what is called ‘the replacement thesis’: “epistemology, or something

like that, simply falls into place as a chapter of psychology and hence of natural science.”

(Quine, 1969, p. 82). Then, while traditional epistemology would be a normative, a priori

and autonomous discipline, naturalized epistemology would be a descriptive and empirical

discipline which is, in fact, a branch of cognitive psychology (non-autonomous).

Traditional epistemologists often argue that epistemology has an essential normative

character which naturalized epistemology fails to ground. The idea is that epistemology

deals with the notion of knowledge, the notion of knowledge implies justified belief, and

3



justification would be a normative notion. The notion of justification would be normative

in the sense of being related to the ‘correct’ or ‘good’ use of one’s cognitive resources.

But, they argue, the methods of empirical psychology can only describe how humans form

beliefs, not what justifies them. As a consequence, naturalized epistemology would be a

flawed discipline. This is often called ‘the normative objection’:

If justification drops out of epistemology, knowledge itself drops out of epis-
temology. For our concept of knowledge is inseparably tied to that of justifi-
cation. As earlier noted, knowledge itself is a normative notion. Quine’s non-
normative, naturalized epistemology has no room for our concept of knowledge
(Kim, 1988, p. 389).

Similar objections are found in Sellars (1956, sec. 36) and Siegel (1996).

I think that the traditional epistemologists are correct in this criticism: evaluating

beliefs and patterns of inference are essential roles of epistemology, but the fact that

humans form beliefs in such and such way does not have normative force.

On the other hand, traditional epistemology is often criticized regarding its meth-

ods. In considering an analysis of ‘knowledge’, traditional epistemologists often describe

a situation involving (lack of) knowledge and test how the theory describes the situation

against our epistemic intuitions. The paradigmatic examples of this procedure are Get-

tier’s counterexamples to the justified true belief analysis of ‘knowledge’ (Gettier, 1963).

In this sense, intuitions play an evidential role in traditional epistemology.

The evidential role of intuitions in traditional epistemology is under general scrutiny

since experimental philosophers presented empirical data suggesting that epistemi in-

tuitions differ amongst individuals (Swain et al., 2008), groups with different ethnicity

(Weinberg et al., 2001), or gender (Buckwalter and Stich, 2011), and, therefore, are not

reliable evidence. In the literature, there are several attempts to defend the use of intu-

itions in traditional epistemology from the results of experimental philosophy, either by

providing alternative interpretations to the results (Sosa, 2007; Nagel, 2012) or by point-

ing methodological problems in the experiments which produced the results (Bernstein,

2007; Nagel, 2012). In any case, (i) the evidential role of intuitions is controversial and

(ii) epistemology would be in a better position if it employed additional (well-stablished)

4



methods.

Finally, the most controversial claim in Quine (1969) is the replacement thesis. This

thesis is endorsed by some epistemologists with naturalistic tendencies (Bishop and Trout,

2005; Kornblith, 1994), but it is rejected by most epistemologists, either with naturalistic

(Haack, 1993; Goldman, 1992) or traditional tendencies (Almeder, 1998; BonJour, 1994;

Foley, 1994; Fumerton, 1994). The criticism that I have against the replacement thesis is

that epistemology seems to have a broader modal domain than cognitive psychology: it is

interested not only in actual (ir)rational reasoners, but also in all (ir)rational reasoners.

There are problems that are of interest to epistemology but not to cognitive psychology:

evaluating patterns of inference, epistemic paradoxes, etc. The reduction of epistemology

to cognitive psychology does not help to solve these problems, but only to overlook them.

In sum, traditional and naturalized epistemologies are distinguished over three axes:

Goal Method Reduction?
Traditional epistemology normative a priori no
Naturalized epistemology descriptive empirical yes

Table 1: Traditional and naturalized epistemologies distinguished over their goal, method,
and opinion in relation to epistemology being part of another discipline.

I don’t think that having to choose between the two sides in this dispute is very fruitful.

I think that both sides point to important traits, but also have serious defects. Also, both

sides deny/lack the important traits pointed out by the other side. Traditional epistemol-

ogy points to the normative role of epistemology and to the autonomy of epistemology,

but gives too much weight to epistemic intuitions. Naturalized epistemology points to

the necessity of having non-controversial methods and to the importance of taking into

account empirical data, but fails to ground the normative role of epistemology and to

guarantee the autonomy of epistemology.

In this dissertation, I intend to present and justify the research program of CE.

Roughly, an investigation in CE has four stages. First, the choice and description of

a relevant class of problems. Problems are collections of questions which are used to eval-

uate reasoning processes (e.g. chess, sudoku, SAT). Second, the choice and description of
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hypotheses of agents which would exhibit maximum rationality in dealing with problems

in the class. The hypotheses are descriptions of how those agents would reason in solving

problems in the class and may have different origins (e.g. existing theories, epistemi in-

tuitions, empirical data). Third, the design and implementation of computer simulations

of the agents solving problems in the class. Finally, the analysis of the data from the

simulation given some parameters related to (maximum) rationality. The main inovation

of CE is the inclusion of the efficiency of reasoning processes (computational complexity)

among the parameters of analysis. An argument for the relevance of this parameter to

epistemology and a more complete description of an investigation in CE are in chapter 4.

As I see it, CE has the good traits of traditional and naturalized epistemology and

does not present their bad traits. In addition, CE provides epistemology with a new kind

of consideration (efficiency), which may help enriching long standing disputes in the field.

The general features of CE are:

1. CE is (part of) a normative research program;

2. CE employs well-stablished methods and provides a bridge between methods and

results of traditional, naturalized, and formal epistemologies;

3. CE construes epistemology as an autonomous discipline;

4. CE provides epistemology with a new kind of consideration (about efficiency), which

may help enriching long standing disputes in the field.

First, (1) CE is (part of) a normative research program. In answering the normative

objection, Quine uses what is called ‘the engineering reply’: epistemology would be best

seen as a branch of engineering which is concerned with prescribing the best ways for

using one’s cognitive resources to achieve one’s epistemic goals.

Naturalization of epistemology does not jettison the normative and settle for
the indiscriminate description of ongoing procedures. For me normative epis-
temology is a branch of engineering. It is the technology of truth-seeking, or,
in more cautiously epistemological term, prediction... There is no question
here of ultimate value, as in morals; it is a matter of efficacy for an ulterior
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end, truth or prediction. The normative here, as elsewhere in engineering,
becomes descriptive when the terminal parameter [the goal] is expressed
(Quine, 1998, p. 664-665).

In some sense, engineering is a normative discipline. For example, bridge engineers

will apply theories of physics, geology, etc, in order to distinguish between good and

bad projects for bridges (Wrenn, 2006, p. 68). In this sense, engineering epistemologists

would use empirical data about how the world and the human mind work in order to

distinguish between better and worse cognitive practices for achieving epistemic goals.

For example, if you have the goal of maximizing true beliefs and minimizing false beliefs,

the engineering epistemologist is able to prescribe you to ignore soothsayers based on the

available scientific data on how the world and the human mind work (Quine, 1992, p. 19).

The engineering reply often does not persuade traditional epistemologists, who argue

that it does not ground normativity in the relevant categorical sense (Wrenn, 2006).

Epistemology would need to ground categorical normativity in the sense of delivering

prescriptions which are independent of epistemic goals of individuals, but engineering

epistemology would be only able to ground hypothetical normativity (i.e. dependent of

epistemic goals of individuals)6. In the example, epistemology would need to be able to

state that you ought to maximize true beliefs and minimize false beliefs and not only that

you should do such and such if you have this goal. Engineering epistemology would not be

able to ground categorical normativity because empirical data cannot ground categorical

normativity and, given the replacement thesis, it does not have other means to do so.

CE may be seen as a kind of engineering epistemology without the replacement thesis.

In this context, CE is able to ground categorical normativity if traditional epistemology

is able to do so. This is the case because CE investigates formal properties of patterns

of inference, leaving to traditional epistemology the investigation about the content of

substantial epistemic norms and concepts. For example, CE investigates the maximum

and minimum bounds of rationality for finite reasoners, leaving to traditional epistemology

the investigation about the ‘amount’ of rationality involved in the notion of justification.

6Quine himself seems to agree with this interpretation: “There is no question here of ultimate value,
as in morals...” (Quine, 1998, p. 664-665).
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In addition, traditional epistemology has a role in an investigation in CE in, for example,

stating of hypotheses of agents, which are tested using computer simulations.

Second, (2) CE employs well-stablished methods. In fact, when its comes to methods, I

think that CE is in a better position than naturalized and traditional epistemology. CE is

in a better position than naturalized epistemology because it is not restricted to empirical

data about humans. The relevance of empirical data about humans for epistemology is

hardly questioned (McCauley, 1988; Haack, 1993; Goldman, 1992)7 and CE makes use

of this kind of data in selecting hypotheses, but the restriction to about humans renders

naturalistic epistemology unable to ground the normative character of epistemology. CE

is in a better position than traditional epistemology because, in CE, intuitions play only

a heuristic role: to state hypotheses to be tested using computer simulations. The use

of computer simulations in CE may have good consequences for epistemology in general.

First, Cummins (1998) points to the inexistence of an epistemically valuable calibration

methods for intuitions. The use of computer simulations may provide such calibration.

Second, many theories in traditional epistemology use counterfactuals (Sosa, 1999; Nozick,

1981). In CE, it is possible to evaluate counterfactuals by changing the initial conditions

of a simulation. Finally, it is always better to have additional (well-stablished) methods8.

In addition, CE provides a bridge between the methods and results of traditional,

naturalized, and formal epistemologies. In the literature, it is often stressed the difficulty

in relating the methods and results of traditional and formal epistemologies (e.g. Hendricks

and Symons, 2006). The situation is not better for naturalized epistemology: while

cognitive psychology is concerned with real reasoners (humans), formal epistemology deals

with abstract reasoners and methods and results about abstract reasoners are difficult to

adapt to (much more complex) real reasoners. This is not a good result because epistemic

logic and formal epistemology have achieved important advances which would benefit

epistemology in general. For example, advancces in modal epistemic logic (Hintikka,

1962), dynamic epistemic logic (van Ditmarsch et al., 2006), and Bayesian epistemology

7This position is reasonable, since there are other sciences which study knowledge (or cognition) and
which have interesting results for epistemology: cognitive sciences, neuroscience, artificial intelligence.

8Similar techniques are used in several disciplines with similar purposes: computational linguistics
(Ojeda, 2012), computational psychology (Sun, 2008), game theory (Tesfatsion, 2006), etc.
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(Bovens and Hartmann, 2004). This is not a problem for CE. CE uses intuitions, empirical

data, and existing epistemological theories in selecting of hypotheses, formal tools in

formalizing hypotheses, and computer simulation in testing hypotheses.

Third, (3) CE construes epistemology as an autonomous discipline. It is true that

the methods and goals of CE have some resemblance with those of cognitive psychology

and AI, but CE is not part of those disciplines. CE and cognitive psychology often

investigate reasoning using computer models, but the goals of CE and cognitive psychology

are quite different. While the goal of cognitive psychology is to describe the patterns of

inference of humans, the goal of CE is to describe the maximum and minimum bounds

of rationality for finite reasoners in general (not necessarily humans). The goal of CE

have some resemblance with the goal of AI. The goal of both CE and AI is to describe

optimal patterns of inference, but not in the same sense. An investigation in AI is often

concerned with finding the best strategy for solving specific problems. An investigation

in CE, on the other hand, is not concerned with solving specific problems, but uses data

about how agents deal with problems in order to investigate the maximum and minimum

bounds of rationality for finite reasoners. The goal of CE is the same goal of epistemology

in general: to set parameters from which we can evaluate patterns of inference of finite

reasoners regarding rationality.

Finally, (4) CE provides epistemology with a new kind of consideration (efficiency),

which may help enriching long standing disputes in the field. It may be the case, for

example, that there exist two theories that prescribe otherwise equally reasonable patterns

of inference which differ only in efficiency. I think that the best argument for (4) is to

show a case like that and show how CE may help in such a case. I will make this case in

chapter 5, where I present an example of investigation in CE which compares two theories

about reasoning under uncertainty: nonmonotonic logic and Bayesian epistemology.

The last point that I want to stress is that most ideas in CE are not new to episte-

mology. First, the distinction between polynomial and exponential patterns of inference

is already considered in the literature on epistemology. For example, Aaronson argues

that the gap between polynomial and exponential may provide relevant distinctions for
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epistemology:

I think of the polynomial/exponential gap as occupying a ‘middle ground’
between two other sorts of gaps: on the one hand, small quantitative gaps
(such as the gap between n steps and 2n steps); and on the other hand, the
gap between a finite number of steps and an infinite number. The trouble with
small quantitative gaps is that they are too sensitive to ‘mundane’ modeling
choices an the details of technology. But the gap between finite and infinite
has the opposite problem: it is serenely insensitive to distinctions that we
actually care about, such as that between finding a solution and verifying it,
or between classical and quantum physics. The polynomial/exponential gap
avoids both problems (Aaronson, 2011, p. 10).

The investigation of this gap would lead to new perspectives on the nature of math-

ematical knowledge, the problem of logical omniscience, Hume’s problem of induction,

Goodman’s grue riddle, economic rationality, and other topics (Aaronson, 2011, p. 1).

There also exist research programs in epistemology which use computer simulations.

For example, the computer agent OSCAR is an implementation of Pollock’s theories

about defeasible reasoning, but also of his less well known ideas about intentions, interests,

strategies for problem solving, and other cognitive architectural design (see Pollock, 1995).

Finally, there exist other proposals akin to CE in the literature on epistemology. For

example, effective epistemology (Kelly, 1988) and android epistemology (Ford et al., 2006):

On the theoretical side, android epistemology is an open and expanding body
of theories and proposals about computational architectures for cognition, the-
ories and proposals some of which are biologically or psychologically inspired,
and others of which are free floating − never mind how people are able to do
x − maybe a computational system could do x this way... On the other, more
practical side, android epistemology is about how to use such ideas to extend
human capacities (Ford et al., 2006, p. viii).

The same is true in the literature on AI, as in the idea of computational intelligence:

The science of CI [computational intelligence] could be described as ‘synthetic
psychology’, ‘experimental philosophy’ or ‘computational epistemology’. It
can be seen as a way to study the old problem of the nature of knowledge and
intelligence, but with a more powerful experimental tool than was previously
available (Poole et al., 1998, p. 6).
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However, as far as I know, the field of CE, as a branch of epistemology, still does not

have a proper justification and presentation. In this dissertation, I intend to do both.

Overview

The dissertation has two parts. In the fist four chapters, I provide a justification for why

CE is a relevant research program in epistemology. In chapters 1 to 3, I argue that finite

resoners may only approach maximum rationality at the limit of a reasoning sequence9. In

chapter 4, I argue that if this is the case, then the computational complexity of reasoning

is relevant to epistemology. In this case, I argue, computer simulations would be a relevant

tool for epistemology. Finally, I present more formally the research program of CE. In

chapter 5, I provide an example of invetigation in CE about reasoning under uncertainty.

In chapter 1, I investigate the use of ideal reasoners for stating the maximum (and min-

imum) bounds of rationality for finite reasoners. I argue that this notion is unsatisfactory

for modeling maximum rationality because an ideal reasoner may have random beliefs10.

Then I propose the notion of a strictly ideal reasoner, i.e. an ideal reasoner which believes

only the logical consequences of its initial beliefs. I argue that the notion of a strictly

ideal reasoner coincides with the notion of maximum rationality. The notion of a strictly

ideal reasoner is relative to a logic and to a notion of beliefs (explicit, implicit beliefs, etc).

I investigate a strictly ideal reasoner for classical logic defined in terms of explicit beliefs.

According to this notion, a strictly reasoner explicitly believes infinitely many logical

tautologies, which a finite reasoner cannot do. A finite reasoner which does not believe

anything is strictly ideal when this notion is defined in terms of implicit beliefs. I propose

the notion of accessible beliefs and investigate a strictly ideal reasoner for classical logic

defined in terms of accessible beliefs. This notion avoids the problems of the previous

two notions. However, a strictly ideal reasoner for a nonmonotonic logic defined in terms

of accessible beliefs may need to execute infinitely many inferential steps in a finite time

interval, which a finite reasoner cannot do. I conclude that a finite reasoner may only

9Informally, the reasoning sequence of a reasoner is how the reasoner would reason from the available
information if it had enough cognitive resources (e.g. time for reasoning).

10As long as those beliefs are not contradictory. I develop this issue in chapter 1.
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approach maximum rationality at the limit of a reasoning sequence. The parameter of

maximum rationality for finite reasoner must be a strictly ideal reasoner defined in terms

of stable beliefs11.

In chapter 2, I investigate the use of (strictly) ideal reasoners in the negative zombie

argument against physicalism (Chalmers, 2010). The negative zombie argument is such

that p∧¬q (the zombie sentence) is ideally negatively conceivable and, therefore, possible,

which would entail that physicalism is false12. The notion of a strictly ideal reasoner

is used as follows: φ is ideally negatively conceivable iff a strictly ideal reasoner for a

relevant logic |x= does not believe ¬φ. I argue that, given this principle, the notion of a

strictly ideal reasoner must be understood in terms of stable beliefs and that |x= must be

nonmonotonic. Then I argue that such a strictly ideal reasoner does not ideally negatively

conceive p∧¬q for some choices of q (for example, for q =‘someone is conscious’). I discuss

the consequences of these results for the negative zombie argument and for the zombie

arguments in general. The conclusion is that the negative zombie argument (and maybe

the zombie arguments in general) is neither an a priori argument nor a conclusive argument

against physicalism.

In chapter 3, I investigate the notion of maximum epistemic rationality for finite

reasoners. In the literature, maximum epistemic rationality is often related to maximizing

true beliefs and minimizing false beliefs13. I argue that most of the existing models of

maximum epistemic rationality have problems in dealing with blindspots (Sorensen, 1988).

Then I argue that maximum epistemic rationality is better modeled as the maximization

of a function g which accepts a set of beliefs as input and returns a numeric evaluation.

Then I discuss the properties of this function14. I argue that this model does not have

problems with blindspots, but a finite reasoner is only able to maximize function g at the

11The stable beliefs are those beliefs that the reasoner would hold at the limit of a reasoning sequence.
12In the zombie sentence, p is the conjunction of the fundamental physical truths and laws and q is

an arbitrary phenomenal truth. If q =‘someone is conscious’, then ♦(p ∧ ¬q) asserts the possibility of a
zombie world, i.e. a world which is physically identical to the actual world, but where no one is conscious.

13Similar claims are found in Lehrer (2000), Foley (1993), Plantinga (1993), Goldman (1986), Moser
(1985), Alston (1985), BonJour (1985) Sosa (1985), and Chisholm (1982). List due to David (2001).

14Function g must vary directly as the number of true beliefs (t), vary inversely as the number of false
beliefs (f), which entails that the function is defined for all values of t and f , and have an upper (lower)
bound in the form of a supremum (infimum) but not a maximum (minimum).
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limit of a reasoning sequence. In the discussion, I compare the function g model with other

quantitative models of rationality, as, for example, the group of models usually known as

‘epistemic utility theory’ (Fitelson and Easwaran, 2015; Pettigrew, 2015a; Joyce, 1998).

In chapter 4, I argue that if finite reasoners are only able to approach maximum

(epistemic) rationality at the limit of a reasoning sequence, then issues about the com-

putational complexity of reasoning are relevant to epistemology. The argument exploits

the facts that a finite reasoner cannot reach actual maximum (epistemic) rationality and

that there exists a relevant difference in how a finite reasoner may approach maximum

(epistemic) rationality depending on whether it has a polynomial or an exponential rea-

soning sequence. Then I present more formally the research program of CE. I discuss

the formalization of problems, agents, the general features of the computer simulations,

present and motivate the parameters used in the analysis of the data from the simulations.

In chapter 5, I provide an example of an investigation in computational epistemology.

More specifically, I compare two models of maximum rationality in situations of uncertain

reasoning: the theory of defeasible reasoning (Pollock, 1995) and Bayesian epistemology

(Joyce, 2011). The goal is to show how considerations about computational complexity

may help enrich disputes in epistemology. In order to compare these theories, I introduce

an epistemic version of the Wumpus World, a class of problems described in Russell and

Norvig (2010) as a tool for investigating uncertain reasoning. I design agents based on

these models, implement these agents in a computer simulation of the epistemic Wumpus

World, and analyze the data from the simulation. I analyze how much these agents

succeed in solving problems in that class of problems, the cost of their solutions, and the

computational complexity of their reasoning processes. The conclusion is that, under the

conditions of the epistemic Wumpus World, the theory of defeasible reasoning provides a

better model of uncertain reasoning. I discuss the general conditions under which these

results hold.

The appendices contain some proofs, a survey on computational complexity theory,

and a modal interpretation for the notion of accessible beliefs introduced in chapter 1.
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Chapter 1

The limits of finite reasoning

The ideal reasoner would, when he had once
been shown a single fact in all its bearings, de-
duce from it not only all the chain of events
which led up to it but also all the results which
would follow from it.

Sherlock Holmes, The Five Orange Pips .

Consider the following goals for a research program in analytic epistemology (AE):

(g1) investigate which are the epistemic norms for finite reasoners (e.g. humans)1;

(g2) provide formalizations of epistemic practices (e.g. patterns of inference) in a way

which contributes to the advancement of AE.

I think that both (g1) and (g2) are reasonable goals for a research program in AE.

About (g1), the investigation of the notion of epistemic justification is usually accepted

as a major goal of AE (Chisholm, 1977). But it is also usually accepted that the notion of

epistemic justification is closely related to the fulfillment of epistemic norms: for example,

some epistemologists claim that a belief is justified iff it is permissible given the correct

epistemic norms (Pollock and Cruz, 1999, p. 123). Then the investigation of epistemic

norms is already a goal of AE. In addition, AE is usually concerned with the epistemic

practices of humans (who are finite reasoners): skeptical arguments often exploit the

cognitive limitations of humans and epistemologists often exploit these limitations in their

1Roughly, a finite reasoner is a reasoner with cognitive limitations such as finite perceptual input,
finite memory, and being able to execute only a finite number of inferential steps in a finite time interval.
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theories2. For these reasons, I think that it is a reasonable goal for a research program in

AE to (g1) investigate which are the epistemic norms for finite reasoners.

About (g2), it is usually accepted that to provide precise analyses of the concepts of

knowledge, belief, and epistemic justification is an important goal of AE. In providing such

analyses, epistemologists often employ formal reconstructions of concepts. For example,

modal logic is often employed in the formal reconstruction of the concepts of knowledge,

belief, and epistemic justification (Halpern et al., 2009). In the last decades, it has been

argued that AE should also be concerned with the formal reconstruction of epistemic

practices (Pollock, 1998). Pollock argues that there exist at least two notions of epistemic

justification which are of interest to AE. The first is epistemic justification as “what turns

true belief into knowledge”, which concerns the traditional conceptual analysis. But,

Pollock argues, there also exists a notion of epistemic justification as “the correct ways of

reasoning”, which concerns procedural epistemology.

Viewed from this perspective, we can roughly divide the interests of episte-
mology into procedural and descriptive epistemology. Procedural epistemol-
ogy is directed at how to build the system of cognition, whereas descriptive
epistemology concerns how to describe what the system is doing once it is
running. Thus rules for reasoning become part of procedural epistemology,
but the analyses of “S knows that P” is assigned to descriptive epistemology
(Pollock, 1998, p. 18).

Then to provide formalizations of epistemic practices is a goal of (procedural) AE. The

clause ‘in a way which contributes to the advancement of AE’ is in place because it is a

requirement for using a formal tool in some field of research that the use contributes to

the advancement that field; otherwise, it is only an empty use. For these reasons, I think

that it is a goal of a research program in AE to (g2) provide formalizations of epistemic

practices in a way which contributes to the advancement of AE.

2For example, epistemologists often argue from the fact that finite reasoners (in fact, humans) do not
make inferences instantaneously: “Can we argue that knowledge distribute over conjunction? It would
scarcely be relevant to argue that one will always infer the conjuncts from the conjunction, for, since
making an inference takes time, one might still violate distributivity before completing the inference.
If knowledge of the conjunction causes knowledge of the conjuncts, and the cause is not simultaneous
with the effect, then for an intermediate period one would know the conjunction without knowing the
conjuncts; that period would be a counterexample to distribution” (Williamson, 2000, p. 281).
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In this chapter, I investigate which notion of an ideal reasoner may be used in a

research program about stating the maximum and minimum bounds of rationality for

finite reasoners as to fulfill goals (g1) and (g2)3. Due to (g1), the relevant notion of an

ideal reasoner must be able to figure in some informative epistemic norms about which

beliefs a finite reasoner ought to hold and may hold in order to be maximally rational and

which beliefs a finite reasoner may hold in order to be minimally rational4. In order to be

informative, the epistemic norms in the research program cannot be known a priori to be

fulfilled/not-fulfilled by the whole class of finite reasoners. Due to (g2), the notion of an

ideal reasoner must contribute to the advancement of AE in the sense of generating notions

of maximum and minimum rationality for finite reasoners which may be investigated using

the best (most fruitful) methods available.

In section 1.1, I propose a model of a reasoner which is used in most definitions in the

chapter. For example, this model is used in the definition of a finite reasoner, an ideal

reasoner, the epistemic norms, etc. I then investigate some notions of an ideal reasoner

which are common in the literature and argue that these notions are not adequate models

of maximum rationality for finite reasoners. I propose the related notion of a strictly

ideal reasoner and argue that this notion is an adequate model of maximum rationality

in our framework. In section 1.2, I argue that the notion of a strictly ideal reasoner is

relative to a logic and to a notion of beliefs. Then I investigate a strictly ideal reasoner

for classical logic defined in terms of explicit, implicit, and accessible beliefs. I reject the

definitions in terms of explicit and implicit beliefs on the basis of goal (g1). In section

1.3, I investigate a strictly ideal reasoner for a nonmonotonic logic with some essential

properties defined in terms of accessible beliefs and reject this definition on the basis

of goal (g2). In section 1.4, I introduce the notion of stable beliefs and use this notion

in the definition of strictly ideal reasoners for both classical and nonmonotonic logic.

I argue that the definitions in terms of stable beliefs fulfill goals (g1) and (g2) and should

be adopted in the research program.

3In the following, I refer to this research program as ‘the research program’.
4In the following, ‘may believe φ’ means that believing φ is (epistemically) permissible, ‘ought to believe

φ’ means that believing φ is mandatory, ‘may-not believe φ’ means that believing φ is impermissible, and
‘may believe not-φ’ means that believing not-φ is permissible.
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1.1 Definitions

The model of a reasoner R is composed of a formal language (L), an input (INPUT), a

knowledge base (KB), and a pattern of inference (π). INPUT and KB are sets of sentences in

L and π is a function which has two sets of sentences in L (INPUT and KB) and a positive

integer as inputs and outputs a set of sentences in L (an updated KB)5. Roughly, the

sentences in INPUT model the perceptual input of the reasoner, the sentences in KB model

the (explicit) beliefs of the reasoner (memory), and function π models the dispositions of

the reasoner about how to reason from the available information (INPUT and KB). Consider

the model of a reasoner:

Definition 1.1.1 (Reasoner (R)). A reasonerR = 〈L, INPUT, KB, π〉 is a 4-tuple, where

L is a formal language, INPUT and KB are sets of sentences in L, and π is a function

π : 2L × 2L × Z+ → 2L.

The work of function π may be thought of as making a copy of KB, executing some

operations on that copy, and returning an updated KB. The operations executed by func-

tion π may either add or delete sentences to/from the copy of KB given some conditions.

For example, consider the operation scheme φ∈INPUT,¬φ 6∈KB
add φ to KB

(if φ is in INPUT and ¬φ is not

in KB, then add φ to KB). In the following, the execution of function π for a given input

is the sequence of instantiations of operation scheme for terms and sentences in L that

the function executes in order to go from the input to the corresponding output. The

execution of function π for a given input is finite iff the respective sequence is finite. The

definition of function π is a (full) description of the general work of the function that

specifies which execution is produced for each possible input (e.g. a computer program).

The definition of function π is finite iff there exists a finite description of such kind6.

In this context, the notion of a finite reasoner is the following:

5The phrase ‘knowledge base’ denotes (as in AI) the module of a reasoner which stores information
and is not directly related to the epistemic notion of knowledge. I use the term ‘function π’ for readability.
Actually, π is a set of instructions for calculating a function. The numeric parameter of π models the
fact that a reasoner may perform different inferences from the same premises (see sections 1.2 and 1.4).

6For example, consider the function even, which accepts a natural number as input and returns 1 if
the input is even and 0 otherwise. Then function even is the set {〈0, 1〉, 〈1, 0〉, 〈2, 1〉, . . .}. The definition
of even is finite: ‘if (input mod 2 = 0), return 1; else return 0’. The execution of even for any input is
also finite: for any input, function even executes only one modulo operation (input mod 2).

17



Definition 1.1.2 (Finite reasoner). A reasoner R = 〈L, INPUT, KB, π〉 is finite iff L is

finitely specifiable, the sentences in INPUT and KB and those sets are finite, the definition

of π is finite, and the execution of π is finite for the relevant inputs7.

The language L being finitely specifiable is a requirement for a finite reasoner to learn

L (see Davidson, 1965). The sentences in INPUT and INPUT itself being finite model finite

perceptual input. The sentences in KB and KB itself being finite model finite memory. The

definition of function π being finite is also a consequence of finite memory. The execution

of function π being finite for the relevant inputs models the fact that finite reasoners may

execute only a finite number of inferential steps in a finite time interval. For simplicity, I

deal mostly with a priori reasoners in this chapter. An a priori reasoner is a reasoner with

INPUT = ∅. Then I will stop referring to INPUT and partially to L8. I will treat reasoners

as pairs 〈KB, π〉 with π : 2L × Z+ → 2L.

There exist at least two different notions of an ideal reasoner in the literature. The first

notion is a cognitive notion of an ideal reasoner as a reasoner without cognitive limitations

(Chalmers, 2010; Pollock, 1987). The cognitive notion of an ideal reasoner is not adequate

for modeling maximum rationality for finite reasoners for two reasons. The first reason is

that a purely cognitive notion of an ideal reasoner is insufficient for describing maximum

rationality unless the notion specifies how that reasoner reasons. The second reason is

that the patterns of inference of a reasoner without cognitive limitations are fundamentally

different from those of a finite reasoner. For example, if there is a procedure for checking

guesses, a reasoner which is able to perform inferences instantaneously solves any problem

(instantaneously) simply by generating and checking (a large number of) random guesses.

The second is an epistemic notion of an ideal reasoner:

Definition 1.1.3 (Ideal reasoner). A reasoner R is ideal iff

(i) R believes all logical consequences of its epistemic situation;

(ii) R has a nontrivial set of beliefs,

7The relevant inputs are those used in generating the beliefs of the reasoner (see sections 1.2 and 1.4).
8In the following, I always discuss reasoners in the context of a logic. Then I will always presuppose

that L is an arbitrary language for that logic (with a finite number of semantic primitives).
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where the epistemic situation of an a priori reasoner is its initial KB.

In discussing the surprise test paradox, Binkley (1968) proposes a notion of an ideal

reasoner with these requirements. Also do Halpern and Moses (1985), Grim (1988), Duc

(1995), Giunchiglia and Giunchiglia (2001), and Stalnaker (2006)9. The epistemic notion

of an ideal reasoner is not adequate for modeling maximum rationality because a reasoner

with features (i) and (ii) may still have all sorts of random beliefs10. In other words,

definition 1.1.3 has a very strong completeness requirement (closure), but only a very

weak soundness requirement (nontriviality)11.

As much as the notion of an ideal reasoner is not an adequate model of maximum

rationality for finite reasoners, that notion may still be used in the research program in

defining adequate notions of maximum and minimum rationality for finite reasoners. In

standard deontic logic, the notions of ought and may are modeled as ‘ought φ’ being true

iff φ is true in all accessible (relevant) possible worlds and ‘may φ’ being true iff φ is

true in some accessible (relevant) possible worlds (see von Wright, 1951)12. The relevant

possible worlds in deontic logic are often referred as “ideal worlds” or “deontically perfect

worlds” (see von Wright, 1986). In this case, the notion of an ideal reasoner may be used

in a related definition of the epistemic notions of ought and may in which ideal reasoners

play the role of relevant possible worlds and the relation ‘being in the same epistemic

situation’ is the accessibility relation.

Definition 1.1.4 (Epistemic ought). A reasoner ought to believe φ iff all ideal rea-

soners in the same epistemic situation believe φ.

9In the literature, requirement (ii) is usually expressed as ‘R has a consistent set of beliefs’. A set of
beliefs is consistent iff it does not entail a contradiction. A set of beliefs is nontrivial iff it does not entail
every sentence in L. If we accept the principle of explosion (see section 1.3), these requirements coincide.
Grim, Duc and Giunchiglia and Giunchiglia drop requirement (ii), but this requirement is important for
blocking a (fully credulous) reasoner which believes all sentences in the language from being ideal.

10As long as those beliefs do not contradict requirement (ii). It may be difficult to make sense of this
use of ‘random beliefs’ when ‘beliefs’ are understood as explicit beliefs. If explicit beliefs are modeled as
the sentenes in KB, then an ideal reasoner would not be able to have random beliefs without believing all
of their logical consequences. In sections 1.2 and 1.4, I introduce other notions of beliefs for which this
use of ‘random beliefs’ makes sense (accessible and stable beliefs).

11This explanation was suggested by an anonymous reviewer. In the following, ‘ideal reasoner’ refers
to the epistemic notion of an ideal reasoner in definition 1.1.3.

12In other words, ought is box-like and may is diamond-like.
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Rational Irrational

(∀φ) if R believes φ, then R may believe φ

Maximally rational

(∀φ) if R believes φ, then R may believe φ
and R believes φ iff R ought to believe φ

(∃φ) R believes φ and
R may-not believe φ

Minimally rational = Rational r Maximally Rational

Figure 1.1: Mutually exclusive classes of reasoners: maximally and minimally and irra-
tional reasoners. Minimally rational reasoners are rational but not maximally rational.
According to goal (g1), none of these classes may be a priori empty for finite reasoners.

Definition 1.1.5 (Epistemic may). A reasoner may believe φ iff there exists an ideal

reasoner in the same epistemic situation which believes φ.

The epistemic notions of ought and may would be used in stating the notions of a

maximally rational, a minimally rational, and an irrational reasoner as following13:

Definition 1.1.6 (Maximally rational). A reasoner R is maximally rational iff, for

all φ, R believes φ iff R ought to believe φ and R believes φ only if R may believe φ.

Definition 1.1.7 (Minimally rational). A reasoner R is minimally rational iff, for all

φ, R believes φ only if R may believe φ and R is not maximally rational.

Definition 1.1.8 (Irrational). A reasoner R is irrational iff, for some φ, R believes φ

and R may-not believe φ.

Maximally rational reasoners fulfill requirements (i) and (ii) for ideal reasoners (see

proof C.1). In addition, they believe only the logical consequences of their epistemic sit-

uation. Then all maximally rational reasoners are ideal reasoners, but the opposite is not

true14. Minimally rational reasoners fulfill requirement (ii) and may also fulfill require-

ment (i) as long as they do not believe only the logical consequences of their epistemic

situation. Then some (but not all) minimally rational reasoners are ideal reasoners and

13The definitions have the consequence that a maximally rational reasoner is not minimally rational.
It would be more natural to talk about, respectively, perfect and imperfect rationality. I do not use these
terms because I am interested in the maximum and minimal bounds of rationality for finite reasoners.

14The ideal reasoners with ‘all sorts of random beliefs’ discussed above are not maximally rational.
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vice versa. Irrational reasoners do not fulfill requirement (ii), independently of fulfilling

requirement (i). According to goal (g1), none of these three classes may be known a priori

to be empty for the whole class of finite reasoners15.

How a maximally rational reasoner relates to an ideal reasoner suggests the notion of

a strictly ideal reasoner which is an adequate model of maximum rationality. Roughly, a

strictly ideal reasoner is an ideal reasoner which believes only the logical consequences of

its epistemic situation. The definition of a strictly ideal reasoner is the following:

Definition 1.1.9 (Strictly ideal reasoner). A reasoner R is strictly ideal iff

(i) R believes all and only the logical consequences of its epistemic situation;

(ii) R has a nontrivial set of beliefs.

A reasoner R is maximally rational iff R is strictly ideal (see proof C.2). This seems to

be a good reason to think that the notion of a strictly ideal reasoner is an adequate model

of maximum rationality. If a notion of an ideal reasoner generates adequate models for the

maximum and minimum bounds of rationality for finite reasoners depends on whether

this notion fulfills goal (g1) of the research program.

1.2 Classical reasoners

The notions of an ideal and of a strictly ideal reasoner are not precise for two reasons.

First, these notions are relative to a logic because the notions of logical consequence and

triviality are relative to a logic. Second, the term ‘belief’ is vague in these definitions

because there exist several notions of beliefs in the literature: explicit, implicit beliefs,

etc16. In this section, I am concerned with (strictly) ideal reasoners for classical logic,

where ‘classical logic’ means first-order logic. I investigate which notion of beliefs generates

a notion of a classical ideal reasoner which fulfills goal (g1) of the research program17.

Informally, a reasoner explicitly believes φ iff a token of φ is stored in its memory.

Consider the notion of explicit beliefs in the model:

15This goal is related to the discussion about epistemic ought implying cognitive can (see Neta, 2013).
16In fact, the notions of an ideal reasoner, a strictly ideal reasoner, the epistemic ought and may, a

maximally, a minimally and an irrational reasoner are all relative to a logic and to a notion of beliefs.
17In the following, |x= and |c= are, respectively, an arbitrary and the classical consequence relation.
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Definition 1.2.1 (Explicit belief (beliefex)). A reasoner R = 〈KB, π〉 believesex φ iff

φ ∈ KB.

It follows from definitions 1.2.1 and 1.1.2 that no finite reasoner has infinitely many

beliefsex. This is the case because having infinitely many beliefsex requires having infinitely

many sentences in KB (def. 1.2.1, beliefsex), but a finite reasoner cannot have infinitely

many sentences in KB (def. 1.1.2, KB is finite). I will refer to this fact as ‘finite memory’.

This is the definition of an ideal reasoner for |x= defined in terms of beliefsex
18

Definition 1.2.2 (Idealex reasoner for |x=). A reasoner R=〈KB, π〉 is idealex for |x= iff

(i) R believesex all logical consequences of its epistemic situation (KB |x= φ→ φ ∈ KB);

(ii) R has a nontrivial set of beliefsex (∃φ(KB |6 x= φ)).

Using the notion of an idealex reasoner for |c= (classical idealex reasoner) in the research

program has the consequence of making the class of maximally rational finite reasoners

a priori empty, which conflicts with goal (g1)19. Suppose that there exist a maximally

rational finite reasoner R. Then R is strictly idealex for |c=. There exist infinitely many

logical theorems in |c=. ThenR has infinitely many beliefsex (def. 1.2.2, idealex). Therefore

R is not a finite reasoner (finite memory), which is a contradiction. Therefore, there does

not exist a maximally rational finite reasoner in this model20.

This problem may be avoided using a different notion of beliefs in the definition of

a classical ideal reasoner. For example, there exist a notion of implicit beliefs in the

18The phrase ‘logical consequence’ in the definition of an ideal reasoner may be understood using
syntatic (`) or semantic consequence (�). I do not focus on this distinction because I am mostly dealing
with sound and complete logical systems. I acknowledge that there may be advantages in using `. For
example, this would render possible to talk about ideal reasoners for logical systems which are not (cannot
be) sound and complete. My choice of using � is due to the fact that most discussions abotu properties
of logical systems are done in terms of � (see section 1.3 and chapter 2).

19This problem is closely related to the problem of logical omniscience as discussed in the literature
(see Stalnaker, 1991, 2006; Fagin et al., 1995, ch. 9).

20Alternatively, suppose that there exists a maximally rational finite reasoner R. There exist infinitely
many logical theorems in |c=. Then all idealex reasoners for |c= believeex the infinitely many logical theorems

in |c= (def. 1.2.2, idealex). Then R ought to believeex the infinitely many logical theorems in |c= (def.
1.1.4, ought). If R ought to believeex φ, then R believesex φ (def. 1.1.6, maximally rational). Then R
has infinitely many beliefsex. Therefore R not a finite reasoner (finite memory), what is a contradiction.
Another problem with defining an ideal reasoner in terms of beliefsex is that, in this definition, there is
no difference between an idealex reasoner and a strictly idealex reasoner.
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literature which is often used in dealing with similar problems (Fagin et al., 1995, p. 363).

Informally, a reasoner implicitly believes φ iff φ is a logical consequence of its beliefsex.

Consider the notion of implicit beliefs in the model:

Definition 1.2.3 (Implicit belief (beliefim)). A reasoner R = 〈KB, π〉 believesim φ iff

KB |x= φ.

This is the definition of an ideal reasoner for |x= in terms of beliefsim:

Definition 1.2.4 (Idealim reasoner for |x=). A reasoner R=〈KB, π〉 is idealim for |x= iff

(i) R believesim all logical consequences of its epistemic situation (KB |x= φ→ KB |x= φ);

(ii) R has a nontrivial set of beliefsim (∃φ({ψ | KB |x= ψ} |6 x= φ))21.

Using the notion of an idealim reasoner for |c= in the research program does not have

the consequence of making the class of maximally rational finite reasoners a priori empty.

But avoiding this problem comes with the price of ‘trivializing’ the notion of a (strictly)

ideal reasoner: requirement (i) of the notion of an idealim reasoner is obviously trivial.

For this reason, using the notion of an idealim reasoner for |c= in the research program has

the consequence of conflating rational and maximally rational reasoners, leaving the class

of minimally rational finite reasoners a priori empty, which conflicts with goal (g1)22.

Using the notion of accessible beliefs in the research program avoids both problems.

Informally, a reasoner has the accessible belief that φ iff the reasoner may believeex φ after

some amount of reasoning. Consider the notion of accessible beliefs in the model:

Definition 1.2.5 (Accessible belief (beliefac)). A reasoner R = 〈KB, π〉 believesac φ

iff φ ∈ π(KB).

The set of beliefsac, π(KB), is the union of the outputs of function π for KB and all

positive integers i. Formally, π(KB) =
⋃
π(KB, i).

This is the definition of an ideal reasoner for |x= in terms of beliefsac:

21If |x= exhibits cautious monotony, then ∃φ({ψ | KB |x= ψ} |6x= φ) entails ∃φ(KB |6x= φ) (see section 1.3).
22In this model, all reasoners with nontrivial set of beliefsim (including all with KB = ∅) are maximally

rational and all others are irrational. A reasoner with KB = ∅ is strictly idealim for every |x=.
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Definition 1.2.6 (Idealac reasoner for |x=). A reasoner R=〈KB, π〉 is idealac for |x= iff

(i) R believesac all logical consequences of its epistemic situation (KB |x= φ→ φ ∈ π(KB));

(ii) R has a nontrivial set of beliefsac (∃φ(π(KB) |6 x= φ)).

The notion of an idealac reasoner for |c= allows for the existence of finite reasoners

which are maximally rational, minimally rational, and irrational in the research program.

Consider a reasoner Rc = 〈KB, π〉 and an axiomatic system for |c= (e.g. Antonelli, 2015)23.

Make KB = ∅. For each axiom schema in the axiomatization, consider an operation

schema with no premises and with the axiom schema as conclusion. For example, if the

axiomatization contains the schema x = x, consider the operation schema >
add x=x to KB

.

For each rule in the axiomatization, consider an operation schema with the same premises

and conclusion. For example, if the axiomatization contains the rule φ,φ→ψ
ψ

, consider the

operation schema φ∈KB,φ→ψ∈KB
add ψ to KB

. Consider some ordering for the terms and the sentences

in L. In this context, the execution of function π for KB and some positive integer i may

be (roughly) defined as follows: for j = 0 to j = i, (i) execute all operation scheme

without premises instantiated to all possible combinations of the terms and sentences

with positions ≤ j then (ii) execute all operation scheme with premises instantiated for

all possible combinations of sentences in KB before step (ii) and terms with positions ≤ j24.

The reasoner Rc is finite. Since KB = ∅, all sentences in KB and KB itself are finite.

The definition of function π is also finite (c.f. last paragraph). The execution of π for

KB and an arbitrary integer i is finite. For i = 1, the number of operations executed

by π is a product of the number of operation schema without premises, the number of

operation schema with premises, the number of sentences in KB before step (ii) and i.

Since the number of operation schema is finite (the number of axiom schema and rules

in the axiomatization is finite), this number is finite. For i = n + 1, the number of

executed operations is the number of operations for i = n plus the number of operations

for i = n+ 1. This number is finite for the same reasons as before. Therefore, Rc is finite.

23The restriction to axiomatic systems is due to the fact that dealing with hypothetical derivations
would require some adaptations in the model, but this restriction is not crucial for the argument.

24The existence of such a function is a consequence of theoremhood in classical logic being recursively
enumerable (see Church, 1936b).
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The reasoner Rc is maximally rational because it is strictly idealac for |c=. This is

the case because function π generates all and only the theorems of classical logic for the

inputs KB = ∅ and a positive integer. The loop generates all theorems of classical logic

because it executes all rules of classical logic for all combinations of sentences in L and

the axiomatization is complete (Gödel, 1930)25. The loop generates only the theorems of

classical logic because the axiomatization is sound (Gödel, 1930). Rc is maximally rational

because (i) Rc believesac all and only the logical consequences of its epistemic situation

(the tautologies) and (ii) has a nontrivial set of beliefsac (e.g. ⊥ is not a tautology)26. Then

Rc is a maximally rational finite reasoner. From Rc it is easy to construct a minimally

rational (not considering an operation schema) and an irrational finite reasoner (adding

⊥ to KB). Then using the notion of an idealac reasoner for |c= fulfills goal (g1).

1.3 Nonmonotonic reasoners

The main difference between classical logic and a nonmonotonic (first-order) logic is that

classical logic is monotonic. In other words, the consequence relation |c= has the property:

(p0) Monotony: if KB |c= φ, then KB ∪ INPUT |c= φ,

where INPUT is an arbitrary set of sentences. Monotony states that if φ follows from KB,

then φ also follows from the larger set KB ∪ INPUT. Classical logic is monotonic because

if φ is true in every model in which all sentences in KB are true, then φ is true in every

model in which all sentences in the larger set KB ∪ INPUT are true.

Some features of |c= restrict the epistemic situations for which a strictly ideal reasoner

for |c= is an adequate model for maximum rationality. First, the principle of explosion

(KB |x=⊥→ ∀φ(KB |x= φ)) being true of |c= precludes the existence of strictly ideal reasoners

for |c= with inconsistent epistemic situations (i.e. KB |c=⊥). Consider, for example, a

classical strictly idealex reasoner R with KB |c=⊥. From the principle of explosion, it

follows that ∀φ(KB |c= φ). Then R is not an idealex reasoner for |c= (def. 1.2.2, req. (ii))

25Then, for every tautology φ, there exists an i such that φ ∈ π(KB, i).
26Alternatively, Rc (i) may believeac all the sentences that it believesac (Rc itself is an idealac reasoner)

and (ii) Rc believesac all and only the sentences that it ought to believe (the tautologies).
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and, consequently, R is not a strictly idealex reasoner for |c=. But it may be thought that

a maximally rational reasoner must be able to deal with inconsistencies.

Second, there may exist strictly ideal reasoners for |c= in epistemic situations with

incomplete information, but monotony makes their patterns of inference, in some sense,

unsatisfactory27. In those situations, it may be useful to make reasonable guesses and

(possibly) retract these guesses given new information. For example, believing ‘Most P

are Q’ and Pa, a reasoner may conclude that Qa and possibly retract that conclusion

given new information (e.g. ¬Qa). But monotony prevents strictly ideal reasoners for |c=

from having these patterns of inference28. In these cases, using strictly ideal reasoners for

|c= as a model of maximum rationality disregards a whole class of successful patterns of

inference. This fact is accepted in the literature:

Many people consider this feature of FOL (monotony) as inadequate to capture
a whole class of inferences typical of everyday (as opposed to mathematical
or formal) reasoning and therefore question the descriptive adequacy of FOL
when it comes to representing common sense inferences. In everyday life, we
quite often reach conclusions tentatively, only to retract them in the light of
further information (Antonelli, 2005, p. 6).

This second problem may be avoided using strictly ideal reasoners for a nonmonotonic

logic as a model of maximum rationality29. A nonmonotonic logic |n= is a logic which

does not exhibit (p0) monotony. For a nonmonotonic logic, there are situations in which

KB |n= φ and KB∪ INPUT |6 n= φ. Then a strictly ideal reasoner for a nonmonotonic logic may

withdraw beliefs given new information.

In order to make the notion of a strictly ideal reasoner for |n= precise, we need to know

the properties of |n=. Many nonmonotonic formalisms have been proposed in the literature:

circumscription (McCarthy, 1980), autoepistemic logic (Moore, 1985), default logic (Re-

iter, 1980), etc. These formalisms are implemented using different tools: circumscription

27Roughly, an epistemic situation has incomplete information when not all relevant conclusions may
be deduced from the available information.

28Suppose thatR is a strictly idealac reasoner for |c=. Monotony states that if KB |c= φ, then KB∪INPUT |c=
φ. Then R is such that if φ ∈ π(KB), then φ ∈ (KB∪ INPUT) (def. 1.1.9, strictly idealac), what means that
R cannot withdraw beliefsac given new information.

29The first problem may be avoided using a paraconsistent logic.
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uses a second-order framework, autoepistemic logic uses a modal framework, default logic

uses a classical framework augmented with default rules, etc. This fact make it difficult to

access the general features of a strictly ideal reasoner for |n= using any of these formalisms.

In the literature, there exist four properties which are often regarded as essential for a

well-behaved nonmonotonic logic |n= (Antonelli, 2005; Stanalker, 1994; Makinson, 1994):

Definition 1.3.1. (Features of a well-behaved nonmonotonic logic |n=):

(p1) Supraclassicality: if KB |c= φ, then KB |n= φ;

(p2) Reflexivity: if φ ∈ KB, then KB |n= φ;

(p3) Cut: if KB |n= KB′ and KB ∪ KB′ |n= φ, then KB |n= φ;

(p4) Cautious monotony (CM): if KB |n= KB′ and KB |n= φ, then KB ∪ KB′ |n= φ,

where KB |n= KB′ means that if φ ∈ KB′, then KB |n= φ.

Supraclassicality states that |n= extends |c=: if φ follows from KB in |c=, then φ follows

from KB in |n=. Reflexivity states that if KB contains φ, then φ follows from KB in |n=. Cut is

a form of transitivity: it states that adding logical consequences of KB back to KB does not

lead to a increase in inferential power. CM is the converse of cut: it states that adding

consequences of KB back to KB does not lead to a decrease in inferential power.

Properties (p1)−(p4) are identified as essential for |n= because these properties enable

the existence of well-behaved semantic interpretations. For example, Kraus et al. (1990)

propose a nonmonotonic logic C with properties (p1)−(p4) which is proved sound and

complete over preferential models, ordered using a preference relation ≺. In the research

program, properties (p1)−(p4) are also essential because they enable the existence of a

well-behaved strictly idealac reasoner for |n=, a reasoner R such that (p1) R is an idealac

reasoner for |c=, (p2) R accesses all of its beliefsex (if R believesex φ, then R believesac φ),

and (p3, p4) R has ‘stable’ beliefsac (see table 1.1)30.

Given that |n= is (p1) supraclassical, an idealac reasoner for |n=, and, consequently, a

strictly idealac reasoner for |n= are classical idealac reasoners. Consider a nonmonotonic

30I use ‘stable’ between quotes because I use this term later with a different meaning. Here, having
‘stable’ beliefsac is having a set of beliefsac which do not change over any amount of a priori reasoning.
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Logic |x= Strictly idealac for |x=
Supraclassicality Classical idealityac
Reflexivity KB ⊆ π(KB)
Cut π(π(KB)) ⊆ π(KB)
CM π(KB) ⊆ π(π(KB))

Table 1.1: Relation between properties of a logic and properties of a strictly idealac
reasoner for that logic. For a modal interpretations of these properties, see appendix A.

idealac reasoner R = 〈KB, π〉. Then (i) R believesac all classical consequences of its

epistemic situation: KB |c= φ → KB |n= φ (supraclassicality) and KB |n= φ → φ ∈ π(KB)

(def. 1.2.6, req. (i)), then KB |c= φ → φ ∈ π(KB). Also (ii) R has nontrivial beliefsac:

∃φ(π(KB) |6 n= φ) → ∃φ(π(KB) |6 c= φ) (supraclassicality) and ∃φ(π(KB) |6 n= φ) (def. 1.2.6, req.

(ii)), then ∃φ(π(KB) |6 c= φ). Given that |n= is (p2) reflexive, an idealac reasoner for |n=, and,

consequently, a strictly idealac reasoner for |n= access all of their beliefsex (KB ⊆ π(KB)):

φ ∈ KB → KB |n= φ (reflexivity) and KB |n= φ → φ ∈ π(KB) (def. 1.2.6, req. (i)), then

φ ∈ KB→ φ ∈ π(KB) and KB ⊆ π(KB).

Given that |n= exhibits (p3) cut and (p2) reflexivity, the beliefsac of a strictly idealac

reasoner for |n= do not increase over any amount of a priori reasoning (π(π(KB)) ⊆ π(KB)).

Suppose that φ ∈ π(π(KB)). Then π(KB) |n= φ (def. 1.1.9, strictly idealac). Then KB ∪

π(KB) |n= φ (reflexivity)31. For all ψ ∈ π(KB), KB |n= ψ (strictly ideal). Then KB |n= π(KB).

KB |n= π(KB) and KB ∪ π(KB) |n= φ, what entails KB |n= φ (cut). KB |n= φ, then φ ∈ π(KB)

(strictly idealac). Therefore π(π(KB)) ⊆ π(KB). Given that |n= exhibits (p4) CM and (p2)

reflexivity, the beliefsac of a maximally rational reasoner for |n= does not decrease over

any amount of a priori reasoning (π(KB) ⊆ π(π(KB))). Suppose that φ ∈ π(KB). Then

KB |n= φ (strictly idealac). For all ψ ∈ π(KB), KB |n= ψ (strictly ideal). Then KB |n= π(KB).

KB |n= π(KB) and KB |n= φ, what entails KB ∪ π(KB) |n= φ (CM). KB ∪ π(KB) |n= φ, then

π(KB) |n= φ (reflexivity) and φ ∈ π(π(KB)) (strictly idealac). Then π(KB) ⊆ π(π(KB)).

A nonmonotonic logic |n= with (p1)−(p4) yields a well-behaved strictly idealac reasoner,

but, for several situations of interest, that strictly idealac reasoner for |n= cannot be finite.

31Suppose that φ ∈ π(KB). Then φ ∈ KB or φ ∈ π(KB). Then φ ∈ KB∪π(KB). Suppose that φ ∈ KB∪π(KB).

Then φ ∈ KB or φ ∈ π(KB). Suppose that φ ∈ KB. Then KB |n= φ (reflexivity). Then φ ∈ π(KB) (strictly
idealac). Therefore π(KB) = KB ∪ π(KB).
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(1) Suppose that R = 〈π, KB〉 is strictly idealac for |n=.

(2) (∀KB, φ, ψ) If KB |n= ψ and KB, φ |6 n= ψ, then KB |6 n= φ (CM).

Suppose that KB |n= ψ and KB, φ |6 n= ψ. Suppose that KB |n= φ. Then KB |n= ψ and

KB |n= φ. But if KB |n= ψ and KB |n= φ, then KB, φ |n= ψ (CM). Then KB, φ |n= ψ, what

contradicts the first supposition. Then KB |6 n= φ.

(3) (∃KB, φ, ψ) KB |n= ψ and KB, φ |6 n= ψ (nonmonotony).

(4) (∃∞KB, φ, ψ) KB |n= ψ and KB, φ |6 n= ψ.

(∃KB, φ, ψ) KB |n= ψ and KB, φ |6 n= ψ (3). But if (KB |n= ψ and KB, φ |6 n= ψ), then

(KB,> |n= ψ ∧> and KB, φ,> |6 n= ψ ∧>), where > is an arbitrary classical tautology32.

There exist infinitely many classical tautologies.

(5) (∀KB, φ, ψ) If ψ ∈ π(KB) and ψ 6∈ π(KB ∪ {φ}), then KB |6 n= φ (1 and 2).

(6) (∃∞KB, φ, ψ) ψ ∈ π(KB) and ψ 6∈ π(KB ∪ {φ}) (1 and 4).

(∴) For infinitely many epistemic situations (KBs), R cannot be finite (6, see below).

If π is finite, then (for infinitely many KB, φ, and ψ) π is be able to compute in finitely

many steps ψ ∈ π(KB) and ψ 6∈ π(KB ∪ {φ}) (6). This entails that (for the KB and φ)

π is be able to compute in finitely many steps KB |6 n= φ (5). However, there does not

exist restrictions on which are the KB and φ in question. At the limit, the KB and φ

could be all of those such that KB |6 n= φ. In this case, π is able to compute in finitely

many steps KB |6 n= φ (in general). But KB |6 n= φ entails KB |6 c= φ (supraclassicality). Then

function π is able to compute in finitely many steps KB |6 c= φ. But this is not possible

because classical logic is not decidable (see Church, 1936a). An option would be to list

the problem cases (the KB and φ) in the definition of π, but these cases are infinitely

many. Therefore, for infinitely many epistemic situations (KB), R cannot be finite.

32Suppose that KB |n= ψ. KB |n= > (tautology, supraclassicality). But if KB |n= ψ and KB |n= >, then

KB,> |n= ψ (CM). Then KB,> |n= ψ. But KB,> |n= > (reflexivity). Then KB,> |n= ψ ∧ > (supraclassicality).

Suppose that KB, φ |6n= ψ. Suppose that KB, φ,> |n= ψ ∧ >. Then KB, φ,> |n= ψ (supraclassicality). Also,

KB, φ |n= > (tautology, supraclassicality). But if KB, φ |n= > and KB, φ,> |n= ψ, then KB, φ |n= ψ (cut). Then

KB, φ |n= ψ, what is a contradiction.
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This argument does not show that the class of finite reasoners which are strictly

idealac for |n= is a priori empty. In fact, at least for the epistemic situations in which

all consequences are classical, there exist finite reasoners that are strictly idealac for |n=

because, in those situations, the finite reasoners which are strictly idealac for |c= are also

strictly idealac for |n= (the same hold for the other two classes). Then the notion of an

idealac reasoner for |n= fulfills goal (g1). But this notion has problems regarding goal (g2).

The aim of investigating strictly idealac reasoners for |n= was to investigate maximum

rationality in situations of incomplete information. This investigation would include the

construction of the optimal sets of nonmonotonic rules (sets of nonmonotonic rules which

generate successful patterns of inference in situations of incomplete information). There

is no indication that there exist the optimal set of nonmonotonic rules because which

patterns of inference are successful in a situation with incomplete information depends

on contingent facts about the environment. Then an investigation about optimal sets

of nonmonotonic rules can hardly be carried out a priori using only analytic methods33.

In this case, the investigation about optimal sets of nonmonotonic rules would need to be

carried out numerically by observing the behavior of reasoners in a large set of situations.

The amount of calculation involved in this kind of investigation might be too large and the

investigator would benefit from the use of computer simulations. But the above argument

may be interpreted as stating that there does not exist, for every situation, a computable

function π which is strictly idealac for |n=34. This is a shortcoming regarding goal (g2)35.

There exist two strategies for dealing with this problem: (s1) restrict the investigation

to situations in which there exist a computable function π which is strictly idealac for |n=36;

(s2) use a notion of beliefs which, for all situations, enables the existence of a computable

function π which is strictly ideal for |n=. In the following, I investigate strategy (s2).

33An evidence for this claim is that logicicians usually study the general (formal) properties of non-
monotonic formalisms, leaving aside the investigation about the optimal set of nonmonotonic rules.

34A function is said to be computable if some Turing machine will take in arguments of the function and,
carrying out some finite number of basic operation, produce the corresponding value − and, moreover,
will do thus no matter which argument of the function is presented.

35Appendix A contains a different line of reasoning for the conclusion that beliefsac is not an adequate
notion of beliefs for dealing with strictly ideal reasoners for a nonmonotonic logic with (p1)−(p4).

36In fact, there exist quite expressible fragments of classical logic that are decidable and function π
may be generally computable for a nonmonotonic extension of these fragments (see Böerger et al., 1997).
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1.4 Stable beliefs

In section 1.1, I have modeled a reasoner as a pair 〈KB, π〉, where KB is a set of sentences

in a formal language L which models the beliefsex of the reasoner and π : 2L × Z+ → 2L

is a function for updating KB which models the pattern of inference of the reasoner.

A fact about the pattern of inference of a reasoner is that the reasoner may perform

different inferences from the same premises. In the model, this fact is expressed using

the numeric parameter of function π. In this context, π(KB, 1) models one inference

from KB, π(KB, 2) models another inference from KB, etc. Then function π determines a

reasoning sequence KB0, KB1, . . . , KBi, . . ., where KB0 is the initial KB of the reasoner and

KBi+1 = π(KBi, i+1). Supposing that the numeric parameter models an order of preference,

the reasoning sequence of a reasoner models how the reasoner would reason from the

available information if it had enough cognitive resources (e.g. time for reasoning).

Informally, a reasoner has the stable belief that φ iff if the reasoner were to reason

undefinitely from the available information, there would be a point of the reasoning such

that the reasoner would believeex φ at every point after that. Consider the notion of

stable beliefs in the model:

Definition 1.4.1 (Stable beliefs (beliefω)). A reasoner R = 〈KB, π〉 believesω φ iff

φ ∈ KBω.

KBω, the set of beliefsω of a reasoner with reasoning sequence KB0, KB1, ..., KBi, ..., is

composed of the sentences φ for which there is an i such that, for all j ≥ i, φ ∈ KBj.

Formally, KBω =
⋃
i

⋂
j≥i KBj

37.

This is the definition of an ideal reasoner for |x= in terms of beliefsω:

Definition 1.4.2 (Idealω reasoner for |x=). A reasoner R=〈KB, π〉 is idealω for |x= iff

(i) R believesω all logical consequences of its epistemic situation (KB |x= φ→ φ ∈ KBω);

(ii) R has a nontrivial set of beliefsω (∃φ(KBω |6
x
= φ)).

37The notion of beliefsω is related to the notions of defeasible enumeration (Pollock, 1995, p. 143),
identification in the limit (Kelly, 1990), limiting recursion (Gold, 1965), and trial and error predicate
(Putnam, 1965), and defeasible consequence (Antonelli, 2005, p. 87).
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In the research program, using idealω reasoners allows for the existence of finite rea-

soners which are maximally and minimally rational, and irrational for both |c= and |n=.

Consider the reasoner Rc in section 1.2. I addition to being strictly idealac for |c=, Rc is

also strictly idealω for |c=. This is the case because the function π of Rc was constructed in

such a way that, for every i, π(KB, i) ⊆ π(KB, i+ 1)38. In this case, φ ∈ KBω iff φ ∈ π(KB).

Then Rc is strictly idealω for |c= for the same reasons that it is strictly idealac for |c=.

From Rc, it is possible to construct a reasoner Rn which is strictly idealω for |n=.

Consider an axiomatization of |n= (e.g. Kraus et al., 1990). For every nonmonotonic

rule γ:φ
ψ

in the axiomatization consider a nonmonotonic operation γ∈KB,φ 6∈KB
add ψ to KB

39. Then build

function π in such a way that, every time it adds ψ to KB using a nonmonotonic operation,

it checks whether φ is in KB at every subsequent loop. If it the check results positive, it

deletes ψ and its consequences from KB40. In this case, there exist two possibilities: either

(i) φ is added to KB at some point and ψ and its consequences are deleted from KB or (ii)

φ is never added to KB. In any case, ψ ∈ KBω iff KB |n= ψ and Rn strictly idealω for |n=41.

Both Rc and Rn are finite. The limiting knowledge base KBω of a strictly idealω

reasoner is usually infinite, but KBω is not part of the reasoning sequence of the reasoner.

In fact, a reasoner may have finitely many beliefsex at every point of the reasoning sequence

and, nevertheless, have an infinite KBω. For example, if KB0 = ∅ and each π(KBi, i + 1)

adds a sentence to KBi, then every KBi in the reasoning sequence is finite but KBω is infinite.

Then a strictly idealω reasoner may have finite KBi at every point of the reasoning sequence.

This is the case for both Rc and Rn because KB0 = ∅, each execution of function π for a

given i has finitely many loops, and each loop adds at most finitely many sentences to KB.

The definition of function π is finite. Finally, the execution of function π is finite because,

for each i, there exists a finite sequence of operations which computes π(KBi, i) = KBi+1.

This is possible because function π does not need to check if φ ∈ π(KB) before adding ψ

to KB, but only to check if φ ∈ KB after adding ψ to KB (and the KBi are always finite).

38For every i, function π of Rc executes the operations of every j < i in executing the operations of i
and none of those operations delete sentences from KB.

39I have in mind a default rule: if γ is believed and φ cannot be inferred, then ψ may be inferred.
40The consequences of ψ are all sentences added to KB using an operation with ψ as premise.
41Properties in table 1.1 also hold for the KBω of a strictly idealω reasoner for |n=.
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From Rc and Rn, we can construct minimally rationalω (not considering an operation)

and irrationalω finite reasoners (adding ⊥ to KB). Then the use of idealω reasoners fulfills

goal (g1) and has advantages regarding (g2) in relation to the notion of idealac reasoners

because the argument in section 1.3 does not hold for strictly idealω reasoners42.

In this context, is it the case that the use of idealω reasoners in the research program

must always (i.e. for all |x=) be preferred over the use of idealac reasoners? Not necessarily.

The issue is that the beliefsac and the beliefsω of a given reasoner do not always coincide.

This difference results from the fact that beliefsω considers the execution of function π in

a given order whereas beliefsac is independent of any order. Then it is easy to construct

cases in which a reasoner believesac φ, but do not believeω φ. For example, suppose that

R = 〈KB, π〉 is such that φ ∈ KB and π is such that π(KB, 1) deletes φ and adds ψ and

π(KB, i) does nothing for every i > 1. In this case, R believesac φ because φ ∈ π(KB, 2)

but R does not believeω φ because φ 6∈ KBi in the reasoning sequence for every i > 043.

As a consequence, using idealac reasoners or idealω reasoners in the research program

may yield different prescriptions regarding rationality and the material adequacy of these

prescriptions must be considered. In this context, I am particularly interested in the

fact that there exist more irrationalac than irrationalω reasoners for a supraclassical |x=.

For example, suppose in the situation in last paragraph that ψ = ¬φ, thenR is irrationalac

for a supraclassical |x= because φ ∈ π(KB) and ¬φ ∈ π(KB), but R is not irrationalω for |n=

because ¬φ ∈ KBω, but φ 6∈ KBω. In cases like this, the result in term of beliefsω seems

to be more reasonable. Suppose that φ is a contradiction. In this case, the reasoning

sequence of R is to delete a contradiction, add its negation (a tautology), and them leave

the tautology alone. This reasoning sequence does not seem to be irrational because R

does not have a inconsistent KB at any step i > 0 of the reasoning sequence. In this

context, it seems to be the case that the notion of an idealω reasoner must indeed be

preferred in the research program (at least for supraclassical |x=).

42Substituting π(KB) for KBω, the argument goes through until step (6), but the conclusion does not
follows. The point is that this function π does not need to compute a KBω with the properties in (6):
function π only needs to generate a reasoning sequence such that KBω with those properties.

43This issue is discussed in Pollock (1995, p. 132−134).
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1.5 Conclusions

In this chapter, I have investigated which notion of an ideal reasoner may be used in

a research program about stating the maximum and minimum bounds of rationality for

finite reasoners as to fulfill goals (g1) and (g2). In section 1.1, I have proposed a model of a

reasoner which is used in most definitions in the chapter. I have investigated some notions

of an ideal reasoner which are common in the literature, argued that these notions are

not adequate for modeling maximum rationality for finite reasoners, and then proposed

the related notion of a strictly ideal reasoner. In section 1.2, I have argued that the

notion of a strictly ideal reasoner is relative to a logic and to a notion of beliefs. Then I

have investigated a strictly ideal reasoner for classical logic defined in terms of explicit,

implicit, and accessible beliefs. I have rejected the definitions in terms of explicit and

implicit beliefs on the basis of goal (g1). In section 1.3, I have investigate a strictly

ideal reasoner for a nonmonotonic logic with some essential properties defined in terms

of accessible beliefs and rejected this definition on the basis of goal (g2). In section 1.4,

I have introduced the notion of stable beliefs and used this notion in the definition of

strictly ideal reasoners for both classical and nonmonotonic logic and argued that these

definitions fulfill goals (g1) and (g2) and should be used in the research program.

In the research program, the choice of |x= provides the normative content for the notions

of maximum and minimum rationality and irrationality. For example, the discussion about

whether it is always irrational to believe a contradiction is equivalent to the question about

whether the relevant |x= is paraconsistent. In this chapter, I was mainly interested in the

formal features of a notion of an ideal reasoner which enable the use of the most common

|x=. But it is a major goal of the research program to select/construct the logic |x= which

yields the most sensible description maximum and minimum rationality and irrationality

for finite reasoners. There exist several issues to be dealt with in the fulfillment of this

goal. For example, considering how much a strictly ideal reasoner for |x= maximizes the

truth in its set of beliefs introduce whole new set of considerations for the choice of the |x=.

Also, if |x= has an operator for beliefs, the theory needs to deal with epistemic paradoxes

and blindspot sentences. I will deal with some of these issues in the next chapters.

34



Chapter 2

Ideal reasoners don’t believe in

zombies
Alice laughed. “There’s no use trying”, she said.
“One can’t believe impossible things”. “I daresay
you haven’t had much practice”, said the Queen.
“When I was your age, I always did it for half-an-
hour a day. Sometimes I’ve believed as many as six
impossible things before breakfast”.

Lewis Carroll, Through the Looking-Glass .

Modal epistemology is the sub-area of epistemology which investigates how reasoners

come to have nontrivial modal knowledge1. In the literature, the conceivability principle

(‘if φ is conceivable, then φ is possible’) is often regarded as basing nontrivial modal

knowledge that φ is possible (see Gendler and Hawthorne, 2002). In philosophy of mind,

the conceivability principle is often employed in supporting the conclusion that zombies are

possible and, therefore, that physicalism is false. The zombie argument runs as follows2:

(p1) p ∧ ¬q is conceivable.
(p2) If φ is conceivable, then φ is possible.
(p3) If p ∧ ¬q is possible, then physicalism is false.
∴ Physicalism is false.

In the zombie argument, p is the conjunction of the fundamental physical truths and

laws and q is an arbitrary phenomenal truth3. If q expresses the truth that someone is

1Usually, ‘nontrivial modal knowledge’ refers either to knowledge that �φ or to knowledge that ♦φ
which is not based on knowledge that φ (see Evnine, 2008, p. 665). For simplicity, I will focus on the
case of knowledge that ♦φ which is not based on knowledge that φ because φ is not even believed.

2A zombie is a system which is physically identical to a conscious being but which lacks consciousness.
3 In general, L-truths are truths in L. For example, physical truths are the true sentences in a physical

language (a language in which the physics true of our world can be expressed) (Haugeland, 1982, p. 96).
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conscious, then ♦(p∧¬q) asserts the possibility of a zombie world, i.e. a world physically

identical to the actual world, but in which no one is conscious (Chalmers, 2002, 2010).

There exists an extensive literature about the zombie argument (see Kirk, 2012).

Premise (p3) is relatively undisputed: it is often accepted that physicalism entails that

the mental supervenes on the physical4. Premises (p1) and (p2) are disputed. Chalmers

defends premises (p1) and (p2) by distinguishing different senses of ‘conceivable’ and ‘pos-

sible’ and by pointing senses in which p∧¬q would be conceivable and conceivability would

entail possibility. Among other things, Chalmers defends the negative zombie argument :

(p1)∗ p ∧ ¬q is ideally negatively conceivable.
(p2)∗ If φ is ideally negatively conceivable, then φ is possible.
(p3) If p ∧ ¬q is possible, then physicalism is false.
∴ Physicalism is false.

The notion of ideal negative conceivability is sometimes explained as follows:

Definition 2.0.1 (Ideal negative conceivability 1). A sentence φ is ideally negatively

conceivable iff the hypothesis expressed by φ cannot be ruled out a priori on ideal rational

reflection (Chalmers, 2002, p. 143).

In this context, Chalmers defends the negative zombie argument :

(p1)∗ p ∧ ¬q is ideally negatively conceivable.
(p2)∗ If φ is ideally negatively conceivable, then φ is possible.
(p3) If p ∧ ¬q is possible, then physicalism is false.
∴ Physicalism is false.

In this chapter, I argue that premises (p1)∗ and (p2)∗ of the negative zombie argument

are not both true for every choice of q. For example, (p1)∗ and (p2)∗ are not both true

for q =‘someone is conscious’. In section 2.1, I argue that (p1)∗ and (p2)∗ are both

true iff there exists a strictly ideal reasoner for a logic with the relevant properties and

that reasoner negatively conceiving φ is a (conclusive) reason for ♦φ. In section 2.2, I

investigate whether these conditions hold and conclude that, even if they do, the conclusive

4A set of sentences L (weakly) supervenes on a set of sentences L’ iff two possible worlds cannot be
discernible with L without being discernible with L’, where two worlds are discernible with L when there
exists a sentence in L which is true at one world and is not true at the other (Haugeland, 1982, p. 96).
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reasoner would not be finite5. I argue that this fact undermines the use of the ideal

negative conceivability principle in the negative zombie argument. In section 2.3, I argue

that there exists a finite strictly ideal reasoner for the relevant logic, but that this reasoner

negatively conceiving φ after any amount of reasoning would only be a defeasible reason

for ♦φ. In section 2.4, I argue that the defeasible reasoner does not negatively conceive

p ∧ ¬q for every choice of q. For example, this reasoner does not negatively conceive

p ∧ ¬q for q =‘someone is conscious’. In the conclusions, I discuss the consequences of

these results for the negative zombie argument and for the zombie arguments in general.

The bottom line is that the negative zombie argument (and maybe the zombie arguments

in general) is neither an a priori nor a conclusive argument against physicalism.

2.1 Ideal negative conceivability

The major difficulty in evaluating the negative zombie argument is that the notion of ideal

negative conceivability used in (p1)∗ and (p2)∗ is not entirely clear. More specifically, the

meaning of the phrase ‘a priori ideal rational reflection’ in that notion is not entirely clear.

This problem could be avoided by using the notion of a strictly ideal reasoner proposed

in chapter 1 (def. 1.1.2) as a model of ideal rational reflection. This reading is implicit in

Chalmers (2010), but it is explicit in Menzies (1998):

Under what circumstances do our corrective practices discount acts of con-
ceiving as not being veridical indicators of possibility? The answer is simple:
When they suffer from one kind of cognitive limitation or other. Let us call a
subject who does not suffer any of those limitations an ideal conceiver. These
reflections suggest a biconditional of the following kind for the concept of
possibility: it is possible that φ iff an ideal conceiver could conceive that φ
(Menzies, 1998, p. 268-269).

The notion of an ideal conceiver used in Menzies (1998) and Chalmers (2010, p. 143)

is a cognitive notion of an ideal reasoner without cognitive limitations (infinite reasoner).

However, a cognitive notion of an ideal reasoner cannot be used as a model of ideal

rational reflection unless the notion specifies how that reasoner reasons. In the literature,

5Roughly, a finite reasoner is a reasoner with cognitive limitations such as finite memory and being
able to execute only a finite number of inferential steps in a finite time interval (see chapter 1, def. 1.1.2).
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there exists an epistemic notion of an ideal reasoner as a reasoner which (i) believes all

the logical consequences of its epistemic situation and (ii) has a nontrivial set of beliefs,

where the epistemic situation of a reasoner is the information available for reasoning6.

The epistemic notion of an ideal reasoner is also not adequate for modeling ideal rational

reflection because an ideal reasoner with features (i) and (ii) may have random beliefs7.

In chapter 1, I have proposed the notion of a strictly ideal reasoner as a model of

maximum rationality. This notion does not present the problem of random beliefs and

may be used as a model of ideal rational reflection8. This is the notion of a strictly ideal

reasoner presented in chapter 1:

Definition 2.1.1 (Strictly ideal reasoner). A reasoner R is strictly ideal iff:

(i) R believes all and only the logical consequences of its epistemic situation;

(ii) R has a nontrivial set of beliefs.

The notion of a (strictly) ideal reasoner is relative to a logic because the notions of

logical consequence and triviality are relative to a logic9. Then I will always talk about a

strictly ideal reasoner for |x=, where |x= is a consequence relation.

In this context, I argue that (p1)∗ and (p2)∗ are both true only if the following is true:

(Z) There exists an a priori strictly ideal reasoner for a logic |x= with the relevant prop-

erties which believes ♦(p ∧ ¬q) on the basis of not believing p→ q,

, where an a priori reasoner is a reasoner which has the empty set as its epistemic situation.

The sentence p ∧ ¬q is ideally negatively conceivable iff p ∧ ¬q cannot be ruled out a

priori on ideal rational reflection (def. 2.0.1). I am supposing that the notion of a strictly

6The notion of an ideal reasoner is defined along these lines in Binkley (1968), Halpern and Moses
(1985), Grim (1988), Duc (1995), Giunchiglia and Giunchiglia (2001), and Stalnaker (2006).

7As long as those beliefs do not contradict requirement (ii).
8The notion of ideal rational reflection is related to the notion of maximum rationality as following:

both notions are related to reasoning which fulfills the epistemic norms (rational) and which is ideal
in the sense of withdrawing all the logical consequences from the available information. In section 1.1,
I argue that the notions of a strictly ideal and a maximally rational reasoner coincide in our framework.

9The notion of a strictly ideal reasoner is also relative to a notion of beliefs (explicit, implicit, etc),
but this distinction is not relevant for now. I discuss this issue in section 2.3.
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ideal reasoner for a relevant logic |x= is an adequate model of ideal rational reflection.

Then p∧¬q is ideally negatively conceivable iff p∧¬q cannot be ruled out by an a priori

strictly ideal reasoner for |x=. A sentence φ is ruled out a priori iff ¬φ is a priori. Then

(p1)∗ p ∧ ¬q is ideally negatively conceivable iff an a priori strictly ideal reasoner for |x=

does not believe p → q, which is equivalent to ¬(p ∧ ¬q). Finally, (p2)∗ ideal negative

conceivability entails possibility for the case of p ∧ ¬q only if a strictly ideal reasoner for

|x= believes ♦(p ∧ ¬q) on the basis of not believing p→ q10.

The claim that (p1)∗ and (p2)∗ are both true only if (Z) is true depends on the

properties of |x=. As I see it, Chalmers is correct when he claims that the adequate |x=

for evaluating the negative zombie argument is the logic of a priori (modal) knowledge11.

According to Chalmers, ideal negative conceivability is a general principle for generating

nontrivial modal knowledge in that logic. In this context, an adequate |x= for evaluating

(Z) must have the following properties:

(i) ♦(p ∧ ¬q) is expressible in the language of |x=;

(ii) For some φ, |x= ♦φ and |6 x= φ;

(iii) For all φ, if |6 x= ¬φ, then |x= ♦φ;

(iv) |x= tracks the metaphysical modalities correctly;

(v) For all truths φ that supervene on the physical (i.e. superphysical), |x= p→ φ.

Requirement (i) assures that a strictly ideal reasoner for |x= has the required concepts

for its use in the negative zombie argument (the concepts of possibility and necessity,

the concepts used in p, the concepts used in q, etc). If a strictly ideal reasoner for |x= is

supposed to believe ♦(p∧¬q), then it must be able to believe ♦(p∧¬q). A strictly ideal

reasoner for |x= is able to believe ♦(p ∧ ¬q) iff ♦(p ∧ ¬q) expressible in the language of |x=

(def. 2.1.1, req. i). Then ♦(p ∧ ¬q) must be expressible in the language of |x=.

10In the following, ‘strictly ideal reasoner’ means a priori strictly ideal reasoner.
11Chalmers argues that the zombie argument denies an epistemic entailment from the physical to the

phenomenal truths, where ‘epistemic entailment’ is explained as following: “On this notion [of epistemic
entailment], φ implies ψ when the conditional ‘If φ then ψ’ is a priori − when a subject can know that if
φ is the case, then ψ is the case with justification independent of experience” (Chalmers, 2010, p. 109).
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Requirement (ii) assures that a strictly ideal reasoner for |x= is able to have nontrivial

modal knowledge. A reasoner has nontrivial modal knowledge that ♦φ only if it believes

♦φ and does not believe φ (note 1, knowledge implies belief). A strictly ideal reasoner

for |x= is able to, for some φ, believe ♦φ while not believing φ iff, for some φ, |x= ♦φ

and |6 x= φ (def. 2.1.1, req. i). Requirement (iii) assures that a strictly ideal reasoner for

|x= employs negative conceivability as a general principle in generating modal beliefs. A

reasoner employs negative conceivability for generating the belief that ♦φ iff it believes

♦φ on the basis of not believing ¬φ. A strictly ideal reasoner for |x= is able to employ

negative conceivability as a general principle for generating modal beliefs iff, for all φ, if

|6 x= ¬φ, then |x= ♦φ (def. 2.1.1, req. i). Together, requirements (ii) and (iii) assure that a

strictly ideal reasoner for |x= is able to employ negative conceivability as a general principle

for generating nontrivial modal beliefs (and, possibly, nontrivial modal knowledge).

Requirement (iv) assures that a strictly ideal reasoner for |x= knows how to reason

about the metaphysical modalities. A strictly ideal reasoner for |x= knows how to reason

about the metaphysical modalities iff |x= tracks the metaphysical modalities correctly (def.

2.1.1, req. i). In the literature, it is usually accepted that the metaphysical modalities

have the following two minimum features (see Salmon, 1989). First, all logical necessities

are metaphysical necessities. Then |x= must be such that, for all φ, if |x= φ, then |x= �φ

(necessitation). Second, what is actual is possible (or, equivalently, what is necessary is

actual). Then |x= must be such that, for all φ, |x= �φ→ φ (reflexivity).

Requirement (v) assures that a strictly ideal reasoner for |x= has the inferential capaci-

ties required for its use in the negative zombie argument. The negative zombie argument

is such that, if p∧¬q is ideally negatively conceivable, then consciousness is not superphys-

ical. In order to this argument to be sound, it must be the case that, for all superphysical

truths φ, p ∧ ¬φ cannot be ideally negatively conceivable (contraposition). Then, for all

superphysical truths φ, a strictly ideal reasoner must be able to rule out p ∧ ¬φ a priori.

Then, for all superphysical truths φ, a strictly ideal reasoner for |x= must believe p → φ.

A strictly ideal reasoner for |x= believes p → φ for all superphysical truths φ iff, for all

superphysical truths φ, |x= p → φ (def. 2.1.1, req. i). Then |x= must be such that, for all
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superphysical truths φ, |x= p→ φ.

2.2 Conclusive ideal conceiver

The first step in evaluating (Z) is to investigate the existence of a strictly ideal reasoner

for a |x= with requirements (i)−(v). In this case, the easiest path is to look for an existing

logic with requirements (i)−(v). If there exists a sound and complete axiomatization for

that logic, then the construction of the strictly ideal reasoner would be facilitated12.

Requirement (i) states that ♦(p ∧ ¬q) must be expressible in the language of |x=.

Then requirement (i) has the consequence that the language of |x= must contain modal

operators and quantifiers. The language of |x= must contain modal operators because the

♦(p ∧ ¬q) contains modal operators (♦). The language of |x= must contain quantifiers

because physical laws are quantified sentences and p has the fundamental physical laws as

conjuncts. For simplicity, I will suppose that if |x= is a modal extension of classical logic

(first-order logic), then |x= fulfills requirement (i)13. I will suppose further that |x= must be

a consistent modal extension of classical logic14.

Requirement (ii) states that |x= must be such that, for some φ, |x= ♦φ and |6 x= φ. Then

requirement (ii) has the consequence that |x= cannot have a Kripke-like semantics (see

Kripke, 1959). In those logics, call them |k= (from Saul Kripke), a frame is a pair 〈W,R〉,

where W is a non-empty set of possible worlds and R is a binary (accessibility) relation

on W . A model is a triple 〈W,R,〉, where 〈W,R〉 is a frame and  is a satisfaction

relation between elements of W and sentences in the language. The satisfaction relation

is such that w  �φ iff w′  φ for all w′ such that wRw′; w  ♦φ iff w′  φ for some w′

such that wRw′; and as usual for non-modal sentences. A sentence φ is valid in a model

〈W,R,〉 iff w  φ for all w ∈ W ; φ is valid in a frame 〈W,R〉 iff φ is valid in 〈W,R,〉

for all choices of ; φ is valid in |k= (|k= φ) iff φ is valid in 〈W,R〉 for all possible choices

of W and the relevant Rs (the relevant Rs are often restricted given some properties).

12The construction of a reasoner includes writing a function which outputs in some ordering all and
only the beliefs of the reasoner given the input of its epistemic situation (see section 1.1, def. 1.1.1).

13The conjunction of the fundamental physical truths and laws probably contains higher-order quantifi-
cation (see Baltag and Smets, 2005), but the following arguments also hold for higher-order quantification.

14The theorems of classical logic are often thought to be a priori (Field, 1998).
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In this context, for all φ, if |k= ♦φ, then |k= φ, what contradicts requirement (ii)15.

There exist modal extensions of classical logic which fulfill requirements (i) and (ii).

In fact, there exist modal extensions of classical logic which fulfill requirements (i)−(iv)16.

Consider |r= (from Rudolf Carnap) to be a modal extension of classical logic with a Carnap-

like semantics (see Carnap, 1946). The difference between |r= and |k= is that |r= has a fixed

frame 〈W,R〉 with a fixed model 〈W,R,〉, where the worlds in W represent all possible

assignments for the atomic sentences in the language and R contains all possible pairs of

worlds in W (fully connected). In this case, |r= φ iff w  φ for all w ∈ W and |r= fulfills

requirements (i)−(iv). First, |r= is a modal extension of classical logic17. Then |r= fulfills

requirement (i). Second, for all atomic φ, |r= ♦φ and |6 r= φ18. Then |r= fulfills requirement

(ii). Third, for all φ, if |6 r= ¬φ, then |r= ♦φ19. Then |r= fulfills requirement (iii). Finally,

|r= exhibits both necessitation and reflexivity20. Then |r= fulfills requirement (iv).

In the literature, there exists a sound and complete axiomatization for a propositional

version of |r= (see Schurz, 2000). I don’t know whether there exists a sound and complete

axiomatization for a first-order version of |r=. If this is the case, then it may be possible

to construct a strictly ideal reasoner for |r= which validates (Z). The point that I want to

15Suppose that |k= ♦φ. Then ♦φ is valid in all frames 〈W,R〉. Suppose that the relation R is irreflexive.
Then ♦φ is valid in all irreflexive frames. Specifically, ♦φ is valid in the irreflexive singleton frame
〈{w},∅〉. Then, for all choices of , w  ♦φ. This is a contradiction because w  ♦φ only if there
exists a w′  φ such that wRw′, but there does not exist a w′ such that wRw′. Then the relevant R
are reflexive. Then ♦φ is valid in all reflexive frames. Specifically, ♦φ is valid in the reflexive singleton
frame 〈{w}, {〈w,w〉}〉. Then, for an arbitrary choice of , w  ♦φ. Then, for an arbitrary choice of
, w  φ (w  ♦φ iff w′  φ for some w′ such that wRw′). Then w  φ for arbitrary w and ,
what means that φ is a tautology. Then |k= φ. Therefore, if |k= ♦φ, then |k= φ (see Cohnitz, 2012, p. 68).

16For now, let’s set aside requirement (v).
17Suppose that |r= φ. Then, for all w, w  φ. Since all ws are consistent (possible worlds), it is not the

case that, for all w, w  ¬φ (in fact, for all w, w 6 ¬φ). Then |6 r= ¬φ.
18Consider an arbitrary atomic sentence φ and a world w ∈ W . There exists a w′ such that w′  φ

because φ is atomic and W contains all assignments for atomic sentences. wRw′ because w is fully
connected. Then w  ♦φ. Since w is arbitrary, |r= ♦φ. Also, there exists a w such that w 6 φ because φ

is atomic and W contains all assignments for atomic sentences. Then |6 r= φ. Therefore, |r= ♦φ and |6 r= φ.
19Suppose that |6 r= ¬φ. Then there exists a w′ such that w′ 6 ¬φ, what means that w′  φ (def. possible

world). For all w ∈ W , wRw′ because R is fully connected. Then, for all w ∈ W , w  ♦φ and |r= ♦φ.

Therefore, if |6 r= ¬φ, then |r= ♦φ.
20Suppose that |r= φ. Then, for all w ∈ W , w  φ. Then, for all w ∈ W , all the w′ ∈ W such that

wRw′ are such that w′  φ. Then, for all w ∈ W , w  �φ and |r= �φ. Therefore, if |r= φ, then |r= �φ
(necessitation). Consider an arbitrary w. Suppose that w  φ. wRw (R is fully connected), then w  ♦φ.

Then, for all w, if w  φ, then w  ♦φ. Then |r= φ→ ♦φ (reflexivity).
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stress here is that a strictly ideal reasoner for |r= is not finite. More generally, a strictly

ideal reasoner for a logic |x= with properties (i)−(iv) is not finite (Cohnitz, 2012, p. 70).

A finite reasoner is a reasoner with cognitive limitations such as finite memory and being

able to execute only a finite number of inferential steps in a finite time interval. That a

finite reasoner is able to execute only a finite number of inferential steps in a finite time

interval may be modeled as requiring the set of beliefs of a finite reasoner to be recursively

enumerable (Boolos et al., 2007, p. 3)21. Consider the following argument:

(1) Suppose that R is a strictly ideal reasoner for a |x= with requirements (i)−(iv).

(2) (∀φ) |x= φ iff |x= �φ (see below).

If |x= φ, then |x= �φ (req. iv, necessitation). Suppose that |x= �φ. Then |x= φ (req. iv,

reflexivity). Therefore, |x= φ iff |x= �φ.

(3) (∀φ) |6 x= φ iff |x= ♦¬φ (see below).

If |6 x= φ, then |x= ♦¬φ (req. iii, φ/¬φ). Suppose that |x= ♦¬φ. Then |x= ¬�φ (definition

of ♦). Then |6 x= �φ (consistency)22. Then |6 x= φ (from 2). Therefore, |6 x= φ iff |x= ♦¬φ.

(∴) R is not finite (see below).

Suppose that R is finite. Then |x= is recursively enumerable (1, def. finite reasoner).

(∃∞φ) |x= ♦¬φ (req. ii, φ/¬φ, see note)23 and |x= ♦¬φ iff |6 x= φ (3). Then |x= is

enumerable iff |x= is decidable24. If |x= is decidable, then classical logic is decidable

(req. i, supraclassicality). But classical logic is not decidable (Church, 1936a), what

is a contradiction. Therefore, R is not finite.

21A set is recursively enumerable iff there exists a function which outputs all and only the members
of the set given some ordering and executes at most finitely many operations in generating each output.
This models the fact that the formation of each belief of a finite reasoner may depend at most of finitely
many inferential steps (see chapter 1, def. 1.1.2).

22I am supposing that |x= is consistent (req. i), but the problem presented here also may be avoided

using a paraconsistent |x= (Cohnitz, 2012, p. 73).
23Consider > to be a tautology. Then |x= > and, for all w ∈ W , w  >. (∃ψ) |x= ♦ψ (req. ii). Then,

for some w ∈W , w  ψ and w  >. Then w  ψ ∧ > (def. conjunction) and |x= ♦φ, where φ = (ψ ∧ >).

There are infinitely many tautologies. Therefore, (∃∞ψ) |x= ♦ψ. If φ = ¬ψ, then (∃∞φ) |x= ♦¬φ.
24A set is recursively decidable iff both the set and its complement are recursively enumerable.

The set |x= is enumerable iff it is decidable because enumerating the infinitely many members ♦¬φ of
this set is equivalent to enumerate the set |6 x=, which is the complement of |x=.
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There exists a different reason for which a strictly ideal reasoner for |x= is not finite.

Requirement (v) states that |x= must be such that, for all superphysical truths φ, |x= p→ φ,

where p is the conjunction of the fundamental physical truths and laws. Quantum me-

chanics (QM) is usually thought to be the best candidate for the fundamental physical

description of the world. But QM is usually though to have an indeterministic character

in the sense that the laws of QM and the full description of a quantum system at t1 do not

determine the full state of the system at t2 > t1
25. In this context, the relation between a p

with finitely many conjuncts and the complete set of physical truths (which are superphys-

ical) cannot be deductive. The relation between a p with finitely many conjuncts and any

complete set of non-probabilistic physical truths must be, at most, nonmonotonic. For this

reason, a |x= which fulfills requirement (v) must, at most, be nonmonotonic26. However,

a strictly ideal reasoner for a nonmonotonic |x= with essential properties is not finite27.

In considering a similar argument, Chalmers argues that the conclusion that |x= must

be nonmonotonic may be avoided by adding to p what he calls ‘interpretative principles’:

On the collapse interpretation [of QM], a natural interpretative strategy is to
say that an entity is located in a certain region of three-dimensional space if a
high enough proportion of the (squared) amplitude of its wave-function is con-
centrated within that region. ...An interpretative principle involving ‘a high
enough proportion’ will then deliver classical truth at both the microscopic
and macroscopic level (Chalmers, 2012, p. 294-295).

But Chalmers’s interpretative principles are themselves nondeductive. In the example,

from the fact that there exists a region where a high enough proportion of the (squared)

amplitude of its wave-function is concentrated, it does not follow that the entity is located

25There are interpretations under which QM is deterministic (Bohm, 1952), but quantum indeterminacy

does not need to be actual. It is enough that quantum indeterminacy is possible because |x= φ iff |x= �φ.
26In this case, a priori knowledge would be fallible and defeasible, what is often accepted in the literature

(see Russell, 2013). First, a priori knowledge would be fallible because we are a priori justified in believing
both premises of sorites paradox but one of these premises is false (Bealer, 1998, p. 202). Second, a priori
knowledge would be defeasible because we were, all things considered, a priori justified in believing that
every event has a cause but, after developments in physics, we are not anymore (Russell, 2013, p. 4).

27In section 1.3, I have argued that a strictly ideal reasoner for a nonmonotonic logic which exhibits
supraclassicality, reflexivity, cut, and cautious monotony is not finite for situations with nonmonotonic
consequences. Then an (a priori) strictly ideal reasoner for a nonmonotonic |x= which fulfills requirement
(i)−(v) would not be finite because the theorems of this logic (e.g. p→ φ) would be nonmonotonic.
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in that region (argument due to Parent, 2014, p. 3). Then a logic which enables using

interpretative principles must be nonmonotonic and the conclusion is not avoided.

In other occasions, Chalmers argues that the conclusion may be avoided by adding

more information to p:

The apparent failure of determinism in quantum mechanics suggests that the
[Laplace’s] demon [i.e. the strictly ideal reasoner] could not predict the future
just from facts about physical laws and about the present. ...To avoid these
problems, however, we need only give Laplace’s demon more information than
Laplace allows. To accommodate nondeterminism, we might give the demon
full information about the distribution of the fundamental physical entities
throughout space and time (Chalmers, 2012, p. xiv).

But, if p contains ‘the full information about the distribution of the fundamental

physical entities through space and time’, then p must have infinitely many conjuncts.

This is the case because time is often modeled as dense (see Ray, 1991, p. 20) and p would

need to contain information about the position of the fundamental physical entities for

infinitely many moments between every t1 and t2. In this case, a strictly ideal reasoner for

|x= would not be finite. A finite reasoner has finite memory, but p is an infinite conjunction.

This means that a finite strictly ideal reasoner for |x= cannot believe p→ φ28.

Then requirement (v) has the consequence that either |x= must be a nonmonotonic logic

or that p is infinite. In each case, a strictly ideal reasoner for a |x= with property (v) is not

finite29. This conclusion seems to be accepted by Chalmers (2010) and Menzies (1998).

After all, both Chalmers and Menzies presuppose an ideal conceiver without cognitive

limitations in their notion of ideal (negative) conceivability.

If a strictly ideal reasoner for |x= cannot be finite, it is doubtful how to evaluate (Z) and,

consequently, (p1)∗ and (p2)∗. More specifically, it is doubtful that we have a clear grasp

about whether p ∧¬q is ideally negatively conceivable. First, it is dubious whether finite

28There exist different notions of beliefs and, for some of them, a finite reasoner may believe p → φ
(e.g. implicit beliefs). But a finite reasoner cannot believe p→ φ for all notions of beliefs which require
the reasoner to be able to explicitly believe p → φ (e.g. explicit, accessible, stable beliefs). See sections
1.2 and 1.4 for definitions of these notions and for why the notions in the second group are more relevant.

29The two reasons for |x= with properties (i)−(v) not being recursively enumerable are related. Negative
conceivability is a nonmonotonic principle (a principle which relies on the nonderivability of sentences)

and |r= is closely related to autoepistemic logic (Gottlob, 1994), which is a system of nonmonotonic logic.
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reasoners (e.g. humans) can, even in principle, grasp the sentence p or implement the

hypercomputational inferential procedures necessary for enumerating the theorems of |x=

(see Lokhorst, 2000)30. Second, it is also doubtful whether a finite reasoner is able to have

the slightest idea about how a infinite reasoner reasons. The issue is that the patterns

of inference of a reasoner without cognitive limitations may be fundamentally different

from those of a finite reasoner. For example, a reasoner which has full information about

the distribution of the fundamental physical entities through space and time ‘predicts’

the position of a fundamental physical entity at t simply by reinstating what it already

presupposes and without making use of the fundamental physical laws31. This pattern

of inference is fundamentally different from how finite reasoners reason about physics.

Finally, if the notion of ideal negative conceivability is supposed to have a normative role

in modal epistemology, the former example shows that how infinite reasoners reason can

hardly be a norm for how finite reasoners should reason. Then it is doubtful whether

ideal negative conceivability could be model using an (infinite) strictly ideal reasoner for

|x= with requirements (i)−(v).

In answering a similar objection32, Chalmers argues the following:

I think that there is little reason to accept this claim. Although we are non-
ideal, we can know that it is not ideally conceivable that 0 = 1 and that it is
ideally conceivable that someone exists. We know that certain things about
the world (say, that all philosophers are philosophers) are knowable a priori
and that certain things about the world (say, that there is a table in this room)
are not so knowable even by an ideal reasoner (Chalmers, 2010, p. 155).

These analogies are not good: ‘1 = 0’ is easily shown to entail a contradiction and

‘someone exists’ is easily derived from everyday knowledge (e.g. that I exist). These are

cases for which we do not need ideal negative conceivability because these sentences are

easy to grasp and evaluate. This is not the case for ♦(p ∧ ¬q) and, consequently, for (Z).

30It is argued, for example, that the Bekenstein bound (Bekenstein, 1981) states an upper limit on the
information that can be contained in a given finite region of space and that this would render inferential
capacities higher than computability or infinite memory physically impossible (Lokhorst, 2000).

31For another example, if there exists a procedure for checking guesses, a reasoner which is able to
perform inferences instantaneously may solve any problem (instantaneously) simply by generating and
checking (a large number of) random guesses.

32The objection is: “arguments from ideal conceivability are toothless since nonideal creatures such as
ourselves cannot know whether or not a given statement is ideally conceivable” (Chalmers, 2010, p. 155).
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2.3 Defeasible ideal conceiver

In the last sections, I have argued that premises (p1)∗ and (p2)∗ of the negative zombie

argument are true iff there exists a strictly ideal reasoner for |x= which believes p ∧ ¬q on

the basis of not believing p → q. I have shown that, if |x= is conclusive, such a reasoner

is not finite. Then I have argued that this fact undermines the use of ideal negative

conceivability in the negative zombie argument. In this section, I argue that there may

exist a finite strictly ideal reasoner for a nonmonotonic version of |x=. However, this

reasoner negatively conceiving φ after any amount of reasoning would only be a defeasible

reason for ♦φ.

Occasionally, Chalmers proposes a different definition of ideal negative conceivability:

Definition 2.3.1 (Ideal negative conceivability 2). A sentence φ is ideally negatively

conceivable iff φ is negatively conceivable with justification that is undefeatable by better

reasoning (Chalmers, 2002, p. 172),

where φ is negatively conceivable iff ¬φ is not believed on a priori basis.

The notion of undefeatability by better (further) reasoning is often used in the litera-

ture about nonmonotonic reasoning. In the theory of defeasible reasoning (Pollock, 1990,

1995), for example, there exists a notion of warrant which is closely related to undefeata-

bility by better reasoning. The theory describes reasoning as the procedure of adopting

beliefs on the basis of reasons and retracting beliefs on the basis of defeaters. Reasons

are sets of mental states that provide epistemic support for believing something. A rea-

son may be conclusive or defeasible depending on the epistemic support that it provides.

The epistemic support of conclusive reasons cannot be overridden by new information (de-

featers). For example, believing φ is a conclusive reason for believing φ∨ψ. The epistemic

support of defeasible reasons can be overridden by defeaters. For example, perceiving an

object as red is defeasible reason for believing that the object is red33.

33A defeater may be a rebutting or an undercutting defeater. Rebutting defeaters attack the conclusion
of a reason. For example, if perceiving at distance what appears to be a sheep in the field is defeasible
reason for believing there is a sheep in the field, then hearing from the shepherd that there are no sheep in
the field is a rebutting defeater for that reason (Pollock, 1995, p. 85). Undercutting defeaters attack the
connection between a reason and its conclusion. For example, if perceiving an object as red is defeasible
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Let KBi be a set of reasons of a reasoner and KB0, KB1, ..., KBi, ... be the reasoning

sequence of the reasoner (how the reasoner would reason from the available information if

it had enough cognitive resources, e.g. time). Then the notion of warrant is the following:

Definition 2.3.2 (Warrant). A belief φ is warranted relatively to KB0, KB1, ..., KBi, ... iff

there is an i such that, for all j≥ i, φ is undefeated relatively to KBj (Pollock, 1995, p.133).

In other words, the belief that φ is warranted iff there is a stage in the reasoning

sequence such that the belief is undefeated at every subsequence stage. Then the belief

that φ is undefeatable by better (further) reasoning iff that belief is warranted34.

In chapter 1, I have presented a model of a reasoner which provides a clear definition

for the notion of a reasoning sequence used in the notion of warrant (def. 1.1.1). In

the model, an (a priori) reasoner is composed of a formal language L, a set of sentences

in L (KB) which model the explicit beliefs of the reasoner, and a belief update function

π : 2L×Z+ → 2L which models the pattern of inference of the reasoner. A fact about the

pattern of inference of a reasoner is that the reasoner may perform different inferences from

the same premises. In the model, this fact is expressed using a function π with a numeric

parameter (integer) in addition to the parameter for KB. In this context, π(KB, 1) models

an inference from KB, π(KB, 2) models another inference from KB, etc. Then function π

determines a reasoning sequence KB0, KB1, . . . , KBi, . . ., where KB0 = KB is the initial set of

explicit beliefs and KBi+1 = π(KBi, i + 1). Supposing that the integer parameter models

some order of priority, the reasoning sequence of a reasoner models how the reasoner would

reason from the available information if it had enough cognitive resources (e.g. time). In

this context, let the explicit beliefes of a reasoner at KBi (beliefsex) be the sentences at KBi

and the stable beliefs of a reasoner (beliefsω) be the sentences in KBω =
⋃
i

⋂
j≥iKBj.

A sentence is in KBω iff there exists an i such that, for all j ≥ i, φ ∈ KBj. Then

φ is warranted iff φ ∈ KBω. But φ is undefeatable by better (further) reasoning iff φ is

reason for believing the object is red, then learning that the object is under red light is an undercutting
defeater for that reason. Undercutting defeaters are reasons for believing that a reason does not support
a conclusion (Pollock, 1995, p. 86).

34The phrase ‘undefeatable by better reasoning’ seem to have an evaluative character in the negative
conceivability principle (‘better reasoning’ in the sense of more rational reasoning). I will contemplate
this character dealing with strictly ideal reasoning sequences.
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warranted. Then φ is undefeatable by better (further) reasoning iff φ ∈ KBω. The belief

that φ is undefeatable by better (more rational) reasoning iff φ is in a strictly ideal KBω

(the KBω of a strictly idealω reasoner).

In this context, (Z) may be interpreted as following:

(Z)∗ There exists a strictly idealω reasoner for a logic |x= with properties (i)−(v) which

believesω ♦(p ∧ ¬q) on the basis of not believingex p → q after some amount of

reasoning.

If (Z)∗ is a reasonable interpretation of (Z), then (p1)∗ and (p2)∗ are true only if (Z)∗

is true. The first step in evaluating (Z)∗ is to investigate how |x= looks like. The logic |r=

fulfills requirements (i)−(iv) and |x= must be nonmonotonic in order to fulfill requirement

(v). Then a natural choice is to make |x= a nonmonotonic extension of |r=. However, the

way |r= deals with requirement (iii) has the consequence of making a strictly ideal reasoner

for |x= not finite35. Then |x= must deal with this requirement differently. More specifically,

|x= must deal with requirement (iii) using nonmonotonic rules. For example, |x= may use

the following defeasible rule for ♦ introduction and its defeater36:

Definition 2.3.3 (Defeasible ♦I). Not believingex ¬φ on a priori basis is defeasible

reason for believingex ♦φ.

Definition 2.3.4 (Defeater for defeasible ♦I). Believingex ¬φ on a priori basis is a

defeater for defeasible ♦I.

In order to deal with requirement (v), a reasoner may have the following defeasible

rule and defeater, where a is an arbitrary individual and F and G are arbitrary properties:

35It is because |r= ♦¬φ iff |6 r= φ that |r= is (recursively) enumerable iff |r= is decidable and a strictly ideal

reasoner for |r= is not finite. More generally, the patterns of inference of a finite strictly ideal reasoner for

|x= cannot depend on checking whether |6x= φ or φ 6∈ KBω.
36These are simplified glosses, omitting important qualifiers and details. For example, I am assuming

that all defeasible reasons generate the same amount of epistemic support. For a discussion about reasons
with different degrees of epistemic support, see Pollock (1995, p. 93).
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Definition 2.3.5 (Statistical syllogism). If r ≥ .5, then believingex pr(F |G) > r and

Ga is defeasible reason for believing Fa (Pollock, 1995, p. 68)37.

Definition 2.3.6 (Defeater for statistical syllogism). Believing Ha and believingex

pr(F |G&H) < pr(F |G) is a defeater for the statistical syllogism (Pollock, 1990, p. 9).

The reasoner may use statistical syllogism in, for example, inferring from the fact that

a high enough proportion of the (squared) amplitude of its wave-function is concentrated

within in a region that the electron is in that region (Chalmers’s interpretative principles).

In order to deal with the statistical syllogism, |x= must contain rules and axioms necessary

for dealing with probabilities (|x= is probabilistic).

In this context, it may be possible to construct a finite strictly idealω reasoner for |x=

which verifies (Z)∗38. Let |x= be a nonmonotonic extension of |r= with a nonmonotonic

level corresponding to the rules of defeasible ♦I and statistical syllogism along with the

respective defeaters. The reasoner would be constructed in such a way that, at each stage

of the reasoning sequence, it attempts to apply every rule of |x= to all possible combinations

of sentences that it believesex. The key point is to construct the reasoner in such a way

that, every time it concludes that φ using a nonmonotonic rule, it checks, after each

stage of the reasoner sequence, if a defeater was derived. If a defeater was derived, the

reasoner withdraws the conclusion that φ (along with all conclusions derived from φ).

There exist two possibilities: either (i) the defeater is derived and φ is deleted at some

point of reasoning or (ii) the defeater is not derived and φ is not deleted. In any case, the

reasoner would believeω φ iff |x= φ and the reasoner would be strictly idealω for |x=. The

reasoner would be finite because it does not need to generate KBω (KBω is not part of the

reasoning sequence) and no rule in |x= depends on checking whether |6 x= φ (φ 6∈ KBω), but

only on checking whether φ 6∈ KB.

37The probabilities involved in this principle are indefinite probabilities, where pr(F |G) means ‘the
proportion of physically possible Gs that would be F s’, The value for r must be low enough for fulfilling
requirement (v). I will suppose that r = .5 (the lowest reasonable value), but the argument in next
section holds for values of r very close to 1.

38The possibility of constructing such a reasoner depends on, for example, the existence of an adequate
semantics for |x= along with a sound and complete axiomatization. I will grant all these conditions in
order to evaluate other problems for the negative zombie argument.
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If the construction of a finite strictly idealω reasoner for |x= is indeed possible and that

reasoner believesω ♦p ∧ ¬q on the basis of not believingex p → q, then there exists good

prospects for (p1)∗ and (p2)∗ being both true and the negative zombie argument being

sound. However, the use of strictly idealω reasoners as the model of ideal negative conceiv-

ability has some consequences for the negative zombie argument. The first consequence

is that whereas the patterns of inference of a strictly ideal reasoner for |x= are unreachable

for a finite reasoner39, a strictly idealω reasoner for |x= may be seen as an extrapolation of

the patterns of inference of a finite reasoner. In this sense, ideal negative conceivability

would be a more amenable principle of modal epistemology for finite reasoners. The sec-

ond consequence is that the relation between ideal negative conceivability and possibility

cannot be of entailment. A strictly idealω reasoner for |x= believingex ♦φ at any stage of

a reasoning sequence is, at most, a defeasible reason for ♦φ being true. In this context,

ideal negative conceivability would be a defeasible principle of modal epistemology and

the negative zombie argument would not be conclusive. The third consequence is that an

idealω reasoner for |x= may not believeω ♦(p∧¬q) for every choice of q (see next section).

2.4 Someone is conscious!

The negative zombie argument is such that, for all superphysical φ, |x= p→ φ. The exact

nature of p is very difficult to grasp, but is much less controversial that some φ are super-

physical. For example, it is uncontroversial that the truths of neuroscience n (e.g. ‘C-fiber

x is stimulated’ or ‘neural activity on area x is enhanced’) are superphysical. What about

truths of the form ‘the probability of q is x’ (i.e. pr(q) = x) and ‘n and q have a correla-

tion of x’ (i.e. corr(n, q) = x), where n is a sentence of neuroscience, q is a phenomenal

sentence, and x is a number? Are those truths superphysical? I think that this is the case

if these sentences are interpreted using a notion of (natural or nomological) probabilities

defined in terms of (proportions of) physically possible worlds (see Pollock, 1990). In this

case, p contains the fundamental physical laws, which determine the physically possible

worlds. Possible worlds are saturated entities. So, given any physically possible world w,

39The same for the patterns of inference of a strictly idealac reasoner for |x= (see section 1.3).
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either n is true at w or false at w (and the same holds for q). Then, for any pr(q) = x,

the value of x is determined by p. And, for any corr(n, q) = x, the value x is determined

by p. A change on these values would entail a change on the fundamental physical laws

and, consequently, in p. Then pr(q) = x and corr(n, q) = x are superphysical in this

interpretation. Chalmers accepts that the relevant interpretation of probabilities in those

cases is that using physically possible worlds40. In the following, I will assume that all

truths of the form n, p(q) = x, and corr(n, q) = x are superphysical and, consequently,

that |x= p→ n, |x= p→ pr(q) = x, and |x= p→ corr(n, q) = x.

There exist different correlation coefficients. The most common is Pearson correlation

coefficient, which is sensitive to linear relationships between random variables. Pearson

correlation coefficient between two variables X and Y (corr(X, Y )) is obtained by dividing

the covariance of the variables by the product of their standard deviations:

corr(X, Y ) =
cov(X, Y )

σXσY

,
The value of corr(X, Y ) is such that −1 ≤ corr(X, Y ) ≤ 1. A positive value of

corr(X, Y ) indicates that Y tends to increase when X does, a negative value indicates

that Y tends to decrease when X increases and the value 0 means that X and Y are

uncorrelated. In statistics, an indicator variable is a (discrete) variable X which may

only take the values of 0 (X = 0) or 1 (X = 1). For indicator variables, the notion of

correlation entails that41:

• corr(X, Y ) > 0 iff pr(Y = 1|X = 1) > pr(Y = 1).

40“The sort of possibility being considered here is natural or nomological possibility or possibility
compatible with the laws of nature. If we required correlation across all logically possible cases, there
might be no total NCC [neural correlate of consciousness] at all, as it is arguably logically possible or
coherently conceivable to instantiate any physical process at all without consciousness. If we require cor-
relation across naturally possible cases, the problem goes away, as these cases are probably not naturally
possible” (Chalmers, 2010, p. 74).

41The correlation between two random variables X and Y is such that corr(X,Y ) = cov(X,Y )/(σXσY )
and cov(X,Y ) = E[XY ]− E[X]E[Y ], where E[X] is the expected value of X. If X and Y are indicator
variables, E[X] = pr(X = 1), E[Y ] = pr(Y = 1), and E[XY ] = pr(X = 1 ∧ Y = 1). Then corr(X,Y ) =
[pr(X = 1∧Y = 1)−pr(X = 1)pr(Y = 1)]/(σXσY ). Since σX and σY are always positive, corr(X,Y ) > 0
iff pr(X = 1 ∧ Y = 1) − pr(X = 1)pr(Y = 1) > 0. But pr(X = 1 ∧ Y = 1) − pr(X = 1)pr(Y = 1) =
pr(X = 1)pr(Y = 1|X = 1) − pr(X = 1)pr(Y = 1) = pr(X = 1)[pr(Y = 1|X = 1) − pr(Y = 1)] and
pr(X = 1) is always positive. Then corr(X,Y ) > 0 iff pr(Y = 1|X = 1) − pr(Y = 1) > 0. Therefore
corr(X,Y ) > 0 iff pr(Y = 1|X = 1) > pr(Y = 1).
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In a two-valued logic, sentences are indicator variables, where ¬x is the value X = 0

and x is the value X = 1. Then, in terms of n and q the above theorem entails that:

• corr(n, q) > 0 iff pr(q|n) > pr(q).

I intend to show that p∧¬q is not ideally negatively conceivable for every choice of q.

In the (Z)∗ model, if p ∧ ¬q is ideally negatively conceivable for every choice of q, then,

for every choice of q, a strictly idealω reasoner for |x= does not believeex p → q after any

amount of reasoning. I intend to show that, for some q, a strictly idealω reasoner for |x=

does believeex p→ q after some amount of reasoning. More specifically, I intend to show

that a strictly idealω reasoner for |x= believesω p→ q for every q such that pr(q) ≥ .5 and

for which there exists a true n such that corr(n, q) > 042. This is the case because n is

a truth of neuroscience and |x= p → n (n is superphysical). Given that corr(n, q) > 0,

then |x= p → corr(n, q) > 0 (corr(n, q) > 0 is superphysical). But corr(n, q) > 0 iff

pr(q|n) > pr(q) and |x= is probabilistic, then |x= p→ pr(q|n) > pr(q). Given that pr(q) ≥ .5

is superphysical, then |x= p → pr(q|n) > .5. Then |x= p → (n ∧ pr(q|n) > .5). Then,

applying the statistical syllogism, |x= p → q. Therefore, a strictly idealω reasoner for |x=

believesω p→ q (def. 2.1.1, req. i).

Empirical data suggest that there exist truths n and q such that corr(n, q) > 0. There

exists an extensive literature on neural correlates of conscious which supports this claim

(see Tononi and Koch, 2008, for a review). I think that it is dubious how to establish pr(q)

for a given q, but it is very likely that pr(q) ≥ .5 for many qs of interest. For example, it

is very likely that pr(q) ≈ 1 for q =‘someone is conscious’. The number humans alive is

approximately 7× 109. Let q1 =‘human 1 is conscious’ and, more generally, qi =‘human

i is conscious’. Then pr(q) = 1 −
∏7×109

i=1 pr(¬qi). Then pr(q) ≈ 1 (.999) when the

probability of each human being conscious is as low as 1× 10−9. And pr(q) = .503 (what

is still greater than or equal to .5) when the probability of each human being conscious is

1× 10−10. Then the conditions of the argument in last paragraph are very likely fulfilled

for some true n and q.

42I am supposing that the n and q such that corr(n, q) = x are about the same individual. For example,
n = N(a) and q = Q(a), where a is some individual.
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Therefore, a strictly idealω reasoner for |x= does believeex p→ q after some amount of

a priori reasoning (because it believesω p → q), which means that p ∧ ¬q is not ideally

negatively conceivable (in the (Z)∗ model) and that the negative zombie argument is not

sound for q =‘someone is conscious’. The same hold for all q such that pr(q) ≥ .5 and for

which there exists some truth n such that corr(n, q) > 0.

In commenting this argument, the first interesting point is that it is not affected

Chalmers’s structure and dynamics counterargument:

First, physical descriptions of the world characterize the world in terms of
structure and dynamics. Second, from truths about structure and dynamics,
one can deduce only further truths about structure and dynamics. Third,
truths about consciousness are not truths about structure and dynamics
(Chalmers, 2010, p. 120).

Let’s grant that (a) physical truths (e.g. the conjuncts in p) are about structure and

dynamics, (b) that phenomenal truths aren’t about structure and dynamics, (c) and that

there’s no deduction from sentences of one form to sentences of a different form. Even so,

the structure and dynamics counterargument does not affect the argument in this section.

Premise (c) may be true of deductions (which are valid by virtue of form), but Chalmers’s

own presuppositions entails that |x= (the logic of a priori knowledge) cannot be deductive

and (c) is not true of inductions. Second, since all superphysical truths follows from p in

|x=, saying that q should not follow from p in |x= without an independent reason is begging

the question on q not being superphysical and on physicalism being false.

There are other objection which may appear. First, it may be questioned whether the

statistical syllogism is a rational rule of inference. This objection is not very strong. The

statistical syllogism is successfully in our everyday and scientific reasoning. More acutely,

it may be questioned whether the statistical syllogism is a rational rule of inference for

a priori reasoning. There exists some discussion in the literature about whether the

statistical syllogism is a rational rule for a priori reasoning (see Russell, 2013). But

I do not want to discuss this issue here. My point is only that Chalmers’s negative

zombie argument requires something like the statistical syllogism to be a rational rule of

inference for a priori reasoning. Second, it may be questioned whether the conclusion of
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the reasoning is an artifact of a too low value of r (i.e. r = .5). It may be the case that

the specific line of reasoning presented above depends on this specific value of r, but it is

possible to construct similar lines of reasoning for values of r very close to 1 because, for

some qs of interest (e.g. q =‘someone is conscious’), pr(q) ≈ 1.

2.5 Conclusions

In this chapter, I have argued that premises (p1)∗ and (p2)∗ of the negative zombie

argument are not both true for every choice of q. For example, (p1)∗ and (p2)∗ are not

both true for q =‘someone is conscious’. In section 2.1, I have argue that (p1)∗ and (p2)∗

are both true iff there exists a strictly ideal reasoner for a logic with some properties and

that reasoner negatively conceiving φ is a (conclusive) reason for ♦φ. In section 2.2, I

have investigated whether these conditions hold and conclude that, even if this was the

case, the conclusive reasoner would not be finite. I have argued that this fact undermines

the use of the ideal negative conceivability principle in the negative zombie argument. In

section 2.3, I have argued that there exists a finite strictly ideal reasoner for a related

logic, but that this reasoner negatively conceiving φ after any amount of reasoning would

only be a defeasible reason for ♦φ. In section 2.4, I argue that the defeasible reasoner does

not negatively conceive p ∧ ¬q for every choice of q. This reasoner does not negatively

conceive all q such that pr(q) and ∃n(n∧ corr(n, q) > 0) (e.g. q =‘someone is conscious’).

In this context, the negative zombie argument may still be sound for some q, but

it soundness would depend on which q is chosen. I will not answer the question about

whether there exists a q which satisfies the negative zombie argument. My point is that

this is an empirical question. In order to establish whether some specific truth q satisfies

the negative zombie argument, one needs empirical information for supporting either that

pr(q) < .5 or that, for all truths n, corr(n, q) ≤ 0. But any empirical information for

pr(q) < .5 or (more dramatically) for ∀n(n→ corr(n, q) ≤ 0) will not be conclusive. The

bottom line is that the negative zombie argument is neither an a priori argument nor a

conclusive argument against physicalism.

In several passages, Chalmers argues that ideal positive conceivability entails ideal
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negative conceivability. For example, consider the following (where S is a sentence):

Ideal primary positive conceivability entails ideal primary negative conceiv-
ability: if S can be ruled out a priori, then no coherent imagined situation
will verify S (Chalmers, 2010, p. 148).

If this is the case, p∧¬q not being ideally negatively conceivable for an arbitrary q has

the consequence of p ∧ ¬q not being ideally positively conceivable for an arbitrary q. In

addition, if ideal negative conceivability and ideal positive conceivability are the only two

relevant kinds of ideal conceivability, this has the consequence of p∧¬q not being ideally

conceivable in general for an arbitrary q. Then, if the reasoning of Chalmers is correct,

the conclusions presented here have consequences for zombie arguments in general.
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Chapter 3

Achilles and the truth-goal

Achilles was still seated on the back of the much-
enduring Tortoise, and was writing in his notebook,
which appeared to be nearly full. The Tortoise was
saying, “Have you got that last step written down?
Unless I’ve lost count, that makes a thousand and one.
There are several millions more to come”.

Lewis Carroll, What the Tortoise said to Achilles .

In last chapters, I have been investigating the maximum and minimum bounds of ratio-

nality for finite reasoners without considering the truth-value of beliefs. In this chapter,

I investigate the maximum and minimum bounds of epistemic rationality for finite rea-

soners1. The notion of epistemic rationality is usually understood as being related to the

truth-value of beliefs.

Theoretical reason [i.e. epistemic reason]... addresses the considerations that
recommend accepting particular claims as to what is or is not the case. That
is, it involves reflection with an eye to the truth of propositions, and the
reasons for belief in which it deals are considerations that speak in favor of
such propositions’ being true, or worthy of acceptance (Wallace, 2014).

More specifically, the notion of epistemic rationality is usually understood as being

related to the fulfillment of the truth-goal. Roughly, the truth-goal is the following goal:

Definition 3.0.1 (Truth-goal). The truth-goal is the goal of believing truths and not

believing falsehoods.

1I focus on the maximum bounds of epistemic rationality for finite reasoners. Occasionally, I discuss
the minimum bounds as well.
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In fact, epistemologists usually argue that the truth-goal is the fundamental goal for

epistemic rationality. Alston and BonJour, for example, are quite explicit on this matter:

Epistemic evaluation is undertaken from what we might call ‘the epistemic
point of view’. That point of view is defined by the aim of maximizing truth
and minimizing falsity in a large body of beliefs (Alston, 1985, p. 59).

What makes us cognitive beings at all is our capacity for belief, and the goal of
our distinctively cognitive endeavors is truth: we want our beliefs to correctly
and accurately depict the world (BonJour, 1985, p. 7-8).

Similar claims are found in Lehrer (2000), Foley (1993), Plantinga (1993), Goldman

(1986), Moser (1985), Sosa (1985), and Chisholm (1982)2.

In this chapter, I investigate the maximum and minimum bounds of epistemic ratio-

nality for finite reasoners given a notion of epistemic rationality related to the fulfillment

of the truth-goal. In chapter 1, I have investigated the notion of maximum rationality as

you believing all and only what you ought to believe and believing only what you may

believe3. Under the supposition that epistemic rationality is a species of rationality, I

will now investigate the proposal that a maximally epistemically rational reasoner is a

maximally rational reasoner which fulfills the truth-goal. The problem with this proposal

is that the requirements for the fulfillment of the truth-goal are not clear in the literature

and most of the existing models have problems with blindspots. In this chapter, I survey

the existing models of the truth-goal, propose a model of the truth-goal which does not

have problems with blindspots, and investigate the maximum and minimum bounds of

epistemic rationality for finite reasoners given the proposed model of the truth-goal.

In section 3.1, I discuss some existing models of the fulfillment of the truth-goal and

argue that these models have problems with blindspots. I then argue that the fulfillment

of the truth-goal is better modeled as the maximization of a function g − which accepts

a set of beliefs as input − and returns a numeric evaluation and discuss the properties

2List due to David (2001).
3In chapter 1, I have defined a maximally rational reasoner as believing all and only what it ought to

believe and only what it may believe (def. 1.1.6), a rational reasoner as believing only what it may believe
(def. 1.1.7), and an irrational reasoner as believing something that it may-not believe (def. 1.1.8). In our
framework, this entails that a maximally rational reasoner believes all and only the logical consequences
of its explicit beliefs, a rational reasoner has a non-trivial set of beliefs, and an irrational reasoner has a
trivial set of beliefs (proof C.1).
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that the function must have in order to model the fulfillment of the truth-goal. In section

3.2, I show how the function g model may be used in stating the maximum and minimum

bounds of epistemic rationality. I investigate the details concerning the implementation of

this model and argue that this is the best model for stating the maximum and minimum

bounds of epistemic rationality for finite reasoners (among other things, because it deals

well with blindspots). In the discussion, I compare the function g model with other quan-

titative models of rationality, as, for example, the group of models known as ‘epistemic

utility theory’ (e.g. Fitelson and Easwaran, 2015; Pettigrew, 2015a; Joyce, 1998).

3.1 The truth-goal

The truth-goal is usually expressed using epistemic norms in the form of (bi)conditionals.

The simplest version of these (bi)conditional norms would be the following:

(T) R ought to believe φ iff φ is true.

The problem with (T) is that it has the consequence of making maximum epistemic

rationality impossible in many interesting situations. More specifically, (T) has the conse-

quence of making the class of maximally epistemically rational reasoners a priori empty for

languages which allow for the expression of blindspots (Bykvist and Hattiangadi, 2007).

Informally, a blindspot for a reasoner is a sentence that may be true but cannot be both

true and believed by the reasoner (Sorensen, 1988)4. The definition is the following:

Definition 3.1.1 (Blindspot). A sentence φ is a blindspot for a reasoner R iff it is

possible that φ and it is not possible that (φ and R believes φ).

Consider the following two blindspots for an arbitrary reasoner R:

(bs1) = ‘R does not believe (bs1)’.

(bs2) = φ ∧ ψ, where φ is a mundane truth (e.g. ‘snow is white’) and ψ = ‘R does not

believe φ’.

4Sorensen allows for a much wider application of the term ‘blindspot’. He defines a blindspot for a
propositional attitude A and a reasoner R as a sentence that is possibly true but cannot have attitude
A taken towards it by R (Sorensen, 1988). I am dealing only with A =true-belief blindspots.
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The sentence (bs1) is the core example of a blindspot. That sentence has the interesting

property of being true iff R does not believe (bs1). Whether (bs2) is a blindspot depends

on whether we accept that ‘belief’ distributes over conjunctions (if R believes φ∧ψ, then

R believes φ and R believes ψ)5. If we accept that ‘belief’ distributes over conjunctions,

it is easy to see that (bs2) is a blindspot. In this case, if R believes (bs2), then R believes

φ and (bs2) is false because its second conjunct is false. Furthermore, if (bs2) is true,

then R does not believe (bs2) because, otherwise, the second conjunct of (bs2) and (bs2)

itself would be false6.

In this context, (T) has the consequence of making the class of maximally epistem-

ically rational reasoners a priori empty for languages which allows for the expression of

blindspots. Consider the following argument7:

(1) Let R be a maximally epistemically rational reasoner.

(2) R believes (bs1) iff R ought to believe (bs1) (from 1).

(3) R ought to believe (bs1) iff (bs1) is true (from (T)).

(4) (bs1) is true iff R does not believe (bs1) (definition of (bs1)).

(5) R believes (bs1) iff R does not believe (bs1) (from 1, 2, and 3).

(6) ⊥ (from 5).

In order to deal with blindspots, epistemologists often propose modified versions of

(T). Boghossian (2003), for example, attempts to avoid the problem by rejecting one

direction of (T). Boghossian accepts:

(Ta) If R ought to believe φ, then φ is true.

5In our framework, this assumption is unnecessary because, under the right conditions, a maximally
rational reasoner R believes the logical consequences of its beliefs. If φ and ψ are logical consequences of
φ ∧ ψ, the logic in question has some essential features (e.g. cut), and R believes φ ∧ ψ, then R believes
φ and R believes ψ.

6I am focusing on (bs1) and (bs2) because they are simple examples of blindspots. These two blindspots
involve second-order beliefs, but there are interesting first-order blindspots (e.g. ‘R is dead’).

7This argument may be stated in terms of (bs2) with minor changes.
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But he rejects:

(Ta’) If φ is true, then R ought to believe φ.

The retraction from (T) to (Ta) avoids the original problem. It does not follow from

(Ta) that R ought to believe a blindspot. But (Ta) is too weak (Raleigh, 2013, p. 248).

The problem with (Ta) is that, regardless of φ being true or false, it does not entail an

obligation. If φ is true, (Ta) does not entail anything. If φ is false, (Ta) entails only that

R does not ought to believe φ (not that R ought not to believe φ). As a consequence,

(Ta) underdeterminates the description of a maximally epistemically rational reasoner:

(Ta) says what the reasoner does not believe, but it says nothing about what it believes.

This problem is revealed by the fact that (Ta) may be fulfilled when a reasoner does not

have any beliefs at all.

Raleigh (2013, p. 249) and Whiting (2010) propose a different biconditional norm:

(Tb) R may believe φ iff φ is true.

This formulation also avoids the original problem. It does not follow from (Tb) that

R ought to believe a blindspot. But (Tb) has a different problem with blindspots: it is a

consequence of (Tb) that a reasoner is permitted to believe a currently true blindspot, and

yet, if the reasoner were to believe the blindspot, (Tb) would forbid the belief. Raleigh

(2013, p. 249) argues that this is a good feature of his proposal:

It seems to me that as much as we may have an intuition that attempting to
believe a blindspot that happens to be true should be discouraged, we also have
a conflicting intuition that we would like to believe such a true proposition....
A feature of my proposal is that there is no truth-norm forbidding belief in a
currently nonbelieved blindspot, but there is a norm that kicks in the moment
that one ventures to believe the blindspot. I think this may be seen as a virtue
rather than a vice, in that it does justice, as far as possible, to both of these
conflicting intuitions (Raleigh, 2013, p. 252).

I don’t think that appealing to those conflicting intuitions helps here because the

instantiation of (Tb) for a blindspot contradicts the very definition of the epistemic ‘may’.

Suppose thatR does not believe (bs1). In this case, (bs1) is true and (Tb) says thatRmay
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believe (bs1). If R may believe (bs1), then there must exist an epistemically permissible

situation in which R believes (bs1). But there does not exist such an epistemically

permissible situation according to (Tb): in all situations in which R believes (bs1), (bs1)

is false, and (Tb) forbids the belief in (bs1). Therefore, (Tb) contradicts the definition of

the epistemic ‘may’. Another problem is that (Tb) may be fulfilled by not having beliefs.

Another attempt to deal with the problem is to add the following condition to (T):

(Tc) R ought to believe φ iff (φ is true and φ is truly believable by R)8.

The norm (Tc) partially avoids the original problem. Since a blindspot is not truly

believable by R, it does not follow from (Tc) alone that R ought to believe a blindspot.

But it follows from (Tc) and some reasonable assumptions that R ought to believe a

blindspot with the form of (bs2) (Bykvist and Hattiangadi, 2013, p. 110). If R does not

believe (bs2), φ is true and truly believable by R and it follows from (Tc) that R ought

to believe φ. Also, ψ is true and truly believable by R and it follows from (Tc) that R

ought to believe ψ. Then R ought to believe φ and R ought to believe ψ. If ‘ought’

aggregates over conjunctions, then R ought to (believe φ and believe ψ). If ‘belief’ also

aggregates over conjunctions, then R ought to believe (bs2). It is usually accepted that

‘ought’ and ‘belief’ aggregate over conjunctions9. Therefore, it follows from (Tc) and

some reasonable premises that R ought to believe (bs2). In this case, we may reinstate

the original argument about blindspots from (T) to (Tc) substituting (bs1) for (bs2).

Finally, the original problem may be avoided by modifying (T) as following:

(Td) R may believe φ iff (φ is true and φ is truly believable by R).

According to (Td), it is not the case that R may believe either (bs1) or (bs2) because

both are not truly believable by R. Also, we cannot reinstate the argument from (Tc)

8This norm was suggested by Luis Rosa in personal conversation. By ‘φ is truly believable by R’, I
mean that it is possible that (φ is true and R believes φ).

9In the standard modal interpretation, ‘ought’ and ‘belief’ are box-like and the box aggregates over
conjunctions. In our framework, under the condition that φ ∧ ψ is a logical consequence of φ and ψ and
the logic in question has some essential features (e.g. cut), if a maximally rational reasoner R ought to
believe (and believes) φ and ought to believe (and believes) ψ, then R also ought to believe (and believes)
the logical consequence φ ∧ ψ.
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to (Td) because it is usually not accepted that ‘may’ aggregates over conjunctions. Then

(Td) is the best (bi)conditional so far. The problem here is that (Td) underdetermines the

description of a maximally epistemically rational reasoner: (Td) says what the reasoner

may believe, but it does not say anything about what it ought to believe and, consequently,

believes. This problem is revealed by the fact that (Td) may be fulfilled when a reasoner

does not have any beliefs at all.

3.1.1 Truth-goal as the maximization of function g

In order to avoid these problems, the fulfillment of the truth-goal is better modeled as

the maximization of a function g which evaluates sets of beliefs. In order to model the

truth-goal, a function g : R≥0 × R≥0 → R must have the following features, where t and

f are respectively the number of true and false beliefs of a reasoner10:

(i) g(t, f) varies directly as t;

(ii) g(t, f) varies inversely as f ;

(iii) g has a supremum, but not a maximum11;

(iv) g has a infimum, but not a minimum12.

Requirement (i) models the positive part of the truth-goal: maximizing true beliefs.

When I say that g(t, f) varies directly as t, I mean that if t′ > t, then g(t′, f) > g(t, f).

Then this requirement states that having more true beliefs always increases the value

of function g. Because of requirement (i), functions which measure the proportion of

true beliefs, e.g. g(t, f) = t
t+f

, are not adequate for modelling the truth-goal. For those

functions, if f = 0, then g(t, f) = 1 for all t > 0. Other functions which do not fulfil this

requirement are g(t, f) = t
f

and g(t, f) = t−f
t+f

.

10Note that a reasoner R defines a set of beliefs and that a set of beliefs defines the values of t and f .
Then I will freely use g(R), g(B) (where B is a set of beliefs), and g(t, f).

11The supremum of a function g is the least upper bound of the image of g, defined as a quantity s
such that no member in the image of g exceeds s, but if ε is any positive quantity there is a member in
the image of g that exceeds s− ε. The maximum of a function is the largest member in its image.

12The infimum of a function g is the greatest lower bound of the image of g, defined as a quantity s
such that no member in the image of g is less than s, but if ε is any positive quantity there is a member
in the image of g that is less than s+ ε. The minimum of a function is the smallest member in its image.
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Requirement (ii) models the negative part of the truth-goal: minimizing false beliefs.

When I say that g(t, f) varies inversely as f , I mean that if f ′ > f , then g(t, f ′) < g(t, f).

Then this requirement states that having more false beliefs always decreases the value of

function g. Because of requirement (ii), functions which measure the difference between

the proportion of true and false beliefs, e.g. g(t, f) = t−f
t+f

, are not adequate for modeling

the truth-goal. For those functions, if t = 0, then g(t, f) = −1 for all f > 0. Other

functions which do not fulfill this requirement are g(t, f) = t
f

and g(t, f) = t
t+f

.

It follows from requirements (i) and (ii) that g is defined for all t and f . This is a good

result. If the truth-goal is a goal for all reasoners, then, for every reasoner R, we need to

be able to evaluate R towards the truth-goal. But we are only able to use function g to

evaluate every R towards the truth-goal if g is defined for every R (i.e. for all t and f).

Requirement (iii) models the fact that function g is to be maximized by some reasoners.

In order to be maximized, function g must have an upper bound. But requirement (i)

has the consequence that g cannot have a maximum value (if function g had a maximum

value, it would not vary directly as t)13. Then the upper bound of function g must be a

supremum, but not a maximum. Because of requirement (iii), functions which measure

the difference between true and false beliefs, such as g(t, f) = t− f , are not adequate for

modeling the truth-goal. Functions do not have an upper bound. Another function which

does not have an upper bound is g(t, f) = t
f
. Functions g(t, f) = t

t+f
and g(t, f) = t−f

t+f

have an upper bound, but it is a maximum.

Requirement (iv) is needed for stating the minimum bounds of epistemic rationality

(see section 3.2). The idea is that a minimally epistemically rational reasoner does not

minimize function g. In order to be minimized, function g must have a lower bound. The

reason for the lower bound of function g being an infimum but not a minimum parallels

those for its upper bound being a supremum but not a maximum: having a minimum

contradicts requirement (ii). Function g(t, f) = t − f does not have a lower bound.

Functions g(t, f) = t
f
, g(t, f) = t

t+f
, and g(t, f) = t−f

t+f
have a lower bound, but it is a

minimum.

13Suppose that g(t, f) = max(g) for some t and f . Now consider t′ > t. Then either g(t′, f) > max(g),
what is a contradiction, or g(t′, f) ≤ g(t, f) and g does not fulfill requirement (i).

64



Function Req (i) Req (ii) Req (iii) Req (iv)
g(t, f) = t/f
g(t, f) = t− f X X

g(t, f) = t/(t+ f)
g(t, f) = (t− f)/(t+ f)

g(t, f) = (t− f)/(t+ f + c) X X X X

Table 3.1: The behaviour of some functions regarding requirements (i)−(iv). The ‘X’s
indicate which requirements the functions fulfill. In the last function, c > 0 is a constant.

There exist several functions which fulfill the requirements (i)−(iv) and I don’t see any

reason for preferring one of those functions over the other. For simplicity, I will deal with

the function g(t, f) = t−f
t+f+c

(where c > 0 is a constant)14. The function g(t, f) = t−f
t+f+c

fulfills requirement (i) because if t′ > t, then t′−f
t′+f+c

> t−f
t+f+c

(see proof C.3). This

function fulfills requirement (ii) because if f ′ > f , then t−f ′
t+f ′+c

< t−f
t+f+c

(see proof C.4).

This function is defined for all values of t and f because a division is only undefined when

the divisor is equal to zero, but, since t ≥ 0, f ≥ 0, and c > 0, this never happens for this

function. Finally, this function also fulfills requirements (iii) and (iv): its supremum is

equal to 1 and its infimum is equal to -1 (see figure 3.1). In the following, ‘function g’ refers

to the function g(t, f) = t−f
t+f+c

, but all the arguments should hold for all functions which

fulfill requirements (i)−(iv). Also, when I talk about maximizing (minimizing) function g,

I am always talking about supremum (infimum), not about maximum (minimum) value.

Function g may be used for two-valued or infinitely-many valued logics and for quali-

tative or quantitative notions of beliefs. Let B be the set of beliefs of a reasoner, v(φ) be

a function which returns the truth-value of φ, and b(φ) be a function which returns the

belief-value of φ. Then the values of t and f are the following15

14The constant c defines the ‘sensitivity’ of the function g(t, f) = (t− f)/(t+ f + c): the smaller the c,
the faster the function changes. In other words, the smaller the c, the bigger the prize for having more
true beliefs and the bigger the penalty for having more false beliefs. As I see, the optimal value for c is
an empirical question. For simplicity, I will use a value of c which is arbitrarily close to 0.

15The result of equation 3.1 for v(φ) = 0 and b(φ) = 0 is t = 1, but some may think that this result
should be t = 0. I think that the result t = 1 is reasonable for two reasons. First, this result conforms the
norm ‘R ought not to believe a false φ’. The second reason has to do with accuracy: having b(φ) = .99
when v(φ) = .99 is the most possibly accurate degree of belief and should receive the maximum evaluation.
This is also the case for v(φ) = 0 and b(φ) = 0. For similar reasons, I think that the result of equation
3.2 for v(φ) = 1 and b(φ) = 0 is reasoble.
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Figure 3.1: The value of g(t, f) = t−f
t+f+c

for a number of true/false belief from 0 to 100

(left). Red for g(t, f) = 1, green for g(t, f) = 0, and blue for g(t, f) = −1. In the right,
the values of g(t, f) for f = 0 (red) and t = 0 (blue). The value of g(t, f) tends to 1 when
t increases and tends to -1 when f increases.

t =
∑
φ∈B

1− |v(φ)− b(φ)| (3.1)

f =
∑
φ∈B

|v(φ)− b(φ)| (3.2)

In a two-valued logic, v(φ) has only two possible values: 0 when φ is false and 1 when

φ is true. In an infinitely-many valued logic, v(φ) has continuously many values between

0 and 1: 0 when φ is absolutely false, 1 when φ is absolutely true, and the values between

0 and 1 meaning different degrees of truth. In a qualitative notion of beliefs, b(φ) has

only two possible values: 0 when the reasoner doesn’t believe φ and 1 when the reasoner

believes φ. In a quantitative notion of beliefs, b(φ) has continuously many values between

0 and 1: 0 when the reasoner has absolute certainty that φ is false, 1 when the reasoner

has absolute certainty that φ is true, and the values between 0 and 1 meaning degrees of

certainty. In all cases, equations 3.1 and 3.2 return the values of t and f .
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3.2 Maximum epistemic rationality

In chapter 1, I have defined a maximally rational reasoner as believing all and only what it

ought to believe and only what it may believe (def. 1.1.6), a rational reasoner as believing

only what it may believe (def. 1.1.7), and an irrational reasoner as believing something

that it may-not believe (def. 1.1.8). In our framework, these definitions entail that a

maximally rational reasoner believes all and only the logical consequences of its explicit

beliefs, a rational reasoner has a non-trivial set of beliefs, and an irrational reasoner has

a trivial set of beliefs (proof C.1). In this context, consider the following definitions:

Definition 3.2.1 (Maximum epistemic rationality). A reasoner R is a maximally

epistemically rational reasoner iff:

(i) R is maximally rational;

(ii) R maximizes function g.

Similarly, a minimally epistemically rational reasoner is a rational reasoner which does

not minimize function g and an epistemically irrational reasoner is either an irrational

reasoner or minimizes function g.

There exist two putative issues in the implementation of these definitions. First, the

number of (true, false) beliefs of a reasoner and, consequently, its value for function g vary

depending on which notion of beliefs is used. For example, if a reasoner holds a certain

number of occurrent beliefs, it probably hold much more dispositional beliefs. Second,

function g is not maximized for any finite number of t and f and is not defined for infinite

numbers of t or f . Luckily, these two issues are avoided by the same move.

In chapter 1, I have proposed a model of a reasoner which allow us to measure precisely

the number of (true, false) beliefs given different notions of beliefs. In the model, a

reasoner is composed of a language (L), an input (INPUT), a knowledge base (KB), and a

pattern of inference (π), where INPUT is a set of sentences in L which models the input

of information for the reasoner, KB is a set of sentences in L which models the memory of

the reasoner, and π is a function for updating KB which models the pattern of inference

of the reasoner (def. 1.1.1). Consider the notion of an explicit belief. Informally, a
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reasoner explicitly believes the sentences stored in its memory. In the model, a reasoner

explicitly believes the sentences in KB (def. 1.2.3). Consider the notion of an implicit

belief. Informally, a reasoner implicitly believes the logical consequences of its explicit

beliefs. In the model, a reasoner implicitly believes the logical consequence of KB (def.

1.2.1). Consider the notion of an accessible belief. Informally, a reasoner has the accessible

belief that φ iff the reasoner may explicitly believe φ after some amount of reasoning. In

the model, the accessible beliefs of a reasoner are the sentences in the output of π for

some input i from INPUT and KB (def. 1.2.5).

The issue is that, for all of those notions of beliefs, the number of (true, false) beliefs

of a reasoner is either finite or infinite, but function g is not maximized for finite numbers

of t and f and is not defined for infinite numbers of t or f . Function g is not maximized

for finite numbers of t and f because, for all sets of beliefs B with finite t and f , there

exists a set of beliefs B′ with finite t+ 1 and f , such that g(B′) > g(B). This is the case

because function g varies directly as t (see note 13). On the other hand, function g is not

defined for infinite t or f . Then it seems that function g cannot be maximized by any

reasoner, what would defeat the purpose of the model. We may try to avoid this problem

by adding some conditions to function g: for example, the condition ‘if t is infinite and f

is finite, then g(t, f) = sup(g) = 1’. This would partially fix the problem, but, in addition

to its ad hoc flavor, it is unclear what to do when both t and f are infinite. We may

choose a value (for example, g(t, f) = 0), but any choice is inadequate. Suppose that two

reasoners R and R′ have infinitely many true and false beliefs, that they have the same

false beliefs and that, for every true belief that R′ has, R has the same true belief and

has an additional true belief. In this case, it is inadequate to say that g(R) = g(R′) = x

because R seems to be in a better epistemic position than R′.

In chapters 1, I have proposed the notion of stable beliefs. The pattern of inference

of a reasoner is modeled as a function π which updates the set of (explicit) beliefs of the

reasoner. A fact about the pattern of inference of a reasoner is that the reasoner may

perform different inferences from the same premises. In the model, this fact is expressed

using a function π which has a numeric parameter (integer) in addition to the parameters
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for INPUT and KB. In this context, π(INPUT, KB, 1) models an inference from INPUT and

KB, π(INPUT, KB, 2) models another inference from INPUT and KB, etc. Then function π

determines a reasoning sequence KB0, KB1, . . . , KBi, . . ., where KB0 is the initial set of explicit

beliefs and KBi+1 = π(INPUT, KBi, i + 1). Supposing that the numeric parameter models

some order of preference, the reasoning sequence of a reasoner models how the reasoner

would reason from the available information if it had enough cognitive resources (e.g. time

for reasoning). The stable beliefs of a reasoner are the beliefs in the set KBω =
⋃
i

⋂
j≥i KBj

(the explicit beliefs at the limit of the reasoning sequence).

The notion of a reasoning sequence also allows us to make a measure for the value of

function g of a reasoner R with reasoning sequence KB0, KB1, . . . , KBi, . . . as the following:

g(R) = lim
i→∞

g(KBi) (3.3)

Measuring function g as the limit of its value when a reasoner advances in a reasoning

sequence avoids the problem because this value may be maximized (and minimized)16.

First, the value of function g is defined when both t and f approaches a finite number.

In this case, the value of function g is obtained by simply substituting these values in the

equation. For example, if, when i approaches infinity, both t and f approaches the same

x, limi→∞ g(KBi) = 0. Second, the value of function g is defined when the value of either

t or f , but not both, approaches infinity. If t approaches infinity while f approaches a

finite number, limi→∞ g(KBi) = 1. In this case, function g is maximized. If f approaches

infinity while t approaches a finite number, limi→∞ g(KBi) = −1. In this case, function g is

minimized. The value of limi→∞ g(KBi) may also be defined when both t and f approach

infinity. In this case, the value of function g depends on how t and f grow.

In the following, ‘function g model’ refers to the interpretation of equation 3.3. In the

16Formally, I am defining another function g′ from g. I am calling this function g for simplicity. There
may exist some problematic cases for this interpretation. For example, suppose that a reasoner, at each
stage of a reasoning sequence, adds 2 true beliefs and deletes one of the oldest belief in the set. In this
case, it is unclear to me whether the reasoner has infinitely many or zero true beliefs at the limit of
reasoning. To fix to this case, the number of t and f in equations 3.1 and 3.2 must be, respectively, the
number of stable true and false beliefs at that stage of reasoning (in the example, 0). In other words,
t =

∑
φ∈KBi∩KBω 1− |v(φ)− b(φ)| and f =

∑
φ∈KBi∩KBω |v(φ)− b(φ)|. This problem and its solutions were

both suggested by Bernard Molyneux in personal conversation.
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function g model, our situation in relation to the truth-goal parallels that of Achilles in

relation to the tortoise in Zeno’s paradox: no matter how fast we advance, the goal is

always further ahead (the truth is out there).

3.2.1 Features of the function g model

The function g model is the best model for stating the maximum and minimum bounds

of epistemic rationality for finite reasoners because this model:

1. explains how finite reasoners may achieve maximum epistemic rationality;

2. deals well with infinite sets of beliefs;

3. does not have problems with blindspots.

Informally, a finite reasoner is a reasoner with cognitive limitations, such as be-

ing able to store only a finite amount of information in its memory. In the model,

a finite reasoner is defined as, among other things, holding at most finitely many ex-

plicit beliefs (def. 1.1.2). A finite reasoner may hold finitely many explicit beliefs at every

stage of a reasoning sequence and, nevertheless, hold infinitely many stable beliefs. For

example, if a finite reasoner starts reasoning from the unique explicit belief that the num-

ber of planets is equal to 8, and conclude that that this number is smaller than 9, and then

conclude that this number is smaller than 10, and so on, the reasoner would hold infinitely

many (true) stable beliefs while holding finitely many explicit beliefs at every stage of the

reasoning sequence. In this case, the finite reasoner maximizes function g. In chapter 1,

I have shown that a finite reasoner may be maximally rational (section 1.4). Therefore,

the model explains how a finite reasoner may achieve maximum epistemic rationality17.

In the literature, it is often cited the problem of comparing sets of beliefs with infinitely

many true and false beliefs (see Treanor, 2013, p. 580). But the function g model deals

with this comparison nicely. For example, if t and f grow at the same rate, then limi→∞

g(KBi) = 0. If t grows twice as fast as f , then limi→∞ g(KBi) = 1
3
. If f grows twice as

17The reasoner in the example would not be maximally epistemically rational because it would not be
maximally rational. A maximally rational reasoner believes all the logical consequences of its explicit
beliefs, what is not the case in the example.
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fast as t, then limi→∞ g(KBi) = −1
3
. There exist cases in which, when both t and f go

to infinity, function g is maximized (or minimized). For example, consider a reasoner R

with reasoning sequence such that, in the first step, the value of f is 1 and the value of t

is such that the value of g is 1− 1
2
. In each subsequent step, the value of f increases by 1

and the value of t is such that the value of g is 1− 1
4
, 1− 1

8
, and so on. Then both t and f

approaches infinity and g(R) = 118. Similar example may be constructed for g(R) = −1.

There also exist cases in which the value of g oscilates not converging to any value and

g(R) is undefined. In those cases, the reasoner is not maximally epistemically rational

because it does not maximize function g (it may be minimally epistemically rational or

epistemically irrational depending on whether it is rational or not), which seems to be

the right result. Therefore, the function g model deals well with infinite sets of belief.

In the function g model, a reasoner ought to maximize function g in order to be

maximally epistemically rational. The obligation of maximizing function g, however, does

not generate obligations of believing or disbelieving individual sentences (e.g. blindspots).

A reasoner may maximize function g at the limit of a reasoning sequence by lacking beliefs

about blindspots − i.e. believing neither the blindspot or its negation. As a consequence,

a reasoner may be maximally epistemically rational by lacking beliefs about blindspots.

A reasoner may maximize function g at the limit of a reasoning sequence by having beliefs

about blindspots − either believing the blindspot or its negation. As a consequence, a

reasoner may be maximally epistemically rational while having beliefs about blindspots19.

In this context, the problem of blidspots does not even arise in this this framework.

The case of (bs2) is not a case of denying that ‘ought’ aggregates over conjunctions,

for two reasons. First, depending on how R updates its beliefs, it will not be the case

that R ought∗ to believe φ and R ought∗ to believe ψ ‘at the same time’. If R starts

believing φ, then ψ is false, and R ought∗ not to believe ψ. If R starts believing ψ, φ is

still true, but believing φ falsifies the belief that ψ and R ought∗ not to believe φ while

believing ψ (g(B + φ+ ψ) < g(B + ψ)).

18This example was suggested by Hanti Lin in personal conversation.
19Although those beliefs may decrease the value of g, this decrease may not have an effect at the limit

of the reasoning sequence.
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3.3 Discussion

Following Joyce (1998) and Oddie (1997), a number of philosophers have proposed ar-

guments which use principles of utility theory for motivating requirements of (epistemic)

rationality (see Fitelson and Easwaran, 2015; Pettigrew, 2015a,b; Easwaran, 2013; Leitgeb

and Pettigrew, 2010a,b; Greaves and Wallace, 2006). The resulting field has come to be

known as ‘epistemic utility theory’ (EUT). The investigations in EUT usually employ a

strategy which may be summarized in three steps (Fitelson and Easwaran, 2015, p. 11):

1. The definition of the ideal, perfect, or vindicated set of beliefs.

2. The definition of a measure of epistemic disutility as the inaccuracy (‘distance’) of

a set of beliefs in relation to the ideal, perfect, or vindicated set of beliefs.

3. The use of the measure of epistemic disutility and some principles of utility theory

in an argument for motivating requirements of (epistemic) rationality.

The first step is to define the ideal, perfect, or vindicated set of beliefs for a given

situation. In EUT, the definition of such a set is usually taken as straightforward and

does not receive much attention. For example, Fitelson and Easwaran (2015, p. 12) state:

Step 1 is straightforward. It is clear what it means for a set B of this type to be
perfectly accurate/vindicated at a world w. The vindicated set Bw is given by:

Bw contains B(p) [D(p)] just in case p is true [false] at w,

where B(p) means ‘believe p’ and D(p) means ‘disbelieve p’ or ‘believe not-p’. Similar

definition is found in Pettigrew (2015a):

If a proposition is true in a situation, I claim, the ideal credence for an agent
in that situation is the maximal credence, which is represented as 1. On the
other hand, if a proposition is false, the ideal credence is the minimal credence,
which is represented as 0 (Pettigrew, 2015a, p. 3).

Then the ideal, perfect, or vindicated set of beliefs is usually defined as containing a

belief of value 1 ([full] belief) for all and only the true sentences and a belief of value 0

([full] disbelief) for all and only the false sentences.
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The second step is to define a measure of epistemic disutility (inaccuracy). In EUT,

inaccuracy is usually measured as the ‘distance’ between a set of beliefs and the ideal,

perfect, or vindicated set of beliefs20. There exist different ways one could measure the

‘distance’ between two sets of beliefs. A näıve measure of the ‘distance’ between two sets

B and B′ is the number of beliefs they disagree (Fitelson and Easwaran, 2015, p. 12):

∑
|b(φ)− b′(φ)|,

where b(φ) is the value of the belief on φ (e.g. 1 for [full] belief and 0 for [full] disbelief).

In EUT, philosophers usually attempt to identify the essential properties of an ade-

quate measure of epistemic disutility (see Joyce, 1998; Maher, 2002; Leitgeb and Pettigrew,

2010a; Pettigrew, 2015a). The näıve measure above usually does not fulfill some of the

essential properties, as, for example, weak convexity (the idea that if two different sets of

beliefs are equally inaccurate, their equal mixture must be less inaccurate than either).

Usually, the essential properties are fulfilled when the measure has the form of a Brier

Score, as, for example (see Pettigrew, 2015a, p. 33):

∑
|b(φ)− b′(φ)|2.

The third step is to use the measure of epistemic disutility and some principles of util-

ity theory in an argument for supporting requirements of (epistemic) rationality. Which

principles of utility theory are used in the argument depends on the exact nature of the

argument. Joyce (1998), for example, argues that a rational set of belief must fulfill Proba-

bilism because sets of beliefs which do not fulfill this requirement are always dominated by

sets of belief which fulfill this requirement. Easwaran (2013) argues that a procedure for

updating beliefs must fulfill Conditionalization because sets of belief resulting from proce-

dures which fulfill this requirement minimize expected epistemic disutility in comparision

to other update procedures. Pettigrew (2015a) argues for Probabilism and Conditional-

20Not all arguments in EUT use the ideal, perfect, or vindicated set of beliefs as the parameter of
(in)accuracy. Some arguments measure inaccuracy directly in relation to the truth-value of beliefs (Pet-
tigrew, 2015a; Easwaran, 2013; Leitgeb and Pettigrew, 2010a,b; Greaves and Wallace, 2006; Joyce, 1998).
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ization from the fact that resulting sets of beliefs which do not fulfill these requirements

are always dominated by resulting sets of belief which fulfill those requirements21.

The fact that most arguments in EUT are intended to support Bayesian requirements

of (epistemic) rationality (e.g. Probabilism and Conditionalization) has consequences.

These arguments use a notion of degrees of beliefs (credences) instead of plain full beliefs.

These arguments also use principles of utility theory which consider situations different

from the actual (e.g. dominance, minimization of expected inaccuracy, etc).Another con-

sequence is the use of subjective notions of both possibility and probability.

EUT has several intersections with the function g model. However, these frameworks

have formal differences and, more importantly, differ in their goals. Among the formal

differences, I would list:

1. While EUT usually measures inaccuracy in relation to the ideal, perfect, or vindi-

cated set of beliefs, the function g model measures inaccuracy directly in relation

to the truth-value of beliefs (the value of f);

2. In addition to measuring the correctness of a set of beliefs (inaccuracy, the value of

f), the function g model measures its completeness (the value of t);

3. The function g model, but not EUT, applies a normalizer to the overall results of

correctness and completeness (the function g itself);

4. While EUT considers the epistemic disutility of sets of beliefs in different situations,

the function g model only considers the actual situation.

As I see, these formal differences are direct consequences of EUT and the function g

model having different goals. The difference in goals may be expressed as following:

• Whereas EUT is concerned with (epistemic) rationality, the function g model is

concerned with the maximum and minimum bounds of epistemic rationality.

21Probabilism and Conditionalization are Bayesian requirements of (epistemic) rationality (see ch. 5).
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The first formal difference is that the function g model measures inaccuracy directly

in relation to the truth-value of beliefs instead of using the ideal, perfect, or vindicated

set of beliefs. This must be the case because the ideal, perfect, or vindicated set of beliefs

plays the role of maximum (epistemic) rationality in EUT. This set is always maximally

(epistemically) rational in the sense that it is always evaluated positively no matter which

measure of inaccuracy and principle of utility theory are used. In this context, it would

be circular to measure inaccuracy in relation to the ideal, perfect, or vindicated set of

beliefs when the goal is to establish the maximum bounds of epistemic rationality.

I think that there exist advantages in measuring inaccuracy directly in relation to the

truth-value of beliefs. Using the ideal, perfect, or vindicated set of beliefs as the parameter

for measuring the inaccuracy presupposes the existence of such a set, but this may not

be the case in situations with blindspots. If the ideal, perfect, or vindicated set of beliefs

contains a belief of value 1 for all and only the true sentences and a belief of value 0 for all

and only the false sentences, the value of the belief in the sentence φ = ‘the ideal, perfect,

or vindicated set of beliefs does not contain a belief of value 1 for φ’ is not defined22.

This problem resembles the problem with norm (T) discussed in section 3.1.

In fact, some arguments in EUT measure inaccuracy directly in relation to the truth-

value of beliefs (e.g. Pettigrew, 2015a; Easwaran, 2013; Leitgeb and Pettigrew, 2010a,b;

Greaves and Wallace, 2006; Joyce, 1998). As I see, this strategy has been abandoned

in more recent papers (e.g. Fitelson and Easwaran, 2015; Pettigrew, 2015a) because of

the first-person nature of the notion of (epistemic) rationality. The notion of (epistemic)

rationality is sensible to first-person features such as, for example, which situations are

possible given the reasoner’s current information. Measuring epistemic utility directly to

the truth-value of beliefs usually disregards these features. For example, the actual situa-

tion may be impossible given current (misleading) information. The notion of maximum

epistemic rationality, on the other hand, is related to the best-case epistemic situation for

22The idea is that, in situations of blindspot, the ideal, perfect, or vindicated set of beliefs may not
exist and, as a consequence, cannot be used in evaluating the innacuracy of nonideal reasoners. Using
truth-values in evaluating the innacuracy of nonideal reasoners ensure that the evaluation may always be
done. For this reason, Pettigrew (2015a, p. 4) restricts his framework to situations without blindspots.
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reasoners in general and is not sensible to first-person features of individual reasoners23.

The second formal difference is a consequence of the first. Since the ideal, perfect, or

vindicated set of beliefs is ‘complete’ in the sense that, for every relevant sentence, that

set contains a degree of belief for that sentence, the ‘distance’ between a set of beliefs

and the ideal, perfect, or vindicated set of beliefs always increases when the non-ideal

set lacks a value for the belief in some sentence24. When we measure epistemic utility in

relation to the truth-value of beliefs, on the other hand, we need to consider not only the

correctness of the set of beliefs (the value of f), but also its completeness (the value of

t). If this is not done, a reasoner would be able to minimize epistemic disutility simply

by not having any beliefs. This is the same problem with norms (Ta), (Tb), and (Td)

discussed in section 3.1.

The third formal difference (lack of normalizer) renders EUT two limitations in inves-

tigating the maximum and minimum bounds of (epistemic) rationality25

(a) EUT is able to (easily) distinguish between (epistemic) rationality and irrationality,

but not between maximum and minimum (epistemic) rationality, and irrationality.

(b) EUT has problems in dealing with infinite sets of belief.

The third formal difference is a consequence of the different goals in the sense that it

may be thought that (a) and (b) are limitations for dealing with maximum epistemic ra-

tionality, but not for dealing with regular cases of (epistemic) rationality (i.e. (epistemic)

rationality for finite reasoners).

About (a), the lack of a normalizer for the inaccuracy measures renders EUT unable

to (easily) provide fixed notions of maximum and minimum (epistemic) rationality, and

irrationality26. In EUT, the global result for the inaccuracy of a set of beliefs is in

23A best-case epistemic situation may be, for example, one in which the reasoner has all the relevant
information and no misleading information.

24It is usually supposed that the reasoners to be evaluated are opinionated, in the sense of having
(degrees of) beliefs for every sentence/proposition considered.

25Here, ‘normalizer’ means a function which rescale values in a larger (often unbounded) interval to
values in a smaller and more tractable (bounded) interval.

26There may exist clever ways of provide these notions. Here, I mean that it is not possible to do
it in the most natural way: maximum and minimum rationality being related with the maximum and
minimum values (not necessarily respectively) in the interval.
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[0,+∞) and, therefore, has only one defined bound (0). As a consequence, EUT is able to

distinguish between the ideal, perfect, or vindicated set of beliefs (degree 0 of inaccuracy,

maximum epistemic rationality) and the other sets of beliefs (degree > 0). EUT is also

able to compare two sets of beliefs and conclude that one is (epistemically) rational

whereas the other is irrational (e.g. that one is less inaccurate than the other)27. On the

other hand, the result of function g (in the limit interpretation) is between two integers

[x, y] (e.g. −1, 1) and, therefore, has two defined bounds. In this context, it is possible

to define maximum epistemic rationality using the higher bound (e.g. 1), irrationality

using the lower bound (e.g. -1), and minimum epistemic rationality using the rest of the

interval (e.g. the interval (−1, 1)).

About (b), the lack of a normalizer for the inaccuracy of a set of beliefs renders EUT

unable to deal properly with infinite sets of beliefs. This is the case because the global

inaccuracy of a set of beliefs is in [0,+∞), but the result for infinite sets of beliefs often

collapse to +∞. The restriction to finite sets of beliefs is stressed in Leitgeb and Pettigrew

(2010a), Pettigrew (2015a), and (partially) in Easwaran (2015). For example:

Indeed, the only restriction we impose is that an agent’s opinion set is finite
(Pettigrew, 2015a, p. 14).

This restriction usually does not receive an epistemic interpretation:

There is nothing particularly philosophical about our decision to stick to the
case of finitely many worlds in this article; we simply assume this to be so
and postpone the discussion of the infinite case to another time (Leitgeb and
Pettigrew, 2010a, p. 209)28.

The restriction to finite sets of belief is a problem in investigating maximum epistemic

rationality because a maximally (epistemically) rational reasoner has infinitely many be-

liefs. However, I think that this may also be a problem in dealing with regular cases of

27The basis for comparison may change depending on which principle of utility theory is used in the
argument (e.g. having smaller expected inaccuracy, having smaller inaccuracy in all relevant situation,
etc). In principle, we could describe these comparisons as stating that one set of beliefs is more epistem-
ically rational than another, but these comparisons are usually described in the literature as stating that
one set is epistemically rational whereas the other is epistemically irrational (see Pettigrew, 2015b).

28For another example, Greaves and Wallace state that: “We will assume throughout that S [the set
of states] is finite. This is merely for simplicity of exposition” (Greaves and Wallace, 2006, p. 611, n.1).
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(epistemic) rationality. Easwaran points in that direction:

I assume that the set of situations for each agent is finite. One might try to
justify this assumption by arguing that actual agents are finite beings that only
have the capacity or desire to make finitely many distinctions among ways the
world could be. I happen to think that this sort of argument won’t work, and
that in fact the set of situations for a given agent is ordinarily infinite, but for
the purposes of this paper I will restrict things to the finite case (Easwaran,
2015, p. 4).

In fact, depending of the notion of beliefs, finite reasoners may have infinitely many

beliefs. This has the consequence of rendering EUT unable to deal properly not only with

maximum (epistemic) rationality, but also with regular cases of (epistemic) rationality.

These issues are avoided using the function g model because, in this model, the measures

for a set of beliefs is between two defined boundaries (e.g. [-1,1]) for reasoners with either

finite or infinite sets of beliefs.

Finally, the fourth formal difference is also a consequence of the different goals of EUT

and the function g model: whereas EUT considers the inaccuracy of a set of beliefs in

different situations, the function g model considers only the actual situation. Again, EUT

is concerned with the first-person nature of the notion of (epistemic) rationality. In this

context, an evaluation of (epistemic) rationality must take into account the situations

which the reasoner cannot distinguish given the available information. The function

g model is used in the investigation of the maximum bounds of epistemic rationality.

The requirements for maximizing function g regarding only the actual situation are the

same as (or smaller than) they would be regarding all epistemically possible situations.

In principle, however, the function g model may be adapted for considering situations

different from the actual. The restriction of the function g model to the actual situation

is more a matter of simplicity than a bold claim in epistemology.

The conclusion is that there does not exist real discordance between EUT and the

function g model. These frameworks have different goals and, consequently, use different

tools. However, this fact should not preclude the cooperation between these frameworks.

Some results within EUT may be implemented in the function g model. For example,

through this chapter I have been using näıve measures of completeness and correctness
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(i.e. the number of true and false beliefs, see equations 3.1 and 3.2). However, the results

of the discussion about the essential properties of this kind of measure may be applied to

the function g model. For example, the function g model works perfectly using a measure

with the form of a Brier Score (t =
∑

φ∈B 1− |v(φ)− b(φ)|2, f =
∑

φ∈B |v(φ)− b(φ)|2).

Also, some features of the function g model may be implemented within of EUT. The

function g model may be used (i) in defining the ideal, perfect, or vindicated set of beliefs

or (ii) as providing a normalizer for the measures of inaccuracy. In the first case, the

function g model would be used in defining the ideal, perfect, or vindicated set of beliefs,

which may be used as a parameter for measuring inaccuracy. The advantage of this use is

that the function g model does not have problems with blindspots. The disadvantages are

the more complicated calculations and the fact that the model may define more than one

ideal, perfect, or vindicated set of beliefs in some situations. In the second case, function

g itself would be used as a normalizer for measures of inaccuracy. The advantage of this

use is enabling comparisons between infinite sets of beliefs. One disadvantage would be

that a reasoner needs now to be modeled not only as a set of beliefs, but also as having

a pattern of inference. This renders more complicated calculations, but I think that this

model is more sensible to the first-person features of the notion of (epistemic) rationality

used in EUT because patterns of inference are internal features of a reasoner.

It is interesting that, when philosophers attempt to overcome some limitations of EUT,

they end up proposing characteristics akin to those of the function g model. For example,

Easwaran (2013) provides a framework which renders EUT able to deal with infinite sets

of beliefs with three features:

1. Instead of evaluating a set of beliefs, evaluating a process of construction/updating

of this set;

2. Considering the final evaluation as the limit of a succession of evaluation of the

process of construction/updating of this set;

3. Using a measure which has a maximum value.
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Instead of evaluating sets of beliefs, Easwaran evaluates plans for updating sets of belief

given possible incoming information. The expected inaccuracy of an update is measured as

the limit of the sum of the inaccuracy of the updates for each possible outcome weighted

by the probability of that outcome. This measure is in the interval [0, 1] because the

inaccuracy of each possible update is in [0, 1] and the probability distribution sums 1.

The argument of Easwaran (2013) is that plans with smaller expected inaccuracy are

those which may be described as applying conditionalization. The important point is

that these features are exactly the features of the function g model.
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Chapter 4

Computational epistemology

The 9000 series is the most reliable computer
ever made. No 9000 computer has ever made a
mistake or distorted information. We are all, by
any practical definition of the words, foolproof
and incapable of error.

HAL 9000, 2001: A Space Odyssey .

In the last chapters, I have been investigating the maximum and minimum bounds of

(epistemic) rationality for finite reasoners. Informally, a finite reasoner (e.g. a human) is

a reasoner with cognitive limitations, such as finite perceptual input, finite memory, and

finite computational capacities. The investigation has been carried out using a model of

a reasoner which provides clear definitions for most notions of interest. In the model,

a reasoner is composed of a language (L), an input (INPUT), a knowledge base (KB),

and a pattern of inference (π), where INPUT is a set of sentences in L which models the

perceptual input of the reasoner, KB is a set of sentences in L which models the explicit

beliefs of the reasoner, and π is a function for updating KB which models the pattern of

inference of the reasoner (def. 1.1.1). The function π accepts INPUT, KB, and an integer

as inputs and returns an updated KB. In the model, a finite reasoner is a reasoner with

learnable L, finite INPUT, finite KB, and computable π (def. 1.1.2)1.

In chapter 1, I have investigated the maximum and minimum bounds of rationality

for finite reasoners. In the literature, an ideal reasoner is often defined as a reasoner

1That π must be computable is a consequence of an argument in section 1.3. A function is computable
if there exists an effective procedure such that for any input, it produces the value of the function in a
finite time interval. For reasons expressed in chapter 1, note 8, I will leave aside considerations about L.
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which (i) believes all the logical consequences of its epistemic situation and (ii) has a

nontrivial set of beliefs (def. 1.1.3), where the epistemic situation of a reasoner is the

information available to the reasoner (INPUT and KB)2. I argue that this notion is not

satisfactory for modeling maximum rationality because an ideal reasoner with features (i)

and (ii) may still have all sorts of random beliefs3. I then propose the notion of a strictly

ideal reasoner, i.e. an ideal reasoner which believes only the logical consequences of its

epistemic situation. In our framework, the notion of a strictly ideal reasoner coincides with

the notion of a maximally rational reasoner which believes all and only what it ought to

believe and only what it may believe (proof C.1)4. I then investigate under which notions

of beliefs a finite reasoner may be maximally rational (strictly ideal). I argue that there

exist infinitely many logical theorems but a finite reasoner can only have finitely many

explicit beliefs (sentences in KB). I argue that, for many relevant logics, there does not

exist a computable function π which outputs all and only the logical consequences of

an epistemic situation (accessible beliefs). I argue that, for many of those logics, there

exists a computable function π which outputs all and only the logical consequences of an

epistemic situation at the limit of a sequence of iterations of the function (a reasoning

sequence, see section 4.1). I conclude that maximum rationality for finite reasoners must

be understood in terms of the state of the set beliefs of the reasoner as it approaches the

limit of its reasoning sequence (stable beliefs).

In chapter 3, I have investigated the maximum and minimum bounds of epistemic

rationality for finite reasoners. In the literature, the notion of epistemic rationality is

often understood as being related to the fulfilment of the truth-goal (the goal of believing

truths and not believing falsehoods)5. Under the supposition that epistemic rationality

2Similar definitions are found in Stalnaker (2006), Giunchiglia and Giunchiglia (2001), Duc (1995),
Grim (1988), Halpern and Moses (1985), and Binkley (1968). This notion is relative to a logic.

3As long as those beliefs do not contradict requirement (ii). In other words, the notion of an ideal rea-
soner has a very strong completeness requirement (closure), but only a very weak soundness requirement
(nontriviality). This explanation was suggested by an anonymous reviewer.

4In our framework, the epistemic ought and may are defined in terms of ideal reasoners. A reasoner
ought to believe φ iff all ideal reasoners in the same epistemic situation believe φ and a reasoner may
believe φ iff there exist an ideal reasoner in the same situation which believes φ (def. 1.1.4 and 1.1.5).

5Similar claims are found in Lehrer (2000), Foley (1993), Plantinga (1993), Goldman (1986), Moser
(1985), Alston (1985), BonJour (1985) Sosa (1985), and Chisholm (1982). List due to David (2001).
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is a species of rationality, I investigate the proposal of maximum epistemic rationality

being maximum rationality plus the fulfillment of the truth-goal. The problem with this

proposal is that the conditions for the fulfillment of the truth-goal are not clear in the

literature and most of the existing models have problems with blindspots6. I argue that

the fulfilment of the truth-goal is better understood as the maximization of function g,

which accepts a set of beliefs as input and returns a numeric evaluation, and discuss

the properties of such a function7. I argue that this model does not have problems with

blindspots and that a finite reasoner is only able to maximize function g at the limit of

a reasoning sequence. I conclude that the notion of maximum epistemic rationality for

finite reasoners must be understood in terms of the value of function g for a reasoner as

it approaches the limit of a reasoning sequence (i.e. whether it reaches its supremum).

In this chapter, I argue that, if finite reasoners are only able to approach maximum

(epistemic) rationality at the limit of a reasoning sequence, then considerations about the

efficiency of patterns of inference are relevant to epistemology. In section 4.1, I present an

argument for this conclusion. The argument exploits the facts that (i) a finite reasoner

cannot reach actual maximum (epistemic) rationality and that (ii) there exists a relevant

difference on how a finite reasoner may approach maximum (epistemic) rationality de-

pending of how efficiently it reasons. I discuss some criticisms to the presented notion of

efficiency and some problems to the general framework. Among the problems, I discuss

the problem of interruptibility (Pollock, 1995). In section 4.2, I present more formally

the research program of computational epistemology, a research program which investi-

gates the maximum and minimum bounds of (epistemic) rationality for finite reasoners

using computer simulations, takes into account differences in the efficiency of patterns of

inference, and deals (indirectly) with the problem of interruptibility.

6A blindspot for a reasoner is a sentence which may be true but that cannot be both true and believed
by the reasoner (Sorensen, 1988).

7Function g must vary directly as the number of true beliefs (t) and inversely as the number of false
beliefs (f), what entails that it is defined for all values of t and f . Also, it must have an upper [lower]
bound in the form of a supremum [infimum] but not a maximum [minimum] (see section 3.1.1). For
simplicity, I work with the function g = (t− f)/(t+ f + c), where c > 0 is a constant.
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4.1 Efficient reasoning

In chapter 1, I have presented a model of a reasoner which provides clear definitions for a

reasoning sequence, the beliefs that a reasoner holds at the limit of a reasoning sequence

(stable beliefs), and the value of function g at the limit of its reasoning sequence. The

pattern of inference of a reasoner is modeled as a function π which updates the set of

(explicit) beliefs of the reasoner. A fact about the pattern of inference of a reasoner is

that the reasoner may perform different inferences from the same premises. In the model,

this fact is expressed using a function π with a numeric parameter (integer) in addition

to the parameters for INPUT and KB. In this context, π(INPUT, KB, 1) models an inference

from INPUT and KB, π(INPUT, KB, 2) models another inference from INPUT and KB, etc.

Then function π determines a reasoning sequence KB0, KB1, . . . , KBi, . . ., where KB0 = KB

is the initial set of explicit beliefs and KBi+1 = π(INPUT, KBi, i + 1). Supposing that the

integer parameter models some order of priority, the reasoning sequence of a reasoner

models how the reasoner would reason from the available information if it had enough

cognitive resources (e.g. time). In this context, the beliefs that a reasoner holds at the

limit of its reasoning sequence (stable beliefs) are the sentences in KBω =
⋃
i

⋂
j≥i KBj.

The value of function g at the limit of a reasoning sequence is limi→∞ g(KBi).

The result of chapters 1 and 3 was that the notion of maximum epistemic rationality

should be defined in terms of the limit of its reasoning sequence (stable beliefs):

Definition 4.1.1 (Maximum epistemic rationality). A reasoner R is maximally

epistemically rational for a logic |x= only if:

(i) R believes all and only the logical consequences of its epistemic situation

(INPUT ∪ KB |x= φ iff φ ∈ KBω);

(ii) R has a nontrivial set of beliefs (∃φ(φ 6∈ KBω));

(iii) R maximizes function g (limi→∞ g(KBi) = sup(g)).

In chapter 1 and 3, I have shown that, for many relevant logics, finite reasoners

may be maximally (epistemically) rational in the sense of having a reasoning sequence

KB0, KB1, ..., KBi, ... with properties (i)−(iii) (see sections 1.4 and 3.2). However, no KBi

84



in a reasoning sequence of a finite reasoner have properties (i) or (iii). About (i), there

exist infinitely many logical theorems, but the KBi of a finite reasoner must be finite (see

section 1.2). About (iii), function g is not maximized by a finite set of explicit beliefs, but

the KBi of a finite reasoner are finite (see section 3.2)8. This fact may be expressed as a

finite reasoner being able to approach maximum (epistemic) rationality at the limit of a

reasoning sequence, but not being able to reach actual maximum (epistemic) rationality9.

There exist conditions which enable a finite reasoner to go further in its reasoning

sequence. For example, there exist purely cognitive conditions, such as having more cog-

nitive resources (e.g. time, memory, etc), which enable a finite reasoner to go further

in a reasoning sequence. Purely cognitive conditions, however, are not directly relevant

to epistemology. In the following, I argue that there exist features which enable a finite

reasoner to go further in its reasoning sequence or even to get ‘closer’ to actual maximum

(epistemic) rationality and which are relevant to epistemology. I argue that how far fi-

nite reasoners can go in a reasoning sequence depends on the efficiency of their patterns

of inference, that finite reasoners with increasingly more cognitive resources can get in-

finitely ‘closer’ to actual maximum (epistemic) rationality having a polynomial pattern of

inference in comparison to an exponential pattern of inference, and that this distinction

is relevant to the investigation of maximum (epistemic) rationality. This is the argument:

(1) How far finite reasoners can go in a reasoning sequence depends on the efficiency of

their patterns of inference.

(2) Finite reasoners with increasingly more cognitive resources can go infinitely further

in a reasoning sequence having a polynomial pattern of inference in comparison to an

exponential pattern of inference.

(3) Finite reasoners with increasingly more cognitive resources can get infinitely ‘closer’

to actual maximum (epistemic) rationality having a polynomial pattern of inference

in comparison to an exponential pattern of inference.

8The value of g(KB) varies directly as the number of true beliefs in KB, then, for all finite KBi, there
exist a KBj such that KBj is just like KBi, but KBj has one more true belief. In this case, g(KBj) > g(KBi).

9The notion of a reasoning sequence was introduced using a counterfactual phrase: ‘how the reasoner
would reason from its epistemic situation if it had enough cognitive resources’.

85



(4) This distinction is relevant to epistemology.

(∴) The patterns of inference of maximally (epistemically) rational finite reasoners must

be polynomial if this is possible.

In (1), the claim is that how far finite reasoners can go in a reasoning sequence depends

on the efficiency of their patterns of inference. The point is that reasoning requires certain

resources which a finite reasoner has only a finite amount of (e.g. time, memory, etc) and

a finite reasoner will stop reasoning at some point of a reasoning sequence because it

lacks the appropriate resources to continue. How far a finite reasoner with fixed cognitive

resources can go in a reasoning sequence depends on the following features of the sequence:

(a) The relative number of inferential steps used in generating each stage of the sequence;

(b) The relative number of explicit beliefs in each stage of the sequence;

(c) The relative number, in each step of the sequence, of conclusions which are retracted

in later stages of the reasoning sequence (Kelly, 1988).

Case (a) is related to time, (b) is related to memory, and (c) is related to both. I will

focus on the relative number of inferential steps, which is the easiest case. An inference is

a sequence of inferential steps, where an inferential step is the execution of an inference

rule for a group of sentences, as, for example, concluding that q from p→ q and p using

modus ponens. Supposing that each inferential step takes time and that every finite

reasoner has an upper bound for time (e.g. life span), executing more direct inferences

allows a reasoner to go further in a reasoning sequence because otherwise it would reach

its upper bound sooner10. Similar arguments may be done regarding cases (b) and (c).

In (2), the claim is that finite reasoners with increasingly more cognitive resources

can go infinitely further in a reasoning sequence having a polynomial pattern of inference

in comparison to an exponential pattern of inference. Consider a resource function r(i),

which measures the amount of some cognitive resource (e.g. time) which is required for

10For example, concluding q from p→ q and p using modus ponens (one step) is a more direct inference
than concluding q from a reduction to absurdity of the supposition that ¬q (four).
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a reasoner to reach the stage i of a reasoning sequence. Call this function poln(i) if it is

polynomial or exp(i) if it is exponential11. In the following, ‘polynomial pattern of infer-

ence’ denotes a pattern of inference with polynomial resource function and ‘exponential

pattern of inference’ denotes a pattern of inference with exponential resource function.

Consider the following theorem (see proof C.5):

lim
i→∞

exp(i)

poln(i)
=∞ (4.1)

Theorem 4.1 states that as one advances in a reasoning sequence, the difference in

the amount of cognitive resources that exp(i) and poln(i) require approaches infinity.

Consider a finite reasoner R with resource function r(i) and upper bound u for some

cognitive resource (e.g. time). Then R is able to reach stage i of a reasoning sequence

iff r(i) ≤ u. There does not exist a priori limitations of considering finite reasoners with

increasingly larger upper bounds for a cognitive resource (as long as it remains finite).

For any u, there exists a finite reasoner with upper bound u′ such that u′ > u. Then

theorem 4.1 has the consequence that, as we consider finite reasoners with increasingly

more cognitive resources, they can go infinitely further in a reasoning sequence having a

polynomial pattern of inference in comparison to an exponential pattern of inference12:

lim
u→∞

max({i|poln(i) ≤ u})
max({i|exp(i) ≤ u})

=∞, (4.2)

where u is the upper bound for a cognitive resource and i is a stage in a reasoning sequence.

In (3), the claim is that finite reasoners with increasingly more cognitive resources can

get infinitely ‘closer’ to actual maximum (epistemic) rationality having a polynomial pat-

tern of inference in comparison to an exponential pattern of inference. The conclusion of

the previous paragraph is that finite reasoners with increasingly more cognitive resources

can go infinitely further in its reasoning sequence having a polynomial pattern of infer-

11The function r(i) is polynomial iff it may be represented as an expression of the kind O(ic), where c

is a constant. The function is exponential iff it must be represented as an expression of the kind O(2c
i

),
where c > 0 is a constant (see appendix B.1.1 for a survey on computational complexity theory).

12The expression max({i|poln(i) ≤ u}) is poln(u) and max({i|exp(i) ≤ u}) is log(u). Then it is the

case that limi→∞
poln(u)
log(u) =∞, where log(u) is a function of the kind O(log(u)) (see proof C.6).
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ence in comparison to an exponential pattern of inference. As a consequence, we may say

that finite reasoners with increasingly more cognitive resources can get infinitely ‘closer’

to actual maximum (epistemic) rationality having a polynomial pattern of inference in

comparison to an exponential pattern of inference. The idea of being ‘closer’ to the limit

of a infinite sequence does not make sense for any finite difference of positions in the

sequence, but the difference that we are considering is infinite at the limit. In this case,

I think that it makes sense to say that finite reasoners with increasingly more cognitive

resources can get infinitely ‘closer’ to actual maximum (epistemic) rationality having a

polynomial pattern of inference in comparison to an exponential pattern of inference.

In (4), the claim is that this distinction is relevant to epistemology. This is the case

for several reasons. The first reason is that this distinction does not seems to be merely

quantitative (is infinite a number?) and, even if it was the case, it would be ‘large enough’

to be given special attention. The second reason is that, even if maximum (epistemic)

rationality is defined using the limit of a reasoning sequence, actual maximum (epistemic)

rationality is of interest to epistemology. The third and more important reason is that

having more cognitive resources often enables one to be in a better epistemic position, but

it is exactly when we consider finite reasoners with increasingly more cognitive resources

that this distinction arises. Finally, exponential patterns of inference are often correlated

with brute-force search and lack of deep understanding whereas polynomial patterns of

inference are often correlated with deep understanding:

The motivation for accepting this requirement is that exponential algorithms
typically arise when we solve problems by exhaustively searching through a
space of solutions, what is often called a brute-force search. Sometimes brute-
force search may be avoided through a deeper understanding of a problem,
which may reveal polynomial algorithms of greater utility (Sipser, 2012, p.285).

But, if this correlation is correct, to require reasoners to approach maximum (epis-

temic) rationality through deep understanding (if possible) is to require maximally (epis-

temically) rational finite reasoner to have polynomial patterns of inference (if possible).

In this context, maximum (epistemic) rationality must have the following requirement:

(iv) R’s pattern of inference is polynomial if possible.
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Requirement (iv) does not deal with all differences in efficiency, but only with the

difference between having a polynomial and having an exponential pattern of inference.

This is the case because the difference between polynomial and exponential patterns of

inference is qualitative whereas the difference between more and less efficient patterns

of inference in general may be merely quantitative13. The clause ‘if possible’ is in place

because, in some cases, it is not possible for a finite reasoner with polynomial pattern of

inference to approach maximum (epistemic) rationality (see appendix B.1.2).

The inclusion of requirement (iv) in the definition of maximum (epistemic) rationality

may be criticized. The first objection would be that the distinction between polynomial

and exponential patterns of inference does not track efficiency correctly. The problem

would be that some exponential patterns of inference are, for all practical purposes, more

efficient than some polynomial patterns of inference. For example, for all practical pur-

poses, an exponential pattern of inference of the kind O(1.00001i) is (much) more efficient

than a polynomial pattern of inference of the kind O(i10000). This is true, but, as much

as practical considerations are of interest of epistemology, the main concern of our inves-

tigation is the maximum bounds of (epistemic) rationality for finite reasoners. A finite

reasoner may only approach maximum (epistemic) rationality at the limit of a reason-

ing sequence and, in this case, a polynomial pattern of inference is always more efficient

than an exponential pattern of inference. Then, for our concerns, the distinction between

polynomial and exponential patterns of inference tracks efficiency correctly.

Another objection would be that epistemic reasoning is supposed to assist practical

reasoning, but approaching maximum (epistemic) rationality at the limit of a reasoning

sequence may not assist practical reasoning at any point of the sequence (Kitcher, 1993).

In other words, the objection would be that maximum (epistemic) rationality in this

framework is not interruptible in the sense that if, at some stage of a sequence, a maximally

(epistemically) rational reasoner must stop reasoning and act, it may not be reasonable

to act on the (explicit) beliefs the reasoner holds at that stage (Pollock, 1995, p. 272).

13In the literature, this fact is often expressed as general efficiency being relative to implementation
whereas the distinction between polynomial and exponential being independent of almost all choices of
implementation (see appendix B.1.1).
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I think that this objection is correct: the notion of maximum (epistemic) rationality

defined in terms of the limit of a reasoning sequence is, in fact, insensible to considerations

about interruptibility. Consider the following example:

Let R1 be a reasoner that is both interruptible and d.e.-adequate [a notion
‘close’ to maximum rationality for a nonmonotonic logic]. Let R2 be just
like R1 except that for the first million [or googolplex, etc] steps it draws
conclusions purely at random, and then, after 1 million [or googolplex, etc]
steps it withdraws all those randomly drawn conclusions and begins reasoning
as R1 (Pollock, 1995, p. 146).

In the example, R1 and R2 both approach maximum (epistemic) rationality at the

limit of their reasoning sequence. Nevertheless, the pattern of inference of R2 is not

interruptible: it is not reasonable to act according to the (explicit) beliefs of R2 in any

practical situation (because they are random). Then, if maximum (epistemic) rationality

must be interruptible (as it seems to be the case), interruptibility is indeed a problem for

understanding this notion in terms of the limit of a reasoning sequence.

In this context, maximum (epistemic) rationality must have the following requirement:

(v) R’s patterns of inference are interruptible,

Requirement (v) is not satisfactory (ad hoc?) because it is very difficult to provide

precise conditions of interruptibility. Pollock’s use of this notion suggests that a pattern

of inference is interruptible iff the relevant inferences are performed quite early in the rea-

soning sequence, but this is quite vague. I do not have a good theory of interruptibility

and I don’t think that this theory is possible with the tools that we have introduced so far.

First, the problem of interruptibility is not banal. In fact, the problem of interruptibility

is closely related to the frame problem, which is the problem of determining which infer-

ences must be performed/ignored in the process of making some decision (Dennett, 1984).

Second, the very notion of interruptibily seems to be relative to a class of problems because

which are the relevant inferences depends on which problem we are trying to solve. In this

context, instead of trying to deal with interruptibility using formal requirements about

patterns of inferences, I will attempt to deal with this problem indirectly: by observing

and comparing how different reasoners deal with some class of problems.
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4.2 Computational epistemology

In this section, I present more formally the research program of computational episte-

mology (CE). CE investigates maximum (epistemic) rationality for finite reasoners taking

into account both the requirements for (iv) efficiency and (v) interruptibility. In CE, the

requirements for efficiency and interruptibility are dealt with by considering reasoners as

agents dealing with some relevant problems. Informally, an agent is a reasoner with two

extra components: a set of goals and a function which has a set of explicit beliefs (KB)

and a set of goals as inputs and which returns an action. Which are the actions that this

function may return depends on the environment in which the agents are in. An environ-

ment is composed of an initial state and a function which updates the current state of the

environment given actions. A problem is an environment with two extra components: a

goal-state (a state in which the problem is solved) and a function which assigns costs to

solutions (e.g. time). I will explain these notions more formally in the next sections.

Roughly, an investigation in CE is carried out by choosing and describing a relevant

class of problems; choosing and describing hypotheses of agents which would exhibit

maximum (epistemic) rationality in dealing with problems in that class; designing and

implementing computer simulations of the agents solving problems in that class; and by

analyzing the data from the simulation given some parameters related with requirements

(i)−(v) for maximum (epistemic) rationality. The analysis enables the compare the agents

regarding maximum (epistemic) rationality.

An investigation in CE is composed of four stages:

1. The choice and formalization of a relevant class of problems.

2. The choice and formalization of hypotheses of agents which would exhibit maximum

(epistemic) rationality problems in that class.

3. The designing and implementation of computer simulations of the agents solving

problems in that class.

4. The analysis of the data from the simulation given parameters related with require-

ments (i)−(v) for maximum (epistemic) rationality.
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4.2.1 Class of problems

Using the methods of CE for investigating maximum (epistemic) rationality regarding all

possible problems is a strenuous or even an impossible task14. On the other hand, the

notion of maximum (epistemic) rationality cannot be tied to few and specific problems15.

Then an investigation in CE should be carried out in terms of a relevant class of problems.

In this case, we talk about maximum (epistemic) rationality for a class of problems.

The choice of a class of problems follows two guidelines. First, the class of problems

must be as abstract as possible in the sense of having states with as few features as possible.

This facilitates the design and implementation of the problem in a computer simulation

and the analysis of the data from the simulation. Second, the class of problems must

have the essential features of a relevant class of real-world problems (e.g. reasoning under

uncertainty). This would make results about a class of problems relevant to maximum

(epistemic) rationality in general.

If the class of problems in a class of search problems16, the class of problems may be

described using the following formalization proposed by Russell and Norvig (2010, p. 66):

• The initial state of the environment, including the initial state of the agent;

• A description of the actions which are available to the agent in a given state;

• A transition function which updates the state of the environment given the current

state and an action17;

• A goal test function, which determines whether the current state is a goal state;

14First, it is dubious if there exists an agent which exhibits maximum (epistemic) rationality for all
possible problems. In addition, the number of problems is too large for any practical testing (simulation).

15Suppose that the pattern of inference of an agent returns a contradiction for some specific input.
That agent may exhibit maximum (epistemic) rationality for the few and specific problems in which that
specific input does not show up while exhibiting irrationality for all the other problems.

16A search problem is a problem which requires identifying a solution in a possibly infinite solution
space. This contrasts with a decision problem, which merely asks whether a given answer is a solution.

17Together, the initial state, the available actions, the and transition function implicitly define the
set of all states reachable from the initial state given any possible sequence of actions (the state space).
The state space forms a graph in which the nodes represent states and the links represent actions.
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• A path cost function, which accepts a list of actions as input and returns a number.

The path cost assigns a numeric cost to each solution for the problem18.

A class of problems is composed of the problems with the same available actions,

transition function, goal test, and path cost function, but different initial state.

4.2.2 Agent

The hypotheses of agents which would exhibits maximum (epistemic) rationality for the

chosen class of problems may be formed in different ways:

1. Using the epistemologist’s intuitions about how to solve problems in that class.

2. Using empirical data about how humans solve problems in that class.

3. Using existing hypotheses about the rational way of solving problems in that class.

In (1), a study in CE starts exactly as a study in traditional epistemology starts: with

epistemic intuitions. The using of epistemic intuitions in stating hypotheses is justified

by the fact that a maximally (epistemically) rational agent may be a version of ourselves

(it may act in the way we would act in ideal conditions) and our intuitions may reveal the

way we would act in these conditions. The hypotheses are not guaranteed to be correct

because the more complex are the problems that we are dealing with, the more confused

our intuitions tend to be19. The difference in how CE and traditional epistemology use

intuitions is that, in CE, intuitions play a merely heuristic role: they are used in stating

hypotheses that are tested using other means.

In (2), the hypotheses are derived from empirical data about how humans or other

animals deal with a class of problems. The reason why using empirical data may be

interesting in constructing hypotheses in CE is that humans are the kind of agent known

to be closer to exhibiting maximum (epistemic) rationality for most classes of problems20.

18A solution for a problem is a sequence of actions which defines a path from the initial state to a goal
state. The quality of a solution is measured by its cost, where the optimal solution has the lowest cost.

19There are known cases in which our intuitions simply get lost (e.g. epistemic paradoxes).
20There are classes of problems for which other animals perform better than humans: for example,

chimpanzees surpass humans in certain memory tasks (Inoue and Matsuzawa, 2007).
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In this context, the way humans or deal with some class of problems is a good (but not

infallible) guide to how a maximally rational agent would deal with such class of problems.

However, empirical data about humans do not always describe maximum (epistemic)

rationality because humans are known to commit systematic mistakes (cognitive biases)

in reasoning (see Pohl, 2004). Again, empirical data plays a heuristic role within CE.

In (3), the hypotheses are formed from existing theories in epistemology. In that case,

I think that the investigation has a better start: generally, theories in epistemological

literature have already been tested and shaped from years of discussion and refinements.

This path is also interesting because comparing existing hypotheses for maximum (epis-

temic) rationality may help enriching long standing disputes in the field. This is the case

because CE provides epistemology with consideration about efficiency (see section 4.1).

As I have said, an agent is a reasoner with two extra components: a set of goals

and a function which has a set of explicit beliefs (KB) and a set of goals as inputs and

which returns an action. The action that the function may return must be among the

actions available in the chosen class of problems. The investigation that I am pursuing is

focused only in epistemic reasoning and dealing with agents (instead of plain reasoners)

may overcomplicate the study. In this context, we need to somehow ‘neutralize’ the extra

components of agents. The first step is to use the same, reasonable, action function for

all agents used in the investigation21. The second step is to homogenize the goals of all

agents used in the investigation. I will assume that the goals of all agents used in the

investigation are down to three: (i) maximizing function g; (ii) staying alive; and (iii)

fulfilling the goal of the chosen class of problems. Goal (i) is obviously an epistemic goal

and goal (ii) is, in some sense, a consequence of goal (i) (dead agents have zero (true)

beliefs, then, maximizing function g implies staying alive). The non-epistemic goal (iii) is

important in dealing with the interruptibility requirement: my claim is that if a pattern

of reasoning enables an agent to act as to fulfill the (non-epistemic) goal of the chosen

class of problems, then it is ‘interruptible enough’ for that class of problems.

21For example, in the literature rational practical reasoning is often modeled as an maximizing expected
utility (see Weirich, 2010; Sobel, 1989).
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4.2.3 Simulation

The computer simulation of how agent deals with a class of problems combines informa-

tion from the description of the class of problems with information from the description of

the agent. There exist different paradigms and programming languages in which the sim-

ulation may be designed and implemented22, however, if the chosen class of problems and

the agents are described using the classical tools of logic and mathematics, the simulation

will probably be implementable in most common programming languages.

The simulation of how an agent deals with a problem works as a loop. The loop starts

with the environment outputting information about its current state to the agent, which

updates its beliefs, executes the necessary amount of reasoning, and outputs an action

to the environment, which updates its current state and reinstates the loop. The loop

stops when the goal test returns positive or when the agent dies. In order to produce data

from the simulation, some tests (if statements) and counters (variables) may be included

within the loop. For example, one may include tests and counters for (i) whether the

agent solves the problem (i.e. reaches a goal state), (ii) the cost of the solutions generated

by the agent, (iii) the time and memory requirements of the agent’s patterns of inference.

Since maximum (epistemic) rationality cannot be tied up to specific problems, the

data from the simulations of individual problems must be generalized to the class of prob-

lems. This may be done by simulating a large number of randomly generated problems in

the class and averaging over the results. In addition, most of the requirements for maxi-

mum (epistemic) rationality deals with infinite quantities (infinitely many truths, logical

consequences, etc), but infinite quantities cannot be directly implemented in a computer

simulation. For example, the maximization of function g depends on the existence of

infinitely many truths available to be believed, but implementable environments have

only finitely many features. In order to deal with this issue, one can randomly generate

problems according to the size of their environment and check how the averaged values

change as the size of the environments grows. Then one can extrapolate the results using

the limit of this sequence.

22There are imperative languages (e.g. Fortran, BASIC), functional (e.g. LISP, Haskell), logic-based
(e.g. Prolog), and object oriented (e.g. C++, Java), etc (see Louden, 2002).
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4.2.4 Analysis

In analyzing data from the simulation, one is able to compare the results for some param-

eters related to the requirements for maximum (epistemic) rationality, as, for example:

The value of function g: The most important goal for maximum (epistemic) ratio-

nality is the maximization of function g. Then the epistemologist must check to which

value the agent’s function g converges as the size of the environment grows.

Accuracy rate: In order to evaluate the agent towards the non-epistemic goal, one

must check how often the agent solves problems as their difficulty (size) grows. This

value needs not to be maximum, but only high enough for dealing with interruptibility.

Solution cost: The meaning of the cost of a solution varies from problem to problem,

but the measurement is always of the same kind: one must include in the code a variable

related with the cost of each action and check the final average value of the variable. In

order to deal with interruptibility, the solution cost must grow not so fast (polynomially?)

as the size of the problems grows23.

Benchmarking: To ‘benchmark’ ordinarily means to write a program for an algorithm,

run it on a computer, and measure speed in seconds and memory in consumption of bytes.

Benchmarking can be unsatisfactory because it is too specific: it measures the performance

of a particular program written in a particular language, running on a particular computer,

with a particular compiler and particular input data. The technique may be interesting,

however, when one is dealing with patterns of inference that are too complex to perform

analytic analysis. Also, there are clever ways to benchmark. One may use random input,

include in the code some variables related to the number of inferential steps (time) or

beliefs (memory), then run the simulation in several trials and plot the average value

variables as a function of the size of the input. In plotting the graph, one is able to

evaluate the kinds of growth of that variable: polynomial, exponential, etc24.

23The cost helps in dealing with interruptibility because, for an agent, it is always possible to gather
more information before perform some actions. But, if there exist a cost for gathering information,
the agent must deal with the trade-off between gather more information and acting upon a conclusion.

24Although complexity analysis is often made using worst-case analysis, there exists a large literature
about average-case analysis (see Bogdanov and Trevisan, 2006). See appendix B.1.1 for a survey on
computational complexity theory.
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The measurement of the value of function g is relevant for the evaluation of epistemic

rationality (requirement (iii)). The assessment of time and space complexity is relevant to

deal with efficiency (requirement (iv)). The measurement of the accuracy rate for the non-

epistemic goal and of the cost are important to dealing with interruptibility (requirement

(v)). Note that I didn’t list tests for believing all and only the logical consequences of an

epistemic situation (requirement (i)) and for having a nontrivial set of beliefs (requirement

(ii)). These requirements are ‘easily’ checked with analytical means (as in chapter 1).

In other words, this requirement must be checked in choosing the hypotheses for agents.

In comparing agents regarding these features, it is possible to assess which of then is

closer to maximum (epistemic) rationality for the chosen class of problems.

4.3 Discussion

Most of the discussion about the features of CE was made in the introduction of the

dissertation. There, I have argued that:

1. CE is (part of) a normative research program;

2. CE employs well-stablished methods and provides a bridge between methods and

results of traditional, naturalized, and formal epistemologies;

3. CE construes epistemology as an autonomous discipline;

4. CE provides epistemology with a new kind of consideration (about efficiency), which

may help enriching long standing disputes in the field.

I also argued that these are desirable features for a research program in epistemology.

There exists a diffuse field of CE in the literature (e.g. Pollock, 1995), but that field still

lacks proper justification and presentation. In this chapter, I have intended to do both.

The best argument for the relevance of CE is to show a case in which two theories prescribe

otherwise equally reasonable patterns of inference which differ only in efficiency. Then

show how the results of CE may help enriching the discussion. I make this case in chapter

5, where I present an example of investigation in CE about reasoning under uncertainty.
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Chapter 5

Reason v the monster of uncertainty

You just let the machines get on the adding up and we’ll
take care of the eternal verities. Under the law, the Quest
for Ultimate Truth is quite clearly the inalienable prerog-
ative of philosophers! Any bloody machine goes and ac-
tually finds it and we’re straight out a job, aren’t we?
We demand rigidly defined areas of doubt and uncertainty!

Douglas Adams, The Hitchhiker’s Guide to the Galaxy .

In this chapter, I provide an example of investigation in computational epistemology.

My aim is to show how considerations about computational complexity may help en-

riching long-standing disputes in epistemology. An example of a long-standing dispute in

epistemology is that about the most adeqate model for maximum rationality for uncertain

reasoning1. The formal investigations about uncertain reasoning may be organized in two

broad categories (see Spohn, 2002):

1. Bayesian epistemology (Joyce, 2011; Williamson, 2010);

2. A divided lot of non-probabilistic frameworks such as:

(a) the theory of defeasible reasoning (Pollock, 1995);

(b) the AGM theory of belief revision (Gärdenfors, 1988);

(c) the theory of rank functions (Spohn, 1988);

(d) etc2.

1‘Uncertain reasoning’ meaning reasoning from uncertain premises or achieving uncertain conclusions.
2Other two examples of non-probabilistic frameworks are Dempster-Shafer theory (Shafer, 2010) and

the certainty factors model (Heckerman and Shortliffe, 1992).
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In this chapter, I compare how theories in these two classes model maximum rationality

for uncertain reasoning. Within Bayesian epistemology, I focus on subjective Bayesian-

ism (Joyce, 2011). Within the non-probabilistic frameworks, I focus on the theory of

defeasible reasoning (Pollock, 1995). In order to compare how these theories model max-

imum rationality, I introduce an epistemic version of the Wumpus World (WW), a class

of problems described in Russell and Norvig (2010) as a tool for investigating uncertain

reasoning. I design agents based on these models, implement these agents in a computer

simulation of the epistemic WW, and analyze the data from the simulation.

In section 5.1, I make a survey on Bayesian epistemology. I discuss the notions of

degrees of belief, of maximally rational degrees of belief, and of a maximally rational up-

date of degrees of belief. In section 5.2, I make a survey on theory of defeasible reasoning.

I discuss the notions of (conclusive, defeasible) reasons, of (rebutting, undercutting) de-

featers, and of a maximally rational computation of belief statuses (undefeated, defeated).

In section 5.3, I describe the epistemic WW. Also, I describe the general features of agents

based on the Bayesian and defeasible models. In section 5.4, I implement these agents in

a computer simulation of the epistemic WW and analyze the data from the simulation. I

analyze how much these agents succeed in solving problems in that class, the cost of their

solutions, and the computational complexity of the patterns of inference of these agents.

5.1 Bayesian epistemology

Roughly, Bayesian epistemology is the use of developments in theory of probability for

addressing problems in epistemology. Bayesian epistemologists often model maximum

rationality as the generation and update of degrees of belief according to the principles of

probability. The features of the model are (Joyce, 2011, p. 17-18):

1. beliefs are modeled as having degrees (degrees of belief);

2. the degrees of belief of a maximally rational reasoner express probabilities;

3. a maximally rational reasoner updates its degrees of belief given new information

using some principle of probability (e.g. principle of conditionalization).
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The traditional definition of what it means for a reasoner to have a given degree of

belief is connected with the betting behavior of the reasoner as follows (Talbott, 2013):

Definition 5.1.1 (Degrees of belief (pr(φ))). A reasoner R is said to have a degree

of belief x on a sentence φ (pr(φ) = x) iff R would buy a $1 wager on φ for a price equal

or less (but not greater) than $x and would sell such a wager for a price equal or greater

(but not less) than $(1− x).

Bayesian epistemologists maintain that the degrees of belief of a maximally rational

reasoner must express probabilities. A probability function for a language L is a function

pr : L → R satisfying the following constraints for all φ, ψ ∈ L (Demey et al., 2014)3:

(i) pr(φ) ≥ 0 (lower bound);

(ii) If |c= φ, then pr(φ) = 1 (tautologies);

(iii) If |c= ¬(φ ∧ ψ), then pr(φ ∨ ψ) = pr(φ) + pr(ψ) (finite additivity)4.

If constraints (i)−(iii) hold, then the following are theorems given arbitrary φ, ψ ∈ L:

pr(¬φ) = 1 − pr(φ) (negation)5; pr(φ) ≤ 1 (upper bound)6; if |c= φ ↔ ψ, then pr(φ) =

pr(ψ) (equivalence)7; and pr(φ ∨ ψ) = pr(φ) + pr(ψ)− pr(φ ∧ ψ)8.

3I think that the most adequate logic for expressing (i)−(iii) would be ‘the logic of a priori knowledge’

|x= (see chapter 2), but the exact properties of |x= are not easy to come by. Since |x= is most likely

supraclassical, I will state (i)−(iii) in terms of classical logic, where |c= is the classical consequence relation.
4Probability functions are usually defined for a σ-algebra of subsets of Ω and required to satisfy

countable additivity. In logical contexts, it is more natural to define probability functions for the logic’s
object language (Williamson, 2002). Then finite additivity suffices because |c= is finitary (Talbott, 2013).

5It is the case that |c= ¬(φ ∧ ¬φ), what entails that pr(φ ∨ ¬φ) = pr(φ) + pr(¬φ) (finite additivity).

But |c= (φ ∨ ¬φ) and pr(φ ∨ ¬φ) = 1 (tautologies). Then pr(φ) + pr(¬φ) = 1 and pr(¬φ) = 1− pr(φ).
6Suppose that pr(φ) > 1. Since pr(φ) = 1 − pr(¬φ) (negation), the supposition entails that 1 −

pr(¬φ) > 1, what entails that −pr(¬φ) > 0 and that pr(¬φ) < 0. But this is a contradiction because
pr(¬φ) ≥ 0 (lower bound). Therefore, pr(φ) ≤ 1.

7Suppose that |c= φ↔ ψ. Then |c= ¬(φ∧¬ψ) and |c= ¬(¬φ∧ψ). Also, |c= (¬φ∨ψ) and |c= (φ∨¬ψ) (De

Morgan). Since |c= ¬(φ ∧ ¬ψ), then pr(φ ∨ ¬ψ) = pr(φ) + pr(¬ψ) (finite additivity). Then pr(φ ∨ ¬ψ) =

pr(φ)+1−pr(ψ) (negation). But |c= (φ∨¬ψ), then pr(φ∨¬ψ) = 1 (tautologies). Then pr(φ)+1−pr(ψ) = 1,
what entails that pr(φ) = pr(ψ).

8It is the case that |c= ¬(φ ∧ (¬φ ∧ ψ)), what entails that pr(φ ∨ (¬φ ∧ ψ)) = pr(φ) + pr(¬φ ∧ ψ)

(finite additivity). But it is also the case that |c= ((φ ∨ ψ) ↔ (φ ∨ (¬φ ∧ ψ))), what entails that (a)

pr(φ∨ψ) = pr(φ)+pr(¬φ∧ψ) (equivalence). It is also the case that |c= ¬((φ∧ψ)∧(¬φ∧ψ)), what entails

that pr((φ∧ψ)∨ (¬φ∧ψ)) = pr(φ∧ψ)+pr(¬φ∧ψ) (finite additivity). But |c= (ψ ↔ ((φ∧ψ)∨ (¬φ∧ψ))),
then pr(ψ) = pr(φ ∧ ψ) + pr(¬φ ∧ ψ) (equivalence). Then pr(¬φ ∧ ψ) = pr(ψ) − pr(φ ∧ ψ). Therefore,
pr(φ ∨ ψ) = pr(φ) + pr(ψ)− pr(φ ∧ ψ) (substituting pr(¬φ ∧ ψ) in (a)).
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Bayesian epistemologists maintain probabilism: the claim that the degrees of belief

of a maximally rational reasoner must express probabilities in the sense of fulfilling con-

straints (i)−(iii)9. This claim is often supported using Dutch Book arguments (DBAs)

(e.g. Ramsey, 1926), but there also exist non-pragmatic defenses of probabilism (Joyce,

1998; Pettigrew, 2015a)10.

Bayesian epistemologists also maintain that a maximally rational reasoner must update

its degrees of belief upon new information conforming to some principle of probability.

Most often, (subjective) Bayesianists defend that a maximally rational reasoner must

update its degrees of belief conforming to the principle of conditionalization (e.g. Joyce,

2011, p. 34)11. The definition of the principle of conditionalization depends on the notion

of the conditional probability of φ given ψ (i.e. pr(φ|ψ)):

pr(φ|ψ) =
pr(φ ∧ ψ)

pr(ψ)
, where pr(ψ) 6= 0. (CP)

Then pr(φ ∧ ψ) = pr(ψ|φ) × pr(φ) (conjunction)12. And pr(ψ) = pr(ψ|φ) × pr(φ) +

pr(ψ|¬φ)× pr(¬φ)13. The principle of conditionalization is the following (Talbott, 2013):

Definition 5.1.2 (Principle of conditionalization). In acquiring a new piece of in-

formation ψ, a maximally rational reasoner must (i) update its degree of belief on ψ to 1

and (ii) update its other degrees of belief ψ conditionalizing on φ (pr(φ) = pr(φ|ψ)).

The claim that a maximally rational reasoner must update its degrees of belief upon

new information conforming to the principle of conditionalization is also often supported

using DBAs (Teller, 1976), but there also exist non-pragmatic defenses of this claim

9Objetive Bayesianism often maintain additional restrictions for the degrees of beliefs of a maximally
rational reasoner. For example, some objective Bayesians maintain that the degrees of belief of a maxi-
mally rational reasoner must conform to the principle of maximum entropy (Williamson, 2010).

10A DBA shows that a reasoner whose degrees of belief violate some principle of probability is vulnerable
to having a Dutch Book made against him, i.e. a combination of wager deals which the reasoner would
accept but which entails a sure lost. In the traditional interpretation, a DBA states that having degrees
of belief which do not express probabilities is pragmatically self-defeating (Talbott, 2013).

11Objective Bayesianists often claim that the degrees of belief of a reasoner must be generated and
updated using other principles, as the principles of calibration and maximum entropy (Williamson, 2010).

12Since pr(ψ|φ) = (pr(ψ∧φ))/pr(φ) (CP) and |c= ((φ∧ψ)↔ (ψ∧φ)), then pr(φ∧ψ) = pr(ψ|φ)×pr(φ).
13It is the case that |c= (ψ ↔ ((ψ∧φ)∨(ψ∧¬φ))) and |c= ¬((ψ∧φ)∧(ψ∧¬φ)). Then pr((ψ∧φ)∨(ψ∧¬φ)) =

pr(ψ ∧ φ) + pr(ψ ∧ ¬φ) (finite additivity) and pr(ψ) = pr(ψ ∧ φ) + pr(ψ ∧ ¬φ) (equivalence). But then
pr(ψ) = pr(ψ|φ)× pr(φ) + pr(ψ|¬φ)× pr(¬φ) (conjunction).
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(Easwaran, 2013; Pettigrew, 2015a). In the following, let ‘Bayesian reasoner’ denote a

maximally rational reasoner according to Bayesian epistemology.

P (0, 0) B(0, 1) P (0, 2)

B(1, 0) P (1, 1)

P (2, 0)

pr(P (x, y)) = .2 pr(B(x, y)|
∨
P (±x,±y)) = 1

pr(B(x, y)|
∧
¬P (±x,±y)) = .01

Figure 5.1: A typical belief network. In the graph, nodes represent sentences and edges
represent dependency between sentences. The table contain degrees of belief for all nodes
without parents and conditional degrees of belief for all the other nodes given their parents.
The sentence

∨
X(±x± y) means X(x + 1, y) ∨X(x− 1, y) ∨X(x, y + 1) ∨X(x, y − 1)

and
∧
X(±x,±y) means X(x+ 1, y) ∧X(x− 1, y) ∧X(x, y + 1) ∧X(x, y − 1).

The degrees of belief of a Bayesian reasoner may be represented using a belief network.

A belief network is composed of a direct acyclic graph and of a table of degrees of beliefs14.

The nodes of the graph represent sentences and edges represent relations of dependence

between sentences. If there exists an edge from a node φ to a node ψ, then φ is a parent

of ψ and ψ is a descendant of φ. The table contains unconditional degrees of belief for

every node without parents and degrees of belief for every other nodes conditional on

all possible assignments of their parents. In this context, a Bayesian reasoner updates

its degrees of belief upon new information using the following procedure: (i) update the

degree of belief on the new information to 1 and (ii) calculate new degrees of beliefs for

every other sentence in the graph using joint probability tables. The new degrees of belief

on a sentence φ is the sum of the probabilities of each assignment in the table that makes

14A direct acyclic graph is a collection of nodes and directed edges (edges with an associated direction)
with no direct cycles. A directed cycles is a path that loops back to its initial node following the direction
of the edges. It is usually accepted that the essential requirement for the soundness and completeness of
a belief network is that the dependency relations in the graph reflect causality (Pearl, 1988, p. 14).
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φ true divided by the sum of the probabilities of all assignments in the table.

For an example, consider a Bayesian reasoner R with the degrees of belief in figure 5.1.

Suppose that R has acquired the information that ¬P (0, 0), B(1, 0), and B(0, 1). Then R

(i) updates its degrees of belief to pr(P (0, 0)) = 0 and pr(B(1, 0)) = pr(B(0, 1)) = 1; and

(ii) updates the other degrees of belief on using the table 5.1. The new degree of belief on

P (2, 0) is the sum of the probabilities of assignments 1-4 over the total. The new degree

of belief on P (0, 2) is the sum of the probabilities of assignments 1, 3, 5, 7 over the total.

Then pr(P (2, 0)) = pr(P (0, 2)) = .3123. The new degree of belief on P (1, 1) is the sum

of the probabilities of the assignments 1, 2, 5, 6 over the total. Then pr(P (1, 1)) = .8525.

P (2,0) P (1,1) P (0,2) Probability
T T T (.2)3 = .008
T T F (.2)2 × .8 = .032
T F T .2× .8× .2 = .032
T F F .2× (.8)2 × .01 = .00128
F T T .8× (.2)2 = .032
F T F .8× .2× .8 = .128
F F T (.8)2 × .2× .01 = .00128
F F F (.8)2 × (.01)2 = 6.4× 10−5

Table 5.1: Joint probability table for updating the degrees of belief on P (2, 0), P (1, 1),
and P (0, 2) given information that pr(P (0, 0)) = 0, pr(P (1, 0)) = 1, and pr(P (0, 1)) = 1.
This situation is represented in figures 5.1 and 5.5 ((a)). The total probability is .2346.

5.2 Defeasible reasoning

The theory of defeasible reasoning (Pollock, 1995) models uncertain reasoning as the

adoption and retraction of beliefs given reasons and defeaters. Reasoning is uncertain in

the sense that beliefs adopted on the basis of reasons may be retracted later on the basis

of defeaters. Maximum rationality is the correct construction of reasons and defeaters

and the correct assignment of beliefs statuses given the available reasons and defeaters,

where ‘correct’ means ‘as described by the theory’. These are the features of the model:

1. beliefs are modeled as having two possible statuses (undefeated, defeated);

2. a maximally rational reasoner constructs reasons and defeaters correctly;
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3. a maximally rational reasoner assigns beliefs statuses correctly.

The notion of a reason is defined as follows (Pollock, 1995, p. 39):

Definition 5.2.1 (Reason). Γ is a reason for R to believe φ iff if R were to believe φ

on the basis of Γ, then that belief would be justified,

where R is a reasoner and Γ is a set of mental states of R (e.g. beliefs and perceptions).

A reason may be conclusive or defeasible depending on the epistemic support that

it provides. The epistemic support of conclusive reasons cannot be overridden by new

information (defeaters). For example, believing φ → ψ and believing φ is conclusive

reason for believing ψ. The epistemic support of defeasible reasons can be overridden by

the action of defeaters. For example, perceiving an object as red is defeasible reason for

believing that the object is red. This reason is defeasible because its epistemic support

may be overridden, for example, by the information that the object is under red light.

I will assume that conclusive reasons work as described by classical logic. For example,

believing φ → ψ and believing φ is conclusive reason for believing ψ because ψ follows

from φ→ ψ and φ in classical logic. Finding the complete list of defeasible reasons which

yield the most sensible results is a major burden for the theory of defeasible reasoning15.

These are two examples of defeasible reasons (Pollock, 1995, p. 51)16:

Perceptual input: x’s appearing F is defeasible reason for believing F (x).

Statistical syllogism: If r > .5, then believing pr(F |G) > r and G(x) is defeasible

reason for believing F (x) (Pollock, 1995, p. 68)17,

The epistemic support of defeasible reasons may be overridden by the action of de-

featers. The definition of a defeater is as follows (Pollock, 1995, p. 85):

15I think that this investigation cannot be done on a priori basis because such a list is relative to a
class of environments (see chapter 1, section 1.3). For example, the optimal value of r in the statistical
syllogism is relative to class of environments. In this context, computational epistemology is an adequate
framework for investigating the optimal list of defeasible reasons (see chapter 4, section ).

16These are simplified glosses, omitting important qualifiers and details. For example, I am assuming
that all defeasible reasons generate the same amount of epistemic support (see Pollock, 1995, p. 93, for
a discussion about reasons with different degrees of epistemic support).

17These are indefinite probabilities, where pr(F |G) means ‘the proportion of physically possible Gs that
would be F s’. The optimal value of r depends on the environment (.5 is the lowest acceptable value).
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Definition 5.2.2 (Defeater). Γ2 is a defeater for Γ1 as a reason for believing φ iff:

(i) Γ1 is a defeasible reason for believing φ;

(ii) Γ1 ∪ Γ2 is not a reason for believing φ.

A defeater may be a rebutting or an undercutting defeater. Rebutting defeaters attack

the conclusion of a reason. For example, if perceiving at distance what appears to be a

sheep in the field is defeasible reason for believing that there is a sheep in the field, then

hearing from the shepherd that there are no sheep in the field is a rebutting defeater for

that reason. The definition of a rebutting defeater is as follows (Pollock, 1995, p. 85):

Definition 5.2.3 (Rebutting defeater). Γ2 is a rebutting defeater for Γ1 as a reason

for believing φ iff:

(i) Γ2 is a defeater for Γ1 as a reason for believing φ;

(ii) Γ2 is reason for believing ¬φ.

Undercutting defeaters attack the connection between a reason and its conclusion. For

example, if perceiving an object as red is defeasible reason for believing that the object is

red, then learning that the object is under red light is an undercutting defeater for that

reason. Undercutting defeaters are reasons for believing that a reason does not support a

conclusion. The definition of an undercutting defeater is as follows (Pollock, 1995, p.86):

Definition 5.2.4 (Undercutting defeater). Γ2 is a undercutting defeater for Γ1 as a

reason for believing φ iff:

(i) Γ2 is a defeater for Γ1 as a reason for believing φ;

(ii) Γ2 is a reason for believing (Γ1 is not a reason for believing φ).

This is an example of an undercutting defeater (Pollock, 1995, p. 85):

Subproperty defeat: Believing H(x)∧pr(G|F∩H) 6= pr(G|F ) is an undercutting

defeater for the statistical syllogism.
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In the following, let ‘defeasible reasoner’ denote a maximally rational reasoner ac-

cording to the theory of defeasible reasoning. The doxastic state of a defeasible reasoner

may be represented as an inference graph. In the graph, nodes represent sets of mental

states with content represented as sentences and edges represent dependency relations

among mental states of three kinds: (a) conclusive support (arrows), (b) defeasible sup-

port (dashed arrows), and (c) defeat (red arrows). Compound arrows link the union of

nodes to a node. Consider some examples in figure 5.2.

(a)

ψ

φ1 φ2

(b)

ψ

φ1 φ2
(c)

ψ

φ1 φ2

Figure 5.2: (a) {φ1, φ2} is conclusive reason for {ψ}; (b) {φ1} and {φ2} are (independent)
defeasible reasons for ψ; (c) {φ1} and {φ2} are undercut defeaters for {ψ} and rebut each
other. Rebutting defeaters are symmetrical and undercutting defeaters are not18.

In the theory of defeasible reasoning, beliefs are not modeled as having degrees. The

belief statuses of a reasoner towards a sentence φ may have two values: defeated, unde-

feated. Pollock have described several procedures for computing the statuses of beliefs

given an inference graph. Here, I focus on the multiple-assignment semantics (Pollock,

1995). Let the support list of a node φ be composed of all nodes having support edges

toward φ and the defeat list of φ be composed of all nodes having defeat edges towards

φ. Then consider the definitions (Pollock, 1995, p. 308):

Definition 5.2.5 (Initial node). A node is an initial node iff both its support list and

its defeat list are empty.

Definition 5.2.6 (Status assignments). An assignment σ of ‘defeated’ and ‘unde-

feated’ to a subset of the nodes of an inference graph is a status assignment iff:

1. σ assigns ‘undefeated’ to any initial node;

2. σ assigns ‘undefeated’ to a non-initial node φ iff σ assigns ‘undefeated’ to some of

the members of the support list of φ and all defeaters of φ are assigned ‘defeated’;

18In the following, I will drop the set notation.
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3. There does not exist an status assignment σ′ such that σ ⊂ σ′.

The assignment of ‘undefeated’ and ‘defeated’ in a graph is done by supervaluation.

Definition 5.2.7 (Supervaluation). A node is undefeated iff every status assignment

assigns ‘undefeated’ to it; otherwise it is defeated19.

P (0, 0)

01

¬P (0, 0)>

1

B(0, 1)

1

P (0, 2)

1

B(1, 0)

1

P (1, 1)

1

P (2, 0)

1

Figure 5.3: A typical inference graph. In the graph, nodes represent sets of mental states
with content represented as sentences and edges represent dependency relations between
mental states. Arrow represent conclusive support, dashed arrows represent defeasible
support, and red arrows represent defeat. The labels ‘1’ and ‘0’ represent, respectively,
undefeated and defeated.

For an example, consider a defeasible reasoner with an inference graph as shown in

figure 5.3. Roughly, this is how the reasoner would compute its belief statuses. The nodes

>, B(1, 0), and B(0, 1) are initial nodes and, therefore, are undefeated. The node > is a

conclusive reason for ¬P (0, 0), which makes ¬P (0, 0) also undefeated. The defeat list of

P (0, 0) has a node which is undefeated (¬P (0, 0)), then P (0, 0) is defeated. All the nodes

in the support list of P (2, 0), P (1, 1), and P (0, 2) are undefeated (B(0, 1) and B(1, 0))

and these nodes do not have defeaters, then P (2, 0), P (1, 1), and P (0, 2) are undefeated.

19This definition differs from Pollock’s: “A node is undefeated iff the graph contains an argument for
the node which is such that every status assignment assigns an undefeated value to all nodes and links
in the argument; otherwise it is defeated” (Pollock, 1995). I think that Pollock’s definition is too strong
and does not deal well with the case in which there exist defeasible reasons for φ1 and for φ2, φ1 and φ2
rebut each other, and both φ1 and φ2 are reasons for ψ (e.g. φ1 = ‘x is red’, φ2 = ‘x is green’, and ψ = ‘x
is colored’). In this case, I think that ψ is undefeated, but Pollock’s definitions entail that it is defeated.
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5.3 Wumpus World

The Wumpus World (WW) is a well-known class of problems for investigating uncertain

reasoning (Russell and Norvig, 2003, p. 197). The WW is a cave consisting of rooms

connected by passageways and surrounded by walls. Lurking somewhere in the cave is

the Wumpus, a ferocious beast that kills anyone who enters its room. Also, some rooms

contain a bottomless pit that kills anyone who enters the room (except for the Wumpus,

which is too big to fall in). The only mitigating feature of WW is the existence of a heap

of gold hidden somewhere in the cave. The goal of an agent in the WW is to explore the

cave, find the gold, and escape the cave with the gold (without being killed).

0 1 2 3

0 • $

1 .
2

3 •

≈ ∗≈

≈
oo ≈

oo ≈ oo ≈

•
≈ .

oo
oo

Figure 5.4: From left to right, the full map of an instance of WW, the percepts that are
available in that map, and the known features of the map. The symbols mean: • = pit,

=Wumpus, $ = gold, . = agent, ≈= breeze, oo = stench, and ∗ = glitter. The reasoner
has visited the squares in the order (0,0), (1,0), (2,0), (3,0), (2,0), (2,1), (1,1), (1,2), (1,3).
Non-visited squares are in gray. At this point, the reasoner may have a (high degree of)
belief that the Wumpus is located in square (3, 1) and that there exists a pit at (0, 2).

The WW may be represented as a grid of squares, where the square (x, y) is in the xth

line and yth column of the grid (see figure 5.4). The reasoner starts at square (0, 0) facing

right. Every square other than (0, 0) has probability .2 of containing a pit. The Wumpus

and the gold are randomly positioned in a square other than (0, 0) with uniform distri-

bution. Moving around the grid, the agent encounters percepts containing information

about the location of pits, Wumpus, and gold. In the directly (not diagonally) adjacent

squares to a square containing a pit (Wumpus), there exists a breeze (stench). In a square

containing a gold, there exists a glitter. The initial description of WW is the following:
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• pr(P (x, y)) = .2 for (x, y) 6= (0, 0).

• pr(W (x, y)) = pr(G(x, y)) =
# squares -1

# squares
for (x, y) 6= (0, 0).

• If P (x, y), then
∧
B(±x,±y) for existing (±x,±y).

• If W (x, y), then
∧
S(±x,±y) for existing (±x,±y).

• G(x, y) iff Gl(x, y).

The predicates P (x, y), W (x, y), G(x, y), B(x, y), S(x, y), Gl(x, y) mean, respectively,

that there exists a pit, Wumpus, gold, breeze, stench, and glitter at square (x, y).

My goal is to compare two models of reasoning under uncertainty. For that reason, I

will use an epistemic version of WW which has two modifications. The first modification is

that, in addition to finding the gold, an agent in the epistemic WW has the goal of having

the most comprehensive and accurate set of beliefs about the environment. In chapter 3,

I have introduced a function g(t, f) =
t− f

t+ f + a
for evaluating the set of beliefs of a

reasoner (t is the number of true beliefs, f is the number of false beliefs, and a is a small

constant). In this context, it is a goal in the epistemic WW to maximize function g. The

second modification is an additional layer of uncertainty: every square other than (0, 0)

has a probability of .01 of containing a breeze (stench) which is independent of the actual

position of pits (Wumpus)20.

The final description of the epistemic WW is the following:

Performance measure: +1000 for having the gold, +1000 for being alive, −1 for

each action, and +
( t− f
t+ f + a

)
× 1000, where t is the number of true beliefs of the

agent, f is the number of false beliefs of the agent, and a is a constant.

Environment: The agent starts at square (0, 0), facing right. Each square other

than (0, 0) contains a pit with probability .2. Wumpus and gold are placed randomly

20This small probability may be interpreted as the reasoner’s perception having a small probability of
a persisting false positive (i.e. having a persisting perceptual illusion). This modification intends to block
the use of deductive agents in the epistemic WW (e.g. Sardina and Vassos, 2005; Shapiro and Kandefer,
2005; Thielscher, 2005, use deductive agents).
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in a square other than (0, 0) with uniform distribution. In the directly (not diago-

nally) adjacent squares to a square containing a pit (Wumpus), there exist a breeze

(stench). The square containing the gold contains a glitter. Every square other than

(0, 0) has an independent probability of .01 of containing a breeze (stench).

Actuators: The agent is able to move forward, turn left by 90◦, turn right by 90◦,

grab something in the same square, and climb out the cave when at square (0, 0).

The agent dies if it enters a square containing a pit or the Wumpus. Moving forward

has no effect if there is a wall in front of the agent.

Sensors: In a square containing a breeze, the agent will perceive a breeze. In a

square containing a stench, the agent will perceive a stench. In a square containing

a glitter, the agent will perceive a glitter.

In the epistemic WW, the agent has initial information about the rules of the problem

and about its initial conditions. The agent has information about the size of the grid, the

probability of pits in squares other than (0, 0) (.2), the number of Wumpusses and heaps

of gold in the grid (1), that every square adjacent to a pit (Wumpus) contains a breeze

(stench), that the square containing a glitter also contains a gold, and that there exists

an independent probability (.01) of existing a breeze (stench) in squares other than (0, 0).

Also, the agent has the information that it begins at square (0, 0), facing right, without

the gold, and about the consequences of its actions (including the performance measure).

I use matrices of numbers for expressing sentences, where each position in a matrix

represents the corresponding position in the cave. I use different matrices for expressing

sentences about breeze, stench, glitter, pit, Wumpus, and gold. For example, the position

(x, y) in the matrix about pits represent the sentence P (x, y). A ‘1’ in that position means

that the reasoner believes P (x, y), a ‘0’ means that the reasoner believes ¬P (x, y), a ‘.33’

means that the reasoner has a .33 degree of belief on P (x, y), and a ‘null’ means that the

reasoner believes neither P (x, y) nor ¬P (x, y).
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5.3.1 Bayesian reasoner

The design of the Bayesian reasoner follows the principles in section 5.1. The degrees

beliefs of the Bayesian reasoner express probabilities. Then, for example, if the reasoner

has a degree of belief of x in the sentence φ, then it has a degree of belief of 1 − x in

the sentence ¬φ. Also, the Bayesian reasoner updates its degrees of belief using joint

probability tables as shown in section 5.1. The initial degrees of belief of the reasoner are:

(u1) pr(P (x, y)) = .2 for all (x, y) 6= (0, 0).

(u2) pr(W (x, y)) = pr(G(x, y)) =
#squares - 1

#squares
for all (x, y) 6= (0, 0).

(u3) pr(P (0, 0)) = pr(W (0, 0)) = pr(G(0, 0)) = 0.

Sentence (u1) states that, for every square (x, y) other than (0, 0), the reasoner has

initial a degree of belief of .2 that (x, y) contains a pit. Sentence (u2) states that, for every

square (x, y) other than (0, 0), the reasoner has initial degree of belief of
#squares - 1

#squares
that (x, y) contains the Wumpus (gold). Finally, sentence (u3) states that the reasoner

has initial degree of belief of 1 that square (0, 0) does not contain a pit, Wumpus, or gold.

The conditional degrees of belief of the Bayesian reasoner are:

(c1) pr(B(x, y)|
∨
P (±x,±y)) = 1, pr(B(x, y)|

∧
¬P (±x,±y)) = .01;

(c2) pr(S(x, y)|
∨
W (±x,±y)) = 1, pr(S(x, y)|

∧
¬W (±x,±y)) = .01;

(c3) pr(Gl(x, y)|G(x, y)) = 1, pr(Gl(x, y)|¬G(x, y)) = 0.

Sentence (c1) states that if a square is a neighbor of a square containing a pit, it con-

tains a breeze with probability 1; else it contains a breeze with probability .01. Sentence

(c2) states that if a square is a neighbor of a square containing a Wumpus, it contains

a stench with probability 1; else it contains a stench with probability .01. Sentence (c3)

states that a square contains a gold iff it contains a glitter.

(Part of) The belief network of the Bayesian reasoner is represented in figure 5.1. In

encountering new information, the Bayesian reasoner updates its beliefs as following: (i)
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it updates the degree of belief on the new information to 1 and (ii) updates the other

sentences in the belief network using joint probability tables21.

Breeze Pit Stench Wumpus

≈

(a) ≈

0 0 .312

0 .852 .2

.312 .2 .2

oo

oo

0 0 .01

0 .98 ∼ 0

.01 ∼ 0 ∼ 0

(b) ≈

0 0 0

0 0 .545

0 .545 0.2

oo

0 0 0

0 0 .495

0 .495 .01

Figure 5.5: Two different configurations of the WW (lines). The percepts about breeze
and stench and the degrees of beliefs about pits and the Wumpus (columns). The symbols
mean: ≈= breeze, oo = stench, and ∼= approximately. Non-visited squares are in gray.

Consider how a Bayesian reasoner computes its degrees of belief about pits and Wum-

pus in the situations in figure 5.5. The joint probability table for dealing with pits in situ-

ation (a) is in table 5.1. The updated degrees of belief on pr(P (2, 0)) = pr(P (0, 2)) = .312

and pr(P (1, 1)) = .852 are calculated using lines 1-4; 1, 3, 5, 7; and 1, 2, 5, 6 of the table.

The joint probability table for dealing with Wumpus in situation (a) is in table 5.2. The

updated degrees of belief of pr(W (2, 0)) = pr(W (0, 2)) = .01, and pr(W (1, 1)) = .98 are

calculated using lines 1, 2, and 3 of table (a). The joint probability table for dealing

with pits and Wumpus in situation (b) is in table 5.2. The updated degree of belief

pr(P (2, 1)) = .545 and pr(P (1, 2)) = .545 are calculated using lines 1, 2 and 1, 3 of

table (b2). The updated degrees of belief pr(W (2, 1)) = .495, pr(W (1, 2)) = .495, and

pr(W (2, 2)) = .01 are calculated using lines 1, 2, and 3 of table (b1) respectively.

An advantage of the Bayesian reasoner is its high precision. In situation (a) of figure

5.5, for example, the Bayesian reasoner has a much higher degree of belief that (1, 1)

21For efficiency, the reasoner may group in different tables different groups of independent sentences.
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(a)

W (2,0) W (1,1) W (0,2) Probability
T F F .167×(.833)2×.01= .0012
F T F .833× .167× .833 = .1159
F F T (.833)2×.167×.01= .0012
F F F (.8)3×(.01)2 =5.78× 10−5

(b1)

W (2,1) W (1,2) Probability
T F .333× .666 = .222
F T .666× .333 = .222
F F (.666)2×.01= .004

(b2)

P (2,1) P (1,2) Probability
T T .2× .2 = .04
T F .2× .8 = .16
F T .8× .2 = .16
F F (.8)2×.01= .0064

Table 5.2: Joint probability tables for situations in figure 5.5. Table (a) is about Wumpus
in situation (a). The total probability is .1184, pr(W (2, 0)) = pr(W (0, 2)) = .01, and
pr(W (1, 1)) = .98. Table (b1) is about Wumpus in situation (b). The total probability is
.448, pr(W (2, 1)) = pr(W (1, 2)) = .495. Table (b2) is for reasoning about pits in situation
(b). The total probability is .3664, pr(P (2, 1)) = pr(P (1, 2)) = .545.

contains a pit in comparison to (2, 0) and (0, 2). Then the reasoner may choose to go

to (2, 0) or (0, 2), but not to (1, 1). On the other hand, the pattern of inference of the

Bayesian reasoner is very demanding. Joint probability tables may have 2n lines, where

n is the number of sentences in the table.

5.3.2 Defeasible reasoner

The design of the defeasible reasoner follows the principles in section 5.2. The belief

state of the reasoner towards a sentence φ is modeled using three values: believing φ

(1); believing ¬φ (0); and not believing either φ or ¬φ (null)22. The defeasible reasoner

constructs reasons and defeaters and compute its belief statuses as described in section

5.2. In reasoning about pits, the reasoner uses the following rules:

(b1) B(x, y) is defeasible reason for
∧
P (±x,±y).

(b2) ¬B(x, y) is conclusive reason for
∧
¬P (±x,±y).

22‘Believing φ’ means ‘having an undefeated belief that φ’ and ‘not believing φ’ means either ‘having
a defeated belief that φ’ or that φ is not even in the inference graph. The use of null values distinguishes
defeasible and Bayesian agents, but this difference is not essential for our purposes (see note 28).
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Rule (b1) states that perceiving a breeze in a square is defeasible reason for believing

that there exist pits in the adjacent squares. Rule (b2) states that perceiving the absence

of breeze in a square is conclusive reason for believing that there does not exist a pit in

the adjacent squares. In reasoning about Wumpus, the reasoner uses the following rules23:

(s1) S(x1, y1)∧...∧S(xn, yn) is defeasible reason for
∨
W (±x1,±y1)∨...∨

∨
W (±xn,±yn).

(s2) S(x, y) is defeasible reason for ¬W (z, w) for (z, w) 6= (±x,±y).

(s3) ¬W (x, y) for all (x, y) is an undercutting defeater for (s2).

(s4) ¬S(x, y) is conclusive reason for
∧
¬W (±x,±y).

Rule (s1) states that the reasoner has defeasible reason for believing that the Wumpus

is in some square around the stenches it has perceived so far. Rule (s2) states that each

stench gives the reasoner defeasible reason for believing that the Wumpus is nowhere not

around that stench. If the reasoner has encountered some stench not related with the

position of the Wumpus, it is possible that no position of the Wumpus satisfies rule (s2).

In this case, rule (s3) is an undercut defeater for rule (s2). Rule (s4) states that perceiving

the absence of stench in a square is a conclusive reason for believing that the Wumpus is

not in the adjacent squares. In reasoning about gold, the reasoner uses these two rules:

(g1−2) Gl(x, y) (¬Gl(x, y)) is conclusive reason for G(x, y) (¬G(x, y)).

In situation (a) of figure 5.6, part of the defeasible reasoner’s inference graph for

dealing with pits is in figure 5.3. The belief that ¬P (0, 0) is conclusive because of the

definition of WW. Since ¬B(0, 0), the beliefs that ¬P (0, 1) and ¬P (1, 0) are conclusive.

Since B(0, 1) and B(1, 0), the beliefs that P (0, 2), P (1, 1), and P (2, 0) are defeasible. The

reasoning about Wumpus has the same structure for ¬W (0, 0), ¬W (0, 1), and ¬W (1, 0).

Since S(0, 1) and S(1, 0), the beliefs that W (0, 2) ∨ W (1, 1) ∨ W (2, 0), ¬W (0, 2), and

¬W (2, 0) are defeasible. Then the reasoner has the defeasible conclusion that W (1, 1)

23The sentence (x, y) 6= (±z,±w) means (x, y) 6= (z + 1, w) ∧ (x, y) 6= (z − 1, w) ∧ (x, y) 6= (z, w + 1) ∧
(x, y) 6= (z, w − 1) (for existing (±z,±w)).
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Breeze Pit Stench Wumpus

≈

(a) ≈

0 0 1

0 1 null

1 null null

oo

oo

0 0 0

0 1 0

0 0 0

(b) ≈

0 0 0

0 0 1

0 1 null

oo

0 0 0

0 0 1

0 1 null

Figure 5.6: The epistemic state of the defeasible reasoner in two configurations of WW. In
the lines, two different configurations of WW. In the columns, the percepts about breeze
and stench and the beliefs about pits and the Wumpus. The symbols mean: ≈= breeze,
oo = stench. Non-visited squares are in gray. Gray letters mean disjunctions. In (b), the
reasoner believe that the Wumpus either in square (1, 2) or (2, 1).

and ¬W (x, y) for all (x, y) 6= (1, 1). In situation (b) of figure 5.6, the reasoning about pits

has the same structure of the former for ¬P (0, 0), ¬P (0, 1), and ¬P (1, 0). Since ¬B(0, 1)

and ¬B(1, 0), the beliefs that ¬P (0, 2), ¬P (1, 1), and ¬P (2, 0) are conclusive. Since

B(1, 1), the beliefs that P (1, 2) and P (2, 1) are defeasible. The reasoning on Wumpus has

the same structure for ¬W (0, 0), ¬W (0, 1), and ¬W (1, 0). Since ¬S(0, 1) and ¬S(1, 0),

the beliefs that ¬W (0, 2), ¬W (1, 1), and ¬W (2, 0) are conclusive. Since S(1, 1), the belief

that W (1, 2) ∨W (0, 1) is defeasible.

The defeasible reasoner is less precise than the Bayesian reasoner. In situation (a), for

example, the Bayesian reasoner has a much higher degree of belief that (1, 1) contains a

pit in comparison to (0, 2) and (2, 0), where the defeasible reasoner believes indistinctly

that there exist pits in squares (0, 2), (1, 1), and (2, 0). On the other hand, the defeasible

reasoner seems to have a much less demanding pattern of inference than the Bayesian

reasoner. In a situation such as (a), for example, the Bayesian reasoner must construct a

joint probability table with 2n possible assignments, where the defeasible reasoner needs

to execute only about nc rules, where c is a constant.
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5.4 Results

In order to compare the Bayesian and defeasible models of maximum rationality for un-

certain reasoning, I have designed agents based on these models and implemented these

agents in a computer simulation of the epistemic WW. The agents are composed of four

modules: perception, memory, practical cognition, and epistemic cognition. The agents

have the same perception, memory, practical cognition, and part of epistemic cognition,

but differ in the relevant aspects of epistemic cognition. The modules of perception and

memory are very straightforward. Perception simply receives the available percepts from

the environment, encodes the percepts in the format of beliefs (matrices of values as spec-

ified in section 5.3), and stores the corresponding perceptual beliefs in memory. Memory

simply stores beliefs and makes them available for practical and epistemic cognition.

The role of practical cognition is to select actions. In the implementation, the work

of practical cognition is to construct and execute plans (sequences of actions). First,

practical cognition checks whether there is a plan being executed. If there is, it returns

the next action in the plan. If there is not, it formulates a plan and returns the first action

in the plan. In formulating a plan, practical cognition chooses the sub-goal with higher

utility among the following: ‘grab the gold’, ‘get out of the cave’, and ‘move to a fringe

square (x, y)’, where a fringe square is a non-visited square neighbor of a visited square.

The utility of moving to a square (x, y) is calculated differently depending on the agent24;

the utility of grabbing the gold (if the square contains the gold) is 1000; and the utility

of getting out of the cave is 0. The plan for moving to a square is constructed using a

greedy search algorithm with cost computed as number of actions; the plan for grabbing

the gold is composed by the action ‘grab the gold’; and the plan for getting out of the

cave is a plan for moving to square (0, 0) plus the action ‘get out’.

The role of epistemic cognition is to update beliefs on the face of new information.

Epistemic cognition queries memory for the new perceptual beliefs and updates the other

24The Bayesian agent calculates the utility of (x, y) as 1000×pr(G(x, y))−2000×pr(P (x, y)∨W (x, y)).
The defeasible agent assigns utility −2000 if b(P (x, y)∨W (x, y)) = 1, where b(φ) is the value of the belief
on φ; else: it assigns utility 0 if b(G(x, y)) = 0; it assigns utility 500 if b(G(x, y)) = null; and it assigns
utility 1000 if b(G(x, y)) = 1. Epistemic cognition execute these calculations.
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Figure 5.7: The simulation works as a loop. In each iteration, the cave outputs the
available percepts for the agent. Then the agent updates its beliefs and returns an action.
Finally, the cave updates its current state given the action. The loop stops when the
agent dies or gets out of the cave. The labels mean the following: ‘perc’= Perception,
‘eCog’= Epistemic Cognition, ‘mem’= Memory, and ‘pCog’= Practical Cognition.

beliefs given the new information. For simplicity, both agents (Bayesian and defeasible)

encode and update beliefs about breezes, stenches, and glitter in the same ‘all or nothing’

way (0 or 1): if the agent perceives glitter in a square (breeze, stench), it concludes that

there exist glitter in that square (breeze, stench); else it concludes that there does not exist

glitter in that square (breeze, stench)25. Then the Bayesian and defeasible agents share

part of epistemic cognition. These agents differ fundamentally in how they encode and

update beliefs about gold, pits, and Wumpus. The Bayesian agent encodes these beliefs

using floating point numbers between 0 and 1 and updates them using joint probability

tables as described in section 5.3.1. The defeasible agent encodes these beliefs as having

only three values (0, 1, null) and updates them using the rules described in section 5.3.2.

I have implemented the Bayesian and defeasible agents in a computer simulation of

the epistemic WW. I have run the simulation using caves with size from 2 to 10 and 1000

trials for each size26. In each trial, the main control of the simulation calls the environment

constructor for generating a cave with the features described in section 5.3 and the specific

size. Then main control calls the agent constructor for generating a Bayesian or defeasible

25More naturally, the Bayesian agent would deal with breezes, stenches, and glitters using degrees of
belief, but this would only introduce unnecessary calculations. To keep track of the probabilities for
glitter, breeze, or stench does not help in solving instances of WW.

26I have used caves with square dimensions. Then a cave with size s has s lines and s columns.
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agent with the features described in sections 5.3.1 and 5.3.2 (respectively). After that, the

simulation works as a loop (see figure 5.7). In each iteration, main control feeds the agent

with the current percepts, queries the agent for its action, and updates the state of the

cave given the action. The loop stops when the agent dies or gets out of the cave. When

the loop stops, main control returns the final score and the measures for time and space

requirements for that trial. I have averaged the results of the 1000 trials. The results are

depicted in figure 5.8. Roughly, the Bayesian agent has a score which stabilizes around

2000, a polynomial growth in space requirements, and an exponential growth in time

requirements; the defeasible agent has similar score, but a polynomial growth in both

space and time requirements.

Bayesian and defeasible agents achieve very similar scores in WW (figure 5.8, blue).

As the cave grows, the score of both agents stabilizes around 2000 (2/3 of the maximum).

This means that, as the cave grows, these agents tend to find the gold in 2/3 of the trials

and to have five times more true beliefs than false beliefs (g(5f, f) = 2/3). This is a good

result because 21% of the instances of the WW are impossible to solve in the sense of

having the gold surrounded by pits or in the same square as the Wumpus (Russell and

Norvig, 2010, p. 198). Then the Bayesian and defeasible agents are equally accurate (and

accurate ‘enough’) in dealing with instances of WW. This means that these two models

are equally close to maximum rationality for the epistemic WW regarding the generation

of beliefs and the accuracy of those beliefs (value of function g).

In this context, the results about time and space (memory) requirements are specially

relevant for comparing these models27. In the next section, I present these results in

details. In the following, ‘main beliefs’ refers to the beliefs about breezes, stenches, glitter,

pits, Wumpus, gold, visited squares, and about the current state of an agent (its position,

orientation, and whether it has the gold); ‘update procedures’ refers to procedures used

in updating the main beliefs.

27In chapter 4, I have argued that maximum rational patterns of inference must have polynomial space
and time requirements if this is possible (see chapter 4, section 4.1 for the argument and the appendix
B.1 for a survey on computational complexity).
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Figure 5.8: Results of the Bayesian and defeasible agents for caves with size from 2 to
10. In blue, the score of both agents stabilizes around 2000 (2/3 of the maximum).
In magenta, both agents have a polynomial growth in space requirements. In red, the
defeasible reasoner has a polynomial growth in time whereas the Bayesian reasoner has
an exponential growth. The result were averaged over 1000 trials for each size.

5.4.1 Space (memory)

The space requirements were measured in terms of number of bytes stored in memory

instead of number of main beliefs. I have made this choice for two reasons. First, I want

to stress a difference between the Bayesian and defeasible agents: while the defeasible

agent encodes beliefs about gold, pits, and Wumpus using Boolean values (0, 1, null), the

Bayesian agent encodes these beliefs using double values (floating point numbers between

0.0 and 1.0). Since storing a double value requires more bits than a Boolean value, the

Bayesian agent uses, other things being equal, more memory than the defeasible reasoner.

This difference, however, is not relevant to our analysis because we are interested in classes
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of computational complexity (exponential, polynomial, etc) and not in absolute values.

The second reason is that the measurement in terms of bytes is sensible not only to the

amount of memory used for storing the main beliefs, but also to the overall amount of

memory used in the update procedures (e.g. the amount of memory necessary for storing

joint probability tables and support/defeat relations). An issue is that memory used in

the update procedures may be allocated only temporarily (e.g. a joint probability table

may be deleted after used). In this context, the measurement of space considers only the

maximum amount of bytes allocated in memory at the same time through the whole trial.

The amount of bytes necessary for storing the main beliefs grows polynomially on

the size of the cave for both Bayesian and defeasible agents. The beliefs about breezes,

stenches, glitter, pits, Wumpus, gold, and visited squares are expressed as values in a

matrix with the same dimensions of the cave. Then the maximum number of each kind

of these beliefs is s2, where s is the size of the cave28. The number of beliefs about the

current state of an agent is constant because the reasoner always have exactly one belief

about its current position, orientation, and whether it has the gold. Since the number of

bytes used for storing the main beliefs is a product of the number of beliefs, the amount of

memory necessary for storing the main beliefs grows polynomially on the size of the cave.

Then whether an agents is polynomial in space depends on their update procedures.

The Bayesian agent has polynomial growth in space requirements (figure 5.8, ma-

genta). It is sometimes stated that, in order to update its degrees of belief adequately, a

Bayesian agents would need to store degrees of belief for all sentences it believes condi-

tional on all combinations of the sentences it believes (Pollock, 2008). This problem may

be avoided in WW using beliefs networks. For example, instead of storing degrees of belief

about each square containing a breeze conditional on each other squares containing pits,

the agent may store only a belief network composed of 2s nodes and three probabilities.

In addition, the Bayesian agent does not need to store more than one line of the joint

probability table at the same time because each line may be constructed independently.

For those reasons, the Bayesian agent has a polynomial growth in space requirements.

28This number may be smaller if the agent uses null values, but cannot be larger. For this reason, the
use null values is not directly for the difference between pollynomial and exponential space requirements.
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The defeasible agent also is polynomial in space requirements (figure 5.8, magenta).

The update procedure of the defeasible agent needs to store reasons, defeaters, and sup-

port/defeat relations. In WW, reasons and defeaters are among the main beliefs them-

selves. For example, believing that a square contains a breeze is defeasible reason for be-

lieving that it neighbors contain a pit. Also, in WW, the information for support/defeat

relations may be stored as a small number of general rules as described in section 5.3.2.

For this reason, the defeasible agent also has polynomial growth in its space requirements.

5.4.2 Time

The time requirements were measured in terms of the number of inferential steps instead

of number of belief updates. An inferential steps is any change in the value of a variable.

For example, changing or assigning n values in a matrix consists in n inferential steps.

I have made this choice because I want to consider not only changes in the main beliefs,

but the overall time necessary for updating the main beliefs (the update procedures).

More specifically, I consider the necessary time for constructing joint probability tables

and for computing beliefs statuses.

The Bayesian agent has an exponential growth in time requirements (figure 5.8, red).

This is the case due to the use of joint probability tables for updating degrees of belief

about pits and Wumpus. It is known that, in the worst-case situation, a joint proba-

bility table has 2n lines, where n is the number the sentences in the table29. In WW,

the number of lines in a joint probability table for updating the degrees of belief about

pits, for example, is exponential on the number of fringe squares which may contain pits.

In figure 5.9, situation (a), for example, the probability of a pit in any fringe square de-

pends on the probability of a pit in any other fringe square. In this situation, a table for

updating degrees of belief about pits has 29 = 512 lines. The same is true for Wumpus30.

29The worst-case situation is the situation in which all lines in the joint-probability table express
possible assignments. The worst-case situation is always the case in the epistemic WW when dealing
with pits (Wumpus) due the possibility of breezes (stenches) not related with pits (Wumpus).

30In WW, the use of belief networks may be optimized in several ways, but such optimization is not
enough for achieving polynomial time requirements. Instead of constructing joint probability tables for
all fringe squares, the Bayesian agent may include in the same table only the dependent squares. For
example, in figure 5.9, situation (b), the agent constructs two joint probability tables with 32 lines each
(instead of a table with 1024 lines). However this strategy is not available for all situations (for example,
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Figure 5.9: Two possible situations for caves with size larger than 9 squares. In situation
(a), the joint probability table for updating the degrees of beliefs about pits has 512 lines.
This is the case because the probability of pit in each fringe square depends on every
fringe square. In situation (b), it is possible to update the degrees of beliefs about pits
using two joint probability tables with 32 lines each. This is the case because it is possible
to divide the cave into two independent 5 × 5 partitions. In other words, x and y are
conditionally dependent in (a), but are independent in (b).

There are algorithms for performing inference from belief networks in polynomial time

(for example, the belief propagation algorithm: Pearl, 1986). These algorithms only work

for singly-connected networks when WW requires using multiply-connected networks31.

In many situations, the belief network about pits (Wumpus) must be multiply-connected

because the same breeze (stench) may be caused by pits (Wumpus) in different positions

and the same pit (Wumpus) may case breezes (stenches) in different positions. For ex-

ample, the belief network in figure 5.1 presents more than one undirected paths between

nodes P (1, 1) and P (0, 0): P (1, 1)→ B(1, 0)→ P (0, 0) and P (1, 1)→ B(0, 1)→ P (0, 0).

There are other algorithms for performing inference from multiply-connected belief net-

works, but those algorithms are all exponential in time. Probably, a polynomial algorithm

for inference from multiply-connected networks is impossible because this problem is NP-

hard (Cooper, 1990). Then a Bayesian agent for WW has exponential time requirements.

The defeasible reasoner has polynomial growth in time requirements (figure 5.8, red).

The assignment of belief statuses about pits is very simple. For every square without

breeze, the agent assigns 0 for pits for all surrounding squares. This belief is conclusive.

For every square with a breeze, the reasoner assigns 1 for pits for all non-0 surrounding

situation (a) of figure 5.9).
31A graph is singly-connected of there exists at most one unidirected path between any two nodes in

the graph and multiply-connected otherwise.
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squares. The assignment about Wumpus is a little more complicated, but it exploits the

fact that reason and defeaters have a fixed structure in WW. If the agent perceives a

new stench, then, for each stench it has perceived so far, the reasoner adds one degree

of support about Wumpus to all non-0 squares surrounding the stench and subtracts one

degree to all other non-0 squares (this is done simply by adding or subtracting an unit

in the value of the belief). If, at the end of this process, there exist a square with more

support than all others, the agent assigns 1 to that square and 0 to all others. If not, the

reasoner assigns null to the squares with more support (it cannot choose between them)

and 0 to the others. This procedure results in the pattern of inference described in section

5.3.2 and involves at most sc belief changes, where s is the size of the cave and c is a

constant. For this reason, the defeasible agent has a polynomial time requirements.

5.5 Discussion

In section 5.4, I have shown that Bayesian and defeasible agents are equally accurate (and

accurate ‘enough’) in the environments of WW. Then both models qualify as candidates

for modeling maximum rationality for uncertain reasoning. The only relevant difference

between these models is that the Bayesian agent is exponential in time and the defeasible

agent is polynomial in time (see figure 5.8, red). In chapter 4, I have argued that the

maximally rational patterns of inference for a class of environments must be polynomial

in space and time if possible. In this case, the results in section 5.4 suggest that maximum

rationality for uncertain reasoning should be understood in terms of defeasible reasoning

and not of Bayesian epistemology. These results, however, must be interpreted carefully.

The results in section 5.4 were generated using the epistemic WW and the general-

ization of these results to problems about uncertain reasoning in general depends on how

much the features of this class of problem may be generalized. It is true that the epistemic

WW has some features which are present in problems of uncertain reasoning in general:

(i) (partially) unreliable informational input;

(ii) no direct access to relevant information;
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(iii) revision of (degrees of) belief.

The main sources of uncertainty in reasoning are (i) and (ii). In situations of (i),

reasoning is uncertain because premises are uncertain. In WW, (i) happens when the agent

has perceptual input about breezes (stenches) which is not related to pits (Wumpus)32.

In situations of (ii), reasoning is uncertain because some of the information relevant for

supporting the conclusion is missing. In WW, (ii) is the case because the agent does

not have direct access to information about pits and Wumpus. When (i) or (ii) hold,

a reasoner often needs to revise its (degrees of) beliefs on the face of new information

(e.g. information which contradicts prior perceptual input). In WW, this happens when,

for example, the agent discovers that a breeze (stench) is not related to pits (Wumpus).

On the other hand, there exist some features which are specific of the epistemic WW

and which seems to favor the defeasible over the Bayesian model. These are the features:

(iv) diagnostic inference, but not both causal and diagnostic inference;

(v) conditional dependence may be ignored in most cases.

If the difference in efficiency between Bayesian and defeasible agents is a direct conse-

quence of these features which are specific of the epistemic WW, then in other (possibly,

more relevant) situations of uncertain reasoning, a Bayesian agent may be equally or more

efficient than a defeasible agent. If this is the case, then the results in section 5.4 should

not be generalized for uncertain reasoning in general. I will argue that this is the case.

In the epistemic WW, (iv) an agent is required to perform diagnostic inference but

not causal inference. Diagnostic inference is inference from effects to causes. For example,

concluding that there exist pits in the neighborhood from the fact that there exists a breeze

in a square is a diagnostic inference. Causal inference is inference from causes to effects.

For example, concluding that there exist breezes in the neighborhood from the fact that

there exists a pit in a square is a causal inference. Let e denote a sentence about effects

(e.g. B(x, y)) and c denote a sentence about causes (e.g. P (x, y)). For the Bayesian agent,

32This feature of WW models a (persistent) perceptual illusion.
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diagnostic inference is more difficult than causal inference because the probability pr(c|e)

is not fixed whereas the probability pr(e|c) is fixed (Pearl, 1988, p. 35). In this case, in

order to infer c from e (diagnostic inference), the Bayesian agent needs to calculate pr(c|e)

before calculating pr(c) because pr(c|e) is not fixed33. The inference of e from c may be

done directly from pr(e|c) because pr(e|c) is fixed34. For a defeasible agent, diagnostic

inference and causal inference are equally difficulty. The defeasible agent infers φ from ψ

if ψ is a reason for φ no matter whether φ causes ψ, ψ causes φ, etc.

This feature is essential for the results in section 5.4 because the results would be dif-

ferent if the problem requires only causal inference or both causal and diagnostic inference.

In the first case, the Bayesian agent is as efficient as the defeasible agent because causal

inference is equally difficulty for both agents (pr(e|c) is fixed). In the second case, the

Bayesian agent may even be more efficient because the defeasible agent has difficulty in

dealing with both causal and diagnostic inference. In order to be able to perform both

inferences at the same time, the defeasible agent needs to have two reasons forming a cy-

cle (from effect to cause and from cause to effect). In those cycles, a slight evidence may

be amplified, generating at each loop an even stronger but unwarranted confirmation35.

The Bayesian reasoner may perform both causal and diagnostic inference from the same

belief network. Then the fact that an agent is required to perform diagnostic inference

but not causal inference in the epistemic WW favors defeasible over Bayesian agents.

The second specific feature of the epistemic WW which favors the defeasible over

the Bayesian agent is that (v) most relation of conditional dependence may be ignored in

solving that class of problems. Two sentences φ1 and φ2 are conditionally dependent given

ψ iff pr(φ1 ∧ φ2|ψ) 6= pr(φ1|ψ) × pr(φ2|ψ). In WW, there exist relations of conditional

dependence among the positions of pits and Wumpus. For example, a breeze (1, 1) may

be caused by pits at (2, 1) or (1, 2). Then discovering that there exists a pit at (2, 1)

33For example, if the agent has only the information that B(0, 1), then pr(P (0, 2)|B(0, 1)) = .545;
but if the agent acquires the additional piece of information that B(1, 0), then pr(P (0, 2)|B(0, 1)) = .312.

34For example, the probability pr(B(0, 1)|P (0, 2)) = 1 is fixed.
35There are clever ways to deal with causal-diagnostic cycles. Pollock was able to deal with this kind

of cycles in his last attempt of providing a semantics for the theory of defeasible reasoning, the critical
link semantics (Pollock, 2009). It is worth noticing that the critical link semantics is exponential in time.
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decreases the probability of a pit at (1, 2)36. This pattern of inference is often known

as ‘explaining away’ (Pearl, 1988, p. 7). The Bayesian agent exhibits explaining away

‘naturally’ in its reasoning procedure from a belief network, although dealing with this

kind of relation is the main cause for this agent being exponential in time (see figure 5.9).

A defeasible agent may only mimic this pattern of inference using undercutting defeaters,

but each relation of undercutting defeater must be added as an independent edges in the

inference graph. In this case, if the number of undercutting defeaters grew exponentially

on the size of the cave, the defeasible agent would be exponential in both space and time.

This problem may be avoided because the defeasible reasoner is able to ignore most

relations of conditional dependence without damaging its performance. In dealing with

pits, the defeasible agent ignores relations of conditional dependence altogether. Then any

slight reason for a square containing a pit is ‘reason enough’ for the agent adopting that

belief unless there exist conclusive reason for believing otherwise. No undercut defeater is

needed here. In reasoning about Wumpus, this strategy is not available because there is

only one Wumpus. In this case, undercut defeaters are needed an the pattern on inference

is much more complex. However, even in this case, the defeasible agent may still ignore

most aspects of the conditional dependence. It is reasonable to suppose that a conclusion

based on equivalent reasons from independent sources is, all things being equal, more well

supported than a conclusion based on reasons from correlated sources. The defeasible

agent deals with beliefs about Wumpus by simply adding reasons and subtracting defeats

disregarding relations of conditional dependence. This was crucial for this agent achieving

polynomial requirements in space and time. This procedure is only warranted because, in

WW, reasons an defeaters are equally probable and are equally dependent of each other

given their causes. Otherwise, the agent could be in the position of counting ‘twice’ the

same reason or defeater. Then the fact that most relations of conditional dependence may

be ignored in the epistemic WW favors the defeasible over the Bayesian agent.

In the last paragraphs, I have argued that the advantage for the defeasible agent

shown in the results in section 5.4 is a direct consequence of features of the epistemic

36Then P (2, 1) and P (1, 2) are conditionally dependent given B(1, 1).
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WW which are not general to problems of uncertain reasoning. In different conditions,

the results could be different: the Bayesian agent could be polynomial in time or the

defeasible agent could be exponential in time or memory. Then the results in section 5.4

should not be interpreted as indicating that defeasible reasoning provides a better model

of maximum rationality for uncertain reasoning in general than Bayesian epistemology.

However, for problems of uncertain reasoning with features (iv) and (v), those results do

indicate that defeasible reasoning provides a better model of maximum rationality than

Bayesian epistemology. This result is corroborated by several results for similar situations

(see Gelfond et al., 2006, for an example).

The difference between the defeasible and the Bayesian models is a case of the differ-

ence between extensional and intensional systems in general (Pearl, 1988, p. 3). In an

extensional system, the value of a belief is assigned by applying a set of rules to other be-

liefs. Nonmonotonic formalisms (including the theory of defeasible reasoning) often yield

extensional systems and so does the certainty factors model (Heckerman and Shortliffe,

1992). In an intensional system, beliefs pose constraints over the set of acceptable models

and the value of a belief is calculated using operations over models37. Bayesian epistemol-

ogy and Dempster-Shafer theory (Shafer, 2010) often yield intensional systems. The real

gap between extensional and intensional systems is the difficulty to define extensionally

an efficient procedure to do the work of conditional probabilities. The main function of a

conditional probability pr(φ|ψ) is to define the context ψ under which a sentence φ may

be believed (Pearl, 1988, p. 24). Interpreted as a rule, pr(φ|ψ) = x does not give us

license to do anything without checking the whole context. As soon as new information

γ is gathered, the license to assert pr(φ) = x from pr(ψ) = 1 is revoked and we need

to look up pr(φ|ψ, γ) instead. A contextual device such as conditional probabilities is

necessary for dealing with causal-diagnostic cycles, explaining away, etc. On the other

hand, calculations involving conditional probabilities are not efficient in most situations.

37For example, the conditional probability pr(φ|ψ) expresses the weight of the models in which φ is
true among the models in which ψ is true. This conditional probability cannot be determined from the
individual probabilities pr(φ) and pr(ψ) alone.
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Appendix A

Accessible beliefs as modalities

A reasoner is a triple R = 〈L, KB, π〉, where L is a formal language, KB is a set of sentences

in L (explicit beliefs), and π : 2L × Z+ → 2L is an update function (pattern of inference)

(def. 1.1.1). A reasoner may be represented as a directed graph in which the nodes are

sets of sentences in L and the edges represent applications of function π to a node an and

integer i (an inference). The graph is constructed by adding KB as the initial node (KB0)

and then by adding recursively the result of applying function π to the nodes already in

the graph and an integer i1. Then there exists an arrow labeled i from a node KBw to a

node KBw′ iff KBw′ is the output of applying function π to KBw and i (i.e. KBw′ = π(KBw, i)).

KB0

φ

KB1

ψ

KB2

φ,
ψ

KB3

1

2 2

1

i > 2 1, i > 2

2, i > 2 1, 2, i > 2

Figure A.1: Graph of R = 〈L, KB, π〉, in which KB = ∅ and function π is such that
π(KBw, 1) adds φ to KBw, π(KBw, 2) adds ψ to KBw, and π(KBw, i) does nothing for i > 2.

1There exist sensible orderings for constructing this graph because it may be infinite.
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The graph of a reasoner R represents both the explicit and the accessible beliefs of R.

The explicit beliefs of R (beliefsex) in an epistemic situation KBw are the sentences in KBw

(def. 1.2.1). In the example in figure A.1, R believesex φ and nothing else in the epistemic

situation KB1. The accessible beliefs of R (beliefsac) in an epistemic situation KBw are the

sentences in a KBw′ such that there exists an arrow from KBw to KBw′ (def. 1.2.5). In

other words, the set of beliefsac of R in the situation KBw is the set π(KBw) =
⋃
π(KBw, i).

In the example, R believesac φ and ψ and nothing else in the epistemic situation KB1.

In the graph of R, the epistemic situations KBw may be interpreted as (im)possible

worlds and the edges may be interpreted as an accessibility relation between (im)possible

worlds2. The pair 〈KBw, KBw′〉 is in the accessibility relation π (i.e. π(KBw, KBw′)) iff there

exists an i such that KBw′ = π(KBw, i). In this context, we may give a modal interpretation

for the notion of beliefsac. In the modal interpretation, ♦φ is true of KBw iff R believesac

φ at KBw (i.e. φ ∈ π(KBw))3. The evaluation of ♦φ is, as it were, external. Since the KBw

are (im)possible worlds, the fact that ♦φ is true of KBw does not entail that ♦φ ∈ KBw.

For example, L may not contain modal operators.

Let a function π be strictly idealac for a logic |x= iff the following requirements hold:

(i) φ ∈ π(KBw) iff KBw |
x
= φ;

(ii) π(KBw, KBw′) for all KBw′ such that KBw′ ⊆ π(KBw).

In this context, there exists a relation between properties of |x=, properties of a function

π which is strictly idealac for |x=, and the modal formulas π validates (see table A.1).

Logic |x= Function π Modal formulas
Reflexivity Reflexivity φ→ ♦φ (T)
Cut Transitivity ♦♦φ→ ♦φ (4)
Cautious monotony Euclidian relation ♦φ→ �♦φ (5)

Table A.1: Relation between properties of a logic, properties of a function π which is
strictly idealac for that logic, and the modal formulas that π validates.

2Impossible worlds are worlds in which the laws of classical logic fail (see Priest, 1997). For example,
the law of excluded middle may fail in an epistemic situation KB because it it is the case that (φ∨¬φ) 6∈ KB.

3In other words, ♦φ is true of KBw iff ∃i(φ ∈ π(KBw, i)) or ∃w′(π(KBw, KBw′) ∧ φ ∈ KBw′).
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The relation between properties of an accessibility relation π and the modal formulas

which these π validates is well-known in the literature (Blackburn et al., 2001, p. 128-129).

The relation between properties of logic |x= and properties of a function π which is strictly

idealac for |x= is the following. Reflexivity for a logic |x= is the property that KBw |
x
= KBw for

all KBw
4. Reflexivity for function π is the property that π(KBw, KBw) for all KBw. Suppose

that π is reflexive. Then π(KBw, KBw) for all KBw. Since π(KBw, KBw), then KBw ⊆ π(KBw)

and KBw |
x
= KBw (def. π). Therefore |x= is reflexive. Suppose that |x= is reflexive. Then

KBw |
x
= KBw for all KBw. Since KBw |

x
= KBw, then KBw ⊆ π(KBw) and π(KBw, KBw) (def. π).

Therefore |x= is reflexive. Therefore |x= is reflexive iff π is reflexive.

Cut for a logic |x= is the property that if KBw |
x
= KBw′ and KBw′ |

x
= KBw′′ , then KBw |

x
= KBw′′ .

Transitivity for function π is the property that if π(KBw, KBw′) and π(KBw′ , KBw′′), then

π(KBw, KBw′′). Suppose that π is transitive. Suppose that KBw |
x
= KBw′ and KBw′ |

x
= KBw′′ .

Since KBw |
x
= KBw′ , then KBw′ ⊆ π(KBw) and π(KBw, KBw′) (def. π). Since KBw′ |

x
= KBw′′ ,

then KBw′′ ⊆ π(KBw′) and π(KBw′ , KBw′′) (def. π). Then π(KBw, KBw′′) (π is transitive).

Since π(KBw, KBw′′), then KBw′′ ⊆ π(KBw) and KBw |
x
= KBw′′ (def. π). Therefore |x= exhibits

cut. Suppose that |x= exhibits cut. Suppose that π(KBw, KBw′) and π(KBw′ , KBw′′). Since

π(KBw, KBw′), then KBw′ ⊆ π(KBw) and KBw |
x
= KBw′ (def. π). Since π(KBw′ , KBw′′), then

KBw′′ ⊆ π(KBw′) and KBw′ |
x
= KBw′′ (def. π). Then KBw |

x
= KBw′′ (|x= exhibits cut). Since

KBw |
x
= KBw′′ , then KBw′′ ⊆ π(KBw) and π(KBw, KBw′′) (def. π). Therefore π is transitive.

Therefore |x= exhibits cut iff π is transitive.

Cautious monotony (CM) for a logic |x= is the property that if KBw |
x
= KBw′ and KBw |

x
=

KBw′′ , then KBw′ |
x
= KBw′′ . Function π is Euclidian when if π(KBw, KBw′) and π(KBw, KBw′′),

then π(KBw′ , KBw′′). Suppose that π is Euclidian. Suppose that KBw |
x
= KBw′ and KBw |

x
=

KBw′′ . Since KBw |
x
= KBw′ , then KBw′ ⊆ π(KBw) and π(KBw, KBw′) (def. π). Since KBw |

x
= KBw′′ ,

then KBw′′ ⊆ π(KBw) and π(KBw, KBw′′) (def. π). Then π(KBw′ , KBw′′) (π is Euclidian).

Since π(KBw′ , KBw′′), then KBw′′ ⊆ π(KBw′) and KBw′ |
x
= KBw′′ (def. π). Therefore |x= is CM.

Suppose that |x= is CM. Suppose that π(KBw, KBw′) and π(KBw, KBw′′). Since π(KBw, KBw′),

then KBw′ ⊆ π(KBw) and KBw |
x
= KBw′ (def. π). Since π(KBw, KBw′′), then KBw′′ ⊆ π(KBw)

4Where KBw |
x
= KBw′ means that if φ ∈ KBw′ , then KBw |

x
= φ.
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and KBw |
x
= KBw′′ (def. π). Then KBw′ |

x
= KBw′′ (|x= is CM). Since KBw′ |

x
= KBw′′ , then

KBw′′ ⊆ π(KBw′) and π(KBw′ , KBw′′) (def. π). Therefore |x= is CM iff π is Euclidian.

The relation between properties of an accessibility relation π and the modal formulas

which these π validates is well-known in the literature. Axiom T (φ → ♦φ) holds of a

graph R iff the accessibility relation π is reflexive. Then axiom T holds iff π is reflexive

iff |x= is reflexive. In our interpretation, axiom T states that if R believesex φ, then R

believesac φ (i.e. R accesses all of its beliefsex). Axiom 4 (♦♦φ → ♦φ) holds of a graph

R iff the accessibility relation π is transitive. Then axiom 4 holds iff π is transitive iff

|x= exhibits cut. In our interpretation, axiom 4 states that the set of beliefsac of R does

not increase over any amount of reasoning (i.e. if R does not believeacφ, then R will not

believeacφ after performing any number of inferences). Axiom 5 (♦φ → �♦φ) holds of a

graph R iff the accessibility relation π is Euclidian. Then Axiom 5 holds iff π is Euclidian

iff |x= is CM. In our interpretation, axiom 5 states that the set of beliefsac of R does not

decrease over any amount of reasoning (i.e. if R believesacφ, then R will still believeacφ

after performing any number of inferences)5.

Classical logic |c= is reflexive, exhibits cut, and is CM, then a function π which is strictly

idealac for |c= is reflexive, transitive, and Euclidean, and, therefore, an equivalence relation.

This means that the set of beliefsac (π(KB)) of a reasoner R with a function π which is

strictly idealac for |c= does not change with any amount of reasoning (π(KB) = π(π(KB))).

This seems to be a good result. However, a well-behaved nonmonotonic logic |n= is also

reflexive, exhibits cut, and is CM (see Antonelli, 2005, p. 4-7). This means that the set of

beliefsac (π(KB)) of a reasoner R with a function π which is strictly idealac for |n= also does

not change with any amount of reasoning (π(KB) = π(π(KB))). This is not a good result

because the main feature of nonmonotonic inference is that conclusions may be withdrawn

after some amount of reasoning6. For this reason, the notion of beliefsac is not adequate

for expressing maximum rationality for nonmonotonic reasoning (see section 1.3).

5In this context, we may interpret the formula �♦φ as stating that R is certain about φ. Axiom B
(φ→ �♦φ), which follow from T and 5, may be read as ‘if R believesexφ, then R is certain about φ’.

6Nonmonotonic frameworks are usually used to model a posteriori reasoning, whereas the model in
this appendix is of a priori reasoning. But this feature of the notions of beliefsac has consequences for
both a priori and a posteriori reasoning (see argument in section 1.3).
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Appendix B

Concepts

B.1 Computational complexity

For more information about theory of computational complexity, see Sipser (2012, p. 273).

B.1.1 Asymptotic analysis

The analysis of the complexity of algorithms is a part of computational complexity theory.

The complexity of an algorithm is often understood as the rate in which the running

time (time complexity) or the memory requirements (space complexity) of the algorithm

grows in relation to the size of the input. The actual complexity of an algorithm usually

requires assumptions about implementation. In order to abstract from these assumptions,

an asymptotic analysis is often employed.

In an asymptotic analysis, where the complexity of the algorithm is determined for

arbitrarily large inputs. The asymptotic analysis of an algorithm is often done under some

extra abstractions. The first step is to abstract over the input of the algorithm, using some

parameter to characterize the size of the input. The second step is to use some parameters

to characterize the running time or memory requirements of the algorithm. In addition,

the complexity of an algorithm is usually measured in relation to its worst-case scenario

(the most demanding case for the algorithm).

Nevertheless, the exact complexity of an algorithm is often a complex expression.

In most cases, the big-O notation is used for simplification (e.g. f(n) = O(g(n)), where

n is the size of input). In big-O notation, only the highest order term of the expression
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of the complexity of the algorithm is considered and both the coefficient of that term

and any lower order terms are disregarded. The idea is that, when the input grows

arbitrarily, the highest order term dominates the other terms. For example, the function

f(n) = 7n3+5n2+10n+34 has four terms and the highest order term is 7n3. Disregarding

the coefficient 7, we say that f(n) = O(n3).

Definition B.1.1 (Big-O notation (O(g(n)))). Let f and g be functions f, g : N →

R+. Then f(n) = O(g(n)) iff there exist positive integers c and n0 such that for every

integer n ≥ n0, f(n) ≤ cg(n) (Sipser, 2012, p. 227).

In this framework, algorithms are often classified under two categories: polynomial

and exponential complexity. A polynomial algorithm is an algorithm whose complexity is

expressed using a function of the kind O(nc), where c is a constant. An exponential algo-

rithm is an algorithm whose complexity is expressed using a function of the kind O(2n
c
),

where c is a constant greater than 0. While the actual complexity of an algorithm depends

on low-level encoding details, where an algorithm falls on the polynomial/exponential di-

chotomy is independent of almost all such choices (for reasonable models of computation).

B.1.2 Complexity classes

In computational complexity theory, a complexity class is a class of computational prob-

lems of related resource-based computational complexity. The most important complexity

classes are P, NP, and NP-complete. The class P (polynomial time) is the class of deci-

sion problems1 that are solvable by a deterministic Turing machine in polynomial time.

Meanwhile, NP (nondeterministic polynomial-time) is the class of decision problems for

which a solution may be checked by a deterministic Turing machine in polynomial time,

even if the solution cannot be found in polynomial time2.

Since all problems that are solvable in polynomial time may have its solution checked

in polynomial time, P ⊆ NP. Whether P = NP is an open question3. Of special interest

for the solution of this question is the class NP-complete. NP-complete is the class of

1A decision problem is a problem with a yes-or-no answer.
2To solve a decision problem is to return the correct answers for all instances of the problem; to check

the solution of a decision problem is to solve for all ‘yes’ instances of the problem.
3Most theorists proceed on the assumption that P 6= NP even if the claim is open to question.
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decision problems such that all decision problems in NP are reducible to these problems

in polynomial time4. In this context, if a problem in NP-complete is shown to be solvable

in polynomial time, then all problems in NP are solvable in polynomial time and P=NP.

An example of NP-complete problem is the satisfiability problem: given a sentence of

propositional logic, is there an assignment of truth values to the propositional constants

of the sentence that make it true?

4To reduce a problem to another is to create an algorithm which maps the solution for the first problem
to the solution for the second.
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Appendix C

Proofs

Proof C.1 (If R is maximally rational, then R is ideal). Suppose that R is

maximally rational. Suppose that φ is a logical consequence of R’s epistemic situation.

Then all ideal reasoners in R’s situation believe φ (def. 1.1.3, ideal). Then R ought to

believe φ (def. 1.1.4, ought). Then R believes φ (def. 1.1.6, maximally). Therefore R

believes all logical consequences of its epistemic situation. Suppose that R has a trivial

set of beliefs. Then R may have a trivial set of beliefs (def. maximally). Then there

exists an ideal reasoner in R’s situation which has a trivial set of beliefs (def. 1.1.5, may).

This is a contradiction (def. ideal). Therefore R has a nontrivial set of beliefs. R believes

all logical consequences of its epistemic situation and R has a nontrivial set of beliefs.

Therefore R is ideal (def. ideal).

Proof C.2 (R is maximally rational iff R is strictly ideal). Proof in two steps:

Suppose that R is maximally rational. Therefore R is an ideal reasoner (proof C.1).

Suppose that R believes φ. Then R may and ought to believe φ (def. 1.1.6, maximally).

Then there exists an ideal reasoner in R’s epistemic situation and all ideal reasoners in

R’s situation believe φ (def. 1.1.5 and 1.1.4, may and ought). Then there exists an ideal

reasoner inR’s situation which believes φ only if φ is a consequence ofR’s situation. Then

φ is a consequence of R’s situation. Therefore R believes only the logical consequences of

its epistemic situation. R is an ideal reasoner andR believes only the logical consequences

of its epistemic situation. Therefore R is strictly ideal.
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Suppose that R is strictly ideal. Suppose that R ought to believe φ. Then all ideal

reasoners in R’s situation believe φ (def. ought). R is an ideal reasoner in R’s situation

(def. 1.1.9, strictly). Then R believes φ. Therefore if R ought to believe φ, then R

believes φ. Suppose that R believes φ. Then φ is a consequence of R’s situation. Then

all ideal reasoners in R’s situation believe φ (def. 1.1.3, ideal). Then R ought to believe φ

(def. ought). Therefore R ought to believe φ iff R believes φ. Also, if R believes φ, there

is an ideal reasoner in R’ situation which believes φ (R itself). Therefore, if R believes

φ, then R may believe φ. Therefore R believes φ iff R ought to believe φ and only if R

may believe φ. Therefore, R is maximally rational.

Proof C.3 (if t′ > t, then t′−f
t′+f+a

> t−f
t+f+a

). Suppose that t′ > t. Multiplying both

sides by (f + a+ f), it follows that t′(f + a+ f) > t(f + a+ f). Distributing, it follows

that t′f + t′a + t′f > tf + ta + tf . Adding (−t′f − tf) to both sides, it follows that

t′f + t′a − tf > tf + ta − t′f . Since tf = ft and t′f = ft′ (commutativity), this is

equivalent to t′f + t′a− ft > tf + ta− ft′. Adding (tt′− ff − fa) to both sides, it follows

that tt′ + t′f + t′a − ft − ff − fa > tt′ + ft + ta − ft′ − ff − fa. Since t′t = tt′ and

ft = tf , this is equivalent to t′t+ t′f + t′a− ft− ff − fa > tt′ + tf + ta− ft′− ff − fa

(commutativity). From distribution, it follows that (t′−f)(t+f +a) > (t−f)(t′+f +a).

Divinding both sides by (t+ f + a)(t′ + f + a), it follows that t′−f
t′+f+a

> t−f
t+f+a

.

Proof C.4 (if f ′ > f , then t−f ′

t+f ′+a
< t−f

t+f+a
). Suppose that f ′ > f . Then −f ′ < −f .

Multiplying both sides by (t + t + a), it follows that −f ′(t + t + a) < −f(t + t + a).

Distributing, it follows that −f ′t − f ′t − f ′a < −ft − ft − fa. Since −f ′t = −tf ′ and

−ft = −tf , this is equivalent to −tf ′−f ′t−f ′a < −tf−ft−fa (commutativity). Adding

(tf ′+tf) to both sides, it follows that tf−f ′t−f ′a < tf ′−ft−fa. Adding (tt+ta−f ′f)

to both sides, it follows that tt+tf+ta−f ′t−f ′f−f ′a < tt+tf ′+ta−ft−f ′f−fa. Since

−f ′f = −ff ′, this is equivalent to tt+tf+ta−f ′t−f ′f−f ′a < tt+tf ′+ta−ft−ff ′−fa

(commutativity). From distribution, it follows that (t−f ′)(t+f +a) < (t−f)(t+f ′+a).

Divinding both sides by (t+ f ′ + a)(t+ f + a), it follows that t−f ′
t+f ′+a

< t−f
t+f+a

.

Proof C.5 ( lim
x→∞

ax

xb = ∞, where a > 1 and b are constants). Assume that b is

an integer, since if the proof holds for dbe, it holds for b. We use induction on b. The
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assertion is true for b ≤ 0, since as x → ∞, ax → ∞ while xb is constant (b = 0) or

xb → 0 (b < 0). Suppose that the assertion fails for some b and choose b minimal such

that it fails. Given the last remarks, b ≥ 1 and limx→∞ x
b =∞. Since the theorem holds

for b − 1, limx→∞
ax

xb−1 = ∞. Let f(x) = ax and g(x) = xb. L’Hopital’s rule tells us that

limx→∞
f(x)
g(x)

= limx→∞
f ′(x)
g′(x)

= limx→∞
ln(a)ax

bxb−1 =
( ln(a)

b

)
limx→∞

ax

xb−1 =
( ln(a)

b

)
∞ =∞.

Proof C.6 ( lim
x→∞

xa

(logc(x))b
= ∞, where a, b, c are constants). Since the ratio of

(logc(x))b to (ln(x))b is a nonzero constant ((logc(e))
b), we may restrict to the natural

algorithm (c = e). By the same reasoning in proof C.5, we assume that b is an integer.

We use induction on b. As in proof C.5, this theorem is obviously true if b ≤ 0. If the

theorem fails for some b, choose b minimal such that it fails. By the remark above, b ≥ 1,

and limx→∞(ln(x))b = ∞. Since the theorem holds for b − 1, limx→∞
xa

ln(x)b−1 = ∞. Let

f(x) = xa and g(x) = (ln(x))b. L’Hopital’s rule tells us that limx→∞
f(x)
g(x)

= limx→∞
f ′(x)
g′(x)

=

limx→∞
axa−1

blb(x)b−1(1/x)
=
(
a
b

)
limx→∞

xa

ln(x)b−1 =
(
a
b

)
∞ =∞.
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ALMOST IDEAL:

Computational Epistemology and the Limits

of Rationality for Finite Reasoners

Abstract

The notion of an ideal reasoner has several uses in epistemology. Often, ideal reasoners

are used as a parameter of (maximum) rationality for finite reasoners (e.g. humans).

However, the notion of an ideal reasoner is normally construed in such a high degree

of idealization (e.g. infinite/unbounded memory) that this use is unadvised. In this

dissertation, I investigate the conditions under which an ideal reasoner may be used as a

parameter of rationality for finite reasoners. In addition, I present and justify the research

program of computational epistemology, which investigates the parameter of maximum

rationality for finite reasoners using computer simulations.

In chapter 1, I investigate the use ideal reasoners for stating the maximum (and min-

imum) bounds of rationality for finite reasoners. I propose the notion of a strictly ideal

reasoner which coincides with the notion of maximum rationality. The notion of a strictly

ideal reasoner is relative to a logic and a notion of beliefs (explicit, implicit, etc). I

argue that, for some relevant logics, a finite reasoner may only approach maximum ra-

tionality at the limit of a reasoning sequence (stable beliefs)1. In chapter 2, I investigate

the use of ideal reasoners in the zombie argument against physicalism (Chalmers, 2010).

This notion is used in the principle that ideal negative conceivability entails possibility.

The conclusion is that the zombie argument is neither an a priori nor a conclusive ar-

gument against physicalism. In chapter 3, I investigate the notion of maximum (and

minimum) epistemic rationality for finite reasoners. Epistemic rationality is often related

1Informally, the reasoning sequence of a reasoner is how the reasoner would reason from the available
information if it had enough cognitive resources (e.g. time for reasoning). The notion of a stable belief
is related to the beliefs that the reasoner would hold at the limit of a reasoning sequence.



to maximizing true beliefs and minimizing false beliefs. I argue that most of the exist-

ing models of maximum epistemic rationality have problems in dealing with blindspots

and propose a model in terms of the maximization of a function g, which evaluates sets

of beliefs regarding truth/falsehood. However, function g may only be maximized at

the limit of a reasoning sequence. In chapter 4, I argue that if maximum (epistemic)

rationality for finite reasoners must be understood in terms of the limit of a reason-

ing sequence, then issues about the computational complexity of reasoning are relevant

to epistemology. Then I propose the research program of computational epistemology,

which uses computer simulations for investigating maximum (epistemic) rationality for

finite reasoners and considers the computational complexity of reasoning. In chapter 5,

I provide an example of an investigation in computational epistemology. More specifically,

I compare two models of maximum rationality for situations of uncertain reasoning:

theory of defeasible reasoning (Pollock, 1995) and Bayesian epistemology (Joyce, 2011).
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