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Eq can be used for the evaluation of complex propositional expressions in abounded number of steps: Let P be some sound and complete Hilbert-style calculusfor propositional classical logic (with an alphabet including T , F ,), _,, as prim-itive or derived constants) consisting of a �nite number of axiom schemata and rules(one of which is assumed to be the modus ponens). Let Tn be the set of tautologiesin � n variables, and let `k denote derivability in depth � k (w.l.o.g. proofs areassumed to be tree-like).Theorem For all n the following holds:(1) there exists � s.t. for all n and all A 2 Tn we have P + EQ `�(n) A, where � isa linear function and(2) for all k there is an A 2 T0 s.t. P 6`k A.Proof. If � = fA1; : : : ; Amg, then V� ) B denotes (A1 ) (A2 ) : : : (Am )B) : : :).(1) First note that the k-times iterated schema of equivalence,m̂i=1(Ai , Bi)) �C(A1; : : : ; Am), C(B1; : : : ; Bm)�is derivable uniformly in �  (m) steps from P + Eq. Now we use induction on n:n = 0: Let � = �2i(V1; : : : ; Vni) , V j Vj ; V 2 fT; Fg	 be all combinationsrepresenting the truth tables for the primitive connectives 2i. Furthermore, let � bean operator where �B is obtained from a formula B by replacing every subformulaof the form 2i(V1; : : : ; Vni) (Vj 2 fT; Fg) by its value V 2 fT; Fg. By �j we denotethe j-fold iteration of �: �0B � B and �j+1 � ��jB. (Here and in the following� denotes syntactic equality).Now A 2 T0 contains no variables, only T , F . Let r(A) be the minimal numbers.t. �r(A)A � T . We use Yukami's Trick (from Yukami [1984]): The two formulas^� ) ��A, ��1A, � � � (�r(A)�1A, Tz }| {�r(A)A) : : :�| {z }B �,, ��1A, (�2A, � � � ( Tz }| {�r(A)A, Tz }| {�r(A)+1A) : : : �| {z }C �and �(T , T ), T �) � Cz }| {��1A, (�2A, � � � ��r(A)�1A, (T , T )� : : :�,, ��1A, (�2A, � � � (�r(A)�1A, T � : : :�| {z }B �are instances of the (iterated) schema of equivalence, thus derivable independent of Afrom P +Eq. Since both � and �T , T ), T � are tautologies, they can be derived2



in a constant number of steps independent of A. Hence, P +Eq `c �(A, B), B�and consequently also P + Eq `c0 A.n > 0: Let A(X) 2 Tn contain exactly n distinct variables. The following formulas(X , T )) �A(X), A(T )�(X , F )) �A(X), A(F )�are instances of Eq. By induction hypothesis, both A(T ) and A(F ) are derivable in�(n� 1) steps from P +Eq. Hence we haveP + Eq `�(n�1)+d (X , T )) A(X)P + Eq `�(n�1)+d (X , F )) A(X)and consequently P + Eq `�(n�1)+d0 A(X). (Note that the law of excluded middle(X , T ) _ (X , F ) is derivable.) Since d0 (and d) do not depend on either A(X)or n, � is linear.(2) Note that there are only �nitely many proof descriptions (or proof skeletons,see Kraj�i�cek and Pudl�ak [1988]) of bounded depth. Every proof description canbe realized by a most general proof: Write all axioms with di�erent variables, applythe rules in the description and unify. So, for every k, there is a sequence of formulasA1, : : : , Ah(k) s.t.(1) P `k Ai for 1 � i � h(k) and(2) if P `k A, then A = Ai� for some Ai and substitution �.If all tautologies of the form �T , (T , (T , � � � (T , T ) : : :� were provable inbounded depth, then �T , (T , (T , � � � (T , X) : : :� would also be provable,which is absurd. 2Three questions regarding the strength of these results remain open: In the induc-tion step of the proof, the law of the excluded middle was used essentially. Can theresult also be obtained without this? Does the result hold for intuitionistic proposi-tional calculus? Furthermore, does the rule of equivalenceA, BC(A), C(B)su�ce for the results to hold? Lastly, do the results hold uniformly for all tautologies,not only for those with a �xed number of variables?ReferencesKraj�i�cek, J. and P. Pudl�ak.[1988] The number of proof lines and the size of proofs in �rst order logic. Arch.Math. Logic, 27, 69{84.Sch�utte, K.[1960] Beweistheorie. Springer, Berlin.Yukami, T.[1984] Some results on speed-up. Ann. Japan Assoc. Philos. Sci., 6, 195{205.3


