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Abstract The field of iterated belief change has focused mainly on revision, with
the other main operator of AGM belief change theory, i.e., contraction receiv-
ing relatively little attention. In this paper we extend the Harper Identity from
single-step change to define iterated contraction in terms of iterated revision.
Specifically, just as the Harper Identity provides a recipe for defining the belief
set resulting from contracting A in terms of (i) the initial belief set and (ii) the
belief set resulting from revision by ¬A, we look at ways to define the plausibil-
ity ordering over worlds resulting from contracting A in terms of (iii) the initial
plausibility ordering, and (iv) the plausibility ordering resulting from revision by
¬A. After noting that the most straightforward such extension leads to a trivial-
isation of the space of permissible orderings, we provide a family of operators
for combining plausibility orderings that avoid such a result. These operators are
characterised in our domain of interest by a pair of intuitively compelling prop-
erties, which turn out to enable the derivation of a number of iterated contraction
postulates from postulates for iterated revision. We finish by observing that a
salient member of this family allows for the derivation of counterparts for con-
traction of some well known iterated revision operators, as well as for defining
new iterated contraction operators.

1 Introduction

Since the publication of Darwiche and Pearl’s seminal paper on the topic in the mid
90’s [Darwiche and Pearl, 1997], a substantial body of research has now accumu-
lated on the problem of iterated belief revision–the problem of how to adjust one’s
corpus of beliefs in response to a temporal sequence of successive additions to its
members [Booth and Meyer, 2006; 2011; Boutilier, 1996; Jin and Thielscher, 2007;
Nayak et al., 2003; Peppas, 2014].

In contrast, work on the parallel problem of iterated contraction–the problem
of how to adjust one’s corpus in response to a sequence of successive retractions–
was only initiated far more recently and remains comparatively underdeveloped
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[Chopra et al., 2008; Hansson, 2012; Hild and Spohn, 2008; Nayak et al., 2006;
2007; Ramachandran et al., 2012; Rott, 2009].

One obvious way to level out this discrepancy would be to introduce a principle
that enables us to derive, from constraints on iterated revision, corresponding con-
straints on iterated contraction. But while there exists a well known and widely ac-
cepted postulate connecting single-shot revision and contraction, the ‘Harper Iden-
tity’ [Harper, 1976], there has been no discussion to date of how to extend this prin-
ciple to the iterated case.1 One idea, which we pursue in this paper, is that whereas
the Harper Identity says the belief set resulting from contracting sentence A should
be formed by combining (i) the initial belief set and (ii) the belief set resulting from
revision by ¬A, we look for ways to define the plausibility ordering over worlds
resulting from contracting A in terms of (iii) the initial plausibility ordering, and
(iv) the plausibility ordering resulting from revision by ¬A.

In the present paper, we first of all show that the simplest extension of the Harper
Identity to iterated belief change is too strong a principle, being inconsistent with
basic principles of belief dynamics on pains of triviality (Section 3). This leads
us to consider a set of collectively weaker principles, which we show to charac-
terise, in our domain of interest, a family of binary combination operators for total
preorders that we call TeamQueue combinators (Section 4). After recapitulating a
number of existing postulates from both iterated revision and contraction, we show
how these two lists of postulates can be linked via the use of any TeamQueue com-
binator (Section 5). Then we prove some more specific results of this type using
a particular TeamQueue combinator that we call Synchronous TeamQueue (Section
6). Finally we conclude and mention some ideas for future work. Proofs of the
various propositions and theorems have been relegated to the appendix.

2 Preliminaries
We represent the beliefs of an agent by a so-called belief state Ψ, which we treat
as a primitive. Ψ determines a belief set [Ψ], a deductively closed set of sentences,
drawn from a finitely generated propositional, truth-functional language L. The set
of classical logical consequences of a sentence A ∈ L is denoted by Cn(A). The set
of propositional worlds is denoted by W , and the set of models of a given sentence
A is denoted by [[A]].

The dynamics of belief states are modelled by two operations–contraction and
revision, which respectively return the posterior belief states Ψ ∗ A and Ψ ÷ A re-
sulting from an adjustment of the prior belief state Ψ to accommodate, respectively,
the inclusion and exclusion of A.

1It should be noted that [Nayak et al., 2006] and Ramachandran et al [Ramachandran et al., 2012]
do propose a principle that they call the ‘New Harper Identity’. But while this may be suggestive of
an attempted extension of the Harper Identity to the iterated case, the New Harper Identity simply
appears to be a representation, in terms of plausibility orderings, of a particular set of postulates for
iterated contraction.
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We assume that these operations satisfy the so-called AGM postulates [Al-
chourrón et al., 1985], which enforce a principle of ‘minimal mutilation’ of the
initial belief set in meeting the relevant exclusion or inclusion constraint. Regard-
ing revision, we have:
(AGM∗1) Cn([Ψ ∗ A]) ⊆ [Ψ ∗ A]

(AGM∗2) A ∈ [Ψ ∗ A]

(AGM∗3) [Ψ ∗ A] ⊆ Cn([Ψ] ∪ {A})
(AGM∗4) If ¬A /∈ [Ψ], then Cn([Ψ] ∪ {A}) ⊆ [Ψ ∗ A]

(AGM∗5) If A is consistent, then so too is [Ψ ∗ A]

(AGM∗6) If Cn(A) = Cn(B), then [Ψ ∗ A] = [Ψ ∗B]

(AGM∗7) [Ψ ∗ (A ∧B)] ⊆ Cn([Ψ ∗ A] ∪ {B})
(AGM∗8) If ¬B /∈ [Ψ ∗ A], then Cn([Ψ ∗ A] ∪ {B}) ⊆ [Ψ ∗ (A ∧B)]

Regarding contraction:
(AGM÷1) Cn([Ψ÷ A]) ⊆ [Ψ÷ A]

(AGM÷2) [Ψ÷ A] ⊆ [Ψ]

(AGM÷3) If A /∈ [Ψ], then [Ψ÷ A] = [Ψ]

(AGM÷4) If A /∈ Cn(∅), then A /∈ [Ψ÷ A]

(AGM÷5) If A ∈ [Ψ], then [Ψ] ⊆ Cn([Ψ÷ A] ∪ {A})
(AGM÷6) If Cn(A) = Cn(B), then [Ψ÷ A] = [Ψ÷B]

(AGM÷7) [Ψ÷ A] ∩ [Ψ÷B] ⊆ [Ψ÷ A ∧B]

(AGM÷8) If A /∈ [Ψ÷ A ∧B], then [Ψ÷ A ∧B] ⊆ [Ψ÷ A]

We also assume that they are linked in the one-step case by the Harper Identity (HI):
(HI) [Ψ÷ A] = [Ψ] ∩ [Ψ ∗ ¬A]

We follow a number of authors in making use of a ‘semantic’ representation of
the ‘syntactic’ one-step revision and contraction dispositions associated with a par-
ticular belief state Ψ in terms of a total preorder (tpo) �Ψ over the set W of
possible worlds. Intuitively �Ψ orders the worlds according to plausibility (with
more plausible worlds lower down the ordering). Then the set min(�Ψ, [[A]]) :=
{x ∈ [[A]] | ∀y ∈ [[A]], x �Ψ y} of minimal A-worlds corresponds to the set
of worlds in which all and only the sentences in [Ψ ∗ A] are true, with [[[Ψ]]] =
min(�Ψ,W ) for any Ψ (see, for instance, the representation results in [Grove, 1988;
Katsuno and Mendelzon, 1991]). Viewed in this way, the question of iterated be-
lief change becomes a question about the dynamics of �Ψ under contraction and
revision, with HI translating into the constraint min(�Ψ÷A,W ) = min(�Ψ,W )
∪min(�Ψ∗¬A,W ). We will denote the set of all tpos over W by T (W ). The strict
part of �Ψ will be denoted by ≺Ψ and its symmetric part by ∼Ψ.
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A tpo �Ψ can also be represented by an ordered partition 〈S1, S2, . . . Sm〉 of W ,
with x �Ψ y iff r(x,�Ψ) ≤ r(y,�Ψ), where r(x,�Ψ) denotes the ‘rank’ of x with
respect to �Ψ and is defined by taking Sr(x,�Ψ) to be the cell in the partition that
contains x.

3 A triviality result
What should an agent believe after performing a contraction followed by a revision?
We would like to extend the Harper Identity to cover this case.

In syntactic terms, the most straightforward suggestion would be to simply extend
HI to cover not just one’s beliefs, but also one’s commitments to retain or lose
various beliefs upon subsequent revisions:
(EHI) [(Ψ÷ A) ∗B] = [Ψ ∗B] ∩ [(Ψ ∗ ¬A) ∗B]

If B ≡ > then we obtain HI as a special case. Note that under weak assumptions,
EHI can equivalently be restated in terms of contraction only:
Proposition 1 EHI entails
(EHIC) [(Ψ÷ A)÷B] = [Ψ] ∩ [Ψ ∗ ¬B] ∩ [Ψ ∗ ¬A] ∩ [(Ψ ∗ ¬A) ∗ ¬B]

and is equivalent to it in the presence of AGM∗3 and the Levi Identity:
(LI) [Ψ ∗ A] = Cn([Ψ÷ ¬A] ∪ {A}).

However, as Gärdenfors’ classic triviality result and its subsequent refinements
[Gärdenfors, 1986; Rott, 1989; Etlin, 2009] have taught us, the unqualified exten-
sion of principles of belief dynamics to cover conditional beliefs is a risky business.
And as it turns out, the above proposal is too strong: it can be shown that, un-
der mild constraints on single shot revision and contraction, it places unacceptable
restrictions on the space of permissible belief sets resulting from single revisions:
Proposition 2 In the presence of AGM∗5, AGM∗6 and AGM÷3, EHI (and more
specifically, HI, alongside its left-to-right half [(Ψ÷A)∗B] ⊆ [Ψ∗B]∩ [(Ψ∗¬A)∗
B]) entails that there does not exist a belief state Ψ such that: (i) [Ψ] = Cn(p ∧ q),
(ii) [Ψ ∗ ¬p] = Cn(¬p ∧ q) and (iii) [Ψ ∗ p ↔ ¬q] = Cn(p ↔ ¬q), where p and q
are propositional atoms.2

The above strategy and its shortcomings can equivalently be recast in semantic
terms. Let us call a function ⊕ that takes pairs of tpos as inputs and yields a tpo
as an output a tpo combination operator, or a ‘combinator’. For convenience, we
denote �1⊕�2 by ‘�1⊕2’.

In extending the Harper Identity to the iterated case, we are essentially looking
for an appropriate combinator ⊕ such that:

2The problem that we have just noted for EHI is closely related to the observation that an inter-
section of two sets of ‘rational doxastic conditionals’ need not itself be rational, which is familiar
from the literature on default reasoning [Lehmann and Magidor, 1992].
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(COMBI) �Ψ÷A=�Ψ⊕�Ψ∗¬A

Now, just as HI corresponds, given COMBI, to the following semantic principle:
(⊕HI) min(�1⊕2,W ) = min(�1,W ) ∪min(�2,W )

EHI amounts to
(⊕EHI) For all S ⊆ W , min(�1⊕2, S) = min(�1, S) ∪min(�2, S)

What our result above effectively demonstrates is that no combinator ⊕ satisfies
⊕EHI unless we place undesirable restrictions on its domain: ⊕EHI is too much to
ask for.

We will continue approaching our issue of interest from a predominantly seman-
tic perspective for the remainder of the paper. In the following section, we retreat
from ⊕EHI to offer an altogether weaker set of minimal postulates for ⊕, before
taking a look at a concrete family of ‘Team Queuing’ combinators that satisfy them.
We first establish a general characterisation of this family before showing that our
set of minimal postulates suffices to characterise it in our restricted domain of in-
terest.

4 Combinators: the bottom line
Since we are in the business of extending the Harper Identity, we will begin by
requiring satisfaction of ⊕HI. We call combinators that satisfy this property ‘basic’
combinators.

In addition, even though EHI is too strong, certain weakenings of it do seem to
be compelling. Specifically, it seems appropriate to require that our combination
method leads to the following weak lower and upper bound principles:
(LB) [Ψ ∗B] ∩ [(Ψ ∗ ¬A) ∗B] ⊆ [(Ψ÷ A) ∗B]

(UB) [(Ψ÷ A) ∗B] ⊆ [Ψ ∗B] ∪ [(Ψ ∗ ¬A) ∗B]

We note that the former corresponds to the half of EHI that was not implicated
in our earlier triviality result. Given COMBI, these will be ensured by requiring,
respectively, the following upper and lower bounds on min(�1⊕2, S) for any S ⊆
W (note an upper, resp. lower bound on world-sets yields a lower, resp. upper bound
on belief sets):
(⊕UB) min(�1⊕2, S) ⊆ min(�1, S) ∪min(�2, S)

(⊕LB) Either min(�1, S) ⊆ min(�1⊕2, S) or min(�2, S) ⊆ min(�1⊕2, S)

⊕UB and ⊕LB can be repackaged using only binary comparisons:
Proposition 3 ⊕UB and ⊕LB are respectively equivalent to the following:
(⊕SPU+) If x ≺1 y and z ≺2 y then either x ≺1⊕2 y or z ≺1⊕2 y

(⊕WPU+) If x �1 y and z �2 y then either x �1⊕2 y or z �1⊕2 y
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⊕SPU+ and ⊕WPU+ owe their names to their being respective strengthenings of
the following principles of strict and weak preference unanimity, which are ana-
logues of the ‘weak Pareto’ and ‘Pareto weak preference’ principles found in the
social choice literature:
(⊕SPU) If x ≺1 y and x ≺2 y then x ≺1⊕2 y

(⊕WPU) If x �1 y and x �2 y then x �1⊕2 y

We now consider a concrete family of basic combinators that satisfy both ⊕SPU+
and ⊕WPU+, and, indeed, can be shown to be characterised by precisely these
principles in our domain of interest. We call these ‘TeamQueue’ combinators.

The basic idea behind this family–and motivation behind the name given to it–can
be grasped by means of the following analogy: A number of couples go shopping
for groceries. The supermarket that they frequent is equipped with two tills. For
each till, we find a sequence of various groups of people queueing to pay for their
items. In order to minimise the time spent in the store, each couple operates by
“team queueing”: each member of the pair joins a group in a different queue and
leaves their place to join their partner’s group in case this group arrives at the till
first. After synchronously processing their first group of customers, the tills may
or may not then operate at different and variable speeds. We consider the temporal
sequence of sets of couples leaving the store. In our setting, the queues are the two
tpos (with lower elements towards the head of the queue) and the couples are pairs
of copies of each world.

More formally, we assume, for each ordered pair 〈�1,�2〉 of tpos, a sequence
〈a�1,�2(i)〉i∈N such that:

(a1) ∅ 6= a�1,�2(i) ⊆ {1, 2} for each i,
(a2) a�1,�2(1) = {1, 2}
a�1,�2(i) specifies which queue is to be processed at each step. Then (a1) ensures
either one or both are processed, and (a2) says both are processed at the initial stage
(which will ensure⊕HI holds for the resulting combinators). Then we construct the
ordered partition 〈T1, T2, . . . , Tm〉 corresponding to �1⊕2 inductively as follows:

Ti =
⋃

j∈a�1,�2
(i)

min(
⋂
k<i

T c
k ,�j)

(where ‘T c’ denotes the complement of set T ) and m is minimal such that⋃
i≤m Ti = W . With this in hand, we can now offer:

Definition 1 ⊕ is a TeamQueue combinator iff, for each ordered pair 〈�1,�2〉 of
tpos there exists a sequence 〈a�1,�2(i)〉i∈N satisfying (a1) and (a2) such that �1⊕2

is obtained as above.
It is easily verified that TeamQueue combinators are indeed basic combinators. The
following example provides an elementary illustration of the combinator at work:
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Example 1 Suppose that W = {w, x, y, z}, that �1 is the tpo represented
by the ordered partition 〈{z}, {w}, {x, y}〉, and that �2 is represented by
〈{x, z}, {y}, {w}〉. Let ⊕ be a TeamQueue combinator such that 〈a�1,�2(i)〉i∈N =
〈{1, 2}, {2}, {1}, . . .〉. Then the ordered partition corresponding to �1⊕2 is
〈T1, T2, T3〉 = 〈{x, z}, {y}, {w}〉, since

T1 =
⋃

j∈{1,2}

min(W,�j) = {x, z}

T2 = min(T c
1 ,�2) = {y}

T3 = min(T c
1 ∩ T c

2 ,�1) = {w}
As noted above, TeamQueue combinators satisfy both ⊕SPU+ and ⊕WPU+. In
fact, one can show that this family can actually be characterised by these two con-
ditions, in the presence of a third:
Theorem 1 ⊕ is a TeamQueue combinator iff it is a basic combinator that satisfies
⊕SPU+, ⊕WPU+ and the following ‘no overtaking’ property;
(⊕NO) For i 6= j, if x ≺i y and z �j y, then either x ≺1⊕2 y or z �1⊕2 y

Taken together, the three postulates ⊕SPU+, ⊕WPU+ and ⊕NO say that in �1⊕2,
no world x is allowed to improve its position w.r.t. both input orderings �1 and
�2. Indeed each postulate blocks one of the three possible ways in which this ‘no
double improvement’ condition could be violated. We note that this condition can
be cashed out in terms of the following remarkable property:
Proposition 4 ⊕ is a TeamQueue combinator iff it is a basic combinator that satis-
fies the following ‘trifurcation’ property, for all S ⊆ W :
(⊕TRI) min(�1⊕2, S) is equal to either min(�1, S), min(�2, S) or min(�1, S)

∪min(�2, S)

Given COMBI, ⊕TRI yields the claim that [(Ψ÷A) ∗B] is equal to either [Ψ ∗B],
[(Ψ ∗ ¬A) ∗B] or [Ψ ∗B] ∩ [(Ψ ∗ ¬A) ∗B].

To wrap up this section, it should be noted that the results so far have been per-
fectly domain-general, in the sense that they hold for combinators whose domain
corresponded to the entire space of pairs of tpos defined over W . Our problem of
interest is somewhat narrower in scope, however, since we are interested in the spe-
cial case in which one of the tpos is obtained from the other by means of a revision.
In particular, we assume the first two semantic postulates of [Darwiche and Pearl,
1997].
(CR∗1) If x, y ∈ [[A]] then x �Ψ∗A y iff x � y

(CR∗2) If x, y ∈ [[¬A]] then x �Ψ∗A y iff x � y

In other words, �1 and �2 will always be [[A]]-variants for some sentence A, in the
following sense:
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Definition 2 Given �1,�2∈ T (W ) and S ⊆ W , we say �1 and �2 are S-variants
iff [x �1 y iff x �2 y] holds for all x, y ∈ (S×S)∪ (Sc×Sc). We let V (W ) denote
the set of all 〈�1,�2〉 ∈ T (W )× T (W ) such that �1,�2 are S-variants for some
S ⊆ W .

Example 2 Suppose that W = {w, x, y, z}, that �1 is the tpo represented
by the ordered partition 〈{w}, {x}, {y}, {z}〉, and that �2 is represented by
〈{w}, {x, y}, {z}〉. Then �1 and �2 are {y, z}-variants, since (i) w ≺1 x and
w ≺2 x, as well as (ii) y ≺1 z and y ≺2 z. They are not, however, {x, y}-variants,
since x ≺1 y but y �2 x.

This leads to the following domain restriction on ⊕:

(⊕DOM) Domain(⊕) ⊆ V (W )

As it turns out, this constraint allows for a noteworthy simplification of the charac-
terisation of TeamQueue combinators:
Proposition 5 Given ⊕DOM, ⊕ is a TeamQueue combinator iff it is a basic com-
binator that satisfies ⊕SPU+ and ⊕WPU+.
We also note, in passing, that
Proposition 6 Given ⊕DOM, ⊕ satisfies ⊕SPU+ and ⊕WPU+ iff it satisfies
⊕SPU and ⊕WPU, respectively.
Given Proposition 4, the potentially surprising upshot of Proposition 5 is that, in
our domain of interest, satisfaction of ⊕LB and ⊕UB entails satisfaction of ⊕TRI.

5 Iterated Contraction via TeamQueue Combination
A central result of AGM theory says that, under assumption of HI, if ∗ satisfies
the AGM revision postulates, then ÷ automatically satisfies the AGM contraction
postulates. In this section we look at some of the postulates for both iterated revision
and contraction that have been proposed in the literature. We show that, if �Ψ÷A
is defined from � and �Ψ∗¬A using COMBI via a TeamQueue combinator, then
satisfaction of some well known sets of postulates for iterated revision leads to
satisfaction of other well known sets of postulates for iterated contraction.

The most widely cited postulates for iterated revision are the four DP postulates
of [Darwiche and Pearl, 1997]. These, like most of the postulates for iterated be-
lief change, come in two flavours: a semantic one in terms of requirements on the
tpo �Ψ∗A associated to the revised state Ψ ∗ A, and a syntactic one in terms of re-
quirements on the belief set [(Ψ ∗ A) ∗ B] following a sequence of two revisions.
Turning first to the semantic versions, we’ve already encountered the first two of
these postulates–CR∗1 and CR∗2–in the previous section. The other two are
(CR∗3) If x ∈ [[A]], y ∈ [[¬A]] and x ≺ y then x ≺Ψ∗A y

(CR∗4) If x ∈ [[A]], y ∈ [[¬A]] and x � y then x �Ψ∗A y
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Each of these has an equivalent corresponding syntactic version as follows:

(C∗1) If A ∈ Cn(B) then [(Ψ ∗ A) ∗B] = [Ψ ∗B]

(C∗2) If ¬A ∈ Cn(B) then [(Ψ ∗ A) ∗B] = [Ψ ∗B]

(C∗3) If A ∈ [Ψ ∗B] then A ∈ [(Ψ ∗ A) ∗B]

(C∗4) If ¬A 6∈ [Ψ ∗B] then ¬A 6∈ [(Ψ ∗ A) ∗B]

Chopra et al [2008] proposed a list of ‘counterparts’ to the DP postulates for the
case of Ψ÷ A. The semantic versions of these were:

(CR÷1) If x, y ∈ [[¬A]] then x �Ψ÷A y iff x � y

(CR÷2) If x, y ∈ [[A]] then x �Ψ÷A y iff x � y

(CR÷3) If x ∈ [[¬A]], y ∈ [[A]] and x ≺ y then x ≺Ψ÷A y

(CR÷4) If x ∈ [[¬A]], y ∈ [[A]] and x � y then x �Ψ÷A y

Chopra et al [2008] showed (their Theorem 2) that, in the presence of the AGM
postulates (reformulated as in our setting to apply to belief states rather than just
belief sets) each of these postulates has an equivalent syntactic version as follows:

(C÷1) If ¬A ∈ Cn(B) then [(Ψ÷ A) ∗B] = [Ψ ∗B]

(C÷2) If A ∈ Cn(B) then [(Ψ÷ A) ∗B] = [Ψ ∗B]

(C÷3) If ¬A ∈ [Ψ ∗B] then ¬A ∈ [(Ψ÷ A) ∗B]

(C÷4) A 6∈ [Ψ ∗B] then A 6∈ [(Ψ÷ A) ∗B]

As it turns out, the definition of �Ψ÷A from � and �Ψ∗¬A using COMBI via a
TeamQueue combinator allows us to show the precise sense in which Chopra et al’s
postulates are ‘Darwiche-Pearl-like’, as they put it:

Proposition 7 Let ⊕ be a TeamQueue combinator, let ∗ be an AGM revision oper-
ator and let ÷ be such that �Ψ÷A is defined from ∗ via COMBI using ⊕. Then, for
each i = 1, 2, 3, 4, if ∗ satisfies CR∗i then ÷ satisfies CR÷i.
As a corollary, given the AGM postulates, we recover the same result for the syn-
tactic versions as well.

Finally, Nayak et al [2007] have endorsed the following principle of ‘Principled
Factored Intersection’, which they show to be satisfied by a number of proposals
for iterated contraction:

(PFI) Given B ∈ [Ψ÷ A]

(a) If ¬B → ¬A ∈ [(Ψ÷ A)÷B], then [(Ψ÷ A)÷B] = [Ψ÷ A]∩
[Ψ÷ ¬A→ B]

(b) If ¬B → ¬A,¬B → A /∈ [(Ψ÷ A)÷B], then [(Ψ÷ A)÷B] =
[Ψ÷ A] ∩ [Ψ÷ ¬A→ B] ∩ [Ψ÷ A→ B]

(c) If ¬B → A ∈ [(Ψ÷ A)÷B], then [(Ψ÷ A)÷B] = [Ψ÷ A]∩
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[Ψ÷ A→ B]

The rationale for PFI remains rather unclear to date. Indeed, the only justifications
provided appear to be (a) that PFI avoids a particular difficulty faced by another
constraint that has been proposed in the literature–namely Rott’s ‘Qualified Inter-
section’ principle [Rott, 2001]–and which can be reformulated in a manner that is
superficially rather similar to PFI and (b) that PFI entails a pair of prima facie ap-
pealing principles. Neither of these considerations strike us as being particularly
compelling. For one, Rott’s Qualified Intersection principle remains itself unclearly
motivated. Secondly, plenty of ill-advised principles can be shown to have certain
plausible consequences.

The TeamQueue approach, however, allows us to rest the principle on a far firmer
foundation. Indeed:
Proposition 8 Let⊕ be a TeamQueue combinator, let ∗ be an AGM revision opera-
tor and let÷ be such that�Ψ÷A is defined from ∗ via COMBI using⊕. If ∗ satisfies
CR∗1 and CR∗2 then ÷ satisfies PFI.

6 The Synchronous TeamQueue Combinator
A special case of TeamQueue combinators takes a�1,�2(i) = {1, 2} for all ordered
pairs 〈�1,�2〉 and all i. This represents a particularly fair way of combining tpos.
In terms of our supermarket analogy, it corresponds to the situation in which the
tills process groups of customers at the same speed.
Definition 3 The Synchronous TeamQueue (STQ) combinator is the TeamQueue
combinator for which a�1,�2(i) = {1, 2} for all ordered pairs 〈�1,�2〉 and all i.
We will denote the STQ combinator by ⊕STQ.

Example 3 Suppose W = {x, y, z, w}, that �1 is the tpo represented by the or-
dered partition 〈{z}, {w}, {x, y}〉 and �2 is represented by 〈{x, z}, {y}, {w}〉.
Then the ordered partition corresponding to�1⊕STQ2 is 〈T1, T2〉 = 〈{x, z}, {w, y}〉.
Roughly,�1⊕STQ2 tries to make each world as low in the ordering as possible, while
trying to preserve the information contained in �1 and �2. (The idea is similar to
that of the rational closure construction in default reasoning [Lehmann and Magi-
dor, 1992].) We remark that ⊕STQ is commutative, i.e., �1⊕2=�2⊕1. It can be
characterised semantically, in the absence of domain restrictions, as follows:
Theorem 2 ⊕STQ is the only basic combinator that satisfies both ⊕SPU+ and the
following ‘Parity’ constraint:

(⊕PAR) If x ≺1⊕2 y then for each i ∈ {1, 2} there exists z s.t. x ∼1⊕2 z and
z ≺i y

Note that ⊕WPU+ is not listed among the characteristic principles: it is entailed by
the conjunction of ⊕SPU+ and ⊕PAR.
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Whilst⊕PAR may not be immediately easy to grasp, it can be given a nice formu-
lation in our setting in terms of the notion of strong belief [Battigalli and Siniscalchi,
2002; Stalnaker, 1996]. A sentence A ∈ [Ψ] is strongly believed in Ψ in case the
only way it can be dislodged by the next revision input B is if B is logically in-
consistent with A. That is, A is strongly believed in Ψ iff (i) A ∈ [Ψ], and (ii)
A ∈ [Ψ ∗ B] for all sentences B such that A ∧ B is consistent. Semantically, a
consistent sentence A is strongly believed in Ψ iff every A-world is strictly more
plausible than every ¬A-world, i.e., x ≺Ψ y for every x ∈ [[A]], y ∈ [[¬A]]. With
this in hand, one can show:
Proposition 9 ⊕PAR is equivalent to:
(⊕SB) If x ≺1⊕2 y for every x ∈ Sc, y ∈ S, then min(�1, S) ∪min(�2, S) ⊆

min(�1⊕2, S)

Given COMBI,⊕SB yields: If¬B is strongly believed in Ψ÷A then [(Ψ÷A)∗B] ⊆
[Ψ ∗ B] ∩ [(Ψ ∗ ¬A) ∗ B]. Thus, although we cannot have EHI for all A,B, the
STQ combinator does guarantee it to hold for a certain restricted class of pairs of
sentences, namely those A,B such that ¬B is strongly believed after removing A.

To finish this section, we turn to further behaviour for iterated contraction that
can be captured thanks to the further principles satisfied by ⊕STQ.

Three popular approaches to supplementing the AGM postulates for revision and
the DP postulates can be found in the literature: the ‘natural’ [Boutilier, 1996], ‘re-
strained’ [Booth and Meyer, 2006], and ‘lexicographic’ [Nayak, 1994] approaches.
All of these have the semantic consequence that the prior tpo �Ψ determines the
posterior tpo �Ψ∗A. All three promote the lowest A-worlds in �Ψ to become the
lowest overall in �Ψ∗A, but differ on what to do with the rest of the ordering. Nat-
ural revision leaves everything else unchanged, restrained revision preserves the
strict ordering ≺Ψ while additionally making every A-world x strictly lower than
every ¬A-world y for which x �Ψ y, and lexicographic revision just makes every
A-world lower than every ¬A-world, while preserving the ordering within each of
[[A]] and [[¬A]].

This raises an obvious question, namely: Which principles of iterated contraction
does one recover from the natural, restrained and lexicographic revision operators,
respectively, if one defines ÷ from ∗ using ⊕STQ? As it turns out, both the nat-
ural and the restrained revision operator yield the very same iterated contraction
operator, which has been discussed in the literature under the name of ‘natural con-
traction’ [Nayak et al., 2007], and which sets min(�Ψ, [[¬A]])∪ min(�Ψ,W ) to be
the lowest rank in �Ψ÷A while leaving �Ψ÷A otherwise unchanged from �Ψ.
Proposition 10 Let ∗ be any revision operator–such as the natural or restrained
revision operator–satisfying the following property:

If x, y /∈ min(�Ψ, [[A]]) and x ≺Ψ y, thenx ≺Ψ∗A y

11



Let ÷ be the contraction operator defined from ∗ via COMBI using ⊕STQ. Then ÷
is the natural contraction operator.

We do not have a characterisation of the operator that is recovered from lexico-
graphic revision in this manner, which we call the STQ-lex contraction operator.
That is, STQ-lex contraction sets �Ψ÷A=�Ψ ⊕STQ �Ψ∗L¬A, where ∗L is lexico-
graphic revision. We can report, however, that it is distinct from both lexicographic
and priority contraction, the other two iterated contraction operators discussed in
the literature alongside natural contraction [Nayak et al., 2007]. Roughly, lexico-
graphic contraction works by setting the ith rank Si of �Ψ÷A to be the union of the
ith-lowest A-worlds with the ith-lowest ¬A-worlds.

Example 4 Suppose W = {x, y, z, w} and �Ψ is the tpo represented by
〈{x}, {y}, {z}, {w}〉. Let [[A]] = {x,w}, so that �Ψ∗L¬A= 〈{y}, {z}, {x}, {w}〉.
Then lexicographic contraction yields �Ψ÷A= 〈{x, y}, {z, w}〉 while STQ-lex con-
traction yields �Ψ÷A= 〈{x, y}, {z}, {w}〉.
Both lexicographic and priority contraction can, however, still be recovered via the
TeamQueue approach. Lexicographic contraction can be recovered from lexico-
graphic revision by combining, not �Ψ and �Ψ∗L¬A, but rather �Ψ∗LA and �Ψ∗L¬A
using ⊕STQ. Priority contraction can be recovered from lexicographic revision by
combining �Ψ and �Ψ∗¬A using a TeamQueue combinator. However, the com-
binator involved is not ⊕STQ but rather the TeamQueue combinator that is most
‘biased’ towards �2: the combinator for which, for all ordered pairs 〈�1,�2〉,
a�1,�2(1) = {1, 2}, then a�1,�2(j) = {2} for all j > 1.

7 Conclusions
We have shown that the issue of extending the Harper identity to iterated belief
change (a) is not a straightforward affair but (b) can be fruitfully approached by
combining a pair of total preorders by means of TeamQueue combinator. We have
also noted that one particular such combinator, the Synchronic TeamQueue combi-
nator ⊕STQ can be put to work to derive various counterparts for contraction of the
three best known iterated revision operators.

Whilst the normative appeal of the characteristic syntactic properties ⊕LB and
⊕UB of the TeamQueue family of combinators is clear enough, we do not, at this
stage, have a clear enough grasp of the normative appeal of the further syntactic
requirement ⊕SB that characterises ⊕STQ. We plan to investigate this issue further
in future work.

A second issue that we would like to explore is the question of whether or not
it is possible to show that the Darwiche-Pearl postulates are equivalent to the ones
proposed by Chopra et al, given a suitable further bridge principle taking us from
iterated contraction to iterated revision. Such a task would first involve providing a
compelling generalisation of the Levi Identity mentioned in Proposition 1 above.
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Appendix

Proposition 1 EHI entails

(EHIC) [(Ψ÷ A)÷B] = [Ψ] ∩ [Ψ ∗ ¬B] ∩ [Ψ ∗ ¬A] ∩ [(Ψ ∗ ¬A) ∗ ¬B]

and is equivalent to it in the presence of AGM∗3 and the Levi Identity

(LI) [Ψ ∗ A] = Cn([Ψ÷ ¬A] ∪ {A})

Proof: From EHI to EHIC: By HI, which EHI entails, [(Ψ ÷ A) ÷ B] = [Ψ ÷
A] ∩ [(Ψ ÷ A) ∗ ¬B] = [Ψ] ∩ [Ψ ∗ ¬A] ∩ [(Ψ ÷ A) ∗ ¬B]. By EHI, we have
[(Ψ ÷ A) ∗ ¬B] = [Ψ ∗ ¬B] ∩ [(Ψ ∗ ¬A) ∗ ¬B] and hence [(Ψ ÷ A) ÷ B] =
[Ψ] ∩ [Ψ ∗ ¬B] ∩ [Ψ ∗ ¬A] ∩ [(Ψ ∗ ¬A) ∗ ¬B] as required.

From EHIC to EHI: By LI, we have [(Ψ÷A)∗¬B] = Cn([(Ψ÷A)÷B]∪{¬B}).
By EHIC, we have [(Ψ÷A)÷B] = [Ψ]∩ [Ψ ∗¬B]∩ [Ψ ∗¬A]∩ [(Ψ ∗¬A) ∗¬B].
So to recover EHI, we need to show that Cn([Ψ] ∩ [Ψ ∗ ¬B] ∩ [Ψ ∗ ¬A] ∩ [(Ψ ∗
¬A) ∗¬B]∪{¬B}) = [Ψ ∗¬B]∩ [(Ψ ∗¬A) ∗¬B]. The left-to-right direction, i.e.
Cn([Ψ]∩[Ψ∗¬B]∩[Ψ∗¬A]∩[(Ψ∗¬A)∗¬B]∪{¬B}) ⊆ [Ψ∗¬B]∩[(Ψ∗¬A)∗¬B],
is immediate. Regarding the right-to-left, assume, for some arbitrary C, that C ∈
[Ψ ∗ ¬B] ∩ [(Ψ ∗ ¬A) ∗ ¬B]. Firstly, it follows by AGM∗3 and the deduction
theorem that ¬B → C ∈ [Ψ] and ¬B → C ∈ [Ψ ∗ ¬A]. Secondly, it follows
by deductive closure of belief sets that ¬B → C ∈ [Ψ ∗ ¬B] ∩ [(Ψ ∗ ¬A) ∗ ¬B].
Therefore ¬B → C ∈ [Ψ] ∩ [Ψ ∗ ¬B] ∩ [Ψ ∗ ¬A] ∩ [(Ψ ∗ ¬A) ∗ ¬B] and hence
C ∈ Cn([Ψ] ∩ [Ψ ∗ ¬B] ∩ [Ψ ∗ ¬A] ∩ [(Ψ ∗ ¬A) ∗ ¬B] ∪ {¬B}), as required.

Proposition 2 In the presence of AGM∗5, AGM∗6 and AGM÷3, EHI (and more
specifically, HI, alongside its left-to-right half [(Ψ÷A)∗B] ⊆ [Ψ∗B]∩ [(Ψ∗¬A)∗
B]) entails that there does not exist a belief state Ψ such that: (i) [Ψ] = Cn(p ∧ q),
(ii) [Ψ ∗ ¬p] = Cn(¬p ∧ q) and (iii) [Ψ ∗ p ↔ ¬q] = Cn(p ↔ ¬q), where p and q
are propositional atoms.

Proof: We first show that HI and the left-to-right half of EHI jointly entail that
[(Ψ÷A)÷B] ⊆ [Ψ∗¬B]. Indeed, by HI, [(Ψ÷A)÷B] = [Ψ÷A]∩[(Ψ÷A)∗¬B] ⊆
[(Ψ ÷ A) ∗ ¬B]. By the left-to-right half of EHI, we then have [(Ψ ÷ A) ÷ B] ⊆
[Ψ ∗ ¬B] ∩ [(Ψ ∗ ¬A) ∗ ¬B] ⊆ [Ψ ∗ ¬B] as required.

We now establish that, in the presence of AGM∗5, AGM∗6 and AGM÷3, HI and
the left-to-right half of EHI jointly entail the following “vacuity” principle:

(VAC) If A is consistent and B ∈ [Ψ ∗ A], then [Ψ] ∩ [Ψ ∗ A] ⊆ [Ψ ∗B]

Indeed, assume that A is consistent and that B ∈ [Ψ ∗ A]. Since A is consistent,
so too is [Ψ ∗ A], by AGM∗5, and hence ¬B /∈ [Ψ ∗ A]. Since, by HI, we have
[Ψ÷¬A] = [Ψ]∩ [Ψ∗A] (with help from AGM∗6), it follows that ¬B /∈ [Ψ÷¬A].
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Given AGM÷3, we then have [(Ψ ÷ ¬A) ÷ ¬B] = [Ψ ÷ ¬A], and, by HI, [(Ψ ÷
¬A)÷¬B] = [Ψ]∩ [Ψ ∗A]. By the inclusion [(Ψ÷¬A)÷¬B] ⊆ [Ψ ∗B], which
we have shown above to be derivable from HI and the left-to-right half of EHI (plus
AGM∗6), it then follows that [Ψ] ∩ [Ψ ∗ A] ⊆ [Ψ ∗B], as required.

With this in place, assume VAC and, for reductio, that there exists a belief set
satisfying (i) to (iii). It follows from (ii) that p ↔ ¬q ∈ [Ψ ∗ ¬p]. Given the
latter, it then follows from VAC that [Ψ] ∩ [Ψ ∗ ¬p] ⊆ [Ψ ∗ p ↔ ¬q]. But by
(i) and (ii), [Ψ] ∩ [Ψ ∗ ¬p] = Cn(p ∧ q) ∩ Cn(¬p ∧ q) = Cn(q). Hence, by
[Ψ] ∩ [Ψ ∗ ¬p] ⊆ [Ψ ∗ p ↔ ¬q], we have q ∈ [Ψ ∗ p ↔ ¬q]. But (iii) tells us that
[Ψ ∗ p↔ ¬q] = Cn(p↔ ¬q). Contradiction.

Proposition 3 ⊕UB and ⊕LB are respectively equivalent to

(⊕SPU+) If x ≺1 y and z ≺2 y then x ≺1⊕2 y or z ≺1⊕2 y

and

(⊕WPU+) If x �1 y and z �2 y then either x �1⊕2 y or z �1⊕2 y

Proof: From ⊕UB to ⊕SPU+: Suppose that x ≺1 y and z ≺2 y. From the
former, we know that min(�1, {x, y, z}) ⊆ {x, z} and from the latter we know that
min(�2, {x, y, z}) ⊆ {x, z}. Thus, by ⊕UB, min(�1⊕2, {x, y, z}) ⊆ {x, z}. From
this, it must the case that y /∈ min(�1⊕2, {x, y, z}), so either x ≺1⊕2 y or z ≺1⊕2 y,
as required.

From ⊕SPU+ to ⊕UB: Assume for contradiction that there exists an x, such that
x ∈ min(�1⊕2, S) but x /∈ min(�1, S) ∪ min(�2, S). From the latter, there exist
y, z ∈ S, such that y ≺1 x and z ≺2 x. By ⊕SPU+, it then follows that either
y ≺1⊕2 x or z ≺1⊕2 x, contradicting x ∈ min(�1⊕2, S). Thus, min(�1⊕2, S) ⊆
min(�1, S) ∪min(�2, S), as required.

From ⊕LB to ⊕WPU+: We derive the contrapositive of ⊕WPU+, namely:

If y ≺1⊕2 x and y ≺1⊕2 z, then y ≺1 x or y ≺2 z

Assume then that y ≺1⊕2 x and y ≺1⊕2 z. It follows from this that min(�1⊕2

, {x, y, z}) ⊆ {y}. By ⊕LB, we then recover either (i) min(�1, {x, y, z}) ⊆ {y}
or (ii) min(�2, {x, y, z}) ⊆ {y}. Assume (i). It follows that y ≺1 x. Assume (ii).
It follows that y ≺2 z. Hence, either y ≺1 x or y ≺2 z, as required.

From⊕WPU+ to⊕LB: Assume for reductio that⊕LB fails, so that there exist an
x and a y such that y ∈ min(�1, S) and z ∈ min(�2, S), but y, z /∈ min(�1⊕2, S).
From the latter, there exist an x1 and x2 such that x1, x2 ∈ S, x1 ≺1⊕2 y and
x2 ≺1⊕2 z. Since �1⊕2 is a total preorder, we may assume that there exists an x
such that x ∈ S, x ≺1⊕2 y and x ≺1⊕2 z. By ⊕WPU+, we then have either x ≺1 y
or x ≺2 z, contradicting our assumption that y ∈ min(�1, S) and z ∈ min(�2, S).
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Theorem 1 ⊕ is a TeamQueue combinator iff it is a basic combinator that satisfies
⊕SPU+, ⊕WPU+ and the following ‘no overtaking’ property;

(⊕NO) If either (i) x �1 y and z ≺2 y or (ii) x �2 y and z ≺1 y, then either
x �1⊕2 y or z ≺1⊕2 y

Proof: We prove that ⊕ satisfies ⊕SPU+, ⊕WPU+ and ⊕NO iff it satisfies

(⊕TRI) min(�1⊕2, S) is equal to either min(�1, S), min(�2, S) or min(�1, S)
∪min(�2, S)

The desired result then follows from Proposition 4 below.
We first show that ⊕SPU+, ⊕WPU+ and ⊕NO entail ⊕TRI.
We know that min(�1⊕2, S) ⊆ min(�1, S) ∪min(�2, S) from ⊕SPU+. Indeed,

assume that y ∈ min(�1⊕2, S) but, for reductio, that y /∈ min(�1, S)∪min(�2, S).
Then ∃x, z ∈ S such that x ≺1 y and z ≺2 y. Then, by ⊕SPU+, either x ≺1⊕2 y
or z ≺1⊕2 y. Either way, we get y /∈ min(�1⊕2, S). Contradiction. Hence, y ∈
min(�1, S) ∪min(�2, S), as required.

Now if the converse holds, i.e. min(�1, S) ∪min(�2, S) ⊆ min(�1⊕2, S), then
we have min(�1⊕2, S) = min(�1, S) ∪ min(�2, S) and we are done. So assume
min(�1, S) ∪min(�2, S) * min(�1⊕2, S). Then either min(�1, S) * min(�1⊕2

, S) or min(�2, S) * min(�1⊕2, S). Let’s assume min(�1, S) * min(�1⊕2, S).
We will show that this implies min(�1⊕2, S) = min(�2, S), which will suffice. (If
instead we assume min(�2, S) * min(�1⊕2, S), then the same reasoning will show
min(�1⊕2, S) = min(�1, S), which also suffices.) Since min(�1, S) * min(�1⊕2

, S), let x ∈ min(�1, S) but x /∈ min(�1⊕2, S).
We first derive min(�1⊕2, S) ⊆ min(�2, S). Let y ∈ min(�1⊕2, S) and assume

for reductio that y /∈ min(�2, S). Then ∃z ∈ S such that z ≺2 y. From y ∈
min(�1⊕2, S), we know that y �1⊕2 z. From x ∈ min(�1, S), we also know that
x �1 y. From z ≺2 y, y �1⊕2 z and x �1 y, we can deduce by⊕NO that x �1⊕2 y,
in contradiction with x 6∈ min(�1⊕2, S). Hence, y ∈ min(�2, S), as required.

We now derive min(�2, S) ⊆ min(�1⊕2, S). Let y ∈ min(�2, S) and assume,
for reductio, that y /∈ min(�1⊕2, S). From x, y /∈ min(�1⊕2, S), ∃z ∈ S, such that
z ≺1⊕2 x and z ≺1⊕2 y. Then, from ⊕WPU+, we have either z ≺1 x or z ≺2 y.
If z ≺1 x, then we contradict x ∈ min(�1, S). If z ≺2 y, then we contradict
y ∈ min(�2, S). Either way, we get a contradiction, so y ∈ min(�1⊕2, S), as
required.

Finally, we show that ⊕TRI entails ⊕SPU+, ⊕WPU+ and ⊕NO.
Regarding ⊕SPU+: From ⊕TRI, we know that, ∀S, min(�1⊕2, S) ⊆ min(�1

, S) ∪ min(�2, S). Now suppose that x ≺1 y and z ≺2 y. Then y /∈ min(�1

, {x, y, z}) ∪min(�2, {x, y, z}). Hence y /∈ min(�1⊕2, {x, y, z}), so x ≺1⊕2 y or
z ≺1⊕2 y, as required.
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Regarding ⊕WPU+: From ⊕TRI, we know that, ∀S, either min(�1, S) ⊆
min(�1⊕2, S) or min(�2, S) ⊆ min(�1⊕2, S). This is the property ⊕LB and we
already proved in Proposition 3 that it entails ⊕WPU+.

Regarding ⊕NO: From ⊕TRI, we know that, ∀S, i 6= j, either min(�1⊕2, S) ⊆
min(�i, S) or min(�j, S) ⊆ min(�1⊕2, S). Now assume x ≺i y, y �1⊕2 x,
z �j y and, for reductio, y ≺1⊕2 z. From y �1⊕2 x and y ≺1⊕2 z, we get
y ∈ min(�1⊕2, {x, y, z}) but from x ≺i y, we get y /∈ min(�i, {x, y, z}). Hence
min(�1⊕2, {x, y, z}) * min(�i, {x, y, z}). From this and the property cited at the
beginning of this paragraph, we get min(�j, {x, y, z}) ⊆ min(�1⊕2, {x, y, z}). We
also know from ⊕TRI that min(�1⊕2, {x, y, z}) ⊆ min(�1, {x, y, z}) ∪ min(�2

, {x, y, z}). Hence, since y ∈ min(�1⊕2, {x, y, z}) and y /∈ min(�i, {x, y, z}),
we get y ∈ min(�j, {x, y, z}). Hence, since z �j y, z ∈ min(�j, {x, y, z})
and so, from min(�j, {x, y, z}) ⊆ min(�1⊕2, {x, y, z}), z ∈ min(�1⊕2, {x, y, z}),
contradicting y ≺1⊕2 z. Hence z �1⊕2 y, as required.

Proposition 4 ⊕ is a TeamQueue combinator iff it is a basic combinator that satis-
fies the following ‘trifurcation’ property:

(⊕TRI) min(�1⊕2, S) is equal to either min(�1, S), min(�2, S) or min(�1, S)
∪min(�2, S)

Proof: Right-to-left direction: Let ⊕ be any combinator that satisfies those prop-
erties. We must specify a sequence a�1,�2 for each ordered pair 〈�1,�2〉 such that
(i) ⊕a satisfies properties (a1) and (a2) and (ii) ⊕a = ⊕.

Assume that 〈S1, S2, . . . , Sn〉 represents�1⊕2. Then we specify a�1,�2 by setting,
for all i,

j ∈ a�1,�2(i) iff min(
⋂
k<i

Sc
k,�j) ⊆ Si(= min(

⋂
k<i

Sc
k,�1⊕2)

Regarding (i), ⊕a satisfies (a1) since ⊕ satisfies ⊕TRI and (a2) since ⊕ satisfies
⊕HI

Regarding (ii), let 〈T1, T2, . . . , Tm〉 represent �1⊕a2. We prove by induction that
Ti = Si. Regarding i = 1: The result follows from ⊕HI. Regarding the induc-
tive step: Assume Tj = Sj , ∀j < i. We want to show Ti = Si. By construc-
tion, Ti =

⋃
j∈a(i) min(�j,

⋂
k<i S

c
k). So we need to show min(

⋂
k<i S

c
k,�1⊕2) =⋃

j∈a(i) min(�j,
⋂

k<i S
c
k). This follows from ⊕TRI.

Left-to-right direction: We show that ⊕a satisfies each of ⊕SPU+, ⊕WPU+ and
⊕NO.

- Regarding ⊕SPU+: We prove the contrapositive. Suppose y �1⊕2 x and
y �1⊕2 z. Assume y ∈ Si =

⋃
j∈a(i) min(�j,

⋂
k<i S

c
k) ⊆ min(�1

,
⋂

k<i S
c
k) ∪ min(�2,

⋂
k<i S

c
k). Assume y ∈ min(�1,

⋂
k<i S

c
k). Since
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y �1⊕2 x, we know that x ∈
⋂

k<i S
c
k, hence y �1 x, as required. Similarly, if

y ∈ min(�2,
⋂

k<i S
c
k), then y �2 z.

- Regarding ⊕WPU+: We prove the contrapositive. Suppose y ≺1⊕2 x and
y ≺1⊕2 z. Assume y ∈ Si. Since y ≺1⊕2 x and y ≺1⊕2 z, we know that
x, z ∈

⋂
k<i S

c
k ∩ Sc

i . Now, we know that Si equals one of min(�1,
⋂

k<i S
c
k),

min(�2,
⋂

k<i S
c
k) or min(�1,

⋂
k<i S

c
k)∪min(�2,

⋂
k<i S

c
k). We consider each

case in turn:

(1) Si = min(�1,
⋂

k<i S
c
k): From y ∈ Si and x ∈

⋂
k<i S

c
k ∩ Sc

i , we have
y ≺1 x, as required.

(2) Si = min(�2,
⋂

k<i S
c
k): From y ∈ Si and z ∈

⋂
k<i S

c
k ∩ Sc

i , we have
y ≺2 z, as required.

(3) Si = min(�1,
⋂

k<i S
c
k) ∪ min(�2,

⋂
k<i S

c
k): Either y ∈ min(�1

,
⋂

k<i S
c
k), in which case y ≺1 x, or y ∈ min(�2,

⋂
k<i S

c
k), in which

case y ≺2 z.

- Regarding ⊕NO: We show: If x ≺i y, y �1⊕2 x and z �j y, then z �1⊕2 y,
i 6= j, i, j ∈ {1, 2}. Suppose that x ≺i y, y �1⊕2 x and z �j y. We must
show that z �1⊕2 y. Assume y ∈ St. Then, from y �1⊕2 x and z �j y,
we have x, z ∈

⋂
k<t S

c
t and furthermore z ∈ Sc

t . We know that St equals
one of min(�1,

⋂
k<t S

c
k), min(�2,

⋂
k<t S

c
k) or min(�1,

⋂
k<t S

c
k) ∪ min(�2

,
⋂

k<t S
c
k). From x ≺i y, we know that y /∈ min(�i,

⋂
k<t S

c
k), hence we must

have y ∈ min(�j,
⋂

k<t S
c
k). Furthermore, we are left with either St = min(�j

,
⋂

k<t S
c
k) or St = min(�1,

⋂
k<t S

c
k) ∪min(�2,

⋂
k<t S

c
k). In either case, we

must have y ≺j z, as required.

Proposition 5 Given⊕DOM,⊕ is a TeamQueue combinator iff it satisfies⊕SPU+
and ⊕WPU+.

Proof: We show that, given ⊕DOM, if ⊕ satisfies ⊕SPU+ and ⊕WPU+, then it
satisfies ⊕NO and hence, by Propositions 1 and 6, is a TeamQueue combinator.

Suppose x ≺i y, y �1⊕2 x and z �j y, with i 6= j. We must show z �1⊕2 y. If
we can show z �i y, then we can conclude z �1⊕2 y from ⊕WPU. So suppose for
reductio that y ≺i z. From ⊕DOM, ∃S, such that, ∀u, v ∈ S, u �1 v iff u �2 v
and ∀u, v ∈ Sc, u �1 v iff u �2 v. From z �j y and y ≺i z, it must be the case that
y ∈ S and z ∈ Sc. If x ∈ S, then from x ≺i y, we get x ≺j y and so x ≺1⊕2 y from
⊕SPU, contradicting y �1⊕2 x. If x ∈ Sc, then, since x ≺i y ≺i z and z ∈ Sc,
x ≺j z. So from this and z �j y, we get x ≺j y and so again x ≺1⊕2 y from⊕SPU,
contradicting y �1⊕2 x. Hence, it must be that z �i y, as required.

Proposition 6 Given ⊕DOM, ⊕ satisfies ⊕SPU+ and ⊕WPU+ iff it satisfies
⊕SPU and ⊕WPU, respectively.
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Proof: We prove this by demonstrating the equivalence, given ⊕DOM, of ⊕SPU
and ⊕WPU with ⊕UB and ⊕LB, respectively, which we have shown (see Proposi-
tion 3) to be equivalent to ⊕SPU+ and ⊕WPU+, respectively.

Regarding⊕SPU and⊕UB, our proof is direct. Regarding⊕WPU and⊕LB, we
first show that ⊕WPU is equivalent to the following weakening ⊕WLB of ⊕LB:

(⊕WLB) min(�1, S) ∩min(�2, S) ⊆ min(�1⊕2, S)

before showing that ⊕WLB is equivalent to ⊕LB under the domain restriction
⊕DOM.

From ⊕UB to ⊕SPU: The result follows from the fact that x � y iff min(�
, {x, y}) ⊆ {x}.

From ⊕SPU to ⊕UB: It suffices to show that min(�1⊕2, S) ⊆ min(�1, S) ∪
min(�2, S). Assume ⊕DOM, ⊕SPU and that there exists an x, such that x ∈
min(�1⊕2, S) but, for contradiction, that x /∈ min(�1, S) ∪min(�2, S). From the
latter, there exist y1, y2 ∈ S, such that (i) y1 ≺1 x and (ii) y2 ≺2 x. From the
former, (iii) x �1⊕2 y1 and (iv) x �1⊕2 y2. From (i) and (iii) on the one hand
and (ii) and (iv) on the other, by ⊕SPU, we recover (v) x �2 y1 and (vi) x �1 y2,
respectively. The conjunctions of (i) and (vi), i.e. y1 ≺1 x �1 y2, and of (ii) and
(v), i.e. y2 ≺2 x �2 y1, however, jointly contradict ⊕DOM, since the latter entails
that there exist no x, y1, y2 such that y1 ≺1 x �1 y2 but y2 ≺2 x �2 y1. Hence
x ∈ min(�1, S) ∪min(�2, S), as required.

From ⊕WPU to ⊕WLB: Let x ∈ min(�1, S) ∩ min(�2, S) and assume for
reductio that x /∈ min(�1⊕2, S). Then there exists y ∈ S such that y ≺1⊕2 x. By
⊕WPU, either y ≺1 x or y ≺2 x. Assume y ≺1 x (the other case is analogous).
Then x /∈ min(�1, S) and hence x /∈ min(�1, S) ∩ min(�2, S). Contradiction.
Hence, x ∈ min(�1⊕2, S), as required.

From ⊕WLB to ⊕WPU: Suppose x �1 y and x �2 y. Then x ∈ min(�1

, {x, y}) ∩ min(�2, {x, y}). Assume for reductio that y ≺1⊕2 x. Then x /∈
min(�1⊕2, {x, y}), so, from⊕WLB, x /∈ min(�1, {x, y})∩min(�2, {x, y}). Con-
tradiction. Hence x �1⊕2 y, as required.

From ⊕LB to ⊕WLB: Obvious.
From ⊕WLB to ⊕LB: Assume that ⊕LB doesn’t hold. Then there exists an S

such that min(�1, S) * min(�1⊕2, S) and min(�2, S) * min(�1⊕2, S). So there
exist x, y ∈ S such that x ∈ min(�1, S), y ∈ min(�2, S) and x, y /∈ min(�1⊕2, S).
Hence there exists z ∈ S such that z ≺1⊕2 x and z ≺1⊕2 y. By ⊕WLB, we
know from z ≺1⊕2 x that either z ≺1 x or z ≺2 x. From this and the fact that
x ∈ min(�1, S), we recover the result that z ≺2 x. Similarly, we also recover
z ≺1 y. So we obtain the following pattern: x �1 z ≺1 y and y �2 z ≺2 x. But
this is not possible given ⊕DOM. Hence ⊕LB holds, as required.
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Proposition 7 Let ⊕ be a TeamQueue combinator, let ∗ be an AGM revision op-
erator and let ÷ be such that �Ψ÷A is defined from ∗ using ⊕. Then, for each
i = 1, 2, 3, 4, if ∗ satisfies (CR∗i) then ÷ satisfies (CR÷i).

Proof: From CR∗1 to CR÷1: Let x, y ∈ [[¬A]]. We must show that x �Ψ÷A y
iff x �Ψ y. Note that from CR∗1, we have (1) x �Ψ∗¬A y iff x �Ψ y. Regarding
the left-to-right direction of the equivalence: Assume (2) y ≺ x. From (1) and (2),
we recover (3) y ≺Ψ∗¬A x. From (2) and (3), by ⊕SPU, it follows that y ≺Ψ÷A x,
as required. Regarding the right-to-left-direction: Assume (4) x �Ψ y. From (1)
and (4), we recover (5) x �Ψ∗¬A y. From (4) and (5), by ⊕WPU, it follows that
x �Ψ÷A y, as required.

From CR∗2 to CR÷2: Similar proof as the one given for the derivation of CR÷1
from CR∗1.

From CR∗3 to CR÷3: Let x ∈ [[¬A]], y ∈ [[A]] and (1) x ≺Ψ y. We must show
that x ≺Ψ÷A y. From CR∗3, we recover (2) x ≺Ψ∗¬A y. From (1) and (2), by
⊕SPU, we then obtain x ≺Ψ÷A y, as required.

From CR∗4 to CR÷4: Let x ∈ [[¬A]], y ∈ [[A]] and (1) x �Ψ y. We must show
that x �Ψ÷A y. From CR∗4, we recover (2) x �Ψ∗¬A y. From (1) and (2), by
⊕WPU, we then obtain x �Ψ÷A y, as required.

Proposition 8 Let ∗ be any revision operator satisfying C∗1 and C∗2 and ÷ be the
contraction operator defined from * using any tpo aggregation function satisfying
⊕WPU, ⊕SPU and ⊕HI. Then ÷ satisfies PFI.

Proof: Assume that ∗ satisfies CR∗1 and CR∗2 and let ÷ be the contraction oper-
ator defined from ∗ using some tpo aggregation function satisfying ⊕WPU, ⊕SPU
and⊕HI. We saw above, in Proposition 7 that÷ will also satisfy CR÷1 and CR÷2.
The desired result then immediately follows from the theorem established by Ra-
machandran et al (2011, Theorem 1), according to which every contraction function
÷ obtained from a revision function ∗, such that ÷ and ∗ satisfy HI, satisfies PFI if
it also satisfies CR÷1 and CR÷2.

Theorem 2 ⊕STQ is the only basic combinator that satisfies both ⊕SPU+ and the
following ‘Parity’ constraint:

(⊕PAR) If x ≺1⊕2 y then for each i ∈ {1, 2} there exists z s.t. x ∼1⊕2 z and
z ≺i y

Proof: We need to show that if ⊕ satisfies ⊕SPU+ and ⊕PAR, for any �1,�2,
we have �1⊕2=�1⊕STQ2. Assume that �1⊕2= {S1, S2, . . . , Sm} and �1⊕STQ2=
{T1, T2, . . . , Tn}, where Si, Ti are the ranks of the relevant tpos, with lower ranks
being the most preferred.
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We will prove, by induction on i, that Si = Ti, ∀i. Assume Sj = Tj , ∀j < i. We
must show Si = Ti.

Regarding Si ⊆ Ti: Let x ∈ Si, so that x �1⊕2 y, ∀y ∈
⋂

j<i S
c
j . Assume

for reductio that x /∈ Ti. Since x ∈ Si, we know that x ∈
⋂

j<i S
c
j =

⋂
j<i T

c
j .

Hence, since x /∈ Ti and, by construction of �1⊕STQ2, there exists y1 ∈
⋂

j<i T
c
j

such that y1 ≺1 x and there exists y2 ∈
⋂

j<i T
c
j such that y2 ≺2 x. Then, by

⊕SPU+, either y1 ≺1⊕STQ2 x or y2 ≺1⊕STQ2 x, in both cases contradicting x �1⊕2 y,
∀y ∈

⋂
j<i S

c
j .Hence x ∈ Ti, as required.

Regarding Ti ⊆ Si: Let x ∈ Ti. Then, by construction of �1⊕STQ2, we have
x ∈ min(�1,

⋂
j<i T

c
j ) ∪min(�2,

⋂
j<i T

c
j ). Assume for reductio that x /∈ Si. We

know that x ∈
⋂

j<i T
c
j , so by the inductive hypothesis, x ∈

⋂
j<i S

c
j . From this and

x /∈ Si we know that there exists a y ∈ Si, such that y ≺1⊕2 x. Then from ⊕PAR,
there exist a z1 ∈ Si such that z1 ≺1 x and a z2 ∈ Si such that z2 ≺2 x. But this
contradicts x ∈ min(�1,

⋂
j<i T

c
j ) ∪min(�2,

⋂
j<i T

c
j ). Hence x ∈ Si, as required.

Proposition 9 ⊕PAR is equivalent to:
(⊕SB) If x ≺1⊕2 y for every x ∈ Sc, y ∈ S, then min(�1, S) ∪min(�2, S) ⊆

min(�1⊕2, S)

Proof: From ⊕PAR to ⊕SB: Assume that x ≺1⊕2 y for every x ∈ Sc, y ∈ S.
It suffices to show that min(�1, S) ∪ min(�2, S) ⊆ min(�1⊕2, S). So assume
x ∈ min(�1, S) ∪ min(�2, S) but, for contradiction, x /∈ min(�1⊕2, S). Then
y ≺1⊕2 x for some y ∈ S. From the latter, by ⊕PAR, we know that z1 ≺1 x for
some z1 such that y �1⊕2 z1 and z2 ≺2 x for some z2 such that y �1⊕2 z2. Given
our initial assumption, we can deduce from y �1⊕2 z1, y �1⊕2 z2 and y ∈ S that
z1, z2 ∈ S. But this, together with z1 ≺1 x and z2 ≺2 x contradicts x ∈ min(�1

, S) ∪min(�2, S). Hence x ∈ min(�1⊕2, S), as required.
From⊕SB to⊕PAR: Suppose⊕PAR does not hold, i.e. ∃x, y, such that x ≺1⊕2 y

and for no z do we have x ∼1⊕2 z and z ≺1 y (similar reasoning will apply if we
replace ≺1 by ≺2 here). We will show that ⊕SB fails, i.e. that ∃S ⊆ W , such that
x ≺Ψ1⊕2 y for every x ∈ Sc, y ∈ S and min(�1, S)∪min(�2, S) * min(�1⊕2, S).

Let S = {w | x �1⊕2 w} (so that Sc = {w | w ≺1⊕2 x}). Clearly x ∈ S
and, from x ≺1⊕2 y, we know that y ∈ S but y /∈ min(�1⊕2, S). Hence, to show
min(�1, S) ∪min(�2, S) * min(�1⊕2, S) and therefore that ⊕SB fails, it suffices
to show y ∈ min(�1, S). But if y /∈ min(�1, S), then z ≺1 y for some z ∈ S, i.e.
some z, such that x �1⊕2 z. Since �1⊕2 is a tpo we may assume x ∼1⊕2 z. This
contradicts our initial assumption that for no z do we have x ∼1⊕2 z and z ≺1 y .
Hence y ∈ min(�1, S), as required.

Proposition 10 Let ∗ be any revision operator–such as the natural or restrained
revision operator–satisfying the following property:
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If x, y /∈ min(�Ψ, [[A]]) and x ≺Ψ y, then x ≺Ψ∗A y

Let÷ be the contraction operator defined from ∗ using⊕STQ. Then÷ is the natural
contraction operator.

Proof: Recall the definition of natural contraction:

(÷NAT) x �Ψ÷A y iff
(a) x ∈ min(�Ψ, [[¬A]]) ∪min(�Ψ,W ), or
(b) x, y /∈ min(�Ψ, [[¬A]]) ∪min(�Ψ,W ) and x �Ψ y

We must show that for any x, y ∈ W and A ∈ L, x �Ψ÷A y iff x �Ψ÷NA y. We
split into two cases.

Case 1: x ∈ min(�Ψ, [[¬A]])∪min(�Ψ,W ). Then, by the definitions of ÷N and
÷, we have both x �Ψ÷A y and x �Ψ÷NA y, so the desired result holds.

Case 2: x /∈ min(�Ψ, [[¬A]])∪min(�Ψ,W ). Then by definition of÷N , x �Ψ÷NA

y iff both y /∈ min(�Ψ, [[¬A]]) ∪min(�Ψ,W ) and x �Ψ y. We now consider each
direction of the equivalence to be demonstrated separately.

- From x �Ψ÷NA y to x �Ψ÷A y: Suppose x �Ψ÷NA y, and hence that both
y /∈ min(�Ψ, [[¬A]]) ∪ min(�Ψ,W ) and x �Ψ y. Assume for reductio that
y ≺Ψ÷A x. By ⊕PAR: if y ≺Ψ÷A x, then there exists z such that z ∼Ψ÷A y
and z ≺Ψ x. Hence there exists z such that z ∼Ψ÷A y and z ≺Ψ x. Since
x �Ψ y, we therefore also have z ≺Ψ y. If z /∈ min(�Ψ, [[¬A]]), then from the
postulate mentioned in the proposition, we get z ≺Ψ∗¬A y and then z ≺Ψ÷A y.
Contradiction. Hence we can assume z ∈ min(�Ψ, [[¬A]]). From x �Ψ y,
y ≺Ψ÷A x and ⊕WPU, we know that y ≺Ψ∗¬A x. From this, CR∗2, CR∗4
and x �Ψ y, we get y ∈ [[¬A]]. Hence, from z ≺Ψ y and CR∗1, we recover
z ≺Ψ∗¬A y and then z ≺Ψ÷A y by⊕SPU. Contradiction again. Hence x �Ψ÷A
y, as required.

- From x �Ψ÷A y to x �Ψ÷NA y: Assume that x �Ψ÷A y and, for reductio,
that either y ≺Ψ x or y ∈ min(�Ψ, [[¬A]]) ∪min(�Ψ,W ). If the latter holds,
then we know that y ∈ min(�Ψ÷A,W ), by definition of ÷. Hence, from this
and x �Ψ÷A y, we also deduce that x ∈ min(�Ψ, [[¬A]]) ∪ min(�Ψ,W ),
contradicting the assumption that x /∈ min(�Ψ, [[¬A]]) ∪ min(�Ψ,W ). So
assume that y /∈ min(�Ψ, [[¬A]]) ∪min(�Ψ,W ) and y ≺Ψ x. From the latter
and our assumption that x �Ψ÷A y, it follows by ⊕SPU that x �Ψ¬A y. But
it also follows from y /∈ min(�Ψ, [[¬A]]) ∪ min(�Ψ,W ) and y ≺Ψ x that
x, y /∈ min(�Ψ, [[¬A]]). We then recover, from the property mentioned in the
proposition, the result that x �Ψ y, contradicting our assumption that y ≺Ψ x.
Hence, x �Ψ÷NA y, as required.
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