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The aim of this paper is to emphasize the fact that for all finitely-many-valued
logics there is a completely systematic relation between sequent calculi and tableau
systems. More importantly, we show that for both of these systems there are al-
ways two dual proof sytems (not just only two ways to interpret the calculi). This
phenomenon may easily escape one’s attention since in the classical (two-valued)
case the two systems coincide. (In two-valued logic the assignment of a truth value
and the exclusion of the opposite truth value describe the same situation.)

We employ the usual definitons of first order languages, many-valued interpre-
tations (M) and induced valuation functions (valy) (see e.g. CARNIELLI [1987]).
In the following V' = {vy,..., v} always denotes the set of truth values of a logic.

To stress the dualty of the two types of calculi we shall define them simul-
tanously:

1. DEFINITION An (m-valued) sequent is an m-tuple of finite sets I'; of formulas,

denoted as It | Iz | ... | I'm. (As usual we abbreviate I'U A by I A and I' U {A}
by I', A.)
2. DEFINITION An interpretation M is said to p(n)-satisfy a sequent I7 | ... | I,

if there is an ¢ (1 <4 < m) and a formula F € I}, s.t. valp(F) = (#)v;.
A sequent is called p(n)-valid, if it is p(n)-satisfied by every interpretation.

The concept of p-satisfiability was used by ROUSSEAU [1967] (compare also
SCHROTER [1955]) in his formulation of many-valued sequents, whereas n-
satisfiablity essentially already appears in CARNIELLI [1991].

3. DEFINITION An introduction rule for a connective O at place ¢ in the logic L is
a schema of the form:

(19,801 ...| T, A4,
€L gy
n|...|0(A, LA | T

where the arity of O is n, I is a finite set, I] = Ujel Flj, A{ C{A,..., A}
Tt is called p(n)-admissible, if for every interpretation M the following are equiv-
alent:

(1) O(Aq,...,A,) takes (does not take) the truth value v;.

(2) For all j € I, M p(n)-satisfies the sequents AJ | ... | AJ .



4. ExaMPLE We state rules for the implication of the three-valued Godel logic Gg
with V = {f,u,t}.

Let the expression A” (A7V) denote the statement “A takes (does not take) the
truth value v”. Since (A D B)! iff (Af v A* Vv BY) A (AT v B v B!) we get the
following p-admissible introduction rule for position ¢:

IA|AA|IILLB I',A|A'B|II'B
LI |AA |, A>B

Because of (A D B)! iff Af v (A% A B%) vV B' we get by negating both sides of
the equivalence the following n-admissible introduction rule for the implication at
position ¢:
A|lA|OD 1T AAB | A" IT" B
rr,r"| AN A | IO IT"A D B

Dt

It should be stressed that admissible introduction rules for a connective at a
given place are far from being unique: Every p(n)-admissible introduction rule for
O(Ayg,...,A,) at place i corresponds to a conjunction of disjunctions of some A"
(A7) which is true iff O(A4y, ..., A,) takes (does not take) the truth value v;. Any
such conjunctive normal form for O(Ay,..., A,)" will do. In particular, the truth
table O for a connective O immediately yields a complete conjunctive normal form.
For p-sequents the corresponding rule is as in Definition 3, with: I C V™ is the

set of all n-tuples j = (w1, ..., wy) of truth values such that O(wy,...,wy,) # v;;
and A] = {A, | 1 < k < n,u # wy}. For n-sequents we get: I C V™ consists
of all n-tuples j = (ws,...,w,) of truth values such that O(wy,...,w,) = v; and

A{:{Aﬂlgkgn,vl:wk}.

5. DEFINITION An introduction rule for a quantifier Q at place i in the logic L is
a schema of the form:
(19,80 | .| T3, 8, )
jeI
n|...| Iy (Qe)A(z) | ..o | D
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where 1 is a finite set, I} = J,¢; IV, A € {A(a1), ..., Aap) }U{A(t1),..., A(ty)}.
The a; are metavariables for free variables (the eigenvariables of the rule) satisfying
the condition that they do not occur in the lower sequent; the ¢; are metavariables
for arbitrary terms.

Q:i is called p(n)-admissible, if for every interpretation M the following are
equivalent:

(1) (Qx)A(x) takes (does not take) the truth value v; under M.

(2) For all dy, ..., d, € D, there are e, ..., eq € D s.t. for all j € I, M p(n)-
satisfies A'] | ... | A"}, where A’/ is obtained from A by instantiating the
eigenvariable ay (term variable t;) with dj (eg).

The truth function Q for a (distribution) quantifier Q immediately yields admis-
sible introduction rules for place ¢ in a way similar to the method described above
for connectives: For p-sequents let I = {j C V' | Q(j) # v;}. Then the rule is
given as in Definition 5, with A} = {A(al)) | w € j,w # v} U{A®) | v, € V'\ j}.
In contrast, for n-sequents we take I = {(j,i) | j C V Ai € j AQ(j) = v;} and
AP = (Ala]) | 1€ Y U{A®) i =1).

Again, it should be stressed that in general these are not the only possible rules.



6. DEFINITION A p-sequent calculus for a logic L is given by:
(1) Axioms of the form: A | A|...| A, where A is any formula,

(2) For every connective O and every truth value v; a p-admissible introduction
rule O:4,

(3) For every quantifier Q and every truth value v; a p-admissible introduction
rule Q:i,

(4) Weakening rules for every place i:

Dl | Bi] | T
AWM
Il (LAl | T

(5) Cut rules for every pair of truth values (v;, v;) s.t. v; # v;:

il | DA T A A A] ] A et
T, A | Do A "
A n-sequent calculus for a logic L is given by:
(1) Axioms of the form: Ay | ... | A, where A; = A; = {A} for some ¢, j s.t.

i # j and Ay = () otherwise (A is any formula),

(2) For every connective O and every truth value v; an n-admissible introduction
rule O:1,

(3) For every quantifier Q and every truth value v; an n-admissible introduction
rule Q:,

(4) Weakening rules (identical to the ones tor p-sequent calculi)

(5) The cut rule:

(i || THA .| T .
cut:
Ii|...| I
where I :U1gjgmplj-

7. THEOREM (Soundness and cut-free Completeness) For every p(n)-sequent cal-
culus the following holds: A sequent is p(n)-provable without cut rule(s) iff it is
p(n)-valid.

Analytic tableaux for many-valued logics have been investigated by
SURMA [1977] and CARNIELLI [1987]. HAHNLE [1991], based on the aforementioned
work, studied the applicability of these systems for automated theorem proving.
Héahnle introduced the notation of sets-of-signs which allows a more efficient repre-
sentation of tableaux and presented streamlined calculi for certain classes of logics.
Here, we want to stress the striking similarity between tableaux systems and sequent
calculi: In fact, there is an immediate correspondence between cut-free sequent cal-
culus proofs and closed tableaux. Again, there are two dual systems for any logic.

8. DEFINITION A signed formula is an expression of the form {w}A, where w € V.



9. DEFINITION A tableau is a downward tree of sets of signed formulas where every
set is obtained from a set preceding it in the tree by application of one of the rules
of the tableau system:

Let R:i be a p(n)-admissible introduction rule for a connective or a quantifier as
given in Definitions 3 and 5, where at least one of the A; is nonempty. Moreover,
let F' be the formula being introduced (i.e., F = 0O(A4,...,4,) or F = (Qx)A(z)).

The p(n)-tableau rule corresponding to R: is:

F, {Ul}F
<F7 UZl:1 Zk>je[

where Ay, is obtained from Aj by replacing every formula A € Ay by {vp}A. A
p(n)-analytic tableau is called closed, if every leaf contains formulas {vy}A for all

ke{l,...,m} (for k € {i,j}, i # 7).

10. THEOREM Every closed p(n)-tableau with the root | J I’y corresponds to a cut-
free p(n)-sequent calculus proof of I'y | ... | Iy,.

We finally remark that also resolution calculi can be derived from sequent cal-
culi: The introduction rules for sequents convert into reduction rules that translate
finite sets of assignments of truth values to formulas into clause forms. (Clauses
are finite sets of assignments of truth values to atomic formulas; cf. BAAz and
FERMULLER [1992])
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