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Abstract

This essay provides a novel account of iterated epistemic states. The

essay argues that states of epistemic determinacy might be secured by

countenancing self-knowledge on the model of fixed points in monadic

second-order modal logic, i.e. the modal µ-calculus. Despite the epis-

temic indeterminacy witnessed by the invalidation of modal axiom 4 in

the sorites paradox – i.e. the KK principle: �φ → ��φ – an epistemic

interpretatation of the Kripke functors of a µ-automaton permits the iter-

ations of the transition functions to entrain a principled means by which

to account for necessary conditions on self-knowledge.

This essay provides a novel account of self-knowledge, which avoids the epis-

temic indeterminacy witnessed by the invalidation of modal axiom 4 in epistemic

logic; i.e. the KK principle: �φ → ��φ. The essay argues, by contrast, that –

despite the invalidation of modal axiom 4 on its epistemic interpretation – states

of epistemic determinacy might yet be secured by countenancing self-knowledge

on the model of fixed points in monadic second-order modal logic, i.e. the modal

µ-calculus.

Counterinstances to modal axiom 4 – which records the property of transitiv-

ity in labeled transition systems, i.e., the relational semantics for modal logic1 –

have been argued to occur within various interpretations of the sorites paradox.

Suppose, e.g., that a subject is presented with a bounded continuum, the incip-

ient point of which bears a red color hue and the terminal point of which bears

an orange color hue. Suppose, then, that the cut-off points between the points

1Cf. Kripke (1963).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/131213617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ranging from red to orange are indiscriminable, such that the initial point, a,

is determinately red, and matches the next apparent point, b; b matches the

next apparent point, c; and thus – by transitivity – a matches c. Similarly, if b

matches c, and c matches d, then b matches d. The sorites paradox consists in

that iterations of transitivity would entail that the initial and terminal points

in the bounded continuum are phenomenally indistinguishable. However, if one

takes transitivity to be the culprit in the sorites, then eschewing the principle

would entail a rejection of the corresponding modal axiom (4), which records

the iterative nature of the relation. Given the epistemic interpretation of the

axiom – namely, that knowledge that a point has a color hue entails knowing

that one knows that the point has that color hue – a resolution of the paradox

which proceeds by invalidating axiom 4 subsequently entrains the result that

one can know that one of the points has a color hue, and yet not know that

they know that the point has that color hue (Williamson, 1990: 107-108; 1994:

223-244; 2001: chs. 4-5). The non-transitivity of phenomenal indistinguisha-

bility can then provide a structural barrier to higher-order knowledge of one’s

first-order states. The foregoing result holds, furthermore, in the probabilistic

setting, such that the evidential probability that a proposition has a particular

value may be certain – i.e., be equal to 1 – while the iteration of the evidential

probability operator – recording the evidence with regard to that evidence – is

yet equal to 0. Thus, one may be certain on the basis of one’s evidence that a

proposition has a particular value, while the higher-order evidence with regard

to one’s evidence adduces entirely against that valuation (Williamson, 2014).

The argument eschews ’safety’ as a necessary condition on knowledge, for

which Williamson’s (2001) approach explicitly argues and as codified by margin-

for-error principles of the form: ∀x∀φ[Km+1φ(x) → Kmφ(x+1)]’ (Williamson,
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2001: 128; Gómez-Torrente, 2002: 114); i.e., that if one knows – relative to a

margin which ranges over a world accessible from the actual world, m – that an

object satisfies a property, then a distinct similar object satisfies that property

in the actual world. Intuitively, the safety condition ensures that if one knows

that a predicate is satisfied, then one knows that the predicate is satisfied in rel-

evantly similar worlds. Williamson targets the inconsistency of margin-for-error

principles, the luminosity principle [’∀x∀φ[φ(x) → Kφ(x)’], and the character-

ization of the sorites as occurring when an object satisfies a property, such

that similar objects would further do so. The triad evinces, arguably, that the

safety condition is not satisfied in the sorites, s.t. knowledge does not obtain,

and the luminosity principle is false. In cases, further, in which conditions on

knowledge are satisfied, epistemic indeterminacy is supposed to issue from the

non-transitivity of the accessibility relation on worlds (1994: 242).

One of the primary virtues of the present proposal is thus that it targets the

property of transitivity directly, because transitivity both engenders the sorites

paradox on the assumption that the states are known and the property is cod-

ified by the epistemic modal axiom for transitivity, i.e., 4 or the KK principle.

By so doing, it permits a uniform interpretation of transitivity in the sorites – as

codified by the KK principle – such that it applies not only to epistemic acces-

sibility relations whose obtaining is relevant to the safety condition, but further

to the logical property and its explanatory role in engendering the paradox.

A second virtue adducing in favor of the foregoing, ’epistemicist’ approach

to vagueness – which takes the latter to be a phenomenon of epistemic inde-

terminacy – is that vagueness can be explained without having to revise the

underlying logic. The epistemicist approach is consistent with classical logical

laws, such as e.g. the law of excluded middle; and thus it can determinately be
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the case that a point has a color hue; determinately be the case that the next

subsequent point has a distinguishable color hue; and one can in principle know

where in the continuum the cut-off between the two points lies – yet vagueness

will consist in the logical limits – i.e. the non-transitivity – of one’s state of

knowledge. Thus, one will not in principle be able to know that they know the

point at which the color hues are dissimilar.

In this essay, I endeavor to provide a novel account which permits the reten-

tion of both classical logic as well as a modal approach to the phenomenon of

vagueness, while salvaging the ability of subjects to satisfy necessary conditions

on self-knowledge. I will argue that – despite the invalidity of modal axiom 4,

given the non-transitivity of the similarity relation – a distinct means of secur-

ing an iterated state of knowledge concerning one’s first-order knowledge that a

particular state obtains is by availing of fixed point, non-deterministic automata

in the setting of coalgebraic modal logic. Propositional modal logic is equiva-

lent to the bisimulation-invariant fragment of fixed point monadic second-order

logic.2 The fixed point higher-order modal logic is referred to as the modal

µ-calculus, where µ(x) is an operator recording a least fixed point. Despite the

non-transitivity of sorites phenomena – such that, on its epistemic interpreta-

tion, the subsequent invalidation of modal axiom 4 entails structural, higher-

order epistemic indeterminacy – the modal µ-calculus provides a natural setting

in which a least fixed point can be defined with regard to the states instanti-

ated by non-deterministic modal automata. In virtue of recording iterations of

particular states, the least fixed points witnessed by non-deterministic modal

automata provide, then, an escape route from the conclusion that the invali-

dation of the KK principle provides an exhaustive and insuperable obstruction

2Cf. Janin and Walukiewicz (1996).
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to self-knowledge. Rather, the least fixed points countenanced in the modal

µ-calculus provide another conduit into subjects’ knowledge to the effect that

they know that a state has a determinate value. Thus, because of the fixed

points definable in the modal µ-calculus, the non-transitivity of the similarity

relation is yet consistent with necessary conditions on epistemic determinacy

and self-knowledge, and the states at issue can be luminous to the subjects who

instantiate them.

In the remainder of the essay, we introduce labeled transition systems, the

modal µ-calculus, and non-deterministic Kripke (i.e., µ-) automata. We recount

then the sorites paradox in the setting of the modal µ-calculus, and demonstrate

how the existence of fixed points enables there to be iterative phenomena which

ensure that – despite the invalidation of modal axiom 4 – iterations of mental

states can be secured, and can thereby be luminous.

A labeled transition system is a tuple comprised of a set of worlds, M;

a valuation, V, from M to its powerset, P(M); and a family of accessibility

relations, R. So LTS = 〈M,V,R〉 (cf. Venema, 2012: 7). A Kripke coalgebra

combines V and R into a Kripke functor, σR; i.e. the set of binary morphisms

from M to P(M) (op. cit.: 7-8). Thus for an s∈M, σ(s) := [σV (s), σR(s)] (op.

cit.). Satisfaction for the system is defined inductively as follows: For a formula

φ defined at a state, s, in M,

JφKM = V(s) 3

J¬φKM = S – V(s)

J⊥KM = ∅

JTKM = M

Jφ ∨ ψKM = JφKM ∪ JψKM

3Alternatively, M,s  φ if s∈V(φ) (9).
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Jφ ∧ ψKM = JφKM ∩ JψKM

J⋄sφKM = 〈Rs〉JφKM

J�sφKM = [Rs]JφKM , with

〈Rs〉(φ) := {s’∈S | Rs[s’] ∩ φ 6= ∅} and

[Rs](φ) := {s’∈S | Rs[s’] ⊆ φ} (9).

In propositional dynamic logic (PDL), 〈π〉φ abbreviates that some execu-

tion of a non-deterministic computable program entrains the information state

contained in φ, where computability is here defined in accord with the Church-

Turing thesis that a function is effectively computable if and only if it is par-

tial and recursive, as co-extensive with the class of λ-definable terms and the

class of finite, discrete-state automata such as Turing machines (cf. Church,

1936; Turing, 1937). [π]φ abbreviates that all executions of a non-deterministic

computable program entrains the information state contained in φ. Complex

operations in propositional dynamic logics may then obtain (cf. Blackburn and

van Benthem, 2007: 59-61). A Choice principle states that the union of π1 and

π2 may be formed, such that the logic executes either π1 or π2. A Composi-

tion principle states that there is an operation π1;π1, such that the logic first

executes π1 and then executes π2. An Iteration principle defines a program,

π*, where π* entrains the execution of π a finite number of times. Finally, a

Test principle defines a program, π?, where π? can comprise the following al-

gorithms: ’(π?;a) ∪ (¬π?;b)’, which states that if a program π obtains, then a

obtains, else b obtains; ’a;(¬π?;a)*;π?’, which states that the logic will repeat

the execution, a, a finite number of times until the program π is tested; and

’(π?;a)*;¬π?’, which states that while a program π is being executed a finite

number of times, do a (op. cit.: 59-60).

The modal µ-calculus is then defined as follows. Recall again the foregoing
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Iteration principle from PDL, 〈π*〉φ (Venema, op. cit.: 25). In our Kripke

colagebra, we thus have M,s  〈π*〉φ ⇐⇒ (φ ∨ ⋄s〈π*〉φ) (op. cit.). 〈π*〉φ is

thus said to be the fixed point for the equation, x ⇐⇒ φ ∨ ⋄x, where the value

of the formula is a function of the value of x conditional on the constancy in

value of φ (op. cit., 38). The smallest solution of the formula, x ⇐⇒ φ ∨ ⋄x,

is written µ.xφ ∨ ⋄x (25). The value of the least fixed point is, finally, defined

more specifically thus:

Jµ.xφ ∨ ⋄xK = V(φ) ∪ 〈R〉(Jµ.xφ ∨ ⋄xK) (38).

A non-deterministic automaton is a tuple A = 〈A, δ, Acc, aI〉, with A a

finite set of states, aI being the initial state of A; δ is a transition function

s.t. δ: A → P(A); and Acc ⊆ A is an acceptance condition which specifies

admissible conditions on δ (60, 66). A Muller acceptance condition is defined as

a subset of A, α ⊆ P(A), such that Accα := {s∈Aω | Inf(s) ∈ α)} (intuitively:

the admissible states are the infinite states in a deployment of the transition

function) (60). A Büchi condition is a subset β ⊆ A, such that Accβ := {s∈Aω

| Inf(s) ∩ β 6= ∅} (intuitively: an operation of the transition function passes

through the state s infinitely often) (op. cit.). Finally, a parity condition is

defined via a mapping, Ω: A → ω, such that AccΩ := {s∈Aω | max{Ω(s) |

s ∈ Inf(s)} is an even number} (intuitively: Ω is the largest natural number

occurring infinitely often in the sequence of states figuring as input to δ, and

such that the automaton accepts a particular infinite state iff Ω is even (op.

cit.).

Let two Kripke models A = 〈A, a〉 and S = 〈S, s〉, be bisimilar if and only

if there is is a non-empty binary relation, Z ⊆ A x S, which is satisfied, if:

(i) For all a∈Aand s∈S, if aZs, then a and s satisfy the same proposition letters;

(ii) The forth condition. If aZs and R△a,v1 . . . vn, then there are v1 . . . v’n in
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S, s.t.

• for all i (1 ≤ i ≤ n) viZv’i, and

• R’△s,v’1 . . . v’n;

(iii) The back condition. If aZs and R’△s,v’1 . . . v’n, then there are v1 . . . vn

in A, s.t.

• for all i (1 ≤ i ≤ n) viZv’i and

• R△a,v1 . . . vn (cf. Blackburn et al, 2001: 64-65).

Bisimulations may be redefined as relation liftings. We let, e.g., a Kripke

functor, K, be such that there is a relation K! ⊆ K(A) x K(A’) (17). Let Z be

a binary relation s.t. Z ⊆ A x A’ and P!Z ⊆ P(A) x P(A’), with

P!Z := {(X,X’) | ∀x∈X∃x’∈X’ with (x,x’)∈Z ∧ ∀x’∈X’∃x∈X with (x,x’)∈Z}

(op. cit.). Then, we can define the relation lifting, K!, as follows:

K! := {[(π,X), (π’,X’)] | π = π’ and (X,X’)∈P!Z} (op. cit.).

Finally, given the Kripke functor, K, K can be defined as the µ-automaton,

i.e., the tuple A = 〈A, δ, Ω, aI〉, with aI∈A defined again as the initial state

in the set of states A; Ω defined once more as the foregoing parity acceptance

condition; and δ defined as a mapping such that δ : A → P∃(KA), where the ∃

subscript indicates that (a,s)∈A x S → {(a’,s) ∈ K(A) x S | a’ ∈ δ(a)} = Ω(a),

and (a’,s) ∈ K(A) x S if and only if {Z ⊆ A x S | [a’, σ(s)] ∈ K!(Z)} = 0 (93).

The philosophical significance of the foregoing can now be witnessed by

defining the µ-automata on an alphabet; in particular, a non-transitive set

comprising a bounded real-valued, ordered sequence of chromatic properties.

Whereas Ω, in the above parity mapping, is identified with the largest even

number occurring infinitely often in the alphabet over which the automaton

is defined, the Muller acceptance condition would appear to be more suitable

for a background language of real-valued, chromatic properties. The Kripke
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functor whose acceptance conditions are Muller permits us, subsequently, to

define fixed points relative to arbitrary points comprising the non-transitive se-

quence. Thus, although the non-transitivity of the ordered sequence of color

hues belies modal axiom 4, such that one can know that a particular point in

the sequence has a particular value although not know that one knows that the

point satisfies that value, the perceived constancy of the chromatic values, φ, in

the non-transitive set of colors nevertheless permits every sequential input state

in the µ-automaton to define a fixed point. With δM
x(x’) := 〈δ〉S[x 7→x′], the

transition function can then satisfy the Muller condition relative to each point

in the continuum, such that δM
x(x’) iff V(φ ∪ 〈R〉(x’) iff V(φ) ∪ 〈R〉(Jµ.xφ ∨

⋄xK) (38).

The epistemicist approach to vagueness relies, as noted, on the epistemic

interpretation of the modal operator, such that the invalidation of transitivity

and modal axiom 4 (�φ → ��φ) can be interpreted as providing a barrier to

a necessary condition on self-knowledge. Crucially, µ-automata can receive a

similar epistemic interpretation. Thus, interpreting the µ-automaton’s Kripke

functors epistemically permits the iterations of the set of functions – as defined

by the fixed points relative to the arbitrary points in the ordered continuum – to

provide a principled means – distinct from the satisfaction of the KK principle

– by which to account for the pertinent iterations of epistemic states unique to

an agent’s self-knowledge.
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