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Abstract
Computationalism is a relatively vague term used to describe at-

tempts to apply Turing’s model of computation to phenomena outside
its original purview: in modelling the human mind, in physics, math-
ematics, etc. Early versions of computationalism faced strong objec-
tions from many (and varied) quarters, from philosophers to prac-
titioners of the aforementioned disciplines. Here we will not address
the fundamental question of whether computational models are appro-
priate for describing some or all of the wide range of processes that
they have been applied to, but will focus instead on whether ‘reno-
vated’ versions of the new computationalism shed any new light on or
resolve previous tensions between proponents and skeptics. We find
this, however, not to be the case, because the new computationalism
falls short by using limited versions of “traditional computation”, or
proposing computational models that easily fall within the scope of
Turing’s original model, or else proffering versions of hypercomputa-
tion with its many pitfalls.
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1 Classical vs. Non-classical Computation

The simplest view of the Turing machine model (TM) construes it as a de-
cision problem solver, tackling such questions as whether a certain string
represents a prime number or whether a certain other string belongs to a
context-free language. Of course, this view is rather restrictive, as there are
many interesting questions that cannot be answered with a simple “yes” or
“no”. But TMs can be viewed as mechanisms for calculating functions, with
the input string representing the argument(s) of the function and the string
left on the tape at halting time representing the result. Given the easy corre-
spondence between natural numbers and finite strings in an alphabet, a TM
can be said to calculate a function from natural numbers to natural numbers.
Decision problems can be viewed as special cases of functions from natural
numbers to natural numbers.

A basic set-theoretical argument tells us that there are many more func-
tions from natural numbers to natural numbers than there are possible TMs
and, ergo, that most functions cannot be computed by TMs. The halting
problem is one such function.

Within the field of classical computation, and indeed coeval with the
introduction of classical computation, certain forms of non-classical compu-
tation were devised, such as the oracle machine, which was introduced by
Turing himself [35].

Here we do not aim to add to the already lengthy list of possible objections
to hypercomputation, which claims the feasibility of computational models
that may go beyond the Turing limit in theory but not in practice. Instead
we offer an analysis and criticism of supposedly new models of computation
that claim to be different from and even to exceed (regardless of whether or
not they can be classified as hypercomputation) the classical Turing model
in their ability to describe how nature works and–so it is claimed–compute
in radical or innovative ways.

2 A brief roadmap to computationalism

While there is no current consensus as to the validity of attacks on classi-
cal computationalism, nowadays many researchers in different fields seem to
agree that new models of computation are needed in order to overcome such
objections (for a summary of which see [15]).
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In this paper we will refer to the former type of computationalism as
classical computationalism and to the latter type as new computationalism.
The new computationalist wave is a highly varied mix which encompasses
both rejections of Turing’s model and appeals to “natural” computation.

In the decades following Turing’s introduction of his formalization of effec-
tive procedure (as defined in [17]) in his seminal paper [34, 35], and especially
after the widespread and profound success of electronic computers in science
and engineering (now universally regarded as incarnations of Turing’s math-
ematical model), there was a strong impulse to not only use computers in
every field within sight but also to view them as models of how things really
are, the computational model of the human mind being quite probably one of
the most, if not the most, iconic instance of this tendency [27]. The process
of

encoding (or rewriting/or reinterpreting) a problem as a finite sequence
of symbols which could be manipulated mechanically by Turing machines in
order to solve it is what came to be referred to as classical computationalism.

Very soon dissenting voices raised objections based on (controversial) in-
terpretations of Gödel’s theorems ([20, 26]), failures to close the gap between
mechanical processing of information and real understanding of it ([29, 30]),
and the obvious differences between the way brains process information and
the particular operation of a Turing machine. The crisis in Artificial Intelli-
gence in the 1980s [4] did not help to advance the cause of computationalism,
as some early efforts to apply computers to (seemingly) not very complex hu-
man abilities like language translation or vision failed miserably. That the
objectors to computationalism were not able to present better models of the
human mind did not lead them to demur.

The time was ripe for bold proposals to overcome the impasse. Among the
most popular were hypercomputation and some forms of natural computing,
together with what we will classify as ‘other models of computation’ based
upon variations of the operation of classical models.

3 The uninstantiation of Hypercomputation

A mechanism more powerful than any TM must be able to compute more
functions than a TM can. If it merely calculates what a TM does, only
(finitely) faster, or more intuitively or with less hassle for its creator, then
we cannot say it is computationally more powerful, as it can be simulated by
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a TM. The Church-Turing thesis states that any formalism capturing what
an effective procedure is will be equivalent to a TM [18]. The Church-Turing
thesis is much maligned among neo- and hyper-computationalists, but as
Sieg [31] has shown (following ideas first advanced by Gandy [12]), it can be
reduced to two very basic principles: boundedness and locality conditions.
The former implies that a computing device can immediately recognize only
a bounded number of configurations, the latter that a computing device can
change only immediately recognizable configurations. In (perhaps) oversim-
plified terms, in order to overcome the TM’s limits, the device must be able
to either access an infinite amount of information or must act upon places
that are not immediately accessible in a finite number of operations. Sieg’s
formulation does not imply a proof of Church’s thesis, but instead establishes
a mathematical baseline for the kind of device needed to violate the so-called
Turing limit.

Such devices may exist or may eventually be created, but they must act
very differently from our current computers and cannot be based on trivial
variations of classical models.

Some models for hypercomputation include the Oracle Turing Machine
model [36], analog recurrent neural networks [33], and analog computa-
tion [25].

However, these models are just theoretical constructs, and not only are
there no actual devices based on them or physical processes which correspond
to them (as far as we know), but there is no prospect of turning them into
concrete, viable tools for research in the foreseeable future (even Turing did
not have such an eventuality in mind). See Davis’ paper on hypercomputa-
tion [5] for a critique of those who think otherwise. As we consider Davis’
analysis quite complete and well founded, we shall dwell no further on this is-
sue and we will conclude this section by saying that non-existence and breach
of physical laws (mainly the 2nd. law of thermodynamics) are good reasons
to overlook hypercomputation as a meaningful alternative to computation.

More recently, Maldonado [21, 22] has offered a defense of a form of bi-
ological hypercomputation, claiming that: “[...] life is not a standard Turing
Machine, but rather that living systems hypercompute, and that an under-
standing of life is reached not by grasping what life is but what it does.

It has even been suggested that phenomena such as death can be sources
of a sort of uncomputability, due to the alleged incapability of information
theory to describe death or to have it programmed into a system as a desirable
property so as to provide meaning to artificial life–just as it does in the case
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of natural life [11]. Molecular biology, however, can explain death, using
straightforward analogies to computation and reprogramming contextualized
within information theory [41].

However, that science has not yet fully explained life and death, among
other things, does not mean that it will not do so in the future. Thus we
consider the claim that neither computationalism nor information theory can
explain death (and hence life, according to[11]) shortsighted, if not simply
incorrect. Since the discovery of DNA we have known that developmental
and molecular biology (and thus biology) are mostly information theoretic,
and the more we explore these fields the more we find to confirm our sense
that this is indeed the case.

4 Natural computation

Nature is a rich source of ideas and there has lately been a turn toward nat-
ural computation in the literal sense. Of course, there is nothing wrong with
looking to natural phenomena for inspiration. Wolfram takes a very prag-
matic approach in his epistemological treatise, a non-classical exploration
of the classical computational universe, finding qualitative parallels between
nature and computation, with nature harnessing the power of classical com-
putation as a natural source of algorithmic creativity [39]).

Others, however, have gone further, offering a divergent notion of compu-
tation by attacking classical computation, alleging that a set of constraints
that have been in place from the inception of the classical model of computa-
tion have handicapped not only the model but the scientific and technological
progress of computation as such. The common idea behind most, if not all of
these objections to the classical model is that nature does not operate like a
Turing machine–because, e.g., nature works in parallel over analog informa-
tion [8], because nature does more than solve problems [21], and because, it
is claimed, there is no way to construct a machine with an infinite tape [8].

Perhaps the most puzzling aspect of the arguments of a group of re-
searchers looking for new notions or types of computation is that while openly
accepting that (natural) computing is about information processing (as is
classical computation) [6], and also that nature certainly computes (because
computers exist in and within nature), they posit a different kind of computa-
tion than the classical one [22] while using nature as evidence for non-Turing
computation. At the same time none of them specifies exactly what makes
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this kind of computation distinctive, beyond stressing its difference from a
Turing machine (or a trivial modification of a Turing machine, e.g., a non-
terminating one, such as a cellular automaton, which can hardly be classified
as non-classical). Such a line of reasoning eventuates in a trivialized natural
computation thesis.

Another objection to this view is that by generalizing the notion of com-
putation to any process that transforms its environment, it renders the con-
cept vacuous. The specificity of symbolically encoding problems and solving
them by a set of finite, formal rules is then lost. Mechanics, process, trans-
formation and computation are all synonyms. Again there is nothing wrong
with this per se, but in practical terms this trend does not point out how
to attack problems with our current computers, which happen to be (less
than ideal) Turing machines. In other words, an extension of the concept
of computation should require an enhancement of computers. At present it
is highly debatable where this enhancement will come from, but this line of
thought definitely takes us back to hypercomputational ground.

5 Not more but equally powerful

Finally there is an abundance of computational models that have sometimes
been touted as more powerful alternatives to Turing machines, but on inspec-
tion turn out to be mathematically equivalent to Turing’s model. Of course,
a different model may give us a new, powerful insight into an aspect of com-
putation obscured by the rigidity of Turing machines (mind you, they were
supposed to be rigid in the extreme). This is the case with numerous models
of concurrent and distributed computation ([24]). But this does not mean
that these models solve problems a Turing machine cannot. Being the good
theoreticians they are, the people behind concurrent or distributed models
have not made any such claim.

Of course, the mathematical equivalence between the TM model and
many others (programming languages, concurrent computation, etc.) does
not mean that the latter are superfluous. They were introduced to solve real,
important problems for which TMs did not provide a clear or manageable
way of expressing the actual questions. If, for instance, you are trying to
capture the fundamental issues of communication and synchronization dealt
with by the π-calculus ([23]) you will not get very far by encoding them as
a string to be manipulated by a sequential TM with its mind-boggling (and
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mostly irrelevant) details, even if this were theoretically possible. In other
words, we are not challenging the utility of alternatives to the TM, only the
claim that some models can do what no TM can in principle.

Among other models is the Interaction machine model that “extend[s] the
Turing Machine model by allowing interaction, i.e. input and output actions
(read and write statements) determined by the environment at each step of
the computation” [37, 38], π-calculus, “a mathematical model of processes
whose interconnections change as they interact” [24, 23]. Scott Aaronson
offers a whimsical characterization of the Interactive model [1]. It is puz-
zling that interactive computations cannot simply be viewed as independent
classical computations. Moreover, software such as operating systems are
implementations of highly interactive programs. They were introduced early
in the development of the first computers, and concurrent computation is an
active area of research where these kinds of questions are addressed within
a very classical–so to speak–framework. Nothing in Turing’s model prevents
an external observer or machine from interacting with the working tape of
the original machine, thus effectively interacting with the machine itself.

Another model is the Inductive computing model in the context of what
the author has called ‘super-recursive algorithms [2]. In many respects, the
inductive machine model is not comparable to classical computation, but
there is one respect in which it is not that far removed from a certain form
of such computation. Inductive computation does not produce a definitive
output and is thus similar to transducers, and like cellular automata they do
not terminate, suggesting a transducer or cellular automaton-type of com-
putation that supposedly generalizes the classical Turing machine model.

Many of the objections based upon models such as that of Gurevich [13],
even when deployed with intent to disprove the Church-Turing Thesis [14]–
in what constitutes a clear misunderstanding of the philosophical basis and
content of said thesis [32]–are based upon, for instance, the argument that
Turing machines cannot deal with structures other than strings on tapes,
even when trivial modifications that preserve all of their classical properties
have been made, modifications that in no way imply the invalidity of the
original TM model [19] (for example, models of Turing machines operating
on grids preserving, say, algorithmic information properties [40]. This does
not mean, however, that such models cannot be useful, a case in point being
high-level descriptions of classical computation, with Gurevich’s [13] model
being put to very practical use nowadays in software engineering, as a tool
for software modelling.
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6 Old dogs, new tricks

A standard for surpassing the Turing model and disproving the Church-
Turing thesis must entail something far more stringent than trivial mod-
ifications of classical computation. Of course, the main question is what
constitutes a non-trivial modification of the classical model, a modification
that does more than simply introduce an infinite element which merely takes
the purportedly feasible new model into the hypercomputation category.

We consider the use of the expression “more powerful” as merely metaphor-
ical unless specifics are provided as regards what makes a given model more
powerful. Likewise, if as soon as such a model is instantiated it merely be-
comes as powerful as or else not comparable to classical computation.

An example of a trivial modification (to modern eyes) that has been
accepted as not leading to more computational power other than speed-up is
the use of additional machine tapes.

In the same fashion then, when it is claimed that concurrent computa-
tion is more powerful than TMs as TMs are crippled by their ‘sequentiality’
(bearing in mind that though concurrency can be properly simulated in se-
quential TMs, doing so is very cumbersome), we do not consider such an
objection to be an objection in principle, as it is not related to the inability
of the model to undergo minor changes without changing anything more than
the details of its operation. Or that object oriented programming is more
powerful because it is heuristically superior to clumsy TMs (although again
TMs can simulate object oriented programming—with overhead). Similarly,
objections concerning speed, illustrated by, e.g., quantum computing, do not
fall into the category of fundamental challenges to the model, having to do
only with its operation.

A model claimed to be more powerful than classical models is the so-
called ’actor’ model that, according to its originator, was inspired by physics,
including general relativity and quantum mechanics. It was also influenced by
the programming languages Lisp, Simula and early versions of Smalltalk, as
well as capability-based systems and packet switching. Its development was
“motivated by the prospect of highly parallel computing machines consisting
of dozens, hundreds, or even thousands of independent microprocessors, each
with its own local memory and communications processor, communicating
via a high-performance communications network.” [3]

According to Hewitt [16], “concurrency extends computation beyond the
conceptual framework of Church, Gandy, Gödel, Herbrand, Kleene, Post,
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Rosser, Sieg, Turing, etc. because there are effective computations that
cannot be performed by Turing Machines. . . . [and where] computation is
conceived as distributed in space where computational devices communicate
asynchronously and the entire computation is not in any well-defined state.
(An actor can have stable information about what it was like when it received
a message.) Turing’s Model is a special case of the Actor Model.” [16]

It appears trivial to most computer scientists that these models can be
simulated by classical models (e.g. by dovetailing on parallel computations on
different inputs stored in different tapes) as long as there are not an infinite
number of interactions or an infinite number of actors acting at the same
time that would violate the boundedness and locality principles of feasible
models [31, 32].

7 Conclusion

This paper does not attempt to disprove the existence of ways of overcoming
the limitations of the traditional Turing machine model or to provide a survey
of models of computation purported to go beyond the Turing model (whether
claiming the status of hypercomputation or not). Instead, it attempts to
be a reminder of what those limitations are and how far some claims have
gone in trying to establish a new type of computationalism, claims that are
often, if not always, (mistakenly) predicated on the apparent weakness of
classical models, weaknesses that are in fact only weaknesses of orthodox
interpretations of their operating details.

There are very good theoretical models of what life looks like that purport
to surpass the Turing machine model, but we are still far from being able to
put any of these models into practice, assuming it will ever be possible to
do so. Every few years we see a claim of this sort, and its technical merits
should be assessed in order to (most improbably) accept it or (as has been
usual hitherto) debunk it.

Clearly we have not gone in for clever new theorems or innovations at-
tempting to analyze specific proposals that have been floated, which you
may find disappointing (just good old theory). For our part we are even
more disappointed at not being able to acknowledge the appearance of novel
and more solid ideas and have not felt compelled to spend time producing
a theorem to show that a classical Turing machine can, for example, simply
be extended to operate on grids and other structures and still preserve its
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classical nature by virtue of preserving all the theory of computation derived
for it, respecting hierarchies and at most achieving speed-up gains.

The common denominator of all these attacks on classical computation,
including Church’s thesis, is the impression they create of refuting an op-
ponent’s argument though the arguments refuted are not ones that have
actually been advanced by anyone– what is called a straw man fallacy. In
effect disputes are generated where there are none. For example, no serious
researcher has ever suggested that the mind, nature or the universe operates
or is a mechanical incarnation of a (universal) Turing machine.

In order to build sound objections against classical computation and com-
putationalism, we conclude that it is thus necessary to represent it in its full
spectrum, and not to adopt an old, abstract, symbol- manipulation view
of computation that is out of date or else has been oversimplified for other
purposes.
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