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ABSTRACT. There are numerous (Bayesian) confirmation measures in
the literature. Festa provides a formal characterization of a certain
class of such measures. He calls the members of this class “incre-
mental measures”. Festa then introduces six rather interesting pro-
perties called “Matthew properties” and puts forward two theses, he-
reafter “T1” and “T2”, concerning which of the various extant incre-
mental measures have which of the various Matthew properties.
Festa’s discussion is potentially helpful with the problem of measu-
re sensitivity. I argue, that, while Festa’s discussion is illuminating
on the whole and worthy of careful study, T1 and T2 are strictly
speaking incorrect (though on the right track) and should be rejected
in favor of two similar but distinct theses.
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1.  Introduction

There are numerous (Bayesian) confirmation measures in the literature. Festa
(2012) provides a formal characterization of a certain class of such measures.1
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He calls the members of that class “incremental measures”.2 Each of the fol-
lowing is an incremental measure:3

cd (H, E) = p(H|E) – p(H)
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2 Below, in Section 2, I explain Festa’s formal characterization of the class of incremental
measures. It is worth noting now, though, that incremental measures are more than just rele-
vance measures, where a measure c is a relevance measure just in case there is a neutral point n
such that c(H,E) > / = / < n iff p(H|E) > / = / < p(H). (This characterization of relevance mea-
sures is adapted from Fitelson 1999.) Consider the following (well known) measures:

cC(H,E) = p(H ∧ E) – p(H)p(E)

cM(H,E) = p(E|H) – p(E)

cN(H,E) = p(E|H) – p(E|¬H)

cS(H,E) = p(H|E) – p(H|¬E).

Each of these measures is a relevance measure as defined above. But none of them is an incre-
mental measure as characterized by Festa. This is just as it should be, it seems, if an incremen-
tal measure is understood as a measure of the amount of increase in H’s probability due to E,
for on each of cC, cM, cN, and cs there can be cases where p(H1|E1) > p(H2|E2) while p(H1) <
p(H2) and yet the degree to which E1 confirms H1 is less than the degree to which E2 confirms
H2. This allows that there are conceptions of confirmation distinct from the incremental con-
ception (where confirmation is a matter of the amount of increase in H’s probability due to E)
and in terms of which cC, cM, cN, and cs are best understood. See Hajek and Joyce (2008) and
Joyce (1999, Ch. 6, sec. 6.4) for relevant discussion.

3 The subscripts in these measures, along with the subscripts in the measures set out below
in Section 2, are identical to the subscripts used by Festa.

p(E|H)
clr (H, E) = ________

p(E|¬H)

p(H|E)
cr (H, E) = _________.

p(H)

Festa then introduces six rather interesting properties called “Matthew proper-
ties” and puts forward two theses, hereafter “T1” and “T2”, concerning which
of the various extant incremental measures have which of the various Matthew
properties.

No two of the three measures cd, clr, and cr are ordinally equivalent to each
other (i.e., impose the same ordering on any two ordered pairs of proposi-



tions).4 This is prima facie problematic in that each of the three measures has
some intuitive plausibility and yet certain results in confirmation theory invol-
ving one of the measures do not carry over to (at least one of) the other two
measures. This is the problem of measure sensitivity.5

Festa’s discussion is potentially helpful with this problem. Suppose one of
the various Matthew properties is compelling in that any adequate incremen-
tal measure should have that property. Suppose it follows from T1 and T2 that,
say, cd has the property in question but neither clr nor cr does. Then clr and cr
should be rejected as inadequate (as incremental measures). This would serve
to narrow down the field of potentially adequate incremental measures and
thus constitute progress towards solving the problem of measure sensitivity.

It turns out, however, that, while Festa’s discussion is illuminating on the
whole and worthy of careful study, T1 and T2 are strictly speaking incorrect
(though on the right track). In Section 2, I set out the various incremental mea-
sures under consideration along with T1 and T2. In Section 3, I argue that T1
and T2 should be rejected in favor of two similar but distinct theses. In Sec-
tion 4, I conclude.

2.  Festa’s Two Theses

Festa characterizes the class of incremental measures in terms of the following
properties (or conditions):6

Initial and Final Probability Dependence (IFPD): c(H,E) is a function of
p(H|E) and p(H).

Final Probability Incrementality (FPI): Suppose p(H1) = p(H2 ). Then
c(H1,E1) > / < c(H2,E2 ) if and only if p(H1|E1) > / < p(H2|E2 ).
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4 Measures c and c* are ordinally equivalent to each other just in case, for any ordered pairs
of propositions <H, E> and <H’, E’>, the following holds: c(H, E) > / = / < c(H’, E’) iff c*(H,
E) > / = / < c*(H’, E’).

5 See Brössel (2013) and Fitelson (1999) for helpful discussion of the problem of measure
sensitivity.

6 It should be understood throughout the discussion that the propositions involved in the va-
rious probabilities are “p-normal” in that they have nonextreme unconditional probabilities (i.e.,
unconditional probabilities less than one and greater than zero).



Initial Probability Incrementality (IPI): Suppose 0 < p(H1|E1) = p(H2|E2) <
1. Then c(H1,E1) > / < c(H2,E2 ) if and only if p(H1) < / > p(H2 ). Suppose
p(H1|E1) = p(H2E2 ) = 0 or p(H1|E1) = p(H2|E2 ) = 1. Then (a) c(H1,E1) ≥
c(H2,E2 ) if p(H1) < p(H2 ) and (b) c(H1,E1) ≤ c(H2,E2) if p(H1) > p(H2 ).

Equineutrality (E): Suppose p(H1|E1) = p(H1) and p(H2|E2 ) = p(H2 ). Then
c(H1,E1) = c(H2,E2 ).

The class of incremental measures is defined as the class of measures having
each of IFPD, FPI, IPI, and E.

It turns out that many extant confirmation measures are members of the
class of incremental measures. Festa considers, in addition to cd, clr, and cr, the
following:
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p(H|E) – p(H)
cr* (H,E) = _____________

p(H|E) + p(H)

o(H|E) p(H|E) p(H)
cor (H,E) = _______ where o(H|E) = ________ and o(H) = ______

o(H) p(¬H|E)                     p(¬H)

p(H|E) – p(H)
cG (H,E) = _____________

1 – p(H)

p(H|E) – p(H)_____________ if p(H|E) ≥ p(H)
1 – p(H)

cz =
p(H|E) – p(H)_____________ if p(H|E) < p(H)

p(H)

log[ p(H|E) /p(H)]
cSo (H,E) = ________________

– log[ p(H)]

p(H|E) – p(H)
cPl (H,E) = ________________________

p(H|E) + p(H) – p(H|E)p(H)

{

p(H|E) – p(H)
chP (H,E) = ________________________

p(H|E) + p(H) + p(H|E)p(H)



Some of the sixteen measures under consideration are ordinally equivalent to
each other: cr is ordinally equivalent to each of cKu and cr*; clr is ordinally
equivalent to each of cor and cKO; cP is ordinally equivalent to cPl.

7 This is si-
gnificant in that if one measure is ordinally equivalent to another, then the one
has a given Matthew property just in case the other too has that property. I thus
want to set aside cKu, cr*, cor, cKO , and cPl and focus on cr, clr, and cP along
with the remaining eight measures.8

Take some incremental measure c. Since c has IFPD, it follows that c(H, E)
is a function of p(H|E) and p(H). But:
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p(H|E) – p(H)
cπ (H,E) = _________________________ where – 2 ≤ π ≤ ∞

p(H|E) + p(H) + πp(H|E)p(H)

p(H|E) + αp(H)p(H|E)
cα (H,E) = ___________________ where – 1 ≤ α ≤ ∞

p(H) + αp(H)p(H|E)

p(H|E) – p(H)
cdb (H,E) = _____________

p(H|E)p(H)

p(E|H) – p(E|¬H)
cKO (H,E) = _______________

p(E|H) + p(E|¬H)

p(E|H) – p(E)
cP (H,E) = ______________________

p(E|H) + p(E) – p(H ∧ E)

p(E|H)
cKu (H,E) = _______

p(E) 

7 It is straightforward to verify that cr (H,E) = cKu(H,E), cr* (H,E) = [cr (H,E) – 1] / [cr (H,E) + 1]
where [n – 1] / [n + 1] is an increasing function of n for n ≥ 0, clr (H,E) = cor (H,E), cKO (H,E) =
[clr (H,E) – 1] / [clr (H,E) + 1] where, again, [n – 1] / [n + 1] is an increasing function of n for n ≥
0, and cP (H,E) = cPl (H,E).

8 There is thus no mention of cKu, cr*, cor, cKO, and cPl in T1 and T2 as formulated below.

p(E|H) 
p(H,E) = _______ p(H).

p(E)

So c(H,E) is a function of Q(H,E) = p(E|H)/p(E) and p(H), where, following
Festa, Q(H,E) is H’s predictive success with respect to E.



It follows, as Festa notes, that each of the incremental measures under consi-
deration can be restated in terms of Q(H,E), hereafter “Q”, and p(H). cd (H,E),
for example, can be restated as p(H)[Q – 1]. This can be seen as follows:

96

WILLIAM ROCHE

cd (H,E) = p(H|E) – p(H)

p(E|H)
= _______ p(H) – p(H)

p(E)

= p(H)[Q – 1]

Festa provides a “Q-function” for each of the incremental measures under con-
sideration.

I can now state the six Matthew properties introduced by Festa. They can
be put as follows:

Matthew Independence for Positive Confirmation (MIP): For any Q > 1, if
Q is held fixed, then c(H,E) is held fixed and thus is independent of p(H).

Matthew Effect for Positive Confirmation (MEP): For any Q > 1, if Q is
held fixed, then c(H,E) is an increasing function of p(H).

Reverse Matthew Effect for Positive Confirmation (RMP): For any Q > 1,
if Q is held fixed, then c(H,E) is a decreasing function of p(H).

Matthew Independence for Disconfirmation (MID): For any Q < 1, if Q is
held fixed, then c(H,E) is held fixed and thus is independent of p(H).

Matthew Effect for Disconfirmation (MED): For any Q < 1, if Q is held fi-
xed, then c(H,E) is a decreasing function of p(H).

Reverse Matthew Effect for Disconfirmation (RMD): For any Q < 1, if Q is
held fixed, then c(H,E) is an increasing function of p(H).

Recall that (following Festa) Q is H’s predictive success with respect to E.
MIP can be glossed: for any degree of predictive success greater than 1, c(H,E)
is independent of H’s prior probability. MEP, in turn, can be glossed: for any
degree of predictive success greater than 1, the greater is H’s prior probability,
the greater is c(H,E). And so on for RMP, MID, MED, and RMD.

Why are the six Matthew properties named “Matthew” properties? Festa
(referencing Kuipers 2000) writes:



Kuipers ... introduces the concept of Matthew effect for confirmation
just w.r.t. [MEP restricted to cases where H logically implies E]. In fact,
[MEP restricted to cases where H logically implies E] “may be seen as
a methodological version of the so-called Matthew effect, according to
which the rich profit more than the poor” ..., in agreement with the sen-
tence—made famous by the Gospel according to St. Matthew—that
“unto every one that hath shall be given”. (p. 95, emphasis original)

MEP implies that if two hypotheses have the same predictive success (greater
than 1) with respect to some piece of evidence, and if initially the two hypothe-
ses had different probabilities, then the hypothesis that initially had the higher
probability (the “richer” of the two hypotheses initially) is more strongly confir-
med by (“profits” more from) the evidence than does the hypothesis that initially
had the lower probability (the “poorer” of the two hypotheses initially). Thus the
name “Matthew Effect for Positive Confirmation” and, for consistency, the na-
mes of the remaining five properties. 

It is clear that MIP, MEP, and RMP are pairwise mutually inconsistent in
that any measure having one of them lacks each of the other two. It is also clear
that the same is true with respect to MID, MED, and RMD. But which mea-
sures have which properties?

T1 and T2 are meant to answer this question. They can be put like this:

T1 a cr has MIP and MID.
b cd, cG, cSo, clr, and cP have MEP and MED.
c cz has MEP and MID.

T2 a chP and cdb have RMP and RMD.
b cπ has MEP and MED when π < 0, has MIP and MID when π = 0,

and has RMP and RMD when π > 0.
c cα has MEP and MED when α < 0, has MIP and MID when α = 0,

and has RMP and RMD when α > 0.

T1 and T2, I take it, are meant to follow straightforwardly from the various Q-
functions provided by Festa. Recall that the Q-function for cd (H, E) is p(H)[Q –
1]. If Q > 1 and Q is held fixed, it follows that p(H)[Q – 1] is an increasing
function of p(H). If Q < 1 and Q is held fixed, it follows that p(H)[Q – 1] is a
decreasing function of p(H). So, just as T1b implies, cd has MEP and MED.

It turns out, however, that not all is right with T1 and T2. Some modifica-
tions are needed.
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3.  Two Replacement Theses

Suppose E entails ¬H so that p(H|E) = 0 = p(E|H). Then p(H|E)/p(H) = 0 re-
gardless of p(H). But Q = p(E|H)/p(E) = p(H|E)/p(H). So Q = 0 regardless of
p(H). Suppose c is an incremental measure such that c(H,E) takes the mini-
mum value (for c) in any case where E entails ¬H. Then it is not true that for
any Q < 1, if Q is held fixed, then c(H,E) is a decreasing function of p(H), and
it is not true that for any Q < 1, if Q is held fixed, then c(H,E) is an increasing
function of p(H). So c has neither MED nor RMD.

This spells trouble for T1 and T2. Suppose E entails ¬H. Then it follows
that:9
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9 cSo can be understood as having the range (–∞, 1]. See Shogenji (2012, p. 37) and Atkinson
(2012, p. 53). But then, as the only plausible candidate value for cSo(H,E) to take when p(H|E) = 0
is –∞, it follows that cSo(H,E) is undefined when p(H|E) = 0. This is less than ideal, it seems, since
there should be a degree of confirmation even when p(H|E) = 0. It seems preferable to understand

log[ p(H|E) /p(H)]
cSo (H,E) = ________________

– log[ p(H)]

– ∞
= ___________

– log[ p(H)]

= – ∞

p(E|H) 
clr (H,E) = ________

p(E|¬H) 

0
= ________

p(E|¬H) 

= 0

p(E|H) – p(E)
cP (H,E) = ______________________

p(E|H) + p(E) – p(H ∧ E)

0 – p(E)
= ___________

0 + p(E) – 0

= – 1



Note that cπ (H,E) = –1 and cα (H,E) = 0 regardless of the values specified for
π and α respectively. It follows that cSo, clr, and cP do not have MED, that chP
does not have RMD, that cπ does not have MED when π < 0 and does not ha-
ve RMD when π > 0, and that cα does not have MED when α < 0 and does not
have RMD when α > 0. So T1b is incorrect and each of T2a, T2b, and T2c is
incorrect. So T1 and T2 are incorrect.

T1 and T2, though, are on the right track. They can be replaced by the fol-
lowing:

T1* a cr has MIP and MID.
b cd and cG have MEP and MED.
c cSo, clr, and cP have MEP but do not have MID, MED, or RMD;

cSo, clr, and cP have MED in the special case where 1 > Q > 0.
d cz has MEP and MID.
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cSo as having the range [–∞, 1] and as taking the value –∞ when p(H|E) = 0. Atkinson and Shogenji
(personal communication) agree that cSo should be understood as having the range [–∞, 1].

p(H|E) – p(H)
chP (H,E) = ________________________

p(H|E) + p(H) + p(H|E)p(H)

0 – p(H)
= __________

0 + p(H) + 0

= – 1

p(H|E) – p(H)
cπ (H,E) = _________________________ 

p(H|E) + p(H) + πp(H|E)p(H)

0 – p(H)
= __________

0 + p(H) + 0

= – 1

p(H|E) + αp(H)p(H|E)
cα (H,E) = ___________________ 

p(H) + αp(H)p(H|E)

0 + 0
= ________

p(H) + 0

= 0



T2* a cdb has RMP and RMD.
b chP has RMP but does not have MID, MED, or RMD; chP has

RMD in the special case where 1 > Q > 0.
c cπ has MEP but does not have MID, MED, or RMD when π < 0;

cπ has MIP and MID when π = 0; cπ has RMP but does not have
MID, MED, or RMD when π > 0; cπ has MED when π < 0 in the
special case where 1 > Q > 0; cπ has RMD when π > 0 in the spe-
cial case where 1 > Q > 0.

d cα has MEP but does not have MID, MED, or RMD when α < 0;
cα has MIP and MID when α = 0; cα has RMP but does not have
MID, MED, or RMD when α > 0; cα has MED when α < 0 in the
special case where 1 > Q > 0; cα has RMD when α > 0 in the spe-
cial case where 1 > Q > 0.

T1* and T2* differ from T1 and T2 only with respect to cases where E entails
¬H and thus Q = 0.

Some of the measures referred to in T1 and T2 have a maximum value and
take that value in any case where E entails H. Consider cSo for example. If E
entails H so that p(H|E) = 1, it follows that cSo(H,E) takes its maximum value
of 1 regardless of H’s prior probability. Why is it that T1 and T2 run into trou-
ble in the case where E entails ¬H but do not run into trouble in the case whe-
re E entails H?

Return to the case where E entails ¬H. The key here is that Q equals 0 re-
gardless of H’s prior probability. This means that Q can be held fixed while
p(H) increases or decreases. This in turn means that if c(H,E) takes the mini-
mum value (for c) in any case where E entails ¬H, then there can be cases
where E entails ¬H, Q is held fixed, and c(H,E) remains constant at the mini-
mum value while p(H) decreases, in which case c does not have MED, and the-
re can be cases where E entails ¬H, Q is held fixed, and c(H,E) remains con-
stant at the minimum value while p(H) increases, in which case c does not ha-
ve RMD. Things are different in the case where E entails H. Suppose c is an
incremental measure such that c(H,E) takes the maximum value (for c) in any
case where E entails H. Suppose E entails H so that p(H|E) = 1. Then 1/p(H)
= p(H|E)/p(H) = p(E|H)/p(E) = Q. But then if Q is held fixed, it follows that
p(H) too is held fixed. Hence there can be no cases where E entails H, Q is held
fixed, and c(H, E) remains constant at the maximum value while p(H) increa-
ses or decreases. So no case where E entails H could show that c does not ha-
ve MEP or that c does not have RMP.
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4.  Conclusion

T1 and T2 are incorrect in some of what they imply with respect to cases whe-
re E entails ¬H and thus Q = 0. They should be rejected in favor of T1* and
T2*. The way is now clear for confirmation theorists to focus on which, if any,
of the various Matthew properties are compelling.10 By doing so confirmation
theorists can perhaps use T1* and T2* to narrow down the field of potentially
adequate incremental measures and so make progress towards solving the pro-
blem of measure sensitivity.

Acknowledgments. Thanks to an anonymous reviewer for helpful comments on an
earlier version of the paper.
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10 Festa (sec. 3.3.2) suggests that at least in some cases RMP is compelling.




