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Abstract 
In the face of continuing assumptions by many scientists and journal editors that p-values 
provide a gold standard for inference, counter warnings are published periodically.  But 
the core problem is not with p-values, per se.  A finding that “p-value is less than α” 
could merely signal that a critical value has been exceeded.  The question is why, when 
estimating a parameter, we provide a range (a confidence interval), but when testing a 
hypothesis about a parameter (e.g. µ = x) we proceed as if  “=” entails exact equality of 
the parameter with x.   That standard is hard to meet, and is not a standard expected for 
power calculations, where we are satisfied to reject H0 if the result is merely “detectably” 
different from (exact) H0.  This paper explores, with resampling methods, the impacts on 
p-values, and alternatives, if the null hypothesis is defined as a thick or thin range of 
values.  It also examines, empirically, the extent to which the p-value may or may not be 
a good predictor of the probability that H0 is true, given the distribution of the data. 
 
Key Words: p-value, significance, evidence, inference, hypothesis testing, detectable 
difference 
 
 

1. Background and Introduction to the Problem 
 
Expressed as neutrally as possible, the p-value is an output from a certain procedure—a 
hypothesis test—used conventionally to guide judgment with respect to a reference 
hypothesis (the “null hypothesis”) as to which is more plausible:  That (a) the hypothesis  
is true (or, at least, not false); or (b) the hypothesis is not true.  The null hypothesis (“H0”) 
posits, explicitly, a particular value for a parameter of interest, such as the population 
mean of a variable; implicitly, the null hypothesis models the entire population 
distribution for the variable (e.g. Gaussian, with a variance that can be estimated from the 
sample).   Data for a test are collected by sampling, without prior knowledge as to 
whether the parameter modeled in H0 is factually true.   If sample results differ from 
those given in the null hypothesis (e.g. if the sample mean differs from the population 
mean in H0), then this difference in values can be expressed directly or (for parametric 
tests) in standardized form, taking into account the expected distribution of the sample 
statistic, when samples are drawn from H0.  The p-value, therefore, gives the conditional 
probability of obtaining a magnitude at least as large (with suitable sign) for the 
difference in values (absolute or standardized) between the actual and expected sample 
results, if the null-hypothesis assumptions were in fact true.   

The preceding definition was expressed as impartially as possible—as just the 
(mechanical) output of “a certain” procedure.  If you follow the mandated steps, and 
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report a suitable number, there is no problem to discuss. The problem, of course, lies in 
the interpretation and use of the p-value.  The impression easily arises that a small p-
value from an experiment suggests an outcome that was “unexpected”, if not actually 
impossible, had the null hypothesis been true; and so, it might appear, the hypothesis is 
more likely to be false.    This very interpretation is posted on  a research hospital’s web 
page, and their view is widely held and applied in the research community:  “A p-value is 
a measure of how much evidence we have against the null hypothesis. ...  The smaller 
the p-value, the more evidence we have against H0.”  (Simon, 2007, emphasis included).  

Simon’s view draws on the apparent “surprisingness” of getting a small p-value.   Berger 
and Selke (1987), however, speak for many who challenge the conventional perspective:  
To them, p-values and evidence are “irreconcilable.”   Directly stated by Marden (2000), 
“the p-value is not the probability that the null hypothesis is true”.  Empirically, a p-value 
can be small (i.e. conventionally taken as good evidence that H0 is false), but yet if 
looked at from, say, from a Bayesian perspective, the posterior probability that H0 is in 
fact false, given the sample data, may not look as convincing.   
 
Some argue that evidence for, versus evidence against, a hypothesis should be 
distinguished.  Donahue, for example, grants that small p-values may provide evidence 
against a null hypothesis, but when a large p-value does “not warrant rejection of the 
null,” he objects to the p-value’s  use as “improper evidence for accepting the null 
hypothesis” (Donahue, 1999). 
 
A quite different objection to the conventional use of p-values appears in a classic paper 
by William Roozeboom (1960).   Though inclined to Bayesian approaches to assessing 
evidence (to what he calls calculating “inverse probability”), he does not outright reject 
legitimacy for p-values.  Instead, what he opposes is the very model of the null-
hypothesis significance test, to which, in current practice, p-value calculations are often 
conjoined.  Science, says Roozeboom, does not proceed by binary decisions to simply 
accept versus reject a given starting hypothesis.  Instead, continued experimentation 
should lead to progressive, informed changes in our degrees of belief in various 
hypotheses.   
 
This wedge between the original conception of p-values by R.A. Fisher, on the one hand, 
and the Neyman-Pearson hypothesis test model, on the other, is driven further by Steven 
Goodman in a historical treatment of these ideas (Goodman, 1993).  He claims that the 
two ideas’ combination (into a view such a Simon’s, quoted above) has been “improper”; 
and like Donahue and many others, he says that “the p-value substantially overstates the 
evidence against the null hypothesis”.  Similar points have appeared more recently 
(Hubbard & Armstrong, 2005; Hubbard & Bayarri, 2003; Ziliak and McCloskey, 2009). 
 
One other aspect of the problem, underlying how p-values are conventionally used, 
appears in the literature.  This is aspect is called by Berger and Delampady (1987) “the 
actual ‘width’ of H0.”   The problem is that the p-value/hypothesis-test model proceeds as 
if the null parameter was an exact point value.  For continuous data, it is mathematically 
impossible for a real parameter to equal a point null; and in some fields such as 
Psychology it may be unrealistic (and meaningless in practice) to formulate a widthless 
value for a research hypothesis  (Berger & Sellke, 1987; Chow, 1988; Folger, 1989; 
Meehl, 1967; Nunnally, 1960).   Curiously, the mathematical aspect is handled at times 
more like a side issue, than as central to discussion; for example, Berger and 
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Delampady’s paper largely ignores the issue, then provides some formal calculations for 
how “wide” H0 can become, without invalidating their main points of interest.   
 
Two other trends in the literature should be noted.   The papers by Meehl and Nunnally, 
cited above, brush against a larger literature that attempts to turn the focus from 
hypothesis testing (geared to rejecting hypotheses) to what are variously called, 
depending on context, model validation, equivalence testing, and tests of clinical 
noninferiority.  (Examples include:  Berger & Hsu, 1996; Evans, 2009; Robinson & 
Froese, 2004; Rogers et al, 1993; and Wellek, 2003).  Although these topics are beyond 
the scope of the present paper, they do share a recognition of the “thickness” or “width” 
of H0, so that evidence is consistent with H0 if, in effect, it falls within a confidence 
interval that is centered by H0. 
 
A second important trend is closely intertwined with literature, cited above, that questions 
the use of p-values—but these other papers explicitly proffer Bayesian approaches as the 
alternative (Edwards et al, 1963; Cassella & Berger, 1987; Goodman, 1999). These 
particular arguments are not addressed explicitly in this paper, yet Bayesian concepts are 
implicit in the experiments that follow below.  All the assumptions built into the 
experiments are in effect models of “prior probabilities” that will clearly impact the 
unfolding of the simulations.  Moreover, assessment of the evidential impact of a p-value 
in terms of the “posterior probability” of H0 is essentially what graphs such as Figure 4, 
below, attempt to enable. 
 

2.  The Problem Reconsidered—Experimentally  
 

Many of the papers written about p-values tend to be formal and abstract.   But as we 
know in teaching, a picture can be very helpful to enhancing learning and understanding.  
In the statistical context, a “picture” might be the graphical outcome of simulations.   So, 
rather than pursue the arguments in Section 1 theoretically, the remainder of this paper 
will try a hands-on approach, using resampling-based simulation, to see how p-values 
actually get generated in action, and to see how, or if, they relate to the independently 
known  truths or falsities of null hypotheses.   
 
All simulations will address the “problematic inequality” shown in Figure 1, which lies at 
the heart of many of concerns about p-values expressed in the literature.  In this process, 
the paper will focus on two particular issues:   
 Issue 1:  The thickness of H0.  
 Issue 2:  The possibly mismatched structure of the inequality. 
 
 
 
 
 
 

Figure 1:  The Problematic Inequality 
 
The first (upper) term in the inequality expresses the p-value; namely the conditional 
probability of obtaining the sample distribution (or specific sample statistic) of interest, 
assuming that H0 is true.   The second (lower) term reverses the elements’ positions in the 
conditional probability, and so appears to provide a measure of “evidence”—namely, the 
conditional (or “posterior”) probability that H0 is true, given the dataset actually obtained 

P ([The sample data have the obtained distribution] | [H0 is true]) 
≠ 

P ([H0 is true] | [The sample data have the obtained distribution]) 

Section on Statistical Education – JSM 2010

1348



as the sample.   (The notation compares with Berger & Sellke’s formulation for this term 
(1987b): “Pr(H0|x)”.)  
 
There are three basic ways that the inequality is problematic:  

(1) If p-values were straightforward measures of evidence for H0, then the two 
(upper and lower) terms in Figure 1 should be, if not equal, at least always 
closely correlated.   (We will demonstrate that, in practice, Issue 1 (see next 
point) can affect both the magnitude and curve of the correlation between those 
two terms.)  

(2) (Issue 1: Thickness of H0.)  If p-values can provide at least some evidence for 
H0, then we have to determine the precision expected, when saying “H0 is true.”  
(We will demonstrate that how much deviation from exact equality is accepted as 
“good enough to satisfy  ‘H0 is true’” can make a big difference.)    

(3) (Issue 2: Mismatched structure of the inequality.)  Even to try correlating the 
two terms in the Inequality requires that both terms mean the same thing by 
“probability” of X.  (We will explore the impact of this potential 
incompatibility.)    

 
3.  Methodology   

 
Three very similar, but independent, experiments were undertaken.  All three followed 
identical, resampling-based procedures; their only differences are as noted in the third 
paragraph below Figure 2.   In each pass for a given experiment (i.e. each loop of 
resampling), imagine that a scientist collects a random sample of 40 values from a 
population, and then tests the hypothesis H0: µ = 100.  The scientist will not know the 
mean and standard deviation for the real population (see yellow boxes in Figure 2); but 
his or her sample will nonetheless be drawn from this real population, with its 
parameters—i.e., not from the null population.  Throughout the experiment, it is assumed 
that the real population distribution is normal, and that σ for the real (sampled-from) 
population is the same as the (unknown) σ for H0.   
 

 
Figure 2:  Values Recorded During One Pass in the Experiment 

 
The highlighted values at the right of Figure 2 illustrate one set of possible, recorded 
outcomes for a single pass of an experiment.  At the outset of each pass, the computer 
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randomly determines the “real” values for the population mean and population standard 
deviation.  (See second paragraph, below, for more details on this selection.) These 
values are recorded in cells (b) and (g), respectively, in Figure 2.  Random sampling of 
40 values from a population having those particular parameters is simulated, and the 
sample’s mean (in cell (c)) and standard deviation are calculated.  The following are then 
calculated for the same sample, using conventional calculations:  The standard error (in 
cell (d), based on the sample s, divided by √(n = 40); the test statistic t (in cell(e), based 
on (sample mean minus H0 mean), divided by standard error); and the (two-tail) p-value 
(in cell (f), based on the t statistic, and the cumulative distribution function for t).    
 
Also recorded (in cells (h) and (i)) are indicators, for that experimental pass, of the actual 
distance between the null mean and the real mean.  The units for the distance “standard 
error change” (in (i)) are analogous to the distance units “standard errors”, effectively 
used for calculating the t statistic; namely, the distance from the null mean to the true 
mean is measured in the units: (true population σ) / (√ n).  This scale makes it intuitive, 
for example, in cell (i) of the figure, that in the pass illustrated, the real mean was 
objectively far from the null mean (well over 3 standard errors); so the small p-value for 
this case, in (f), is unsurprising.  Note that all experiments are based on two-sided tests. 
 
Two of the three, independent experiments consisted of 20,000 resample passes, each, as 
described above; a third experiment employed nested resampling, with 5000 passes in the 
main (outer) loop.  As illustrated in cells (a) to (i) of Figure 2, results were recorded for 
each pass, making it possible to compare obtained p-values with the actual, 
corresponding truth (or near truth, or falsity) of H0, for each of a large number of passes.   
In Experiment 1, the real population’s sigma (and H0’s sigma) were both held constant, 
equal to “10”, for all resample passes.  In Experiments 2 and 3, the real sigma (and H0’s 
sigma) varied (together) randomly, from 4 to a maximum of 60 (i.e. the coefficient of 
variation could range, uniformly, from 4% to 60%).  In all passes, the value set for the 
real mean could differ from the null mean by a random amount, between  -3 to +3 times 
the true sigma value.  Experiment 3 was more complex, to ensure that the preceding 
experiments’ results were not an artefact of using t tests within each pass:  Instead of 
determining the p-value for each main pass based on assuming a t-distributed sampling 
distribution, a nested, “inner loop” of 3000 repetitions was undertaken, for each “outer 
loop” pass, to determine the corresponding p-value by non-parametric resampling 
techniques.   (The reduced number of repetitions, compared to Experiments 1 and 2, was 
used to limit the run time for the total 5000 × 3000 nested replications.) 
 

4.  Results 
 

4.1  p-Values and the Truth of H0  
Figure 3 shows directly what many literature sources have tried to calculate or discuss 
speculatively:  the actual relationship between p-values and the extent to which H0 is true.  
Each point represents the outcome of one pass of Experiment 1, for which the real mean 
had some arbitrary value, as recorded, and then the p-value was calculated traditionally 
(in relation to null assumptions) based on a random sample drawn from the real 
population.  Presumably, H0 was more “true” when the standardized distance between the 
null parameter and the real parameter (for short, the “true distance from the null”) 
approached zero.  On that basis, the results shown are largely consistent with the claims 
of p-value proponents:  p-values do get larger as H0 gets truer, and do get smaller as H0 

Section on Statistical Education – JSM 2010

1350



gets more false (i.e. is more appropriate to reject).   There is, however, a considerable 
variance around that correlation. 
 

 
Figure 3:  Relation Between p-Values and the True Distance of the Real Mean 

from the Null Mean 
 

At the bottom of the figure, the concept of H0’s “thickness” is introduced.  Just as we do 
not expect, in estimation, that a point estimate for a parameter will be exactly true; 
similarly, it is not realistic to expect in testing that the true parameter will exactly equal 
the null assumption for the parameter.  If H0 is conceived as “thin”, then H0 is true 
enough if there is at least a close, if not identical, match with the real parameter.  Observe 
in the figure that when the thin H0 is true enough in the above sense, then the p-value 
works essentially as advertised:   In the red-tinted area of the graph, the true distance was 
consistent with a thin H0 hypothesis; note that almost all the corresponding p-values are 
in the non-significant (e.g. larger than 0.05) range.  In all cases where the true distance 
was in the range for a thin H0, only occasionally (perhaps about α of the time) did the p-
values by chance have deceptively small values.  
 
Also, if H0 is “thin”, but the true distance from the real to the H0 mean is unambiguously 
not close, then p-values also seem to behave as we’d like:  In that region of the figure, 
tinted blue, observe that, in aggregate, virtually all the corresponding  p-values were quite 
low (so H0 would correctly be rejected as false), whereas for only a small proportion of 
cases (perhaps about β of them) did the p-values happen by chance to have deceptively 
large values. 
 
Where the simplicity of using p-values to judge about H0 breaks down is in the non-
tinted, middle range for true distances, where the standardized true distance from the null 
is (for this simulation) roughly between 0.5 and 2.5.   If a researcher has a “thick” model 
of H0, that distance may seem unimportant—i.e. not worth detecting, and possibly 
designed to remain undetectable, when setting the power for the test.  Considering that 
scenario, observe in the figure the large proportion of tests that would nonetheless reject a 
(true enough) thick null hypothesis, due to obtaining a misleadingly small p-value.  This 
re-characterizes the oft-made complaint about p-values, that they can lead to rejecting 
more true null hypotheses than the nominal rejection-trigger α implies.  
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On the other hand, suppose the researcher has in mind a thin model for H0—but it so 
happens the true distance is in the range of 1 to 2 standard errors.  In such cases, the 
researcher wants the test to reject H0, but a large proportion of the time, it won’t.  I.e. it 
lacks the power.   It is noteworthy that while p-values are commonly discussed in relation 
to a reference value α for significance, we see that their performance is equally dependent 
on considerations of β, power, and the researcher’s choice for detectable difference when 
designing for power. 
 
4.2  The Problematic Inequality—Illustrated by Experiments 
 
4.2.1  The Basic Model 
An alternative way to represent the results of Experiment 1 is shown in Figure 4.  The 
two axes directly correspond to the two terms of the Problematic Inequality (see Figure 
1).  For each pass (resample loop) of the experiment, a specific p-value was generated.  
The p-values are mapped on the x axis in the figure.  The y axis shows the conditional 
probabilities for H0 being true, given that the p-value specified on the x axis was 
generated in a pass of the experiment.   The latter probabilities do not have a priori 
magnitudes, or even interpretations.  (More on this point, in a following section.)  
Instead, the y–axis probabilities are frequentist approximations obtained as follows:  The 
results of passes for which the generated p-values were closely similar were aggregated; 
then, for each such group, the proportion of cases in which, as it happened, the null mean 
was (approximately) true is interpreted as the desired, conditional probability.  There are 
several curves in the figure because, as noted in the previous section, different standards 
are possible for counting H0 as true.   
 
The following example illustrates the intended interpretation of the figure.  Consider the 
point labelled “(a)” in the upper right section.  This conveys the following information:  
“Considering H0 as true when the true, standardized distance from the null to the real 
mean is at most two standard errors, then for all recorded cases wherein the resulting p-
value ≈ 0.05, the proportion of such cases for which H0 was in fact true (by the given 
standard) was 0.7.”  In other words, for H0 of this thickness, 70% of the time when the p-
value is at the threshold of suggesting (as conventionally interpreted) that H0 might be 
false, H0 was in fact true.   
 

 
Figure 4:  Experimental Illustration of the Figure 1 Inequality  
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We quickly see that for realistic thicknesses of H0, the p-value seems to generally 
underestimate the true probability that H0 is true.  So if used as a trigger to reject the null 
hypothesis, the p-value does so too soon (i.e. it starts rejecting at p-values that are not yet 
low enough).  Consider when the thickness of the null is just ±1% of the value of the null 
mean; at that thickness, you would need the power to detect that a true mean equal to 99 
or 101 is significantly different from a null mean = 100.  Even for this thin of an H0 (see 
the triangle marker, two points below the point labelled “a”),  over 10% of the time when 
the p-value ≈ 0.05, and so conventionally is at the boundary of suggesting that H0 might 
be false, H0 was really true, by that standard.   
 
Notwithstanding the preceding, the figure refutes what some have suggested, that the p-
value problem somehow can bottom out, under the right conditions, so the p-value gives 
the right answer about the y axis probability.  To the contrary, we find that as H0 gets 
thinner, there is no barrier to prevent the conditional probability for (H0, given  p-value) 
to fall lower than the p-value, itself.  For example, in the figure:  When the thickness of 
H0 is just  ±0.1% of the value of the null mean, the conditional probability for H0, given a 
p-value ≈ 0.05, is only about 0.01.   This makes sense:  With H0 so thin, the true mean 
rarely ever matches the null mean sufficiently—regardless of the p-value. This further 
illustrates, as well, why a no-thickness null is not realistic.   
 
4.2.2  No Apparent Impact for Varying True Population σ 
Figure 5 shows the effect of revising Experiment 1, in Experiment 2, with this one 
change:   Just prior to each resampling pass, when the new real mean value is arbitrarily 
determined, a new true standard deviation value is determined as well.  (In Experiment 1, 
recall, the true σ was always equal to 10; in experiment 2 the true σ can be, for a 
particular pass, any random value between 4 and 60.)   For clarity, the Figure shows only 
the analyses for a thick H0; a real mean is deemed “equal” to the null mean if the true 
distance between them is within ±2 standard errors. 
 

 
Figure 5: Supplemental Experiment—Varying the Real Population σ 

 
The same basic effects as illustrated in Figure 4 appear to also apply when the real 
population standard deviation is not fixed at one particular value.  While there is variance 
in exact locations of the points—both within this figure, for different ranges of σ, and 
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between this figure and Figure 4—there is no clear pattern of difference; for example, for 
p-values close to 0.001, the cases with the lowest true σ’s had the lowest conditional 
probability for H0, yet for p-values close to 0.08, the cases with the lowest true σ’s had 
the highest conditional probability for H0.  Possibly, this variation is simply random 
noise; consider also that the number of cases in each p-value category, for calculating the 
conditional probabilities for H0, are reduced here, due to the stratification of cases based 
on true σ’s. 
 
4.2.3 No Apparent Impact for Switching to Nonparametric Generation of p-values 
Figure 6 shows the effect of revising Experiment 2 to Experiment 3.   As above, each 
main pass (resampling loop) results in an obtained sample, taken from a population with 
a randomly re-set real mean and real standard deviation; and the distance δ is measured 
between the sample mean and the null hypothesis mean.   The p-value (with respect to 
H0) is determined not by a parametric test (using the t value), but by the following, non-
parametric procedure:  A nested loop of 3000 resamples is taken from the null 
hypothesized population, and the p-value (i.e.for that one pass of the outer loop) is the 
proportion of the nested resamples for which the magnitude of difference between the 
resample mean and the null mean is greater than or equal to  |δ|.   As in Figure 4, Figure 6 
shows effects based on various selections for H0 thickness.  
 

 
Figure 6: Supplemental Experiment—Non-Parametric Generation of the p-Value 

 
Once more, we find the same basic pattern of results as occurred for the t test approach, 
in previous sections.   It is clear that the t test is not, itself —either specifically, or in 
virtue of being parametric—causing the replicable pattern for these experiments.   
 
4.3 Mismatched structure of the inequality 
The results labelled 4.2.1-4.2.3, above, concern the issue of H0 “thickness.”   Figures 7 
and 8 address the second issue that was mentioned in Section 2; namely whether both 
sides of the inequality in Figure 1 are really both “probabilities”  in the same sense. 
Probabilities for p-values are not a problem; the p-value is a random variable, with a 
magnitude determined by the outcome of the hypothesis-test sampling.    But the 
“posterior probability of H0” is not a random variable in the true sense.  The true mean 
has the value it has—prior to hypothesis testing; there is no randomness, and no 
probability.  (Compare the confidence level, when estimating a parameter:  This too is 
actually about the expected reliability of a procedure; it is not a probability for the value 

Section on Statistical Education – JSM 2010

1354



of the parameter, itself, which pre-exists the procedure.)   Figure 7 clearly demonstrates 
this situation:   
 

  
Figure 7: The Non-Random “Posterior Probability of H0”  

 
In the figure, where the true and H0 means are very close, in relation to H0’s thickness, 
then the truth of H0 is a fact, and its conditional (and absolute) probability = 1.00.    When 
the true and H0 means are far apart, in relation to H0’s thickness, then the falsity of H0 is 
certain, and its conditional (and absolute) probability = 0.00.    Observe in both cases that 
on occasion, the p-values calculated in different passes of the experiment were “all over 
the map” (i.e. small or large); but this had no bearing whatsoever on the certainties.   
 
The points (in green) in the figure appear to be exceptions, but these are actually 
artefacts, due to aggregating cases where the distances between the real and null were 
known to be borderline.    In this group, by chance, the output p-values could range from 
low to high—both for cases where the null and real means were (barely) “equal enough” 
and for cases where they were not (quite) equal enough.     
  

   
Figure 8: Effect Sizes and the “Posterior Probability of H0”  
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In practice, of course, Figure 7 is not very helpful because we do not know the real value 
of the parameter.  (If we did, there is nothing to test.)  So, where Figure 7 refers to the 
true distance between the null and real means, Figure 8 uses the best proxy available:  the 
effect size—in this case, the actual distance between the null and sample mean.  Now, 
values on the vertical axis are (to the researcher) not certainties.  Like confidence levels, 
the y values can be viewed as measures of expected reliability in this sense:   If getting a 
p-value similar to a value on the x axis is used to trigger a rejection of the null hypothesis 
(of a specified thickness), then in what likely proportion of such cases would H0 have in 
fact been true (and so rejected in error)? 
 
This chart does not solve the p-value problem, but it gives a sense of when p-values 
might be informative, and when, to the contrary, they are more likely to be redundant—
or, worse, misleading.    If the effect size is not at least as large as the specified H0 
thickness (e.g. the detectable distance you used when calculating sample size), or, 
preferably, a bit larger, then the best guess is to stick with H0 as likely true—regardless of 
what p-value you obtain.  If, on the other hand, the effect size is quite a bit larger than the 
H0 thickness, then rejecting H0 is a safer—even if the p-value is not that persuasive. 
 

5.  Discussion and Conclusions 
 

 As Section 1 demonstrated, there have been many objections raised to using p-values for 
hypothesis tests, yet the convention of using them persists, as evidenced by their 
prominent inclusion in modern statistics packages.  Large numbers of papers have been 
written on this subject, but most tend to be abstract and/or theoretical or historical.  Some 
of these papers include simulations.   Yet, surprisingly, no one has seemed to use 
simulations to try out, “first hand”, what exactly it is that p-values do or don’t do, in 
relation to the truth of a null hypothesis.  This paper has taken that step; and in this 
section, we will review and summarize its findings.  
 
5.1 There is a strong monotonic relationship between the order of magnitude 

of the p-value and the relative likelihood that H0 is true.   
This conclusion is strongly supported by Figure 3.  As discussed in Section 4.3, this 
“likelihood” is not a probability of H0, strictly speaking, because H0 is not a random 
variable.   Instead, Conclusion 5.1 is a statement about the long-term reliability of a 
strategy that would relate p-values to the unknown truth-values of null hypotheses.   
Figure 3 suggests that comparing two sizes of p-values (in orders of magnitude) that have 
been generated conventionally, generally the higher the order of magnitude for the p-
values the greater the proportion of cases for which it happens that H0 is really true.   
 
5.2 The variance around the correlation pattern in Conclusion 5.1 is very 

large.   
While Conclusion 5.1 seems supportive for the use of p-values, Conclusion 5.2 provides 
a serious check on that support:  The standard error for the impressive regression line 
between the (log) p-value and the associated true distance in Figure 3 is 1.8 (orders of 
magnitude)—that is, the p-value that would be expected, based on the true standardized 
distance from the real mean from the null, could easily differ from the p-value actually 
obtained by over two orders of magnitude.  If, for example, the p-value expected based 
on the true distance was 0.005, the actually computed p-value might range from 0.5 (or 
higher) down to 0.00005 (or lower).   It would be hard to justify a conclusion from such 
imprecise findings. 
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5.3 The information in the p-value is highly dependent on the “thickness” of 
H0  

The thickness of H0 might be determined based on practical or clinical considerations, 
regarding what difference from exact equality might truly matter.  Logically, this could 
be the figure used when estimating a minimum sample size:  When calculating the power 
for a test, one specifies a minimum distance ±δ that needs to be detectable.  The clear 
implication, once the test results arrive, is that if the observed effect size is less than |δ|, 
then this small, non-differentiatable distance from the null should be counted as “equal 
enough”, or “effectively equal”. 
 
Figure 4 demonstrates that any attempt to estimate a probability (or “likelihood”) for H0, 
given a p-value, is highly dependent on the posited “thickness” of H0.  In the example, 
the likelihood that H0 is true, given a p-value of 0.05, might be anywhere from 70% (for 
the thickest null) to virtually zero (for a very thin null).  There is no evidence of any 
lower bound for this likelihood.   (At some thickness of H0, presumably, the null’s 
likelihood would be exactly equal to the p-value; but this paper does not examine where 
that point occurs, or whether it can be generalized.) 
 
This sometimes dramatic swing of the p-value’s possible impact or meaning can be 
viewed by relating the p-value to α.   In hypothesis tests, α is supposed to represent the 
Type I error rate (i.e. the probability of mistakenly rejecting a true null hypothesis) that 
one is willing to accept, in following the testing procedures.  Supposedly, by 
conventional models, one can ensure α by the algorithm of finding the p-value, and then 
rejecting H0 only when the p-values reaches or falls below α.   (E.g.  if one’s standard is α 
= 0.01, do not reject H0 for any p-value greater than 0.01.)   In point of fact, the procedure 
described does not preserve the effective α for one’s test.  If using a p-value algorithm to 
decide whether or not to reject H0, then (all else being equal): 

a) For thick H0’s:  (the effective α)  >   (nominal α);   
b) For very thin H0’s:    (the effective α)  <   (nominal α) 

This follows because in (a), p-values lead to rejecting too many H0’s that are true, so the 
risks of Type I error (i.e. α) are greater than acknowledged; and in (b) p-values fail to 
reject virtually any H0’s (whether true or false), so the risks of rejecting true H0’s (i.e. α) 
is less than anticipated.   
 
5.3.1 The reported effects seem independent of (a) the real value of σ (in relation 

to μ), and (b) the method used to obtain the p-values 
These points were illustrated in Figures 5 and 6.  Obviously, not all variations could be 
tested.  Yet, the effects  clearly persisted through a wide divergence of possible σ values, 
and from the parametric to the non-parametric procedures to generate the p-values.  
 
5.3.2 p-values cannot tell you the “probability that (on this occasion) H0 is true 

(or false)” 
This is because nothing can tell you this.  The real value of the parameter is not a random 
variable.  At best, p-values can be used as part of a regimen that, over time, tends to be 
reliable when pointing to what may be true on particular occasions. 
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6.  Recommendations 
 
Based on the findings of this paper, the author would offer the following 
recommendations to those who are considering the use of p-values in the process of 
drawing, and/or stating, statistical conclusions: 
 

1. Do not necessarily give up on p-values, but do keep clear on what they do—and do 
not—tell us, and under what conditions 
 

2. At the very least, provide (or look for) this supplementary information: 
a. The actual effect size, and 
b. The thickness of H0, i.e. the minimum difference that is detectable or, based on 

the context or purpose of the research, cared about. 
 
p-values have the advantage of generally being readily accessible (e.g. through 
publication in articles, or by generating with software), and they do convey information; 
yet they cannot stand alone.   Based on the results of experiments described in this paper, 
the author finds that combining the three elements named in the recommendations 
provides the best chance of “guesstimating” the net likelihood of H0’s being true. No one 
test can give certainty; but it is felt that using these guidelines will help to minimize error 
over the long term.  
 
This closing example shows the intention of the guidelines that are recommended: 
 
Suppose you run a multiple regression, and are examining the contributions of the 
independent variables to the overall regression.   Most software will generate p-values, 
based on t tests, for each x variable coefficient.  For each variable a null hypothesis is 
implied that its coefficient simply equals zero; i.e. that changes in x have no impact on 
the dependent variable.   Before considering the size of the p-value, ask:  What is a 
reasonable thickness for this coefficient’s null hypothesis?  As shown in Figure 4, small 
p-values can be easily obtained if the nulls are very thin (for example, if the mean of the 
dependent variable is 2000, yet you claim that an x coefficient equalling 1.2 is “not equal 
enough” to a null of zero).   But inquire whether such small contributions to the 
regression would be practically meaningful; and whether the t test even has the power to 
discriminate differences that small?   On the other hand, if the null coefficient has some 
reasonable thickness, and the coefficient actually obtained is notably larger than that 
baseline, then, as depicted with the diamond symbols in Figure 8, you may be onto 
something.  Throw in a p-value that is very small (preferably, much lower than  the usual 
“0.05”),  and now (assuming no confounding, etc., are involved) the odds do look 
reasonable that the (thick) null hypothesis is probably false; i.e. the particular x variable is 
likely making an actual contribution to the regression. 
 
This example shows the spirit of the recommendations.  Although more sophisticated 
attempts to transform p-values into something better have been tried, and several are cited 
in the references, there is really no way to make the indeterminate (i.e. what is the true 
value of the population parameter) determinate—certainly not in a single sample.  But by 
combining the three proposed elements in making one’s assessment, a reasonable basis 
for future research or action can often be obtained.    
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