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Abstract: In 1942 Haskell B. Curry presented what is now called Curry's paradox which can be found in a logic 
independently of its stand on negation. In recent years there has been a revitalised interest in non-classical solutions to the 
semantic paradoxes. In this article the non-classical resolution of Curry’s Paradox and Shaw-Kwei's paradox without rejection 
any contraction postulate is proposed. In additional  relevant paraconsistent logic #, 1 ,	in fact, provide an effective 
way of circumventing triviality of da Costa’s paraconsistent   Set Theories  
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1. Introduction 

In 1942 Haskell B. Curry presented what is now called 
Curry's paradox [1]. The paradox I have in mind can be 
found in a logic independently of its stand on negation. The 
deduction appeals to no particular principles of negation, as it 
is negation-free. Any deduction must use some inferential 
principles. 

Here are the principles needed to derive the paradox. 
A transitive relation of consequence: we write this by ⊢ 

and take ⊢  to be a relation between statements, and we 
require that it be transitive: if 	 ⊢ 	  and 	 ⊢ 	  then  
	 ⊢ 	 .	
Conjunction and implication: we require that the 

conjunction operator ∧  be a greatest lower bound with 
respect to ⊢. That is, 	 ⊢ 	  and 	 ⊢ 	  if and only if 
	 ⊢ 	 	 ∧ 	 . 
Furthermore, we require that there be a residual for 

conjunction: a connective →  such that 	 ∧ 	 	 ⊢ 	  if and 
only if A ⊢ B → C. 

Unrestricted Modus Ponens rule : 

, 	 → 	 	 ⊢ 	                                (1.1)	

Unrestricted Modus Tollens rule: 

	 → 	 , 	 ⊢ 	 	                           (1.2) 

A paradox generator: we need only a very weak paradox 
generator. We take the  scheme in the following 
enthymematic form: ∧ 	 ⊢ 	 	; 	 	 ∧ 	 	 ⊢ 	  for 
some true statement .  The idea is simple:  need not 
entail .  Take  to be the conjunction of all required 
background constraints. 

Diagonalisation. To generate the paradox we use a 
technique of diagonalisation to construct a statement Ψ such 
that Ψ is equivalent to Ψ 	→ , where  is any statement 
you please. 

Curry’s paradox, is a paradox within the family of so-
called paradoxes of self-reference (or paradoxes of 
circularity). Like the liar paradox (e.g., ‘this sentence is false’) 
and Russell’s paradox, Curry’s paradox challenges familiar 
naive theories, including naïve truth theory (unrestricted -
schema) and naive set theory (unrestricted axiom of 
abstraction), respectively. If one accepts naive truth theory 
(or naive set theory), then Curry’s paradox becomes a direct 
challenge to one’s theory of logical implication or entailment. 
Unlike the liar and Russell paradoxes Curry’s paradox is 
negation-free; it may be generated irrespective of one’s 
theory of negation. 

There are basically two different versions of Curry's 
paradox, a truth-theoretic (or proof-theoretic) and a set-
theoretic version; these versions will be presented below. 

Truth-theoretic version. 
Assume that our truth predicate satisfies the following -

schema: 

	↔ 	 	

Assume, too, that we have the principle called Assertion 
(also known as pseudo modus ponens): 

Assertion: ∧	 	 → 	 	→ 	  
By diagonalization, self-reference we can get a sentence  

such that 	 ↔ 	 	→ 	 , where  is anything you like. 
(For effect, though, make  something obviously false, e.g. 
≡ 0 1) By an instance of the -schema ” 	↔ 	 ”  
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we immediately get: 	↔ 	 	→ 	 , 
Again, using the same instance of the -Schema, we can 

substitute ,  for  in the above to get (1). 
1 ⊢ 	 , ↔ 	 , 	→ 	  [by -schema and 

Substitution] 
2 ⊢ 	 , 	∧ 	 , 	→ 	 	→ 	  [by Assertion] 
3 ⊢ 	 , 	∧ 	 , 	→ 	  [by Substitution, from 2] 
4 ⊢ C[T,F] → F [by Equivalence of  and 	 ∧ 	 , from 3] 
5 ⊢ 	 ,  [by Modus Ponens, from 1 and 4] 
6 ⊢ 	  [by Modus Ponens, from 4 and 5] 
Letting  be anything entailing triviality Curry’s paradox 

quickly ’shows’ that the world is trivial. 
Set-Theoretic Version 
The same result ensues within naive set theory. Assume, in 

particular, the 
(unrestricted) axiom of abstraction (or naive 

comprehension (NC)): 
Unrestricted Abstraction: 	 ∈ 	 | 	↔ 	 . 
Moreover, assume that our conditional , → , satisfies 

Contraction (as above), 
which permits the deduction of 	 ∈ 	 	 → 	  from 

	 	 ∈ 	 	 → 	 	 ∈ 	 	 → .	

In the set-theoretic case, let , | 	 ∈ 	 	 → 	 , where 
 remains as you please (but something obviously false, e.g. 
≡ 0 1). From here we reason thus: 
(1) ⊢ 	 	 ∈ 	 	↔ 	 	 ∈ 	 	 → 	  [by Unrestricted 

Abstraction] 
(2) ⊢ 	 	∈ 	 	↔ 	 	∈ 	 	→ 	  [by 

Universal Specification, from 1] 
(3) ⊢ 	 	∈ 	 	→ 	 	∈ 	 	→ 	  [by 

Simplification, from 2] 
(4) ⊢ 	 	∈ 	 	→ 	  [by Contraction, from 3] 
(5) ⊢ 	 	∈ 	  [by Unrestricted Modus Ponens,  

from 2 and 4] 
(6) ⊢ 	  [by Unrestricted Modus Ponens, from 4 and 5] 
So, coupling Contraction with the naive abstraction 

schema yields, via Curry’s paradox, triviality. 
This is a problem. Our true  entails an arbitrary 
.This inference arises independently of any treatment of 

negation. The form of the inference is reasonably well known. 
It is Curry’s paradox, and it causes a great deal of trouble to 
any non-classical approach to the paradoxes. In the next 
sections we show how the tools for Curry’s paradox are 
closer to hand than you might think. 

 

2. Relevant First-Order Logics in 
General 

Relevance logics are non-classical logics [2]-[15]. Called 
“relevant logics” in Britain and Australasia, these systems 
developed as attempts to avoid the paradoxes of material and 
strict implication. It is well known that relevant logic does 
not accept an axiom scheme 	 → 	 	 → 	  and the rule 
, 	 ⊢ . Hence, in a natural way it might be used as basis 

for contradictory but non-trivial theories, i.e. paraconsistent 
ones. Among the paradoxes of material implication are: 
	 → 	 	 → 	 , 	 → 	 	 → 	 , 	 → 	 	∨ 	 	 → .  

Among the paradoxes of strict implication are the following: 
∧ 	→ 	 , 	 → 	 	 → 	 , 	 → ∧ .  Relevant 

logicians point out that what is wrong with some of the 
paradoxes (and fallacies) is that is that the antecedents and 
consequents (or premises and conclusions) are on completely 
different topics. The notion of a topic, however, would seem 
not to be something that a logician should be interested in — 
it has to do with the content, not the form, of a sentence or 
inference. But there is a formal principle that relevant 
logicians apply to force theorems and inferences to “stay on 
topic”. This is the variable sharing principle. The variable 
sharing principle says that no formula of the form 	 → 	  
can be proven in a relevance logic if  and  do not have at 
least one propositional variable (sometimes called a 
proposition letter) in common and that no inference can be 
shown valid if the premises and conclusion do not share at 
least one propositional variable. 

3. Curry’s Paradox Resolution Using 
Canonical Systems of Relevant Logic 

In the work of Anderson and Belnap [3] the central 
systems of relevance logic were the logic E of relevant 
entailment and the system R of relevant implication. The 
relationship between the two systems is that the entailment 
connective of E was supposed to be a strict (i.e. necessitated) 
relevant implication. To compare the two, Meyer added a 
necessity operator to R (to produce the logic NR). 

It well known in set theories based on strong relevant 
logics, like E and R, as well as in classical set theory, if we 
add the naive comprehension axiom, we are able to derive 
any formula at all. Thus, naive set theories based on systems 
such as E and R are said to be “trivial” by Curry Paradox. 

The existence of this paradox has led Grishen, Brady, 
Restall, Priest, and others to abandon the axiom of 
contraction which we have dubbed 

K: 	 → 	 	 → 	 	→ 	 	 → .	

Brady has shown that by removing contraction, plus some 
other key theses, from R we obtain a logic that can accept 
naive comprehension without becoming trivial [4],[16],[17]. 

However, it is not just K that we must avoid. Shaw-Kwei 
[21] shows that a variant of Curry's paradox can trivialise a 
chain of weaker naive truth theories. Let us use the notations 

→  and →  

to mean  and → →  correspondingly. 

Then the following axioms also lead to triviality 

: → → → → . 

We choose now a sentence  via the diagonal lemma, that 
satisfies [22]: 
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↔ → , 

where the notations °  to mean an fixed Godel numbering. 
Then by full intersubstitutivity one obtain the equivalence 

: ↔ → , 

which by postulate  reduces to →  and by  to 
. But from  and →  one can deduce  by n 

applications of unrestricted modus ponens (1.1). For example, 
a natural implicational logic without contraction is 
Ƚukasiewicz's 3-valued logic: Ƚ . Although logic Ƚ  does not 
contain K, it does contain .  In general the n+1-valued 
version of Ƚukasiewicz logic, Ƚ , validates  and is thus 
unsuitable for the same reason [22],[23]. 

However, it well known that contraction is not the only 
route to triviality . There are logics which are contraction free 
that still trivialize naive comprehension schema (NC) [18]. 
Abelian logic with axiom of relativity which we have dubbed 

:	 → → → . 

Let |  and → ∈ .  Then as 
instance of NC one obtain → ∈ → ∈ .  Thus we 
obtain 

(1) ⊢ → ∈ → ∈   [by NC] 
(2) ⊢ → ∈ → ∈ →  [by instance of   
(3) ⊢  [by 1,2 and Unrestricted Modus Ponens (1.1)]. 

4. Relevant First-Order Logic # 

In order to avoid the results mentioned in II and III, one 
could think of restrictions in initial formulation of the rule 
Unrestricted Modus Ponens (1.1). The postulates (or their 
axioms schemata) of propositional logic LP# V  are the 
following [19]: 

I. Logical postulates: 
(1) 	 → 	 	 → 	 , 
(2) 	 → 	 	→ 	 	 → 	 	 → 	 	→ 	 	 → 	 , 
(3) A → (B → A∧ B), 
(4) 	 ∧ 	 	 → 	 , 
(5) 	 ∧ 	 	 → 	 , 
(6) 	 → 	 	 ∨ 	 , 
(7) 	 → 	 	 ∨ 	 , 
(8) (A → C) → ((B → C) → (A ∨ B → C)), 
(9) 	 ∨ 	 , 
(10) 	 → 	 	 → 	 . 

II. Restricted Modus Ponens rule: 

, 	 → 	 	 ⊢ 	iff	 	 ∉ 	                      (1.3) 

or 

, 	 → 	 	 ⊢ 	iff	 	 ∉ 	                       (1.4) 

which we have write for short 

, 	 → 	 	 ⊢  or , 	 → 	 	 ⊢ , . 

5. Curry’s Paradox and Shaw-Kwei's 
Paradox Resolution Using Relevant 
First-Order Logic # 

In my paper [19] was shown that by removing only 
Unrestricted Modus Ponens rule (1.1) (without removing 
contraction etc.), plus some other key theses, from classical 
logic we obtain a logic that can accept naive comprehension 
without becoming trivial. 

Let us consider Curry’s paradox in a set theoretic version 
using Relevant First-Order Logic LP# with Restricted Modus 
Ponens rule (1.3). Let 	 | 	 ∈ 	 	 → 	  and  is 
a closed a well formed formula of ZFC (cwff) such that: 

	↔ 	∈ 	 	.  We assume now  and 
denote by Δ  a set of all cwff such that ∈ Δ ↔

. Let us denote by symbol  a set  

	 	| 	 ∈ Δ	 		

We set now in (1.3).  From definition above we 
obtain the Restricted Modus Ponens rule: 

, 	 → 	 	 ⊢ 	iff	 	 ∉ 	 .             (1.5) 

Let 	 ∈ 	Δ.	From here we reason thus: 
(1) ⊢ 	 	 ∈ 	 	↔ 	 	 ∈ 	 	 → 	  [by Unrestricted 

Abstraction] 
(2) ⊢ 	 	∈ 	 	↔ 	 	∈ 	 	→ 	  [by 

Universal Specification, from 1] 
(3) ⊢ 	 	∈ 	 	→ 	 	∈ 	 	→ 	  [by 

Simplification, from 2] 
(4) ⊢ 	 	∈ 	 	→ 	  [by Contraction, from 3] 
(5) ⊬ 	∈ 	  [by Restricted Modus Ponens (1.5), 

from 2 and 4] 
Let us denote by symbol  a set  

	 	| 	 ∉ Δ	 	. 

Therefore	

, 	 → 	 	 ⊢ 	iff	 	 ∈                  (1.6) 

Let 	 ∉ 	Δ.	From here we reason thus: 
(1) ⊢ 	 	 ∈ 	 	↔ 	 	 ∈ 	 	 → 	  [by Unrestricted 

Abstraction] 
(2) ⊢ 	 	∈ 	 	↔ 	 	∈ 	 	→ 	  [by 

Universal Specification, from 1] 
(3) ⊢ 	 	∈ 	 	→ 	 	∈ 	 	→ 	  [by 

Simplification, from 2] 
(4) ⊢ 	 	∈ 	 	→ 	  [by Contraction, from 3] 
(5) ⊢ 	 	∈ 	  [by Restricted Modus Ponens (1.6), 

from 2 and 4] 
(6) ⊢ 	  [by Restricted Modus Ponens (1.6), from 4 and 

5] 
Let us consider now Curry’s paradox in a set theoretic 

version using Relevant First-Order Logic LP#  with 
Restricted Modus Ponens rule (1.4). We set now in (1.4). 

 From definition above we obtain the Restricted 
Modus Ponens rule: 
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, 	 → 	 	 ⊢ 	iff	 	 ∉ 	                (1.7) 

Let 	 ∈ 	Δ.	From here we reason thus: 
(1) ⊢ 	 	 ∈ 	 	↔ 	 	 ∈ 	 	 → 	  [by Unrestricted 

Abstraction] 
(2) ⊢ 	 	∈ 	 	↔ 	 	∈ 	 	→ 	  [by 

Universal Specification, from 1] 
(3) ⊢ 	 	∈ 	 	→ 	 	∈ 	 	→ 	  [by 

Simplification, from 2] 
(4) ⊢ 	 	∈ 	 	→ 	  [by Contraction, from 3] 
(5) ⊬ 	∈ 	  [by Restricted Modus Ponens (1.7), 

from 2 and 4] 
Let us consider now Curry’s paradox in a set theoretic 

version using Abelian logic with axiom of relativity and 
Restricted Modus Ponens (1.4). We set now in (1.4). Δ 
From definition above we obtain the Restricted Modus 
Ponens rule: 

, 	 → 	 	 ⊢ 	iff	 	 ∉ 	Δ                 (1.8) 

Let 	 |  and → ∈  and let 
	 ∈ 	Δ.  Then as instance of NC one obtain → ∈

→ ∈ . Thus we obtain 
(1) ⊢ →	 ∈ 	 → 	 ∈   [by NC] 
(2) ⊢ →	 ∈ 	 → 	 ∈ →  

[by instance of ] 
(3) ⊬   [by 1,2 and Restricted Modus Ponens (1.7)]. 
Let us consider now Curry’s paradox in a truth theoretic 

version using Relevant First-Order Logic LP#  with 
Restricted Modus Ponens rule (1.4). We set now in (1.4). 

Δ  From definition above we obtain the Restricted 
Modus Ponens rule: 

, 	 → 	 	 ⊢ 	iff	 	 ∉ 	Δ.                   (1.9) 

By diagonalization, self-reference we can get a sentence  
such that 	 ↔ 	 	→ 	 , where ∈ 	Δ.	 

By an instance of the -schema ” 	↔ 	 ”  we 
immediately get: 	↔ 	 	→ 	 , 

Again, using the same instance of the -Schema, we can 
substitute ,  for  in the above to get (1). 

(1) ⊢ 	 , ↔ 	 , 	→ 	  [by -schema and 
Substitution] 

(2) ⊢ 	 , 	∧ 	 , 	→ 	 	→ 	  [by Assertion] 
(3) ⊢ 	 , 	∧ 	 , 	→ 	  [by Substitution, from 

2] 
(4) ⊢ 	 , 	→ 	  [by Equivalence of  and 	 ∧ 	 , 

from 3] 
(5) ⊢ 	 ,  [by Restricted Modus Ponens (1.9), from 

1 and 4] 
(6) ⊬   [by Restricted Modus Ponens (1.9), from 4 and 

5]. 
It easy to see that by using logic with appropriate restricted 

modus ponens rule (1.4) Shaw-Kwei's paradox disappears by 
the same reason. 

6. The Resolution of -Inconsistency 
Problem for the Infinite Valued 

Łukasiewicz Logic Ƚ . Logic # . 
It well known that in the infinite valued Łukasiewicz logic, 

Ł , every instance of  is invalid, and in fact Ł  can 
consistently support a naive truth predicate [23]-[24]. 
However, Ł  is plagued with an apparently distinct problem 
– it is -inconsistent. This fact was first shown model 
theoretically by Restall in [25] and demonstrated a proof 
theoretically by Bacon in [24]. 

An classical extension of Peano Arithmetic is said to be  
–inconsistent iff 

⊢ /  for each n, but ⊢ ∃             (1.10) 

Note that while an  -inconsistent theory is not formally 
inconsistent. However  -inconsistency is generally 
considered to be an undesirable property, generally 
considered to be an undesirable property. It is generally 
considered undesirable if the theory becomes inconsistent in 

 –logic. In other words, if it cannot be consistently 
maintained in the presence of the infinitary  -rule: 

/ | ∈ ⊢ ∀ 	                     (1.11) 

Clearly  -inconsistency entails inconsistency with the  
–rule (1.11), but the converse does not hold in general. We 
have dubbed any Logic LP# with the  –rule (1.11) by LP# . 

Definition 6.1. [23]. Weak  –inconsistency means: 

/ ⊢ for each , but ⊢ ∃ .       (1.12) 

Definition 6.2. [23]. Strong  –inconsistency means: 

⊢ /  for each , but ⊢ ∃ → .       (1.13) 

Note that without the rule of reduction one cannot derive 
strong  -inconsistency from weak  -inconsistency [23]. 

Definition 6.3. [23]. By a classical “naive truth theory" 
(CNTT) we shall mean any set of first order sentences in the 
language of arithmetic with a truth predicate which, in 
addition to being closed under modus ponens, has the 
following properties: 

(1) Standard syntax: it contains all the arithmetical 
consequences of classical Peano arithmetic.  

(2) Intersubstitutivity: it contains if and only if it 

contains /  for any sentence . 

(3) Compositionality: it contains →  if and 
only if it contains → . 

(4) Unrestricted Modus Ponens rule: it closed under 
unrestricted modus ponens rule (1.1). 

If ⊢  then ∃ ⊢ ∃ , → ∃ ⊢ ∃ → . 

Note that by using the diagonal lemma we can construct a 
sentence  satisfying 

↔ ∃ , ,                     (1.14) 

where the notations °  to mean an fixed Gödel numbering and 
a function  is defined arithmetically by recursion [23]: 
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0, →  and 1, → , . 
Theorem 6.1.  [23]. Any  classical naive truth theory closed 

under (1),(2),(3), (i) and (ii) can prove . 
Theorem 6.2. [23]. Any naive truth theory closed under (i) 

and (ii) is weakly -inconsistent. 
Proof. By theorem 6.1 one obtain  

CNTT ⊢ ∃ , . 

By arithmetic and full intersubstitutivity we obtain that 

, ⊢ → . 

Since we have ⊢  by theorem 2.1, by n applications of 
unrestricted modus ponens we obtain 

→ 	⊢	 .                         (1.15) 

So we have in general , ⊢ for any n, and 

⊢ ∃ , . 

Theorem 6.3. [23]. Any naive truth theory closed under (i) 
and (ii) is strongly -inconsistent. 

Theorem 6.4. [25]. Infinitely valued Łukasiewicz logic, 
Ł , is strongly -inconistent. 

Definition 6.4. By a non-classical or generalized “naive 
truth theory" (GCNTT) we shall mean any set of first order 
sentences in the language of arithmetic with a truth predicate 
which, in addition to being closed under modus ponens, has 
the following properties: 

Standard syntax: it contains all the arithmetical 
consequences of classical Peano arithmetic.  

Intersubstitutivity: it contains  if and only if it contains 
/  for any sentence . 

Compositionality: it contains →  if and only if 
it contains → . 

Infinitary  -rule: / | ∈ ⊢ ∀ 	 .  

Restricted Modus Ponens rules: it closed under restricted 
modus ponens rule (1.3) or (1.4)  

Definition 6.5. Weak  –consistency means: 

⊢ /  for each , but ⊬ ∃ →       (1.16) 

Definition 6.6. [23]. Strong  –consistency means: 

⊢ /  for each , but ⊬ ∃         (1.17) 

Theorem 6.5. Any consistent GCNTT closed under 
restricted modus ponens rule (1.3) is strongly  –consistent. 

 
7.Applications  
to da Costa’s Paraconsistent    
Set Theories. 

 
da Costa [27] introduced a Family of paraconsistent logics 
, 1 ,  with unrestricted modus ponens rule (1.3) 

[28], designed to be able to support set theories , 

respectively, 	1 , incorporating  unrestricted 
Comprehension Schema: 
⊢ ∃ ∀ ∈ ↔ ,                                             (1.18) 
where  is any formula in which y is not free but x may 

be, and  does not contain  any sub formula of the form   
→  
Axiom of Extensionality: 
⊢ ∀ ∀ ∀ ∈ ↔ ∈ →                      (1.19) 
Since Russell’s paradox could be reproduced in these set 

theories, their underlying logics in the absence classical rule  
, ⊬ 	had to be capable of tolerating such theorems as 

⊢ ∈ ↔ ∈  without collapse into triviality [29] but 
which is hardly less disastrous ⊢ ∀ ∀ ∈ ∧ . 

Definition 7.1.[29].~  iff → ∀ ∀ ∈ ∧ . 
Theorem7.1. [29]  In  ,	  negation	~  is a minimal 

intuitionistic negation. 
Theorem7.2.[29].(Cantor’sTheorem)                                   

⊢ ∀ ~ . 
Definition 7.2. [29].The universal set  is defined as:  

∀ ∈ ↔  
Theorem7.3.[29].(Cantor’sParadox)                                           

⊢ ∧ ~ .  
Theorem 7.4.[29].  

(i) ∀ ∀ ∧ ~ , 
 
(ii)  ∀ ∀ ∈ ∧ ~ ∈ , 
 
(iii) ∀ ∀ ∈ ∧ ~ ∈ . 

 
Proof. (i). By theorem 7.3 one obtain  
 
                      ⊢ ∧ ~ .	                      (1.20) 
 
From (1.20) and definition 7.1 one obtain 
 

→ ∀ ∀ ∈ ∧ .                        (1.21) 
 
Therefore, as , then ⊢ ∀ ∀  and                  

⊢ ∀ ∀ ∈ .  
Note that statement (i) of the theorem 7.4 is called      

paradox of identity. 
 
Definition7.3. Let us define paraconsistent  da Costa type 

logics #, 1 ,  with restricted modus ponens rule 
such that  

                      	 , 	 → 	 	 ⊢ 	iff	 	 ∉ 	 ,                 (1.22)  
 
                ∀ ∀ ∧ ∀ ∀ ∈ ∈       (1.23) 
 

for support set theories # , respectively, 	1 ,		  
incorporating unrestricted Comprehension Schema (1.18). 

From the proof of the theorem 7.3 it follows directly that 
logics #, 1 ,  in fact, provide an effective way of 
circumventing   paradox of identity. 

Arruda in [29] introduced  a Family of  set theories , 
1 , in which any canonical axiom of :   the 
axiom of pairing, axiom of union etc., are postulated  in 
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general and in which also postulated the existence of the 
Russell’s set .  

Definition7.4. [29].   ∗  iff  ∧ . 
Note that ∗  is a classical negation. 
Theorem 7.5. [29].Any set theories 	 , 1  are 

trivial. 
Proof. By axiom of separation there exist subset  of  

such that  
(1) ∀ ∈ ↔ ∈ ∧ ∈ . From (1) we 

obtain  
(2)  ∈ ↔ ∈ ∧ ∈ .  
From (2) we obtain 
 
                          ∈ ∧ ∗ ∈ .             (1.24)  
 
But formula (1.24) trivializes the system . 
Definition7.5. Let us define paraconsistent  da Costa type 

logics #, 1 ,  with restricted modus ponens rule 
such that  

                 	 , 	 → 	 	 ⊢ 	iff	 ∗ 	 ∉ 	 .                (1.25)  
 
                  ∈ ∧ ∗ ∈ ∈               (1.26) 
 

for support set theories # , respectively, 	1 , 
incorporating  unrestricted Comprehension Schema  (1.18).  

From the proof of the theorem 7.5 it follows directly that 
logic #, 1 , in fact, provide an effective way of 
circumventing Russell’s paradox. 

Arruda and da Costa [30] introduced a Family of sentential 
logics,  to , designed to be able to support set theories, 
respectively  to  ,incorporating an unrestricted 
Comprehension Schema (1.18). These  logics are interesting 
in that they do not have modus ponens, but still seem to 
contain a lot of theorems that might be expected if modus 
ponens was included.  

 
Theorem 7.6. [32]. ⊢ A is a theorem of positive 

intuitionistic logic if and only if →  is a theorem of  . 
The basic version of Curry’s paradox shows that any such 

set theory is trivial if its underlying logic contains the rules 
of Unrestricted Modus Ponens (1.1) and Contraction, in 
addition to the usual Instantiation rules for the quantifiers 
and Simplification. Arruda and da Costa instead constructed 
their -systems without modus ponens. Arruda and da Costa 
[27] announced that ≡ ⊢ ⊃  is derivable in  to  
for all formulas A, B and C. Consequently, by Russell’s 
paradox, the set theories:  to  contain  ⊢ ⊃  for all 
B and C. In the absence of modus ponens, this does not quite 
amount to triviality. It is rather a variant which can be called 
⊃-triviality, but which is hardly less disastrous: ∀x∀y x y  
directly follows by Axiom of Extensionality (1.19). Noting 
only that ≡ ⊢ ⊃  is not similarly derivable in . 
Arruda and da Costa [31] left open the question whether the 
sole remaining set theory  is acceptably non-trivial, and 
thus whether the strategy of restricting modus ponens in the 
manner of the -systems does in fact provide an effective 
way of circumventing Curry's paradox. These questions 

answered in the negative by the following variant of the 
Russell’s paradox [33]: 

 
                           ∈ ≡ ∈ ⊃ .	                   (1.27) 
 
Theorem 7.7. [33].	 is ⊃-trivial. 
In addition to Contraction, Simplification and lnstantiation 

rules,  contains the rules of Weakening, ⊢ ⊃ , and 
Transitivity, ⊃ , ⊃ ⊢ ⊃ . 

Definition7.6. Let us define paraconsistent  logic #, with 
restricted Weakening rule such that 

  
                          ⊢ ⊃  iff 	 ∉ 	 ,                       (1.28) 
 
                            ∈ ⊃ ∈ .                            (1.29) 
 

For support set theory #	, incorporating unrestricted 
Comprehension Schema (1.18).From the proof of the 
theorem 7.7 it follows directly that logic #in fact, provide an 
effective way of circumventing Curry's paradox. 

 

8. Conclusions 

We pointed out that appropriate resolution of Curry’s 
Paradox and Shaw-Kwei's paradox resolution can be given 
without rejection any contraction postulate. In additional 
logic #, 1 ,	 in fact, provide an effective way of 
circumventing triviality of da Costa’s Paraconsistent   Set 
Theories. 
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