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ABSTRACT 

  

 Quantifying population demographics is necessary to analyse the status of 

wildlife populations and to support effective conservation and management. Such a 

need exists for beaked whales which are vulnerable to anthropogenic noise, including 

navy sonar. Here, population demographics were estimated for Blainville’s beaked 

whales (Mesoplodon densirostris) in The Bahamas and the potential population-level 

effects of sonar investigated. Mark-recapture models were fitted to photo-identification 

data collected at the US Navy’s Atlantic Test and Evaluation Center (AUTEC) where 

sonars were used regularly and 170 km away at Abaco where sonar use was limited, 

with the exception of a navy exercise correlated with a stranding of beaked whales in 

2000.  

 Life history data collected from 1997-2011 revealed that onset of sexual 

maturity occurred at age nine for both males and females and minimum longevities 

were 23 years. The annual turnover of individuals at Abaco was supported by the 

estimation of a larger parent population. However, adult females showed high site 

fidelity and survival, while adult males’ occupancy patterns were different, making 

survival of males difficult to separate from permanent emigration. Average annual 

abundance was lower at AUTEC when compared to a same-sized area at Abaco. 

Despite a similar number of adult females at both sites, a higher female:calf ratio was 

found at AUTEC, suggesting lower recruitment through births may have contributed to 

lower abundance. Population demographics in Abaco changed after the 2000 stranding; 

abundance and temporary emigration increased then returned to pre-2000 levels 
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remaining stable thereafter. Two stranded whales re-floated in 2000 were later re-

sighted having survived exposure to sonar and the physiological stresses related to 

stranding. This work provides evidence of a possible population-level effect of sonar 

use at a navy range and during a multi-ship exercise, emphasising the valuable role that 

longitudinal studies play in monitoring impacts of anthropogenic activities. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

 

1.1 Background 

 The beaked whales (Ziphiidae: Cetacea) are adapted to a deep water 

environment, an ecological niche in which they were successful during the mid- to late 

Miocene (7 – 16 million years ago) (Barnes et al. 1985, de Muizon 1991). During this 

time they reached the height of their morphological diversification (Barnes et al. 1985, 

Mead 1989) and remain one of the largest mammalian groups today (Dalebout et al. 

2002). Yet despite being a highly speciose family, beaked whales are perhaps the least 

known of large mammals (Wilson 1992). Most species share common behavioural 

characteristics making field observations difficult. They are typically found in small 

groups, exhibit cryptic surface behaviours, have very short surfacing intervals and can 

dive for extraordinarily long periods making them difficult to detect (Barlow 1999, 

Claridge 2006). As a result, most information on their ecology has come from beach-

cast or stranded animals, and several species are only known from a few specimens 

(Dalebout et al. 2008). However, recent public and scientific concern that beaked 

whales may be particularly vulnerable to anthropogenic noise have focussed much 

attention on addressing the many gaps in our knowledge of their population and 

behavioural ecology. 
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 Concern about the potential effects of noise on marine mammals has increased 

in recent decades (Richardson et al. 1995). Attention shifted from impacts of 

commercial shipping traffic masking baleen whale communication (e.g., Payne and 

Webb 1971) to behavioural responses of beaked whales to anthropogenic noise 

(Peterson 2003, Aguilar de Soto et al. 2006, Cox et al. 2006, Tyack et al. 2011, Pirotta 

et al. 2012) following a number of atypical mass strandings of beaked whales that 

occurred in close temporal and spatial proximity to naval exercises (Van Bree and 

Kristensen 1974, Simmons and Lopez-Jurado 1991, Frantzis 1998, Balcomb and 

Claridge 2001, Evans and England 2001, Jepson et al. 2003, Freitas 2004, Fernandez et 

al. 2005, Cox et al. 2006). Although the mechanisms directly causing the strandings 

remain unclear, mid-frequency sonars (2-10 kHz) used during fleet readiness training 

exercises have been linked to behavioural responses that in turn have led to a number of 

hypothesized physiological impacts (Evans and England 2001, Jepson et al. 2003, 

Fernandez et al. 2005, Cox et al. 2006, Hooker et al. 2009). Strandings typically 

involve individuals from multiple ziphiid species, but primarily of the genera Ziphius 

and Mesoplodon.  

 One of these events occurred in The Bahamas. On 15 March 2000, an 

antisubmarine warfare exercise involving surface ships using standard hull-mounted 

mid-range tactical sonars transited Northwest Providence Channel, between the islands 

of the northern Bahamas (Figure 1.1), correlated with the stranding of at least 14 beaked 

whales (Balcomb and Claridge 2001, Evans and England 2001). Two species were 

involved: Cuvier’s beaked whale (Ziphius cavirostris, n = 11) and Blainville’s beaked 

whale (Mesoplodon densirostris, n = 3). Eight whales stranded alive, six of which were 

re-floated; and six whales are known to have died. The population-level effect of this 
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and other atypical strandings worldwide needs further investigation (Cox et al. 2006). 

For this reason, Taylor et al. (2007) note that beaked whales are of high conservation 

interest and that it would be particularly useful if studies could detect trends in beaked 

whale abundance. 

 Although direct mortalities from some sonar exercises have been accepted 

within the scientific community, indirect impacts are more difficult to document but 

also need evaluating. For example, Blainville’s beaked whales regularly use the waters 

at the US Navy’s Atlantic Undersea Test and Evaluation Center (AUTEC) in The 

Bahamas (DiMarzio et al. 2008), where mid-frequency active sonars are frequently used 

during fleet readiness training. During multi-ship sonar tests at AUTEC, Blainville’s 

beaked whales move away from ships using sonar, returning to the range only when 

exercises cease (McCarthy et al. 2011, Tyack et al. 2011). It is unknown whether these 

shorter-term movements are mirrored by longer-term changes in residency or increased 

annual turnover of individuals or to what extent these movements affect the population 

demographics.  

 Concern has also been raised recently about how acoustic disturbances could 

cause chronic stress. It has been hypothesised that long-term exposure to frequent 

intense stressors that cause behavioural responses and displace individuals from optimal 

habitat could reduce fitness via mechanisms such as decreased foraging efficiency, 

failed reproduction, increased calf mortality, immunosuppression, and inhibited growth 

and metabolism (Curry 1999, Wright et al. 2007, Moore and Barlow 2013). This is of 

particular concern for lactating and pregnant females, and may result in failed 

reproduction and increased calf mortality (Wright et al. 2007). Beaked whales exhibit 
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extreme diving behaviour (Hooker and Baird 1999, Tyack et al. 2006, Baird et al. 2006) 

and, as such, may be unable to enhance food intake much further during lactation. 

Additionally, long post-dive recovery periods are required and therefore the number of 

dives is limited (Arranz et al. 2012). As such, higher energetic cost associated with 

displacement combined with lower energy intake during navy exercises provides a 

possible mechanism to reduce fitness. Combined, these factors suggest that beaked 

whales inhabiting navy ranges may have lower fecundity, and perhaps calf survival.  

 The particular vulnerability of beaked whales to navy sonar has highlighted the 

need for basic data on the ecology of beaked whales to inform mitigation of the effects 

of such activities (Cox et al. 2006). Barlow and Gisiner (2006) recommend that studies 

of beaked whales should be conducted on varying spatial scales. Large scale systematic 

surveys can assess distribution, but mark-recapture methods (on a smaller scale) will be 

best for estimating abundance. This method also provides much needed individual-level 

data which can help understand population processes, including survival, movements, 

reproduction, development, growth, dispersal, feeding, predation, and competition. 

Factors affecting these processes include the distribution and abundance (density) of 

individuals within a population, of their prey, their predators, their competitors, where 

suitable habitats are found, and where disturbances may occur.  

 Cetaceans are long-lived, highly specialised animals with delayed reproduction 

and low fecundity which makes them incapable of rapid adaptation and thus particularly 

vulnerable to anthropogenic impacts (Bowen and Siniff 1999, Moore 2005). Marine 

mammals face some serious environmental threats, the scale of which is enormous and 

the complexity of cumulative effects equally daunting. For example, the effects of 
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climate change on habitat alteration especially in polar regions (Tynan and DeMaster 

1997), bycatch of cetaceans in fisheries (Lewison at al. 2004), and disturbance from 

noise pollution (see Hildebrand (2005) for a review). To minimise these impacts, a 

precautionary approach will be needed in management decisions including that 

management action should not require large numbers of precise estimates (Taylor et al. 

2007). The work presented in this thesis fills some of the gaps in our knowledge about 

the population ecology of Blainville’s beaked whales in the hope of improving 

mitigation of navy activities in The Bahamas and elsewhere, and to contribute to 

conservation strategies for this species. 

 

1.2 Blainville’s beaked whales 

1.2.1 Phylogeny 

 The Ziphiidae first appeared in the early Miocene (about 24 million years ago), 

and reached the height of its speciation in the middle Miocene and remained through the 

late Miocene (7 to 10 million years ago) (Barnes et al. 1985, Mead 1989). Beaked 

whales are part of the Superfamily Ziphoidea, and their evolutionary relationship with 

Physeteroidea and Delphinoidea as well as the relationship between ziphiids is unclear 

(Rice 1998). De Muizon (1991) classified the Ziphiidae into three subfamilies: 

Hyperoodontinae, includes Hyperoodon and Mesoplodon (including Indopacetus); 

Ziphiinae, includes Ziphius, Berardius, Tasmacetus and four fossil genera; and 

Squaloziphiinae. It is estimated that the divergence of Ziphius and Mesoplodon occurred 

during the early Miocene (Dalebout et al. 2008). 
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 With 21 recognised extant species, the Ziphiidae represent one of the largest 

mammalian groups, yet least known. In fact, two new species have been recorded within 

the last two decades (Reyes et al. 1991, Dalebout et al. 2002) and another possible new 

species or subspecies suggested recently (Dalebout et al. 2007). The majority of the 

Ziphiidae family comprise the genus Mesoplodon (n = 14) while the other five genera 

are monotypic or consist of antitropical species (Dalebout et al. 2008).  

 Three species are known from The Bahamas: Cuvier’s beaked whale, Ziphius 

cavirostris (Cuvier 1823), which is also known as goose-beaked whale; Blainville’s 

beaked whale, Mesoplodon densirostris (Blainville 1817), which is also known as 

dense- beaked whale; and, Gervais’ beaked whales, M. europaeus (Gervais 1855), 

which is also known as Antillean beaked whale, Gulf Stream beaked whale or European 

beaked whale. These species were first recorded in The Bahamas from beach-cast 

specimens by Caldwell and Caldwell (1974), Moore (1958) and Balcomb (1981), 

respectively. There is a single record of True’s beaked whale, M. mirus (True 1913), 

from The Bahamas (Anon 1981), but this record cannot be confirmed because the 

specimen has been lost (Claridge 2006). 

 

1.2.2 General Characteristics 

 Blainville’s beaked whale characteristics have been described extensively from 

dead or live stranded individuals (e.g., Moore 1958, 1968, McCann 1974, Mead 1989). 

They have a robust, cigar-like body shape with a small dorsal fin located on the 

posterior third of the body (Mead 2002). Pitman (2002) gives 4.7 m as a maximum 
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recorded length for Blainville’s beaked whale and no significant differences in body 

length by sex is known (MacLeod 2006). 

 Dentition in ziphiids has been reduced numerically in all but one species 

(Tasmacetus sheperdi) to only one to two pairs of teeth located in the mandible 

(Heyning 1984), although vestigial teeth can be found in a few species (Mead 1989). In 

Mesoplodon there is only one pair of laterally compressed teeth which are located at 

varying positions in the mandible depending on the species (Moore 1968). At the onset 

of sexual maturity the teeth erupt from the alveoli in males only (McCann 1963, 

Besharse 1971) and are used in male-male aggression (McCann 1974, Mead et al. 1982, 

Heyning 1984).  

 Although sexual dimorphism exists in all Ziphiid species, it is most pronounced 

in Hubbs’ beaked whale (M. carlhubbsi) and Blainville’s beaked whale (M. 

densirostris) (Heyning 1984). In these species, as males mature, ossification in the 

mesorostral canal results from the expansion of the vomer, premaxilla and maxilla 

bones which eventually fuse in older males (Moore 1963, Mead 1989). This massive 

rostral bone serves to reinforce the rostrum as males engage in combat (Heyning 1984), 

and is most developed in M. densirostris in which the rostral bone has the highest 

density (5.7 g/cm
3
) of any mammalian bone tissue measured (Zotti et al. 2009).  

 Ross et al. (1988) and Jefferson et al. (2008) provide an excellent overview of 

beaked whale pigmentation patterns. Oval scars caused by cookie cutter sharks (Isistius 

sp.) often cover the body both dorsally and ventrally (McCann 1974), and Walker and 

Hansen (1999) suggest that individuals accumulated these scars with age. Scars on 

Blainville’s beaked whales remain visible for more than 10 years (McSweeney et al. 
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2007), although re-pigmenting of scars may occur in other mesoplodonts (R. Pitman, 

pers. comm. 2008). Aggressive use of the teeth in male-male combat results in extensive 

intra-specific scarring or “battle scars” on males (McCann 1974). 

 

1.2.3 Life history and behaviour 

 Life history data for ziphiids are very limited and are based primarily on data 

collected from stranded whales or from whale fisheries. Minimum age at sexual 

maturity for a female M. densirostris is reported at 9 years based on growth layer 

groups in the teeth (Ross 1979).  Perrin and Myrick (1980) counted at least 27 growth 

layer groups in the tooth cementum of a Gervais’ beaked whales (M. europaeus) which 

is the maximum age known for any mesoplodont. 

 Blainville’s beaked whales in The Bahamas have been reported in small groups 

ranging from 1 to 11 whales (median 4 whales; Claridge 2006), similar to that reported 

elsewhere (Shallenberger 1981, McSweeney et al. 2007). This species exhibits a harem-

type social organisation with a fission-fusion structure and generally low indices of 

association among adults (Claridge 2006, McSweeney et al. 2007). Group composition 

generally consists of a single adult male with several adult females and their young 

(Ritter and Brederlau 1999, Claridge 2006, McSweeney et al. 2007). Photo-

identification studies have shown long-term site fidelity in Blainville’s beaked whales 

(Claridge 2006, McSweeney et al. 2007). 
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1.2.3.1 Prey and feeding ecology 

 Foraging dives for Blainville’s beaked whales have been recorded to depths of 

1,599 m and dive times of 83 min (Baird et al. 2008). Their prey species are primarily 

mesopelagic or deep-water benthic fish and cephalopods, with cephalopods being the 

most common prey (Clarke 1996, MacLeod et al. 2003). Analyses of faecal samples of 

Blainville’s beaked whales from The Bahamas suggest that their diet is quite varied and 

that deep-water fish are an important component (Hickmott 2005, DeRuiter et al. 2007).  

 

1.2.3.2 Predation 

 Based on scarring patterns observed on adults and calves, beaked whales are 

preyed upon by large sharks, false killer whales and killer whales (McSweeney et al. 

2007). In The Bahamas, a group of pygmy killer whales was observed harassing a 

young Blainville’s beaked whale (pers. obs.). Predator avoidance may explain diel 

variation in diving behaviour with Blainville’s beaked whales in Hawaii spending more 

time at the surface at night (Baird et al. 2008), although a diel pattern was not observed 

in the Canary Islands (Arranz et al. 2012). 

 

1.2.4 Distribution and abundance 

 Blainville’s beaked whale has the widest distribution of all Mesoplodon species, 

occurring circumglobally in tropical and warm temperate waters (Mead 1989). Beaked 

whales can be found throughout varying deep-water environments but they show a 

preference for topographically complex areas such as submarine canyons, shelf edges, 

and seamounts (Whitehead et al. 1997, Waring et al. 2001, D’Amico et al. 2003, 
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MacLeod and Zuur 2005), presumably because prey is concentrated around these 

features (Hui 1985, Kenney and Winn 1987, Baumgartner 1997). A steep depth gradient 

is an important variable in predicting Blainville’s beaked whale habitat (MacLeod et al. 

2004, Claridge 2006), which may allow access for foraging in both the deep scattering 

layer and near the sea floor over small spatial scales (Arranz  et al. 2012). 

 Few estimates of beaked whale abundance at the species level are available but 

at least some species occur in small, localised populations (e.g., Gowans et al. 2000), 

and “hot spots” with higher than average densities may exist (Barlow et al. 2006). 

Using photographic mark-recapture, Gowans et al. (2000) reported a small population 

[130 (95% CI = 106-166)] of northern bottlenose whales (Hyperoodon ampullatus) 

from The Gully, Nova Scotia. All other studies to date have employed distance 

sampling methods. The highest ziphiid densities have been reported for Baird’s beaked 

whale (Berardius bairdii) for the Japanese eastern slope waters (68.1 whales/1000 km
2
, 

CV = 0.30; Miyashita 1986), while densities of Cuvier’s beaked whale (Ziphius 

cavirostris) have been found to be an order of magnitude lower (e.g., 6.2 whales/1000 

km
2
, CV = 1.43; Barlow 2006).  

 Densities of mesoplodont beaked whales appear to be even lower, although large 

variation in densities supports the existence of “hotspots” in some areas (Barlow et al. 

2006). Barlow (2006) found very low density of Blainville’s beaked whales around 

Hawaii (1.17 whales/1000 km
2
, CV = 1.25). However, using acoustic detections from 

the fixed hydrophone array and distance sampling methods, Marques et al. (2009) 

estimated the density of Blainville’s beaked whales on the AUTEC range averaged over 
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a 6-day period between 22.5 and 25.3 whales/1000 km
2
 (depending on assumptions 

used, with 95% confidence intervals 15.4 – 32.9 and 17.3 – 36.9). 

 

1.2.5 Population structure and dynamics 

 To date, little work has been done on beaked whale population structuring, but 

recent studies have presented some interesting results. Morin et al. (2012) found that M. 

densirostris haplotypes were divided into two clades, representing the western Atlantic 

and the Pacific, while for Cuvier’s beaked whales, three major clades were noted. No 

haplotypes were shared between ocean basins for either species. Dalebout et al. (2005) 

described a high degree of isolation and low maternal gene flow among regional and 

oceanic populations of Cuvier’s beaked whales. Similarly, studies of genetic variability 

and residency patterns (using photo-identification techniques) have identified separate 

stocks of northern bottlenose whales in the north-western Atlantic (Dalebout et al. 

2001). However in the Morin et al. (2012) study, Ziphius samples from the Atlantic 

were found in all three clades identified and from the Pacific in two of the clades. This 

complex pattern in Ziphius suggests either multiple inter-ocean migration events in 

recent evolutionary history, or possibly current gene flow between ocean basins (Morin 

et al. 2012).  

 Population trends for beaked whale species have remained largely unknown 

because of the difficulty in obtaining precise estimates of abundance (Read and Wade 

2000, Taylor et al. 2007). Probabilities of detecting beaked whales visually during ship-

based or aerial surveys are low; resulting in high coefficients of variation in abundance 

estimates which can be greater than 100% (e.g., Barlow 2006). With this lack of 
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precision, the only way to detect a change in abundance for beaked whales is through 

repeated annual surveys over long periods of time (Taylor et al. 2007, Jewell et al. 

2012). One such study using ship-based visual survey data collected over 18 years, 

Moore and Barlow (2013) showed a decline in Ziphius and Mesoplodon beaked whale 

abundance off the west coast of the United States, including the area where the US 

Navy operates an underwater testing range. Using photographic mark-recapture 

approaches, Whitehead and Wimmer (2005) showed no significant trend in abundance 

for northern bottlenose whales inhabiting The Gully off the Scotian Shelf from 1988 – 

2003. However, Whitehead (2013) recently showed a 21% per year increase in sighting 

rates for Sowerby’s beaked whale (M. bidens) in The Gully and adjacent submarine 

canyons over a longer time period (23 years), which may be the result of reduced 

anthropogenic disturbance since this area was designated a marine protected area in 

2004. 

 

1.2.6 Conservation Status 

 The conservation status of Blainville’s beaked whale is largely unknown and it 

is listed in the IUCN Red List of Threatened Species as data deficient (IUCN 2012). As 

with almost all cetaceans, these species are also listed under CITES Appendix II, 

signifying that they may become threatened with extinction unless trade is closely 

controlled (CITES 2012). One of the major problems that marine mammals face is 

habitat loss and alteration. Harwood (2001) predicts that marine mammal habitats are 

likely to continue to deteriorate as a result of commercial fishing, pollution, disturbance, 

and increased risks of mortality from pathogens and biotoxins. In particular, beaked 
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whales face high potential risks with low levels of information available to monitor 

trends with precision (Taylor et al. 2007). 

 While there was no commercial fishery for mesoplodont whales, they are 

occasionally taken in other fisheries, e.g. Japan (Mead 1989) and ziphiids are taken in a 

small whale fishery in St. Vincent in Lesser Antilles (IWC 1989). Read and Wade 

(2000) reported that bycatch in pelagic driftnet fisheries exceeded the removal limits set 

under the US Marine Mammal Protection Act for Mesoplodon species in the western 

North Atlantic and for mesoplodonts in the North Pacific. However, total fishery-related 

mortality cannot be estimated for each species of Mesoplodon because of the 

uncertainty in species identification by fishery observers (Lewison et al. 2004). 

 From 1950 to 2004, after modern high-powered mid-frequency active sonar was 

employed, D’Amico et al. (2009) found 126 mass strandings of beaked whales globally. 

Strandings were significantly correlated with navy exercises in the Mediterranean and 

Caribbean Seas (Filadelfo et al. 2009). Assessing the impacts of navy exercises of 

beaked whales at the population level is greatly needed and, as such, is one of the main 

focuses of this thesis.  

 

1.3 Thesis Overview 

1.3.1 Study area 

 The Great Bahama Canyon is located in the northern Bahamas (25.5N, 77.3W; 

Figure 1.1). The canyon stretches over 270 km in length and 40 km in width, 

encompasses an area of approximately 29,000 km
2
, and reaches depths of almost 5 km 
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(Sealey 1994). There are two branches which merge to form the canyon itself: 

Northwest Providence Channel and the Tongue of the Ocean. Northwest Providence 

Channel is a major international shipping channel providing access for vessels transiting 

between the northwest Atlantic Ocean and the Caribbean Sea to the southeast United 

States and Gulf of Mexico. In contrast, the Tongue of the Ocean (a dead-end for large 

draft vessels) has very little commercial shipping traffic, and for this reason was 

selected as the site of the US Navy’s Andros-AUTEC Operating Areas which began 

operations in 1966. The majority of acoustic testing in the Tongue of the Ocean takes 

place on the weapons ranges located just offshore from the main base at the Atlantic 

Underwater Test and Evaluation Center (AUTEC) on Andros Island. 
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Figure 1.1. The Great Bahama Canyon is the most prominent oceanographic feature in 

the northern Bahamas. It consists of two branches: Northwest Providence Channel and 

Tongue of the Ocean. Data sources are: for bathymetry, General Bathymetric Chart of 

the Oceans (GEBCO 2008); and for shoreline, GSHHS (Global Self-consistent, 

Hierarchical, High-resolution Shoreline; NOAA National Geophysical Data Center) 
with 20X vertical exaggeration. 
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 The canyon is characterised by U-shaped troughs with strong turbidity currents 

(Schwab et al. 1989, Sealey 1994) and is rich in topographic complexity with numerous 

V-shaped submarine canyons and gullies eroded by bank-derived sediment cascading 

down the nearly vertical marginal escarpment (Mullins 1978, Mullins et al. 1979). 

Northwest Providence Channel is one of seven main passages between the Atlantic 

Ocean and the Caribbean Sea (Johns et al. 2002) and contributes about 1.2 Sv to the 

Florida Current transport (Leeman et al. 1995). This westward flow is influenced by the 

warm Antilles current and the cold Deep Western Boundary Current. The Tongue of the 

Ocean is characterized by net northwestward flow, originating from the area to the south 

and from passages between the eastern islands of The Bahamas. Satellite data show that 

productivity levels in this area are typical of subtropical oligotrophic environments, 

ranging in chlorophyll a concentrations from 0.05 to 7.0 mg/m
3
 (SeaWiFS data from 

http://oceancolor.gfsc.nasa.gov). 

 

1.3.2 Approach 

 Using existing and new photo-identification data and a Bayesian approach to 

mark-recapture model fitting, I investigated the population ecology of two localised 

populations of Blainville’s beaked whale in the Great Bahama Canyon. Data were 

collected during a 15-year field study (1997 – 2011) conducted off southwest Abaco 

Island and a 6-year study (2005 – 2010) at the US Navy’s Atlantic Underwater Test and 

Evaluation Center (AUTEC) in the Tongue of the Ocean. Combined, these efforts have 

resulted in an unprecedented dataset for this species.  

http://oceancolor.gfsc.nasa.gov/
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 In Chapter 2, I fit mark-recapture models to the photo-identification data at 

AUTEC and Abaco to estimate and compare key aspects of the population 

demographics of Blainville’s beaked whale on and off a navy range. This work provides 

the first estimate of abundance for mesoplodont beaked whales in an area where tactical 

sonars are frequently used, and are reported relative to a control site (Abaco) where 

sonar is not used regularly. Study areas of the same size are used to facilitate a 

comparison of the rates of turnover of whales in each area which is considered an 

important factor to assessing disturbance. Here turnover is inferred from annual rates of 

temporary emigration and re-immigration and not from turnover in the population 

during the study resulting from birth and immigration (recruitment), death and 

permanent emigration.  

 In Chapter 3, a slightly more complex mark-recapture model is fitted to the full 

time series of photo-identification data available for Abaco, a time period which 

includes before and after the March 2000 stranding. Apparent survival and recruitment 

are estimated and trends in population parameters and abundance assessed to determine 

potential population level effects of the atypical stranding event. To address individual 

heterogeneity, in Chapter 4 I explore characteristics that can be used to assign age class 

and sex to individuals. Assignments are then made to each individual known from high 

quality identifications, including all individuals in the mark-recapture sample used in 

Chapter 3, and the age structure of the population is described. Age at sexual maturity is 

estimated by monitoring some individuals born during the study as they matured. In 

Chapter 5, I examine age- and sex-specific heterogeneity in the population 

demographics of the Abaco population by fitting a mark-recapture model which is 

stratified by age class and sex. Differences in probabilities of capture and survival are 
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evident, and model fit is improved. Finally, in Chapter 6 an account is given of the 

successful re-floating of two whales that live-stranded during the March 2000 stranding. 
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CHAPTER 2 

 

COMPARING RATES OF TURNOVER, AGE COMPOSITION AND ABUNDANCE OF 

BLAINVILLE’S BEAKED WHALES (MESOPLODON DENSIROSTRIS) ON AND OFF 

A NAVY RANGE IN THE BAHAMAS 

 

 

2.1 Introduction 

 Quantifying population demographics is necessary to diagnose the status of 

wildlife populations and to support effective conservation and management. However, 

monitoring cetaceans is difficult because complete enumeration of all individuals in a 

population or a sampling area is rarely possible. In many studies, experimental design is 

often limited by logistics and cost, resulting in temporal or geographic sampling 

constraints, further limiting power to assess population status. So comparing 

populations exposed to different natural or anthropogenic pressures can provide a 

valuable context in which to interpret their status. 

 Concerns about the effects of environmental degradation on marine mammals 

have become increasingly focussed on disturbances from anthropogenic noise to which 

some cetaceans are especially vulnerable (Richardson et al. 1995). In particular, atypical 

mass strandings and behavioural responses of beaked whales of the genera Ziphius and 
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Mesoplodon have been correlated with naval sonar exercises (e.g., Frantzis 1998, Evans 

and England 2001, Jepson et al. 2003, Peterson 2003, McCarthy et al. 2011, Tyack et 

al. 2011). However, it is not clear if these responses lead to population-level impacts 

(Moore and Barlow 2013); an issue that requires a better understanding of beaked whale 

population demographics and status (Cox et al. 2006). Visual field observations of 

beaked whales are difficult because most species exhibit cryptic surface behaviour, 

short surfacing intervals, and long dive durations (Barlow 1999, Tyack et al. 2006). 

This limits the accuracy and precision of abundance estimates based on distance 

sampling from line transect surveys (Barlow 1999), although mark-recapture sampling 

methods may be a better approach when combined with knowledge of their population 

demographics and structuring (Barlow and Gisiner 2006).  

 Mark-recapture methods are commonly used in population ecology. Individuals 

within a target population are captured, marked and then released, and recaptures of the 

marked individuals are recorded in subsequent sampling occasions. Using statistical 

modelling, abundance can then be estimated based on the probability of a marked 

individual being re-captured (Lebreton et al. 1992). However, for most cetacean 

species, capturing and marking is not feasible and an alternative approach is to 

“capture” individuals photographically and use naturally-occurring features (e.g., scars) 

as their marks (Hammond 1986, 1990; Hammond et al. 1990, Hammond 2009, 

Hammond 2010). Photographic mark-recapture methods have been used successfully to 

quantify the population size and demographics of multiple cetacean species (e.g., 

Whitehead et al. 1997, Wilson et al. 1999, Mizroch et al. 2004, Ramp et al. 2006, 

Durban et al. 2010). Additionally, photographic methods can be used to estimate rates 

of individual movement or turnover, which is an essential component of understanding 
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factors contributing to changes in abundance over time (e.g., Whitehead 1990, Durban 

et al. 2000, Matkin et al. 2012). 

 Despite being difficult to find at sea, some species of beaked whale, such as 

Blainville’s beaked whale (Mesoplodon densirostris) can potentially be good candidates 

for photographic mark-recapture studies. They possess individually distinctive natural 

markings including a variety of mark types caused by scars from the bites of cookie 

cutter sharks (Isistius sp.) as well as intra-specific scarring (McCann 1974). These scars 

are long-lasting, at least in some beaked whale species (e.g., Claridge 2006, 

McSweeney et al. 2007). Despite the utility of this approach, photographic mark-

recapture methods have been used to estimate abundance for only one species of beaked 

whale, the northern bottlenose whale, Hyperoodon ampullatus (Whitehead et al. 1997, 

Gowans et al. 2000, Whitehead and Wimmer 2005). There is a need for similar studies 

to be undertaken for other beaked whale species particularly in areas where beaked 

whales are exposed to anthropogenic noise, such as on navy ranges (Barlow and Gisiner 

2006). 

 Blainville’s beaked whales regularly use the waters at the US Navy’s Atlantic 

Undersea Test and Evaluation Center (AUTEC) in The Bahamas (DiMarzio et al. 

2008), where mid-frequency active sonars are frequently used during fleet readiness 

training. It has recently been documented that Blainville’s beaked whales will cease 

foraging and move tens of kilometres away from AUTEC’s Weapons Range during 

multi-ship sonar exercises, returning days later when the testing has ceased (McCarthy 

et al. 2011, Tyack et al. 2011). It is unknown whether these shorter-term movements are 
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mirrored by longer-term changes in residency or to what extent these movements affect 

the population demographics.  

 In this study, mark-recapture models were fitted to photo-identification data to 

estimate turnover rates (emigration and re-immigration, e.g., Whitehead 1990, Matkin et 

al. 2012) and abundance of Blainville’s beaked whales at the US Navy’s AUTEC range 

and a control area nearby, but off the range. Study sites of similar size (300 km
2
) were 

selected in each location and the same 8-month annual sampling intervals from 2005 – 

2010 were used, so that rates of turnover at the two study sites could be directly 

compared. Estimates of the abundance of whales using each study area were also 

compared, providing the first mark-recapture estimate of abundance for beaked whales 

on a Navy range where sonar is regularly used. The specific objectives of this study 

were: 

(1) To estimate turnover rates of Blainville’s beaked whales at two separate 

localities within the northern Bahamas: a control site (Abaco) where whales are 

not exposed to anthropogenic noise pollution from navy sonar exercises; and 

within a navy range (AUTEC) where whales are regularly exposed to navy 

sonars.  

(2) To estimate average annual abundance of Blainville’s beaked whales at Abaco 

and AUTEC.  

(3) To compare age composition of Blainville’s beaked whales between sites (e.g. 

proportion of adult male, adult female, immature, and calf).  
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2.2 Methods 

2.2.1 Study area 

 Field work was conducted in two discrete study sites approximately 170 km 

apart in The Bahamas (one off the southwest coast of Abaco Island, and one at AUTEC 

off the eastern side of Andros Island; Figure 2.1a). Areas of comparable size 

(approximately 300 km
2
), encompassing the majority of the available photo-

identification data, were selected so that rates of turnover could be quantitatively 

compared. At Abaco, the study area was bordered on one side by a deep water contour 

in order to exclude shallow (<200 m), unsuitable beaked whale habitat (Figure 2.1b; 

Tyack et al. 2006). At AUTEC, the study area was a rectangular swath of deep water 

that is considered suitable beaked whale habitat (Figure 2.1c).  

 

2.2.2 Data collection 

 Surveys for beaked whale groups were conducted from a wide variety of ship 

and boat platforms, ranging from 6 to 83 m in length. However, once a group was 

sighted, close approaches were made using small vessels (<9 m) only. At AUTEC, 

searches were assisted by acoustic detections, using a network of bottom-mounted 

hydrophones to detect the echolocation clicks of beaked whales in real time (Moretti et 

al. 2006), and the vessel was often directed to the area of vocalising whales. When 

approaching whales, the vessel was manoeuvred alongside the group so that the camera 

was perpendicular to the animals when possible. Nikon Digital SLR cameras were used 

with either a fixed 300 mm F4 lens or 80-200 mm F2.8 zoom lens and images were 

stored at a resolution of at least 6 megapixels. Photographs were taken of the entire 
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length of the animal as it surfaced: the focal area for age class assessment was the head, 

and the area immediately surrounding the dorsal fin was primarily used for individual 

identifications (see below). When possible, photographs were taken of both the right 

and left sides of all individuals within a group. 

 

Figure 2.1. (a) Map of The Bahamas archipelago showing the two study areas: (b) 

Abaco and (c) AUTEC. The 300 km
2
 area selected at both study sites is marked by a 

solid polygon; solid circles represent the locations of encounters with Blainville’s 

beaked whales from March through October, 2005 – 2010; vessel survey tracks are 

indicated by the grey lines and the 1,000 m isobaths by a dashed black line. In (c), the 

outer boundary of the hydrophone array at AUTEC is shown (light grey shaded area).  
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2.2.3 Photographic processing 

 Individual beaked whales were identified using the unique pattern of scarring on 

the body and nicks in the dorsal fin or near the base of the fin. McSweeney et al. (2007) 

found that these marks are long-lasting on M. densirostris in Hawaii. Longevity in 

marks was also observed for this species in The Bahamas (Figure 2.2). 

 

Figure 2.2. Photo-identification images of Md091, an adult female Blainville’s beaked 

whale from the Abaco study area. These photographs were taken 10 years apart 

demonstrating that the longevity of natural markings in this species is appropriate for 

this six-year study. Oval marks are scars from bites attributed to cookie cutter sharks 

(Isistius sp.).  

 

 Identification photographs were assigned a quality grade (Q) ranging from 0 to 3 

(3 being the highest quality photograph) based on the image size, focus, lighting, angle, 

and exposure of the photograph (Figure 2.3). Only high quality images (Q > 1) were 

used in subsequent analyses to prevent misidentifications. A rectangular area framing 

the dorsal fin was defined as the “ID area”. Images were each sized by cropping 

photographs to the measure of one dorsal fin base-width in all directions from the centre 

of the fin base. Additionally, individuals were assessed for presence or absence of 

unique markings, including any nicks or notches, on the trailing edge, leading edge or at 

base of dorsal fin (within the ID area). This was done for both sides of every animal and 

1998 2008
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all identification photographs were pooled for the same individual, thereby increasing 

the number available for mark-recapture analysis. Only individuals with at least one 

nick were considered reliably marked or distinctive enough to include in mark-recapture 

analyses to ensure that all marks were unique. 

 Field efforts at AUTEC occurred between March and October of each year, 

while at Abaco photo-identification data was conducted year-round. To ensure a 

consistent timeframe for comparing turnover and abundance, the Abaco data were 

limited to only those collected from March to October. However, information was used 

from “out-of-sample re-sightings” (Fearnbach et al. 2012), additional sightings outside 

the annual sampling intervals, the study period, or spatially restricted study areas, to 

inform about survival in years when an animal was known to be subsequently alive but 

not seen in the previous interval.
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Figure 2.3. Four photographs of the same whale, Md538, but of varying image quality (Q), demonstrating how photographs were graded 

from very poor quality (0, on far left) to excellent quality (3, on far right). Only images with quality 2 and 3 were included in the analyses. 

The box shown in the Quality 3 image represents the “ID area”, inside which the presence or absence of marks was noted.  

 

Figure 2.4. High quality photographs of four different whales, ranging from less distinctive (a) to very distinctive (d). While only Md517 

(d) was included in the mark-recapture analysis (because it has a nick), all four individuals could readily be distinguished within an 

encounter-day by using all marks types including lightly pigmented marks (a), re-pigmented Isistius sp. scars (b), and linear scars (c). 

Quality 0 Quality 1 Quality 2 Quality 3

(a) (b) (c) (d)Md115 Md515Md305 Md517

Increasing distinctiveness
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2.2.3.1 Determining age composition 

 The final step in the photographic data processing was to assign a life history 

category to each individual based on its age class and, when known, sex. This was 

necessary for two reasons: (1) to determine if the age composition was the same in both 

areas to address bias when comparing movement patterns which may differ by age class 

and/or sex (e.g., Wimmer and Whitehead 2004) and (2) to exclude younger, dependent 

individuals (calves) from the sampling because their captures were not independent 

from their mother’s capture. Claridge (2006) described methods for assigning age class 

and sex to Blainville’s beaked whales based on relative body size, extent of scarring, 

sexual dimorphism (abruptly stepped mandibles in sub-adult and adult males), 

secondary sexual characteristics (erupted teeth in adult males) and close association 

with calves for adult females. Longitudinal monitoring of known individuals from 

around the time of birth through maturation has provided validation of this approach 

and has allowed tentative ages to now be assigned to each class (see Chapter 4 for 

details).  

 Using high quality photographs, age class and, where possible, sex was assigned 

to each individual documented during March – October within each 300 km
2
 study area. 

The presence or absence of characteristics used for determining age class and sex was 

examined to determine the level of certainty (C) in designating an age class and sex, 

ranging from 0 (not certain) to 3 (extremely certain). Only individuals with C > 1 were 

included in the age composition analyses. Both distinctive and non-distinctive 

individuals, including calves, were included so that the age composition for each area 

could be completely described. To do this, it was assumed that all individuals that were 

documented in high quality photographs (Q > 1) from a single encounter-day could be 
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readily distinguished, regardless of the presence of nicks. This was achievable because 

(1) group sizes are typically small (median 4 whales, range 1 – 11; Claridge 2006) and 

not many individuals were photographed on any one day and (2) all types of marks 

could be used to distinguish individuals including those that were not necessarily long-

lasting, including pigmentation patterns, re-pigmented Isistius sp. scars, and linear scars 

(Figure 2.4). Individuals were separated into four different categories of age / sex class: 

adult female, adult male, sub-adult (sub-adult male, sub-adult female and sub-adult of 

unknown sex), and dependent calf.  

 These data were then used in several different ways with two separate goals. The 

first of these was to compare the age structure between the two study areas. To do this 

the encounter-day data were reviewed to tally the number of individuals represented by 

each age / sex class for each of the six years. Here it was further assumed that all 

individuals documented in high quality photographs could be distinguish within the 

same year. If an individual’s class changed during the year (e.g., a dependent calf 

separated from its mother), it was assigned to the class it was first seen in that year but 

its status was updated the following year. The mean proportion represented by each 

class by year was then calculated and proportions were compared between study areas.  

The second goal was to compare the proportion of dependent calves to non-

calves between areas. To do this, the total number of individuals documented in each 

class during the study was tallied. If an individual’s class changed during the study it 

was assigned the class when first seen. The number of calves was then taken as the 

proportion of the total number of individuals documented and Bailey’s test for 
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differences in proportions was used to compare the proportions of calves to the totals in 

both areas (Bailey 1959): 
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and a1 = the number of calves at Abaco, a2 = the number of calves at AUTEC, n1 = the 

total number of individuals identified at Abaco, and n2 = the total number of individuals 

identified at AUTEC. 

 

2.2.4 Mark-recapture analysis  

 Mark-recapture models were fitted to photographic identification data from each 

area separately. For each area, a matrix Y was constructed of individual identification 

histories with elements yit of values 1 or 0 depending on whether or not each individual i 

= 1,…, n was identified during each of t = t1i,…, T = 6 annual sampling intervals, 

following the interval of first identification for each whale t1i. These binary 

observations yit were modelled as conditional on annual probabilities of capture (π), 

given that the whale was alive and present in the study area, and was thus available for 

capture. Notably, whales that were not seen in every year but were known to be alive, 

and may have temporarily emigrated beyond the bounds of these restricted study areas, 
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had to be accounted for. Therefore, a mark-recapture approach that parameterized 

annual probabilities of emigration (λ) and re-immigration back into the study area (κ) in 

addition to survival (φ) was adopted (Whitehead 1990, Matkin et al. 2012). This is 

equivalent to allowing for temporary emigration to an unobservable state (e.g., Kendall 

and Nichols 2002, Schofield et al. 2009). Survival here represents “apparent survival”, 

which accommodates both death and any permanent emigration from the study area. 

The standard Cormack Jolly-Seber (CJS) model (Lebreton et al. 1992) with capture 

probability dependent only on apparent survival was reproduced by removing the 

emigration λ and re-immigration κ terms from the model (e.g., Whitehead 1990).  

 An individual state-space formulation of the model was adopted (e.g., Schofield 

et al. 2009) to allow the inclusion of individual covariates to facilitate model fitting. 

Specifically, binary covariates were incorporated for survival status (alive or not), 

which were known for years between repeated sightings and from out-of-sample re-

sightings, and these data were inputted into a separate binary matrix X. When the status 

of a whale was unknown following the last capture, it was treated as missing data to be 

estimated. Similarly, the emigration /re-immigration status (available in the study area 

or not) was known, and entered as a binary covariate, when the whale was actually 

observed (Y=1), but was treated as missing data in years when the whale was not 

captured (e.g., Schofield et al. 2009). 

 

2.2.4.1 Priors 

 Rather than assuming a time-invariant specification for the survival and 

movement parameters (e.g., Whitehead 1990), a flexible hierarchical Bayesian 
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formulation was adopted with each annual probability specified as a function of overall 

mean (µ) and additive annual additive effect, bt (following Matkin et al. 2012): 

 

logit(φt, λt, κt, πt) = logit(µ
φ,λ,κ,π

) + bt
 φ,λ,κ,π

 

bt
 φ,λ,κ,π

 ~ N(0, σ
 φ,λ,κ,π

) 

 

where logit(a) = log(a/(1-a)). Uniform(0,1) prior distributions were placed on each of 

the four mean probabilities µ
φ,λ,κ,π

 and Uniform(0,20) priors were adopted for the 

standard deviations σ
 φ,λ,κ,π

 for the distribution of annual effects, to allow annual 

departures from the mean to emerge if they were supported by the data. This 

hierarchical formulation therefore allowed for “borrowing strength” across years: 

estimates from sparse data years were smoothed towards the overall mean and annual 

departures were detected when sufficient data existed to support a difference from the 

mean (e.g. Fearnbach et al. 2012).  

 In addition to parameters of the mark-recapture model, derived parameters 

related to abundance were also estimated. Specifically, estimates of capture probability 

πt were used to derive estimates of distinctive animal abundance, Nt, using the study 

area during each annual interval. These parameters were linked to the observed data by 

specifying the number of individuals actually observed in the study area each year, Ot = 

∑y1:n,t, as a binomial sample from the abundance Nt with the binomial proportion given 

by the estimated πt. As with the other parameters, a hierarchical prior was adopted to 

smooth abundance estimates across years: 
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log(Nt) = log(µ
N
) + bt

 N 

bt
 N

 ~ N(0, σ
 N

) 

 

A Uniform (min[Ot],100) prior was set for the average annual abundance, µ
N
, with the 

lower boundary set as the minimum number of distinctive whales that were actually 

observed in any year. Annual effects were drawn from a Normalized prior with mean 

zero and standard deviation σ
 N 

~ Uniform(0,20). 

 To produce estimates of the abundance of all whales using the study area in each 

interval, At, annual estimates of abundance for distinctive whales (Nt) were rescaled to 

include non-distinctive individuals, including calves. Using methods described by 

Durban et al. (2010), the distinctive proportion of the population in each year, mt, were 

estimated as the binomial proportion given by the number of whales identified that were 

judged to be distinctive relative to all whales that could be distinguished in high quality 

photographs (Q > 1) during each encounter-day. The proportion therefore represented 

the overall average across days within each year. The proportion of the population that 

was distinctive, mt, was assigned the same hierarchical prior structure to borrow 

strength across years: 

 

logit(mt) = logit(µ
m
) + bt

 m
 

bt
 m

 ~ N(0, σ
 m

) 
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with a flat Uniform(0,1) prior on the average distinctiveness proportion, µ
m
, and a 

Uniform(0,20) prior on the standard deviation of annual effects, σ
 N

. The overall annual 

abundance, At, was then defined as Nt / mt.  

 

2.2.4.2 Inference and model fitting 

 WinBUGS software (Lunn et al. 2000) was used for parameter estimation, 

drawing upon three Markov Chain Monte Carlo (MCMC) sequences from the posterior 

distribution of each model parameter. Inference was based on 60,000 iterations, after 

discarding an initial burn-in of 20,000 iterations for each chain, using the method of 

Brooks and Gelman (1998) to determine convergence of the multiple chains. Summary 

statistics for the posterior distributions were then estimated from the sampled values.  

 To assess the degree of difference between the estimated posterior distributions 

of parameters measured at Abaco and AUTEC, the model was fitted to both area 

datasets using the same MCMC simulation and the proportion of the post burn-in 

MCMC values for which the parameter (e.g. abundance At) for Abaco exceeded that for 

AUTEC was compared. Over the full MCMC sequence this long-run proportion 

equated to the probability p that the parameter estimates from the two areas were 

different, while accounting for the full uncertainty encompassed by the posterior 

distribution for each estimate. If the two distributions completely overlapped (i.e. there 

was no difference in a parameter estimate between areas), then p would equal 0.50. The 

percentage of iterations where the parameter for Abaco is greater than that for AUTEC 

estimates the probability that the true difference between the areas is greater than zero. 
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This is similar to a two-tailed test, and values close to one mean that Abaco’s parameter 

is greater than that of AUTEC, and vice-versa for values close to zero. 

 Model selection was accomplished by comparing the fit of the re-immigration 

model to a reduced-parameter CJS model using a minimum posterior predictive loss 

approach (Gelfand and Ghosh 1998, Durban et al. 2010, Matkin et al. 2012, Fearnbach 

et al. 2012). The same MCMC simulation was used to generate predictive binary 

observations from the posterior distribution of the fitted model parameters to compare 

the competing models. For each model, a new set of data (Y
new

) with the same 

dimensions as the observed data (i in 1, …n and t in 1, …T) was predicted by generating 

samples from the posterior distributions of the fitted model parameters. The loss 

function then measured the discrepancy between the observed data, Y, and the predicted 

data, Y
new

 and used the sum of the predicted errors (PE): 

 

PE = ∑∑   
  
        

  
 
2

T

 =1

 

 =1

 

 

The Mean Squared Predictive Error (MSPE) was then used as a measure of the 

discrepancy between the observed and predicted data. The model with the smallest 

MSPE was considered to best predict a replicate set of the observed data and was thus 

selected as the model which best fit the data.  

 To ensure that the model selected was a reliable fit to the observed data, a 

posterior predictive approach for goodness-of-fit checking was adopted (Gelman et al. 
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1996). A simulation model was run by drawing 60,000 replicates (20,000 from each 

chain) from the posterior predictive distribution, πt, which was based on posterior 

estimates of model parameters. A discrepancy measure, D, was then calculated for both 

the simulated Y
new

 and observed data Y (as described by Durban and Elston 2005):  

 

D( ) = ∑∑        π   

T

 =1

 

 =1

 

D(    ) = ∑∑    
       π   

T

 =1

 

 =1

 

 

The discrepancy measures themselves had posterior distributions, and so could be 

compared by estimating the exceeding tail area probability as the percentage of MCMC 

draws for which D(Y
new

) > D(Y). The result is a Bayesian (or posterior predictive) p–

value: values close to 0.5 indicate that the simulated discrepancy of the data is similar to 

what is expected from replication under the model (Gelman et al. 1996); if the model is 

a poor fit to the data, the Bayesian p–value will be close to 0 or 1 (Brooks et al. 2000). 
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2.3 Results 

2.3.1 Photo-identification Data 

 During the study period (2005 – 2010) more than twice as many vessel surveys 

for beaked whales occurred in the Abaco study site (235 surveys) than at AUTEC (102 

surveys), resulting in a larger photographic dataset at Abaco (Table 2.1). During the 

chosen sampling interval (March – October), there were a total of 34 and 20 encounter-

days at Abaco and AUTEC, respectively within each 300-km
2
 study area. Using only 

high quality photographs, at Abaco 73 whale-by-year identifications were collected and 

inputted into the Y matrix, comprising 44 distinctive individuals, excluding calves. At 

AUTEC there were 43 whale-by-year identifications which represented 29 distinctive, 

non-calf individuals. Out-of-sample re-sightings resulted in 18 and 19 additional entries 

inputted to the X matrices for Abaco and AUTEC, respectively. 
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Table 2.1. Summary of effort and photographic data collected for Blainville’s beaked 

whales from the control site (Abaco) and the US Navy’s Atlantic Test and Evaluation 

Center (AUTEC). These data were selected for use in the mark-recapture analysis 

following restrictions on annual sampling interval, size of study area, image quality and 

individual distinctiveness.  

 

Control Site 

Abaco 

Navy Range 

AUTEC 

No. vessel surveys 235 102 

No. encounter-days 34 20 

Total identifications by year 73 43 

Total individuals (including calves) 48 30 

Total non-calf individuals 44 29 

 

 At both sites, there was annual variation in the number of distinctive whales 

photo-identified (Figure 2.5), which may reflect annual variation in survey effort. In all 

years, more whales were identified each year at Abaco (median = 10 whales, range 6 – 

19) than at AUTEC (median = 5 whales, range 3 – 18). Most notable is the lack of 

photographic matches of any whales between the two areas. 
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Figure 2.5. The number of distinctive, non-calf Blainville’s beaked whales identified 

from high-quality photographs during the annual sampling interval in years 2005 – 2010 

for both study areas. 

 

 The majority of whales were only seen in one year (median = 1, maximum = 5 at 

Abaco; median = 1, maximum = 4 at AUTEC) (Figure 2.6). However, some individuals 

were seen in multiple years (15 whales at Abaco, 34% of the total; and 10 whales at 

AUTEC, 35% of the total), suggesting some level of site fidelity.  
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Figure 2.6. The number of years that individual, distinctive non-calf Blainville’s beaked 

whales were photo-identified from high quality photographs during the annual sampling 

interval in years 2005 – 2010 for each area.  

 

2.3.2 Age composition 

 Using the mean annual proportions represented by four different categories of 

age / sex classes (adult female, adult male, sub-adult, calf), an unequal proportion of 

adults to immature animals was found between the two sites with fewer sub-adults and 

calves at AUTEC (Figure 2.7; t = 3.28, df = 10, p < 0.005). However, this difference 

was primarily due to a higher proportion of adult females at the navy range (t = 4.37, df 

= 10, p < 0.001), while the proportion of males was similar at both sites (t = 0.08, df = 

10, p = 0.46). Notably, the annual mean adult female-to-calf ratio was higher at AUTEC 

(t = 2.81, df = 10, p < 0.01), yet when immature classes were compared separately 

between the two areas, although apparent, differences were not significant (sub-adults: t 
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= 1.22, df = 10, p = 0.12; calves: t = 1.11, df = 10, p = 0.15), possibly due to small 

sample sizes.  

 

 

Figure 2.7. A comparison of the mean annual proportion represented by age / sex 

classes in Abaco and AUTEC. The error bars represent standard deviations. 

 

 Despite a difference in the mean annual proportion, there was a similar number 

of adult females documented at both sites during the study, but with apparently differing 

reproductive success. Thirteen of 25 adult females were documented with 17 calves at 

Abaco (4 neonates), compared to only five of 23 adult females at AUTEC documented 

with five calves (1 neonate). However, the Bailey test found only limited support for a 

difference in the proportion of calves relative to the total number of individuals 

identified in each area [d = 1.61, n1 = 65 (Abaco), n2 = 39 (AUTEC), p < 0.10]. 
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2.3.3 Mark-recapture model results 

For both areas, model selection showed some support for use of an open 

population model with re-immigration rather than the standard CJS model. For Abaco, 

there were 30 discrepancies between 264 observed and predicted data points for the re-

immigration model, compared to 33/264 data points for the CJS model, resulting in 

MSPE values of 0.11 and 0.12, respectively. For AUTEC, there were 14/174 

discrepancies for the re-immigration model compared to 17/174 for the CJS model, 

resulting in MSPE values of 0.08 and 0.10, respectively. The Bayesian p-value to test 

model fit was close to 0.5 for both models (p = 0.58 for both areas, Figure 2.8) 

suggesting that the re-immigration model fitted both data sets adequately. 

 

  

Figure 2.8. Discrepancy plots for the re-immigration model for Abaco and AUTEC. 

Points are the 60,000 MCMC samples of a discrepancy function (D, Durban and Elston 

2005) calculated for both observed data and data simulated by the model. The diagonal 

line represents the line y = x and the posterior predictive value is the proportion of 

points that lie below the line, corresponding to Bayesian p–value statistics of 0.58 for 

both areas. 
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 Inference was therefore based on the full posterior probability distributions for 

each model parameter using the re-immigration model (Figure 2.9). Estimates of 

average annual capture probabilities were more precise for the Abaco dataset (posterior 

median µ
π

 = 0.23, 75% Highest Posterior Density Interval [HPDI] = 0.19 – 0.30) than 

the AUTEC dataset (µ
π

 = 0.25, 75% HPDI = 0.18 – 0.37), and there was no support for 

a difference between the posterior distributions (p = 0.45).  

 The probabilities of apparent survival were very similar [p = 0.50; at Abaco, µ
φ

 

= 0.86 (75% HPDI = 0.60 – 0.97); at AUTEC, µ
φ

 = 0.85 (75% HPDI = 0.59 – 0.97)]. 

The estimated annual probabilities of emigration away from the study area were also 

similar at Abaco (posterior median µ

 = 0.21, 75% HPDI = 0.09 – 0.39) and AUTEC 

(µ

 = 0.28, 75% HPDI = 0.12 – 0.50), and probability tests did not support a difference 

between areas (p = 0.43). The data provided very little information about annual re-

immigration at either site with the posterior distributions showing little deviation from 

the flat prior distributions; at Abaco, posterior median µ
κ
 = 0.48 (75% HPDI = 0.24 – 

0.74), and at AUTEC, µ
κ
 = 0.50 (75% HPDI = 0.26 – 0.75), and the probability that 

these were similar was high (p = 0.48).  
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Figure 2.9. Plots of the posterior probability distribution for annual means of (a) capture 

µ
π
, (b) apparent survival µ

φ
 (c) temporary emigration µ


 and (d) re-immigration µ

κ
. 

Dashed and solid lines represent the full posterior distributions for Abaco and AUTEC, 

respectively. The higher posterior densities shown in plots a and c suggest higher 

precision in these estimates for Abaco than AUTEC. 
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36 – 61] and for AUTEC in 2007 [posterior median µ
N
 = 35 whales (75% HPDI = 25 – 

48)]. Additionally, the proportion of the population that was estimated to be distinctive 

was substantially lower at Abaco than at AUTEC [p = 0.17; for Abaco, posterior 

median µ
m
 = 0.63 (75% HPDI = 0.58 – 0.67), for AUTEC, µ

m
 = 0.74 (75% HPDI = 0.68 

– 0.80)]. After accounting for this difference by re-scaling, probability tests revealed a 

high probability that total average annual abundance (µ
A
) at Abaco was greater than at 

AUTEC, p = 0.88. The posterior median for total average annual abundance at Abaco 

was 80 whales (75% HPDI = 63 – 99) compared to 42 whales at AUTEC (75% HPDI = 

32 – 55) (Figure 2.10). However, posterior probability distributions were skewed, and 

the modes for each area were 101 and 34 whales, respectively. The most precise 

estimates were in 2007 for both areas; for Abaco posterior median µ
A
 was 90 whales 

(75% HPDI = 69 – 117), and for AUTEC posterior median µ
A
 was 45 whales (75% 

HPDI = 33 – 64).
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Figure 2.10. Plots of the posterior probability distribution for the total average annual abundance, µ
A
, in (a) Abaco and (b) AUTEC from 

2006 – 2010.  
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 For each of the five years for which abundance estimates were derived, 

estimates of abundance for distinctive whales, Nt, was consistently higher for Abaco 

than AUTEC (Figure 2.11). This difference became even more apparent for total 

abundance, At, because the proportion of whales estimated to be distinctive was lower at 

Abaco in each year.  

 

Figure 2.11. For each area, abundance was estimated annually for distinctive whales (Nt, 

dashed lines) and then rescaled for the proportion of non-distinct individuals (mt) to 

determine the overall annual abundance (At, solid lines). Here the posterior median of 

each annual estimate is presented: distinctive and total abundance was higher for the 

Abaco study site (light grey lines) than for AUTEC (black lines). 
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2.4 Discussion  

2.4.1 Population structuring 

 Based on satellite telemetry studies (e.g., Schorr et al. 2009, Tyack et al. 2011, 

Durban unpublished data), Blainville’s beaked whale movements appear to be similar to 

those of coastal bottlenose dolphins (Scott et al. 1990) and northern bottlenose whales 

(Wimmer and Whitehead 2004), where individual movement may be on spatial scales in 

the range of tens of kilometres. In this study, no photographic matches of Blainville’s 

beaked whales were found between the two study areas, separated by 170 km, 

suggesting that regular home ranges of whales from both sites do not overlap and that 

there is population structuring of this species in the northern Bahamas.  

 Location data from satellite tags deployed on M. densirostris at AUTEC and 

Abaco provide support for limited exchange between the two areas as the tagged whales 

remained in the general area in which tagging occurred, on a time scale of up to several 

weeks (Tyack et al. 2011,  Durban unpublished data). Differences in chemical markers 

measured in skin and blubber biopsy samples taken from Blainville’s beaked whales at 

both sites provide further support that these whales are foraging in small and distinct 

localised areas over periods of months (Claridge et al. 2012). The lack of photographic 

matches as reported here suggests that this spatial separation may be evident over 

periods of years. Population structuring between the navy range and the control site 

allowed the comparison of population demographics for a subpopulation of Blainville’s 

beaked whales regularly exposed to navy sonars to a subpopulation rarely exposed. 
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2.4.2 Similar rates of turnover 

 The data were too limited to inform precisely about turnover, but annual rates of 

temporary emigration of Blainville’s beaked whales at the Navy range and the control 

site may be low. Nonetheless, estimates of apparent survival were lower than one might 

expect based solely on mortalities as compared to other cetaceans (e.g., Mizroch et al. 

2004, Ramp et al. 2006, Ford et al. 2007), suggesting some permanent emigration 

occurred, at least over the time period of this study. Future monitoring will enable better 

identification of parameters and therefore a greater understanding of movement 

processes.  

 However, estimation of these parameters was based solely on distinctively 

marked whales (likely adults), which have accumulated scars as they matured (Walker 

and Hanson 1999, Chapter 4). Analyses of age class and sex confirmed that they were 

mostly adult females, particularly at AUTEC. Therefore, the relatively low annual rates 

of movement primarily reflect site fidelity of adult females and not necessarily other age 

and sex classes. Long-term site fidelity of adult female Blainville’s beaked whales has 

been reported previously for Abaco (Claridge 2006) and Hawaii (McSweeney et al. 

2007). This study provides further evidence of adult female site fidelity near Abaco and 

at AUTEC.  

 Residency patterns can, however, vary by age class and sex (see Chapter 5, also 

Wimmer and Whitehead (2004) for northern bottlenose whales) and there may be some 

evidence of limited site fidelity by some whales in this study. The majority of whales at 

both sites were only seen in one year of the study. The mark-recapture model fitted the 

data well overall, suggesting that many of these single observations could be explained 
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by the inherent processes of capture probability and apparent survival (including 

permanent emigration). However, the model may not fit all the data well. One 

explanation is that although adult females appear resident, other age / sex classes may 

exhibit different movement patterns, at least during the duration of the study. Low 

estimates of apparent survival may suggest permanent emigration of adult males and 

young dispersers (a hypothesis examined later in Chapter 5).  

 

2.4.3 Abundance estimates for M. densirostris  

 Few estimates of beaked whale abundance at the species level are available, but 

from what is currently known, at least some species occur in small, localised 

populations (e.g., Gowans et al. 2000), and “hot spots” with higher than average 

densities may exist (Barlow et al. 2006). Using photographic mark-recapture and an 

open population model similar to this study (although not within a Bayesian 

framework), Gowans et al. (2000) reported a small population estimate [130 (95% CI = 

106-166)] for northern bottlenose whales from the Gully, Nova Scotia and noted the 

need for effective management to protect this small population from the negative 

impacts of human activities. Using visual survey data and distance sampling methods, 

the highest Ziphiid densities have been reported for Baird’s beaked whale (Berardius 

bairdii) for the Japanese eastern slope waters (68.1 whales/1000 km
2
, CV = 0.30; 

Miyashita 1986), while densities of Cuvier’s beaked whale (Ziphius cavirostris) have 

been found to be an order of magnitude lower (e.g., 6.2 whales/1000 km
2
, CV = 1.43; 

Barlow 2006). Densities of mesoplodont beaked whales appear to be even lower, 
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although large variation in densities may validate the existence of “hotspots” in some 

areas (Barlow et al. 2006).  

 In this chapter, the first estimates of abundance for Blainville’s beaked whales 

are presented both on and off a navy range using photographic mark-recapture 

approaches. Total average annual abundance was lower at Abaco than on the navy 

range, but the estimate reported here at AUTEC was higher than that made previously 

on the range by Marques et al. (2009) or elsewhere (Barlow 2006). Using acoustic 

detections from the fixed hydrophone array and distance sampling methods, Marques et 

al. (2009) estimated the density of Blainville’s beaked whales on the AUTEC range 

averaged over a 6-day period between 22.5 and 25.3 whales/1000 km
2
 (depending on 

assumptions used, with 95% confidence intervals 15.4 – 32.9 and 17.3 – 36.9). The 

density/abundance of whales estimated from a 6-day survey are expected to be lower 

than a mark-recapture average annual estimate simply because of individual movements 

in and out of the area. However, abundance/density estimates at AUTEC (and Abaco) 

appear to be much higher than Barlow (2006) found for Blainville’s beaked whales 

around Hawaii (1.17 whales/1000 km
2
, CV = 1.25) using visual survey data. Moore and 

Barlow (2013) have suggested that because navy ranges tend to be located in high-

quality beaked whale habitat because of the topography, they could actually be serving 

as population sinks, further emphasising the need for effective management in areas 

where impacts are likely to occur, such as navy ranges. 

 In this study biases in the mark-recapture estimates may have been introduced 

that should be considered, especially when making a comparison between abundance at 

AUTEC and Abaco. To address assumptions that all individuals possess unique marks 
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and that those marks are not lost, only high quality photographs of well-marked 

individuals were included here. However, it was assumed that unmarked individuals 

behaved in a similar way to marked ones which may have not been true. Furthermore, 

differences found in residency patterns by age / sex class will introduce heterogeneity of 

capture probabilities, potentially violating the assumption that the probability of capture 

is equal for all individuals in the population, including both marked (older whales) and 

unmarked (typically younger whales), and bias the estimates of abundance (Seber 

1982). This is complicated by the possibility that individuals that spend more time in the 

study area are not only more available for capture, but also may have become habituated 

to the research vessel, becoming “trap happy” and further contributing to this 

heterogeneity. Future work should attempt to minimise heterogeneity by maximising 

capture probabilities through increased sampling effort, which will allow use of more 

realistically complex models to account for individual heterogeneity (e.g., Fearnbach et 

al. 2012). 

 

2.4.4 Why lower abundance on the navy range? 

 The comparison to the Abaco site during the same time period, using the same 

size for the study areas, allowed the lower estimation of abundance for beaked whales at 

AUTEC to be placed in a local geographically relevant context. A comparison of 

average annual abundance of Blainville’s beaked whales on and off a navy range 

revealed a substantially higher abundance at the control site than on the navy range. The 

reason for this difference is unknown although some possible explanations can be 

immediately dismissed. By-catch mortality in pelagic net fisheries such as reported 
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elsewhere (e.g. Forney 2004) does not occur on or off the navy range because all 

pelagic net fisheries are illegal in The Bahamas and vessel activity is monitored closely 

on the range so illegal fishing is highly unlikely. Due to their high site fidelity and the 

lack of photographic matches of the AUTEC whales outside the Tongue of the Ocean, it 

is highly improbable that individuals are moving to areas where they would be at risk of 

incidental take in fisheries. A low human population and lack of industry at both sites 

means that ecosystem changes caused by overfishing or chemical contaminants are 

unlikely. Studies of persistent organic pollutants in M. densirostris sampled from both 

AUTEC and Abaco show levels similar to those found in undeveloped regions, such as 

the Aleutian Islands (Claridge et al. 2012). Larger-scale impacts of other anthropogenic 

activities (e.g. global climate change) are unlikely to occur at a scale that would affect 

whales residing in only one of the two areas, a distance of only 170 km.  

 However, there are two other possible explanations for the difference in 

abundance of Blainville’s beaked whales at the control site and on the navy range. The 

first is that prey availability is lower at AUTEC than at Abaco due to bio-oceanographic 

variation between the study areas. Beaked whale habitat preferences are generally 

characterised by complex bottom topography (Waring et al. 2001, D’Amico et al. 

2006), such as canyon walls which are likely to be more productive and to support 

higher prey abundance. However, Ferguson et al. (2006) provided evidence for high 

population densities in diverse habitats including abyssal plains, and suggested that 

beaked whales are not narrowly restricted to highly productive areas typical of coastal 

and upwelling areas of the continental slope. Although both sites lie within the Great 

Bahama Canyon, the fine-scale habitat of the two areas is somewhat dissimilar, which 

could result in differences in productivity, although it is unknown which area is more 
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productive. The Abaco site is located on the lee shore while the AUTEC site lies on the 

windward side of the island (Figure 1), although differences in up-welling as the result 

of land orientation have not been documented for the region, e.g., island-effects. The 

Abaco site primarily encompasses the canyon wall, whereas the AUTEC site is centred 

on the western side of the U-shaped trough which forms the Tongue of the Ocean.  

 Blainville’s beaked whales generally forage at depths in excess of 800 m 

(Johnson and Tyack 2005, Tyack et al. 2006, Baird et al. 2006, Durban unpublished 

data) where they feed primarily on mesopelagic fish and squid (MacLeod et al. 2003, 

Johnson et al. 2004). Little is known about beaked whale prey densities and 

distributions at these depths, although Hazen et al. (2011) conducted prey field mapping 

to depths of 500 m on the AUTEC range and to a much lesser extent at the Abaco site, 

and reported that prey distribution is not spatially uniform. Hazen et al. (2011) found 

the highest prey densities along the western side of the AUTEC range, the exact area 

included here in this study, suggesting this area provides good foraging habitat for 

beaked whales.  However, Hazen et al. (2011) were unable to sample prey at the depth 

that Blainville’s beaked whales forage so it remains unclear whether or not variation in 

productivity between sites influenced the substantial difference in abundance but there 

is no supporting evidence that prey availability in the western portion on the navy range 

is less than at Abaco. Prey mapping studies, at appropriate depths, could provide a 

quantitative comparison between the two sites. 

 Another possible explanation for differences in abundance of beaked whales on 

and off the navy range is that there are population-level effects of exposure to navy 

sonars. Beaked whales in both areas may be exposed to man-made noise, but the 
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acoustic environments of the two sites differ. The Abaco study area lies within 

Northwest Providence Channel, a major international shipping lane, while noise 

associated with shipping traffic at AUTEC is minimal. Aguilar de Soto et al. (2006) 

describe interruption of a foraging dive by a beaked whale when a ship passed 

overhead. In Northwest Providence Channel, shipping traffic is concentrated mid-

channel approximately 20 km outside the study area so disruption of foraging activity 

within the study area is not expected to be a common disturbance. However, an extreme 

acoustic disturbance to beaked whales has occurred in Northwest Providence Channel. 

In March 2000 an atypical stranding of 14 beaked whales was caused by an anti-

submarine warfare exercise transiting the Channel (for details, see Balcomb and 

Claridge 2001, England and Evans 2001). It is unknown to what extent the Abaco 

subpopulation was impacted, but recent analyses of abundance trends suggests the 

population in Abaco has remained stable (see Chapter 3). However, since 2000 military 

sonar has not been regularly used in Northwest Providence Channel, while sonar is 

frequently used at AUTEC. Indirect impacts associated with chronic stress from 

acoustic disturbance could be affecting reproductive success, resulting in lower 

abundance at the navy range. 

 Direct impacts of certain sonar exercises are well known (e.g., Simmonds and 

Lopez-Jurado 1991, Frantzis 1998, Balcomb and Claridge 2001, Jepson et al. 2003, Cox 

et al. 2006), but the indirect impacts such as those that may be related to chronic stress 

are more difficult to document. It has been hypothesised that long-term exposure to 

frequent intense stressors that cause behavioural responses and displace individuals 

from optimal habitat could reduce fitness via mechanisms such as decreased foraging 

efficiency, failed reproduction, increased calf mortality, immunosuppression, and 
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inhibited growth and metabolism (Curry 1999, Wright et al. 2007, Moore and Barlow 

2013). Observations of beaked whale behavioural responses to sonar exercises at 

AUTEC and apparent low reproductive rates and recruitment through births on the navy 

range present some reasons for concern about potential impacts of chronic stressors.  

 During multi-ship sonar tests at AUTEC, Blainville’s beaked whales move away 

from ships using sonar, returning to the range only when exercises cease (McCarthy et 

al. 2011, Tyack et al. 2011). Data recorded from depth-recording satellite tags on 

Blainville’s beaked whales during multi-ship exercises at AUTEC are currently being 

analysed to investigate whether foraging is disrupted (Durban, unpublished data). 

Higher energetic costs associated with displacement combined with lower energy intake 

during these navy exercises provides a possible mechanism to reduce fitness. This is of 

particular concern for lactating and pregnant females, and may result in failed 

reproduction and increased calf mortality (Wright et al. 2007). Furthermore, younger 

animals (calves and even foetuses) may be particularly vulnerable as novelty may 

induce hypothalamic-pituitary-adrenal responses which may cause permanent 

neurological alterations to their still-developing brain (Curry 1999, Wright et al. 2007). 

Photo-identification data in this study revealed an unequal proportion of adults to 

immature animals between the two study sites, with a higher female:calf ratio at 

AUTEC, suggesting a lower reproductive rate and/or calf survival at the navy range 

than the control site. Lower recruitment through births at AUTEC may provide an 

explanation as to why abundance is lower than at Abaco. 

 Although information currently available cannot provide a quantitative answer 

to whether frequent sonar use at AUTEC is causing stress to resident beaked whales, 
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this is a hypothesis that is being tested. Studies underway include comparative 

measurements of individual pregnancy and stress hormone levels in whales at AUTEC 

and Abaco (following methods developed by Rolland et al. 2005, Hunt et al. 2006, 

Kellar et al. 2006, 2009) which may provide a context for interpreting low recruitment 

at AUTEC. Results of the depth-recording satellite tags deployed on whales displaced 

during sonar exercises are key to investigating potential changes in foraging behaviour. 

Although not currently underway, prey sampling to assess potential foraging efficiency 

of displaced whales would also be valuable. Photo-identification surveys should be 

continued with sampling intensified to monitor the population demographics at 

AUTEC. The outcome of these studies is a critical component to understanding if there 

are population-level effects of frequent exposure to navy sonar. 

 

2.4.5 Conclusions 

 The lack of photographic matches between the selected control site off Abaco 

Island and the navy range at AUTEC suggests that population structuring of Blainville’s 

beaked whales is a feature of the northern Bahamas. Including Abaco as a control site 

and comparing aspects of the population demographics between these two areas was 

thus a robust and effective experimental design. Rates of estimated turnover were 

similar at both sites with possibly low rates of temporary emigration; however, results 

were based only on distinctive whales, which were mostly adult females, suggesting 

that high site fidelity of adult females on a relatively fine scale may be a key feature of 

the population ecology of this species (e.g., Baird et al. 2009).  
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 Average annual abundance of Blainville’s beaked whales was lower on a navy 

range where mid-frequency active sonars are used regularly when compared to a control 

site with limited sonar use. Of particular concern is that, despite a similar number of 

adult females at both sites, a higher female:calf ratio was found on the navy range. 

Combined, these results suggest lower recruitment through births at AUTEC than at the 

control site contributing to the lower overall abundance. Although there may be other 

unknown differences between the sites, lower reproductive rates (or calf survival) may 

be attributed to exposure of adult females to stressors associated with frequent and 

repeated use of navy sonars at AUTEC. As such, this work may provide preliminary 

evidence of population level effects of the regular use of navy sonars on Blainville’s 

beaked whales in The Bahamas – a hypothesis that should be tested further. 
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CHAPTER 3 

 

ABUNDANCE AND SURVIVAL TRENDS OF BLAINVILLE’S BEAKED WHALES 

(MESOPLODON DENSIROSTRIS) SURROUNDING AN ATYPICAL STRANDING IN 

THE BAHAMAS 

 

 

3.1 Introduction 

Impacts of human activities on wildlife can range from minor disturbance to 

direct mortalities but evaluating the population consequences of these effects, even 

when direct, can be one of the most difficult challenges facing wildlife conservationists 

(Karanth and Nichols 1998, Blaustein and Kiesecker 2002, Wilson 2003). This is 

particularly true for marine mammal species where baseline data on population 

dynamics are often lacking and the statistical power to detect trends in abundance is 

limited (Taylor et al. 2007, Jewell et al. 2012). Estimates of abundance and trends are 

constrained by uncertainty over population definition (e.g., Fearnbach et al. 2012), 

heterogeneous capture probabilities (Corkrey et al. 2008), and sparse data (Lonegan et 

al. 2007). 

 Among the most difficult marine mammals to study are the beaked whales (Family 

Ziphiidae). This is primarily due to their diving behaviour; foraging dives are long in 

duration yet surfacing intervals are extremely short, limiting their availability for 
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detection while at the surface (Barlow 1999, Tyack et al. 2005, Baird et al. 2006). For 

this reason, probabilities of detecting beaked whales visually during ship-based or aerial 

surveys are low, resulting in high coefficients of variation in abundance estimates which 

can be greater than 100% (e.g., Barlow 2006). With this lack of precision, the only way 

to detect a change in abundance for beaked whales is through repeated annual surveys 

over long periods of time (Taylor et al. 2007, Jewell et al. 2012). Moore and Barlow 

(2013) recently reported on a decline in beaked whale abundance off the west coast of 

the United States using ship-based visual survey data collected over 18 years. 

Whitehead (2013) recently showed a 21% per year increase in sighting rates for 

Sowerby’s beaked whale (M. bidens) in The Gully and adjacent submarine canyons off 

the Scotian Shelf over a longer time period (23 years), which may be the result of a 

reduction in anthropogenic disturbance since this area was been designated a marine 

protected area in 2004. However, the difficulties and cost of collecting multi-year time 

series make this approach generally impractical. The use of passive acoustic methods 

for estimating abundance of beaked whales has proven promising (Marques et al. 2009) 

but, as yet, trends in abundance have not been reported using this technique.   

An alternative approach has been to use mark-recapture methods. Populations of 

beaked whales have been shown to occur reliably in some areas and long-term photo-

identification studies have been possible in these locations [e.g., The Gully, off the 

Scotian Shelf (Whitehead et al. 1997), Hawaii (McSweeney et al. 2007), Canary Islands 

(Aguilar de Soto 2006), and The Bahamas (Claridge 2006 and this study)]. Most species 

of beaked whales possess natural markings consisting of scars and nicks which can be 

used to distinguish individuals (see Chapter 2 for details) providing a valuable tool for 

studying populations (Hammond 1986, Hammond et al.1990). Using mark-recapture 
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methods and photo-identification data, estimates of population size and abundance 

trends have been reported for the northern bottlenose whale (Hyperoodon ampullatus) 

in The Gully (Whitehead et al. 1997, Gowans et al. 2000, Whitehead and Wimmer 

2005), but studies of beaked whale population dynamics are still lacking. Nonetheless, 

there is a current and pressing requirement for beaked whale population assessments.  

Behavioural responses of beaked whales to anthropogenic noise have raised 

concern that beaked whales may be particularly vulnerable to loud underwater sounds 

(Peterson 2003, Aguilar de Soto et al. 2006, Cox et al. 2006, Tyack et al. 2011, Pirotta 

et al. 2012). Most attention has been focussed on atypical mass strandings of beaked 

whales that have occurred in close temporal and spatial proximity to naval exercises 

(Van Bree and Kristensen 1974, Simmons and Lopez-Jurado 1991, Frantzis 1998, 

Balcomb and Claridge 2001, Evans and England 2001, Jepson et al. 2003, Fernandez et 

al. 2005, Cox et al. 2006). Although the mechanisms directly causing the strandings 

remain unclear, mid-frequency sonars (2-10 kHz) used during fleet readiness training 

exercises have been linked to behavioural responses that in turn have led to a number of 

hypothesized physiological impacts (Evans and England 2001, Jepson et al. 2003, 

Fernandez et al. 2005, Cox et al. 2006, Hooker et al. 2009). Strandings typically 

involve individuals from multiple ziphiid species, but primarily of the genera Ziphius 

and Mesoplodon.  

One of these events occurred in the Bahamas. On 15 March 2000, an 

antisubmarine warfare exercise involving surface ships using standard hull-mounted 

mid-range tactical sonars transited Northwest Providence Channel, between the islands 

of the northern Bahamas (Figure 3.1), causing the stranding of at least 14 beaked whales 
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(Balcomb and Claridge 2001, Evans and England 2001). Two species were involved in 

the stranding: Cuvier’s beaked whale (Ziphius cavirostris, n = 11) and Blainville’s 

beaked whale (Mesoplodon densirostris, n = 3). Eight whales stranded alive, six of 

which were re-floated, and six whales are known to have died (see Chapter 6 for further 

details). The population-level effect of this and other atypical strandings worldwide 

needs further investigation (Cox et al. 2006).  

Using a similar approach as in Chapter 2, this chapter provides the first time 

series for mark-recapture abundance estimates of a Mesoplodon species. Longitudinal 

photo-identification data collected from 1997 – 2011 were used to investigate the 

population dynamics of Blainville’s beaked whales off SW Abaco Island, the site of all 

of the Mesoplodon strandings in 2000 along the north-eastern edge of NW Providence 

Channel (Figure 3.1). Using a Bayesian modelling framework, mark-recapture models 

were fitted to the photo-identification data to estimate a time series of abundance, rates 

of emigration and re-immigration, survival, and recruitment (e.g., Whitehead et al. 

1997, Gowans et al. 2000, Whitehead and Wimmer 2005, Matkin et al. 2012). Of 

particular note, this time series encapsulates the time period before and after the 

stranding. 

There were three specific objectives of this chapter: 

(1) To examine population dynamics before and after the 2000 stranding by 

estimating trends in abundance, survival, and recruitment.  

(2) To investigate rates of turnover by estimating the rates of individual 

movement out of the study area (temporary emigration) and back into the 

study area (re-immigration) during the study period.  
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(3) To provide the first survival estimate for a Mesoplodon species. 

 

3.2 Methods 

3.2.1 Field sampling 

From 1997 – 2011, randomly placed line transects and opportunistic vessel 

surveys for beaked whale groups were conducted off the south-western coast of Great 

Abaco Island, in the northern Bahamas (26.0N, 77.3W). The study area encompassed 

approximately 300 km
2
 along the north-eastern edge of a submarine canyon wall that 

lies within Northwest Providence Channel where the March 2000 stranding occurred 

(Figure 3.1). The study area was the same as that presented in Chapter 2 to allow 

comparison between estimates made during this 15-year study to those made in Chapter 

2 using a shorter temporal scale (2005 -2010). A variety of vessel platforms were used 

during the study, but the majority of data were collected from small vessels (<9 m). 

There were 236 sightings of Blainville’s beaked whales over the 15 years of 

study but survey effort was not consistent throughout the year with the majority of 

encounters (67%) occurring during summer months (Figure 3.2). To allow the 

consistent interpretation of annual probabilities of capture in the mark-recapture design, 

a sampling interval was selected from May through August, which represented the time 

period when effort was most consistent annually.  

 



 92  

 

Figure 3.1. (a) Map of The Bahamas showing: (b) the area where a stranding of beaked 

whales occurred on 15 March 2000 on Abaco and Grand Bahama Islands as navy ships 

transited from the Atlantic Ocean through Northwest Providence Channel (as indicated 

by the arrow) conducting an antisubmarine warfare exercise. Small circles represent 

stranding locations of a single whale and large circle represent two whales that stranded 

together in the same location. Blainville’s beaked whales (n = 3) are shown in black and 

Cuvier’s beaked whales in white (n = 11). In (c), the Abaco study area is enlarged 

showing vessel tracks (grey lines) and sighting locations for Blainville’s beaked whales 

(small solid circles) from May – August, 1997-2011. The stranding location for each of 

the three Blainville’s beaked whales are shown again here as a black “X”. The 1000 m 

isobath is shown by the black dotted line. 
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During these annual sampling intervals, surveys covered more than 40,500 km 

of trackline in the study area (Figure 3.1), resulting in 157 sightings of groups of 

Blainville’s beaked whale, summarised in Table 3.1. In addition, 79 sightings occurred 

outside the sampling interval (“out-of-sample” sightings between September and April) 

from which identification data could be used to inform on survival status, and therefore 

helped to separate mortalities from the movement and capture processes across the 

annual intervals. 

 

 

Figure 3.2. Variation in survey effort shown by the number of encounters by month 

over the entire study period (light bars) and the number of years with encounters during 

each month (dark bars).  
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Table 3.1. Summary of survey effort and encounters with Blainville’s beaked whales 

during the annual May – August sampling intervals with the number of “out of sample” 

encounters given in parentheses. 

Year Survey effort (km) No. encounters 

1997 1021 5 (1) 

1998 311 6 (0) 

1999 1661 14 (3) 

2000 4039 15 (14) 

2001 2470 9 (19) 

2002 4200 11 (7) 

2003 3017 5 (10) 

2004 4100 22 (6) 

2005 4128 10 (3) 

2006 3305 12 (5) 

2007 2488 7 (2) 

2008 2981 9 (0) 

2009 1935 5 (1) 

2010 1226 8 (2) 

2011 3617 19 (6) 

 

3.2.2 Photographic mark-recapture 

 Photographic sampling of whales was carried out using protocols described in 

detail in Chapter 2. Between 1997 and 2003, black and white film (Ilford HP5 or 

Fujifilm) was shot using Nikon 35 mm cameras. The film was later push-processed to 

1600 ASA to increase contrast and help reveal markings on the whale’s dorsal fin and 

body. Between 2004 and 2011, Nikon digital SLR cameras were used to shoot high-

resolution images of at least 6 megapixels. Photographs were taken of the entire length 
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of the animal as it surfaced, but the focal area was a rectangular area defined as the “ID 

area”, sized by one dorsal fin base-width to the anterior, posterior and below the fin. 

Attempts were always made to photograph all individuals within a group on both right 

and left sides.  

 Each identification image was visually examined either using a light table and 

magnifying eyepiece (for the black and white negatives) or a high-resolution computer 

monitor (for the digital images). Individual beaked whales were identified using the 

unique pattern of scarring on the body and nicks in the dorsal fin or at the base of the 

fin. However, only those individuals with at least one nick within the ID area were 

considered reliably-marked, or distinctive, and therefore included in the mark-recapture 

analyses. This ensured that unique whales could be identified from photographs of 

either side of the animal. Identification photographs were assigned a quality grade (Q) 

ranging from 0 to 3 (3 being the highest quality photograph) based on the image size, 

focus, lighting, angle, and exposure (see Figure 2.3), and only high quality images (Q > 

1) were used in subsequent analyses to prevent misidentifications. To further limit 

identification errors, two researchers separately confirmed all identifications of new 

whales. 
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3.2.3 Mark-recapture model 

Owing to the limited extent of the study area, and that it is known that whales 

move beyond the survey area and an open population model was chosen that 

parameterises emigration and re-immigration, in addition to survival and recruitment 

(e.g. Whitehead 1990, Ford et al. 2007, Matkin et al. 2012). To fit this model, sighting 

history data were compiled for each individual i, starting from the time of first capture 

(i.e. photo-identification) through each annual interval t. These data were inputted into 

three different binary matrices based on whether the whale was captured (Yit = 1) or not 

captured (Yit = 0), whether the whale was known to be alive (Xit = 1) or not alive (Xit = 

0), and whether the whale was in the study area and available for capture (Fit = 1) or 

outside the study area and unavailable for capture (Fit = 0) (e.g. Schofield et al. 2009). 

Whales were inputted as alive (X=1) whenever they were seen (Y=1) and in years 

between repeated sightings. Additionally, out of sample sightings were used to inform 

whether or not a whale was alive in years following the last interval of sighting. After 

its last sighting, and prior to its first sighting, the whale’s status was unknown and Xit 

was treated as missing data about which inference could be made. Similarly, when a 

whale was not observed in the study area (Y=0), its availability state was unknown and 

Fit was treated as missing data to be estimated.  

Using the same model as in Chapter 2 model parameters included the annual 

probabilities of survival φit, emigration λit, re-immigration κit, and capture πit. However, 

in addition to estimating survival and movement of beaked whales, trends in non-calf 

recruitment were also of interest. Using the approach of Pradel (1996), the same 

identification histories (all three matrices) were also read backwards, to estimate 

seniority γit, in place of survival, starting at the time of last observation (e.g., Ford et al. 
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2007). The probability of seniority (or the inverse of recruitment) is the probability that 

individual i present at interval t was already present in the population at time t – 1. 

 

3.2.3.1 Priors 

As described in detail in Chapter 2, a flexible hierarchical formulation was 

adopted with the annual vectors for each parameter set modelled in terms of an overall 

mean μ and an annual additive effect bt. For example, the prior specification for capture 

probabilities π was: 

logit (π ) = logit (μ
π)     

π 

  
π   N(0, σπ) 

where logit(a) = log(a/(1-a)). Uniform(0,1) prior distributions were placed on each of 

the five mean probabilities µ
φ,λ,κ,π,γ

. Annual effects (bt) were drawn from a Normal prior 

with mean zero and standard deviation σ
 φ,λ,κ,π,γ

. Uniform(0,20) priors were placed on 

each σ to allow non-zero annual effects to emerge (e.g., Fearnbach et al. 2012). This 

hierarchical formulation allows for the borrowing of strength from information in the 

full vector of annual estimates to improve estimates in individual years, smoothing 

estimates more towards the mean in years with sparse data (little information), thereby 

improving the precision of each year, but allowing departures from the mean when 

supported by the data.  

 Estimates of abundance were determined following the same approach as 

described in Chapter 2. Capture probabilities πt were used to estimate abundance of 

distinctive marked whales using the area each year, Nt, by linking these parameters to 
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the observed data. Specifically, the number of individuals actually observed in the study 

area in each year, O  = ∑       , was treated as a binomial sample from the abundance Nt  

with the binomial proportion given by the estimated πt. As with the other parameters, 

we adopted a hierarchical prior to smooth abundance estimates across years:  

log (N ) = log (μ
N)     

N 

  
N   N(0, σN) 

A Uniform (min[Ot],100) prior was set on the average annual abundance µ
N
, with the 

lower bound set to the minimum number of distinctive whales observed in any annual 

interval and annual effects b
N
 drawn from a Normal prior with mean zero and standard 

deviation σ
 N 

~ Uniform(0,20).  

 To produce estimates of the abundance of all whales using the study area in each 

year, At, annual estimates of abundance for distinctive whales (Nt) were rescaled to 

include non-distinctive individuals, including calves. Using methods described by 

Durban et al. (2010), the distinctive proportion of the population in each year, mt, were 

estimated as the binomial proportion given by the number of whales identified that were 

judged to be distinctive relative to all whales that could be distinguished in high quality 

photographs (Q > 1) during each encounter-day. The proportion therefore represented 

the overall average across days within each year. The proportion of the population that 

was distinctive, mt, was assigned the same hierarchical prior structure to borrow 

strength across years: 

 

logit (  ) = logit (μ
 )     
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    N(0, σ ) 

with a flat Uniform(0,1) prior on the average distinctiveness proportion, µ
m
, and a 

Uniform(0,20) prior on the standard deviation of annual effects, σ
 N

. The overall annual 

abundance was then defined as At = Nt / mt.  

 Additional derived parameters estimated by the model were estimates of the 

parent population size, (Pt), or the number of whales using the study area during the 

entire year (including those not remaining in the study area). For both distinctive 

whales,  

NP   = 
N 
 κ    λ 
κ 

⁄    

and after rescaling to include all whales, APt = NPt / mt. 

 

3.2.3.2 Inference and model fitting 

WinBUGS software (Lunn et al. 2000) was used to implement Markov Chain 

Monte Carlo (MCMC) sampling with three sequences used to make repeated draws 

from the posterior distribution of each parameter. The three sequences were compared 

to identify and discard initial burn-in iterations prior to convergence (Brooks and 

Gelman 1998). Summary statistics and kernel density plots for the posterior 

distributions were then based on 20,000 sampled values for each chain after burn-in. 

Model selection was accomplished by comparing the re-immigration model to 

the standard Cormack-Jolly-Seber model with reduced parameterisation (no emigration 
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or re-immigration) using a minimum posterior predictive loss approach (Gelfand and 

Ghosh 1998; Durban et al. 2010; Matkin et al. 2012; Fearnbach et al. 2012). The loss 

function measured the discrepancy between observed and predictive errors and then 

used the Mean Squared Predictive Error (MSPE) as a measure of the discrepancy; the 

model with the lowest MSPE was determined as the best fit. Additionally, to test if the 

model selected was a reasonable fit to the data, a further posterior predictive test was 

used (as described in Chapter 2; Gelman et al. 1996). The result is a Bayesian p-value 

where values close to 0 or 1 indicate poor fit while values close to 0.5 indicate the 

model fit is adequate (Gelman et al. 1996, Brooks et al. 2000).  

 Monitoring parameter values across MCMC iterations allowed probabilistic 

statements about parameter differences to be made. Over the full MCMC sequence the 

probability that an annual probability for a particular parameter was greater than the 

average for that parameter was estimated from the proportion of iterations for which the 

annual additive effect did not equal zero (bt < > 0). If this probability was high, p would 

be close to 1; contrarily, p would be close to 0 if the estimated parameter in that 

particular year was less than the average, while if there was no deviation from the 

overall average, i.e., bt = 0, p would equal 0.5. 

 

3.3 Results 

3.3.1 Mark-recapture sample 

Photo-identification data were collected from 157 groups of Blainville’s beaked 

whales encountered in the study area during the annual sampling interval of May – 
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August from 1997 – 2011 (Figure 3.1). Despite selection of the time period with the 

majority of survey effort, the number of encounters each year ranged from only 5 to 22 

(median = 9 encounters, Table 3.1).  

 

Table 3.2. The total number of captures of identified individuals and number of 

distinctive individuals identified from high-quality photographs during the annual May-

August sampling interval. Out-of-sample captures are shown in parentheses.  

Year No. identifications May-Aug No. individuals 

1997 8 (0) 6 

1998 11 (0) 8 

1999 33 (2) 15 

2000 50 (6) 17 

2001 23 (12) 10  

2002 39 (6) 16 

2003 11 (11) 7 

2004 36 (5) 13 

2005 24 (2) 11 

2006 19 (9) 11 

2007 16 (1) 12 

2008 19 (0) 13 

2009 7 (1)  7 

2010 14 (4)  8 

2011 29 (5) 17 

 

Using only high-quality photographs and after removing capture histories for 

dependent calves (because their capture probabilities were not independent), 75 

different distinctive individuals were identified.  There were 339 identifications 
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(captures) of these whales during the annual sampling intervals and an additional 64 

identifications collected from out-of-sample encounters (Table 3.2). The total number of 

individuals identified each year ranged from 6 to 17 (median = 11), which generally 

reflected the variation in annual survey effort; years with highest effort resulted in the 

highest number of encounters and usually the highest number of individuals photo-

identified. 

A discovery curve of cumulative number of individuals against the cumulative 

number of whale-by-year identifications confirms that this is an open population with 

regular recruitment of new individuals (Figure 3.3), despite re-sightings of many 

individuals (56% of 171 cumulative identifications).  

 

Figure 3.3. Rate of discovery curve for distinctive Blainville’s beaked whales in 

southwest Abaco from 1997-2011 (May – August only). The cumulative number of 

individuals is plotted against the cumulative number of whale-by-year captures, for each 

annual sampling period. The dashed line represents a hypothetical 1:1 discovery rate for 

reference and the year of the atypical stranding is shown. 
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Although the majority of whales were seen in more than one year of the 15-year 

study (median 2, maximum 11, Figure 3.4), almost half of the individuals were seen in 

only one year (37 whales, 48% of the total). Notably, all of the individuals seen in more 

than 6 years were adult females.  

 

Figure 3.4. The number of years in which distinctive individual Blainville’s beaked 

whales (non-calf) were identified from high-quality photographs during the annual 

sampling interval from 1997 – 2011. 

 

These photo-identification data were used to populate the matrices inputted into 

the re-immigration mark-recapture model. Specifically, the mark-recapture sample 

consisted of n = 75 individuals, representing 171 non-zero entries inputted as an 

individual capture in the sightings history matrix (Yit = 1). There were long periods of 

absence in the sighting record for multiple individuals; notably, three whales had 

absences lasting for 5 years, two for 6 and 8 years, and one whale was absent for 10 
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years. During these absences the individuals may have left the study area and later 

returned, or may have remained but were not captured. This provided valuable data to 

inform the survival/alive matrix and an additional 121 entries were inputted as alive (Xit 

= 1) for those years when whales were not seen between years of repeated captures. 

Finally, from the out-of-sample captures, there were 47 records of individuals that 

occurred after the annual interval of their last capture or outside the boundaries of the 

study area that provided extended information on an individual’s survival status for a 

specific year. These were also included as Xit = 1 (alive) beyond the time the whale was 

actually last seen within the annual interval. Likewise, there were 22 records before first 

captures which were included to inform on recruitment.  

 

3.3.2 Mark-recapture model 

3.3.2.1 Model selection and fitting 

 Model selection supported the use of an open population model with re-

immigration rather than the standard CJS model as determined by the lowest number of 

discrepancies between the observed and predicted data. For the re-immigration model, 

there were 93 discrepancies between 1,125 observed and predicted data points, 

compared to 139 for the CJS model, resulting in MSPE values of 0.08 and 0.12, 

respectively. However, the Bayesian p-value to test the re-immigration model fit was 

0.82 (Figure 3.5) suggesting that, there was additional variability in the data not 

accounted for by the chosen model (Brooks et al. 2008, King et al. 2010). 
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Figure 3.5. Discrepancy plot for re-immigration model with recruitment. Points are the 

60,000 MCMC samples of a discrepancy function (D, Durban and Elston 2005) 

calculated for both observed data and data simulated by the model, corresponding to 

Bayesian p–value of 0.82. 

 

3.3.2.2 Probability of capture  

 Inference was based on the full posterior probability distributions for each model 

parameter using the re-immigration model. Estimates of average annual capture 

probability were high (posterior median µ
π

 = 0.47, 95% Highest Posterior Density 

Interval [HPDI] = 0.32 – 0.73, Figure 3.6).  
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Figure 3.6. Posterior probability distribution plot for average annual capture µ
π
 for the 

re-immigration model. 

 

 Some annual variability in capture probabilities during the study period was 

evident (Figure 3.7), with departures away from the mean capture estimates (bt < > 0) in 

the majority of the years (9 of 14 years). 

 

Figure 3.7. Annual capture probability estimates (πt) during the time series for non-calf 

and distinctive whales. Estimates are presented as posterior medians (solid black line 

within bars), with 75% (grey bars) and 95% (vertical whiskers) HPDI. The dashed 

horizontal line represents the posterior median estimate for average annual capture (µ
π
). 
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3.3.2.3 Rates of turnover 

 Concordant with the multi-year absences in the capture record of some 

individuals, estimates of temporary emigration and re-immigration showed support for 

some annual turnover. There was a relatively low probability of annual temporary 

emigration out of the study area (posterior median µ

 = 0.28, 95% HPDI = 0.14 – 0.47), 

while estimated re-immigration rates were even lower (posterior median µ
κ
 = 0.08, 95% 

HPDI = 0.02 – 0.17; Figure 3.8).  

 

Figure 3.8. Posterior probability distribution plots for the parameters contributing to 

turnover in the population; (a) average annual probability of emigration µ
λ
 and (b) 

average annual probability of re-immigration µ
κ
. 

 

 Over the period of the study there was no trend evident for either annual 

temporary emigration or re-immigration (Figure 3.9).  
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Figure 3.9. Annual probability estimates for (a) temporary emigration (λt) and (b) re-

immigration (κt) during the time series for non-calf and distinctive whales. Estimates are 

presented as posterior medians (solid black line within bars), with 75% (grey bars) and 

95% (vertical whiskers) HPDI. The dashed horizontal line represents the posterior 

median estimates for average annual emigration and re-immigration (µ
λ
 and µ

κ
, 

respectively). 

 

3.3.2.4 Survival and recruitment 

 Average annual probability of survival was high (posterior median µ
φ

 = 0.990, 

95% HPDI = 0.949 – 1.000), while probability of recruitment was low (posterior 
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median µ
1-γ

 = 0.003, 95% HPDI = 0.000 – 0.071). However, the skewness apparent in 

both plots of the posterior probability distributions (Figure 3.10) suggests that the 

median may not be an appropriate measure of central tendency for either estimate. The 

posterior mean estimate for average annual survival was very similar to the median 

estimate (posterior mean = 0.983, SD = 0.024), and the mode was 0.999. Unlike 

survival, for average annual recruitment, the posterior mean estimate was not the same 

as the median because these estimates were even more skewed (posterior mean = 0.014, 

SD = 0.029), so the posterior mode estimate (0; i.e., no recruitment) is used here 

instead. 

 

Figure 3.10. Posterior probability distribution plots for (a) average annual probability of 

survival µ
φ
 and (b) average annual probability of recruitment µ

1-γ
. 

 

 Annual survival estimates (1997 – 2010) were computed for the 15-year study 

and no trend in non-calf survival was noted throughout the time series (Figure 3.11).  
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Figure 3.11. Annual survival estimates (φt) during the time series for non-calf 

distinctive whales. Estimates are presented as posterior medians (solid black line within 

bars), with 75% (grey bars) and 95% (vertical whiskers) HPDI. The dashed horizontal 

line represents the posterior median estimate for average annual survival (µ
φ
). 

 

 Estimates of recruitment remained low and relatively consistent throughout the 

study with two exceptional years. In 2005, recruitment was higher than the average 

annual estimate (p = 0.93; Figure 3.12), and recruitment appeared to remain high in 

2006, but support for a departure from the average was less (p = 0.78). However, the 

estimates in both of these years had the lowest precision of all years. 
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Figure 3.12. Annual recruitment estimates (1-γt) during the time series for distinctive 

whales, not including calves. Estimates are presented as posterior medians (solid black 

line within bars), with 75% (grey bars) and 95% (vertical whiskers) HPDI. The 

posterior mode estimate (= 0) was the best measure of central tendency for these 

estimates. 

 

3.3.2.5 Abundance of distinctive whales 

 The posterior median estimate for the average annual abundance of distinctive 

whales (µ
N

) was 25 whales (95% HPDI = 17 – 35; Figure 3.13).   
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Figure 3.13. Plot of the posterior probability distribution for average annual abundance 

of distinctive whales (µ
N

). 

 

 The annual abundance for distinctive whales (Nt) varied little during the study 

(Figure 3.14). The highest estimate was in 2000 when it was estimated that 28 

distinctive whales (95% HPDI = 19 – 42) used the study area during the annual 

sampling interval. The most precise estimate was in 2011: posterior median Nt = 27 

whales (95% HPDI =18 – 40). 
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Figure 3.14. Time series for the annual abundance estimates for distinctive whales (Nt) 

Estimates are presented as posterior medians (solid black line within bars), with 75% 

(grey bars) and 95% (vertical whiskers) HPDI. The dashed horizontal line represents the 

posterior median estimates for average annual abundance (µ
N
). 

 

3.3.2.6 Proportion distinctive 

 The posterior median for the proportion of the population that was estimated to 

be distinctive (µ
m

) was 0.60 (95% HPDI = 0.56 – 0.65; Figure 3.15).  

 

Figure 3.15. Plot of the posterior probability distributions for average annual proportion 

of the population representing distinctive whales (µ
m

). 
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 The annual proportion of the population that was distinctive (mt) showed some 

variability during the time series of the study (e.g., in 2011; Figure 3.16), but there were 

no evidence for departure from the mean throughout (i.e., bt was close to 0 for all 

years). The annual estimates for mt were used to rescale annual abundance (Nt) to 

include all whales in the population, i.e., distinctive, non-distinctive whales, including 

dependent calves in the estimate of total abundance (At). 

 

 

Figure 3.16. Annual estimates for the proportion of distinctive whales in the population 

(mt). Estimates are presented as posterior medians (solid black line within bars), with 

75% (grey bars) and 95% (vertical whiskers) HPDI. The dashed horizontal line 

represents the posterior median estimates for average annual abundance (µ
m

). 

 

3.3.2.7 Total abundance 

 After rescaling to include non-distinctive whales and calves, the posterior 

median estimate for total average annual abundance was µ
A

 = 42 whales (95% HPDI = 

28 – 58; Figure 3.17).  
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Figure 3.17. Plot of the posterior probability distribution for total average annual 

abundance (µ
A

), after rescaling to include non-distinctive whales and calves. 

 

 Total annual abundance (At) appeared relatively stable over the time series 

(Figure 3.18). The highest and most precise estimate was in 2000, when the posterior 

median for total annual abundance was 48 whales (95% HPDI = 31 – 73). 

 

Figure 3.18. Total annual abundance estimates (At) for Blainville’s beaked whales off 

SW Abaco from 1998 to 2011. This estimate includes indistinctive whales and calves. 

The mean overall abundance (µ
A

 = 42 whales) is shown as the dashed horizontal line. 

Estimates are presented as posterior medians (solid black line within bars), with 75% 

(grey bars) and 95% (vertical whiskers) HPDI. 
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3.3.2.8 Parent population size 

 Additional derived parameters estimated by the model were estimates of the 

parent population size, Pt, the number of whales using the study area during the entire 

year (including those not remaining in the study area), for both distinctive whales only 

(µ
NP

) and for the all whales (µ
AP

). For both parameters, the range of the posterior 

distributions were large, so 75% HPDIs are presented instead of 95% HPDIs as well as 

the year with the most precise estimate. The posterior median estimate for the size of the 

parent population of distinctive whales, µ
NP

 was 135 whales (75% HPDI 101 – 221), 

with a mode of 100 whales. The most precise estimate was in 2001 when the posterior 

median estimate NP = 108 whales (75% HPDI 73 – 180). The estimated size of the total 

parent population after rescaling, µ
AP

 was 230 whales (75% HPDI 171 – 390), with a 

mode of 155 whales. The most precise estimate was in 2011, posterior median AP = 169 

whales (75% HPDI 120 – 250).  

 

3.4 Discussion 

3.4.1 M. densirostris abundance 

 This study has shown that using mark-recapture methods with photo-

identification data is a tractable approach for a species that presents challenges in using 

more conventional ship-based surveys for abundance estimations. The estimates of 

abundance reported here are seemed reasonable (42 whales) relative to the number of 

individuals actually observed each year (median 11 whales).  However, these whales are 

part of a larger parent population size (~155 whales), indicating that not all individuals 

were in the study area at any one time; only about 27% of this larger population used 
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the study area during a given 4-month sampling interval, supporting turnover of 

individuals in the study area. Indeed, estimates of abundance using data over an 8-

month sampling interval (Chapter 2) revealed much higher average annual abundance 

(80 whales), although precision in the estimates from the shorter time period (only 6 

years) was much less. The area sampled was quite small (300 km
2
) relative to potential 

home ranges of these whales as suggested by satellite telemetry data for Blainville’s 

beaked whales (Schorr et al. 2009, Durban unpublished data) so it was not surprising to 

find that whales seem to range beyond its bounds. Future analyses should investigate 

individual home ranges, using both photo-identification and telemetry data, which 

would also allow a closer look at rates of temporary emigration and re-immigration to 

better inform the re-immigration model. 

 

3.4.2 Model fitting: need to account for heterogeneity 

  Model selection supported the re-immigration model over a standard CJS, yet 

the measure of fit (Bayesian p-value 0.82) for the re-immigration model was not 

optimal (Brooks et al. 2008), although values even more distant from 0.5 have been 

deemed adequate (King et al. 2010). Convergence of the three MCMC chains was 

achieved quickly advocating good model performance, but the discrepancy plot (Figure 

3.5) shows some indication of clustering which suggests that the model may not have fit 

all the data well. Initial data exploration revealed that long-term site fidelity could be 

documented for some individuals, namely adult females, yet almost half of the whales 

were seen in only one year (Figure 3.4) This indicates heterogeneity in capture 

probabilities, perhaps based on age/sex differences in site-fidelity, which may 
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compromise model fit and lead to negative biases in abundance estimates (e.g. 

Hammond 1986, Hammond et al. 1990).  

 To address the critical assumptions that all individuals possess unique marks and 

that those marks are not lost (Seber 1982), as recommended by Friday et al. (2000) and 

Stevick et al. (2001) only high quality photographs of distinctively-marked individuals 

were included in the dataset used for parameter estimation in this study. This approach 

assumed that non-distinctive individuals behaved in a similar way to distinctive ones 

which may have not been true. Most non-distinctive whales were younger (see Chapter 

4 for details). Immature whales may have occupied different habitat than adult females 

(Claridge 2006), potentially resulting in differences in capture probabilities as well as 

turnover rates, and apparent survival (Whitehead and Wimmer 2005). Incorporating 

age- and sex-structured heterogeneity into the model would be an important 

advancement of this work (see Chapter 5). 

 

3.4.3 Rates of turnover 

 Unlike in Chapter 2 where inference about movement rates was data limited due 

to a shorter time series of annual intervals, the longer term dataset used here was more 

useful. Despite high site fidelity of adult females, estimates of rates of movement 

suggested that the same whales did not remain in the study area across the annual 

sampling interval. While it was estimated that 28% of whales may temporarily emigrate 

from the study area on an annual basis, the probability of re-immigration was low, thus 

supporting turnover of whales in the study area. It is possible that the relatively short 

sampling interval (4 months) did not allow enough time for temporary emigrants to re-



 119  

immigrate during the year sampled, and it would be a very useful exercise to determine 

the temporal scale at which turnover occurs.  However, the existence in differences in 

residency patterns by age / sex class (as discussed above) will make it difficult to 

interpret turnover unless stratification by age class and sex can also be integrated.  

  

3.4.4 Survival estimate for a Mesoplodon species 

 The survival estimates reported here are the first survival estimates for 

Blainville’s beaked whale and, in fact, for any Mesoplodon species. However, the 

parameter estimated in this study is “apparent” survival rate, which is a product of 

unknown components of true survival and permanent emigration. Despite this, high 

non-calf survival was found in this study, as is expected for long-lived mammalian 

species with low reproductive potential. M. densirostris survival was higher than that 

for northern bottlenose whales off Nova Scotia; survival and permanent emigration was 

estimated to be approximately 0.90, after accounting for an annual rate of mark change 

of ~0.03 in the initial estimate (φ = 0.87, 95% CI = 0.83 – 0.91; Gowans et al. 2000).  

 Blainville’s beaked whale survival was also higher than non-calf survival 

reported for baleen whales [e.g., φ = 0.951 (SE 0.014) for western grey whales, 

Eschrichtius robustus (Bradford et al. 2006); φ = 0.96 (SE 0.008) for humpback whales, 

Megaptera novaeangliae (Barlow and Clapham 1997); φ = 0.975 (SE 0.006) for blue 

whales, Balaenoptera musculus (Ramp et al. 2006)]. Average survival was more 

comparable to odontocete populations with stable or increasing population growth [e.g., 

φ = 0.98 (95% HPDI 0.95 – 0.99) for US west coast transient killer whales, Orcinus 

orca (Ford et al. 2007)], and slightly higher than that reported for a population of 
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coastal bottlenose dolphins, Tursiops truncatus, from the same geographic region, but 

possibly in decline [φ = 0.95 (95% HPDI 0.92-0.97) Fearnbach et al. 2012]. Buckland 

(1990) made two recommendations to ensure reliable survival estimation for cetaceans, 

both of which have been met in this study; capture probabilities were greater than 0.20 

in any given year and the field effort lasted longer than 10 years. However, potential 

age- and sex-structured heterogeneity (as mentioned above) may have biased survival 

estimates upwards, favouring adult females.  

 

3.4.5 Population trends around an atypical stranding 

 One of the primary objectives of this study was to investigate the potential 

impact on local populations of beaked whales of the anti-submarine warfare exercise 

that took place on 15 March 2000 in the Abaco study area. The use of mid-frequency 

active sonars by surface ships during the exercise resulted in the stranding of 14 beaked 

whales; the majority were Cuvier’s beaked whales (n = 11) but three Blainville’s beaked 

whales also stranded (Balcomb and Claridge 2001, Evans and England 2001). At least 

six whales died (one of the three Blainville’s beaked whales) and evidence of acoustic 

traumas was documented in the freshest carcasses examined (Evans and England 2001). 

Two (one Ziphius and one M. densirostris) of six whales that live stranded and were 

assisted back out to sea by rescuers, were later re-sighted (as detailed in Chapter 6), 

providing an indication that some whales survived the event, yet the population level 

impact remained unknown.  

 During the period 1997 – 2011, the population dynamics of Blainville’s beaked 

whales were remarkably stable with no obvious trends in abundance or survival. The 
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only anomaly around the time of the stranding comes from observation of the empirical 

data. The discovery curve (Figure 3.3) showed an entry of 10 “new” whales into the 

study area in the months after the stranding (during the May – August sampling in 

2000). It is unknown whether this represented natural variation in the number of whales 

using the area related to prey availability or lagged recruitment from births, individuals 

first acquiring a nick, or actual recruitment. The discovery curve reached closer to a 

horizontal asymptote in 2001 than any other time during the study emphasising the 

relatively high contribution of new whales after the stranding. However, there was not a 

significant increase in estimated recruitment once effort was accounted for in the mark-

recapture model, perhaps indicating that the discovery of new whales was at least partly 

a function of increased effort.  

 

3.4.6 Conclusions  

 This work has filled some key gaps in our knowledge about the population 

demographics of Blainville’s beaked whales. While long-term site fidelity of adult 

females in the Abaco study area was apparent, these whales were part of a larger parent 

population suggesting some annual turnover occurs. The first survival estimates for a 

mesoplodont were provided, which showed high non-calf survival of Blainville’s 

beaked whales off southwest Abaco, comparable to estimates for other odontocetes. 

This work represents the first use of mark-recapture models with longitudinal photo-

identification data to produce a time series of abundance estimates for a Mesoplodon 

species. Notably, no change in the population dynamics of the Abaco population of 

Blainville’s beaked whales was detected following the March 2000 sonar exercise, but 
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this species was not predominant in the stranding. This study has demonstrated a useful 

method applied to a species that is otherwise difficult to study and provided excellent 

baseline for future monitoring of direct and indirect (e.g., increased cyclone activity due 

to climate change) anthropogenic impacts on this and other populations. 
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CHAPTER FOUR 

 

ASSIGNING AGE AND SEX CLASSES TO BLAINVILLE’S BEAKED WHALES 

USING SIGHTING HISTORY DATA 

 

 

4.1 Introduction 

 Information about an individual’s age and its sex is critical to understanding a 

species’ reproductive biology (Boyd 1985, Heimlich-Boran 1986, Plavcan and van 

Schaik 1998), evolutionary biology (e.g., reproductive costs, Tolley et al. 1995), social 

organisation (Bigg et al. 1990, Whitehead et al. 1991), conservation biology (Perrin and 

Reilly 1984, Newsome et al. 2007, Wells 2012), and population demographics (Olesiuk 

et al. 1990). Data on the age class and sex of individuals can add a new element to an 

existing investigation, while lack of this information may render the study less useful. 

For example, age- and/or sex-specific heterogeneity can lead to serious biases in 

estimates of abundance (Seber 1982, Hammond 1990). Furthermore, conservation 

actions applied to one age class may not be effective for another. Of particular 

importance to population biologists is that the assessment of age class and sex allows 

investigation into age and sex specific demography, leading to a better understanding of 

population dynamics. 
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 In mammals, relative age can be inferred based on an individual’s increase in 

size (Lee and Moss 1995, Clark and Odell 1999), structural degradation and growth 

changes (e.g. tooth wear and development, Severinghaus 1949).  Absolute age, a more 

important metric, is determined by counting growth layers, also called growth layer 

groups (GLGs), in teeth (Scheffer 1950, Laws 1952, Linhart and Knowlton 1967), bone 

(Marmontel et al. 1996), and horns or claws (Hemming 1969) which are known to 

accumulate at a rate correlated with seasonal patterns. In mysticetes, GLGs in the ear 

plug from the auditory meatus and in baleen plates are counted to determine absolute 

age (Purves1955, Laws and Purves 1956, Lockyer 1972), although there is still some 

debate about the rate at which GLGs in ear plugs of baleen whales accumulate 

(Gabrielle et al. 2007, Best 2012). Absolute age in odonotocetes has been determined by 

counting GLGs in the dentine layers in teeth (Nishiwaki et al. 1958, Kasuya 1972, 

Perrin and Myrick 1980, Kasuya and Marsh 1984, Hohn et al. 1989). Problems with 

counting GLGs in teeth with closed pulp cavities from older animals have been 

overcome by counting cemental instead of dentinal layers (Kasuya 1976, Kasuya and 

Marsh 1984). More recent methods have also been developed using the racemization 

rate for aspartic acid in the eye lens nucleus (George et al. 1999, Garde et al. 2007).  

However, with very few exceptions (e.g., Myrick et al. 1983, Hohn et al. 1989), 

determining age using these methods is only possible using dead specimens collected 

either from strandings, incidental takes in fisheries or directed catches.   

 Indeed, catch data have provided a large amount of information on age structure 

in cetacean populations, and the relationship between age, size and sexual maturity 

(e.g., Lockyer 1972, Kasuya and Marsh 1984, Martin and Rothery 1993, Tormosov et 

al. 1998). An individual’s maturity state can be readily determined through direct 
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examination of the reproductive organs using testes weight, and the presence or absence 

of sperm in the testes of males and the presence of a corpus albicans or corpus luteum in 

the ovaries of females as indications of sexual maturity (McMaster 1984). Age at the 

onset of sexual maturity can then be determined for individuals which have concurrently 

been aged (e.g., Hohn et al. 1985).  

 Examination of beaked whales from two species taken in whaling operations has 

contributed information on life history traits for ziphiids, including the age at sexual 

maturity, gestation length and longevity.  Kasuya (1977) reported on Baird’s beaked 

whales (Berardius bairdii) taken in the Japanese whaling industry. Females attained 

sexual maturity at 10 – 15 years and males at 6 – 10 years (assuming one GLG is 

equivalent to one year’s growth). The gestation period was estimated to be 17 months. 

The oldest female was 54 and the oldest male was 84 years old. Thus, males apparently 

attained sexual maturity at a younger age and lived 30 years longer than females. Life 

history data for northern bottlenose whales (Hyperoodon ampullatus) commercially 

harvested off Iceland and Norway have also been collected. Benjaminsen and 

Christensen (1979) reported that this species attained sexual maturity at 7 – 11 years for 

both sexes. The gestation period was 12 months (Benjaminsen 1972) and mean calving 

interval was given as 2 years (Benjaminsen and Christensen 1979). Christensen (1973) 

reported maximum ages of 27 for females and 37 for males. However, the value of 

whaling data to inform about age structure of a population is limited as larger animals 

were generally targeted in fisheries and inconsistencies between whaling data and 

stranding data have been noted (Stevick 1999). Additionally, while information from 

these two species is valuable, of the 21 extant ziphiid species (Dalebout et al. 2004), 
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these were the only two hunted commercially, therefore reproductive data and age 

structure for beaked whales are still lacking.  

 For Mesoplodon species, almost all information on age and sexual maturity has 

come from the examination of carcasses from stranded animals (Mead 1989, Heyning 

1989) and is limited by the rarity of strandings of the majority of the species. In a 

summary of reproductive data for beaked whales, Mead (1984) gave maximum size data 

for 11 Mesoplodon species, but only had enough data to present size at sexual maturity 

for M. europaeus females (mean body length 450 cm). Age data are even sparser with 

data for only two species given by Mead (1984): assuming one GLG is equivalent to 

one year’s growth, maximum age of 27 years for M. europaeus (from Perrin and Myrick 

1980); and minimum age at sexual maturity for a female M. densirostris with one 

corpus albicans, indicating this animal had recently become sexually mature at age 9 

years (from Ross 1979). Confounding problems of small sample sizes is the potential 

for bias in basing life history parameters on data from naturally stranded animals 

because these individuals do not necessarily represent the population as a whole (e.g., 

differences may exist in body lengths, age at sexual maturity and longevity between sick 

and healthy individuals). Yet gathering life history data from living cetacean 

populations is challenging and can be exceptionally difficult for beaked whales.  

 In studies of free-ranging cetacean populations, several different characteristics 

have been used to aid in determining life history parameters of individuals. Body length 

can be measured either directly using aerial (Perryman and Lynn 1993, Fearnbach et al. 

2011) or underwater photogrammetry (Spitz et al. 2000, Pack et al. 2012), or can be 

derived from measurements of body features visible above the surface (e.g., dorsal fin, 
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Durban and Parsons 2006; or fluke, Jacquet 2006). Photographs and observations of 

sexually dimorphic features have been used to identify the sex in some species, such as 

the size and head shape of sperm whales (Physeter macrocephalus) (Gordon 1987), 

dorsal fin height of male killer whales (Orcinus orca) (Olesiuk et al. 1990, Durban and 

Parsons 2006), and melon morphology in northern bottlenose whales (Gowans et al. 

2000). Individuals have been identified as female if they are observed in close 

association with calves (e.g., Clapham and Mayo 1987, Slooten et al. 1993, Knowlton et 

al. 1994), but alloparental care does exist in some species (e.g., sperm whales, 

Whitehead 1996) which can lead to mistaken sex assignment. More recently, Herman et 

al. (2008) described new methods to determine age of killer whales by measuring 

specific lipids, endogenous fatty acids and fatty acid ratios in blubber obtained from 

remote biopsy sampling. While the data described above can be collected 

instantaneously, determining age structure of the population generally requires 

longitudinal studies.  

 Individual whales can be aged with certainty if first photo-identified in the first 

year of life. Neonates can be distinguished by the presence of foetal folds: lighter 

pigmented linear “folds” orientated dorsoventrally as a result of the foetus folding in 

utero, which in tropical waters disappear within 1 month after birth (Fearnbach et al. 

2011), thus providing an even finer measure of date of birth. Longitudinal monitoring of 

young cohorts within a population can then provide information on age at sexual 

maturity (e.g., Olesiuk et al. 1990, Herzing 1997, Hamilton et al. 1998, Gowans et al. 

2000, Gabrielle et al. 2009). Age at first parturition in females can be confirmed when 

viable offspring have been documented, although long periods between sightings may 

result in incomplete histories if documentation of the first calf is missed.  
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 Determining age at sexual maturity in males can be more difficult but, in 

sexually dimorphic species, the age at which the development of secondary sex 

characteristics begins can provide evidence of attaining sexual maturity in males [e.g., 

for killer whales, when the fin height to base ratio exceeds that of its mother (Olesiuk et 

al. 1990)]. Behaviour in males may change when they reach sexual maturity especially 

for species in which male competition for mates leads to combat; individuals engaged in 

behaviours associated with breeding suggest they may have reached sexual maturity, 

otherwise why undergo the risk of injury (e.g., Clapham et al. 1992)? For many 

odontocete species, the amount of intraspecific scarring increases with the onset of 

sexual maturity in males [e.g., in ziphiids (Mead et al. 1982, Heyning 1984), sperm 

whales (Gordon 1987), and narwhals (Monodon monoceros) (Silverman and Dunbar 

1980)]. Scarring in both sexes also provides insight into the relative age of individuals 

(young versus old adults) as scars from parasites or predators accumulate with age. For 

example, Walker and Hanson (1999) found increasing numbers of scars from cookie 

cutter shark (Isistius brasiliensis) bites on female M. stejnegeri with increasing numbers 

of corpus albicans. For some species, changes in colour phase has been correlated to age 

(e.g., Herzing 1987) but information on relative age may not always be sufficiently 

precise. What are needed are datasets that span a greater portion of an animal’s life 

history to allow reliable sex identification of all age–sex classes retrospectively (e.g., 

Olesiuk et al. 1990); however, for cetaceans this requires studies spanning a decade or 

more. 

 Although beaked whales are challenging to study because of their diving 

behaviour (Barlow 1999), some populations have been shown to occur reliably in 

localised areas where they have been the focus of long-term photo-identification studies. 



136 

These include northern bottlenose whales in The Gully, off the Scotian Shelf 

(Whitehead et al. 1997); Cuvier’s beaked whales (Ziphius cavirostris) off San Clemente 

Island, southern California (Falcone et al. 2009) and in Hawaii (McSweeney et al. 

2007); and Blainville’s beaked whales in Hawaii (McSweeney et al. 2007), the Canary 

Islands (Aguilar de Soto 2006), and The Bahamas (Claridge 2006 and this study). Life 

history data from photo-identifications of beaked whales have been augmented in these 

studies because ziphiids exhibit sexual dimorphism causing the development of external 

characteristics, which have been used to determine age class and, in some species, sex 

of individuals based on field observations (e.g., Gowans et al. 2000, Claridge 2006, 

McSweeney et al. 2007, Falcone et al. 2009). 

 Dentition in ziphiids has been reduced numerically in all but one species 

(Tasmacetus sheperdi) to only one to two pairs of teeth located in the mandible 

(Heyning 1984), although vestigial teeth can be found in a few species (Mead 1989). In 

Mesoplodon there is only one pair of laterally compressed teeth which are located at 

varying positions in the mandible depending on the species (Moore 1968). At the onset 

of sexual maturity the teeth erupt from the alveoli in males only (McCann 1963, 

Besharse, 1971) and are used in male-male aggression so may be better described as 

“tusks” (Mead et al. 1982, Heyning 1984) or “battle teeth” (McCann 1974). Although 

sexual dimorphism exists in all Ziphiid species, it is most pronounced in Hubbs’ beaked 

whale (M. carlhubbsi) and Blainville’s beaked whale (M. densirostris) (Heyning 1984). 

In these species, as males mature, ossification in the mesorostral canal results from the 

expansion of the vomer, premaxilla and maxilla bones which eventually fuse in older 

males (Moore 1963, Mead 1989). This massive rostral bone serves to reinforce the 

rostrum as males engage in combat (Heyning 1984), and is most developed in M. 
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densirostris in which the rostral bone has the highest density (5.7 g/cm
3
) of any 

mammalian bone tissue measured (Zotti et al. 2009).  

 Male Blainville’s beaked whales also undergo massive development of the 

mandible posterior to the mandibular symphysis and the teeth are located on this 

elevated part of the ramus such that the crown of the teeth project above the rostrum 

(Moore 1968, Besharse 1971). Aggressive use of the teeth in male-male combat results 

in extensive intra-specific scarring or “battle scars” on males (McCann 1974) which 

take the form of either a singular line or two parallel lines, depending on whether one or 

both attacker’s teeth engage, and are one of the most striking external characteristics 

(Heyning 1984). In contrast, females of this species do not undergo development of the 

mandible and the teeth typically remain un-erupted from the alveoli (Besharse, 1971), 

and little or no intraspecific scarring is visible (Heyning 1984, Mead 1989, Claridge 

2006). Distinguishing adult male Blainville’s beaked whales from adult females is thus 

relatively easy from high quality photographs of the head (Figure 4.1).  
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Figure 4.1. Sexual dimorphism in Blainville’s beaked whales makes it possible to 

readily distinguish (a) adult females from (b) adult males using high quality 

photographs of the head. The oval light coloured marks visible on the female’s head are 

scars caused by deep crescent-shaped bites from cookie cutter sharks (Isistius sp.), while 

the linear scarring on the male is evidence of intra-specific combat. The brown 

colouration on both animals is due to diatoms (Bacillariophyta) on their skin. 

 

 Other features visible externally in Blainville’s beaked whales have been 

identified as aids in distinguishing age class and sex, some of which may be useful in 

field observations. Variation in pigmentation patterns noted in stranded animals have 

been suggested as a means of distinguishing immature and mature individuals, but may 

not be representative of true colouration because pigmentation changes quickly upon 

death (Allen et al. 2011). Furthermore, diatoms (Bacillariophyta) often cover portions of 

the skin sometimes making it difficult to distinguish pigmentation of free-swimming 

whales. Distinguishing the sexes of younger Blainville’s beaked whales based on field 

observations can also be problematic, but relative age of individuals can be ascertained 
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based on the extent of scarring. Oval scars attributed to cookie-cutter sharks (Isistius 

sp.) are often scattered over the body (McCann 1963) and are accumulated with age 

(Walker and Hanson 1999). For males, intraspecific scars also accumulate from 

repetitive aggressive social interactions; scarring is heaviest on the oldest and lightest on 

the youngest males (Heyning 1984). Besharse (1971) noted differences in rostral length 

between adult and sub-adult females, but this would likely be difficult to assess in 

photographs of free-ranging animals; however, the length of the tooth in adult males, if 

photographed, could be a good indicator of relative age (Mead et al. 1982).  

 In this chapter, longitudinal photo-identification records were used to designate 

age class and sex to individuals with the following specific objectives: 

1. To assess accuracy of photographic sex designations for individual Blainville’s 

beaked whales by comparing with molecular genetics techniques. 

2. To determine the age at sexual maturity for this species. 

3. To examine and use characteristics from individuals of known age and sex to 

assign age and sex classes to other whales of unknown age when first sighted. 

4. To describe the age structure for the Abaco Blainville’s beaked whale 

population. 

 

4.2 Methods 

4.2.1 Data collection 

 Field work was conducted off the southwest coast of Abaco Island in The 

Bahamas (see Figure 3.1) between 1997 and 2011. Encounters were not restricted to a 
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sampling interval or the 300km
2
 study area used in the mark-recapture analyses 

(Chapters 2 and 3) but included all encounters off the southwest coast of Abaco Island. 

When a group of beaked whales was sighted, the vessel was manoeuvred alongside the 

group so that the photographs were taken perpendicular to the animals when possible. 

Between 1997 and 2003, black and white film (Ilford HP5 or Fujifilm) was shot using 

Nikon 35 mm cameras equipped with high-speed motordrives and a fixed 300-mm F4 

lens. The film was later push-processed to 1600 ASA to increase contrast and help 

reveal markings on the whale’s fin and body. Between 2004 and 2011, Nikon digital 

SLR cameras were used to shoot high-resolution images of at least 6 megapixels. 

Photographs were taken anterodorsally and dorsolaterally, beginning from the tip of the 

rostrum, and as the animal rolled during its surfacing, through the entire length of the 

body. In this way, photographs of the head, thorax, dorsal fin, and tailstock could be 

assigned to one individual. Attempts were made to photograph both the right and left 

sides of all individuals within a group. 

 During some encounters between 2009 and 2011, tissue samples were collected 

from photo-identified individuals using remote biopsy methods. Specifically, biopsy 

darts with 40 mm stainless steel tips (manufactured by Ceta-Dart, Copenhagen, 

Denmark) were fired from a 85-lb crossbow (Barnett RX150 or Wildcat, Barnett 

International, Odessa Florida, USA). Samples were taken from the flank region near the 

dorsal fin. Individuals from all age classes were targeted, except dependent calves. All 

individuals biopsied were photo-identified. Additionally, one sample consisted of 

sloughed skin obtained opportunistically from a live-stranded whale (Md149) before it 

was re-floated and pushed back out to sea. This individual was photographed 

anterodorsally and dorsolaterally during the rescue. Tissue samples were stored in a 
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preservation solution [20% dimethyl sulphoxide (DMSO), supersaturated in NaCl] 

immediately after collection and were later transported to the Southwest Fisheries 

Science Center, La Jolla, California, USA where molecular sexing was completed by 

personnel at the Marine Mammal Genetics Program (see Morin et al. 2005 for genetic 

methods used). To test the reliability of sexing by photographs, a direct comparison was 

made for individuals that were assigned to an age / sex class photographically and for 

which tissues had been collected for genetic analysis.  

 

4.2.2 Photo-identification analysis 

 Each identification image was visually examined using either a light table and 

magnifying eyepiece (for the black and white negatives) or a high-resolution computer 

monitor (for the digital images). Individual beaked whales were identified using the 

unique pattern of scarring on the body and nicks in the dorsal fin or at the base of the fin 

within a rectangular area measuring one dorsal fin base-width in all directions from the 

centre of the fin base, which was defined as the “ID area”. Identification photographs 

were assigned a quality grade (Q) ranging from 0 to 3 (3 being the highest quality 

photograph) based on the image size, focus, lighting, angle, and exposure (e.g., see 

Figure 2.3), and only high quality images (Q > 1) were used in subsequent analyses to 

prevent misidentifications. To further limit identification errors, two researchers 

separately confirmed all new identifications. 
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4.2.3 Assessing Isistius sp. scarring patterns in females 

 The amount of scarring from cookie cutter shark bites was quantified to 

determine the validity of using counts when assigning age class to individuals; 

specifically, the objective was to compare the amount of scarring on adult and sub-adult 

females. Using only photographs of the highest quality (Q = 3), the number of scars 

found within the ID area was counted on mature and immature individuals by two 

experienced observers, independently. Females were considered mature if seen with the 

same calf travelling in echelon position, and immature if they were not seen with a calf, 

on at least three encounter-days over two years. The difference in the number of scars 

on adult and sub-adult females using counts from each independent observer was 

examined and the averaged counts of both observers were evaluated. 

 

4.2.4 Assigning age class and sex 

 External characteristics previously reported for Blainville’s beaked whales 

which may be useful to distinguish age classes and sex from field observations are 

summarised in Table 4.1.  
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Table 4.1. Previous descriptions of external characteristics that can be used to 

differentiate Blainville’s beaked whales by age class and sex.  

Age / sex class 

Body 

length 

(cm) 

External 

Characters 

/Osteology 

Pigmentation* Isistius scars 
Intraspecific 

scars 

Dependent 

calf 

Neonate 

Longest 

foetus 190, 

40-48% 

length of 

mother
1
 

Foetal folds
2
 

White blaze on 

dorsal fin, dark 

border along its 

trailing edge
3
 

None
2
  None

2
 

Calf 

Shortest calf 

261
1
; less 

than 60% 

adult body 

length
3
 

No foetal folds
2
 

Darker dorsally, 

paler ventrally 

than adults
3
, 

dorsal “cap” on 

head
3
 

Few
2
 

Not likely, but 

possible
2,4

 

Sub-adult 

 

Unknown 

Longest 

immature 

415
3
 

No massive 

development of 

mandible
2,5

 

Dorsal “cap” on 

head
3
 

<10 in area 4Xs 

length of dorsal 

fin base
4
 

Possibly
2,6

 

Female  

No massive 

development of 

mandible
7
, rostrum 

shorter than adult 

female
7
 

Dorsal “cap” on 

head
3
 

<10 in area 4Xs 

length of fin 

base
4
 

Possibly
2,6

 

Male 
352

3 

390
8 

Teeth not yet erupted 

above gum, extremely 

stepped mandible
2,5

; 

teeth barely erupted, 

jawline relatively 

straight
4
 

Dorsal “cap” on 

head
3
 

<10 in area 4Xs 

length of fin 

base
4
 

Some scarring 

but less than 

adult male
2,5,9

 

mainly on 

head and 

dorsum
2
; some 

parallel scars
10 

Adult 

Female 
Mean 444

3
, 

470
11 

Lack of tooth 

eruption
2,4,5,7

, longer 

rostral length than 

male
2
, no massive 

development of 

mandible
2 

No “cap” on 

head
3
; medium 

grey dorsally, 

lighter 

ventrally
12 

More than sub-

adult
2
; >10 in 

area 4Xs length 

of fin base
4
; 

extensive
5,10

; 

increase with 

age
13

 

May have 

some
2,4,6,9 

Male 
Mean 443

3
, 

470
11

 

Mandibular 

arch
14,15,16

; teeth 

erupted
5,16,17

; deeper, 

wider, shorter 

rostrum
7,17

 

No “cap” on 

head
3
; dark grey 

dorsally and 

ventrally
18 

>10 in area 4Xs 

length of fin 

base
4
 

More 

extensive 

scarring
5,9,18,19

; 

concentrated 

on head and 

dorsum
2,6

 

Sources: 
1
Mead 1984, 

2
Claridge 2006, 

3
Ross et al. 1988, 

4
McSweeney et al. 2007, 

5
Mead 1989, 

6
MacLeod 2002, 

7
Besharse 1971, 

8
Caldwell and Caldwell 1971, 

9
Heyning 1984, 

10
Leatherwood 

et al. 1982, 
11

Pitman 2008,
 12

Allen et al. 2011, 
13

Walker and Hanson 1999, 
14

Van Beneden and 

Gervais 1880, 
15

Raven 1942, 
16

Moore 1958, 
17

Moore 1968, 
18

McCann 1963,
 19

McCann 1974. 

*Pigmentation described here are from observations of dead animals only. 
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  In this study, individual whales were monitored over a 15-year period and 

ontogenetic changes between observations were noted. Using high quality photographs, 

age class and sex (hereafter called “class”) was assigned to each individual based on the 

following: (1) body length relative to other animals in the photograph, (2) external 

sexual dimorphic characteristics, (3) pigmentation pattern, (4) number of cookie cutter 

shark scars, and (5) extent of intraspecific scars. Three different age classes were used: 

dependent calf, sub-adult, and adult. These classes were further divided; dependent 

calves were separated into neonates and older calves, and sub-adults and adults were 

separated by sex. Calves were assigned an estimated age at first sighting which was 

based on the five characteristics listed above as well as the presence of foetal folds and 

the date of the last sighting of the mother (following Gowans et al. 2000). Calves with 

foetal folds were considered to be very young; Fearnbach et al. (2012) reported foetal 

folds remaining visible for only one month in neonate bottlenose dolphins (Tursiops 

truncatus) from the northern Bahamas. Direct measurements using standardised metrics 

(Geraci and Lounsbury 2005) were taken of two calves that stranded during the study, 

which provided body length data for reference.  

 

4.2.4.1 Determining age at sexual maturity 

 There were six individuals first observed as calves that were re-sighted 

repeatedly over 9 – 14 years, four of which (three females, one male) were monitored 

until sexually mature, which provided information on the minimum age at sexual 

maturity. Detailed examination of the individual sighting histories of these six whales 

was undertaken. 
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 Once the age of each of these calves was assigned, this formed the timeline on 

which to assign ages at the different stages of their maturity. Males were considered 

sexually mature at the age at which their teeth had erupted above the epidermis of the 

mandibular arch, a feature that could readily be documented in photographs. For various 

reasons, defining age at sexual maturity was more difficult for females, particularly 

minimum age. During pregnancy, no change in external characteristics was evident in 

this study so attainment of sexual maturity was undetected until a female was observed 

with calf. Furthermore, a foetus may be aborted or a calf may die before first 

observation. Also, no data existed on gestation time for Mesoplodon so assumptions had 

to be made. Mead et al. (1982) and Walker and Hanson (1999) assumed a gestation 

period of 12 months for M. carlhubbsi and M. bidens so, following this lead, a female 

was considered to be sexually mature one year before the estimated birth date of her 

first observed calf. The estimated age of the female’s calf when first observed was 

important in determining the age of the mother at sexual maturity.  

 For the females, an extended interval of no re-sightings or only one sighting in a 

year made determination of minimum age at sexual maturity problematic. In these 

cases, behavioural observations of association patterns were used to inform on 

maturation status based on reported segregation by age in social groupings in this 

species (see Claridge 2006). However, inference made using this approach needed to be 

interpreted with some caution because the method was somewhat circular; that is, 

assignment of the age class of associates was partially based on the results from 

monitoring the individuals of known ages through their maturation stages. To aid in 

resolving this problem, three critical observations of individuals of known ages in 2012 

(just after this study’s end date) were included because of their valuable contribution of 
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additional information on the observed age at first calving and inter-birth interval for 

females as well as the minimum age at maturity for males. 

 

4.2.4.2 Assigning classes to all individuals 

 Classes were then assigned to all whales observed in this study. If the individual 

was first observed as a calf, the initial step was to estimate the age of the calf using 

methods described above. Relative size of a calf at first sighting was the most important 

characteristic but difficult to quantify. General relative measures were used: individuals 

less than 1 year old were approximately 1/2 the mother’s length, 1-2 year olds were 1/2 

to 3/4 the mother’s length, and 3-4 year olds were greater than 3/4 the mother’s length. 

Next, using the age at sexual maturity determined for known individuals (above), if re-

sightings of calves extended post-separation from the mother, age classes were updated 

accordingly. If an individual was first seen as a sub-adult, characteristics identified in 

this study from known-age individuals and the comparison in cookie cutter shark 

scarring patterns between adult and sub-adult females were used to inform on the most 

likely class assignment.  

 Each class assignment was rated using a certainty factor (C) ranging from 0 – 3 

(3 being the highest certainty level) based on the extent to which relevant features could 

be seen in photographs and thus evaluated. Only class assignments with high certainty 

ratings (C > 1) were included in the summary analyses presented for the study 

population. Analyses were further restricted to include only those individuals seen on 

more than one occasion to ensure classes were assigned correctly as certainty ratings 

were likely to increase with an increased number of sightings. The average number of 
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re-sightings and sighting span times for each class were reported (median and ranges). 

Sighting span times were defined as the time in years between the first and last sighting 

record, and the number of sightings of each individual was counted by encounter-day.  

 

4.2.5 Determining population age structure  

 To describe the age structure of the population, the number of individuals in 

each class was tallied annually and averages across years were calculated. If an 

individual’s class changed within a year, the class when it was first sighted during the 

year was used.  

 Sightings data were also used to calculate the proportion of dependent calves 

(neonates and older calves) to non-calves in each encounter-day to provide a reference 

for interpreting the comparison between Abaco and AUTEC reported in Chapter 2, 

which included a subset of the Abaco data (2005 – 2010). The data used here included 

all calves and non-calves from Abaco over the 15-year study with photo quality Q > 1 

and certainty rating C > 1, and were not restricted to only those individuals re-sighted 

(as above).  

 

4.3 Results 

 During the 15-year study, 35,272 photographs were obtained from 236 sightings 

of Blainville’s beaked whale groups. There were 1,284 whale identifications by 
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encounter-day from high quality photographs (Q > 1), from which 153 individuals were 

identified.  

 

4.3.1 Comparison between molecular and photographic sexing  

 Fourteen skin biopsy samples were collected from 12 different whales (two 

whales were sampled twice, in different years). Additionally, tissue from sloughed skin 

was collected opportunistically from a whale which live stranded and was refloated (ID: 

Md149). Thus there were 13 individuals for which both tissue samples and photographs 

were collected. Sex was assigned photographically for 12 of the 13 whales (seven 

females, five males, and one unknown). For all of these 12 individuals, the designation 

was correct 100% of the time when compared to molecular sexing (Table 4.2). There 

was one animal (Md191) for which sex was designated as unknown based on 

photographs, and was determined to be a male using molecular sexing; so although it 

was not possible to determine sex photograhically for this individual, it also was not 

assigned incorrectly. 
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Table 4.2. Comparison of results of sex determination made for Blainville’s beaked 

whales using photographic and molecular genetic techniques. 

 

 

4.3.2 Comparing cookie cutter shark scars on female age classes 

 Eight individuals from these age classes met the selection criteria; i.e., seen at 

least three times with or without a calf over a two-year period. Five of the eight sub-

adult females were known to be between 5 – 8 years old at the time that the scars were 

counted. Using the mean counts from both observers, there was a significant difference 

in the number of cookie cutter scars in the “ID area” for adult (n = 8) and sub-adult (n = 

8) females (t = 3.5, df = 14, p < 0.005). The number of cookie cutter shark scars on 

adult females ranged from 2 – 6 (mean 3 scars, SD 1.6) and on sub-adult females from 0 

– 2 (mean 1, SD 0.6). Differences in the amount of scarring on adult and sub-adult 

females were significant for all counts; those made by the two observers independently 

and their mean counts (Table 4.3). Differences in counts between observers were 

significant for adult females (t = 2.3, df = 14, p < 0.05), but not for sub-adult females (t 

Sample Field ID Ind ID Photographic sexing Molecular sexing Age class

000315_Md2 Md149 Female Female Adult

080608_Md1 Md231 Male Male Adult

080608_Md2 Md091 Female Female Adult

080613_Md1 Md143 Male Male Adult

080614_Md1 Md209 Male Male Adult

080614_Md2 Md183 Female Female Sub-adult

080614_Md3 Md234 Male Male Sub-adult

080614_Md4 Md070 Female Female Adult

080614_Md5 Md094 Female Female Adult

090505_Md1 Md191 Unknown Male Sub-adult

110223_Md2 Md121 Female Female Adult

110223_Md3 Md130 Male Male Adult

110223_Md4 Md134 Female Female Adult
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= 1.4, df = 14, p = 0.09), although the small number of scars for sub-adults would have 

made it difficult to find significant differences. It is noteworthy that all of the adult 

females and half of the sub-adult females had evidence of intraspecific scarring within 

the ID area.  

 

Table 4.3. A comparison of the number of cookie cutter shark scars counted within the 

ID area on adult and sub-adult females by two experienced observers using high-quality 

photographs (Q = 3). (SD = standard deviation). 

 

 

4.3.3 Age at sexual maturity 

 Sightings histories were compiled for six calves monitored over 9 – 14 years as 

they advanced through the different stages of maturation (Table 4.4). For females, first 

known parturition occurred at ages 10 – 15 years, and minimum ages at sexual maturity 

were estimated to be between 8 – 9 years (based on 12-month gestation times). One 

male attained sexual maturity at age 9 years, while minimum ages at sexual maturity for 

males ranged from 9 to greater than 10 years.

t  stat p  value

Mean SD Median Min. Max. Mean SD Median Min. Max.

1 4.1 1.8 4.0 2.0 8.0 1.3 0.7 1.0 0.0 2.0 4.2 4.5E-04 ***

2 2.1 1.6 1.5 0.0 4.0 0.8 0.7 1.0 0.0 2.0 2.2 0.024 *

Mean 3.1 1.6 2.8 1.5 6.0 1.0 0.6 1.0 0.0 2.0 3.5 0.002 **

*p <0.05, **p <0.005, ***p <0.001, 14 degrees of freedom

Observer

Adult female counts Sub-adult female counts
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Table 4.4. Sighting histories of Blainville’s beaked whales monitored from calves to or near the age at sexual maturity. (C) = calf 

born before year first seen (year estimated), C = dependent calf, S = sub-adult [separated from mother, and not seen with calf 

(females), or teeth not erupted (males), not associated with known adults], A? = poss. adult female (≥ 9 yr old but not seen with 

calf), A = confirmed adult (for females includes 1 year before parturition, and for males year in which observation of teeth 

erupted), M = observed with calf, (M) = not seen in that year but observed the following year with a 1-year old calf , T = teeth 

erupted, X = not seen. Obs. age first calving = female's age at first observation with a calf. Min. age first calving = female’s 

minimum age at first calving. Obs. age first teeth = male's age at first observation of teeth erupted above mandibular arch. Min. 

age first teeth = male’s minimum age at eruption of the teeth. 

 

FEMALES 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Obs. age 

first 

calving

Min. age 

sexual 

maturity

Md107 (C) (C) C C X X S S X X A? X X X A (M) 15 ?

Md134 (C) C C C/S X S X S A? A? X A (M) M 12 8 - 9

Md135 (C) C C S X S S X S? A M X X A 10 9

MALES 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Obs. age 

first 

teeth

Min. age 

sexual 

maturity

Md115 C C C S X X S X S X X X X > 8 > 8

Md143 (C) C C S X S S S X T X A A 9 9

Md191 (C) C C X S X X S X X > 10 > 10
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 Detailed examination of the sighting histories for each of these calves was 

undertaken. For the females, although all three were resighted throughout the study, the 

most detailed sighting histories were compiled for Md135. Based on Md135’s size at first 

observation and earlier sightings of her mother in which the calf was absent, Md135 was 

estimated to be 1 year old when first sighted. She was sighted on 6 separate encounter-days 

as a dependent calf, until separation from her mother at age 3. Following separation, there 

were eight re-sightings of Md135 between 2001 – 2007 during which time she was not 

observed with a calf. First known parturition for Md135 occurred at age 10 when she was 

seen with a neonate in echelon position (group size = 2). Assuming a gestation time of 12 

months (following Mead et al. 1982 and Walker and Hanson 1999), Md135 would have 

reached sexual maturity at age 9.  

 Minimum age at sexual maturity was also estimated to be 9 years old as it did not 

seem reasonable that Md135 had lost a calf previously based on behavioural observations 

of her associations. Although there was a interval of 16 months between re-sightings in 

2004 and 2006, in each of the three encounters in 2004, Md135 did not associate with 

known adults, but only with individuals presumed to be sub-adults. She was re-sighted only 

once in 2006 with only one other whale: Md107, who was 10 years old at the time and may 

have recently attained sexually maturity although she had not been documented with a calf 

(see description of her sighting record below). Md135 was only sighted once in 2007, but 

this was the first encounter in which her associates included known adults since separation 

from her mother. These observations provide some support for Md135 not attaining sexual 
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maturity until 2007, at the minimum age of 9 years. In 2012, Md135 was observed with a 

second neonate, demonstrating an inter-birth interval of 4 years.  

 The sighting histories for Md134 and Md107 were not as detailed. Md134 was 1 

year old when first sighted, was seen on 6 different encounter-days as a dependent calf, and 

first observed separated from her mother at the end of 2001, when age 3. She was re-

sighted on 13 occasions post-separation between 2001 and 2010, but not observed with a 

calf until 2011. Her calf was estimated to be 1 year old at the time of first sighting which 

implies that the age at first known parturition for Md134 was 12 years, and thus age at 

sexual maturity was 11 years. However, the minimum age at sexual maturity for Md134 

may have been earlier based on observed changes in her association patterns at a younger 

age. Prior to 2006, Md134’s associates were sub-adults only but, in 2006, she was re-

sighted on six occasions and during all of these encounters her associates included adults. 

She was re-sighted only once in 2007, again with adult associates. It is possible that Md134 

was sexually mature in 2006 and lost a foetus/calf before the 2007 re-sighting, resulting in 

an inter-birth interval of 3 years. Or she may not have reached maturity until 2007 but then 

lost a foetus/calf soon after (she was not seen in 2008), resulting in an inter-birth interval of 

2 years. If either scenario were true, her minimum age at sexual maturity could have been 8 

– 9 years. 

 The third female, Md107, was 2 years old when first sighted, seen five times as a 

dependent calf, and separated from her mother at a minimum age of 4 years. After a 2 year 

gap in sightings she was re-sighted again in 2002 and 2003 when she was not associated 

with known adults. After this period her sighting history became even more scant. At age 
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10, she was re-sighted again (in 2006) but only once; during this encounter her only 

associate was Md135, who at that time was 8 years old and not quite sexually mature. 

Md107 was not re-sighted again until 2010 at which time she was not observed with a calf 

but associated with mother-calf pairs. When she was next re-sighted (in 2012), she had a 1 

year old calf, so her known age at first parturition was 15 (in 2011), and age at sexual 

maturity was 14 years. With such a limited number of post-separation observations of 

Md107, determining the minimum age at sexual maturity was not attempted. 

 Although all three males were first documented as calves and observed post-

separation from their mothers, only one of these matured during the study (Md143). Md143 

was a 1 year old when first observed, was seen 13 times as a dependent calf, and separated 

from his mother at age 3. Post-separation, Md143 was re-sighted five times between 2002 

and 2006. He did not associate with known adults until age 6 at which time his associates 

included adult males, females with calves and Md115 (another sub-adult male, also age 6) 

in mixed groups. By age 7, Md143’s jawline showed only minimal enlargement of the 

mandibular arch, but he then had one heavy intra-specific scar behind the blowhole, and 

had accumulated numerous short linear scars. None of the intraspecific scars were parallel 

suggesting they resulted from contact with only one tooth. However by age 9, photographs 

of Md143 showed the apex of his teeth above the epidermis of the mandible, and his head 

and dorsum were marked with a multiple overlapping scars, including parallel scars. Based 

on these observations it was determined that Md143 reached sexual maturity at age 9. Even 

though Md143 was not re-sighted in 2007 (age 8), his teeth were just barely visible in 2008 
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and thus recently erupted, so 9 years was also considered to be the minimum age at sexual 

maturity for Md143. 

 The other two males were not sexually mature when last sighted but provided 

further information on minimum ages at sexual maturity in males. One of these (Md115) 

was first seen as a neonate and observed nine times as a dependent calf. He was first 

observed separated from his mother at age 3, and then four times post-separation. His 

pattern of associations was very similar to that of Md143; at age 6 he began associating in 

mixed groups with adult males, females with calves (including his mother), and other sub-

adult males. Photographs taken during the last sighting in 2007, at age 8, showed that, 

although the mandible had developed extensively, his teeth had not yet erupted. Md115 was 

not seen again so, although the age at which he reached sexual maturity was not 

determined, the minimum age of maturity was greater than 8 years.  

 Md191 (a younger sibling of Md143) was first observed when 1 year old, and seen 

seven times as a dependent calf. Separation from his mother occurred at a minimum age of 

3 years old. Post-separation Md191 was only seen two more times; once in 2006 (age 5), 

when he was associated with his mother and her new calf, and again in 2009 (age 8), when 

his associates included an adult male, Md134 (pregnant with her first viable offspring) and 

a known sub-adult female. There was no evidence of development of the mandibular arch 

at this time. However, photographs from 2012 showed massive mandibular development 

but the teeth had not yet erupted. Thus the minimum age for attainment of sexual maturity 

for Md191 was greater than 10 years of age. 



156 

4.3.4 Characteristics used to assign age class and sex 

4.3.4.1 Dependent calves 

4.3.4.1.1 Neonate: In this study, individuals were designated as neonates only if foetal folds 

were observed. One neonate (Md115) was first sighted when very small, the dorsal fin 

leaned to one side, and deep grooves formed the foetal folds. Md115 was re-sighted 29 

days later and the foetal folds were faint, but were still visible, therefore the age at which 

dependent calves would no longer be considered neonates using the definition here 

appeared to be around 6 weeks of age. Other characteristics observed for neonates included 

the presence of a light blaze of pigmentation on dorsal fin, with dark leading and trailing 

edges and their very small size (Figure 4.2), estimated to be 1/3 the length of their mother.  

 An additional characteristic unique to neonates was different pigmentation of the 

rostrum and lower jaw to other age classes. In individuals with foetal folds, the rostrum was 

pigmented a dark grey colour which became increasingly dark anteriorly. This was 

contrasted against the creamy-white colouration of the lower jaw, which was uniform 

throughout with the exception of dark grey lips. Within several months after birth, the 

rostrum became medium grey, the same colour as the remainder of the animal 

dorsolaterally. Pigmentation changed to medium grey in the lower jaw as well but only 

posteriorly, in the region of the mandibular arch characteristic of this species; anteriorly, it 

remained creamy-white (Figure 4.3). 
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Figure 4.2. Photographs of three different neonates showing a pair of the foetal folds on 

each whale (the black arrows in each picture point to the foetal folds) as well as other 

characteristics unique to this age class. The light blaze of pigmentation in the central part of 

the dorsal fin with dark leading and trailing edges is a clear feature in (a) and (b), but only 

the darker edges are visible in (c), which is an indication that it is older.  Their small size is 

referenced by the two green dots visible anterolaterally on the whale in (b), from lasers 

mounted parallel and 10 cm apart on the camera lens, and also compared to the relative size 

of the mother in (c). 
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Figure 4.3. Comparison of the pigmentation patterns on the rostrum of two neonates (a) and 

(b), and two older calves, (c) 3-months old and (d) 1-year old. 

 

4.3.4.1.2 Calf: In this study, a young individual was designated a calf if foetal folds were 

not visible. The age of the calf (birth year) was more difficult to determine than that of a 

neonate but was based on several features, including pigmentation, the amount of scarring, 

and its size relative to its mother, the latter two increased with increasing age (Figure 4.4). 

The darker pigmentation around the edges of the dorsal fin could be discerned in some 

calves of less than 1 year old, but some individuals known to be younger than 1 year (based 

on the mother’s sighting history) did not show this. Similarly, the number of scars from 

Isistius bites varied individually but still provided a useful feature for distinguishing young 

calves from older calves. At age 3-4 years, calves separated from the mother, at which time 

their external characteristics included having adult pigmentation (medium grey dorsally and 

laterally, creamy-white ventrally), scarring generally included more than one cookie cutter 
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bite dorsolaterally, as well as possible intraspecific scarring, and they often had acquired a 

nick in the dorsal fin or tailstock, and their length was greater than 3/4 the length of the 

mother. 

  

Figure 4.4. Pigmentation and Isistius sp. scarring in dependent calves of varying ages: (a) 3 

months, (b) 6 months, (c) 1 year, (d) 2 years, (e) 3 years.  
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 Total length measurements taken from two immature whales that stranded during 

the study provided some insight for using relative size as a determinant for age in calves. 

The first of these was a male with a total body length of 336 cm (using standard 

measurements as per Geraci and Lounsbury 2005). This animal stranded coincident with an 

anti-submarine warfare exercise on March 15, 2000. The necropsy report for this individual 

(and all others in this atypical stranding) indicated it was healthy at the time of stranding 

(see Evans and England 2001 for details) but, unlike the other sub-adult and adult whales 

which also stranded, no prey remains (e.g., cephalopod beaks) were found in the stomach of 

this individual (Hickmott 2005). For this reason it was judged to be a dependent calf. 

Externally, there was no evidence of intraspecific scarring but multiple cookie cutter shark 

scars were noted both dorsally and ventrally. The second individual was a female with a 

total length measurement of 250 cm. There were no foetal folds visible and two cookie 

cutter shark bites were noted ventrally, near the genital region, but none dorsally. This 

whale was severely emaciated but cause of death was never determined. Based on its small 

size (smaller than previously reported for a M. densirostris calf), and lack of scarring 

dorsally, it was considered to be approximately 6 months old. The younger calf was 53 – 

56% of the mean lengths for adult females given by Ross et al. (1988) and Pitman (2008), 

while the older calf was 71 – 76% of reported adult female length which provided some 

support for the general relative measures used in this study to estimate calf age.  
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4.3.4.2 Sub-adults 

 Sub-adults were those individuals which were no longer dependent calves but did 

not show characteristics known for adults. Specifically, these individuals had few cookie 

cutter shark scars and lacked erupted teeth or did not have a calf. Additionally, intraspecific 

scarring was absent or minimal. Young sub-adults were notably smaller than adults but size 

was difficult to use to differentiate older sub-adults from adults. Based on known ages of 

separation and onset of sexual maturity, sub-adults were considered to be between 4 – 8 

years old. 

 

4.3.4.2.1 Sub-adult female: Sub-adults were assigned as females retrospectively. There 

were no external characteristics that could be used to distinguish a sub-adult female from a 

sub-adult male until they were approximately 6 – 8 years old, the age at which 

morphological changes associated with sexual dimorphism became evident. Therefore, an 

individual was designated the sub-adult female class if its age was known and, if it had 

reached age 8, it had not developed morphological characteristics of a sub-adult male, 

and/or if it was later re-sighted with a calf. If it was never re-sighted, its designation was 

sub-adult of unknown sex (Figure 4.5). 
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Figure 4.5. Five sub-adult whales of varying ages and both sexes: (a) Md197 at age 5 years, 

(b) Md190 at age 6 years, and (c) Md134 at age 7 years. These three were later determined 

to be females based on re-sightings when they were more than 8 years old. If they had not 

been re-sighted, their designation would have remained sub-adult of unknown sex. The 

other two photographs are of sub-adult males: (d) at age 6, Md143 has some intraspecific 

scarring on his head, and (e) at age 8, Md115 is beginning to show development of the 

mandibular arch, although he is lacking intraspecific scarring. Field notes from these 

encounters designated both as probable males at the time these photographs were taken. For 

sub-adults with either of these characteristics that were not later re-sighted, their 

designation would have been sub-adult male with certainty rating C = 2. 
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4.3.4.2.2 Sub-adult male: Individuals were designated as sub-adult males if evidence of 

sexual dimorphism was noted (Figure 4.6). Characteristics included expansion of the 

posterior region of the mandible, sometimes resulting in extreme elevation of the ramus, 

but with no evidence of erupted teeth. Intra-specific scarring concentrated in the antero-

dorsal region could range from none to a dense network of overlapping scars, but even 

when scarring was extensive, tooth rakes appeared to have penetrated to a shallower depth 

than in adult males. The sex was also assigned retrospectively if an individual was re-

sighted at a later date with either these characteristics or those of an adult male. 

 

4.3.4.2.3 Sub-adult unknown: Individuals lacking adult characteristics that were never re-

sighted so sex could not be assigned retrospectively. 
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Figure 4.6. Four sub-adult males at varying stages of expansion in the posterior region of 

the mandible. Even before morphological changes were obvious, intraspecific scarring on 

the head and dorsum (a) was used to assign individuals to this class. Scarring from male-

male combat increased as the elevation of the ramus continued but still seemed to consist of 

scars inflicted by one tooth only (b – d). The whale in (b) shows development of the dorsal 

ridge posterior to the blowhole. The right tooth of the whale in (c) erupted 2 years after this 

photograph was taken, but not the left tooth, although the area of tooth eruption looks 

abraded here. Photograph (d) is of Md191 at age 10 years and not yet sexually mature. 

 



165 

4.3.4.3 Adults 

4.3.4.3.1 Adult female: An individual was automatically assigned to this class if it was seen 

with a neonate or small calf in echelon position. Assignment was also made if an 

individual’s size was larger than young sub-adults, had numerous cookie cutter shark scars 

and was seen in close association with a calf. Based on the known age for onset of sexual 

maturity, adult females were considered to be at least 9 years old. Therefore, if an 

individual’s age was known to be more than 9 years, its class was re-assigned to an adult 

female if it had the features described above, even if it was not seen with a calf. 

Additionally, if a calf was not present at all, individuals were assigned to the adult female 

class if they had extensive cookie cutter shark scarring but no evidence of heavy 

intraspecific scarring anterodorsally (Figure 4.7). Based on minimum ages at sexual 

maturity, eight adult females first documented with calves in the first years of the study had 

minimum ages ranging from 18 – 23 when re-sighted in the later years of the study. 
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Figure 4.7. Adult females of known and minimum ages: (a) 10 years old, (b) 11 years old, 

(c) 13 years old, (d) at least 18 years old, and (e) at least 21 years old. Although all of these 

were sexually mature when photographed, without previous knowledge of the age of 

individuals or unless they were seen with a calf, based on the amount of cookie cutter shark 

(and intraspecific) scarring, only the individuals in (c) – (e) would be designated as adult 

females with certainty C > 1. 

 



167 

4.3.4.3.1 Adult male: An individual was automatically designated as an adult male if the 

teeth had erupted above the mandible, or if the teeth themselves were not visible but stalked 

barnacles (Conchoderma auritum) were present because this commensal species is unable 

to attach directly to the skin and must rely upon exposed hard substances such as teeth 

(Mead et al. 1982). Additionally, both teeth did not have to be visible because teeth did not 

necessarily erupt at the same time and erupted teeth sometimes broke off (pers. obs.), 

presumably during intense male-male combat. If photographs of the teeth were not 

obtained, individuals could still be reliably classed as adult males based on other 

characteristics (Figure 4.8), including (1) all adult males had massive development of the 

ramus; and (2) intraspecific scarring consisted of accumulation of deep lacerations on the 

head and dorsum, and concentrated on a ridge on the dorsum immediately posterior to the 

blowhole, although scarring could be found anywhere on the body. Adult males were also 

larger in size than adult females but this characteristic was not used independently of those 

described above. Adult males were considered to be a minimum age of 9 years. There was 

one adult male documented in the first year of the study which was re-sighted in the last 

year at a minimum age of 23 years, based on minimum ages at sexual maturity.  
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Figure 4.8. Antero-dorsal photographs of five adult males. The youngest adult is shown in 

(a); only the left tooth has erupted and this has occurred recently evident by the discoloured 

tissue near the tooth and the small size of the tooth. The individuals in (b) and (c) had teeth 

of a similar size and thus may have been of a similar age, but the animal in (c) had more 

extensive intraspecific scarring and the dorsal ridge (posterior to the blowhole) appeared 

larger. The tooth/teeth were visible in (a – b) but in (c – e), the teeth are covered by the 

stalked barnacle (Conchoderma auritum) giving them the dark colouration. The right tooth 

of the whale in (d) had broken off. Based on relative tooth size, the animal in (e) is 

probably the oldest whale in the series of photographs, but both (d) and (e) demonstrate the 

accumulation of intraspecific scarring through repetitive aggressive social interactions. 
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4.3.5 Population age structure 

 Using the characteristics described above, classes were assigned to 153 whales 

which were identified from high-quality photographs (Q > 1). Of these, only five 

individuals had a low certainty rating (C < 2). The population age structure analyses were 

based only on data from those individuals that were re-sighted at least once during the 

study, which resulted in 647 observations of 81 individuals (Table 4.5).  

 The median number of sightings by encounter-day was four (range 2 – 41 sightings) 

with lag times between re-sightings ranging from 1 day to 14 years (median 3.75 years).  

Based on these data, the average annual proportion of the study population represented by 

each class was summarised (Table 4.6). On average, the adult female class represented the 

greatest fraction of the population annually (mean 0.44, SD 0.10), while dependent calves, 

sub-adults and adult males were represented equally. In all, the fraction of mature animals 

found in the study population was greater than immatures (mean 0.63, SD 0.9). Moreover, 

there were more than twice as many adult females as adult males (ratio 2.42:1), and almost 

three times as many adult males as sub-adult males (ratio 2.89:1). Dependent calves 

primarily comprised non-neonate calves with only a few neonates observed annually (mean 

0.2, SD = 0.1). 
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Table 4.5. Summary data for individuals assigned to a specific age, and when possible sex 

class during the study. Classes are: N = neonate, C = calf, SU = Sub-adult unknown sex, SF 

= subadult female, SM = subadult male, AF = adult female, and AM = adult male. Span 

time is the time in years between the first and last sighting record, and the number of 

sightings were counted by encounter-day. The six individuals first seen as a calf and 

monitored through or near to maturity are highlighted in grey. 

  

N C SU SF SM AF AM N C SU SF SM AF AM

Md067 X 5 5.30 Md173 X 2 0.01

Md068 X 2 3.15 Md179 X 3 0.83

Md069 X 6 14.07 Md180 X 4 1.88

Md070 X 29 11.00 Md181 X 3 2.52

Md071 X 9 4.15 Md183 X X 4 6.15

Md072 X 2 0.90 Md184 X 2 4.04

Md073 X X X 10 3.06 Md185 X 3 3.07

Md075 X 25 8.80 Md190 X X 14 8.43

Md076 X 41 12.82 Md191 X X 10 6.25

Md078 X 14 5.51 Md193 X 3 4.76

Md079 X 14 7.05 Md194 X X 2 4.04

Md091 X 9 12.94 Md196 X X 9 7.99

Md094 X 39 13.09 Md197 X X 8 4.77

Md106 X 29 8.38 Md198 X X 12 3.87

Md107 X X X 11 11.83 Md200 X 2 0.32

Md111 X 2 2.60 Md201 X 3 0.64

Md112 X 4 9.85 Md202 X 2 0.12

Md115 X X X 13 8.01 Md203 X 2 0.12

Md121 X X 10 12.43 Md208 X X 3 3.75

Md129 X X 4 3.22 Md209 X 8 5.82

Md130 X X 5 12.00 Md211 X 6 3.99

Md132 X 2 1.49 Md213 X 2 1.01

Md133 X 14 2.29 Md214 X X X 4 4.96

Md134 X X X 20 12.04 Md215 X 2 2E-03

Md135 X X X 19 12.03 Md217 X X 4 2.48

Md138 X 4 3.06 Md219 X 3 2.04

Md139 X 8 11.88 Md221 X 2 0.40

Md141 X 36 11.46 Md238 X 2 2.18

Md142 X 22 2.34 Md241 X 1 3E-03

Md143 X X X 22 11.44 Md242 X 4 1.15

Md144 X 2 7.72 Md243 X 1 3E-03

Md150 X 9 2.89 Md244 X 1 3E-03

Md151 X 18 1.54 Md245 X X 3 1.01

Md152 X 3 4.29 Md246 X 4 1.02

Md155 X X 4 4.03 Md248 X 5 0.79

Md156 X 2 7.22 Md249 X 3 0.26

Md160 X 2 7.22 Md250 X 4 0.48

Md163 X 2 10.76 Md297 X 3 0.05

Md167 X 8 1.38 Md298 X 4 0.05

Md170 X 3 6.16 Md299 X 4 0.01

Md171 X 2 0.01

Enc-

days

Span 

(years)
IDs IDs

Calf Sub-adult AdultCalf Sub-adult Adult Span 

(years)

Enc-

days
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Table 4.6. Summary statistics for the average annual proportions represented by each class 

in the study population for individuals seen more than once, identified in high quality 

photographs and with high class certainty ratings (SD = standard deviation). 

Age / sex class Mean SD Median Min. Max. 

Calf - all 0.18 0.10 0.20 0.00 0.35 

Neonate 0.02 0.01 0.00 0.00 0.09 

Calf 0.16 0.09 0.18 0.00 0.29 

Sub-adult - all 0.19 0.14 0.17 0.00 0.50 

Sub-adult unknown 2.6E-03 9.9E-03 0.00 0.00 0.04 

Sub-adult female 0.11 0.10 0.09 0.00 0.30 

Sub-adult male 0.07 0.07 0.05 0.00 0.20 

Adult female 0.44 0.10 0.45 0.20 0.67 

Adult male 0.19 0.07 0.18 0.08 0.36 

 

 Variation in the annual proportion represented by each class is shown in Figure 4.9. 

There were no sub-adults identified in 1997 and 1998, and no dependent calves in 2008 and 

2009, while adult females and adult males were seen in all years.  
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Figure 4.9. Annual proportion of each age/sex class. The italicised numbers at the top of each bar represent the total number of 

individuals in each year. 
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4.4 Discussion 

4.4.1 Assignment of age / sex class 

4.4.1.1 Dependent calves 

 Some of the features used here to classify individuals as neonates confirmed 

previously published descriptions but there were also some discrepancies. Pigmentation 

patterns described by Ross et al. (1988) for dead stranded calves were confirmed for 

free-swimming individuals. These included a blaze of lighter pigmentation on the dorsal 

fin and light colouring ventrally, including under the lower jaw. However, pigmentation 

was found to change in one individual by 3 months of age. Ross et al. (1988) also 

described a dark cap on the head of immature animals that was not evident in any 

individuals in this study. 

 Here, although data were limited and quantitative photogrammetry methods 

were not applied, calf size appeared smaller than previously reported by Mead (1984), 

based on the size of neonates relative to their mothers and the total length measurements 

for the stranded female (estimated to be 6 months old). The estimated length of neonates 

was smaller than the size Mead (1984) reported for the longest foetus, and the length of 

the stranded female in this study was smaller than previously published size for a M. 

densirostris calf. Efforts are underway to estimate length using photogrammetry 

methods developed by Durban and Parsons (2006), but multiple photographs of each 

animal will be needed to incorporate errors associated with varying photograph-whale 

angles (see Webster et al. (2010) for details). Aerial photogrammetry (e.g., Perryman 

and Lynn 1993, Fearnbach et al. 2011) or photographs taken from a vessel’s mast 

showing the horizon (e.g., Gordon 1990) may be better approaches. This work could 
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also lead to development of age-length curves for M. densirostris which would be 

extremely valuable in monitoring future population health through individual growth 

rates (e.g. Fearnbach et al. 2011).  

 Odontocetes are generally thought to be income breeders (Perrin and Reilly 

1984, Huang et al. 2009), yet Huang et al. (2010) predicted relatively large birth size 

and high prenatal growth rates for beaked whales, and therefore classed them as capital 

breeders. Huang et al. (2010) suggested that beaked whale foraging behaviour could be 

the primary reason for beaked whale calf size at birth to be larger than expected. Beaked 

whales exhibit extreme diving behaviour (Hooker and Baird 1999, Tyack et al. 2006, 

Baird et al. 2006) and, as such, may be unable to enhance food intake much further 

during lactation. Long post-dive recovery periods are required and therefore the number 

of dives is limited (Arranz et al. 2012). Dive duration in calves, including neonates, is 

the same as their mothers (pers. obs.). Therefore, beaked whale calves may need to be 

larger in order to be more advanced behaviourally and energetically to develop this 

diving capability. However, calves in the Abaco population do not appear to be quite as 

large as previously reported from strandings. 

   

4.4.1.2 Sub-adults 

 The sub-adult class was the most difficult to assign, partly because some of the 

published descriptive features for individuals in this age class were not observed in the 

Abaco population and were thus of no use. Ross et al. (1988) described pigmentation 

differences in sub-adults and adults which included a dark cap over the dorsal surface of 

the head; this was not evident in the Abaco whales and is likely the result of colour 
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change due to decomposition of dead stranded animals. No difference at all in 

pigmentation was found between sub-adults and adults.  

 There was a discrepancy found in the way in which sub-adult males were 

designated here and by McSweeney et al. (2007). Sub-adult males in the Abaco 

population had undergone development of the ramus at least two years before the teeth 

erupted and, by the time the teeth were visible, were considered to be adult males with a 

massive elevated step in jawline. Berharse (1971) described males as sexually mature 

when the teeth had erupted above the alveoli in the mandible which would have 

occurred at an earlier age than when visible above the epidermis of the mandible, the 

characteristic used in this study. So males were still immature when the jawline was 

relatively straight and no longer sub-adults when the teeth had erupted which is contrary 

to descriptions of sub-adult males by McSweeney et al. (2007).  

 Correlation between the amount of scarring from cookie cutter sharks and age 

reported by Walker and Hanson (1999) was validated in this study, although its utility in 

the field appears somewhat limited. Although the number of Isistius sp. scars was useful 

in distinguishing young animals from very old ones, it was insufficiently definitive to be 

used to differentiate mature and immature females around the age of onset of sexual 

maturity because there was overlap in the range of counts for adults and sub-adults. 

Furthermore, counts were inconsistent between very experienced observers using 

photographs of the highest quality. This was despite standardisation of counts from only 

within the ID area, which eliminated the need to prorate counts to compare scarring 

between individuals, as done in a similar study by McSweeney et al. (2007) in which a 

larger but inconsistent area on the whale’s body was used. Isistius sp. densities vary 
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geographically, so counts used by McSweeney et al. (2007) to distinguish age classes in 

Hawaii may not be appropriate for the Abaco population. Density differences may even 

apply on a smaller scale, such as between whales at the Atlantic Undersea Test and 

Evaluation Center (AUTEC) off Andros Island (see Chapter 2) and Abaco, which 

deserves further investigation. Finally, it is unknown how individual health affects the 

level of success or failure of attacks by cookie cutter sharks.  

 Similarly, for young sub-adults intraspecific scarring could not be used alone as 

an indication of sex unless scars were found on the head and dorsum, which occurred in 

males at a very young age. Intraspecific scarring on females was not uncommon 

suggesting these resulted from intentional attacks by males and not because a female 

happened to be in the way during male-male interactions as suggested by McCann 

(1974). 

 

4.4.2 Age at sexual maturity 

 The new information on age at sexual maturity for Blainville’s beaked whale 

from this study adds substantially to previous knowledge, despite the small sample size. 

One adult female followed from a dependent calf through maturity was 9 years old at 

the onset of sexual maturity. A minimum age at sexual maturity of 8 – 9 years was 

estimated for a second individual. These findings provide support for a minimum age of 

9 years old for a female examined post-mortem by Ross (1979), until now the only 

information for this species, and is also similar to ages reported from whaling data for 

female Baird’s beaked whale (Kasuya 1977) and northern bottlenose whale (Christensen 

1973). Unlike Baird’s beaked whale but similar to the northern bottlenose whale, male 
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Blainville’s beaked whales appeared to mature at a similar age to females. One male 

first seen as a dependent calf matured when 9 years old but another male had not yet 

reached sexual maturity by age 10, suggesting some individual variation and 

demonstrating the need for larger sample sizes. However, using similar methods as here, 

Gowans et al. (2000) showed that free-ranging northern bottlenose whale males mature 

at a similar age to those reported here. Combined, these studies support the reported 

ages of sexual maturity using both stranding and whaling data.  

 However, age reported here should not be considered absolute because it was 

based on a timeline beginning from an estimated age when a calf was first sighted and 

none of the whales that matured during the study were first seen as neonates. Assigned 

age could be wrong by +/- 1 year depending on individual differences in length at birth, 

growth rates, and scarring patterns. If this population continues to be monitored, age at 

sexual maturity will be able to be determined with greater accuracy as more known-age 

individuals become mature. Continued monitoring of this population will also allow 

maximum ages of known individuals to be updated. Although the minimum ages 

reported here are similar to that reported for the oldest stranded Mesoplodon (Perrin and 

Myrick 1980), they likely do not represent Blainville’s beaked whale longevity which 

may be closer to 50 – 80 years as reported for Baird’s beaked whale by Kasuya (1977).  

 

4.4.3 Age / sex structure of the population 

 Population age / sex structure has not been previously described for a 

Mesoplodon species, thus the work presented in this chapter for the Abaco population 

provides a baseline from which to begin understanding the mechanisms underlying this 
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structure. Age structure is a function of differential survival and reproductive rates and 

age at sexual maturity as well as sampling relative to dispersal (permanent emigration 

and immigration). Age structure within a population or between populations can vary 

geographically if there are age- and/or sex-specific differences in prey or habitat 

preferences (e.g., Robbins 2007, Herman et al. 2008), or temporally as a result of 

environmental changes which may disproportionately affect one age class, typically 

juveniles (e.g., Gannon and Willig 1994). As such, even when knowledge of age 

structure is extensive, it can be used only to make limited inference about these key 

parameters. However, if baseline information is available, age /sex structure can be 

extremely valuable in detecting changes in demography as a result of environmental 

change or perturbations. For example, the difference found in the age composition 

between whales at Abaco and AUTEC (Chapter 2), has highlighted a need for future 

monitoring.  

 In this study, exact age could be estimated for those individuals first seen as 

calves, but other whales had to be assigned to a class characterised by a range of ages. 

Despite this limitation, results generated seem consistent with what is known about this 

species’ social structure. For example, one would expect there to be a higher proportion 

of adult females than adult males annually in a polygynous resource/female defence 

harem-type mating system (Claridge 2006). However, it should be noted that in this 

study the sampling area was limited to the south-western coast of Abaco Island, an area 

regularly used by adult females (Chapter 3). As such, the age structure described here 

may be that of a part of the population, rather than full sampling of a stock. 
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  For beaked whales, sound associated with naval exercises is thought to impact 

immature whales to a greater extent than adults (Cox et al. 2006), possibly because they 

are more naïve. Therefore, information on age structure may be an important component 

of mitigation and monitoring for populations exposed to sonar use on a regular basis, 

such as Blainville’s beaked whales at AUTEC (Chapter 2). In the Abaco study, 

temporal variation in age / sex structure or in the proportion of calves to non-calves did 

not exist, perhaps providing a valuable baseline on which to compare aspects of the 

population dynamics to those of the whales found at AUTEC.  

 

4.4.4 Conclusions 

 In this study, sighting history data were used to investigate characteristics which 

can be used to categorise the age and sex of individual Blainville’s beaked whales in the 

Abaco study population. This allowed inference to be made about the age at sexual 

maturity, minimum longevity for adults and the population’s age / sex structure. When 

high quality photographs were available, class assignment was possible for 97% of the 

study population. Furthermore, accuracy in sexing from photographs increased to near 

100% for individuals of approximately 6 years old and greater, i.e., older sub-adults. 

This work has validated some characteristics that have been used previously to assign 

age class and sex to Blainville’s beaked whales, much of which was based on stranded 

individuals, provided new information, and found some contrary descriptions. Of equal 

importance is that the information gathered here on the age / sex structure of the Abaco 

population can be applied to mark-recapture models to incorporate individual age and 

sex to remove some aspects of heterogeneity and improve model estimates (Chapter 5).  
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CHAPTER 5 

 

AGE AND SEX SPECIFIC POPULATION DEMOGRAPHICS OF BLAINVILLE’S 

BEAKED WHALES (MESOPLODON DENSIROSTRIS) 

 

 

5.1 Introduction 

 Accurate estimates of demographics are important for understanding population 

dynamics and implementing effective wildlife management. However, estimating 

abundance and survival of wild, free-ranging populations is inherently difficult. 

Statistical models using mark-recapture data can provide a reliable way of estimating 

abundance and survival but conventional mark-recapture models are built on the 

assumption that all individuals have equal probability of capture and survival between 

captures (Seber 1982, see Chapter 2 for details). If individual heterogeneity exists but is 

ignored, abundance estimates can be negatively biased because a biased sample of 

individuals are re-sighted repeatedly (Cormack 1972, Pollock et al. 1990) and this bias 

in abundance can be substantial (Hammond 1990). Thus, decreasing bias associated 

with individual heterogeneity in mark-recapture models is an on-going challenge. This 

task is difficult even when mark-recapture samples can be carefully controlled through 

experimental design (e.g., Larrucea et al. 2007, Cubaynes et al. 2010, Oliver et al. 2011, 

Smout et al. 2011, Chambert et al. 2012).   
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 Individual heterogeneity in behaviour is inherent in any animal population 

(Lebreton et al. 1992). Heterogeneity of capture and survival probabilities can be caused 

by extrinsic factors related to study design (Mizroch et al. 2004, Cubaynes et al. 2010), 

and intrinsic differences among individuals, such as differences in behaviour due to age 

differences (Lebreton et al. 1992, Tavecchia et al. 2001), sex (Pradel et al. 1997, Kraus 

et al. 2008) and social status (Summerlin and Wolfe 1973, Otugu et al. 2006). To 

reduce individual heterogeneity, Seber (1982) suggested placing individuals into 

homogenous groups classified by age and sex, based on the assumption that individuals 

from the same age and/or sex may exhibit similar behaviours and therefore share similar 

capture and survival probabilities. An alternative approach, described by Pledger et al. 

(2003), allows for individual heterogeneity of both capture and survival by using a finite 

mixture model but when capture probabilities are low, very large datasets are needed 

which may not be available in some cetacean studies. 

 In mark-recapture studies of cetaceans, addressing heterogeneity is challenging 

and has been the focus of much attention (Wilson et al. 1999, Friday et al. 2000, 

Gowans and Whitehead 2000, Stevick et al. 2001, Whitehead 2001, Corkrey et al. 2008, 

Barlow et al. 2011, Fearnbach et al. 2012a). In their study of survival in western grey 

whales (Eschrichtius robustus), Bradford et al. (2006) found that models which 

incorporated individual heterogeneity in residency and temporary emigration of younger 

whales best fit the data. Similarly, Ramp et al. (2010) reported model selection which 

included heterogeneity of survival by sex for humpback whale (Megaptera 

novaeangliae).Yet, despite its importance, with the exception of a few well-studied 

populations (e.g., Olesiuk et al. 1990, Olesiuk et al. 2005, Ford et al. 2007, Ward et al. 
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2009), including stratification across multiple age classes and by sex in mark-recapture 

assessments is rarely possible for cetaceans.  

 In long-lived species, survival rates are typically lowest for the youngest 

individuals, then increase with age, remaining constant for adults during an extended 

prime period until senescence when survival begins declining (Caughley 1966, Loison 

et al. 1999, Tavecchia et al. 2001, Beauplet et al. 2006). Heterogeneity in survival can 

also be strongly influenced by sex in a variety of ways, depending on the biology of the 

species. In marine mammals, adult male mortality can be higher because males have 

higher concentrations of lipophilic contaminants in their blubber and other tissues than 

females due to the maternal transfer from females to their young (Muir et al. 1996, 

Aguilar and Borrell 1988, Ross et al. 2000, Metcalfe et al. 2004). Sex-related 

differences in survival may also correspond with asymmetric costs of reproduction; in 

many species males have to compete for access to mates while females have to invest 

resources in gestation and lactation.  

 For some sexually dimorphic species, males may engage in dangerous combat 

for mates and/or territories and injuries can make them more susceptible to disease 

(Loison et al. 1999). Dominant males may have to forgo foraging to defend their 

hierarchal ranking (Deutsch et al. 1989). In some animal societies adult females occur 

in large social units often consisting of kin (Douglas-Hamilton 1972), which may 

decrease predation risk through reciprocal altruism but also provide co-operative 

feeding opportunities (Whitehead et al. 1991). Group size not only contributes to 

increased survival of individuals but will also increase predator detection probabilities 

as well (e.g., Ogutu et al. 2006). Dominant males will have greater access to matrilineal 
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groups which are more likely to occupy productive feeding habitat, whereas lower 

ranking males may be forced to wander between areas which can lead to declined health 

[e.g., non-resident nomadic cheetahs (Acinonyx jubatus) have higher cortisol levels 

(Caro et al. 1989)]. Age-related differences in survival may also depend on aspects of 

the biology of a species, such as sexual size dimorphism. For example, Ford et al. 

(2007) found that the added costs of growth in sub-adult male killer whales (Orcinus 

orca) resulted in higher mortality of this age / sex class.  

Based on what is known about beaked whale biology, individual heterogeneity 

in survival and capture probability is predicted to be strongly influenced by both age 

and sex. Sexual dimorphism exists in all ziphiid species but is most pronounced in 

Blainville’s beaked whale (Mesoplodon densirostris) and Hubb’s beaked whale (M. 

carlhubbsi) (Heyning 1989, Mead 1989). Males undergo massive development of the 

mandible posterior to the mandibular symphysis (Besharse, 1971) and mesorostral 

ossification consisting of dense pachyostoteic bone (McCann 1965, Heyning 1984, 

Allen et al. 2011). At the onset of sexual maturity the teeth erupt from the alveoli in 

males only (Besharse, 1971) and appear to be primarily used in male-male aggression 

and may be better described as “tusks” (Mead et al. 1982, Heyning 1984).  

The social structure of Blainville’s beaked whale is likely to further influence 

heterogeneity based on age and sex for this species. Blainville’s beaked whale has a 

defence-polygyny harem-like social structure (Claridge 2006, McSweeney et al. 2007) 

in which adult males engage in competition for dominance. Based on the extreme intra-

specific scarring (see Figure 4.8), combat between adult males appears to be fierce and 

frequent, rendering them more susceptible to infection and disease from injuries, 
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potentially leading to high mortality of adult males. Adult females exhibit long-term site 

fidelity (McSweeney et al. 2007, also Chapter 3) and so may be more available for 

capture in local study areas than other classes. Dominant males may affect residency 

patterns of other males as well as immature animals, some of which may permanently 

emigrate, constraining the ability to monitor their fates and thus further biasing survival 

estimates. 

 Despite the difficulties in studying beaked whales, it was shown in Chapter 4 

that individual Blainville’s beaked whales can be assigned to specific age and sex 

classes, thus providing an opportunity to allow for age- and sex-structured heterogeneity 

in mark-recapture models. In this chapter, intrinsic aspects of individual heterogeneity 

are addressed by placing individuals into groups classified by age and sex to potentially 

reduce heterogeneity (Seber 1982). Inference could then be made based on age- and 

sex-specific survival and recruitment, as well as temporary emigration,  re-immigration, 

and probability of capture when in the study area, thereby incorporating the individual-

based age and sex structured data in the population model and improving estimates of 

abundance and population dynamics. 

The specific objectives of this chapter were: 

(1) To compare annual rates of capture, movement, survival, recruitment, and 

abundance by age / sex class. 

(2) To examine aspects of the population dynamics of Blainville’s beaked 

whales using a model with age and sex-structured heterogeneity. 
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(3) To estimate abundance of Blainville’s beaked whales off southwest Abaco 

Island using a mark-recapture model that accounts for heterogeneity by age 

and/or sex. 

 

5.2 Methods 

5.2.1 Mark-recapture model 

As in Chapter 3, an open population model that parameterises emigration from 

and re-immigration back into the study area, along with capture probability when in the 

area, in addition to survival and recruitment (e.g., Whitehead 1990, Ford et al. 2007, 

Matkin et al. 2012) was fitted to sighting history data compiled for each individual i, 

starting from the time of first capture (i.e. photo-identification) through each annual 

interval t. These data were inputted into three different matrices based on whether the 

whale was captured (Yit = 1) or not captured (Yit = 0), whether the whale was known to 

be alive (Xit = 1) or not alive (Xit = 0), and whether the whale was in the study area and 

available for capture (Fit = 1) or outside the study area and unavailable for capture (Fit = 

0) (e.g. Schofield et al. 2009). Whales were inputted as alive (X = 1) whenever they 

were seen (Y = 1) and in years between repeated sightings. Additionally, out of sample 

sightings were used to inform whether or not a whale was alive in years following the 

last interval of sighting. After its last sighting, and prior to its first sighting, the whale’s 

status was unknown and the Xit were treated as missing data about which inference 

could be made. Similarly, when a whale was not observed in the study area (Y = 0), its 

availability state was unknown and the Fit were treated as missing data to be estimated.  
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Model parameters included the annual probabilities of survival φit, emigration λit, 

re-immigration κit, and capture πit. However, in addition to estimating survival and 

movement of beaked whales, trends in recruitment were also of interest. Recruitment 

here represented additions of new animals in each age class, either due to influx into the 

area or lagged effects of birth additions into older age classes. Using the approach of 

Pradel (1996), the same identification histories (all three matrices) were also read 

backwards to estimate seniority (γ), in place of survival, conditioning on the time of last 

observation (e.g. Ford et al. 2007). The probability of seniority (or the inverse of 

recruitment, 1-γ) is the probability that individual i present at interval t was already 

present in the population at time t – 1. 

  To explore age and sex structured heterogeneity in Blainville’s beaked whales, 

the re-immigration model with recruitment was fitted to photo-identification data with 

separate parameter vectors for four different age / sex classes through an additional data 

matrix C, which assigned the class cit for individual i in year t, where c1 = sub-adult 

female, c2 = sub-adult male, c3 = adult female, and c4 = adult male. Parameter estimates 

thus became: 

φit = φc,t, λit = λc,t, etc. 

 The photo-identification dataset consisted of high-quality photographs of 

individual Blainville’s beaked whales which were collected off Abaco Island during an 

annual sampling interval from May – August, 1997 – 2011. Age / sex classes were 

assigned using the methods developed in Chapter 4. As in Chapter 3, data were filtered 

to include only those individuals with distinctive markings, but did not include calves 

regardless of how distinctive. 
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 If the age of a sub-adult changed during the study, the class matrix C was 

updated with the new age of that individual for that year. In years when a sub-adult was 

not seen, its age class was unknown and cit was treated as a missing value and inference 

was made about whether the individual had remained in the same class or had become 

an adult. These annual transitions between age classes were modelled as a Markovian 

process, with equal [Uniform(0,1)] prior probability distributions assigned to the 

probability of changing to an older age class or remaining in the same class. Transition 

was only allowed from a younger class to an older one and individuals could never 

change sex.  

 

5.2.1.1 Priors 

A flexible hierarchical approach was adopted to specific prior distributions for 

the vectors of annual parameters, with an overall mean µc for each parameter, for each 

class, modified by annual additive effects bc,t. Using this formulation, annual estimates 

for parameters for each class could borrow strength from information over all years, 

drawing estimates more towards the class mean in data-poor years, whilst allowing real 

departures from the mean to be detected if supported by the data. For example, for 

parameter φ (survival), 

logit (φ , ) = logit (  
φ)     , 

φ
 

where  
 
φ represents mean survival for each class (c = 1:4). Class means for each 

parameter were given a Uniform prior between 0 and 1 and differences between class 

means were evaluated.  
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 To investigate the covariance between the classes, c = 1,...,4 and see how class 

parameters varied over time, the prior distributions for the annual effects b for each 

parameter were set as a multivariate Normal distributions, stratified into q = 4 

dimensions, with a zero mean and covariance matrix  of the order q*q (Fienberg et al. 

1999, Durban et al. 2010). For example, for survival, φ: 

  , 
φ
      (0,∑

φ
)  

The left to right diagonal components of each covariance matrix were the estimates of 

parameter variance for each of the four classes across years, while the off-diagonal 

components represented covariance between pairs of classes in terms of how their 

parameter values varied across years. A Wishart prior distribution was set for the 

inverse covariance matrix ∑
−1 

(Fienberg et al. 1999) with a scale matrix B and degrees 

of freedom parameter v. The value of v was set as v = q = 4 representing a vague prior 

and to allow non-negative covariance values to emerge. Prior variances were set for 

diagonal values of B = 1 for each class and for off-diagonals of B = 0 for a prior of no 

covariance between pairs of classes. 

Estimates of annual capture probabilities (for each class), πc,t , were used to 

derive average annual estimates of abundance for distinctive animals (Nc,t), through the 

binomial relationship: 

  ,    Bin(π , ,N , ) 

where nc,t is the number of whales observed to be in each class in each year. A 

hierarchal prior distribution was set for Nc,t, specified in terms of a mean abundance for 

each class ( 
 
N) and annual additive effects (  , 

N
) to allow departures from the mean: 
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log (N
 , 
) = log( 

 
N)    , 

N   

The prior distribution for these departure effects (  , 
N

) was again specified as a 

multivariate Normal in the same way as the other parameters to allow borrowing of 

strength across years within classes and investigate covariance between the four classes. 

The average annual abundance of each class was assigned a Uniform prior between 1 

and 50. The abundance of all distinctive whales was then derived as the sum of each 

class (Nc,t), where: 

N      =∑N , 

 

  = 1

  

To estimate the total annual abundance for the study area which included 

distinctive and non-distinctive whales (Ac,t), each class abundance (Nc,t) needed to be 

rescaled to include non-distinctive individuals. Using an approach similar to that 

described in Chapters 2 and 3, the distinctive proportion of the population was estimated 

each year, mc,t. However, in this chapter the variance in the distinctive proportion in the 

different classes could be accounted for. To do this, the number of distinctive whales in 

each class was counted by encounter-day (USEc,t,d), and was treated as a binomial 

proportion relative to all whales assigned to that class (ALLc,t,d) on that day (d).  A 

common proportion was assumed across encounter days thus representing the overall 

average proportion of the class populations that were estimated to be distinctive in each 

year.  

           Bin(  , , LL ,   ) 
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A hierarchical prior distribution was set for mc,t using a logit link function and 

annual additive effects   , 
 

 to borrow strength across years, where: 

logit (  , ) = logit (  
 )     , 

 
 

Priors were set as  
 
  ~ U (0,1) for the mean, but in this case,    , 

 
 was specified 

by a N(0,σ) distribution (rather than multivariate), where   
  ~ U (0,20) was set for the 

standard deviation to allow non-zero departures from the mean to emerge. Abundance 

for each class (Nc,t) was then rescaled by the distinctive proportion for each class (mc,t) 

to provide abundance estimates for distinctive and non-distinctive whales for each class, 

Ac,t = Nc,t / mc,t.  

To include calves in the estimate of total abundance, rescaling for adult females 

(as above) was expanded to include dependent calves in the number of non-distinctive 

“adult females”. The estimates of female abundance were rescaled to account for both 

dependent calves and non-distinctive adult females, assuming both had similar capture 

probabilities. Abundance was then tallied for sub-adult female (ASF,t), sub-adult male 

(ASM,t), and adult male (AAM,t) classes and the new class which combined adult females 

with calves (AAF+CA,t). In this way total abundance was estimated (Atot,t), accounting for 

age- and sex-structured heterogeneity, for differences in the distinctive proportion in 

each class, and including calves. 

 

5.2.1.2 Inference and model fitting 

The program WinBUGS (Lunn et al. 2000) was used to update the prior 

distributions conditional on the observed data using three Markov Chain Monte Carlo 
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(MCMC) chains to sample the posterior distributions of each parameter of interest. The 

model was run until convergence of the three chains was achieved (as determined using 

the method of Brooks and Gelman 1998). Inference was then based on a further 20,000 

samples, after discarding the initial burn-in. A posterior predictive approach for 

goodness of fit testing (Gelman et al. 1996) as described in Chapter 2 was used to assess 

model fit using the discrepancy function, resulting in a Bayesian p-value as an indicator 

of model fit (Gelman et al. 1996, Brooks et al. 2000). Model fit was assessed for each 

class individually as well as for all classes combined. 

 Monitoring parameter values across MCMC iterations allowed probabilistic 

statements about parameter differences to be made. For example, the probability that the 

average survival rates for adult females exceeded that for adult males was estimated 

from the proportion of the post burn-in MCMC iterations for which µ
φ

AF > µ
φ

AM . Over 

the full MCMC sequence this proportion equated to a probability that the parameter 

estimates from the two classes were different, while accounting for the full uncertainty 

encompassed by the posterior distribution for each estimate. If the two distributions 

completely overlapped (i.e. there was no difference in a parameter estimate between 

classes), then p would equal 0.50. This is a two-tailed test, so if the probability is high 

that the average survival rate (for example) for adult females is greater than that for 

adult males, p will be close to one, and vice versa for p values close to zero if the 

statement is reversed.  Similarly, the probability that an annual probability for a 

particular parameter was greater than the average for that class was estimated from the 

proportion of iterations for which the annual additive effect did not equal zero (bc,t     

0). If this probability was high, p would be close to 1, or contrarily, close to 0 if the 
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estimated parameter in that particular year was less than the average, while if there was 

no deviation from the overall average, i.e., bc,t = 0, p would equal 0.5. 

 

5.3 Results 

5.3.1 Mark-recapture sample 

Photo-identification data were used to construct the matrices used as input to the 

open population model. Specifically, the mark-recapture sample consisted of n = 75 

individuals, representing 171 non-zero entries that were included as individual captures 

in the sightings history matrix (yit = 1). Age / sex classes were also known for these 

entries and were included as cit = 1:4. An additional 121 entries were included as alive 

(xit = 1) for years when whales were not seen between years of repeated identifications. 

Finally, from the out-of-sample identifications, there were 47 records of individuals that 

occurred after the annual interval of their last capture or outside the boundaries of the 

study area that provided additional information on an individual’s survival status for a 

specific year. These were also included as xit = 1 (alive) beyond the time the whale was 

actually last seen within the annual interval. Likewise, there were 22 records before 

their first captures which were included to inform on recruitment. Table 5.1 summarises 

the photo-identification data by class for each year of the study. 
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Table 5.1. Summary of the number of distinctive whales from each of the four classes 

that were captured during each annual interval. 

 

Year 

Number of distinctive whales captured 

Sub-adult 

females 

(c = 1) 

Sub-adult 

males 

(c = 2) 

Adult 

females 

(c = 3) 

Adult 

males 

(c = 4) 

1997 0 0 3 3 

1998 1 0 4 3 

1999 1 1 8 5 

2000 1 0 12 4 

2001 2 1 5 2 

2002 1 3 7 5 

2003 3 1 3 0 

2004 1 2 7 3 

2005 0 2 4 5 

2006 0 1 7 3 

2007 1 2 5 4 

2008 3 1 5 4 

2009 3 1 1 2 

2010 0 0 5 3 

2011 3 0 8 6 

Totals 20 15 84 52 

Annual Median 1 1 5 3 
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 Of the 75 distinctive whales, the majority of individuals were adults when first 

captured (adult females, n = 26; adult males, n = 25). [Note that this does not represent 

the true sex ratio of the adult population but only the ratio of distinctive adults, which 

differed by sex (see section 5.3.6.3 below)]. Despite a relatively even sex ratio of 

distinctive adults, more distinctive adult females were captured annually than distinctive 

adult males (t = 3.81, df = 28, p < 0.001), as well as than distinctive sub-adults (with 

sub-adult females: t = 6.96, df = 28, p < 0.001; and with sub-adult males: t = 9.98, df = 

28, p < 0.001).The median proportion of all distinctive individuals per annual interval 

that were adult females was 0.50, range 0.14 – 0.71; unlike the other classes, adult 

females were seen in every year (Figure 5.1). Four of the six sub-adult females and 

three of the nine sub-adult males were dependent calves when first seen in the study 

area. Furthermore, five of the sub-adult females and two of the sub-adult males were 

later re-sighted as adults, including two sub-adult females and one sub-adult male first 

seen as a dependent calf.
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Figure 5.1. The proportion of distinctive Blainville’s beaked whales observed from each of the four classes for each annual interval, 1997 - 

2011. SF = sub-adult females (c = 1), SM = sub-adult males (c = 2), AF = adult females (c = 3), and AM = adult males (c = 4). The total 

number of distinctive whales observed from each annual sampling interval (yit = 1) is shown at the top of each bar. 
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5.3.2 Age- and sex-stratified model fit 

 A re-immigration model which allowed age- and sex-structured heterogeneity 

provided good fit to the photo-identification data which included all classes combined. 

The result of the goodness-of-fit test was a Bayesian p-value of 0.44 which is indicative 

of good model fit (Brooks et al. 2000, King and Brooks 2002). This was derived by 

comparing the distribution of the discrepancy function between observed data and data 

simulated by the model (Figure 5.2). 

 

Figure 5.2. Discrepancy plot for the age- and sex-stratified re-immigration model fitted 

to the photo-identification data for all classes combined. Points are the 20,000 MCMC 

samples of a discrepancy function (D, Durban and Elston 2005) calculated for both 

observed data and data simulated by the model. The diagonal line represents the line y = 

x and the posterior predictive value is the proportion of points that lie below the line, 

corresponding to Bayesian p-value of 0.44. 
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 When model fit was assessed for the data from each of the four classes 

separately, differences in fit between classes were apparent. The Bayesian p-value for 

sub-adult females was 0.61, for sub-adult males 0.42, for adult females 0.57, and for 

adult males 0.36. The discrepancy plots for each class (Figure 5.3) show that the model 

fit the adult female class data better than the other classes.  

 

5.3.3 Heterogeneity in capture probabilities by age / sex class 

 The probability of capture for each class reflects the chance of capturing whales 

when they were “in” the area during an annual interval, which may also be a function of 

temporary emigration beyond the study area within a year. Posterior estimates for adult 

females were more precise than any other class with a larger sample size of individuals 

(Figure 5.4). Sub-adult females had the highest annual probability of capture [posterior 

median μ
π

SF = 0.70 (95% Highest Posterior Density Intervals (HPDI) = 0.35 – 0.95)], 

while annual capture rates for adult females and sub-adult males were similar [posterior 

median μ
π

AF = 0.54 (95% HPDI = 0.37 – 0.72); posterior median μ
π

SM = 0.54 (95% 

HPDI = 0.23 – 0.88)]. For adult males, the annual probability of capture posterior 

median μ
π

AM was 0.33 (95% HPDI = 0.19 – 0.56)]. The average annual capture rate for 

adult males was lower than that for sub-adult females (p = 0.93), sub-adult males (p = 

0.81), and adult females (p = 0.91).  
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Figure 5.3. Discrepancy plots for the age- and sex-stratified re-immigration model fit to 

the photo-identification data for each class separately. For each plot, points are the 

20,000 MCMC samples of a discrepancy function (D, Durban and Elston 2005) 

calculated for both observed data and data simulated by the model. The diagonal line 

represents the line y = x and the posterior predictive value is the proportion of points 

that lie below the line, corresponding to Bayesian p-values for each class. Plots include: 

(a) sub-adult females, Bayesian p-value of 0.61; (b) sub-adult males, Bayesian p-value 

of 0.42; (c) adult females, Bayesian p-value of 0.57; and (d) adult males, Bayesian p-

value of 0.36.  
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Figure 5.4. Average annual capture probability by class (µ
π

c) where SF = sub-adult 

females, SM = sub-adult males, AF = adult females and AM = adult males. Estimates 

are presented as posterior medians (solid black line within bars), with 75% (grey bars) 

and 95% (vertical whiskers) HPDI. The dashed line represents the mean probability of 

capture for all classes combined. 

  

 Annual probability of capture varied temporally for each class (Figure 5.5), 

although the wide spread in posterior estimates for sub-adults makes it difficult to 

distinguish trends. However, there is an apparent synchronicity in deviations from the 

average for the adult classes (Figures 5.5c and 5.5d). Specifically, for both adult females 

and males there was an initial increase in capture probabilities in the early years of the 

study, then capture rates remain just above the average until 2003 when there was a high 

probability of departure from the annual class means (p = 0.98 and 0.95, respectively), 

which corresponded with a decline. Thereafter, estimates were close to the mean until 

there is another decrease in 2009 (p = 0.99 and 0.83, respectively). It is noteworthy that 

the synchronous fluctuations noted for adults appear to be have been mirrored by 
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inverse changes in capture probabilities of sub-adult females. For example, in 2003 and 

2009 when capture rates were below the average for adults, there was a high probability 

of a departure from the average for sub-adult females (in 2003, p = 0.80, and in 2009, p 

= 0.76; Figure 5.5a), both corresponding to increases. 

 The estimated covariance for the classes indicated which classes had capture 

probabilities that were positively or negatively associated across years. Of the 12 

different pair-wise combinations, all had associations where the 95% HPDI of the 

posterior distribution for the covariance ∑ overlapped zero, but the 75% HPDI for ∑ did 

not overlap zero for two combinations: for the association between adult female and 

sub-adult female classes, the correlation was negative, with a posterior median estimate 

for ∑ of -0.44 (75% HPDI = -0.720 to -0.005), while the correlation was positive 

between adult female and adult male classes (posterior median ∑ = 0.37, 75% HPDI = 

0.116 – 0.524). 
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Figure 5.5. Annual capture probabilities for each class, πc,t: (a) sub-adult females, (b) 

sub-adult males, (c) adult females, and (d) adult males. Annual median posterior 

estimates are shown by the square symbols with red squares representing years in which 

the estimate showed a departure from the overall mean which corresponded to a p value 

> 0.75). Vertical lines represent the 95% HPDI, and the dashed horizontal lines 

represent the median posterior estimate for all years combined, µ
π

c. 
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5.3.4 Comparing movement rates by age / sex class 

5.3.4.1 Temporary emigration rates 

 Of the four classes, the annual probability of temporary emigration was lowest 

for adult females [posterior median µ
λ
AF = 0.25 (95% HPDI 0.13 – 0.40)] and adult 

males [posterior median µ
λ
AM = 0.36 (95% HPDI 0.10 – 0.67)] (Figure 5.6). Sub-adults 

had similar annual rates of emigration; for sub-adult females, posterior median µ
λ
SF = 

0.45 (95% HPDI 0.16 – 0.75), and for sub-adult males, posterior median µ
λ
SM = 0.42 

(95% HPDI 0.10 – 0.78)]. Emigration rates for sub-adult females and sub-adult males 

were higher than that for adult females (p = 0.84 and 0.77, respectively). The failure to 

see any further differences may have been because of the high variability of estimates 

for all classes except adult females.  

 

Figure 5.6. Average annual probability of temporary emigration by class (µ
λ
c) where SF 

= sub-adult females, SM = sub-adult males, AF = adult females and AM = adult males. 

Estimates are presented as posterior medians (solid black line within bars), with 75% 

(grey bars) and 95% (vertical whiskers) HPDI. The dashed horizontal line represents the 

mean probability of emigration for all classes combined. 
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5.3.4.2 Re-immigration rates 

 The annual probability of re-immigration was low for adult females [posterior 

median µ
κ
AF = 0.09 (95% HPDI 0.04 – 0.20); Figure 5.7], while higher rates were found 

for all other classes [posterior medians were µ
κ
SF = 0.53 (95% HPDI 0.09 – 0.95), µ

κ
SM 

= 0.60 (95% HPDI 0.15 – 0.95), µ
κ
AM = 0.55 (95% HPDI 0.24 – 0.87)]. Although 

posterior estimates for adult females were precise, quantitative comparisons could not 

be made with the other classes because the model was not able to estimate annual re-

immigration rates for these, and thus the posteriors did not differ much from the 

Uniform priors.  

 

Figure 5.7. Average annual probability of re-immigration by class (µ
κ
c) where SF = sub-

adult females, SM = sub-adult males, AF = adult females and AM = adult males. 

Estimates are presented as posterior medians (solid black line within bars), with 75% 

(grey bars) and 95% (vertical whiskers) highest posterior density intervals. The dashed 

horizontal line represents the mean probability of re-immigration for all classes 

combined. 
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5.3.4.3 Trends in movement rates of adult females 

 Trends in the annual rates of temporary emigration and re-immigration of adult 

females were examined over the 15-year time period (Figure 5.8).  

 

Figure 5.8. Annual probability of (a) temporary emigration, λAF,t and (b) re-immigration, 

κAF,t for adult females. Estimates are presented as posterior medians (solid black line 

within bars), with 75% (grey bars) and 95% (vertical whiskers) HPDI. The dashed 

horizontal line represents the mean for each parameter, µ
λ
AF and µ

κ
AF. 
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 Throughout the study, annual emigration rates appeared stable, with the 

exception of a single year (2000) in which an increase in the rate of temporary 

emigration out of the study area is apparent (Figure 5.8a). This difference represented a 

departure from the overall mean estimate (p = 0.78). Rates of annual re-immigration 

remained low for adult females throughout the time series (Figure 5.8b).  

 

5.3.5 Annual survival and recruitment 

5.3.5.1 Survival rates 

 The annual probability of survival was estimated for each age / sex class (Figure 

5.9) and the differences between classes were assessed. Average annual survival rates 

differed by sex; sub-adult females and adult females exhibited higher annual survival 

rates than sub-adult males (p = 0.90 and 0.98, respectively) and adult males (p = 0.90 

and 0.99, respectively).  Annual survival estimates were high for both female classes, 

but highest for adult females [posterior median µ
φ

AF = 0.984 (95% HPDI 0.949 – 

0.998)], while for sub-adult females, posterior median µ
φ

SF = 0.962 (95% HPDI 0.835 – 

0.997). Annual survival rates for males were similar; for sub-adult males, posterior 

median µ
φ

SM = 0.807 (95% HPDI 0.555 – 0.883), and for adult males, posterior median 

µ
φ

AM = 0.859 (95% HPDI 0.759 – 0.891).  
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Figure 5.9. Average annual probability of survival by class (µ
φ

c) where SF = sub-adult 

females, SM = sub-adult males, AF = adult females and AM = adult males. Estimates 

are presented as posterior medians (solid black line within bars), with 75% (grey bars) 

and 95% (vertical whiskers) highest posterior density intervals. The dashed horizontal 

line represents the mean probability of survival for all classes combined. 

 

 Trends in survival were explored for each class over the time period 1997 – 

2010 (Figure 5.10). Annual survival rate remained stable throughout the study with no 

departures from the mean for any of the classes found.  
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Figure 5.10. Annual survival probabilities for each class, φc,t. Annual median posterior 

estimates are shown by the square symbols and vertical lines represent the 95% HPDI. 
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5.3.5.2 Recruitment 

 Annual probability of recruitment was higher for sub-adults than adults (Figure 

5.11), reflecting births with lag times.  

 

 

Figure 5.11. Average annual recruitment probability by class (µ
1-γ

c) where SF = sub-

adult females, SM = sub-adult males, AF = adult females and AM = adult males. 

Estimates are presented as posterior medians (solid black line within bars), with 75% 

(grey bars) and 95% (vertical whiskers) HPDI. The dashed horizontal line represents the 

mean probability of recruitment for all classes combined. 

 

 Annual recruitment rates were similar for sub-adult females [posterior median 

µ
1-γ

SF = 0.343 (95% HPDI = 0.165 – 0.563)] and sub-adult males [posterior median µ
1-

γ
SM = 0.237 (95% HPDI = 0.160 – 0.462)]. However, annual recruitment of sub-adult 

females was higher than that of adult females and adult males, p = 0.99 and 0.98, 

respectively; similarly recruitment of sub-adult males was higher than adult females and 

adult males, p = 0.99 and 0.89, respectively. Of the adult classes, posterior estimates of 



 222  

annual recruitment rates were lowest for adult females [posterior median µ
1-γ

AF = 0.022 

(95% HPDI = 0.003 – 0.065)], and although average annual recruitment rate of adult 

males was also low [posterior median µ
1-γ

AM = 0.091 (95% HPDI = 0.063 – 0.179)], 

annual recruitment of adult females was lower than that of adult males (p = 0.93).  

  Trends in annual rates of recruitment (1-γc,t) were examined for each class 

separately. For adults, annual rates of recruitment remained stable throughout the study 

period (Figure 5.12a). However, for sub-adults, recruitment rates appeared to vary and 

changes in the trend seemed to be synchronous between males and females (Figure 

5.12b), but estimated covariance for the classes did not indicate associations (i.e., ∑ 

overlapped zero).  
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Figure 5.12. Trends in annual recruitment rates by class (1-γc,t). Black circles and 

squares represent females and males, respectively, with 95% HPDI shown by the 

vertical lines. 
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5.3.6 Estimates of abundance 

5.3.6.1 Abundance of distinctive whales by class 

 Annual abundance of distinctive whales was estimated for each age / sex class 

(Figure 5.13) and differences between classes were assessed. Annual abundance of 

distinctive adults was considerably higher than abundance of sub-adults (p = 0.99 for 

each comparison of adult classes to sub-adult classes). For females, the posterior 

median for the annual abundance of distinctive whales µ
N

AF was 10 whales (95% HPDI 

= 7 – 15); and for males, posterior median µ
N

AM = 10 whales (95% HPDI = 6 – 18). For 

sub-adult females, posterior median µ
N

SF = 2 whales (95% HPDI = 1 – 4); and for sub-

adult males, posterior median µ
N

SM = 2 whales (95% HPDI = 1 – 5). 

 

Figure 5.13. Average annual abundance of distinctive whales by class (µ
N

c) where SF = 

sub-adult females, SM = sub-adult males, AF = adult females and AM = adult males. 

Estimates are presented as posterior medians (solid black line within bars), with 75% 

(grey bars) and 95% (vertical whiskers) HPDI.  
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 Assessment of trends in abundance of distinctive whales by class (Nc,t) showed 

little variation over the study period (Figure 5.14). There were three years in which 

annual class estimates deviated from the average for a particular class. The strongest 

departure effect was noted in 2000 when the estimated abundance of adult females was 

higher than the class mean (p = 0.85). Additional departures occurred in 2002 when 

abundance of sub-adult males was higher than the class mean (p = 0.77), and in 2003 

when abundance of adult males was lower than the class mean (p = 0.76). 
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Figure 5.14. Trends in annual abundance by class (Nc,t) for distinctive whales over the 

time series 1998 – 2011. Annual median posterior estimates are shown by the black 

symbols; the symbols coloured red represent estimates with a high probability of 

deviation from the mean. Vertical lines represent the 95% HPDI, and the dashed 

horizontal lines represent the median posterior estimate for all years combined, µ
N

c. 
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5.3.6.2 Total annual abundance of distinctive whales  

 To obtain an estimate of annual abundance for all distinctive whales (Ntot,t), 

abundance estimates of distinctive whales for each class (Nc,t), were summed to give a 

total estimate of abundance for each year. The posterior median for total annual 

abundance of distinctive whales, µ
N

tot was 27 whales (95% HPDI = 20 – 36). There was 

no clear trend in abundance of all distinctive whales during the study (Figure 5.15), with 

little variation from the average annual abundance.  

 

Figure 5.15. Annual abundance of all distinctive Blainville’s beaked whales (Ntot,t). 

Estimates are presented as posterior medians (solid black line within bars), with 75% 

(grey bars) and 95% (vertical whiskers) highest posterior density intervals. The 

horizontal dashed line represents the average annual abundance of distinctive whales, 

µ
N

tot. 

 

5.3.6.3 Proportion of population distinctive 

 To estimate total abundance for the population, the estimate for distinctive 

whales only (Ntot) was rescaled to include sub-adults and adults using the study area that 
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were not distinctive, including calves. For sub-adults, there were insufficient encounter-

days to estimate the proportion for each class separately, so both sub-adult classes were 

grouped to generate a single annual proportion distinctive for all sub-adults [posterior 

median µ
m

SF,SM = 0.63 (95% HPDI = 0.50 – 0.75)]. The posterior median for the 

proportion of adult females that were distinctive, µ
m

AF was 0.84 (95% HPDI = 0.75 – 

0.91), and for the combined group which included adult females and calves, posterior 

median µ
m

AF+CA was 0.48 (95% HPDI = 0.42 – 0.55). Adult males were all distinctive 

(i.e. µ
m

AM = 1.00), so no rescaling was needed for this class because all adult males 

identified from high-quality photographs were included in the mark-recapture 

component of the model. 

 

5.3.6.4 Total non-calf abundance by class 

 After rescaling abundance estimates to include both distinctive and non-

distinctive whales for each class, the posterior median for total annual non-calf 

abundance, µ
A

c was 33 (95% HPDI = 25 – 45). Trends in non-calf abundance revealed 

that the estimated number of adults using the study area annually exceeded that of sub-

adults (Figure 5.16).  
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Figure 5.16. Trends in non-calf abundance by class (Ac,t) from 1998 – 2011. Annual 

median posterior estimates are shown by the black symbols. Vertical lines represent the 

95% HPDI. 
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5.3.6.5 Total annual abundance (including calves) 

 The posterior median for the total abundance, including calves, µ
A

tot was 43 

whales using the study area annually (95% HPDI = 32 – 57). Total annual abundance 

Atot,t remained stable throughout the study period (Figure 5.17) with 2000 representing 

the greatest deviation, although still slight, from the mean estimate for all years.  

 

Figure 5.17. Trends in annual total abundance of Blainville’s beaked whales for all four 

classes combined, and including calves, Atot,t. Estimates are presented as posterior 

medians (solid black line within bars), with 75% (grey bars) and 95% (vertical 

whiskers) highest posterior density intervals. The dashed horizontal line represents 

mean abundance, µ
A

tot. 

 

  



 231  

5.4 Discussion 

5.4.1 Age- and sex-structured heterogeneity in capture probabilities 

 Individual heterogeneity in capture probabilities introduces biases in abundance 

estimates (Seber 1982) but is difficult to account for. This bias can be considerable; for 

example, Cubaynes et al. (2010) found abundance of wolves (Canis lupus) 

underestimated by 27% when individual variation in capture probabilities was ignored. 

Using the method of Pledger et al. (2003), Whitehead and Wimmer (2005) found 

abundance estimates for a population northern bottlenose whales off the Scotian Shelf 

which appears to be poorly-mixed due to differences in individual ranging patterns that 

were 20% higher than those reported previously using a homogeneous model (Gowans 

et al  2000).  

 By using the same dataset as in Chapter 3, this study provided an opportunity to 

compare estimates of abundance using a model which accounted for heterogeneity in 

the population and one that did not, i.e. Chapter 3. Here, heterogeneity in capture 

probabilities was evident, with substantial differences found both between age classes 

and between sexes (Figure 5.4). Despite this, differences in abundance estimates using 

these two models were minimal; estimates of average annual abundance of both 

distinctive whales and all whales (distinctive and non-distinctive whales, including 

calves) were just slightly underestimated by the model without heterogeneity. However, 

model fit was greatly improved when heterogeneity was addressed by stratifying 

parameters by age and sex; see Figures 3.7 and 5.2, corresponding to Bayesian p-values 

of 0.82 for the model which was not stratified and 0.44 for the stratified model. This 

was particularly true for adult females for which model fit was most improved (Figure 
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5.3c). For this reason, the mark-recapture model which accounted for heterogeneity was 

considered the best fit for these data. 

 

5.4.2 Heterogeneity in “apparent” survival 

 Blainville’s beaked whales in this study also exhibited age- and sex-structured 

heterogeneity in survival rates (Figure 5.9). However, the models applied here estimated 

“apparent” survival rate, which is a product of true survival and permanent emigration. 

As found elsewhere (e.g., McSweeney et al. 2007), adult females in Abaco exhibit high 

long-term site fidelity (Chapter 3), such that permanent emigration occurs at a low rate, 

so survival estimates for this class are presumed to be close to true survival. While a 

small percentage of adult females temporarily emigrated annually, almost half of which 

re-immigrated, the majority showed no movement, exhibiting residency to the study 

area. This does not seem to be the case with the other classes (or poorer precision 

affected the ability to draw conclusions), so it was not surprising then to find that adult 

female annual survival rates were the highest of the four classes. However, survival 

rates of both female classes exceeded those of males, which provided insight into 

differences in occupancy patterns by sex, and changes that may occur as males mature 

in either survival or permanent movement out of the study area. 

Some, as yet, unknown component of this difference in apparent survival 

between sexes may well represent a difference in true survival rates. Sexual differences 

in survival rates are not uncommon in mammalian species with polygynous mating 

systems (Trivers 1985), although some causes known for other species can be 

eliminated here. For example, sexual size dimorphism is not evident in this species 
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(MacLeod 2006). Nor can differences be readily explained by elevated contaminant 

levels in males because lipophilic pollutants appear to be low in this population 

(Claridge et al. 2012). A reasonable explanation for differences in survival in female 

and male Blainville’s beaked whales is a greater cost of reproduction for males. 

Given the sexual dimorphism and dominance-ranked social structure of this 

species, male-male aggression may be the most important factor in higher mortality 

rates for adult males. In their study of five ungulate populations, Loison et al. (1999) 

found that differences in social behaviour and the level of aggression between males 

rather than the level of polygyny contributed to sexual differences in survival. Agonistic 

interactions between males and associated injuries lead to increased susceptibility to 

disease (Moore and Wilson 2002) and result in a decline in the health of adult males. 

Ramp et al. (2010) hypothesised that mate competition in humpback whales (Tyack and 

Whitehead 1981) may be an important cause of elevated male mortality for this species. 

In a dominance hierarchal social system, maintaining dominance ranking has additional 

costs; Deutsch et al. (1989) reported rate of mass loss in northern elephant seals 

(Mirounga angustirostris) increased with increase in dominance ranking during the 

breeding season. However, sub-ordinate males may bear the highest reproductive cost if 

forced to roam (e.g., Caro et al. 1989).  

Despite the lack of sexual size dimorphism in Blainville’s beaked whales 

(MacLeod 2006), costs of developing pronounced secondary sexual characteristics may 

be a contributing factor for sub-adult males having the lowest survival rates. Ford et al. 

(2007) found that of all age- and sex- classes examined, survival estimates were lowest 

for sub-adult male killer whales (Orcinus orca) and attributed this partially to the added 

costs of growth and encumbrance of a larger dorsal and pectoral fins as well as 
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maintenance of a larger body. It is unknown what the energetics costs of developing an 

enlarged mandibular arch, larger teeth, and increased rostral ossification may be to a 

young Blainville’s beaked whale, but this is a cost incurred by males only. Additionally, 

like subordinate males, younger animals may be forced to feed in areas where predation 

risks or human-induced impacts may be higher (e.g., Claridge 2006).  

 Lower capture probabilities for adult males suggest that short-term occupancy 

patterns for adult males differ from those of adult females, and perhaps sub-adults as 

well. However, the probability of capture is affected by not just presence or absence of 

an individual in the study area, but lower capture rates of adult males could also be 

related to behaviour; for example, adult males may roam singly between female groups 

making their detection more difficult. Whatever the cause, it is probable that the low 

estimate of apparent survival rate for adult males incorporates some significant 

component of permanent emigration, presumably of non-dominant males. 

 Differences in annual recruitment rates by age / sex classes were also evident 

and may provide further support for permanent emigration of adult males. As expected, 

annual probability of recruitment was higher for sub-adults than adults resulting from 

births with lag times, as a young animal would be recruited to a sub-adult class first 

(unless it were not seen until it was an adult). Variation temporally in recruitment of 

sub-adults simply reflected birth pulses, with a time lag. However, annual recruitment 

rates were higher for adult males than adult females, yet average annual abundance of 

adult males appeared to remain stable throughout the study (Figure 5.16). Assuming 

maturing sub-adults are recruited to adult classes at the same rate, the remaining 

difference in recruitment between adult classes must result from immigration of “new” 
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males (but not “new” females). New arrivals will challenge the social hierarchy, thereby 

replacing subordinate males that have permanently emigrated.    

 The emerging knowledge of this particular population suggests that long range 

movements are rare (e.g., lack of movement between Abaco and AUTEC, Chapter 2), 

and that localised foraging is apparent from both analyses of chemical tracers and 

satellite telemetry data (Claridge et al. 2012). Only one adult male has been satellite 

tagged in Abaco to date, and location data received during the 14-day deployment 

supported site fidelity to an area approximately twice the size of the study area. Further 

study is needed to investigate occupancy patterns of adult males and improve estimates 

of survival rates based on adapting survey methodologies and the extent of the study 

area. Studies will need to include photographic sampling from a wider area to improve 

capture probabilities for males which may have ranged outside the study area, biopsy 

sampling to increase sample sizes for chemical marker studies, and telemetry studies to 

further explore temporal aspects of site fidelity in males. 

 

5.4.3 Biological factors affecting heterogeneity 

 The underlying causes of heterogeneity are of interest because they can provide 

valuable information about the biology of the species (Corkrey et al. 2008). A degree of 

social separation exists between adult and sub-adult age classes in Blainville’s beaked 

whales (Claridge 2006), thus heterogeneity may be partially driven by social 

constraints. In this chapter, synchronous trends in capture probabilities for adults and, in 

some years, for sub-adults provide further insight into possible age-specific segregation. 

Moreover, in years when fewer adults were captured in the study area, more sub-adults 



 236  

were captured (Figure 5.5). Yet there were no obvious differences in coverage of the 

study area in those years, which may have influenced capture of one age class over 

another and, in fact, in one of the years (2003), survey effort was one of the highest of 

all during the study (Table 3.1). Age-specific behavioural response to capture could 

change during the study as whales repeatedly approached by the research vessel 

matured, but neither a linear temporal increase nor decrease was observed for either age 

class. Age class separation was further corroborated by a negative association in 

covariance for annual capture rates of adult females and sub-adult females, while 

covariance of adult females and adult males was positively associated. 

 Although somewhat speculative, it is possible that social constraints can help 

explain inverse capture probabilities by age classes found in this study. In other species 

in which sexual selection has resulted in males being heavily weaponised, males 

compete aggressively for mates and/or exhibit extreme territoriality, subordinate 

individuals such as sub-adults typically avoid conflict and injury by avoiding areas 

occupied by adult males [e.g., Clinton and Le Boeuf (1993), Loison et al. (1999), Pierce 

et al. (2000) . In Blainville’s beaked whales, a resource-defence social hierarchy may be 

limiting sexually immature females and males from entering areas usually occupied by 

adults. Reasons why adults would temporarily leave an area that presumably 

represented preferred habitat could include temporal changes in prey availability or 

disturbance, to which older more experienced individuals respond by moving (e.g., 

elephants). In the absence of adult presence, immature animals may move into the area. 
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5.4.4 Demographic change following the March 2000 stranding  

 Demographic changes occurred after the March 2000 atypical stranding of 

beaked whales in Abaco caused by the use of navy sonars (Balcomb and Claridge 2001, 

Evans and England 2001), which suggest a possible population-level effect of this 

event. This change was not detected in the analysis presented in Chapter 3 (although 

alluded to through an account of empirical data) but became evident once individual 

heterogeneity was accounted for in the mark-recapture model. However, the effect was 

contrary to what one might expect from an event which resulted in mortalities (Balcomb 

and Claridge 2001) linked to acoustic trauma-related injuries (Evans and England 

2001). 

 Rather than a decrease in estimated abundance, an increase in abundance 

occurred in 2000 in the sampling interval immediately following the stranding but was 

only evident for the adult female class (Figure 5.14c). The increase was temporary 

because it was followed by an increase in the rate of temporary emigration in adult 

females between 2000 and 2001 (Figure 5.8a). Thereafter, both abundance estimates 

and temporary emigration rates returned to pre-2000 levels and remained stable for the 

remainder of the study. There was no discernible change in adult female survival, nor 

was there evidence of higher re-immigration before or after 2000, suggesting that 

abundance increased due to the arrival of new whales, although no change in 

recruitment was noted. Recruitment is difficult to separate from discovery, particularly 

with small sample sizes and at the start of a time series, and thus is difficult to estimate 

(as noted in Chapter 3), so it is possible that a change may have gone undetected. 

Empirical data presented in Chapter 3 supported temporary immigration of “new” adults 

in 2000, suggesting recruitment did occur. It is important to note that increases in 
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temporary emigration rate and abundance in 2000 were shown for distinctive adult 

females only, and it has been assumed that distinctive and non-distinctive individuals 

had equal probability of capture and responded to changes in their environment in the 

same way behaviourally. However, the proportion of adult females that were distinctive 

was high, so biases associated with this assumption should be low. So if new adult 

females were recruited to the population, where did they come from? Where did they go 

when they emigrated? And perhaps more importantly, why did this happen? 

 Limitations in our knowledge of biological, oceanographic or anthropogenic 

factors that drive distribution make it difficult to understand why temporal changes in 

ranging patterns may occur (Wilson et al. 2004). Perhaps a shift in prey availability was 

the cause for the temporary immigration of adult females in 2000 but one can only 

speculate. The time period is coincident with a weak La Niña event which ended in 

early 2001
1
. The La Niña cool-phase of the El Niño-Southern Oscillation (ENSO) has 

been linked to increased hurricane activity in the northwest Atlantic (Goldenberg et al. 

2001), and although no cyclones occurred in the study area in 2000, three occurred in 

1999. Such major weather events can cause mass biological and oceanographic 

disruption but impacts of cyclones on ocean productivity are as yet unstudied in The 

Bahamas. ENSO events have been linked to changes in squid biomass in the Californian 

Current (Jackson and Domeier 2003), but intense cyclones are also linked to increased 

mortality in cetaceans (Mignucci-Giannoni et al. 1999, Fearnbach et al. 2012b). But 

what would be the implications if there was an increase in prey available to beaked 

whales in 2000?  

                                                 
1
 See: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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 Lack of knowledge about beaked whale feeding ecology and population 

structure hampers all but a hypothetical response. If habitat selection of Blainville’s 

beaked whale is density dependent as suggested for sperm whales (Whitehead et al. 

1997, Whitehead 2000), competition and social hierarchy may cause exclusion of some 

individuals when resources are less abundant, but sharing resources with reproductive 

females during more productive years, may be a mating strategy of choice for dominant 

males. Whether or not this would be a good strategy is unknown. Would a male benefit 

by sharing resources with females which do not remain in “his” territory rather than 

protecting resources for his harem and presumed offspring? Breeding with transient 

females may occur but, without knowing what role males play in protecting their 

offspring, it is unknown whether or not this may be successful. There is anecdotal 

evidence that adult males present a threat to calves as intraspecific scarring on calves 

has been observed (pers. obs.). If males do choose to share resources to increase 

breeding opportunities, this may explain why the increase in abundance in 2000 was 

only noted for adult females; however, it is likely that there were not enough data to 

detect changes in the other classes. Research is needed into Blainville’s beaked whale 

social organisation, group relatedness and paternal investment as well as studies of prey 

densities to begin to understand the relationship between demographic changes and prey 

biomass. 

 Another hypothesis is that anthropogenic factors were the driving force behind a 

temporal change in ranging patterns. During the naval exercise on 15 March 2000, 

surface ships using tactical sonars transited through the middle of Northwest Providence 

Channel (see Figure 3.1). No such event had occurred previously or has since. Sound 

propagation models showed cumulative ping levels in the mid-channel waters (Evans 
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and England 2001) which exceeded those known to cause behavioural responses in 

beaked whales (Tyack et al. 2011). Avoidance response would reduce exposure to sonar 

in a similar way to an anti-predator response but in this case because animals moved 

away from the sound sources they could be at risk of stranding as they approached 

coastal areas. Live stranded beaked whales were observed in Abaco’s shallow coastal 

areas within hours after the ships’ passage (Balcomb and Claridge 2001). Mature 

females may have had previous experience with disturbances, and exhibited a response 

which avoided navigating into shallow waters, thus preventing stranding, but could 

nonetheless have been displaced by the event, although the “new” females seen in 2000 

were not observed until August. There are numerous examples of cetaceans being 

displaced by noise disturbance (Richardson et al. 1995, Morton and Symonds 2002), 

including beaked whales (McCarthy et al. 2011, Tyack et al. 2011). Some displacement 

has been shown to be temporary; for example, when shipping traffic increased, grey 

whales abandoned a calving lagoon in Baja California and then returned after traffic 

diminished (Bryant et al. 1984). Similarly, beaked whales moved off a navy testing 

range during training exercises involving the use of sonars, but later returned when 

exercises ceased (McCarthy et al. 2011, Tyack et al. 2011). 

 However, a potential caveat in this study is that the heterogeneity model used 

here is heavily parameterised (5 parameters for each of 4 classes over 14 sampling 

intervals), with very little data in some years. As such, these results should be 

interpreted with some caution. 
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5.4.5 Conclusions 

 Heterogeneity in capture probabilities between individuals from different age / 

sex classes resulted in only a slight negative bias in the estimate of abundance when not 

accounted for, but model fit was greatly improved when heterogeneity was addressed by 

stratifying parameters by age and sex. Annual survival was highest for adult females, 

but permanent emigration of adult males inhibited estimating true survival for this class. 

Social hierarchy in Blainville’s beaked whales may be a driving factor contributing to 

individual heterogeneity as dominant males limit access to resources and/or territories 

from sub-adults and other males. The added energetics costs of growth of sexually 

dimorphic features in males may contribute to survival rates being lowest in sub-adult 

males. Heterogeneity in movement patterns of adult females appeared to be associated 

with the temporary immigration or displacement of some individuals in 2000, resulting 

in an apparent increase in adult female abundance in that year. This was coincident with 

(1) an ENSO event which may have influenced prey available but also increased 

cyclone activity, and (2) an anti-submarine warfare exercise which caused behavioural 

responses in the local population. Interpreting the potential effects of either of these 

events is hampered without more knowledge about the ecology of Blainville’s beaked 

whale. Much like cetacean life cycles, global weather patterns are complex and span 

decades but, based on the findings here which include no apparent change in population 

dynamics in years with more severe cyclones and previously documented displacement 

of cetaceans caused by anthropogenic noise, the noise displacement hypothesis may 

have more support. Regardless of the cause, the effect appeared to be temporary as both 

abundance estimates and temporary emigration rates returned to pre-2000 levels and 

remained stable for the remainder of the study, although this result may need to be 
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interpreted with some caution. This work may provide the first evidence of a 

population-level effect of a single anti-submarine warfare exercise, emphasising the 

valuable role that longitudinal studies will have in monitoring impacts of future events.  
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CHAPTER 6 

 

RE-SIGHTINGS OF BEAKED WHALES RE-FLOATED DURING AN ATYPICAL 

MASS STRANDING COINCIDENT WITH NAVAL SONAR 

 

 

6.1 Introduction 

 During mass strandings of cetaceans, although some individuals within the 

group may be ill, the majority of animals are alive and considered to be healthy (Wiley 

et al. 2001). However, without human intervention, many, if not all, of the animals will 

perish. Response protocols at mass strandings therefore call for dealing with the live 

animals first with the goal of returning to the sea (re-floating) as many individuals as 

quickly as possible, prioritising the healthiest and strongest animals (Geraci and 

Lounsbury 2005). Yet the fate of re-floated individuals is rarely documented. An 

exception can occur if an individual has been taken into captivity, successfully 

rehabilitated, and been freeze-branded or instrumented with a telemetry tag to allow 

monitoring post-release (e.g., Mate 1989, Mate et al. 1994, Wells et al. 2009). 

However, most animals are simply re-floated without instrumentation, with no 

opportunity to monitor their long-term survival. The only known account is given by 

Visser and Fertl (2000) in which a sub-adult male killer whale (Orcinus orca) stranded, 

was re-floated 21 hours later and subsequently re-sighted over a 28-month period. 
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Although this individual’s dorsal fin was severely damaged by a vessel’s propeller 16 

months after re-floating, the vessel strike was not considered to be related to stranding, 

and the re-floating was deemed successful.  

 Although reasons for mass strandings of cetaceans are not always understood 

(Geraci and Lounsbury 2005), mass strandings of beaked whales have been correlated 

with Navy sonar and seismic exploration (Simmonds and Lopez-Jurado 1991, Frantzis 

1998, Jepson et al. 2003, Peterson 2003, Cox et al. 2006). Post-mortem observations 

from whales that died during these events included bleeding in the inner ear and brain 

(Evans and England 2001), and acute gas bubble lesions (Jepson et al. 2003, Fernandez 

et al. 2005). During these atypical strandings, first responders have driven some of the 

live-stranded whales back out to sea, but no follow-up has been reported nor have any 

re-floated whales been re-sighted. 

 Here post-re-floating survival of beaked whales following an atypical stranding 

coincident with a naval sonar exercise in the northern Bahamas is reported on. On 15 

March 2000, an antisubmarine warfare exercise involving four surface ships using high-

powered mid-frequency active sonars transited Northwest Providence Channel causing 

the stranding of at least 14 beaked whales (Balcomb and Claridge 2001, Evans and 

England 2001; Figure 6.1). Two beaked whale species were involved in the stranding: 

Cuvier’s beaked whale (Ziphius cavirostris, n = 11) and Blainville’s beaked whale 

(Mesoplodon densirostris, n = 3). Details of the re-floating of four animals are provided 

here and re-sightings of two of these whales post-stranding are reported. 
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Figure 6.1. Map of The Bahamas showing the area where 14 beaked whales stranded on 15 March 2000 on Abaco and Grand Bahama 

Islands as navy ships transited from the Atlantic Ocean through Northwest Providence Channel (as indicated by the arrow) conducting an 

antisubmarine warfare exercise. The circles represent stranding locations of a single whale (small circle) and two whales (large circle). 

Blainville’s beaked whales (n = 3) are shown in black and Cuvier’s beaked whales in white (n = 11). The 1000 m isobath is shown by the 

dotted line.  
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6.2 Methods 

6.2.1. Stranding response 

 Four live-stranded whales were found along the southwest coast of Abaco Island 

(Figure 6.1). No rehabilitation facilities existed and euthanasia was not possible, so the 

response consisted only of attempts to re-float the animals as quickly as possible. Two 

methods were employed: animals were either re-floated at the site of stranding (n = 2) 

or transported to another site and re-floated there (n = 2). As far as possible, standard 

measurements were collected following Geraci and Lounsbury (1993). Tissue samples 

were collected opportunistically and stored in a preservation solution [20% dimethyl 

sulphoxide (DMSO), supersaturated in NaCl] immediately after collection. Samples 

were later transported to the Southwest Fisheries Science Center, La Jolla, California, 

USA for molecular sexing (Morin et al. 2005). 

 

6.2.2 Post stranding 

6.2.2.1 Vessel surveys 

 From 1997 to 2011, randomly placed line transect surveys and opportunistic 

sightings surveys for beaked whales were conducted using small boats (< 9 m) off the 

south-western coast of Abaco Island, in the northern Bahamas (26.0N, 77.3W), 

resulting in more than 40,000 km of vessel track line (see Figure 3.1). From 2007 to 

2011, visual and acoustic ship-based surveys were conducted more widely throughout 

Great Bahama Canyon using standardised search methods (Buckland et al. 2001; 

Zerbini et al. 2007), covering an additional 8,885 km. When beaked whales were 



259 

encountered, attempts were made to photo-identify all individuals within a group on 

both right and left sides (see Chapter 2 for details). Each identification image was later 

visually examined either using a light table and magnifying eyepiece (for the black and 

white negatives) or a high-resolution computer monitor (for the digital images), and 

individual beaked whales were identified using the unique pattern of scarring on the 

body and nicks in the dorsal fin or at the base of the fin. 

 

6.2.2.2 Tagging 

 On 9 May 2009, during a ship-based survey of Great Bahama Canyon, a “dart” 

tag (Andrews et al. 2008) with a satellite transmitter (SPOT5 model, Wildlife 

Computers, Redmond, WA; http://www.wildlifecomputers.com) was deployed on an 

adult female Cuvier’s beaked whale (Zc027). This small (49 g) tag was attached with 

two barbed titanium posts which penetrated 4.5 cm into the dorsal fin. The tag was 

deployed using a black powder gun to fire a delivery bolt from a range from 10 m (e.g., 

Tyack et al. 2011); the bolt fell away on contact with the whale, leaving only the tag 

attached. The tag was scheduled to transmit up to 400 times during 12 hours each day 

(John Durban, pers. comm.), timed to coincide with passes of satellites from the 

ARGOS satellite system (CLS America, Largo, MD; http://www.argos-system.org/). 

Received transmissions were used to calculate locations and estimated error radii, using 

a positioning algorithm implemented by the Argos satellite system that employs Kalman 

filtering of the received frequency measurements (Lopez and Malardé 2011).  

 

http://www.argos-system.org/)
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6.3 Results 

6.3.1 Re-floating accounts 

 Of the 14 whales that stranded on 15 March 2000, eleven were alive when first 

observed but re-floating was only attempted or possible for six individuals (Table 6.1).  

 

6.3.1.1 Animal ID BMMS 00-02 

 At 0730 EST on 15 March 2000 a large calf/juvenile Cuvier’s beaked whale was 

found by local residents completely grounded on a rocky shoreline approximately 20 m 

from the water’s edge. Volunteers kept the whale wet until responders arrived at 0840. 

Due to the rugged terrain, current distance of the whale from the water, and an ebbing 

tide (high tide was at 0347, low at 1018), the decision was made to keep the whale 

moist and as comfortable as possible until the tide was high enough to move it. Towels 

were placed on its back and a team of volunteers used buckets to keep the towels wet. 

Standard length measurement was taken (length 366 cm) and a skin sample was 

collected for genetic analysis. The whale was bleeding ventrally from abrasions caused 

by the sharp rocks, attracting two black-tipped sharks (Carcharhinus limbatus) which 

circled just offshore throughout the rescue. At 0940, the animal was carefully rolled 

onto a tarp to provide some protection against the rocks. At 1212, the tide was high 

enough and sufficient volunteers were available to lift/re-float the whale in the tarp 

which was then held in place alongside a 6 m rigid-hulled inflatable boat (RHIB). The 

two sharks approached repeatedly and had to be repelled using sticks. The RHIB was 

slowly manoeuvred around the rocky promontory towards the edge of the canyon wall, 

a distance of 0.4 km, and the whale was released from the tarp. Its condition was  



261 

Table 6.1. Summary information for 11 beaked whales first observed alive during the 

Bahamas stranding on 15 March 2000. (For a complete summary of all animals that 

stranded during this event, see Balcomb and Claridge 2001. To allow cross-reference, 

the same animal IDs were used here). Zc = Cuvier’s beaked whale and Md = 

Blainville’s beaked whale. Note: Castaway Cay was formerly known as Gorda Cay. 

Animal ID Species 
Age class 

and sex 
Location Response Fate 

BMMS 00-02 Zc 
Calf/juvenile, 

unk. sex 

Rocky Point, 

Abaco 

Kept moist, re-

floated in tarp, 

released 

offshore 

Unknown 

BMMS 00-03 Zc Adult female 
Sandy Point, 

Abaco 

Pushed off 

beach, guided 

offshore by 

RHIB 

Re-sighted 

BMMS 00-04 Md Adult female 
Sandy Point, 

Abaco 

Pushed off 

beach, guided 

offshore by 2 

kayaks 

Unknown 

BMMS 00-05 Md Adult female 
Castaway 

Cay, Abaco 

Not kept moist, 

re-floated in 

tarp, released 

offshore 

Re-sighted 

BMMS 00-06 Zc 
Sub-adult 

female 

High Rock, 

Grand 

Bahama 

None 
Died at 

site 

BMMS 00-08 Zc Adult female 

Peterson Cay, 

Grand 

Bahama 

Pushed off 

beach/rocks 
Unknown 

BMMS 00-09 Zc 
Calf, unk. 

sex 

Peterson Cay, 

Grand 

Bahama 

Pushed off 

beach/rocks 
Unknown 

BMMS 00-10 Zc Adult male 

Red Shank 

Cay, Grand 

Bahama 

None Unknown 

BMMS 00-11 Zc 

Adult or sub-

adult, unk. 

sex 

Red Shank 

Cay, Grand 

Bahama 

None Unknown 

BMMS 00-13 Zc Adult female 

Gold Rock 

Creek, Grand 

Bahama 

None 
Died at 

site 

BMMS 00-14 Zc 
Sub-adult 

male 

Gold Rock 

Creek, Grand 

Bahama 

None 
Died at 

site 
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considered to be poor at the time of release. It kept circling back towards the rocks but 

kayakers were able to prevent re-stranding by physically blocking its path on the 

surface. At 1258 the whale began moving into deeper water (6.5 m) and at 1303 it was 

last seen swimming down and away from the edge of the carbonate bank to the south. 

This whale did not match to any individuals previously photographed and was given the 

new catalogue number Zc037. 

 

6.3.1.2 Animal ID BMMS 00-03 

 At 0815 an adult female Cuvier’s beaked whale was found live stranded in the 

shallows at the beach 2 km from BMMS 00-02 (above). Its body condition was good 

and, as there was a direct route to deep water to the southwest and only 3 km away, the 

whale was immediately turned away from the shore and pushed off the sandy bottom. 

Its progress was monitored by observers in the RHIB; when it moved towards shallow 

water, the RHIB itself was used as a physical barrier, but with limited success. The 

whale re-grounded three times and had to be pushed off the bottom and re-directed 

offshore. Small ventral lacerations presumably from the rocky substrate were observed 

by a snorkeler. At 0916, the whale continued swimming southwest off the edge of the 

carbonate bank and into the Great Bahama Canyon, remaining at the surface as it swam 

away from the RHIB. It was later determined that this individual matched to a whale 

photo-identified previously in Abaco (identification number Zc027). On 26 February 

1999, Zc027 had been sighted 23 km to the southeast of the stranding location (Figure 

6.2a) and was accompanied by a dependent calf, and had been re-sighted on 1 March 

2000 25 km horizontal distance southeast of the stranding location (Figure 6.2b) with a 

large calf/juvenile, presumably the same calf as in 1999, although there were no 
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markings on the calf that could be used to confirm this. However, the calf/juvenile with 

Zc027 on 1 March 2000 did not match BMMS 00-02 above, i.e. it was not Zc037. 

 

6.3.1.3 Animal ID BMMS 00-04 

 An adult female Blainville’s beaked whale was found in the shallows 0.5 km 

from ID BMMS 00-03 at approximately 0830. The first responders immediately turned 

it around, pushed it offshore, and followed/directed it towards deep water (3 km away) 

by paddling a kayak on either side of the whale. This method proved remarkably useful; 

when the RHIB joined the two kayakers at 0930, they had travelled more than half the 

distance to the edge of the bank and the whale was swimming in a directed path towards 

the bank’s edge. Field notes state that this animal appeared in good condition. At 1033, 

this animal was last observed in approximately 30 m depth swimming south into the 

canyon, remaining at the surface as it swam away. This whale did not match to any 

individuals previously photographed and was given the catalogue number Md148. 

 

6.3.1.4 Animal ID BMMS 00-05 

 An adult female Blainville’s beaked whale was found at Castaway Cay, some 16 

km from the other three stranded whales, live stranded in the shallows of a mangrove 

lagoon. The whale was in poor body condition (it had not been kept moist) but lacking 

other options it was decided to re-float it (Figure 6.4a and c). A sloughed skin sample 

was collected for genetic analysis. The whale was then manoeuvred onto a tarp which 

was held alongside the RHIB and towed in this way out of the lagoon and 1.5 km west 

of the stranding location. It was released from the tarp at 1715 at the edge of the 
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carbonate bank in approximately 10 m depth and was observed swimming towards the 

west into the canyon. This whale did not match to any individuals previously photo-

identified and was given the catalogue number Md149. 

 

6.3.2 Re-sightings 

 During field efforts conducted in the northern Bahamas after the stranding, the 

whales recorded as BMMS 00-03 (Zc027) and BMMS 00-05 (Md149) were re-sighted 

(Table 6.2).  

 

6.3.2.1 Zc027 

 During a ship-based survey on 6 May 2009, individual Zc027 was photographed 

(Figure 6.2d, e) off north Eleuthera Island, 77 km horizontal distance south of the 

stranding location (Figure 6.3). There were three whales in the group, including an 

individual thought to be either a large juvenile (dependent calf) or a sub-adult that was 

closely associated with Zc027. Biopsy samples were collected from both individuals but 

genetic analyses have not been completed at this time so their relationship cannot be 

confirmed.  

 There were 22 locations estimated from the transmitter on Zc027 during the 12-

day transmission period (10 – 21 May 2009), with estimated error radii ranging from 

940 m to 25,000 m (median 4,300 m). During this time Zc027 ranged from eastern New 

Providence Island to the Atlantic side of Eleuthera Island (Figure 6.3). 
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Table 6.2. Sighting histories for Zc027 and Md149. AF = one adult female, AM = one 

adult male, C = one dependent calf/juvenile. The number in parentheses is the number 

of individuals in the group from each age / sex class if there were more than one. C/SA 

represents an individual recorded as a dependent calf in the field but photographs show 

the size and markings are indicative of a sub-adult. 

Whale ID Date 
Group 

size 

Group 

composition 
Location Notes 

Zc027 

26-Feb-99 5 
AM, AF (2), 

C (2) 
SW Abaco  

01-Mar-00 3 AM, AF, C SW Abaco  

15-Mar-00 1 AF SW Abaco 
Live stranded; 

re-floated 

06-May-09 3 

AF, C/SA, 

unk. 

adult/sub-

adult 

N Eleuthera 

Dart tag 

deployed; 

biopsy sample 

collected 

Md149 
15-Mar-00 1 AF SW Abaco 

Live stranded; 

re-floated 

09-Jun-03 3 AF (3) SW Abaco  
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Figure 6.2. Photographs of an adult female Cuvier’s beaked whale, Zc027 taken pre-, 

during and post-stranding. Pre-stranding sightings include (a) the first sighting on 26 

February 1999 off southwest Abaco, and (b) re-sighted on 1 March 2000 in the same 

area. (c) Zc027 live stranded on the beach at Sandy Point, southwest Abaco, on 15 

March 2000, was re-floated and followed as it returned to deep water. (d) Zc027 was re-

sighted post-stranding off north Eleuthera on 6 May 2009. The unique pattern of oval 

scars from cookie cutter sharks (Isistius sp.), dorsal fin shape and two small indentations 

in the leading edge of the fin were used to confirm the photographic matches. Note that 

this photograph is not taken perpendicular to the dorsal fin as in (a), and new marks 

have been acquired in the 10-year period between photographs. (e) This photograph was 

taken of Zc027 on the surfacing series just prior to deploying a satellite transmitter tag 

on the dorsal fin. 
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Figure 6.3. Map of The Bahamas showing the area in which stranding/re-floating, pre- and post- re-floating sightings and tagging occurred. 

Stranding/re-floating locations are marked with a black “X” for the Blainville’s beaked whale, Md149, and the post-stranding sighting 

location off southwest Abaco Island by the black circle. The white “X” represents the stranding/re-floating location for the Cuvier’s beaked 

whale, Zc027, and white circles mark the two pre-stranding sighting locations off Abaco Island and the subsequent post-stranding sighting 

north of Eleuthera Island, during which a satellite transmitter was deployed on Zc027. Estimates of tag location derived from the Argos 

Satellite System are shown as grey circles, with the size of circles being proportional to the estimated error radii. The 1,000 m isobath is 

shown by the dotted line.
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6.3.2.2 Md149 

 During a line transect sightings survey off southwest Abaco on 9 June 2003, 

Md149 was photographed (Figure 6.4b, d and e) with two adult females known 

previously from the Abaco study area. The re-sighting location was 26 km southeast of 

the release site off Castaway Cay (Figure 6.3). Of particular note during the re-sighting 

was that Md149 had experienced some form of severe trauma since the stranding as 

shown by a healed wound measuring approximately 50 cm laterally on the left side 

posterior to the thoracic area. The scar’s large size and evidence of healing by 

granulation due to its colour change, is indicative of a trauma which removed a large 

section of tissue below the entire skin depth in a single laceration (pers. comm. F. 

Gulland, 10 August 2012). The scar on Md149 closely resembles those caused from a 

ship’s propeller (pers. comm. A. Knowlton, 10 August 2012); see photographs of the 

right whale RW#3503 on the New England Aquarium’s right whale catalogue website:  

http://rwcatalog.neaq.org/Default.aspx, as this whale’s injury from a ship strike 

progresses through the healing process. Md149 had additional new scars on the thoracic 

region but these were consistent those inflicted by conspecifics as described in Chapter 

4.  

 

http://rwcatalog.neaq.org/Default.aspx
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Figure 6.4. Photographs of an adult female Blainville’s beaked whale, Md149, taken 

during and post-stranding. ID photos taken (a) during the live stranding on 15 March 

2000 and (b) when Md149 was re-sighted on 9 June 2003 show a small notch in the 

tailstock. Additional photographs of the thoracic region taken during (c) stranding and 

(d) post-stranding show oval scars from cookie cutter sharks that were used to confirm 

the match. (e) The healed wound from a deep laceration is visible posterior to the 

thoracic region which occurred sometime after stranding.  
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6.4 Discussion 

 At least two beaked whales survived exposure to mid-frequency tactical sonars, 

the physiological stress of stranding and were re-sighted years later. Thus the re-floating 

of these individuals was considered a success.  

 Zc027 had shown multi-year site fidelity to southwest Abaco prior to stranding, 

and the re-sighting and location data from the satellite transmitter tag showed further 

site fidelity post-stranding to the same general area, i.e., the entrance to the Great 

Bahama Canyon. In Hawai’i, Cuvier’s beaked whales have exhibited long-term site 

fidelity (up to 15 years), with maximum distances between re-sighting locations ranging 

up to 89 km (mean of maximum distances = 31.1 km, SD = 25.3 km, McSweeney et al. 

2007). Zc027 was seen post-stranding 77 km away from pre-stranding sighting 

locations and in an area where Ziphius have been sighted previously (Claridge et al. 

2012). Furthermore, movement of Cuvier’s beaked whales between the Abaco study 

area and Eleuthera has been documented previously, although only once; the other 

individual was an adult male (BMMRO unpublished data), further suggesting Zc027’s 

movement may represent normal behaviour. Zc027 was seen post-stranding in a typical 

social grouping for this species (McSweeney et al. 2007) but, until the genetic analyses 

are completed, it remains unknown if the large juvenile/sub-adult accompanying Zc027 

on 6 May 2009 was her offspring.  

  Md149 survived at least three years post-stranding, was in a social group typical 

for this species (Claridge 2006, McSweeney et al. 2007) but appeared to have 

experienced acute trauma sometime post-stranding, possibly the result of a strike by a 

ship’s propeller. As in all cetaceans, vessel strikes can be a cause of death in 
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Mesoplodon beaked whales (Van Waerebeek et al. 2007, Carrillo and Ritter 2010, 

Nielson et al. 2012), although evidence of a vessel strike has never been reported in 

stranding records in The Bahamas. No other individual from a catalogue of over 360 

individual Blainville’s beaked whales from The Bahamas shows evidence of a vessel 

strike. Therefore vessel strikes on this species are considered rare. This incident is 

similar to the account given by Visser and Fertl (2000) in which the ship strike of a 

killer whale occurred 16-months post-stranding but the authors considered it unlikely 

that the two were related because of the long interval between events. In the case of 

Md149, the interval between stranding and the presumed ship strike is unknown, but the 

time needed to recover to the state of the observed scar after such a traumatic injury is 

estimated to be a year to 18 months (pers. comm. A. Knowlton, 22 January 2013). 

Injuries associated with atypical strandings coincident with navy sonar include 

haemorrhages in the inner ear and brain (Evans and England 2001, Fernandez et al. 

2005) which may partially explain the poor condition of Md149 when released. Until 

recovery from the pathophysiological stresses of sonar exposure and stranding, a 

whale’s ability to detect and avoid an approaching vessel could be compromised 

(Richardson et al. 1995). Although inconclusive, it is possible that the stranding of 

Md149 and subsequent ship strike were related.  

 The fate of the other two whales that were re-floated (BMMS 00-02 and 00-04) 

remains unknown, although it is unlikely that the juvenile Cuvier’s beaked whale 

survived because of its poor condition when released and the close presence of 

aggressive sharks. What happened to the juvenile sighted with Zc027 on 1 March 2000 

is also unknown. The impact of the March 2000 naval exercise on Blainville’s beaked 

whale populations is discussed in Chapters 3 and 5, but the paucity of data for Cuvier’s 
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beaked whale constrains such an assessment for this species. Claridge (2006) and 

Weilgart (2007) reported a decline in Ziphius sightings in the Abaco study area for 

several years after the 2000 stranding, despite increased field effort in most years. 

Although Cuvier’s beaked whale sightings off Abaco continue to be infrequent, an adult 

female first photo-identified off southwest Abaco in 1997 was re-sighted in the same 

area in 2007, demonstrating long-term site fidelity of whales in this region, spanning a 

time period from before to after the stranding (BMMRO unpublished data). A thorough 

review of the photo-identification data for Ziphius in The Bahamas is currently 

underway which may provide new insights into whale movement and site fidelity. 

 

6.4.1 Conclusions 

 Although it is unlikely that the impact of the 2000 sonar exercise on beaked 

whale populations in the northern Bahamas will ever be fully understood, the main 

finding of this work is that at least some individuals can survive exposure to mid-

frequency active sonars and the physiological stresses related to stranding if re-floated 

and directed back into deep water. 
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CHAPTER 7 

 

GENERAL DISCUSSION 

 

 

7.1 Filling key gaps 

 Quantifying population demographics is necessary to analyse the status of 

wildlife populations and to support effective conservation and management. Such a 

need exists for beaked whales which exhibit behavioural responses to anthropogenic 

noise, including navy sonar, suggesting that this group is particularly vulnerable among 

cetaceans (Cox et al. 2006). In this thesis, longitudinal photo-identification data 

collected over 15 years in The Bahamas has been used to advance our knowledge of the 

population demographics of Blainville’s beaked whales (Mesoplodon densirostris) and 

investigate the potential population-level effects of military sonars. 

 Mark-recapture models were fitted to photo-identification data collected from 

2005 – 2010 at the Atlantic Test and Evaluation Center (AUTEC) where sonar was 

regularly used and 170 km away at Abaco where sonar use was limited and thus 

considered a control site. During the study, a mass stranding of beaked whales, 

including Blainville’s beaked whales, occurred in March 2000 near the Abaco site 

which was correlated with a navy sonar exercise (Evans and England 2001, Filadelfo et 
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al. 2009) and population dynamics surrounding this event were explored using the full-

time series of data available (1997 – 2011).  

 Key advances that my work has contributed to understanding the population 

demographics of Blainville’s beaked whale include estimating population age-structure, 

survival and recruitment rates, movements in and out of my study areas and abundance 

both on and off a navy range. The population age-structure found in Abaco supported a   

polygynous resource/female defence harem-type mating system known for M. 

densirostris (Claridge 2006, McSweeney et al. 2007). However, the age structure 

described here may be that of a part of the population, rather than full sampling of a 

whole population because the sampling area was limited to the south-western coast of 

Abaco Island, an area regularly used by adult females. For beaked whales, sound 

associated with naval exercises may impact immature whales to a greater extent than 

adults (Cox et al. 2006), possibly because they are naïve. As such, information on age 

structure may be an important component of mitigation and monitoring for populations 

exposed to sonar use on a regular basis, such as at AUTEC, and the new information 

from Abaco provides a valuable baseline for comparison.  

 For Mesoplodon species, almost all information on age and sexual maturity has 

come from the examination of carcasses from stranded animals (Mead 1989, Heyning 

1989) and is limited by the rarity of strandings of the majority of the species. Age at 

sexual maturity was only reported for a single stranded female Mesoplodon examined 

post-mortem (a Blainville’s beaked whale, Ross 1979). My work here has supported 

this initial finding from free-ranging females and I have also contributed new 

information on the age at sexual maturity for males.  
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 Survival is one of the most critical demographics needed to monitor population 

dynamics but, for beaked whales, information on survival has been lacking for all but 

one species (Gowans et al. 2000). I presented the first survival estimates for a 

Mesoplodon species. Adult females exhibited high long-term site fidelity, as has been 

reported for this species in Hawaii (McSweeney et al. 2007). Permanent emigration 

occurred at a low rate, so apparent survival estimates that I have reported should be 

close to true survival. For the sub-adult classes poorer precision affected the ability to 

draw conclusions, but estimated survival rates of both female classes exceeded those of 

males.  

 This provided insight into differences in occupancy patterns by sex and suggests 

that males may permanently emigrate at a higher rate than females. The added 

energetics costs of growth of sexually dimorphic features in males may contribute to 

survival rates being lowest in sub-adult males. Male-male combat and associated 

injuries could lead to increased susceptibility to disease (Moore and Wilson 2002) and 

result in a decline in the health of adult males (Ramp et al. 2010), or the cost of 

maintaining dominance (Deutsch et al. 1989) may be a contributing factor to increased 

mortality in mature males. However, the low estimate of apparent survival rate for adult 

males infers that it must incorporate some permanent emigration, presumably of non-

dominant males. Variation temporally in recruitment of sub-adults reflected birth 

pulses, with a time lag. However, differences in annual recruitment rates in adults 

appeared to reflect differences in the rate of immigration of “new” adults that were 

primarily males. New arrivals will challenge the social hierarchy, thereby replacing 

subordinate males that have permanently emigrated.   
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 Analyses of the data from the longer time series available revealed that 

Blainville’s beaked whales in Abaco are part of a larger parent population providing 

support for turnover in the study area. The dispersion of individuals within a population 

depends on prey density, factors affecting dispersal, and behavioural interactions (Cain 

et al. 2008). I believe that social hierarchy in Blainville’s beaked whales is a driving 

factor contributing to turnover as dominant males limit access to resources and/or 

territories from sub-adults and other males. However, it was surprising to find that 

individual dispersion of Blainville’s beaked whale, especially of adult males, was so 

geographically limited in the northern Bahamas, suggesting some degree of population 

structuring. As shown in Hawaii (Schorr et al. 2009), individual movement within the 

Great Bahama Canyon may be on spatial scales in the range of tens of kilometres with 

regular home ranges that do not overlap at AUTEC and Abaco. 

 I have provided the first estimate of abundance for Blainville’s beaked whales 

(or any mesoplodont) using mark-recapture methods, and compared abundance on and 

off a navy range. Average annual abundance of Blainville’s beaked whales was lower at 

AUTEC when compared to an area of the same size in Abaco. Of particular concern 

was that, despite a similar number of adult females at both sites, a higher female:calf 

ratio was found on the navy range, suggesting that lower recruitment through births at 

AUTEC may be contributing to the lower overall abundance than at the control site. 

Lower reproductive rates and/or calf survival may be attributed to exposure of resident 

adult females to chronic stress associated with frequent use of navy sonars at AUTEC, a 

hypothesis that still needs to be tested.  
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 Estimates of abundance have allowed me to determine the status of the Abaco 

population, which appears stable. Although changes in population dynamics were not 

noted during the study some demographic changes were observed. Immediately after the 

2000 stranding, abundance and temporary emigration increased, suggesting 

displacement of individuals may have occurred. However, the following year abundance 

and population parameters returned to pre-2000 levels and remained stable thereafter.  

 Two individuals in the 2000 stranding were re-sighted years later, demonstrating 

that some beaked whales can survive exposure to mid-frequency active sonars and the 

physiological stresses related to stranding if re-floated and directed back into deep 

water. This implies that behavioural responses can occur that pre-empt permanent 

physiological damage even when exposed to multiple sonars operated at 235 dB re 1µPa 

or even higher (Evans and England 2001). This response appears similar to that 

described by Tyack et al. (2011) in controlled exposure experiments where Blainville’s 

beaked whales reacted to sound pressure levels below 142 dB re 1µPa by moving away 

from the sound source. However, in the case of the two whales here (Zc027 and 

Md149), their response resulted in stranding, and without human intervention, they 

would likely have perished. It is important to note too that the primary species 

represented in the 2000 stranding was Cuvier’s beaked whales and it remains unknown 

what the impact on this species may have been.  

 Monitoring of even a small number of individuals in the Abaco study site for 

more than a decade provided valuable life history data from free-ranging mesoplodonts. 

These life history data and other vital parameters will be applied to models to predict 

the population-level consequences of regular sonar use at AUTEC and on other navy 
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ranges (National Research Council 2005). In addition to the estimates given here, the 

extensive individual-based dataset from Abaco can be used to examine other aspects of 

Blainville’s beaked whale life history and behaviour such as estimating inter-birth 

intervals (e.g., Barlow and Clapham 1997), assessing trends in age structure (e.g., 

Fearnbach et al. 2012a), and examining social structure (e.g., Lusseau et al. 2005, 

Jaquet and Gendron 2009). Similar future applications of the AUTEC data, although too 

limited currently, would allow a more comprehensive comparison of the population 

ecology of Blainville’s beaked whales on and off a navy range. 

 

7.2 Potential conservation implications 

 The primary goal of this work was to fill some of the critical gaps in our 

knowledge of the population demographics and to a lesser extent population dynamics 

of Blainville’s beaked that will have implications for the conservation of this species.  

 Despite its proximity to Abaco, the AUTEC “sub-population” may need to be 

managed as a separate unit. On-going studies to define the geographic bounds of 

individual movement through satellite telemetry and photo-identification work should 

be continued. A genetic study underway which includes tissue samples collected in The 

Bahamas during this study will provide information on the breeding population 

structuring for this species in the region (see Morin et al. 2012 for preliminary results). 

Defining the extent to which these two “sub-populations” interact is of great importance 

to management of human activities, particularly at AUTEC. Management strategies may 

need to prioritise efforts to improve precision in the population demographics presented 
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here and conduct a thorough assessment of potential threats to the AUTEC 

subpopulation, which are likely not just to be limited to the impacts of sonar. Prey 

density studies would be extremely valuable to interpreting abundance differences 

found here between Abaco and AUTEC. Such management strategies are currently 

being employed elsewhere; for example, management of the southern resident killer 

whale (Orcinus orca) population in Washington State as a separate stock under the US 

Endangered Species Act which required implementation of a recovery plan to increase 

conservation efforts for this population and its habitat (National Marine Fisheries 

Service 2008).  

 High residency of adult females inhabiting navy ranges may put them at 

particular risk of exposure to stressors associated with frequent and repeated use of navy 

sonars which may reduce their fitness, a concern particularly for pregnant and lactating 

females, young calves and even foetuses (Curry 1999, Wright et al. 2007). Although a 

quantitative answer to whether frequent sonar use at AUTEC is causing stress to 

resident beaked whales does not exist currently, the potential implications to mitigation 

of navy activities on the AUTEC range (and elsewhere) are great, and testing this 

hypothesis is a priority. Studies of pregnancy and stress hormone (e.g., Rolland et al. 

2005, Hunt et al. 2006, Kellar et al. 2006, 2009), and the use of satellite tags to 

investigate potential changes in foraging behaviour of whales displaced during sonar 

tests will provide a context for interpreting low recruitment at AUTEC. Aerial 

photogrammetry conducted at Abaco and AUTEC such as that done by Fearnbach et al. 

(2011) would provide a means of comparing fitness between the two areas.  
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 Monitoring trends in abundance and survival in beaked whales are important for 

understanding future impacts of other anthropogenic activities which are known to 

affect ziphiids such as shipping noise (Aguilar de Soto et al. 2006, Pirotta et al. 2011) 

and fisheries interactions (Read and Wade 2000), although the latter is of less concern 

in The Bahamas where large scale commercial fishing does not currently occur. 

However, anthropogenic sound associated with increasing shipping traffic and its 

effects on cetaceans has raised concern about masking communication sounds, energetic 

costs of behavioural disruption and displacement, and physiological effects and stress 

(Payne and Webb 1971, Richardson et al. 1995). Ambient noise associated with 

shipping traffic measured off San Nicholas Island, California had increased by 10 – 12 

dB (95% CI = 2.6 dB) between 1964 and 2004, or 2.5-3 dB per decade (McDonald et al. 

2006). In 1997 the Freeport Container Port began operations in the northern Bahamas 

and serves as one of the major transhipment hubs for the eastern seaboard of the United 

States, increasing traffic of containerships in Northwest Providence Channel. Although 

this increase has not been quantified, and the status of beaked whales closer to the 

shipping lanes is unknown, information on the status of the Abaco “sub-population” 

located nearby and its future monitoring may provide a valuable baseline. Of perhaps 

equal relevance to beaked whales inhabiting tropical waters may be the effects of 

climate change with increasing frequency and intensity of tropical cyclones which can 

have direct and indirect effects on cetaceans (Mignucci-Giannoni et al. 1999, Miller et 

al. 2010, Fearnbach et al. 2012a, 2012b).  

 The apparent stability of the Abaco population has provided an extremely useful 

baseline (or control) for comparing the population demographics on a navy range. For 

example, AUTEC densities reported previously (Marques et al. 2009) were higher than 
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anywhere else (Moore and Barlow 2013), yet abundance at AUTEC has been shown 

here to be low relative to a population nearby. Without the comparative approach taken 

here, the concerns highlighted about potential impacts to beaked whales from regular 

exposure to sonar would not have been evident. This work may provide the first 

evidence of a population-level effect of both regular sonar use at AUTEC and the 2000 

stranding event (although apparently short-term), emphasising the valuable role that 

longitudinal studies can have in monitoring impacts of anthropogenic activities, 

including in areas where sonar is regularly used such as on navy ranges.  

 

7.3 Additional considerations 

7.3.1 Bayesian versus likelihood approaches 

 I chose to use a Bayesian approach to statistical inference which is quite 

different from the classical approach. In classical statistics, model parameters are 

considered to be fixed values that are to be estimated, typically by finding the values 

that maximise the likelihood. In Bayesian statistics, the data is fixed but parameters are 

variable and themselves have distributions. Before data collection, prior distributions 

describe the variability in the parameter, while after collection these priors are replaced 

by the posterior distributions through the application of Baye’s Theorem (Bayes 1763). 

Bayesian inference is based on the philosophy that knowledge cannot be built entirely 

through experimentation, but requires prior knowledge (Roberts 2007). 

 However, it is precisely the subjectivity in assigning prior distributions that has 

been substantially criticised by frequentist statisticians (e.g., Dennis 1996), especially 
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when little or no information is available. Yet in ecological applications the prior 

provides a means of incorporating knowledge from related studies that would otherwise 

be excluded, and with sparse data, inference can be made that would otherwise be 

impossible. In the work presented in this thesis, I selected hierarchal priors which 

diluted the influence on the posterior of any prior assumption by essentially creating 

random effects of the model parameters (King et al. 2010). Here, I used flat priors for 

the means of each parameter set, and then a normally distributed prior centred on zero 

and bound by the standard deviation for the annual effects. To ensure that this prior was 

indeed vague, in all cases I checked that the posterior estimate for the standard deviation 

was smaller than that for the prior and thus did not influence posteriors unless there was 

enough data to support deviation from the parameter mean. This approach was 

important given the sparse data available. 

 Another criticism is that model selection is less formal than that of non-Bayesian 

approaches. For example, when using the posterior predictive loss approach to model 

selection (Gelfand and Ghosh 1998), there is no guidance on how different models need 

to be for one to be considered better than the other. In the work presented here, the re-

immigration model was always selected as the better fit over the standard Cormack-

Jolly-Seber but sometimes the loss difference between models was quite small. Despite 

this, I selected the re-immigration model but that decision was augmented by direct 

evidence of re-immigration through telemetry data collected from individuals in the 

same population. Model selection supported this choice.  

 There are of course advantages and disadvantages of both Bayesian and classical 

approaches. One of the key advantages of the Bayesian approach is that it provides 
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interpretable answers, based on inferences that are conditional on the data and are exact, 

which aids managers and policy-makers in their decision-making process.  

 

7.3.2 Individual heterogeneity of capture 

 Although I was able to address some aspects of heterogeneity within the study 

population by using a model which accounted for heterogeneity within age and sex 

classes, I still did not address individual heterogeneity. Instead I assumed that 

individuals within each class behave in a similar way. It is unlikely that this is the case. 

For example, within the adult female class there was some evidence of heterogeneity in 

ranging patterns of individuals; although some adult females appeared to be resident, a 

small percentage temporarily emigrated and only a few of these returned, suggesting 

turnover of some adult females in the study area annually. This will introduce 

heterogeneity of capture and perhaps, survival, which will bias the abundance estimates 

to some yet unknown extent as it was not accounted for sufficiently in this study.  

 This work could be further improved to include individual heterogeneity of 

capture and survival but more data would be needed and/or a different approach may be 

required such as using a mixture model (Pledger et al. 2000, 2003) which allows for 

individuals to be clustered according to their probability of capture and survival. This 

method was successfully employed by Whitehead and Wimmer (2005) using a 

likelihood approach, and within a Bayesian framework by Durban et al. (2010) and 

Fearnbach et al. (2012b). 
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