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Thesis abstract 

Atlantic halibut (Hippoglossus hippoglossus) oocyte quality is highly variable and one of the 

major bottlenecks during fry-production for on-growth in commercial Atlantic halibut 

farming. In this study, the effect of maternally derived oocyte constituents (i.e. yolk 

components and mRNAs) on oocyte quality (i.e fertilisation, embryonic hatching and normal 

blastomere symmetry) in farmed Atlantic halibut has been investigated.  

Atlantic halibut embryos and larvae depend on nutritional yolk components until larval first 

feeding.  The importance of yolk n-3 fatty acids for oocyte quality was confirmed. However, 

highest positive correlations with oocyte quality were found for the less studied fatty acids 

dihomo-γ-linolenic acid (DGLA, 20:3n6) and docosapentaenoic acid (DHA, 20:5n3) that are 

known to compete with two of the most abundant fatty acids, arachidonic acid (ARA, 20:4n6) 

and docosahexaenoic acid (DPA, 22:5n3), respectively during fatty acid metabolism. High 

methionine and aspartic concentrations, amino acids essential to eukaryotic protein synthesis, 

were found to influence oocyte quality positively while no significant correlations were found 

between oocyte folate concentrations and oocyte quality.  

Before activation of zygotic transcription, maternal mRNAs control cell divisions and 

embryonic patterning. Due to the limited available genomic information on Atlantic halibut 

maternal transcripts, an expressed sequence tag (EST) maternal library containing 2,341high 

quality ESTs was created by suppressive subtractive hybridization (SSH). The maternal 

library constitutes an EST pool to identify suitable Atlantic halibut reference genes and 

identify differentially expressed maternal genes in high and low quality Atlantic halibut 

oocytes.  

To perform reliable quantification of gene expression by qPCR, stable reference genes have to 

be used to normalize target gene expression. Tubb2/Actb and Tbb2/Fau were identified as the 
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best two-gene normalization factors during Atlantic halibut embryonic and larval 

development. Either of these normalization factors can be used for future developmental gene 

expression studies in Atlantic halibut. Tubb2/Actb was further used as reference gene during 

this study.  

Poor embryonic hatching success was found to not be correlated with a general decrease in 

oocyte maternal transcript abundance but with low transcript levels of specific maternal 

transcripts by qPCR. The majority of genes showed either no or very minor correlations 

between their transcript levels and oocyte quality parameters (Fertilisation: 13-93 %, 

embryonic hatching: 1-94 %). However, maternal transcript levels of three genes, most likely 

involved in nuclear protein and mRNA transport, growth factor regulation, and embryonic 

patterning, correlated with oocyte quality.  

Further, a new Atlantic halibut 4x44k oligonucleotide microarray was constructed and used to 

identify 192 strictly maternal genes during Atlantic halibut embryonic development and 20 

differentially expressed genes between high and low quality oocytes, involved in immune 

response, metabolism, RNA transcription, protein degradation, cell signalling and the 

cytoskeleton. Microarray validation confirmed its suitability for future gene expression 

studies during Atlantic halibut embryonic development.  

The identified maternal genes in this study can serve as a pool for future in-depth studies of 

embryonic gene expression to advance the knowledge of important developmental processes 

such as germ cell development, growth and immune response in Atlantic halibut. Some of 

these may serve as possible markers for Atlantic halibut oocyte quality due to their high 

expression differences between high and low quality oocytes. Future nutritional studies on 

Atlantic halibut broodstock should focus on the identified yolk constituents acting positively 

on oocyte quality.   
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1 General Introduction 

1.1 Atlantic halibut 

Atlantic halibut (Hippoglossus hippoglossus) belongs to the subfamily Pleuronectinae within 

the family Pleuronectiformes and is the largest known flatfish. It is a cold-water species and 

its natural habitat is mainly in the Northern Atlantic Ocean. In western parts of the North 

Atlantic its range is from the waters outside Virginia and New Jersey up to Greenland. On the 

European side its habitat spreads from the Bay of Biscay up to the Barents Sea. Atlantic 

halibut can reach a size over 300 kg and live for 50 years and more. Juvenile Atlantic halibut 

(> 30cm) feed mainly on crustaceans but as they grow bigger switch gradually to other fish 

species such as Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus), and 

redfish (Sebastes marinus). Halibut males reach considerably smaller size than females 

seldom exceeding 50 kg (Haug, 1990). Little is known about the reproductive pattern of wild 

Atlantic halibut but it seems to be under the control of a circannual (seasonal) endogenous 

mechanism (Björnsson et al., 1998 ;  Migaud et al., 2010). Atlantic halibut gametogenesis is 

initiated by increasing day length and spawning takes place between December to April at 

300-700 m depth where temperature and salinity are stable within narrow ranges of 5-7 °C 

and 34.5-34.9 ppt, respectively (Kjorsvik et al., 1987). Total female annual fecundity varies 

from 0.5 to 7 million oocytes, depending on age and size of the female. Oocytes are released 

within approximately one month in several batches in intervals of 3-4 days (Haug & 

Gulliksen, 1988 ;  Norberg et al., 1991). Males produce sperm throughout the whole spawning 

season  (Haug, 1990 ;  Babiak et al., 2006).  
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1.1.1 Atlantic halibut farming and its challenges 

Atlantic halibut is farmed in Canada, Scotland, Norway and Iceland and achieves high marked 

prices (e.g ~8 GBP kg
-1

in 2010, www.intrafish.com). European production peaked in 2007 

but has decreased and flattened out since then (Food and Agriculture Organization of the 

United Nations: http://www.fao.org/fishery/statistics/en, Figure 1.1).  

Seasonally independent oocyte and juvenile production has been achieved for Atlantic halibut 

by photoperiod manipulation (Næss et al., 2001 ;  Björnsson et al., 1998). Although natural 

spawning may occur in captivity, the usual method entails hand-stripping as collection of 

gametes by gentle pressuring the broodstock abdomen, followed by artificial fertilisation 

(Mangor-Jensen et al., 1998). Eggs are normally reared in 250 l upwelling incubators at 5-

7 °C  and 32-34 ppt (Harboe et al., 1998). Atlantic halibut eggs are buoyant and daylight can 

trigger increased water permeability of the chorion leading to a reduction in volume and 

buoyancy. Therefore, eggs are routinely incubated in darkness (Mangor-Jensen & Waiwood, 

1995). At 6 ºC, larvae hatch after approximately 16 days (Rollefsen, 1934). Compared to 

other marine teleosts, the duration of the yolk-sac stage, that is the time from hatching until 

start of exogenous feeding, is relatively long in Atlantic halibut, taking from 30 to 50 days, 

depending on temperature (Pittman et al., 1990a). Due to the length of the yolk-sac stage, 

specialized incubators for larval rearing have been developed. They are typically reared in 

cylindrical tanks with conical bottom up to 6 m high, so-called upwelling silos. Temperature 

is typically kept at 5 to 6 °C, but often gradually increased towards the onset of feeding 

(Harboe & Adoff, 2005). Yolk-sac larvae are relatively sensitive to changes in salinity, as 

their normal condition is to be neutrally buoyant.  

http://www.fao.org/fishery/statistics/en
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Figure 2.1 European wild catch and aquaculture production of Atlantic halibut.  

Wild catch and aquaculture production in tons (t) from 1990 to 2008 (Food and Agriculture 

Organization of the United Nations: http://www.fao.org/fishery/statistics/en). 

  

http://www.fao.org/fishery/statistics/en
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Common practice is therefore to alter inlet water salinity if necessary (Mangor-Jensen et al., 

1998). Intensive start-feeding of halibut is based on Artemia and lasts up to two month (Olsen 

et al., 1999 ;  Hamre et al., 2002). Larvae are usually weaned onto a formulated diet after 

completion of metamorphosis, at approximately 0.25 g (Rosenlund et al., 1997).  

Commercial Atlantic halibut farming strives with challenges in several production stages. 

Atlantic halibut is stenothermal and broodstock kept at temperatures above 6 C during the 

reproductive season produce oocytes of reduced quantities and quality (Brown et al., 2006). 

However, temperature control for broodstock demands high energy costs and is not always 

used. Atlantic halibut stripping is labor intensive due to the large size of the broodstock, 

typically 30-100 kg. Oocyte quality decreases 4-6 h after ovulation which requires careful 

monitoring of individual females for indication of ovulation (Norberg et al., 1991 ;  Bromage 

et al., 1994). However, in commercial production, females are routinely stripped every 3-4 

days independent of their ovulation rhythm (Norberg et al., 1991). Early embryonic mortality 

in commercially farmed marine teleosts is generally high and Atlantic halibut hatching can be 

as low as 1 % (Kjorsvik et al., 1990 ;  Norberg et al., 1991). Larvae reared under suboptimal 

conditions develop jaw deformities and yolk-sac oedema (Pittman et al., 1989 ;  Lein et al., 

1997a ;  Lein et al., 1997b). Other types of common malformations include incomplete eye 

migration during metamorphosis, malpigmentation, and skeletal deformities leading to 

increased mortality or fry of poor commercial value (Lewis & Lall, 2006 ;  Lewis et al., 2004 

;  Sæle et al., 2006 ;  Hamre et al., 2007 ;  Lewis-McCrea & Lall, 2007). Relatively slow 

growth of Atlantic halibut and its sex-depended dimorphism are the main obstacles in Atlantic 

halibut production during the on-growing phase (Hendry et al., 2002 ;  Foss et al., 2009 ;  

Imsland et al., 2009). 
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1.1.2 Atlantic halibut embryonic development 

1.1.2.1 Morphology 

First characterizations of wild caught embryos and larvae were made by Rollefsen in 1934 

(Rollefsen, 1934). Atlantic halibut oocytes are pelagic with no oil globule present. The 

unfertilized oocyte possesses a soft wrinkled chorion which hardens considerably during first 

hours after fertilisation. Mean thickness of the chorion is 9.1 µm and small and regular pores 

are evenly distributed in it. The chorion consists of 18 concentric lamellae (Lønning et al., 

1982). The oocyte diameter varies between 3.1- 3.5 mm (Blaxter et al., 1983 ;  Haug & 

Gulliksen, 1988). At 6 °C water temperature, the first germinal disc cleavage takes place after 

6 h and subsequent divisions at intervals of ~ 3 h. Gastrulation starts after approximately 4 

days at the same temperature (Rollefsen, 1934) (Figure 1.2). First somites are formed between 

half and complete epiboly and at blastopore closure 8-11 somites are visible  (Galloway et al., 

2006). The blastopore has a characteristic oblong shape and during the later part of 

organogenesis the developing embryo is characteristically bent (Lønning et al., 1982 ;  Blaxter 

et al., 1983). Recruitment of new somites continues up to 52 somites at hatching (Andersen et 

al., 2009). During hatching, the larvae emerge from the egg by dividing the chorion into two 

well-defined parts (Helvik et al., 1991). At hatching, the larva is at a primitive ontogenetic 

stage (Pittman et al., 1990b). Eyes are not pigmented and a foetal eye gap may still be visible. 

The neural retina consists of a pseudo-stratified layer of undifferentiated neuroblastic cells 

(Kvenseth et al., 1996). The gut is straight and without a lumen. The mouth is not open and 

there is no stomodeum. The heart is a primitive tube and only the anterior part of the kidney is 

present. The kidney consists of two parallel tubuli located dorsally between the intestine 

anlagen and the notochord. No liver, thymus or spleen is developed (Patel et al., 2009b). At 

hatching there is one pair of external branchial pits and no pectoral fins (Pittman et al., 
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1990b). Atlantic halibut larval development has been categorized into different stages from 

hatching to metamorphosis (Stage 1-4) (Pittman et al., 1990a) and through metamorphosis 

(Stage 5-9) (Sæle et al., 2004).  

1.1.2.2 Egg composition and embryonic metabolism 

The proximate Atlantic halibut oocyte composition (% of dry mass) is 55 % yolk protein, 

18 % free amino acid (FAA), 15 % lipids, 8 % ions, and 0.5 % glycogen (Finn & Fyhn, 

2010). In Atlantic halibut embryos, the dominant portion of energy metabolism switches from 

lipid/carbohydrate based to FAA as hatching approaches. Subsequently, metabolism switches 

to yolk protein-bound amino acids (AA), before larvae start exogenous feeding (Finn et al., 

1991 ;  Finn et al., 1995 ;  Zhu et al., 2003).  

Oocyte lipid profiles have been studied in egg from wild caught females (Falk-Petersen et al., 

1986), between first-time and repeated spawners (Daniel et al., 1993 ;  Evans et al., 1996) and 

through the natural spawning season (Parrish et al., 1993). Of total lipids, polar lipids (PL) 

represent between 62-80 % and neutral lipids (NL) between 24-29 %. PLs are predominantly 

phosohatidylcholine (44-62 %), phosphatidylethanolamine (7 %), and sphingomyelin (2 %) 

while NLs are dominated by triacylglycerols (8-19 %) and cholesterol (7-10 %). The most 

abundant FAs are palmitic acid (PA, 16:00), oleic acid (OA, 18:1n9), eicosapentaenoic acid 

(EPA, 20:5n3), and docosahexaenoic acid (DHA, 20:5n3) (Falk-Petersen et al., 1986 ;  Bruce 

et al., 1993). Like in many other marine teleosts, it is assumed that Atlantic halibut has only a 

reduced ability of converting short-chain polyunsaturated FAs (PUFAs) to long-chain PUFAs, 

due to limited Δ
5
 and Δ

6
 desaturase and elongase activity (Tocher, 2003). Hence, in addition 

to linoleic acid (LA, 18:2n6) and linolenic acid (LNA, 18:3n3), the long-chain PUFAs 

arachidonic acid (20:4n6, ARA), eicosapentaenoic acid (12.5 %, EPA, 20:5n3), and 

docosahexaenoic acid (31.2 %, DHA, 22:6n3) are considered essential FAs (EFAs) for 
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Atlantic halibut. Concentrations of total lipid, triacylglycerols, and sterols were found to be 

lower in first-time spawners and DHA and ARA significantly higher in repeated spawners 

(Evans et al., 1996). Cholesterol concentration was found to be significantly higher in oocytes 

that did not show any signs of successful fertilisation 12 h after fertilisation (Bruce et al., 

1993).  

The oocyte FAA pool is derived from hydrolysis of yolk proteins during final oocyte 

maturation and results in an osmotic water influx and rapid oocyte volume increase (Finn et 

al., 1991 ;  Finn et al., 2002 ;  Zhu et al., 2003). Serine, alanine, leucine, and lysine have been 

identified as the most abundant FAAs in Atlantic halibut oocytes and alanine, leucine, 

glutamine, and lysine as being the most abundant yolk protein-bound AAs in hatched larvae 

(3.9 dph, Finn et al., 1995 ;  Evans et al., 1996 ;  Finn et al., 2002). Evans et al. studied FAA 

concentration in oocytes from first-time and repeated spawners but did not find any 

significant differences (Evans et al., 1996).  

Folate metabolism and its relation to fertilisation success has been studied by Mæland et al. 

(Mæland et al., 2003). Their data suggests a need for folate for metabolic and growth 

purposes during embryogenesis of approximately 2 µg g
-1

 embryonic weight gain. 

1.1.2.3 Gene regulation of Atlantic halibut oogenesis and embryonic development 

The pituitary gonadotropic hormones: follicle-stimulating hormone (FSH) and luteinizing 

hormone (LH),  play pivotal roles in vertebrate reproduction by regulating cell differentiation, 

proliferation and steroidogenesis in gonadal tissues (Richards, 1994). They exert their 

hormonal actions on the target cells by binding to the G protein-coupled receptors FSH-R and 

LH-R.  In Atlantic halibut females, a sequential gonadotropic activation of ovarian follicle 

growth and maturation was found to be regulated by modulating the temporal expression of 
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fsh-r and lh-r in the follicle membrane. Transcripts of LH-β-subunit (lhβ) were found to be 

expressed in ovulated oocytes (Kobayashi & Takeda, 2008).  

Studies of gene regulation in Atlantic halibut embryonic development have focused on muscle 

development focusing on myogenic regulating factors (MRFs): Myoblast determination factor 

1 and 2 (myod1 and myod2) and myogenin (myog), and genes coding the structural muscle 

proteins: Myosin light chain 2 (mylc2) and myosin heavy chain (myhc). Myod1, myod2 and 

myhc follows the cranial-to-caudal somite formation in Atlantic halibut embryos (Galloway et 

al., 2006). Myod1a, and the alternatively spliced myod1b, transcripts are expressed in 4-8 cell 

stage embryos. Myod2 is not expressed prior to gastrulation. First somites are formed between 

half and complete epiboly and myod1a, myod1b and myod2 transcript expression increases 

together with an abrupt myog expression increase at the 20-somite stage. A second peak in 

myod1 expression around the 40-somite stage coincides with the myog expression peak. At 

this time, myog expression is required for myoblast differentiation to myotubes and 

subsequently to mature muscle cells (Rescan, 2001). Gene expression of the MRFs decreases 

from about the 45-somite stage and corresponds to the time of first movement and the 

activation of myhc expression followed by the synthesis of contractile myofilaments before 

final somite formation (Andersen et al., 2009).  
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Figure 2.2 Atlantic halibut embryonic development. 

A: 2 cells (2C), 6 hours past fertilisation (hpf), B: 8 cell (8C), 8 hpf; C: 128-cells, 

26.5 hpf; D: Germ-ring (GR), 82 hpf; E: 25 % Epiboly (25EP), 96 hpf; F: 50 % 

Epiboly (50EP), 117 hpf; G: 75 % Epiboly, 125 hpf; H: 100 % Epiboly, 142 hpf; I: 20 

somites, 194 hpf; J: 30 somites, 250  hpf, K: 40 somites, 315 hpf; L: Hatching, 

340 hpf. A – D and I -K: Dorsal view, E – H and L: Ventral view. Development at 

6.2 -6.4 ºC. Scale bare 1cm. Photographs were taken under a Stemi SV 11 stereoscope 

(Carl Zeiss Vision, City, Norway) with an AxioCam HRc camera (Carl Zeiss Vision, 

City, Norway). Stages based on Rollefsen (1934).  



30 

 

1.2 Oocyte quality in teleosts 

Oocytes are the female haploid reproductive cells prior to fertilisation by spermatozoa. 

Fertilisation results in a diploid zygote developing into a multi-cellular embryo.  Good-quality 

teleost oocytes can be defined as those developing into embryos exhibiting low mortalities at 

fertilisation and hatching, and normal developing larvae with high survival. Teleost oocyte 

quality can be affected by a variety of factors (Kjorsvik et al., 1990 ;  Brooks et al., 1997 ;  

Bobe & Labbe, 2009). Factors such as broodstock nutrition, endocrine control, and stress 

through handling affect oocyte quality indirectly.  After ovulation and/or stripping, oocyte 

quality is not longer under parental influence but under the control of extrinsic factors (e.g 

water quality) and intrinsic factors of the oocyte itself (e.g yolk constituents, hormones, 

mRNAs, Figure 1.3).  

1.2.1 Broodstock husbandry 

The effect of broodstock nutrition on oocyte quality is one of the most studied reproductive 

factors in aquaculture today (Izquierdo et al., 2001). In many teleosts a positive relation 

between female size and fecundity, oocyte size, and offspring size has been found (Kamler, 

2008). Studies on the specific effects of broodstock nutrition on oocyte quality are limited and 

sometimes contradicting (Bobe & Labbe, 2009). In Atlantic halibut, only Mazorra et al. 

(2003) have performed a broodstock nutrition experiment testing the influence of arachidonic 

acid (ARA) in broodstock diet on oocyte quality (Mazorra et al., 2003). High ARA (1.8 %) 

levels resulted in significantly higher fertilisation rates, blastomere morphology scores and 

embryonic hatching rates compared to low ARA levels (0.4 %) (Mazorra et al., 2003).  

Broodstock holding temperatures can affect gamete quantity and quality (Devauchelle et al., 

1988 ;  Tveiten & Johnsen, 1999 ;  Anguis & Cañavate, 2005). In Atlantic halibut, high 

holding temperature during vitellogenesis can cause a delay in spawning and reduction of 
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oocyte quality (Brown et al., 2006). Endocrine regulation and photoperiod treatment are used 

to ensure constant gamete production outside the natural spawning period (Migaud et al., 

2010)). Gonadotrophin-releasing hormone agonist (GnRHa) implants have been shown to 

stimulate spermiation but did not affect fertilisation rates in Atlantic halibut males 

(Vermeirssen et al., 2004). Photoperiod treatment of Atlantic halibut broodstock is 

successfully used to ensure constant gamete production, but does decrease gamete quality 

compared to natural spawning (Næss et al., 1996 ;  Björnsson et al., 1998 ;  Babiak et al., 

2006). Hand-stripping is commonly used for species that do not release their ovulated oocytes 

spontaneously when reared in captivity and can be stressful for broodstock fish, resulting in 

low oocyte quality (Brooks et al., 1997). Hand-stripping also increases the risk for over-

ripening, also called post-ovulatory aging (POA), in teleost species where ovulation rhythms 

are difficult to estimate. POA reduces the fertilisation ability of oocytes and their subsequent 

development into normal embryos (McEvoy, 1984 ;  Kjorsvik et al., 1990 ;  Bromage et al., 

1994 ;  Lahnsteiner, 2000).   
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Figure 2.3 Factors influencing fish oocyte quality in aquaculture. 
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1.2.2 Oocyte fertilisation and incubation 

Successful fertilisation requires both oocytes and spermatozoans of high quality. In 

Atlantic halibut, spermatozoa concentration increases in a linear-like mode from the 

beginning of the spawning season in February towards the end of the spawning season 

in May. The concentration increase correlates with a decrease in spermatozoa motility 

and fertilisation ability. Because of the increasing spermatozoa quality reduction, an 

asynchrony can occur between spermatozoa and oocyte production towards the end of 

the reproductive season when high quality oocytes are still produced by females 

(Babiak et al., 2006). To overcome this problem, Atlantic halibut spermatozoa have also 

been cryopreserved successfully and larval survival did not differ significantly between 

larvae produced with cryopreserved spermatozoa and freshly collected spermatozoa 

(Babiak et al., 2008).  

Husbandry practices need to provide a healthy environment during egg incubation. 

Water quality control is important to control potential pathogens (viruses, bacteria and 

fungi) that adhend and colonize teleost eggs within hours after fertilisation (Brock & 

Bullis, 2001). Water flow-rates, temperature, salinity, and pH have to be species-

specific optimised and standardised protocols have been established for Atlantic halibut 

(Mangor-Jensen et al., 1998 ;  Olsen et al., 1999).  

1.2.3  Markers for oocyte quality  

Estimation of oocyte quality before or just after fertilisation is important to avoid costly 

and unnecessary incubation of low quality oocytes. Accurate methods to identifying 

poor quality oocytes are therefore of high importance to hatcheries. In salmonids, lipid 

droplet distribution has been tested as a marker for oocyte quality but has resulted in 
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inconsistent results (Mansour et al., 2007 ;  Ciereszko et al., 2009). Low pH values of 

ovarian fluid have been associated with reduced oocyte quality due to POA in turbot 

(Fauvel et al., 1993). The symmetry of the first visible cells after fertilisation has been 

considered as a useful predictive tool for oocyte quality assessment in commercially 

farmed marine teleosts  (Kjorsvik et al., 1990 ;  Brooks et al., 1997). After fertilisation, 

a series of mitotic cell divisions takes place that divides the cytoplasm into numerous 

cells called blastomers. In teleosts, the large oocyte yolk volume restricts cleavage to a 

small area of cytoplasm at the animal pole, so-called discoidal meroblastic cleavage. 

Many marine teleosts, including Atlantic halibut, produce non-pigmented eggs where 

blastomers are easily visible. Therefore it has been possible to routinely use early 

blastomere symmetry at the 8-16 cell stage for oocyte quality assessment during 

Atlantic halibut farming (Shields et al., 1997). During studies in zebrafish (Danio 

rerio), turbot (Scophthalmus maximus), haddock, and Atlantic halibut a positive 

correlation between early blastomere symmetry and high oocyte quality characteristics 

like high embryonic hatching and larval survival rates were found (Strehlow et al., 1994 

;  Shields et al., 1997 ;  Kjorsvik et al., 2003 ;  Rideout et al., 2004). Studies on 

yellowtail flounder (Limanda ferruginea) and Atlantic cod support these findings but 

state that blastomere symmetry corrections may occur during later divisions (Vallin & 

Nissling, 1998 ;  Avery & Brown, 2005 ;  Avery et al., 2009). All of these studies 

exclusively look at the correlation between blastomere symmetry and oocyte quality 

without explaining the underlying reasons which may be related to biochemistry and/or 

genetics (Kjorsvik et al., 1990 ;  Brooks et al., 1997).  
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1.3 Gene regulation of embryonic development 

1.3.1 Maternal mRNAs 

Maternally synthesized mRNAs and proteins control virtually all aspects of early 

embryonic development. Loaded into oocytes during oogenesis they implement basic 

biosynthetic processes, direct first mitotic divisions and specify initial cell fate and 

patterning (Dworkin & Dworkin-Rastl, 1990). When the zygotic genome becomes 

activated, the embryo begins to utilize products derived from its own genome. This 

change from maternal to zygotic transcription is called maternal-zygotic transition 

(MZT, Figure 1.4).  

The genes necessary to generate maternally synthesized mRNAs and proteins are so-

called maternal genes. They have been classified as strictly maternal or maternal-

zygotic genes (Pelegri, 2003). Strictly maternal genes are expressed only during 

oogenesis and early embryonic development before the MZT. Maternal-zygotic genes 

are expressed both before and after the MZT. Disruption of strictly maternal gene 

expression, for example due to mutations, can be fatal for embryonic development. 

Maternal genes have been extensively studied using classical genetics in invertebrate 

model organisms like the common fruit fly (Drosophila melanogaster), nematodes 

(Caenorhabditis elegans), and in vertebrate species such as African clawed frog 

(Xenopus laevis), zebrafish, and  mouse (Mus musculus) (Kemphues et al., 1988 ;  

St.Johnston & Nüsslein-Volhard, 1992 ;  Dosch & Niehrs, 2000 ;  Roy & Matzuk, 

2006). A precise temporal and spatial control of maternal gene expression is important 

during early embryonic development. Translation of mRNAs during early development 

can be potentially controlled by polyadenylation dependent activation, localization 
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dependent activation and by regulated repression (Seydoux, 1996). During 

polyadenylation dependent activation the dormant form of maternal mRNAs with short 

poly (A) tails (20-40 adenosines) are elongated to several hundreds of adenosines (Hake 

& Richter, 1997).  
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Figure 1.4 Schematic representation of maternal-zygotic transition (MTZ). 
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This poly (A) lengthening can stabilize and activate mRNAs for translation where as 

poly (A) removal can trigger degradation and translation repression.  

In zebrafish, early detectable effects of maternal genes have been found during 

oogenesis, egg activation, fertilisation, and cytokinesis (Dosch et al., 2004). During later 

embryonic development they have been found to affect cell fate determination, 

morphogenesis, and cell viability (Pelegri, 2003). For example, in teleosts, the 

establishment of the animal-vegetal polarity is made through the formation of the 

Balbani body at the vegetal pole in stage I oocytes (Abrams & Mullins, 2009). In 

absences of strictly maternal bucky ball transcripts (Buc) the Balbani body is not form 

(Marlow & Mullins, 2008 ;  Abrams & Mullins, 2009). Buc is also involved in the 

positioning of several mRNAs that control primordial germ cell differentiation and 

other mRNAs (Howley & Ho, 2000 ;  Abrams & Mullins, 2009). Mutation of the 

strictly maternal genes cellular island (Cei) and cellular atoll (Cea) affects early 

cleavage division in zebrafish (Yabe et al., 2007 ;  Yabe et al., 2009). Deficiencies of 

maternal-zygotic genes such as blistered (Bsd) and pollywog (Pwg) can lead to the 

disruption of the organization of the body plan during embryogenesis (Wagner et al., 

2004).  

As the embryo continues to develop, the zygotic genome is activated during the MZT. 

Some major features characterize the MZT, including loss or decay of mRNA 

molecules of maternal origin, activation of transcription of the zygotic genome, 

developmental arrest in the presence of transcriptional inhibitors, and marked 

qualitative changes in protein synthetic (Telford et al., 1990). The MZT has been most 

extensively studied in model species such as California purple sea urchin 

(Strongylocentrotus purpuratus), C. elegans, D. melanogaster, X. leavis, zebrafish, and 
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mouse. Throughout these different groups of metazoans, the MZT takes place at 

different developmental stages (Tadros & Lipshitz, 2009). Experiments conducted with 

transcription inhibitors in the two cyprinids, zebrafish and carp (Cyprinus carpio), and 

in salmonid rainbow trout (Oncorhynchus mykiss) implied a species-specific timing of 

activation of transcription of zygotic mRNA. In cyprinids it takes place during the 

blastula stage and in rainbow trout later, at the start of epiboly (Baumann & Sander, 

1984 ;  Stroband et al., 1992 ;  Nagler, 2000 ;  O'Boyle et al., 2007). The MZT consists 

of two steps. First, a subset of maternal mRNAs is degraded, followed by the start of 

zygotic transcription. However, pre-MZT accumulation of some zygotic transcripts has 

been found in zebrafish (Mathavan et al., 2005). The degradation of maternal mRNAs is 

regulated by both maternally encoded proteins and zygotically encoded proteins, and 

microRNAs (miRNAs). With the start of zygotic transcription, zygotically encoded 

proteins and miRNAs provide a positive feedback which enhances the efficiency of 

maternal mRNA degradation. miRNAs are short non-coding RNAs (20-22 bp) that 

negatively control the target mRNAs by binding to the 3´untranslated region (UTR). In 

zebrafish, the predominantly expressed miR430 family facilitates deadenylation and 

clearance of maternal mRNAs (Figure 1.4; Giraldez et al., 2006). 
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1.4 Teleosts genomic resources 

1.4.1 Introduction to teleosts genomes 

Teleosts are the largest group of vertebrates and comprise ~23,600 species. Teleost 

genomes vary widely in size, from 0.39 pg to > 5 pg of DNA per haploid cell, with a 

modal value of ~ 1 pg (equivalent to ~ 1000 Mb) (Smith & Gregory, 2009). Most of the 

large genomes (> 2 pg) are polyploid. Among the vertebrates, polyploidization is 

common only in fishes, amphibians, and reptiles. In teleosts, polyploidization has 

occurred independently in cyprinids (carps), cyprinodontiformes (live bearers), 

catostomids (suckers), and salmonids (Taylor et al., 2001). Teleost genomes seem to be 

more 'plastic' in comparison with other vertebrate genomes because genetic changes, 

such as polyploidization, gene duplication, gain of spliceosomal introns and speciation, 

are more frequent in fishes (Venkatesh, 2003). The study of the teleost genomes has 

been closely connected to the sequencing of the human genome and the need to identify 

the sequences structure and function. The work on teleost genomes was intensified with 

the start of the Human Genome Project in 1990 when the main species studied for 

genome information at that time where invertebrates like C. elegans and 

D. melanogaster. Compared to these invertebrates, teleosts share many similarities in 

developmental pathways, organ systems, and physiological mechanisms with humans 

(Clark, 2003). The two main teleosts investigated during the early 1990s were the 

zebrafish, the marine Tiger puffer (Takifugu rubripes), and its freshwater relative, the 

Green spotted puffer (Tetradon nigrovirdis). The zebrafish is a popular tropical 

aquarium fish with short generation time (about three month), large egg batches all year 

round, easy maintenance, and external development of a transparent embryo. Large-
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scale mutagenesis screens in zebrafish filled a gaping hole in vertebrate developmental 

biology (Haffter et al., 1996 ;  Stainier et al., 1996). Until then, the ability to study genes 

via their mutant phenotypes on large scales had only been possible in D. melanogaster 

and C. elegans. T. nigrovirdis has the smallest known vertebrate genome with 350 Mb, 

closely followed by T. rubripes with 380 Mb. Their small genome size, approximately 

eight times smaller than the human or mouse genome made them useful model 

vertebrate genomes (Brenner et al., 1993 ;  Crnogorac-Jurcevic et al., 1997).  

Today there are 34 entries for teleosts in the Genome Project database of the National 

Center for Biotechnology Information (NCBI: http://www.ncbi.nlm.nhi.gov). With the 

increase in worldwide aquaculture production genomic work on commercially farmed 

teleosts has increased (Canario et al., 2008). While the genomes of model teleosts have 

been sequenced totally or to the draft level, the genetic data available on commercial 

interesting teleosts consists mainly of expressed sequence tags (ESTs; Table 1.1). ESTs 

are short, single pass cDNA sequences generated from randomly selected library clones 

and are a quick and easy way to generate data from any species (Clark, 2003). ESTs 

also provide the raw data for probe design of oligonucleotide microarrays. Zebrafish is 

the seventh species with the highest number of entries in the dbEST database (1.5 M, 

release 100209) after human (8.3 M), mouse (4.8 M), maize (2.0 M), cattle (1.6 M), pig 

(1.5 M) and thale cress (1.5 M) (http://www.ncbi.nlm.nih.gov/dbEST). For the twenty 

most valuable farmed teleosts, genomic information is manly available for 

salmoniformes and perciformes (Table 1.2.).  

There are 22,864 Atlantic halibut ESTs currently available at the EST database dbEST 

(Table 1.2). The first Atlantic halibut EST libraries resulting in 1,072 ESTs were 

constructed from liver, kidney, and spleen to investigate the immune response of 

http://www.ncbi.nlm.nih.gov/dbEST
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vaccination against Vibrio anguillarum and Aeromonas salmonicida (Park et al., 2005). 

In addition, six EST libraries (51,117 ESTs) were constructed from liver, kidney, 

spleen, peripheral blood, and thymus from Atlantic halibut injected with nodavirus, 

infectious pancreatic necrosis virus (PINV), or vibriosis vaccine at various time points 

(Patel et al., 2009a). The highest number of Atlantic halibut ESTs (12,675 ESTs) were 

created during the Pleurogene project, a Canadian and Spanish collaboration, focusing 

on the genomics of two flatfishes, Atlantic halibut and Senegal sole (Solea 

senegalensis) (http://pleurogene.ca/index.php). Libraries were constructed from five 

different larval stages (hatched, mouth-opening, midway to metamorphosis, and post-

metamorphosis) and eight different tissues (testis, ovary, liver, head kidney, spleen, 

skin, gill, and intestine) (Douglas et al., 2007). Over 4,000 ESTs were obtained from 

Atlantic halibut two cell stage embryos, 1 day-old yolk-sac larvae, and fast skeletal 

muscle of juveniles (Bai et al., 2007). 

  

http://pleurogene.ca/index.php
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Table 2.1 Overview of the 20 teleost species with most expressed sequence tags (ESTs). 

ESTs are sorted by the number of ESTs available (N) and their relative percentage of 

total number (% T; dbEST database: http://www.ncbi.nlm.nih.gov/projects/dbEST/, 

release 100209, October 2, 2009). Species with fully sequenced genomes are written in 

bold.  

 

  ESTs 

Common name Latin name N % T 

Zebrafish Danio rerio 1,481,930 32.2 

Japanese medaka Orytrzias latipes 616,739 13.4 

Atlantic salmon Salmo salar 494,152 10.7 

Channel catfish Ictalurus punctatus 354,434 7.7 

Rainbow trout Oncorhynchus mykiss 287,923 6.3 

Three-spined stickleback   Gasterosteus aculeatus 276,992 6.0 

Fathead minnow Pimephales promelas   249,941 5.4 

Atlantic cod Gadus morhua  206,507 4.5 

Catfish Ictalurus furcatus  139,475 3.0 

Nile tilapia Oreochromis niloticus 177,222 2.1 

Common mummichog Fundulus heteroclitus  74,755 1.6 

Gilthead seabream Sparus aurata  67,232 1.5 

European seabass Dicentrarchus labrax  54,200 1.2 

Rainbow smelt Osmerus mordax  36,028 0.8 

Common carp Cyprinus carpio 32,046 0.7 

Japanese pufferfish  Takifugu rubripes  26,069 0.6 

Inshore hagfish Eptatretus burgeri 23,884 0.5 

European perch Perca flavescens  21,968 0.5 

Atlantic halibut Hippoglossus hippoglossus  22,834 0.5 

Roach Rutilus rutilus  18,470 0.4 

Guppy Poecilia reticulata   16,215 0.4 

  

http://www.ncbi.nlm.nih.gov/projects/dbEST/


44 

 

Table 2.2 Overview of number of sequence tags (ESTs) available on dbEST database 

for the twenty most valuable aquaculture teleost species. 

Values are given in million $ and relative percentage of total value (%T). ESTs are 

given in number of ESTs (N) and relative percentage of total number (%T, Food and 

Agriculture Organization of the United Nations (FAO), 

http://www.fao.org/fishery/statistics/en, release 100209, October 2, 2009). 

 

Common name Latin name Value (M) Value %T N % T 

Atlantic salmon Salmo salar 7.5 19.4 494,152 50.1 

Silver carp Hypophthalmichthys molitrix 3.5 9.2 0 0.0 

Grass carp  Ctenopharyngodon idellus 3.5 9.0 640 0.1 

Common carp Cyprinus carpio 3.1 7.9 32,046 3.3 

Catla Catla catla 3.0 7.6 1 0.0 

Nile tilapia Oreochromis niloticus 2.6 6.7 177,222 0.0 

Rainbow trout Oncorhynchus mykiss 2.6 6.6 287,795 29.2 

Bighead carp Hypophthalmichthys nobilis 2.1 5.5 0 0.0 

Crucian carp Carassius carassius 1.6 4.1 0 0.0 

Mandarin fish Siniperca chuatsi 1.5 3.9 32 0.0 

Japanese amberjack Seriola quinqueradiata 1.3 3.4 1,381 0.1 

Japanese eel Anguilla japonica 1.1 2.8 198 0.0 

Milkfish Chanos chanos 0.8 2.0 0 0.0 

Gilthead seabream Sparus aurata 0.7 1.8 67,232 6.8 

Flathead grey mullet Mugil cephalus 0.6 1.7 5 0.0 

Olive flounder Paralichthys olivaceus 0.5 1.4 9,983 1.0 

Silver seabream Pagrus auratus 0.5 1.2 0 0.0 

Coho salmon Oncorhynchus kisutch 0.5 1.2 2,325 0.2 

European seabass Dicentrarchus labrax 0.4 1.1 54,200 5.5 

Japanese seabass Lateolabrax japonicas 0.3 0.8 75 0.0 

 

  

http://www.fao.org/fishery/statistics/en
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1.4.2 Applications for commercial farming 

Teleosts represent a major worldwide source for food. Aquaculture, is the fastest 

growing food-producing sector, accounts for nearly 50 % of the world's food fish 

(FAO). Some of today’s challenges in aquaculture are to ensure a stable supply of fry 

for on-growth in marine species, to reduce production time by increasing growth rates, 

to overcome feed limitations by looking for alternative feed sources such as plants, to 

avoid uncontrolled reproduction of farmed species with wild populations, and to 

improve stress tolerance and disease resistance. Increasingly, genomic research and 

biotechnology is used to deal with these challenges to improve aquaculture production 

and to ensure a stable and increasing production.  

A range of genetic tools have been applied to commercially farmed teleost. Selective 

breeding programs where individual and family performance is assessed for a range of 

commercial traits (e.g. growth, sexual maturation, body conformation, and disease 

resistance) have lead to increased gains between generations in for example catfish, 

common carp, rainbow trout, Atlantic cod, Atlantic salmon (Salmo salar), and Nile 

tilapia (Oreochromis niloticus, Eknath et al., 2007 ;  Weber & Silverstein, 2007 ;  

Robinson & Hayes, 2008 ;  Antonello et al., 2009 ;  Wachirachaikarn et al., 2009 ;  

Garber et al., 2010 ;  Nielsen et al., 2010). 

Chromosome set manipulations like triploidy leads to sterility and are used in the 

production of larger rainbow trout, common carp, and channel catfish 

(Ictalurus punctatus) (Dunham, 2004). Triploids can also be used to avoid interbreeding 

between escaped farmed strains and wild populations (Cnaani & Levavi-Sivan, 2009). 

Gynogenesis has been induced in some fish species to obtain mono-sex offspring 
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(Komen & Thorgaard, 2007). Techniques to produce all-male strains has been 

established in common carp and Nile tilapia (Mair et al., 1997 ;  Bongers et al., 1999 ;  

Ezaz et al., 2004 ;  Müller-Belecke & Hörstgen-Schwark, 2007) while all-females 

strains are preferred in flatfishes, for example turbot and Atlantic halibut (Piferrer et al., 

2004 ;  Cal et al., 2006 ;  Tvedt et al., 2006).  

Gene transfer technologies have mainly been used to improve growth performance. 

Growth hormone transgenic lines have been developed for Atlantic salmon (Du et al., 

1992 ;  Cook et al., 2000), rainbow trout (Devlin et al., 2001), Nile tilapia (Maclean et 

al., 2002), channel catfish (Dunham et al., 1992), and common carp (Fu et al., 2007). 

Transgenic lines with increased disease resistance and sterility are under development 

(Dunham, 2009).  

Teleost ESTs have been found to be a rich source of genetic markers called single 

sequence repeats (SSR) loci, also called microsatellites (Coulibaly et al., 2005 ;  Ju et 

al., 2005). SSRs consist of a variable number of short sequence repeats (2-

6 nucleotides). In aquaculture, SSRs are efficiently used for individual identification, 

paternity analysis, and relatedness estimation in the management of hatchery 

bloodstocks (Chistiakov et al., 2006). In Atlantic halibut SSRs have been used for 

population studies of wild and farmed fish, for ploidy determination studies during 

gynogensis experiments and construction of a genetic linkage map (McGowan & Keith, 

1999 ;  Coughlan et al., 2000 ;  Jackson et al., 2003 ;  Reid et al., 2005 ;  Ding et al., 

2009). Genetic linkage maps provide a likely position of its known genes and/or genetic 

markers relative to each other in terms of relative distances (recombination frequency) 

between them. Genetic linkage maps are prepared to scan for quantitative trait loci 

(QTL). QTLs refer to phenotypes, such as growth or disease resistance, that are 
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inherited in various degrees and can be credited to the interactions between two or more 

genes and their environment (Ohtsuka et al., 1999). In Atlantic salmon, a QTL has been 

identified for infectious pancreatic necrosis (IPN) resistance and has been incorporated 

into a commercial Atlantic salmon breeding program (Moen et al., 2009) After the 

creation of a genetic linkage map in Atlantic halibut, the identification of markers for 

several traits, including body weight, length, width, myotome height, pigmentation, and 

eye migration, has been used in a Canadian breeding program (Reid et al., 2007) 

(http://pleurogene.ca).  

The availability of numerous ESTs and the corresponding cDNA libraries has enabled a 

rapid production of microarrays in a number of commercial teleosts, but mainly 

salmonids (Douglas, 2006 ;  Canario et al., 2008). Microarray technology, through 

simultaneous analysis of the expression of thousands of genes, allows the identification 

of candidate genes involved in the function of multiple physiological, morphological, 

and behavioural traits of interests. In salmonids, gene microarray studies have been used 

to study important topics in aquaculture such as immune response, nutrition, growth, 

smoltification, and reproduction (Jordal et al., 2005 ;  Gahr et al., 2008 ;  Leaver et al., 

2008 ;  Von Schalburg et al., 2008 ;  Bobe & Labbe, 2009 ;  Seear et al., 2009). For 

Atlantic halibut, a first generation oligonucleotide microarray (50-mer) comprising 

9,277 genes has been designed during the Pleurogene project (http://pleurogene.ca) 

(Douglas et al., 2008). This microarray has been used to study differential gene 

expression between five larval stages, from hatching to post-metamorphosis, during a 

weaning experiment of larvae to microencapsulated diet and to study the effect of 

replacing fish meal with soybean meal in diets for juveniles (Aluru & Vijayan, 2009 ;  

Murray et al., 2009 ;  Murray et al., 2010).  

http://pleurogene.ca/
http://pleurogene.ca/
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1.4.3 Molecular markers for oocyte quality  

Molecular markers can be defined as Type I or actual genes of known function and 

Type 2 or anonymous DNA segments like microsatellites. While Type 2 markers have 

been successfully applied to improve aquaculture production as described above, the use 

of Type 1 markers is still rare. Potential molecular markers for oocyte quality have been 

identified in rainbow trout. Oocytes with high maternal mRNA levels of prohibitin 2 

(phb2) experienced low developmental potential, i.e percentage of normal alevins at 

yolk-sac resorption (Bonnet et al., 2007). Salmonids can retain their ovulated oocytes in 

the body cavity for several days. Depending on the female, this leads to a decrease in 

oocyte quality due to over-ripening (post-ovulatory aging, POA) (Aegerter and Jalabert, 

2004). A number of maternal mRNAs have been identified to be differentially 

expressed in high and low quality rainbow trout oocytes, induced by POA (Aegerter et 

al., 2005). In marine teleosts no potential molecular markers for oocyte quality have 

been identified. Maternal transcripts in commercially farmed marine teleosts have not 

been studied previously, even so high embryonic mortalities are often observed within 

several days after fertilisation, around the MZT (Blaxter et al., 1983 ;  Kimmel, 1989). 

Reliable molecular quality markers could increase hatchery production efficiency and 

provide a potential tool to improve broodstock husbandry.  
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1.5 Objectives of the present study 

The overall objective of this study is to study the effect of maternal factors on Atlantic 

halibut oocyte quality. The specific objectives are: 

-To increase the genomic information in Atlantic halibut by creating a maternal EST 

library and identifying strictly maternal genes by studying gene expression during 

embryonic development. 

-To select suitable Atlantic halibut reference genes for gene expression studies during 

embryonic and larval development. 

-To study the relation between maternal mRNA levels and Atlantic halibut oocyte 

quality. 

-To study the relation between oocyte fatty acid, amino acid, and folate concentrations 

and Atlantic halibut oocyte quality. 

-To create a new Atlantic halibut microarray to identify maternal genes and analyse 

differential gene expression during embryonic development and between high and low 

quality oocytes.  
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2 Construction of a maternal EST library by suppressive subtractive 

hybridisation (SSH) in Atlantic halibut  

2.1 Abstract 

The commercial production of Atlantic halibut suffers from a major bottleneck during 

juvenile production for on-growing. Early embryonic development is under the control 

of maternally provided transcripts and proteins and has been studied in only few 

commercially important teleosts. The present study aimed to create an Atlantic halibut 

maternal expressed sequence tag (EST) library by suppressive subtractive hybridisation 

(SSH) to increase the information of maternal genes during early Atlantic halibut 

embryonic development. Gene expression of selected genes was screened during early 

embryonic development to identify strictly maternal transcripts as potential molecular 

markers for Atlantic halibut oocyte quality. A maternal EST library containing 

2,341 high quality sequences was constructed. Putative genes consisted of 73.5 % 

unknown genes. The expressions of twenty-one selected genes were measured by qPCR 

from fertilisation to the 10-somite stage. Transcripts of three strictly maternal genes 

were identified as they were only detectable before the start of gastrulation: askopos 

(Kop), si:dkey-30j22.9 (Tudor family member), and tudor 5 protein (Tdrd5). They are 

candidate genes to be tested for their potential as molecular markers for Atlantic halibut 

oocyte quality.  
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2.2 Introduction 

Genomic technologies are expected to improve aquaculture production and solve 

present bottlenecks and problems. Studies so far have concentrated on the teleost 

immune system, control of growth, and reproduction (De-Santis & Jerry, 2007 ;  Cerdà 

et al., 2008 ;  Dios et al., 2008). One of the major bottlenecks in commercial farming of 

marine teleosts is variable qualities and quantities during fry-production for on-growing. 

Variable oocyte quality, high larval mortality, and body malformations during larval 

development reduce production efficiency and keeps production costs high. Little 

attention has been paid to the molecular and intracellular events that occur during 

gametogenesis and early embryonic development in teleosts (Bobe & Labbe, 2009). 

Early embryonic development is controlled by maternal factors, mRNAs and proteins, 

produced during oogenesis by the female and stored in the mature oocyte. Loaded into 

the oocyte during oogenesis, maternal mRNAs implement basic biosynthetic processes, 

direct first mitotic divisions and specify initial cell fate and patterning (Dworkin & 

Dworkin-Rastl, 1990). The teleost embryo starts to utilize products derived from its 

own genome during the maternal-zygotic transition (MZT), when the zygotic genome 

becomes activated.  The MZT is a progressive process and some maternal-zygotic genes 

are expressed both before and after the MZT (Mathavan et al. 2005). Maternal-zygotic 

and finally zygotic gene expression regulates the later parts of axis formation and 

organogenesis during fish embryonic development (Schier et al 2001). 

Experiments conducted with transcription inhibitors in two cyprinids, zebrafish (Danio 

rerio) and common carp (Cyprinus carpio), and in the salmonid rainbow trout 

(Oncorhynchus mykiss) implied a species-specific timing of zygotic genome activation. 

In the cyprinids, the MZT was found to take place during the blastula stage while in 
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rainbow trout the MZT took place later, at the start of epiboly (Baumann & Sander, 

1984 ;  Stroband et al., 1992 ;  Nagler, 2000 ;  O'Boyle et al., 2007). In Atlantic halibut 

the exact timing of the MTZ has not been previously estimated.  Genomic information 

of maternal genes in commercially farmed teleosts has only been available for rainbow 

trout  (Aegerter et al., 2004 ;  Aegerter et al., 2005 ;  Bonnet et al., 2007) but has 

recently been extended to Atlantic halibut (Bai et al., 2007). 

Atlantic halibut is considered a valuable species for cold water marine fish farming, but 

current production suffers from typical problems during fry production as described 

above (Chapter 1.1.1) (Kjorsvik et al., 1990 ;  Olsen et al., 1999 ;  Hamre et al., 2007). 

Genomic studies of early developmental stages of Atlantic halibut have concentrated on 

embryonic muscle development and larval development and metamorphosis (Galloway 

et al., 2006 ;  Douglas et al., 2007). Recently, an unbiased 2-cell EST library has been 

created providing first information about maternal transcripts in Atlantic halibut (Bai et 

al., 2007) 

The aim of this study was to increase the genomic information on maternal gene 

expression in Atlantic halibut. A maternal EST library was created by suppressive 

subtractive hybridisation (SSH) between 8-cell stage embryos (8C) and embryos at the 

10-somite stage (10SS). Genes with known functions during embryonic development 

and random genes were selected from the EST library. Their relative gene expression 

was screened during early embryonic development to identify strictly maternal 

transcripts.  

  



53 

 

2.3 Material and Methods 

2.3.1 Fish husbandry and sample collection 

From four females, high quality oocyte batches were collected at a commercial Atlantic 

halibut farm (Risørfisk AS, Risør, Norway) in 2007. All oocytes were fertilised in vitro 

with pooled sperm from two random males. The female broodstock consisted of fish 

between 30-40 kg, fed EWOS Premix (EWOS, Bergen, Norway) and kept under natural 

photoperiod conditions. Eggs were incubated in large scale in 280 l incubators at 

salinity between 33-35 ‰ and temperature between 6.2 -6.4 ºC. Normally developing 

embryos (n = 100) were collected at the following stages based on the embryonic 

staging of Atlantic halibut after Rollefsen (1934, Figure 1.2): 8cell-stage (8C), 8 hours 

post fertilisation (hpf); 16-cell stage (16CS), 12 hpf; blastula (BL), 45 hpf; germ ring 

(GR), 82 hpf; 25 % epiboly (25EP) 96 hpf; 50 % epiboly (50EP), 117 hpf; and 10 

somite stage (10SS), 142 hpf. Samples were wrapped in tinfoil and snap-frozen in liquid 

nitrogen.  

2.3.2 RNA extraction and cDNA synthesis 

Total RNA for all samples were extracted according to the Tri reagent method 

(Sigma, St-Louise, MO USA) using QIAazol (Qiagen, Nydalen, Sweden). Total RNA 

was treated with the gDNA wipe-out buffer supplied with the QuantiTect reverse 

transcription kit (Qiagen) to remove traces of genomic DNA contamination. RNA 

concentration was quantified using the Nanodrop spectrophotometer 

(Nanodrop Technologies/Saven Werner, Kristiansand, Norway).  
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Blunt-ended cDNA fragments for the subtraction were produced with a SMART PCR 

cDNA synthesis kit (Clontech, Saint-Germain-en-Laye, France) and digestion with Rsa 

I. The digested cDNA was then purified with a QIAquick PCR Purification kit 

(Quiagen) and quantified using Nanodrop.  

2.3.3 Suppressive subtractive hybridisation 

A forward subtractive library between 8-cell stage (maternal) and 10 somite stage 

(zygotic) embryos was created by suppressive subtractive hybridization (SSH) using the 

PCR-select cDNA subtraction kit (Clontech, Figure 2.1) (Fernandes et al., 2005). Blunt-

ended cDNA fragments from 8C were used as a tester while the fragments from 10SS 

were used as a driver. The ligation step was optimized for the halibut samples using an 

Atlantic halibut specific primer for β2-tubulin (Tubb2) 

(Fwd: TACAATGAGGCTTCAGGTGG, Rev: TCCCTCTGTGTAGTGACCCTTG) 

using an annealing temperature of 65 ºC and amplifying a product size of 134 bp. The 

subtracted PCR product for the 8C embryo was cloned with the TOPO TA Cloning Kit 

(Invitrogen, Paisley, UK) and random clones were picked for sequencing. Insert checks 

were carried out by PCR with 1 µl of colony template mixed with 20 µl of reaction mix 

(dNTPs, 2 mM), PCR buffer (10 x), T3 primer short (10 µM, 

5' ATTAACCCTCACTAAAG 3'), T7 primer short (10 µM, 

5' AATACGACTCACTATAG 3'), Taq DNA Polymerase 

(GE Healthcare, Nydalen, Norway) and MilliQ water. The PCR involved an initial 

denaturation step at 96 °C for 2.5 min followed by 36 amplification cycles: 96 °C for 

20 sec., 48 °C for 30 sec, and 72 °C for 1 min with a final extension at 72 °C for 5 min. 

5’ end sequencing PCR sequencing reactions with T3 primer 

(5’ AATTAACCCTCACTAAAGGG 3’) were performed using the ABI prism Big Dye 
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Terminator Sequencing Kit (PE Applied Biosystems, USA) added BetterBase (1:5; 

Web Scientific, Crewe, UK). The sequencing reaction comprised an initial denaturation 

at 96 °C for 1 min and 25 cycles at 96 °C for 10 sec and 60 °C for 3 min and DNA was 

send for sequencing at the Oxford University sequencing facility with an ABI 3700 

capillary sequencer (PE Applied Biosystems, USA).   
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Figure 2.1 Principle of suppressive subtractive hybridisation (SSH). 

Based on the principles of Clontech PCR-Selected cDNA Subtraction kit (Clontech).  
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2.3.4 Sequence processing and bioinformatics analysis 

The raw sequence trace data were processed by the EST analysis pipeline developed by 

the Natural Environment Research Council-Environmental Genomics Thematic 

Programme Data Centre (NERC-EGTDC; University of Edinburgh, UK; Figure 2.2). 

The electrophoregrams were first analyzed by trace2dbEST 

(accessible through http://envgen.nox.ac.uk/est.html) which processes raw sequencing 

chromatograph trace files from EST projects into quality-checked sequences. High 

quality sequences required > 150 high quality bases, based on signal strength, peak 

shape and peak local environment (Ewing et al., 1998). Sequences were submitted to 

dbEST (http://www.ncbi/nlm/nih.gov/dbEST) jointly with their BLAST-based 

preliminary annotation. PartiGene (Parkinson et al., 2004) was then used to cluster the 

sequences and contig assembly. The non-redundant clusters were submitted to 

BLASTX similarity searches against the non-redundant (nr) protein database at the 

National Center for Biotechnology Information 

(NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi). The EST annotation tool Blast2GO 

(Gotz et al., 2008) was employed for gene ontology (Gene Ontology, 2004), enzyme 

code annotation and pathway mapping with the Kyoto Encyclopedia of Genes and 

Genomes (KEGG; Kanehisa et al., 2008). Non-annotated cluster were translated using 

EMBOSS Transeq (http://www.ebi.ac.uk/Tools/emboss/transeq/) and searched for 

conserved domains (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml).  

  

http://envgen.nox.ac.uk/est.html
http://www.ebi.ac.uk/Tools/emboss/transeq/
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
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Figure 2.2 Overview of sequence processing and bioinformatics analysis.  
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2.3.5 Relative gene expression by quantitative real-time PCR (qPCR) 

Twenty-one genes from the maternal cDNA library were chosen for screening during 

embryonic development based on their known function during embryonic development 

according to literature. Ten of them with significant BLASTX results (Table 2.1) and 

eleven with identified conserved domains (Table 2.2). Whenever possible, primers were 

designed across the most conserved splice junctions. All gene specific primers crossed 

at least one intron/exon border containing both donor and acceptor sites, in order to 

avoid amplification of any contaminating genomic DNA. Primer pairs for qPCR 

amplification were designed manually and screened for hairpins, homo- and cross-

dimers using Netprimer (http://www.premierbiosoft.com/netprimer; Table 2.3 and 2.4). 

To confirm that the right product was amplified, a quantitative real-time PCR (qPCR) 

was performed on pooled cDNA for each primer pair. The different products were 

sequenced directly for additional verification. Each sample was checked for genomic 

DNA contamination by running a qPCR with RNA treated with gDNA wipe-out buffer 

(Qiagen). Gene amplifications by qPCR were performed with a LightCycler 480 

thermocycler (Roche, Basel, Switzerland). Each 10 μl reaction in a 96-well plate 

comprised 4 μl of 70 x diluted cDNA template, 1 μl of each primer pair at 5 μM and 

5 μl of QuantiTect SYBR Green containing ROX as reference dye (Qiagen). After an 

initial denaturation step of 15 min at 95 ºC, 45 cycles of amplification were performed 

according to the following thermal cycles: denaturation for 15 s at 94 ºC, annealing for 

20 s at 60 ºC and extension for 20 s at 72 ºC. Fluorescence data were acquired during 

this last step. A dissociation protocol with a gradient from 65 to 97 ºC was used to 

investigate the specificity of the qPCR reaction and the presence of primer dimers. All 

samples were run in duplicate along with minus reverse transcriptase, no template and a 

http://www.premierbiosoft.com/netprimer/
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positive plate control.  Five-point standard curves of a 5-fold dilution series (1:2-1:16) 

from pooled cDNA were used for PCR efficiency calculation. To assess suitable 

reference genes for the qPCR studies the known reference genes elongation factor 2 

(Eef2), β-Actin (Actb), and tubb2 were tested (Fernandes et al., 2008; Table 2.5).  

Because of their stable quantification cycles across the seven embryonic stages the three 

genes HHC01138, HHC1517, and HHC00353 were added to the list of known reference 

genes to test their potential as reference genes. GeNorm (Vandesompele et al., 2002) 

was used to assess the most suitable reference genes. Primers for qPCR were designed 

as described above for the genes of interest (Table 2.5). HHC01517 and HHC00353 

were selected as the most suitable reference genes (Figure 2.3).  

2.3.6 Data analysis and statistics 

Clustering was performed according to the single-linkage method and weighted pair 

group method (WPGMA) using Pearson’s correlation coefficient (r) as distance 

measurement using Gene Expression Pattern Suit 4.0 (GEPAS, http://www.gepas.org). 

The data were log2 transformed and standardized against the first stage, 8C. Statistical 

analysis was done using SPSS 15.0 (SPSS Inc., Chicago, IL, USA). A significant 

difference in gene expression during embryonic development was analyzed by one-way 

ANOVA (p < 0.05). When significant differences were identified, a supplementary 

Tukey’s post-hoc test was performed to investigate differences between developmental 

stages (p < 0.05). 

 

http://www.gepas.org/
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Table 2.1 List of selected genes, with significant BLASTX results, used for gene expression quantification of maternal library from 

Atlantic halibut. 

The name, symbol, BLASTX result with species, and E-value, GenBank accession number, and function of each gene are shown.  

 
Gene name  

(Gene symbol) 

BLASTX results (Species) E-

value 

 Accession 

number 

Function  

 

References 

Askopos (Kop) Askopos (D. rerio) 6e-14  Q5YCX2 Primordial germ cells Blaser et al., 2005 

Si:dkey-30j22.9 Si:dkey-30j22.9 (D. rerio) 6e-37  XM_688932.3 Uncharacterized  Travis Thomson, 2004 

Betaine aldehyde 

dehydrogenase (Bah) 

Betaine aldehyde dehydrogenase 

(O.latipes)  

2e-32  NM_001104848.1 Metabolism Wang et al., 2007 

Checkpoint 1(Chk1) CHK1 checkpoint homolog 

(X.tropicalis) 

3e-17  CR848200.2 Mitosis Kappas et al., 2000 

Prohibitin 2 (Phb2) Prohibitin-2 (S.salar) 5e-30  NM_001141404.1 Transcription regulation  Bonnet et al., 2007 

Syntaxin 4 (Stx4) Syntaxin 4 (L. japonicus) 1e-38  EF513752.1 Transport Wyman et al., 2003 

18K hypothetical goldfish 

protein (18k Gold) 

Hypothetical 18K protein goldfish 

mitochondrion (O. australis) 

2e-17  JC1348 Uncharacterized  Tingaud-Sequeira et al., 

2009 

Ubiquitin carrier protein 

(Hr6a) 

Predicted similar to ubiquitin-

conjugating enzyme HR6A (O. 

anatinus) 

1e-31  XM_001511341.1 DNA damage  Roest et al., 2004 

Tudor 5 protein (Tdrd5) Tdrd5 protein (D. rerio) 1e-12  BC134985.1 Primordial germ cells and 

abdominal segmentation  

Boswell & Mahowald, 1985 

;  Travis Thomson, 2004 
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Table 2.2 List of selected genes, with conserved domain hits, used for gene expression quantification of maternal library from Atlantic 

halibut. 

The name, symbol, conserved domain search results, and E-value, and function of each gene are shown. 

 

 
Gene name Conserved domain search results E-value Function  References 

HHC00057 Cullin  7e-04 Cell division Maniatis, 1999 

HHC00068 Elongin subunit A 2e-10 Transcription regulation Gerber et al., 2004 

HHC00130  Stathmin family  9e-16 Cytoskeleton Koppel et al., 1999 

HHC00222 SET domain 1e-12 Methyltransferase  Sun et al., 2008 

HHC00255 Phosphoinositide-dependent kinase 1 5e-50 Cytokinesis  Belham et al., 1999 

HHC00309 JmjC domain 2e-28 Histone modification Takeuchi et al., 2006 

HHC00334 CDC45-like protein 4e-60 DNA replication  Yoshida et al., 2001 

HHC01010 Dynamin family 1e-05 GTPases Seugnet et al., 1997 

HHC01032 SET domain. 2e-21 Methyltransferase Sun et al., 2008 

HHC01194 Geminin 2e-10 DNA replication  Kroll, 2007 

HHC01310 Tetratricopeptide repeat domain 2e-4 Protein binding Schlegel et al., 2007 
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Table 2.3 Primer information of selected genes, with significant BLASTX results. 

Name, forward and reverse sequences, size, efficiency (%) ,and R
2
 are shown. 

 

Name Forward Reverse Size (bp) E (%) R
2 

Kop TCTGGTAGTTCCTGCGTGTGAG GCTCTTCAACCTCATCACCCA 55 104 0.998 

Sidkey-30j22.9 GCAAGGTGTCACTCAAGGCAC GTACTTCAGACCTGTGGAGGGTT 95 102 0.999 

Bah GTATCCACCAAACGGCACTTC GCAGGTACTCAGGCGAGCC 50 104 0.999 

Chk1 GGCAGGTACTCATTCCAATTACAG GAAACGGCTACCACATCCAAG 83 100 0.998 

Phb22 GGAAGGACTACGACGAGCGAG GGGACACCTGTGCTCTCTGTG 69 99 0.999 

Stx4 GATGATGAAAATGAGGACAAAGC CCCATCCTCCTCTGACTTCTTG 252 100 0.998 

18k Gold AGTTACTTCTTCTCCCGCAAGC GATCCAACATCGAGGTCGTAAAC 122 93 0.999 

Hr6a TATGTTTGGACATCCTACAGAATCG CGGACTGTTGGGATTTGGTTC 58 98 0.999 

Tdrd5 CTGTCACTCTGAGGGCTTTATCC TCTGCTGGATGTGGCTCCTC 88 100 0.997 

HHC01032 CCGCATTGATGACTTTGATGTG CTGGACTCATAGTGGCTAATTCACC 143 99 0.996 
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Table 2.4 Primer information of selected genes, with conserved domain hits. 

Name, forward and reverse sequences, size, efficiency (%), and R
2
 are shown. 

 

 
Name Forward Reverse Size (bp) E (%) R

2
 

HHC00057 CAGGTCGTCTGTTTTGCCATTC CATAAAGAAGGTGGAAGCCAGG 146 92 0.999 

HHC00068 ACATCTCCTCCCACGATTCA TTGAGGAGTGCAACCCAATC 114 98 0.998 

HHC00130 GGAGGGATCTTTGGTTTCTTTG CAACAAGGAGAACCGCACAG 67 99 0.998 

HHC00222 TACTGTGTAGATGCCACGAAAGAG CCGTTGATGTCGTGGAGTTTG 96 97 0.999 

HHC00255 ATAATACATCCCAAAGCCCAGAG CACAATAAGGGGATAATACACAGAGA 198 104 0.999 

HHC00309 GGACGGGGAGATTAGAGTCATC GAGCCCAAGTCCTGGTATGCC 93 105 0.998 

HHC00334 CCATGAGGTAGCAGTAGAGGAAGG GCTGGTATTGTCCTGGCGAAG 115 95 0.997 

HHC01010 GAAGAGAGGAAGAACATAAAGACGG CATCCCTGAGTAGAGCACACTTG 149 93 0.999 

HHC01015 CCACTAGAAGTGTGTGCAAGATC CGTTTCCAGGTTTTTTGAATCC 85 97 0.998 

HHC01194 ACTAAGACCCAGCCAGCAGAAG GGTGGAGGGAGGAGTTTCTTTG 179 99 0.999 

HHC01310 TATGAGGAAGCGGTGGTTTG GAGCCTGCCCAACCTTATCAT 75 98 0.998 

 

 

 

 



65 

 

Table 2.5 Primer information of reference genes. 

Name, GenBank accession number, forward and reverse sequence, size, efficiency (%), and R
2
 are shown for each reference gene.  

Gene name 

(Abbrevation) 

Accession 

number 

Forward Reverse Size 

(bp) 

E 

(%) 

R
2
 REferences 

CP2 

transcription 

factor 

(HHC01138) 

NP_989715 CAGTCCTGGCGACCGATGT CAAGATGGAGATTCGCAACTGT 76 99 0.998 (Acloque et 

al., 2004) 

Exportin 

1(HHC00353) 

CAAE00000000.1 CGAGGTACTCTCCACTCTCATTCTC AACCTCAGTTTTTATCCAGGTTCAC 81 98 0.999 (Callanan et 

al., 2000) 

BTB/POZ 

protein 

(HHC01517) 

NM_001099229 AGCAGGTTCTCCATGTTGAGTG CTATTTCAAAGCCATGTTCACAGG 143 95 0.998 (Smith et al., 

2006) 

β2-Tubulin  

(Tubb2) 

DT805564 CTACAATGAGGCTTCAGGTGG TCCCTCTGTGTAGTGACCCTTG 134 96 0.998 (McCurley 

& Callard, 

2008) 

β-Actin (Actb) EB103323 GAGAAGATGACTCAGATCATGTTCG CCAGCCAGGTCCAGACGG 154 91 0.999 (Van Nes et 

al., 2005) 

Elongation 

factor 2 (Eef2) 

EB173938 ATGGAGTCATTTGGTTTCACAGC GAGACCCTTGCGTTTGCG 121 94 0.999 (McCurley 

& Callard, 

2008) 
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Figure 2.3 Reference gene stability values throughout early Atlantic halibut embryonic 

development. 

Average expression stability values were calculated by geNorm. Expression stability of 

the reference genes is inversely correlated to their stability index.  
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2.4 Results 

2.4.1 Characterization of EST library 

An EST library was constructed by suppressive subtractive hybridization, subtracting 

cDNA from 8C embryos against the cDNA from 10SS embryos. A total of 4,592 clones 

were randomly picked and sequenced from their 5’ end. After screening for vector and 

E. coli sequences, only ESTs longer than 150 bp were chosen for further analysis. The 

analysis resulted in 2,341 high quality EST sequences with an average length of 344 bp 

that were submitted to the EST database dbEST (http://www.ncbi/nlm/nih.gov/dbEST, 

GeneBank accession numbers FK701051-FK703391) together with their BLAST-based 

preliminary annotations. Grouping the EST sequences into non-redundant clusters with 

PartiGene resulted in a total of 1,064 putative gene clusters. The overall redundancy for 

the maternal library was 2.7, with 77 % of the putative genes being represented by only 

one EST. Subjecting non-redundant clusters to BLASTX similarity searches against the 

non-redundant (nr) protein database at NCBI resulted in significant matches for 26.5 % 

of the clusters (Table 2.6). In addition, 28 % of the cluster had matches against 

unnamed and hypothetical protein products. The largest gene clusters with significant 

hits corresponded to structural proteins or metabolic enzymes such as mitochondrial 

genes encoding cytochrome b and cytochrome oxidase subunits and the nuclear genes 

encoding myosin heavy chain. The remaining 45.5 % of the assembled clusters did not 

have significant matches against the nr protein database. Annotation in Blast2GO 

against the Gene Ontology (GO) database resulted in 699 clusters being annotated with 

a total of 3,956 GO terms at a mean GO level of 5.07. Furthermore, 261 enzyme codes 

were mapped to 196 sequences. The annotated sequences were grouped into different 

http://www.ncbi/nlm/nih.gov/dbEST
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classes of ontology according to the GO terms, as shown in Figure 2.4. Most of the 

genes involved in biological processes were part of metabolic and cellular processes. 

Half of the annotated genes were classified as genes with the function of binding, 

followed by the function of catalytic activity. Searching against the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) pathways resulted in the annotation of 

169 of the clusters representing 83 different pathways 

(http://www.genome.jp/kegg/pathway.html). The thirteen most represented pathways 

are shown in Table 2.7. 

  

http://www.genome.jp/kegg/pathway.html
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Table 2.6 Most commonly abundant EST clones of maternal EST library. 

Name, number of sequences, number of clusters and transcript abundance are given for 

each clone.  

Gene name Number of 

sequences 

Number of 

clusters 

Transcript 

abundance 

(%) 

Unknown genes    

Genes with no significant hits 1064 395 45.5 

Unnamed protein products T. nigrovirdis 508 218 21.7 

Hypothetical proteins D. rerio 134 62 5.7 

Hypothetical proteins others (Gallus, Oryzia, 

Xenopus, Mus, Homo) 

14 10 0.6 

Mitochondrial genes    

Cytochrome b  83 3 3.5 

Mitochondrial hypothetical 18K protein-goldfish 63 63 2.7 

Cytochrome c oxidase subunit I 21 11 0.9 

Cytochrome c oxidase subunit II 11 5 0.5 

Cytochrome oxidase subunit III 8 3 0.3 

Nuclear genes    

Myosin heavy chain  38 10 1.6 

skeletal muscle fast troponin T  19 5 0.8 

Creatine kinase  19 7 0.8 

Parvalbumin 18 2 0.8 

Tropomyosin alpha chain 11 2 0.5 

Septin 7  10 1 0.4 

Caprin family member 2  9 3 0.4 

Odorant receptor 9 2 0.4 

Skeletal muscle alpha actin 1 8 4 0.3 

RNA binding protein with multiple splicing 2 8 2 0.3 

Cyclin A2 8 1 0.3 
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Figure 2.4 Gene classification based on Gene Ontology (GO).  

A) Biological process, B) Cellular component, and C) Molecular function  
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Table 2.7 The most commonly represented KEGG pathways of maternal sequences. 

Name, number of clusters, and transcript abundance are given for each pathway.  

 
Pathway Number of 

clusters 

Transcript 

abundance (%) 

Urea cycle and metabolism of amino groups 8 4.7 

Glycan structures 6 3.6 

Purine metabolism 6 3.6 

Glycolysis/Gluconeogenesis 5 3.0 

Drug metabolism-other enzymes 5 3.0 

Pyruvate metabolism 5 3.0 

Pyrimidine metabolism 4 2.4 

Lysine degradation  4 2.4 

Tryptophan metabolism 4 2.4 

Butanoate metabolism 4 2.4 

Pentose phosphate pathway 4 2.4 

Carbon fixation 4 2.4 

Beta-Alanine metabolism 4 2.4 
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2.4.2 Screening of relative gene expression during embryonic development 

Twenty-one genes were selected from the library for screening of their relative 

expression during early development, 14 novel genes and 7 genes with documented 

roles in early development (Table 2.1 and 2.2). Relative gene expression was screened 

during early embryonic development from 8C to 10SS by quantitative real-time PCR 

(qPCR). Class discovery analysis resulted in two main clusters containing 15 and 6 

genes (Figure 2.5). The relative expressions of the 15 genes, grouped together in the 

largest cluster, changed significantly during embryonic development (p < 0.05). Inside 

this cluster, the four genes askopos (Kop), si:dkey-30j22.9, tudor 5 protein (Tdrd5), and 

HHC00130 (Stathmin family member) were sorted into a sub cluster showing very low 

to zero expression during the later stages of development. This was confirmed by the 

significant change in relative expression among the developmental stages 

(Kop: F6,28 = 189.9, p < 0.001; si:dkey-30j22.9: F6,28 = 28.9, p < 0.001; 

Tdrd5: F6,28 = 74.5, p < 0.001; HHC00130: F6,28 = 62.1, p < 0.001) as shown in 

Figure 2.6; B, I, and L. For these four maternal genes, their relative expression 

decreased significantly to a very low or zero level of expression between the blastula 

stage (BL) and the germ ring stage (GR). A similar significant drop between these two 

stages was found for six other genes in this cluster (HHC00068: F6,28 = 4.0, p < 0.001; 

HHC00309: F6,28 = 8.4, p < 0.001; HHC00334: F6,28 = 3.0, p < 0.02; 

HHC01010: F6,28 = 1.7, p < 0.001; HHC01032: F6,28 = 13.5, p < 0.001; 

HHC01310: F6,28 = 14.8, p < 0.001; Figure 2.6 B; K, O, P, Q, S, and U) though these did 

not decrease to similar low or zero relative expression during later stages. The 

remaining five genes of this larger cluster did not show any significant difference in 

gene expression between the blastula and germ ring stage. 
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The smaller cluster contained genes showing an opposite expression pattern 

(Figure 2.5). In this group of six genes, lower relative expression during early 

developmental stages was observed in comparison to the later stages. The expression of 

the three maternal-zygotic genes prohibitin 2 (Phb2), HHC00057 (orthologue of cullin), 

and HHC00255 (orthologue of phosphoinositide-dependent kinase 1; Figure 2.6 B; E, J, 

and N) increased significantly from 8C stage to 10SS stage (Phb2: F6,28 = 9.0, 

p < 0.001; HHC00057: F6,28 = 7.8, p < 0.001; HHC00255: F6,28 = 4.0, p < 0.005). Two 

of the genes in this cluster did not show any significant differences in relative gene 

expression during early embryonic development (Figure 2.6 B; Ubiquitin carrier 

protein (Hr6a), H and HHC00222, M). Gene expression between the five batches of 

Atlantic halibut oocytes that were analyzed was found to be significantly different 

(p < 0.05) for all genes except from Hr6a and HHC00222. 
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Figure 2.5 Clustering of genes, according to their relative gene expression during early embryonic 

development. 

Genes were clustered using the single-linkage method with Pearson correlation coefficient as distance 

measurement. The developmental stages were 8-cell stage (8C), 8 hours past fertilisation (hpf); 16 cell stage 

(16CS), 12 hpf; blastula (BL), 45 hpf; germ ring (GR), 82 hpf; 25 % epiboly (25EP) 96 hpf; 50 % epiboly 

(50EP), 117 hpf; and 10 somite stage (10SS), 142 hpf (n = 5). Data was standardized against the first stage, 

8C. Colour bar indicates relative gene expression in relation to 8C. Red colour shows up-regulation and blue 

colour down-regulation in relation to 8C. Reference genes are not included.  
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Figure 2.6 Relative gene expressions of selected Atlantic halibut genes from 8C to 10SS stage. 

Expression pattern of A: Askopos, B: Si:dkey-30j22.9, C: BAH, D: Checkpoint 1, E: Prohibitin 2, F: Syntaxin 4, G: 18k hypothetical 

goldfish protein, H:HR6A, I: Tudor 5 protein, J: HHC00057, K: HHC00068, L: HHC00130, M: HHC00222,N: HHC00255, O: HHC00309, 

P: HHC00334,Q: HHC01010,R: HHC01015, S: HHC01032, T: HHC01194, U: HHC01310. Error bars indicate the standard deviation 

(n=5). The developmental stages were 8-cell stage (8C), 8 hours past fertilisation (hpf); 16 cell stage (16CS), 12 hpf; blastula (BL), 45 hpf; 

germ ring (GR), 82 hpf; 25 % epiboly (25EP) 96 hpf; 50 % epiboly (50EP), 117 hpf; and 10 somite stage (10SS), 142 hpf (n = 5). 
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2.5 Discussion 

2.5.1 Characterization of the EST library 

1,419 maternal ESTs were previously reported in Atlantic halibut from sequencing an 

unbiased cDNA library obtained from 2-cell stage embryos (Bai et al., 2007). In the 

present study we used suppressive subtractive hybridization (SSH) to subtract the 

transcripts expressed both before and after the switch from maternal to zygotic 

expression. The analysis resulted in a library containing 2,341EST sequences. Due to 

the relatively short size of the ESTs, the default cut-off < 10-3, recommended by the 

software PartiGene, was chosen for the BLASTX analysis (Parkinson et al., 2004). This 

decreased the stringency of the search, decreasing the possibility that significant 

matches would be overlooked. The low redundancy of the library of 2.7 suggests that 

the SSH worked efficiently since 77 % of the putative genes were singletons containing 

only one EST, representing rare mRNAs. However, the largest gene clusters encoded 

for common genes such as cytochrome b and cytochrome oxidase subunits (Table 2.6). 

Although SSH greatly enriches for differentially expressed genes the subtracted sample 

will still contain some cDNAs that correspond to mRNAs common to both the tracer 

and driver samples, depending somewhat on the quality of RNA purification and the 

performance of the particular subtraction (Lukyanov et al., 2007). However, it mainly 

arises when very few mRNA species are differentially expressed in tracer and driver. 

The number of strictly maternal genes is generally lower compared to maternal-zygotic 

genes (Mathavan et al., 2005). In general, fewer differentially expressed mRNAs and 

less quantitative difference in expression lead to higher background – even if one 

obtains a good enrichment for differentially expressed cDNAs.  
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Annotated genes in the previous study contained almost twice as many genes classified 

as involved in metabolic processes compared to our library. In addition, genes involved 

in developmental processes were almost absent representing only 0.1 % of the total 

genes compared to this studie’s library with 8 % (Figure 2.4) (Bai et al., 2007)  

2.5.2 Screening of relative gene expression through embryonic development  

Among the 21 selected genes only three showed strictly maternal expression patterns 

(Figure 2.6).  Only annotated genes with known functions during embryonic 

development were selected, not all of them known to be strictly maternal in other 

organisms. Choosing randomly picked genes from the EST library may have increased 

the number of strictly maternal genes. The three genes: Kop, si:dkey-30j22.9, and Tdrd5 

showed an expression pattern typical for strictly maternal genes (Figure 2.6; A, B, and 

I). By stage 25 % epiboly (25EB), their expression was no longer detectable anymore, 

possibly due to the degradation of their transcripts. This could indicate that the MZT in 

Atlantic halibut takes place between the BL and GR stage. Kop mRNA is continuously 

expressed in the zebrafish primordial germ cells (PGCs) during migration towards the 

putative gonads (Blaser et al., 2005). Si:dkey-30j22.9 and Tdrd5 encode proteins 

containing several Tudor domains. Tudor domains were identified as common protein 

motifs found in the D. melanogaster Tud protein which plays a dual role in abdomen 

development and germ cell formation (Boswell & Mahowald, 1985 ;  Travis Thomson, 

2004). Si:dkey-30j22.9 encodes an uncharacterized protein found in the zebrafish 

containing 6 tudor domains. Tdrd5 has been found to be expressed exclusively in mouse 

testis, implying that expression of this gene is restricted to the male germ line 

throughout development to adulthood (Smith et al., 2004). It is unknown how Kop, 

si:dkey-30j22.9, and Tdrd5 may influence embryonic development.  
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Three genes Phb2, HHC00057, and HHC00225 were significantly up-regulated during 

the later embryonic stages, representing maternal-zygotic genes (Figure 2.6 B; E, J, and 

N). Phb2, together with prohibitin 1 (Phb1), codes for highly conserved proteins in 

eukaryotic cells that are present in multiple cellular compartments. In rainbow trout, 

Phb2 mRNA abundance was found to correlate negatively with developmental success 

(Bonnet et al., 2007). HHC00057 codes for a Cullin protein orthologue which are RING 

H2 finger proteins that are part of a protein complex which forms the largest known 

class of ubiquitin ligases, the cullin-RING ubiquitin ligases (CRLs). In zebrafish, CUL2 

has been found to be required for normal embryonic development and vasculogenesis 

(Maeda et al., 2008). HHC00255 codes for an orthologue of 3-phosphoinositide-

dependent protein kinase-1 (PDPK1) which mediates the cellular effect of insulin and 

growth factors by activating a group of kinases (Belham et al., 1999 ;  Mora et al., 

2004). It also plays a role in cell cycle resumption during oocyte maturation in starfish 

(Hiraoka et al., 2004). Lawlor et al. showed that PDPK1-deficient mice embryos 

displayed multiple abnormalities including lack of somites; forebrain and neural crest 

derived tissues and died after a few days. Mice embryos with reduced PDPK1 activity 

were 40-50 % smaller than normal animals. The volume of a number of PDPK1-

deficient cells was reduced by 35-60 %, but not their cell number, nuclear size or 

proliferation (Lawlor et al., 2002). How PDPK1 influences teleost embryonic 

development has not been studied.  

The genomic information created in this study provides the base for future studies on 

maternal genes expression in Atlantic halibut. The identified strictly maternal and 

maternal-zygotic genes will be tested for their potential as molecular markers for 
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Atlantic halibut oocyte quality by correlating their transcript abundance to fertilisation 

and embryonic hatching rates.  

Picked only a small number of EST, are they respective? It is expected that the number 

of true maternal EST is small compared to maternal-zygotic genes. Makes SSH 

challengeing.  

  



80 

 

3 Selection of suitable reference genes for quantitative real-time 

(qPCR) studies of Atlantic halibut development 

3.1 Abstract 

Gene expression studies are an essential tool to identify the factors that control normal 

development and growth in teleost embryos and larvae. High embryonic mortality and 

larval malformations are common during juvenile production for on-growth in 

aquaculture. Quantitative real-time PCR (qPCR) is the most accurate method of 

quantifying gene expression, provided that suitable endogenous controls are used to 

normalize the data. To date, no reference genes have been validated for developmental 

gene expression studies in Atlantic halibut. In this study the expression profiles of 6 

commonly used reference genes were determined (Actb, Eef2, Fau, Gapdh, Tubb2, and 

18S rRNA) in 6 embryonic and 5 larval stages of Atlantic halibut development. There 

were significant changes in expression levels throughout development, which stress the 

importance and complexity of finding appropriate reference genes. The three software 

applications (BestKeeper, geNorm, and NormFinder) used to evaluate the stability of 

potential reference genes produced comparable results. Tubb2 and Actb were the most 

stable genes across the different developmental stages, whereas 18S rRNA and Gapdh 

were the most variable genes and thus inappropriate to use as reference genes. 

According to geNorm and NormFinder, the best two-gene normalization factors 

corresponded to the geometric average of Tubb2/Actb and Tbb2/Fau, respectively. 

Either of these normalization factors can be used for future developmental gene 

expression studies in Atlantic halibut.  
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3.2 Introduction 

Gene expression studies are an essential tool to identify the factors that control normal 

early development and its complex molecular pathways. Microarrays and quantitative 

real-time PCR (qPCR) are the methods of choice for quantification of gene expression. 

In particular, qPCR is commonly used in human diagnostics and expression studies in 

various biological systems (Bustin et al., 2005). The accuracy of qPCR results depends 

on several factors, including the RNA integrity of the starting material, enzyme and 

primer performance, reference gene used, and method chosen for data analysis (Pfaffl & 

Hageleit, 2001 ;  Bustin & Nolan, 2004 ;  Skern et al., 2005). Relative quantification of 

gene expression by qPCR is based on the expression ratio of a target gene versus a 

reference gene (Pfaffl, 2001 ). A vast number of reference genes have been proposed as 

references for gene expression analysis   (Warrington et al., 2000 ;  Olsvik et al., 2005 ;  

Ingerslev et al., 2006 ;  Tang et al., 2007). Reference genes are typically genes that are 

transcribed at a relatively constant level across various conditions, such as 

developmental stage or tissue type, and their expression is assumed to be unaffected by 

experimental parameters. It is unlikely that an ideal universal reference gene exists. 

Many studies have used reference genes without proper validation of their presumed 

stability of expression, even though transcript levels of reference genes can vary 

considerably. For example, two of the most commonly used reference genes in qPCR 

studies, glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and β-actin (Actb), have 

been found to vary in expression by 8-fold and 7- to 22-fold, respectively, during a 

survey of 535 human reference genes (Warrington et al., 2000). The use of a single 

reference gene has been shown to lead to erroneous normalization of up to 3- and 6-fold 

in expression studies in various human tissues (Vandesompele et al., 2002). Hence, the 
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use of only one reference gene for normalization of gene expression studies should not 

be considered sufficient (Bustin et al., 2005). The choice of suitable reference genes for 

normalization of qPCR data during development is by no means trivial, since they must 

be relatively unaffected by marked changes in transcriptional activity, particularly 

before and after the start of zygotic transcription. Nevertheless, this task can be 

achieved by computational methods recently developed to assess the expression 

stability of candidate reference genes, namely geNorm  (Vandesompele et al., 2002), 

NormFinder  (Andersen et al., 2004), and BestKeeper (Pfaffl et al., 2004). 

The Atlantic halibut is considered a valuable candidate for commercial marine cold 

water fish farming but the current production outcome suffers from a major bottleneck 

during larval production. During this early production stage, the major problems are 

high embryonic and larval mortality (Pittman et al., 1990a) as well as body 

malformations during larval development and metamorphosis (Lewis & Lall, 2006 ;  

Sæle et al., 2006). The most serious disorder during larval development is termed 

“gaping” and it is associated with the locking of the jaw cartilage. Hence, larvae are not 

able to close their mouth and cannot eat, which leads inevitably to death by starvation. 

The amount of “gapers” in a batch increases at suboptimal rearing temperatures  (Lein 

et al., 1997a) and salinity conditions (Lein et al., 1997b). Gaping has also been 

correlated with mechanical stress and bacterial invasion (Morrison & Macdonald, 1995) 

in the rearing tanks. Other skeletal malformations during metamorphosis include 

scoliosis in the vertebral column (Lewis & Lall, 2006) and arrested eye migration  (Sæle 

et al., 2004). Juveniles with skeletal malformations can represent up to 30% of a total 

production batch and are routinely discarded during fry production. Despite their 

significant economical importance, the molecular basis of such abnormalities is not 
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known. Gene expression studies, particularly qPCR, are essential to improve the 

understanding of this as well as other fundamental issues regarding aquaculture species. 

In fact, some recent studies have been conducted to investigate gene expression changes 

during development of Atlantic halibut, albeit using a single reference gene. Actb has 

been used as the reference gene in expression studies on aromatases (Van Nes et al., 

2005), estrogen receptors (Van Nes & Andersen, 2006), and myogenic regulation 

factors (Galloway et al., 2006) in Atlantic halibut embryos and larvae. In spite of being 

a suitable reference gene in cattle (Robinson et al., 2007) and zebrafish (Tang et al., 

2007), Actb transcript levels have been shown to vary as a response to biochemical 

stimuli, as well as during growth and differentiation in other mammalian systems (Ruan 

& Lai, 2007). 18S ribosomal RNA (18S rRNA) has been used during expression studies 

of insulin growth factor receptors (Hildahl et al., 2007a) and type I keratin genes 

(Campinho et al., 2007) in Atlantic halibut. The use of 18S rRNA should be considered 

carefully in studies where the target genes are expected to show low expression levels. 

In cattle, 18S rRNA has been considered unsuitable because of the vast difference in 

abundance between rRNA and target genes (Robinson et al., 2007), which results in 

different amplification kinetics that may generate misleading quantification data  

(Bustin et al., 2005).  

The aim of this work was to identify optimal reference genes for qPCR studies of early 

embryonic and larval development in Atlantic halibut. No systematic survey of 

appropriate qPCR references for such developmental stages has been conducted to date 

in any aquaculture species. The selected genes comprised some ‘classical’ reference 

genes used as qPCR references (Actb, 18S rRNA, and Gapdh) and three genes that have 

recently been acknowledged as potential reference genes for qPCR: 40S ribosomal 
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protein S30 (Fau), eukaryotic translation elongation factor 2 (Eef2), and β2-tubulin 

(Tubb2). The identification of the most suitable genes for normalization of qPCR data 

will be an essential tool for future developmental gene expression studies in Atlantic 

halibut.  

  



85 

 

3.3 Material and Methods 

3.3.1 Fish husbandry and sample collection 

The Atlantic halibut used in this experiment were sampled between May 18
th

 and July 

23
rd

 at Risørfisk AS hatchery (Risør, Norway). Oocytes were obtained by stripping the 

females and fertilised in vitro with pooled sperm from two males. Eggs and larvae were 

reared at 6.2 ± 0.1 °C (range). The developmental stages examined were the following: 

two-cell (2C), high blastula (HB), germ ring (GR), 10-somite (10SS), 30-somite (30SS), 

50-somite (50SS), hatching/ larval stage 1 (LS1), larval stage 2 (LS2), larval stage 3 

(LS3), larval stage 4 (LS4), and first feeding (FF; Figure 3.1). A total of 5 batches were 

followed from fertilisation to first feeding and approximately 50 embryos and larvae at 

each developmental stage were sampled from each of the batches. Samples were 

wrapped in tinfoil and snap-frozen in liquid nitrogen until analysis.  
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Figure 3.1 Overview of Atlantic halibut developmental stages.  

Embryonic stages (A-F) were 2-cell stage (A) at 2 degreedays post-fertilisation (ddpf), 

high blastula (B) during blastoderm formation at 10 ddpf, germ ring (C) visible at start 

of gastrulation at 20 ddpf, tail bud/ 10 somite-stage (D) at 30 ddpf, 30-somite stage (E) 

at 50 ddpf and end of segmentation (F), with the Kupffer’s vesicle present at 65 ddpf. 

Photographs were taken under a Stemi SV 11 stereoscope (Carl Zeiss Vision, City, 

Norway) with an AxioCam HRc camera (Carl Zeiss Vision, City, Norway). Scale bar 

represents 5mm. Larval stages (G-K), defined according to Pittman et al. (Pittman et al. 

1990), were the following: larval stage 1 (G) at 0 degreedays post-hatching (ddph), 

larval stage 2 (H) at 130 ddph, larval stage 3 (I) at 160 ddph, larval stage 4 (J) at 200 

ddph, and onset of first feeding (K) at 220 ddph. Images were acquired with an 

Olympus SZXIZ stereoscope coupled to a ColourView IIIu camera (Olympus, Oslo, 

Norway). Anterior is left. Scale bar corresponds to 1 mm (A-H) or 2 mm (I-K).  
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3.3.2 RNA extraction and cDNA synthesis 

Circa 100 mg of Atlantic halibut embryos (10-15 eggs) or larvae (4-5) were placed into 

a Lysing Matrix D tube (QBiogene/Medinor, Oslo, Norway) containing QIAzol 

(Qiagen, Nydalen, Sweden) and homogenized for 40 s at 6000 rpm using the MagNA 

Lyser instrument (Roche, Mannheim, Germany), according to the Tri reagent method 

(Sigma, Oslo, Norway). Total RNA was treated with the gDNA wipeout buffer supplied 

with the QuantiTect reverse transcription kit (Qiagen) to remove traces of genomic 

DNA contamination. Assessment of RNA quality was performed on a 1.2 % (w/v) 

agarose gel containing SYBR safe DNA gel stain (Invitrogen/VWR, Tromsø, Norway) 

and photographed with the Gel logic 200 imaging system (Kodiac/Perderson & Sønn, 

Oslo, Norway). RNA samples were then quantified using a Nanodrop 

spectrophotometer (Nanodrop Technologies/Saven Werner, Kristiansand, Norway). All 

samples had absorbance ratios 260/280 nm greater than 1.9, indicative of high purity 

RNA. cDNA was synthesized with the QuantiTect reverse transcription kit (Qiagen) 

using a 96 well PCR from Techne (Barloworld Ltd, Stone, USA). The resulting single-

stranded cDNA products were quantified using the Nanodrop spectrophotometer and 

then diluted 50-fold with deionized water, prior to using them as templates for the qPCR 

reactions.  

3.3.3 Primer design 

The primers for Gapdh, Actb, Eef2, Fau, and Tubb2 were based on high-quality 

expressed sequence tags (ESTs) derived from three Atlantic halibut cDNA libraries  

(Bai et al., 2007). BLAST similarity searches at the National Center for Biotechnology 

Information (NCBI, http://www.ncbi.nlm.nih.gov/BLAST) were performed to confirm 
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the identity of the genes. It is noteworthy that the halibut Actb gene used in this study is 

the orthologue of zebrafish β-actin 1 (also known as bactin1), which is located on 

chromosome 1 of the zebrafish genome. The genomic sequences of orthologous genes 

from D, rerio, G. aculeatus, O. latipes, T. rubripes, and T. nigroviridis were retrieved 

from Ensembl (http://www.ensembl.org). Intron/exon borders within the Atlantic 

halibut EST sequences were then predicted using the Spidey software 

(http://www.ncbi.nlm.nih.gov/spidey) by aligning the halibut ESTs with the 

corresponding genomic sequences from the other teleost species. Whenever possible, 

primers were designed across the most conserved splice junctions. All gene specific 

primers crossed at last one intron/exon border containing both donor and acceptor sites, 

in order to avoid amplification of any contaminating genomic DNA. Primer pairs for 

qPCR amplification were designed manually and screened for hairpins, homo- and 

cross-dimers using Netprimer (http://www.premierbiosoft.com/netprimer). The 

18S rRNA primers from Atlantic halibut have been recently reported (Hildahl et al., 

2007b). The primer sequences used to amplify all reference genes are listed on 

Table 3.1, as are the corresponding amplicon sizes and PCR efficiencies. 
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Table 3.1: Reference gene and primer information.  

The name, symbol, GenBank accession number and function of each reference gene are shown.  

Gene name Accession Function Fwd sequence (5’→3’) Rev sequence (5’→3’) Size 

(bp) 

E 

(%) 

R
2
 

18S Ribosomal RNA 

(18S rRNA) 

N/A
1
 Small 

ribosomal 

subunit  

GCATGCCGGAGTCTCGTT TGCATGGCCGTTCTTAGTTG 140
2
 96.5 0.999 

β-Actin (Actb) EB103323 Cytoskeleton  GAGAAGATGACTCAGATCATGTTCG CCAGCCAGGTCCAGACGG 154 89.0 0.999 

Eukaryotic translation 

elongation factor 2 

(Eef2) 

EB173938 Transport  ATGGAGTCATTTGGTTTCACAGC GAGACCCTTGCGTTTGCG 121 91.5 0.999 

40S Ribosomal protein 

S30 (Fau) 

EB102997 Small 

ribosomal 

subunit  

GACACCCAAGGTTGAAAAGCAG GGCATTGAAGCATTTAGGAGTTG 149 89.6 0.999 

Glyceraldehyde-3-

phosphate 

dehydrogenase (Gapdh) 

DN794823 Glycolysis GCAAGGTCATCCCCGAGC TGTTTTCATAGCTGGCAGGTTTC 122 91.5 0.999 

β2-Tubulin (Tubb2) DT805564 Cytoskeleton CTACAATGAGGCTTCAGGTGG TCCCTCTGTGTAGTGACCCTTG 134 93.9 0.998 

1
The 18S rRNA sequence from Atlantic halibut is not publicly available. 

2
Estimated by agarose gel electrophoresis 
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3.3.4 Quantitative real-time PCR (qPCR) 

Gene amplifications by qPCR were performed with a LightCycler
®
 480 thermocycler 

(Roche, Oslo, Norway). Each 10 µl reaction in a 96-well plate comprised 4 µl of 50x 

diluted cDNA template, 1 µl of each primer pair at 5 µM and 5 µl of QuantiTect 

SYBR Green containing ROX as reference dye (Qiagen). Plates were sealed with 

adhesive optical film (Roche) and, after an initial denaturation step of 15 min at 

95 ºC, 45 cycles of amplification were performed according to the following 

thermocycling profile: denaturation for 15 s at 94 ºC, annealing for 20 s at 60 ºC and 

extension for 20 s at 72 ºC. Fluorescence data were acquired during this last step. A 

dissociation protocol with a gradient from 65 to 97 ºC was used to investigate the 

specificity of the qPCR reaction and the presence of primer dimers. Gene expression 

levels were recorded as CT values that corresponded to the number of cycles at which 

the fluorescence signal can be detected above a threshold value, arbitrarily set to 0.3. 

The CT value is therefore inversely correlated to the initial amount of DNA present in 

the PCR reaction. All samples were run in duplicate and minus reverse transcriptase 

and no template controls were included in all plates, along with a positive plate 

control. Five-point standard curves of a 5-fold dilution series (1:1-1:625) from 

pooled cDNA were used for PCR efficiency calculation. The PCR efficiency (E) is 

given by the equation 100)110(

1




mE  (Radonic et al., 2004), where m is the 

slope of linear regression model fitted over log-transformed data of the input cDNA 

concentrations versus CT values. 
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3.3.5 Statistical analysis 

Differences in expression levels of Gapdh, Actb, Eef2, Fau, Tubb2, and 18S rRNA 

with developmental stage were examined by one-way ANOVA with Holm-Sidak 

post-hoc tests. When the data did not meet the normality and/or equal variance 

requirements, a Kruskal-Wallis one-way ANOVA on ranks with a Dunn’s test for 

post-hoc comparisons was performed instead. The SigmaStat statistical package 

(Systat software, London, UK) was used for all analyses. Significance levels were set 

at p < 0.05. 

3.3.6 Evaluation of expression stability 

Evaluation of expression stability was performed using three independent statistical 

applications: geNorm (Vandesompele et al., 2002), NormFinder (Andersen et al., 

2004), and BestKeeper (Pfaffl et al., 2004). GeNorm  (Vandesompele et al., 2002) is 

a Microsoft Excel application that determines the expression stability of reference 

genes based on overall pairwise comparisons between them. In brief, the principle 

behind this algorithm is that expression ratio of two ideal reference genes is identical 

in all samples, regardless of the experimental conditions or cell type. The software 

calculates a stability value (M), which is inversely correlated to gene expression 

stability, and ranks the reference genes accordingly. Stepwise exclusion of the gene 

with the highest stability index, assuming that the genes are not co-regulated, results 

in a combination of two reference genes that have the most stable expression across 

the tested samples. The identification of stable reference genes with BestKeeper 

(Pfaffl et al., 2004) is based on pair wise comparisons of raw cycle threshold (CT) 

values of each gene. The genes showing least variation are incorporated into a 

BestKeeper index, which can be used in very much the same way as a single 
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reference gene in normalization of gene expression. Stable reference genes show a 

strong correlation with the BestKeeper index. NormFinder (Andersen et al., 2004) is 

also an application for Excel but, unlike GeNorm and BestKeeper, it uses a model-

based approach to determine the optimal reference genes. In this mathematical model 

a separate analysis of the sample subgroups and estimation of both intra- and inter-

group variation in expression levels are included into the calculation of a gene 

stability value. Normfinder also calculates the best combination of two genes for a 

two-gene normalization factor and its corresponding stability value.  

  



93 

 

3.4 Results 

3.4.1 Developmental expression profiles of candidate reference genes 

Analysis of the raw expression levels across all eleven developmental stages 

identified some variation amongst candidate reference genes (Figure 3.2). Tubb2 

showed the lowest global variability, whereas Gapdh had the highest variation in 

expression levels. Except for 18S rRNA, which was highly expressed 

(Mean CT = 10.09), the other candidate reference genes were expressed at moderate 

levels, with mean CT values of 18.61, 19.02, 19.51, 20.16, and 22.61 for Fau, Actb, 

Eef2, Tubb2, and Gapdh, respectively (Figure 3.2). All genes were expressed 

throughout the different embryonic and larval stages, but with different expression 

patterns (Figure 3.3). Apart from 18S rRNA (p > 0.05), all other candidate reference 

genes showed significant overall changes in expression with developmental stage 

(p < 0.05). Despite its relatively stable expression throughout development, 18S 

rRNA had the highest intra-group variation (Figure 3.3). Expression profiles were 

generally characterized by low transcript levels (i.e., higher CT values) at the 2-cell 

and high blastula stages, gradually increasing levels during gastrulation (GR and 

10SS) and reaching a plateau by the end of somitogenesis. From hatching until first 

feeding, expression remained relatively stable.  

3.4.2 Analysis of expression stability 

The BestKeeper descriptive statistics, based on the raw CT values for each gene, 

ranked the candidate reference genes in the following preliminary order, from most 

to least stable: Tubb2 > 18S rRNA > Eef2 > Fau > Actb > Gapdh (Table 3.2). 

Generally, the six reference genes correlated well with each other. Particularly strong 

inter-gene correlations (p > 0.05) were found for Eef2/Gapdh (r = 0.855), Eef2/Fau 
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(r = 0.921), Actb/Tubb2 (r = 0.903), and Gapdh/Fau (r = 0.925). The high Pearson’s 

coefficients of determination indicated that these gene pairs had very similar overall 

expression patterns. The best correlations with the BestKeeper index were observed 

for Tubb2 (r = 0.950, p = 0.001) and Actb (r = 0.937, p = 0.001), thus identifying 

these two genes as the most reliable references for normalization. On the other hand, 

18S rRNA was found to be the least suitable gene (r = 0.614, p = 0.001). In summary, 

the BestKeeper pairwise analysis sorted the candidate reference genes in the 

following series of decreasing stability: Tubb2 > Actb > Gapdh > Eef2 > Fau > 18S 

rRNA. 

The stability of gene expression over the developmental time course was also 

assessed by geNorm (Table 3.3). There were differences in the relative stability of 

gene expression between developmental stages, but Tubb2 and Actb were classified 

as the best candidates, since they were the most stable genes in 6 (GR, 10SS, 30SS, 

50SS, LS1, and LS2) and 4 (2C, HB, LS4, and FF) of the 11 stages, respectively 

(Table 3.3). Fau was rated the worst gene in 5 stages (2-cell, high blastula, 50-somite 

and larval stages 3 and 4), whereas Gapdh and 18S rRNA were classified as the least 

stable genes in two stages each (germ ring and 30-somite, and 10-somite and larval 

stage 1, respectively, Table 3.3). When the data from all stages were combined and 

analyzed simultaneously, the candidate reference genes were ordered from the most 

to least stable, as follows: Tubb2 > Actb > Eef2 > Fau > 18S rRNA > Gapdh. 

Pairwise comparisons performed by geNorm to identify the finest combination of 

genes for calculation of a normalization factor revealed that Tubb2 and Actb were the 

best pair, with a joint stability value of M = 1.17 (Figure 3.4).  

According to NormFinder, Tubb2, and Gapdh were found to be the most and least 

stable reference genes, with stability indices of 0.633 and 1.667, respectively. The 



95 

 

overall ranking of the candidate reference genes was Tubb2 > Eef2 > Actb > Fau > 

18S rRNA > Gapdh. The most stable genes were found to be Tubb2 (germ ring, 10- 

and 50-somite and larval stage 1) and Actb (2-cell, high blastula and first feeding). 

The genes that showed the greatest variability were 18S rRNA (10-somite, larval 

stages 1 and 3) and Fau (2-cell, high blastula, 50-somite and larval stage 4) 

(Table 3.4). Nevertheless, with a stability index of 0.467, Fau and Tubb2 were 

selected as the best combination of genes for a two-gene normalization factor 

(Figure 3.5). The NormFinder analysis of individual developmental stages was 

broadly similar to the corresponding geNorm output (Table 3.3 and 3.4). 
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Figure 3.2 Overall expression patterns of potential reference genes during early 

development of Atlantic halibut.  

The raw cycle threshold (CT) qPCR data of each reference gene in all samples 

(n = 55) are represented in a box-and-whisker diagram. Mean values are represented 

by a dashed line. The 5
th

 and 95
th

 percentiles are indicated by the dots below and 

above each box, respectively. 
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Figure 3.3 Individual developmental expression profiles of potential reference genes.  

Transcript levels of Eef2 (A), Actb (B), Gapdh (C), 18S rRNA (D), Fau (E), and 

Tubb2 (F) during early development of Atlantic halibut were determined by qPCR. 

Data are shown as raw cycle threshold (CT) values and represented as mean ± S.E. 

(n = 5). Abbreviations: 2-cell (2C), high blastula (HB), germ ring (GR), tail bud/ 10-

somite (10SS), 30-somite (30SS), 50-somite (SS), larval stage 1 (LS1), larval stage 2 

(LS2), larval stage 3 (LS3), larval stage 4 (LS4), and first feeding (FF). 

.  
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Table 3.2 Inter-gene relations and correlations between the reference genes and the 

BestKeeper index. 

Pairwise correlation analyses were performed based on the cycle threshold values of 

the six reference genes. Pearson’s correlation coefficients (r) are shown. The higher 

the correlation coefficient, the more stable reference gene. Correlations below the 

significance threshold (p > 0.05) are indicated by an asterisk. The two most 

significant correlations of reference genes versus the BestKeeper index are 

highlighted.  

 
 Eef2 Actb Gapdh 18S rRNA Fau Tubb2 

Actb 0.757 - - - - - 

Gapdh 0.855 0.786 - - - - 

18S rRNA 0.243* 0.633 0.281* - - - 

Fau 0.921 0.697 0.925 0.090* - - 

Tubb2 0.763 0.903 0.742 0.769 0.664 - 

BestKeeper 0.868 0.937 0.900 0.614 0.827 0.950 
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Table 3.3 Indices of expression stability of six reference genes during early 

development of Atlantic halibut determined with the geNorm.  

The stability values are inversely correlated to gene expression stability. The most 

and least stable reference genes are shaded blue and yellow, respectively. The 

developmental stages are as follows: 2-cell (2C), high blastula (HB), germ ring (GR), 

tail bud/ 10-somite (10SS), 30-somite (30SS), 50-somite (SS), larval stage 1 (LS1), 

larval stage 2 (LS2), larval stage 3 (LS3), larval stage 4 (LS4), and first feeding (FF). 

 
 Eef2 Actb Gapdh 18S Fau Tubb2 

2C 0.620 0.607 0.962 0.787 1.002 0.754 

HB 1.120 0.911 1.257 1.043 1.290 0.925 

GR 1.449 1.207 2.264 1.310 1.514 1.071 

10SS 1.098 1.115 1.137 1.534 1.320 1.026 

30SS 1.139 1.089 1.369 1.097 1.055 1.043 

50SS 0.920 1.140 1.386 0.991 1.465 0.855 

LS1 2.069 1.562 1.735 2.345 1.975 1.458 

LS2 0.961 1.850 1.108 1.049 0.877 0.846 

LS3 1.787 1.402 1.362 2.216 2.249 1.435 

LS4 1.709 1.256 1.315 1.884 1.969 1.311 

FF 1.426 0.687 0.737 1.396 0.895 0.775 
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Table 3.4 Indices of expression stability of six reference genes during early 

development of Atlantic halibut. 

Stability data for reference gene expression were determined with NormFinder 

applications. The stability values are inversely correlated to gene expression stability. 

The most and least stable reference genes are shaded blue and yellow, respectively. 

The developmental stages are as follows: 2-cell (2C), high blastula (HB), germ ring 

(GR), tail bud/ 10-somite (10SS), 30-somite (30SS), 50-somite (SS), larval stage 1 

(LS1), larval stage 2 (LS2), larval stage 3 (LS3), larval stage 4 (LS4), and first 

feeding (FF). 

 
 Eef2 Actb Gapdh 18S Fau 

2C 0.099 0.047 0.581 0.477 0.620 

HB 0.539 0.386 0.672 0.609 0.767 

GR 0.776 0.446 1.470 0.575 0.814 

10SS 0.543 0.475 0.521 0.992 0.804 

30SS 0.610 0.651 0.833 0.634 0.486 

50SS 0.273 0.531 0.816 0.463 0.891 

LS1 1.261 0.559 0.613 1.539 1.157 

LS2 0.381 1.236 0.625 0.397 0.026 

LS3 0.914 0.360 0.290 1.436 1.431 

LS4 0.960 0.321 0.200 1.226 1.248 

FF 0.953 0.076 0.760 0.934 0.343 

 

  



101 

 

 

Figure 3.4 Ranking of reference genes according to their expression stability during 

Atlantic halibut development.  

Average expression stability values calculated by geNorm.  

 

  



102 

 

 

Figure 3.5 Ranking of reference genes according to their expression stability during 

Atlantic halibut development. 

Average expression stability values calculated by NormFinder.  
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3.5 Discussion 

Apart from 18S rRNA, all other candidate reference genes showed significant overall 

changes in expression throughout the developmental stages (Figure 3.3, D). The 

observed expression profiles, characterized by lower transcript levels slowly 

increasing until gastrulation and reaching a plateau by the end of somitogenesis, are 

likely to correspond to activation of zygotic transcription. This transition from the 

maternal to the zygotic transcript is known as the midblastula transition (MBT) in 

zebrafish (Kane & Kimmel, 1993). Since transcriptional activity varies dramatically 

during development, it is evident that a straightforward statistical analysis of raw CT 

values is not suitable to select the best reference genes for normalization of these 

qPCR data. The largest increase in expression levels throughout development was 

detected for Gapdh. This regulation of Gapdh during Atlantic halibut embryogenesis 

contrasts sharply to the pattern observed in zebrafish. Gapdh expression in zebrafish 

embryos is negligible during gastrulation and somatogenesis, increasing only during 

the pharyngula period and at hatching (Tang et al., 2007).  

The qPCR data set was analyzed with BestKeeper (Pfaffl et al., 2004), geNorm 

(Vandesompele et al., 2002), and Normfinder (Andersen et al., 2004) since there is 

no single accepted method to examine gene expression stability. In addition, different 

statistical methods can potentially yield discrepant results. Validating the reference 

genes using several applications and identifying differences and similarities between 

the outputs of alternative software, makes the consensus conclusions more reliable.  

BestKeeper defined 18S rRNA to be the least suitable gene (r = 0.614, p = 0.001), 

despite showing a regular mean expression level throughout development 

(Figure 3.3, D). This apparent discrepancy is due to the different expression pattern 
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of 18S rRNA when compared to the other potential reference genes, since the 

BestKeeper (Pfaffl et al., 2004) and geNorm  (Vandesompele et al., 2002) algorithms 

assume that the expression ratio of two ideal reference genes is identical in all 

samples. 

There was a statistically significant correlation between Gapdh and the BestKeeper 

index (r = 0.900, Table 3.2), since Gapdh expression levels correlated well with all 

other reference genes except 18S rRNA. This result is inconsistent with the geNorm 

or NormFinder conclusions. The latter identified Gapdh as the least suitable 

reference gene based on its unstable expression pattern during embryonic 

development and large intra-group variation, respectively. Gapdh seems to be 

inappropriate for normalization of these qPCR data, in accordance to the marked 

changes observed in Gapdh transcript levels during Atlantic halibut development 

(Figure 3.3, C). The instability of Gapdh has been reported in numerous other 

systems, including Atlantic salmon smoltification (Olsvik et al., 2005) and zebrafish 

embryonic development (Tang et al., 2007). The differential regulation of Gapdh is 

probably connected to its direct role in S phase-dependent histone H2B transcription 

(Zheng et al., 2003). 18S rRNA was also classified as one of the worst candidate 

reference genes for developmental studies in Atlantic halibut, despite showing a 

relatively low variation across all samples (Figure 3.3, D). Since rRNA molecules are 

the major constituents of total RNA, it is unsurprising that they correlate well with 

the total RNA mass. However, the use of rRNA as endogenous controls for qPCR 

has been criticized (Vandesompele et al., 2002), since they do not always represent 

the mRNA fraction (Solanas et al., 2001) and their high abundance makes it difficult 

to accurately subtract the baseline value for qPCR data analysis.  
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The use of a normalization factor based on the geometric average of the best 

reference genes is generally recommended, since the variation in the average of 

multiple genes tends to be smaller than the variation in individual genes 

(Vandesompele et al., 2002 ;  Andersen et al., 2004). According to geNorm, the best 

gene pair for calculation of a normalization factor is Tubb2/Actb (Figure 3.4), 

whereas NormFinder indicates that Tubb2/Fau are the best genes for computation of 

the two-gene normalization factor (Figure 3.5). Fau, which codes for the ribosomal 

protein S30 fused to a ubiquitin-like protein (Kas et al., 1992), shows an overall 

stability similar to Actb and less intra-group variation (Figure 3.3, E). As a 

consequence, the geometric mean of Tubb2 and Fau might be more appropriate, 

since these two genes belong to distinct functional classes (Table 3.1) and are thus 

less likely to be co-regulated. geNorm tends to select for genes with most similar 

expression profiles across the whole data set  (Vandesompele et al., 2002), making 

this pairwise method sensitive to co-regulation of reference genes (Andersen et al., 

2004).  

The general consensus from BestKeeper, geNorm, and NormFinder is that the most 

adequate reference gene for developmental studies in Atlantic halibut is Tubb2, an 

isoform of the β2-Tubulin subunit, which is a major constituent of microtubule 

polymers (Cleveland & Sullivan, 1985). Microtubule arrays are vital to many 

developmental processes, including the epibolic movements that occur during 

gastrulation  (Solnica-Krezel & Driever, 1994) and the cohesion of post-cytokinesis 

blastomeres in zebrafish (Jesuthasan, 1998). BestKeeper and geNorm analyses 

classified Actb as being the second most stable reference gene in this study. This 

result is in agreement with a previous report (Tang et al., 2007), which showed that 

Actb is one of the most suitable reference genes for qPCR expression studies during 
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zebrafish development. However, this paper by Tang et al. (2007) did not examine 

the potential of tubulin as a reference gene, since the primers used were not specific 

enough.  
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4 Maternal transcripts in Atlantic halibut during embryonic 

development 

4.1 Abstract 

A stable production of high quality oocytes is one of the major bottlenecks in present 

marine teleost aquaculture production. Several markers to estimate oocyte quality 

during hatchery procedure have been suggested with varying success. Recently, the 

focus has changed to identify molecular markers to optimise oocyte quality and 

broodstock husbandry. Atlantic halibut females are routinely hand-striped leading to 

variable oocyte quality due to post-ovulatory aging. The aim of this study was to 

relate maternal gene expression to oocyte quality and identify potential markers for 

oocyte quality in Atlantic halibut. Relative gene expressions of 18 genes at the 8-cell 

stage were correlated with oocyte quality parameters. The majority of genes showed 

either no or very minor correlations between their transcript levels and oocyte quality 

parameters. However, transcript abundances from two uncharacterized genes 

correlated positively with embryonic hatching success (r > 0.50, 

HHC00353: r = 0.58, p < 0.01; HHC01517: r = 0.56, p < 0.01). Transcript 

abundance from HHC00255 correlated negatively with normal blastomere 

percentage (r = -0.62, p < 0.05). Poor embryonic hatching success was not correlated 

with a general decrease in transcript abundance from maternal genes but with low 

transcript levels of some specific genes
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4.2 Introduction 

High quality teleost oocytes can be defined as those that exhibit high fertilisation 

rates develop into normal embryos experiencing low mortality and high hatching 

rates. A stable production of high quality oocytes is one of the major bottlenecks in 

marine aquaculture today. Easy detectable markers for oocyte quality could increase 

the efficiency of juvenile production by preventing incubation of low quality 

oocytes. Some of the suggested markers, which are easily applicable on hatchery 

location, are lipid drop distribution, physical and chemical parameters of the ovarian 

or coelomic fluid and blastomere symmetry. The distribution of lipid droplets has 

been suggested as a marker of oocyte quality for brown trout (Salmo trutta), Arctic 

char (Salvelinus alpinus), sharpsnout seabream (Diplodus puntazzo), common dentex 

(Dentex dentex), and gilthead seabream (Sparus aurata; Lahnsteiner & Patarnello, 

2005 ;  Mansour et al., 2007 ;  Lahnsteiner et al., 2008 ;  Mansour et al., 2008) . But 

inconsistent results between the lipid droplet distribution and oocyte quality were 

found in rainbow trout (Oncorhynchus mykiss, Ciereszko et al., 2009). Low pH 

values of ovarian or coelomic fluid have been associated with reduced oocyte quality 

due to post-ovulatory aging in turbot (Scophthalmus maximus) and rainbow trout 

(Fauvel et al., 1993 ;  Lahnsteiner, 2000 ;  Aegerter et al., 2004). Blastomere 

symmetry at early stages of cleavages has been considered as a useful predictive tool 

for oocyte quality assessment in aquaculture of marine teleosts (Kjorsvik et al., 1990 

;  Brooks et al., 1997). In haddock (Melanogrammus aeglefinus), turbot, and Atlantic 

halibut, a positive correlation between early blastomere symmetry and high oocyte 

quality characteristics like high embryonic hatching and survival rates were found 

(Strehlow et al., 1994 ;  Kjorsvik et al., 2003 ;  Shields et al., 1997 ;  Rideout et al., 

2004). Studies on yellowtail flounder (Limanda ferruginea) and Atlantic cod support 
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these findings but state that blastomere symmetry corrections during later divisions 

may occur, improving embryonic hatching and survival rates (Avery & Brown, 2005 

;  Avery et al., 2009 ;  Vallin & Nissling, 1998). All of these studies look exclusively 

at the correlation between blastomere symmetry and oocyte quality without 

explaining the underlying biochemical or genetic mechanisms (Kjorsvik et al., 1990 ;  

Brooks et al., 1997).  

By using newly available genomic and proteomic tools, relations between levels of 

maternal mRNAs and proteins and oocyte quality have been identified in 

commercially farmed teleosts (Aegerter et al., 2005 ;  Bonnet et al., 2007 ;  Crespel 

et al., 2008). Early embryonic development is controlled by maternal factors, 

mRNAs and proteins, produced during oogenesis by the female and stored in the 

oocyte. These factors become activated upon fertilisation and initiate processes 

crucial to first mitotic divisions, specify initial cell fate, and embryonic patterning 

(Pelegri, 2003 ;  Schier, 2007). This includes the specification of somatic tissue 

lineages (Pelegri, 2003) and the germline (Raz, 2002). In zebrafish (Danio rerio) for 

example, mutations in strictly maternal genes affect cell adhesion, pronuclear fusion, 

and spindle formation during early cleavage and the induction of the dorsal organizer 

(Abdelilah et al., 1994 ;  Pelegri et al., 1999 ;  Kelly et al., 2000 ;  Dekens et al., 

2003). .   

Atlantic halibut is considered a valuable species for cold water marine fish farming, 

but current production suffers from a bottleneck during fry production for on-

growing. The major problems during the early production stage include high 

embryonic and larval mortality and body malformations during larval development 

and after metamorphosis (Kjorsvik et al., 1990 ;  Olsen et al., 1999 ;  Hamre et al., 

2007). Stripping is routinely used in Atlantic halibut juvenile production. Stripping 
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can lead to variations in oocyte ripeness and consequently, variable oocyte quality 

(Bromage et al., 1992). Early cell symmetry at the 8-16 cell stage is routinely used in 

Atlantic halibut farming for oocyte quality assessment (Shields et al., 1997). The 

information of maternal mRNAs in Atlantic halibut has been restricted to an EST 

library created from the 2-cell stage embryos (Bai et al., 2007).  

The purpose of this study was to relate maternal mRNA levels to oocyte quality in 

Atlantic halibut and identify potential markers for oocyte quality. Nine previously 

identified genes (Chapter 2), with three different patterns of relative gene expression 

during early embryonic development (strictly maternal, maternal-zygotic, and 

constant), were selected to study differences in their correlation with oocyte quality. 

To test, if the specific selection of genes influences their correlation of gene 

expression with oocyte quality, nine separate random genes were chosen from the 

maternal EST library in addition for the same analysis. 
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Material and methods 

4.1.1 Fish husbandry and sample collection  

Oocytes samples were collected from Atlantic halibut females at two different 

locations in Norway. Four batches were sampled from a commercial farm 

(Risørfisk AS, Risør, Norway) in 2007 and 25 batches at Bodø University College, 

Bodø, Norway in 2006, 2008, and 2009 (Table 4.1). All oocytes were fertilised in 

vitro with pooled sperm from two random males. At 8-cell stage, samples (n = 100) 

from each batch were wrapped in tinfoil and snap-frozen in liquid nitrogen until 

further analysis. In 2006, some females were kept under natural photoperiod 

conditions and fed herring for human consumption (winter herring) stuffed with Fish 

Breed-M (1:1, INVE Aquaculture NV, Dendermonde, Belgium). Other females, kept 

under photoperiod advanced of approximately 1 month, were fed Fish Breed-M. 

Eight batches were incubated in large scale incubators (250 l). Relative fertilisation 

(%) was estimated by incubating egg samples in triplicates (approximately 100 

oocytes per replicate) in Petri dishes at temperature between 5.0 -5.4 ºC overnight to 

estimate relative fertilisation (%) at the 8-cell stage. Relative embryonic hatching 

(%) was estimated by daily volumetric measurements of dead embryos from 

incubators from fertilisation until hatching. In 2008 and 2009, all females were kept 

under natural photoperiod and fed Fish Breed-M. Seventeen batches were incubated 

in Petri dishes, at 5.5 ± 0.5 °C in 33 ‰ filtered seawater, added Penicillin-

Streptomycin-Neomycin solution (5000 Units Penicillin, 5 mg Streptomycin, and 

10 mg Neomycin per ml, Sigma, St. Louise, Mo, USA). Relative fertilisation was 

estimated at 8-cell stage. The water in the Petri dishes was changed after GR stage. 

To estimate relative hatching, dead embryos were counted and removed every 

second day until hatching. For 14 batches, blastomere symmetry was estimated at the 
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8-cell stage (n = 39). Regular blastomere cleavage and abnormalities in blastomeres 

were estimated according to Shields et al. (1997, Figure 4.1).  

4.1.2 RNA extraction and cDNA synthesis  

Total RNA for all samples were extracted according to the Tri reagent method 

(Sigma, St-Louise, MO USA) using QIAazol (Qiagen, Nydalen, Sweden). Total 

RNA was treated with the gDNA wipeout buffer supplied with the QuantiTect 

reverse transcription kit (Qiagen) to remove traces of genomic DNA contamination. 

RNA concentration was quantified using the Nanodrop spectrophotometer 

(Nanodrop Technologies/Saven Werner, Kristiansand, Norway).  All samples had 

absorbance ratios 260/280 nm greater than 1.9, indicative of high purity RNA. cDNA 

was synthesized with the QuantiTect reverse transcription kit (Qiagen). 

4.1.3 Relative gene expression by quantitative-real time PCR (qPCR) 

Nine previously identified genes (Chapter 2) with three different patterns of relative 

gene expression, strictly maternal, maternal-zygotic, and constant, were selected to 

test if their gene expression was related to Atlantic halibut oocyte quality (Table 4.2). 

Their gene expression was estimated in twenty-nine Atlantic halibut batches at the 8-

cell stage. In addition, 9 separate random genes from the maternal EST library were 

chosen for the same analysis (Table 4.3). Whenever possible, primers were designed 

across the most conserved splice junctions. All gene specific primers crossed at least 

one intron/exon border containing both donor and acceptor sites, in order to avoid 

amplification of any contaminating genomic DNA. Primer pairs for qPCR 

amplification were designed manually and screened for hairpins, homo- and cross-

dimers using Netprimer (http://www.premierbiosoft.com/netprimer/; (Table 4.4). To 

http://www.premierbiosoft.com/netprimer/


113 

 

confirm that the right product was amplified, a qPCR was performed on pooled 

cDNA for each primer pair. The different products were sequenced directly for 

additional verification. Each sample was checked for genomic DNA contamination 

by running a qPCR with RNA treated with gDNA whipeout buffer (Qiagen). Gene 

amplifications by qPCR were performed with a LightCycler 480 thermocycler 

(Roche, Basel, Switzerland). Each 10 μl reaction in a 96-well plate comprised 4 μl of 

70 x diluted cDNA template, 1 μl of each primer pair at 5 μM and 5 μl of QuantiTect 

SYBR Green containing ROX as reference dye (Qiagen). After an initial 

denaturation step of 15 min at 95 ºC, 45 cycles of amplification were performed 

according to the following thermal cycles: denaturation for 15 s at 94 ºC, annealing 

for 20 s at 60 ºC and extension for 20 s at 72 ºC. Fluorescence data were acquired 

during this last step. A dissociation protocol with a gradient from 65 to 97 ºC was 

used to investigate the specificity of the qPCR reaction and the presence of primer 

dimers. All samples were run in duplicate along with minus reverse transcriptase, no 

template and a positive plate controls. Five-point standard curves of a 5-fold dilution 

series (1:2-1:16) from pooled cDNA were used for PCR efficiency calculation. To 

assess suitable reference genes for the qPCR studies the known reference genes 

elongation factor 2 (Eef2), β2-tubulin (Tubb2), β-Actin (Actb), HHC01138, 

HHC1517, and HHC00353 were tested as described in Chapter 2.2.5. Tubb2 and 

Actb were selected for normalisation (Figure 4.2). According to GeNorm these genes 

were rather stable and, therefore, expression profiles were normalized assuming a 

similar quantity of total RNA for all studied stages. Nevertheless, there might be 

some variation in total RNA levels per embryo during early development. 
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4.1.4 Data analysis and Statistics 

Statistical analysis was performed using SPSS 15.0 (SPSS Inc., Chicago, IL, USA). 

Pearson’s correlation coefficient was estimated between gene expression and egg 

batch performance parameters. Fertilisation, embryonic hatching, and blastomere 

symmetry percentages were arc sin square roots transformed before correlation 

analysis (Zar, 1999). Statistical significance was established at p < 0.05.  
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Figure 4.1 Blastomere morphology in 8-cell stage Atlantic halibut embryos. 

Scale bare: 1mm, adapted after Shields et al. (Shields et al., 1997) 
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Table 4.1 Sample overview.  

Samples were collected from fifteen female Atlantic halibut at two locations, Bodø University College (1) and Risørfisk AS (2). For each female, 

name and weight are given. For each batch, sample year, batch number, incubation method: Small-scale in Petri-dishes (S) or large-scale in 280 l 

incubators (L) are given. For each batch incubated in small-scale, fertilisation rate (% ± SD, n = 3), embryonic hatching rate (% ± SD, n = 3), and 

rate of symmetric blastomeres (% ± SD, n = 30) are given. n.a stands for blastomere symmetry not evaluated.  

Female Location Weight Sample year Batch nr. Incubation  Fertilisation 

(%) ±  SD 

Hatching 

(%) ±  SD 

Symmetry 

(%) ±  SD 

VF1 1 37 2008 1 S 91 ± 1 88 ± 1 n.a 

2 93 ± 1 86 ± 3 n.a 

3 92 ± 1 37 ± 9 n.a 

4 38 ± 3 26 ± 3 n.a 

G39R 1 39 2008 1 S 49 ± 1 20 ± 2 n.a 

2 60 ± 8 36 ± 6 n.a 

3 35 ± 2 23 ± 9 n.a 

4 26 ± 5 15 ± 4 n.a 

G39S 1 80 2008 1 S 89 ± 3 43 ± 7 n.a 

2 13 ± 1   1 ± 1 n.a 

G32 1 45 2008 1 S 25 ± 2 20 ± 1 n.a 

Table continues on next page 
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Table 4.1 continued 

Female Location Weight Sample year Batch nr. Incubation  Fertilisation 

(%) ±  SD 

Hatching 

(%) ±  SD 

Symmetry 

(%) ±  SD 

G8 1 83 2008 1 S 84 ± 3 28 ± 4 n.a 

R1 2 30-40 2007 1 L 92 ± 2 92  n.a 

R2 2 2007 1 L 93 ± 1  90  n.a 

R3 2 2007 1 L 68 ± 2 78  n.a 

R4 2 2007 1 L 90 ± 3 94  n.a 

G39R 1 39 2006 1 L 49 ± 1 33  33 ± 0 

Y46 

 

1 67 2006 1 L 90 ± 3 81  57 ± 1 

2 L 90 ± 3 82  33 ± 0 

Y32 1 36 2006 1 L 20 ± 2   9  17 ± 0 

Y7 1 32 2006 1 L 43 ± 1 31   7 ± 0 

O17 1 96 2006 1 L 74 ± 2 63   7 ± 0 

2 L 96 ± 5 89  37 ± 0 

Y30 1 95 2006 1 L 43 ± 4 35    3 ± 0 

Y46 1  2009 1 S 80 ± 1  45 ± 1 63 ± 0 

Table continues on next page 
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Table 4.1 continued 

Female Location Weight Sample year Batch nr. Incubation  Fertilisation 

(%) ±  SD 

Hatching 

(%) ±  SD 

Symmetry 

(%) ±  SD 

G39S 1 80 2009 1 S 68 ± 1 24 ± 2 37 ± 0 

G8 1 83 2009 1 S 69 ± 2 45 ± 1 30 ± 0 

Y30 1 95 2009 1 S 86 ± 1 48 ± 2 13 ± 0 

Y44 1 36 2009 1 S 84 ± 1 36 ± 1 40 ± 0 
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Table 4.2 List of selected genes used for quantification of gene expression in 29 Atlantic halibut oocyte batches. 

The genes have been selected form an initial screening of a maternal EST library. Gene name, BLASTX results, gene accession nr, E-value from 

BLASTX search, and function.  

 
Name Accession E-value Function 

Askopos Q5YCX2 6e-14 Primordial germ cells 

si:dkey-30j22.9 XM_688932.3 6e-37 Uncharacterized protein 

Tudor 5 protein BC134985.1 1e-12 Primordial germ cells and normal abdominal segmentation 

Prohibitin 2  NM_001141404.1 5e-30 Transcription regulation  

HHC00057  7e-04 Cell division  

HHC00130   9e-16 Cytoskeleton 

HHC00255  5e-50 Cytokinesis 

HHC00353 XP_870795 1e-11 Transport  

HHC01517 NM_001099229 8e-14 Protein-protein interaction   
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Table 4.3 List of random genes used for quantification of gene expression in 29 Atlantic halibut oocyte batches. 

The genes have been randomly selected form the same maternal EST library as genes in table 4.1. Gene name, BLASTX results, gene accession 

nr, E-value from BLASTX search, and function are given.  

 
Name  BLASTX results (Species) Accession  E-value Function 

HHC00005 profilin 2 like protein (Danio rerio) CAN88191 3e-06 Cytoskeleton  

HHC00036 unnamed protein product (Tetraodon nigroviridis) CAF92632 7.2 Uncharacterized  

HHC00106 creatine kinase 1 (Paralichthys olivaceus)  ABU42561 2e-102 Metabolism  

HHC00223 RNA binding protein with multiple splicing 2 (Danio rerio) NP_956553 1e-59 RNA binding  

HHC00189 similar to Lamina-associated polypeptide 2 isoform alpha (Danio rerio) XP_001921942 3e-16 Cell division 

HHC01032 unnamed protein product (Tetraodon nigroviridis) CAG12058 5e-53 Uncharacterized  

HHC01306 SH3-domain GRB2-like endophilin B2 (Danio rerio) CAM15470 1e-73 Apoptosis  

HHC01385 caprin family member 2 (Danio rerio) NP_001013291 4e-20 RNA translation  

HHC01481 hypothetical protein LOC561007 (Danio rerio)  NP_001122176 8e-70 Uncharacterized  
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Table 4.4 Primer information of selected genes. 

For each reference gene, primer sequences, amplicon sizes, reaction efficiencies (E), and Pearson’s coefficients of determination (R
2
) are shown.  

 
Name Forward Reverse Size (bp) E (%) R

2 

Askopos TCTGGTAGTTCCTGCGTGTGAG GCTCTTCAACCTCATCACCCA 55 104 0.998 

Sidkey-30j22.9  GCAAGGTGTCACTCAAGGCAC  GTACTTCAGACCTGTGGAGGGTT 95 102 0.999 

Betaine aldehyde 

dehydrogenase 

GTATCCACCAAACGGCACTTC GCAGGTACTCAGGCGAGCC 50 104 0.999 

Checkpoint 1  GGCAGGTACTCATTCCAATTACAG GAAACGGCTACCACATCCAAG 83 100 0.998 

Prohibitin 2 GGAAGGACTACGACGAGCGAG GGGACACCTGTGCTCTCTGTG 69 99 0.999 

Synthaxin 4 GATGATGAAAATGAGGACAAAGC CCCATCCTCCTCTGACTTCTTG 252 100 0.998 

18K hypothetical goldfish 

protein 

AGTTACTTCTTCTCCCGCAAGC GATCCAACATCGAGGTCGTAAAC 122 93 0.999 

HR6A TATGTTTGGACATCCTACAGAATCG CGGACTGTTGGGATTTGGTTC 58 98 0.999 

Tudor 5 protein CTGTCACTCTGAGGGCTTTATCC TCTGCTGGATGTGGCTCCTC 88 100 0.997 

HHC00057 CAGGTCGTCTGTTTTGCCATTC CATAAAGAAGGTGGAAGCCAGG 146 92 0.999 

HHC00068 ACATCTCCTCCCACGATTCA TTGAGGAGTGCAACCCAATC 114 98 0.998 

HHC00130 GGAGGGATCTTTGGTTTCTTTG CAACAAGGAGAACCGCACAG 67 99 0.998 

HHC00222  TACTGTGTAGATGCCACGAAAGAG CCGTTGATGTCGTGGAGTTTG 96 97 0.999 

Table 4.4 continues on next page  
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Table 4.4 continued      

Name Forward Reverse Size (bp) E (%) R
2 

HHC00255 ATAATACATCCCAAAGCCCAGAG  CACAATAAGGGGATAATACACAGAGA 198 104 0.999 

HHC00309 GGACGGGGAGATTAGAGTCATC GAGCCCAAGTCCTGGTATGCC 93 105 0.998 

HHC00334 CCATGAGGTAGCAGTAGAGGAAGG GCTGGTATTGTCCTGGCGAAG 115 95 0.997 

HHC01010 GAAGAGAGGAAGAACATAAAGACGG CATCCCTGAGTAGAGCACACTTG 149 93 0.999 

HHC01015 CCACTAGAAGTGTGTGCAAGATC CGTTTCCAGGTTTTTTGAATCC 85 97 0.998 

HHC01032 CCGCATTGATGACTTTGATGTG  CTGGACTCATAGTGGCTAATTCACC  143 99 0.996 

HHC01194 ACTAAGACCCAGCCAGCAGAAG GGTGGAGGGAGGAGTTTCTTTG 179 99 0.999 

HHC01310 TATGAGGAAGCGGTGGTTTG GAGCCTGCCCAACCTTATCAT 75 98 0.998 

HHC00005 CCGAGCGGAGGGATTTAGC CAGCCATCAGGTTGTCCACG 229 99 0.998 

HHC00036 TAAACGGCTCTGTTGTCCCAT GTACACGCTGTCGCTTCCAG 284 92 0.999 

HHC00106 AGGCATCTGGCACAATGAGAAC CTCTCTACTTCTGGGCAGGGAT 462 89 0.999 

HHC00189 GGGTGGCTTCATCTCACTTC GTTTGAACCCGTGTCGGAG 313 95 0.998 

HHC00233 AACAGCCTGTCGGGTTTGTAAC GATGCTGGGATCAGTGCTGC 211 92 0.997 

HHC01306 TCGGCTTTTTCCACTTCCTC GGTGGGGGAATGTGAGAGAAG 262 98 0.999 

HHC01032 CTATGATGGCAAGGGTATCGG TTAGGGCTTACTAGCGAACGGG 297 99 0.998 

HHC01385 GAACTACCAGAGGAGAGGGCAATC CTTACCCAAAGACCCCATCCTG 127 98 0.997 

HHC01481 GGGACTCATCTCGTGGGTCT AGCAGTATTACTTGACCTCGCC 125 98 0.999 
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Figure 4.2 Reference gene stability values. 

Ranking of reference genes according to their expression in twenty-nine batches of 

Atlantic halibut oocytes. Average expression stability values were calculated by 

geNorm. Expression stability of the reference genes is inversely correlated to their 

stability index.  
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4.2 Results 

The relative gene expression of 18 genes was measured in 29 different batches of 8-

cell stage Atlantic halibut embryos (Table 4.1). No significant correlations between 

gene expression and fertilisation rates were found. The expression of seven genes 

(39 % of total) correlated positively with embryonic hatching rates. Expressions of 

the two uncharacterized genes HHC00353 and HHC01517 correlated stronger with 

embryonic hatching (r > 0.5, HHC00353: r = 0.58, p < 0.01 and 

HHC01517: r = 0.56, p < 0.01; Figure .4.3, A and B), compared to the other five 

genes (r ≤ 0.5, kop: r = 0.38, p < 0.05; si:dkey-30j22.9: r = 0.50, p < 0.05; HHC0057: 

r = 0.41, p < 0.05; HHC00130: r = 0.43, p < 0.05; HHC00255: r = 0.41, p < 0.05). 

The expression of HHC00255 negatively correlated with the percentage of 

symmetric blastomeres (r = -0.62, p < 0.05; Figure 4.3, C). 
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Figure 4.3 Correlations between gene expression and Atlantic halibut oocyte quality 

(r ≥ 0.5).  

Gene expression in relation to embryonic hatching (%): (A) HHC353, (B) HHC01517, 

(C) HHC00255, (n = 29). The correlation coefficient (r) is given for each regression line 

in each plot. 
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4.3 Discussion 

In this study maternal transcript levels were related to embryonic hatching success and 

normal blastomere symmetry. Acquiring a standardized experimental set-up has been 

challenging due to different broodstock husbandry and incubation methods at the two 

locations, as well as the change from industrial to experimental incubation at the 

facilities at the University of Nordland. Hence the final heterogeneous final material 

consisted of oocyte batches from different breeders, held under different feeding 

conditions and photoperiods. Despite the oocyte heterogeneity significant correlations 

between transcript levels and oocyte quality could be identified. The two 

uncharacterized genes HHC00353 and HHC01517 correlated stronger with embryonic 

hatching (r > 0.5, p < 0.01; Figure 4.3, A and B), compared to five other genes, kop, 

si:dkey-30j22.9, HHC00057, HHC00130, and HHC00255 which showed statistically 

significant but very minor correlations. The expression of HHC00255 negatively 

correlated with the percentage of symmetric blastomeres (r > -0.5, p < 0.05; 

Figure 4.3 C).  

HHC00353 codes for an orthologue of an exportin 1-like protein. It is a member of the 

importin β superfamily of nuclear transport receptors. Exportin 1 (XPO1) is a major 

receptor for the export of proteins and RNAs out of the nucleus. XPO1 is also 

implicated in various steps during mitosis (Hutten & Kehlenbach, 2007). In X. laevis 

inhibitions of XPO1 activity was leading to a developmental arrest during neurulation 

(Callanan et al., 2000). The role of XPO1 in embryonic development in teleosts has not 

been studied. HHC01517 encodes a protein with Bric-a-brack, Tramtrack and Broad-

complex (BTB) domains. In D. melanogaster, the maternally expressed gene pipsueak 
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(psq) codes for a BTB domain protein (PsqA) which is required for correct abdominal 

segmentation in embryos but it is unknown if it plays a similar role during 

embryogenesis in teleosts (Siegel et al., 1993). The relation of kop, si:dkey-30j22.9, and 

HHC00057 to embryonic development has been described in Chapter 2. HHC00130 

encodes for an orthologue to the stathmin protein family. In zebrafish, the temporal and 

spatial expression of two orthologues of stathmin 2 (stmn2) has been described 

(Burzynski et al., 2009), although it is not known whether stmn2 has a regulatory role 

during embryonic development. Expression of HHC00255 was found to be positively 

correlated to embryonic hatching percentage and negatively correlated with normal 

blastomere symmetry. This is in contrast to earlier findings during embryonic 

development in mice, where a reduced expression of PDPK1 was found to influence 

cell size (Lawlor et al., 2002). However, abnormal blastomere symmetry is defined not 

only as cells of unequal size, but also by asymmetric cell positioning, incomplete inter-

cell adhesion, poorly defined cell margins and vascular inclusions between cells 

(Shields et al., 1997). HHC00255 high expression levels could be an indicator for 

suboptimal regulation of pathways involved in growth and/or cell division during early 

cell division. In several marine teleost species, early blastomere symmetry has been 

found to correlate with high embryonic hatching and survival rates (Strehlow et al., 

1994 ;  Kjorsvik et al., 1990 ;  Rideout et al., 2004). In contrast, others argued that high 

embryonic hatching and survival rates are maintained through cell symmetry corrections 

in consecutive developmental stages (Vallin & Nissling, 1998 ;  Avery & Brown, 2005 ;  

Avery et al., 2009). None of these studies have investigated the molecular mechanisms 

that regulate early cell divisions. In this study we have, for the first time, found a 

correlation between gene expression and blastomere symmetry. With 67% being the 
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highest percentage of oocytes with normal blastomere symmetry, symmetry was 

generally low in this study. Even though Shields et al. (1997) established a score system 

for blastomere symmetry, the method suffers from its subjectivity. It is unclear if the 

estimated low blastomere symmetry in this study were true or due to a too strict 

estimation of symmetry. In this study, only correlations between general abnormal 

blastomere symmetry was analysed. Distinguishing between different types of abnormal 

symmetry (i.e asymmetric cell positioning, unequal cell size and incomplete inter-cell 

adhension; Shields et al., 1997) could have provided this study with additional 

information about gene expression and early cell divisions. Phb2 has earlier been shown 

to be differentially expressed in oocytes with low and high developmental potential in 

rainbow trout (Bonnet et al., 2007). In the present study, expression levels of phb2 did 

differ significantly in oocytes with low and high embryonic hatching rates and did not 

correlate with embryonic hatching success. 

Poor embryonic hatching success was not correlated with a general decrease in 

transcript abundance, but with low transcript levels for specific genes. Similar gene 

specific relations have been found by Aegerter et al. (2003) studying post-ovulatory 

aging in rainbow trout. Out of the seven studied genes, three genes were found to be 

down-regulated and four to be up-regulated in oocytes with low larval survival 

compared to oocytes with high larval survival. In the same study, similar variations in 

gene expression were found in post-ovulatory oocytes. The mechanisms inducing 

differential maternal transcript abundances in teleost oocytes are unknown. A possible 

explanation could be a reduced incorporation of specific maternal mRNAs into the 

oocyte during oogenesis.  
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7 General discussion 

7.1 Atlantic halibut genomic resources 

Techniques for the evaluation of gene expression have progressed  over the last two 

decades from methods developed for the analysis of single protein-coding genes (e.g. 

Northern blotting, semi-quantitative and quantitative reverse-transcription PCR) to 

techniques focusing on identifying total gene expression (Transcriptome) (e.g. 

Subtractive hybridisation, sequencing of expressed sequence tags (ESTs), serial analysis 

of gene expression (SAGE), microarrays, 454-sequencing and lately high through-put 

deep-sequencing (RNA-seq)). Good quality gene expression studies often rely on 

established genomic databases which are still rare among commercially farmed teleosts 

compared to mammals and model organisms (e.g. humans, mice, Drosophila, Xenopus, 

and zebrafish). Information on maternal genes in commercially teleosts oocytes has 

been restricted to rainbow trout (Oncorhynchus mykiss) although EST libraries have 

been created from ovarian tissues for several commercially farmed species (Rexroad et 

al., 2003 ;  Aegerter et al., 2004 ;  Aegerter et al., 2005 ;  Von Schalburg et al., 2005 ;  

Govoroun et al., 2006 ;  Bonnet et al., 2007 ;  Luckenbach et al., 2008). These studies 

have the disadvantage of including transcripts that may arise from follicle cells 

(granulosa or theca cells) or interstitial cells and are therefore not oocyte-specific and 

strictly maternal. In Chapter 2 a maternal SSH library has been created that resulted in 

2,341 high quality ESTs increasing the number of maternal Atlantic halibut ESTs 

available at the NCBI dbEST database by 64 %. In contrast to previous, unbiased 

sequencing of maternal transcripts in Atlantic halibut embryos, SSH has the advantage 

that maternal-zygotic transcripts are subtracted and suppressed and strictly maternal 
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transcripts are amplified (Bai et al., 2007). The maternal EST database produced will 

serve as a resource for future in-depth studies of maternal gene expression and was used 

to provide sequence information for gene expression studies in Chapter 3, 4 and 6.   

qPCR is considered an accurate, sensitive and fast quantification method of gene 

expression with multiple applications (i.e. qantification of miRNA, siRNA, SNP, copy 

number variant, and single cell quantification  (Elbashir et al., 2002 ;  Benes & Castoldi, 

2010 ;  D'Haene et al., 2010 ;  Erali & Wittwer, 2010 ;  Ståhlberg & Bengtsson, 2010). 

In addition, qPCR is routinely used to validate microarray expression data and has also 

been used to confirm next generation sequencing results  (Bettencourt et al., 2010 ;  

Raha et al., 2010 ;  Aanes et al., 2011 ;  Roberts et al., 2011 ;  Zhang et al., 2011). To 

perform reliable gene expression quantification by qPCR, stable reference genes have to 

be used to normalize target gene expression. To identify one universal reference gene 

has been unsuccessful and it is recommended to validate several possible reference 

genes for each new experimental setup (Thellin et al., 2009). In previous Atlantic 

halibut gene expression studies, single reference genes commonly used in humans and 

model species, (Actb and 18SrRNA) have been used (Van Nes et al., 2005 ;  Galloway 

et al., 2006 ;  Van Nes & Andersen, 2006 ;  Hildahl et al., 2007a). In Chapter 3 a 

systematic survey of commonly used reference genes during embryonic and larvae 

developmental stages was performed, not previously carried out in a commercially 

farmed teleost. Tubb2 and actb were identified as the most stable gene-pair across 

embryonic and larval stages. However, separate testes of reference genes were 

performed in Chapter 2 and 3, following the general conclusion from chapter 3 that 

experiment- specific tests of reference genes should be performed for each new study.    

Since then, suitable reference genes for gene expression studies during embryonic and 
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larval development have been identified in several commercially farmed teleost (i.e. 

European seabass (Dicentrarchus labrax), Atlantic cod (Gadus morhua) and Senegalese 

sole (Solea senegalensis) (Infante et al., 2008 ;  Mitter et al., 2009 ;  Sæle et al., 2009 ;  

Skjærven et al., 2011). An additional evaluation of reference genes in twice as many 

Atlantic halibut embryonic stages as used in the present study ranked  ef1a1 and ubce as 

best reference genes before activation of zygotic transcription (Øvergård et al., 2010) 

(Øvergård et al., 2010). This emphasizes the need for experiment-specific evaluation of 

reference genes. The normalization of embryonic gene expression is challenging due to 

a large increase in cell number and mRNA synthesis in addition to a complex mRNA 

degradation and activation pattern across the maternal-zygotic transition (MZT). 

Therefore, an exogenous reference gene (e.g Luciferase) should also be considered, as 

used in Chapter 6. 

In Chapter 4 expression levels were quantified for 30 maternal transcripts in Atlantic 

halibut 8C embryos by qPCR and  revealed that poor embryonic hatching success was 

not related with a general decrease in maternal transcript abundance, but with low 

transcript levels of specific genes.  As a next step, a 4x44k custom made Atlantic 

halibut (Oncorhynchus mykiss) oligonucleotide microarray was created based on the 

increased number of maternal EST created in Chapter 2. In contrast to qPCR, 

microarrays can be used for genome wide studies of gene expression and microarray 

technology can be expanded to include alternative splicing, SNP detection, array 

comparative hybridisation genomics (aCGH), differential methylation hybridisation 

(DMH), and chromatin immunoprecipitation on microarrays (ChIP-on-chip, Mockler & 

Ecker, 2005).  Microarray technology has been successfully used to identify markers for 

oocyte quality during in vitro fertilisation (IVF) in humans and mammals (Gasca et al., 
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2007 ;  Leoni et al., 2007 ;  Bettegowda et al., 2008 ;  Thelie et al., 2009 ;  Hamel et al., 

2010). In rainbow trout, microarray-based differential gene expression in high and low 

quality oocytes has been performed previously, but not in a commercially farmed 

marine teleost like Atlantic halibut (Bonnet et al., 2007). The new Atlantic halibut 

microarray was successfully used to screen maternal gene expression, and to identify 

differential gene expression in low and high quality oocytes. It has proven to be suitable 

for future analysis of Atlantic halibut embryonic gene expression which is likely to 

advance our understanding of important developmental processes such as germ cell 

development, growth and immune response.  

7.2 Maternal effects on oocyte quality  

In sexual reproduction, the offspring phenotype (e.g morphology, biochemical and 

physiological properties, and behavior) is the result of the parental genotype and 

phenotype (Maestripieri & Mateo, 2009). The maternal phenotype (e.g size, age, and 

nutritional status) is traditionally considered to have a stronger effect on the offspring 

phenotype compared to paternal phenotype due to the large difference in cytoplasmic 

contribution in their respective gametes (e.g a human ovum is 85,000 times the volume 

of a spermatozoa). Contained within the oocytes cytoplasm are maternal factors (i.e. 

mitochondria, hormones, antibodies, proteins, and mRNA transcripts) which regulate 

early embryonic development in the zygote after fertilisation and prior the activation of 

the zygotic genome. While mammalian offspring are provided with nutrients through 

the placenta during gestation, oviparous animals (all birds, most fishes, amphibians and 

reptiles) provide their offspring with nutrients through the incorporation of yolk into 

their oocytes during oogenesis. In this study the maternal effect of yolk sac constituents 
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(i.e. fatty acids, amino acids and folate) and maternal mRNAs on Atlantic halibut 

oocyte quality (i.e. fertilisation normal blastomere symmetry, and embryonic hatching 

rates) was studied.  

Broodstock nutrition can influence yolk sac composition and is the most extensively 

studied maternal effect on oocyte quality in aquaculture (Izquierdo et al., 2001 ;  

Watanabe & Vassallo-Agius, 2003 ;  Bobe & Labbe, 2009). However, to determine 

exact nutritional requirements for broodstock of different teleost species is time-

consuming and costly. In the absence of specific broodstock feed, diets are generally 

chosen randomly and range from frozen fish to commercial diets. Since teleosts are a 

largely heterogeneous group regarding habitat and physiological adaptations, 

generalizing nutritional requirements between different species can be misleading (Bone 

& Moore, 2008).  Atlantic halibut broodstock usually consists of a small number of 

large-sized females (30-90 kg) that requires high manpower for gamete stripping. 

Previous Atlantic halibut broodstock nutritional experiments, trying to establish 

relations between oocyte yolk components and oocyte quality, have typically been 

performed on a low number of females (1-8 individuals) and few nutritional 

components (i.e. total lipid, fatty acids or folate  (Bruce et al., 1993 ;  Daniel et al., 1993 

;  Parrish et al., 1993 ;  Parrish et al., 1994 ;  Evans et al., 1996 ;  Mazorra et al., 2003). 

In Chapter 5 a comprehensive analysis of Atlantic halibut oocyte composition in 

relation to oocyte quality including amino acids (AA), fatty acids (FA) and folate was 

performed. Oocyte concentrations of total n-3 FAs, eicosapentaenoic acid (EPA, 

20:5n3) and docosahexaenoic acid (DHA, 22:6n3) correlated positively with 

fertilisation and embryonic hatching rates, which is in agreement with the established 

knowledge of FA requirements in marine teleosts (Tocher, 2010). In contrast to 



203 

 

previous studies, the highest positive correlations between FA concentrations and 

fertilisation and embryonic hatching rates were not found for the most commonly 

studied PUFAs: EPA, DHA, or arachidonic acid (ARA, 20:4n6), but for dihomo-γ-

linolenic acid (DGLA, 20:3n6) and docosapentaenoic acid (DPA, 22:5n3). DGLA and 

DPA are known competitors to ARA and DHA respectively during FA metabolism 

(Willis, 1981 ;  Rubin & Laposata, 1991 ;  Stark et al., 2007 ;  Schmitz & Ecker, 2008). 

Dietary ARA and DHA requirements are usually considered well-covered through 

marine broodstock feed and it remains unclear how DGLA and DPA contributes to 

higher fertilisation and embryonic hatching rates in Atlantic halibut oocytes (Tocher, 

2010). Methionine and aspartic acid are essential to eukaryotic protein synthesis and 

their oocyte concentrations were found to correlate positively with fertilisation and 

embryonic hatching rates respectively (Neidle & Dunlop, 1990 ;  Hashimoto et al., 1995 

;  Wu, 2009). Folate deficiencies are known to lead to major embryonic deformities in 

higher vertebrates and reduced growth in teleosts (Cowey & Woodward, 1993 ;  

Duncan et al., 1993 ;  Tamura & Picciano, 2006 ;  Gray & Ross, 2009). In the present 

study, no significant correlations between oocyte folate concentrations and oocyte 

quality were found.  

In contrast to the yolk nutritional components, the possible role of non-yolky 

cytoplasmic components such as hormones, antibodies, structural and regulatory 

proteins and mRNAs have received far less attention in farmed teleosts. Nevertheless, 

maternal mRNAs are essential for early embryonic development before the start of 

zygotic transcription. They control important aspects of early embryonic development 

like the first mitotic divisions, specification of initial cell fate and embryonic patterning 

(Dworkin & Dworkin-Rastl, 1990). The influence of maternal mRNAs on oocyte 



204 

 

quality has been of especial interest in bovine (Mourot et al., 2006 ;  Patel et al., 2007 ;  

Wrenzycki et al., 2007 ;  Lee et al., 2009 ;  Zhang et al., 2010) and human studies  

(Gasca et al., 2007 ;  Anderson et al., 2009 ;  Haouzi & Hamamah, 2009 ;  Hamel et al., 

2010) in connection with in vitro maturation (IVM) and in vitro fertilisation (IVF).  

Among commercially farmed teleosts, the relation between maternal mRNAs and 

oocyte quality have been only been studied in rainbow trout previously (Aegerter et al., 

2003 ;  Aegerter et al., 2004 ;  Aegerter et al., 2005 ;  Bonnet et al., 2007). In the present 

study the relation between maternal transcript abundance and oocyte quality was 

explored in a commercially farmed marine teleost. In total, 23 significant differentially 

expressed maternal transcripts were identified between low and high quality oocytes, 

most of them known to be involved in cytoskeleton dynamics, immune response, 

metabolism, RNA transcription, protein degradation, and cell signalling. By qPCR, 

significant correlations between an exportin 1-like protein orthologue (HHC00353) and 

Atlantic halibut oocyte quality was identified (Chapter 4). Exportin 1 has recently been 

related to ovine oocyte quality (Powell et al., 2010). None of the identified maternal 

transcripts have been related to teleost oocyte quality and only mhc2dab transcripts had 

been found in teleost oocytes previously (Li et al., 2010).  

It is uncertain what generated the differential maternal gene expression in Atlantic 

halibut oocytes of varying quality in this study. In general, mRNA synthesis can be 

regulated pre-transcriptional (i.e gene silencing through histone modification, DNA 

methylation, and non-coding RNA), during transcription (i.e. activation and 

modification of DNA transcription factors, co-activators, and co-repressors) and after 

transcription (i.e polyadenylation, deadenylation, and miRNAs, Liu et al., 2009 ;  Cheng 

& Blumenthal, 2010 ;  Malecová & Morris, 2010). Alternative splicing of pre-mRNA 
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can result in different mRNAs that can be translated into different protein isoforms and 

translation of mRNA transcripts can vary in efficiency and accuracy due to variations in 

mRNA codons and the tRNA pool (Black, 2003 ;  Gingold & Pilpel, 2011). Oocytes 

exhibit particular post-transcriptional regulatory mechanisms that control maternal 

mRNA stability and translation from oogenesis to the start of zygotic transcription. 

Polyadenylation of maternal mRNAs during oocyte maturation usually protects mRNAs 

from degradation and activates translation (Hake & Richter, 1997). In contrast, 

regulatory RNA or protein mediated deadenylation triggers mRNA degradation and 

translation repression to allow normal embryonic development after MZT (Tadros & 

Lipshitz, 2009). In Xenopus tropicalis, oocyte post-ovulatory aging (POA) induced a 

general decrease in maternal gene expression and a female-specific shortening of 

maternal mRNAs by deadenylation in oocytes developing into embryos experiencing 

high malformation and mortality rates  (Kosubek et al., 2010). In contrast, POA induced 

both a decrease and increase in specific maternal transcripts in rainbow trout oocytes 

(Aegerter et al., 2005). In the present study, timing of Atlantic halibut female hand-

stripping was timed according to their individual ovulation rhythms and POA was not 

considered a significant factor influencing Atlantic halibut oocyte quality (Chapter 4 

and 6). Hence, low Atlantic halibut maternal transcript levels may be due to a lack or 

sub-optimal polyadenylation during oocyte maturation leading to poor transcript 

translation and/or degradation resulting in low oocyte quality. In zebrafish, maternal 

mRNA degradation has been identified to be induced by miR-430 family during mid-

blastula stage by binding to target sites in the 3’ cis untranslated region (UTR). In 

absence of miR-430s, maternal mRNAs accumulate and are thought to interfere with 

embryonic morphogenesis (Giraldez et al., 2006). Recently, a new maternal mRNA 
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degradation pattern has been identified in zebrafish leading to mRNA degradation from 

1-cell to 16-cell stage (Aanes et al., 2011). High transcript levels of specific maternal 

mRNAs in low quality Atlantic halibut oocytes may be the result of impaired 

degradation during the first cell divisions, leading to transcript accumulation interfering 

with embryonic development.  

7.3 Concluding remarks and future perspectives 

The sample material in the present study consists of oocytes collected from Atlantic 

halibut females kept at two different locations (Risør Fisk AS and University of 

Nordland). Samples were collected over several years, from broodstock, held under 

natural and advanced photoperiod regime and fed with two different feeds (Winter 

herring and Fish-Breed M). First in 2008, both broodstock groups at the University of 

Nordland were routinely fed with one feed (Fish-breed M). The overall low number of 

samples is due to the time-extensive procedure of detecting female ovulation timing and 

hand-stripping of females. Oocytes were incubated using both industrial-size (large-

scale) and experimental-size (Petri-dish) approaches, depending on the availability of 

manpower and equipment during different years. Survival data is restricted to hatching 

success due to technical restraints, i.e routinely pooling of batches after hatching during 

industrial production and limitations in man-power. A better experimental design 

comparing two defined broodstock groups would have benefitted the outcome of this 

study. However, despite the large heterogeneity of the sampling material significant 

correlation between gene expression and nutritional component concentrations with 

hatching survival were found.  
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In this thesis, genomic tools (i.e. maternal EST database, qPCR reference genes, and 

microarray) were produced that are applicable for future gene expression studies during 

Atlantic halibut embryonic and larval development to increase knowledge about 

Atlantic halibut reproduction, metabolism, immune response and growth (Chapter 3,4 

and 6).   

In this study an influences of yolk constituents and maternal mRNAs on Atlantic halibut 

oocyte quality has been shown. The importance of n-3 FAs for oocyte quality in 

Atlantic halibut was supported but less studied FAs (e.g. DGLA, DPA, OA, and POA) 

should not be neglected during future nutritional studies on Atlantic halibut broodstock. 

Together with methionine and aspartic acid they could act as possible indicators to 

improve Atlantic halibut broodstock nutrition and oocyte quality (Chapter 5). The 

differentially expressed maternal mRNAs in high and low quality oocytes are possible 

markers for Atlantic oocyte quality and could be useful for marker-assisted selection 

during selective Atlantic halibut breeding (Chapter 4 and 6). Their exact function during 

embryonic development need to be further characterized through functional studies 

(e.g.in situ hybridisation, loss-of-function analysis, and functional annotation) and will 

increase our knowledge of how Atlantic halibut embryonic development is regulated 

through these transcripts. Performing comparative polyadenylation and 3’UTR assays 

could reveal how their transcript levels are regulated (Kosubek et al., 2010 ;  Aanes et 

al., 2011).  

Oocyte maturation and developmental competence acquisition remains poorly 

understood, especially in non-mammalian vertebrates. In addition, follicular recruitment 

in teleosts is highly variable in comparison to mammals, complicating the 

understandability of underlying processes (Jalabert, 2005). Recently, essential roles for 
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other maternal oocyte constituents (i.e. mitochondria, nucleolus and imprinted control 

regions (ICRs)) have been identified during mammalian embryonic development and 

could most likely influence teleost oocyte quality (Bourc'his & Proudhon, 2008 ;  

Ogushi et al., 2008 ;  Schulz et al., 2010 ;  Wai et al., 2010).  
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9 Appendix  

Supplementary table A Fatty acid concentration in Atlantic halibut oocytes.  

Concentrations are given in (mg g dry weight
 -1

). 

Female G39R G39R G39R G39R G39S G39S G39S G39S G39S G32 G8 G8 Y46 Y46 Y32 Y7 O17 Y30 Y30 Y30 Y4 

Sample 

year 2008 2008 2008 2008 2009 2009 2008 2008 2006 2008 2009 2008 2009 2006 2006 2006 2006 2009 2009 2006 2009 

Batch 

nr.  1 2 3 4 1 2 1 2 2 1 1 1 1 1 1 1 2 1 2 1 1 

14:0 2.2 2.2 2.3 2.4 2.5 3.4 3.2 2.2 4.2 2.4 2.4 3.2 3.0 3.6 2.4 2.2 3.7 2.5 2.3 4.0 2.5 

16:0 18.6 18.5 19.3 19.5 20.0 21.2 20.6 18.2 20.5 21.0 20.7 20.9 20.7 20.3 19.2 19.1 21.7 19.6 20.7 21.8 19.4 

16:1n7 

(POA) 4.2 4.2 4.5 4.4 3.7 3.5 3.1 4.1 3.0 3.4 2.8 3.1 3.1 2.5 3.7 2.6 2.4 3.3 2.6 2.7 3.3 

18:0 3.5 3.5 3.7 3.7 3.5 3.0 3.3 3.4 3.0 4.3 4.3 3.3 3.2 2.9 4.0 4.4 3.0 4.3 4.1 3.1 4.2 

18:1n9 

(OA) 9.2 9.1 9.5 9.6 7.7 7.7 8.7 9.0 8.6 9.2 7.5 8.8 7.1 8.0 9.7 8.2 7.9 8.2 8.4 8.3 8.0 

18:1n7 2.6 2.6 2.7 2.7 2.7 2.3 2.2 2.5 1.9 2.8 2.7 2.2 2.2 1.8 2.8 2.7 1.9 2.9 2.6 1.9 2.8 

18:2n6 

(LA) 5.0 5.0 5.2 5.3 4.0 4.2 4.6 4.9 2.8 6.1 4.0 4.7 3.4 2.6 4.9 6.6 2.8 4.0 4.4 3.1 4.0 

18:3n6 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 

18:3n3 

(LNA) 0.4 0.4 0.5 0.5 0.4 0.6 0.6 0.5 0.5 0.5 0.4 0.6 0.5 0.5 0.5 0.7 0.6 0.4 0.5 0.6 0.4 

18:4n3 0.3 0.3 0.3 0.3 0.4 0.5 0.4 0.4 0.5 0.4 0.2 0.4 0.2 0.5 0.4 0.4 0.5 0.1 0.1 0.3 0.1 

20:0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

20:1n9 2.0 2.0 2.0 2.1 1.5 2.2 3.0 1.9 4.9 2.0 1.5 3.0 2.0 4.9 2.3 1.9 5.0 1.5 1.3 5.3 1.5 

20:1n7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

20:2n6 0.7 0.8 0.8 0.8 0.6 0.5 0.6 0.7 0.4 0.8 0.6 0.6 0.4 0.4 0.6 0.9 0.4 0.6 0.6 0.4 0.6 

20:3n6 

(DGLA) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

20:4n6 

(ARA) 1.6 1.6 1.7 1.7 1.7 1.4 1.2 1.6 0.9 1.6 1.5 1.2 1.2 0.8 1.2 1.4 0.8 1.7 1.6 0.9 1.6 

20:4n3 

(ESA) 0.3 0.3 0.3 0.3 0.3 0.4 0.5 0.3 0.5 0.3 0.4 0.5 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.5 0.4 

Table continues on next page 
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Supplementary table A continued  

Female G39R G39R G39R G39R G39S G39S G39S G39S G39S G32 G8 G8 Y46 Y46 Y32 Y7 O17 Y30 Y30 Y30 Y4 

Sample year 2008 2008 2008 2008 2009 2009 2008 2008 2006 2008 2009 2008 2009 2006 2006 2006 2006 2009 2009 2006 2009 

Batch nr.  1 2 3 4 1 2 1 2 2 1 1 1 1 1 1 1 2 1 2 1 1 

20:5n3 (EPA) 10.3 10.3 10.8 11.0 14.1 14.9 11.6 10.1 13.9 11.4 13.8 11.6 12.0 13.5 11.3 12.0 12.9 14.0 14.4 13.7 13.9 

22:1n9 0.6 0.6 0.6 0.6 0.6 1.4 1.3 0.6 3.0 0.6 0.5 1.3 0.8 2.5 0.7 0.6 2.6 0.5 0.5 2.8 0.5 

22:5n6 0.9 0.9 0.9 0.9 1.0 0.8 0.8 0.8 0.6 1.0 0.9 0.8 0.8 0.8 0.9 0.8 0.6 1.0 0.9 0.7 1.0 

22:5n3 (DPA) 1.2 1.2 1.2 1.2 1.4 1.6 1.4 1.2 1.4 1.3 1.7 1.4 1.4 1.4 1.3 1.6 1.6 1.6 1.8 1.6 1.5 

22:6n3 (DHA) 28.0 28.0 28.9 29.5 28.9 30.9 30.9 27.5 29.9 32.1 31.4 31.2 31.3 31.8 29.3 28.6 32.2 29.9 30.4 32.7 29.4 

24:1n9 0.6 0.6 0.6 0.6 0.6 0.9 0.6 0.6 1.4 0.6 0.6 0.6 0.5 0.8 0.7 0.6 0.6 0.8 0.5 1.0 0.7 

Total FA 92.7 92.4 96.4 97.8 96.5 102.1 99.5 91.0 102.0 102.6 98.7 100.1 94.9 99.8 96.6 96.2 99.1 98.0 96.3 106.0 96.6 

Saturated 24.4 24.3 25.5 25.7 26.2 27.7 26.7 23.9 27.8 27.8 27.6 27.5 27.0 26.9 25.6 25.7 28.5 26.5 27.2 29.0 26.1 

Unsaturated  68.3 68.1 70.9 72.1 70.3 74.4 72.0 67.2 74.7 74.8 71.1 72.5 67.9 73.8 71.0 70.4 73.6 71.5 72.5 77.0 70.4 

Monounsaturated 19.4 19.3 20.2 20.3 17.1 18.3 19.2 19.1 23.2 19.0 15.8 19.3 16.0 20.7 20.1 16.8 20.6 17.5 18.6 22.3 17.1 

Polyunsaturated 48.9 48.8 50.8 51.8 53.2 56.1 52.9 48.1 51.6 55.8 55.3 53.2 51.9 52.7 50.9 53.7 53.1 54.1 55.3 54.7 53.3 

n-3 40.5 40.4 42.0 42.8 45.6 48.9 45.4 39.9 46.6 46.1 47.9 45.7 45.8 48.1 43.1 43.7 48.2 46.5 47.5 49.4 45.8 

n-6 8.4 8.4 8.8 9.0 7.7 7.2 7.5 8.2 4.9 9.7 7.4 7.6 6.1 7.3 7.8 10.0 4.8 7.6 7.8 5.3 7.5 

n-3/n-6 4.8 4.8 4.8 4.8 6.0 6.8 6.1 4.8 9.5 4.7 6.5 6.0 7.5 9.4 5.5 4.4 10.0 6.1 6.1 9.4 6.1 

DHA/EPA 2.7 2.7 2.7 2.7 2.0 2.1 2.7 2.7 2.2 2.8 2.3 2.7 2.6 2.4 2.6 2.4 2.5 2.1 2.1 2.4 2.1 

EPA/ARA 6.4 6.5 6.4 6.4 8.2 10.5 9.4 6.5 16.1 7.2 8.9 9.7 9.9 16.9 9.4 8.8 16.7 8.4 9.2 15.8 8.6 

LNA/LA 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 
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Supplementary table B Amino acid concentration in Atlantic halibut oocytes. 

Concentration is given as (mg g dry weight
 -1

). 

Female 

G39

R 

G39

R 

G39

R 

G39

R 

G39

S 

G39

S 

G39

S 

G39

S 

G39

S G32 G8 G8 Y46 Y46 Y32 Y7 O17 Y30 Y30 Y30 Y4 

Sample year 2008 2008 2008 2008 2009 2009 2008 2008 2006 2008 2009 2008 2009 2006 2006 2006 2006 2009 2009 2006 2009 

Batch nr.  1 2 3 4 1 2 1 2 2 1 1 1 1 1 1 1 2 1 2 1 1 

Aspartic 

acid 35.2 31.3 33.4 33.5 32.8 32.7 33.1 30.6 34.9 34.4 33.1 35.6 34.6 35.4 30.4 30.1 36.6 34.4 32.7 36.9 35.0 

Glutamic 

acid 64.2 57.5 62.1 63.6 59.9 59.6 61.8 57.7 65.5 62.9 62.3 66.7 62.3 66.1 55.7 59.3 66.1 61.9 58.7 67.4 62.8 

Serine 24.2 20.9 22.8 23.5 22.2 22.6 23.6 21.4 24.7 22.7 23.4 25.4 23.3 25.2 21.3 22.6 24.7 23.2 22.2 25.5 23.9 

Histidine 15.8 14.2 14.6 15.1 13.9 13.7 14.7 13.3 15.5 15.2 14.2 15.8 13.8 15.4 12.7 13.9 14.9 14.0 12.6 15.4 13.8 

Glycine 16.0 14.7 15.9 16.2 14.5 14.2 15.9 14.6 16.5 16.1 15.5 16.8 15.3 16.7 14.6 15.3 14.3 15.8 14.7 18.2 15.3 

Threonine 18.8 16.8 18.3 18.6 18.0 20.6 18.5 17.3 19.3 19.0 18.4 19.7 17.8 19.7 17.3 18.0 22.3 18.4 17.5 19.7 17.9 

Arginine 23.7 21.3 22.7 23.5 21.8 21.8 22.6 21.1 24.1 23.4 22.8 24.6 22.7 24.0 20.9 21.6 23.7 22.8 21.6 24.1 22.6 

Alanine 41.2 36.8 38.0 39.4 34.5 37.4 38.6 35.6 41.6 40.8 39.3 41.2 38.3 40.5 35.8 35.5 39.9 39.0 36.9 41.0 38.4 

Taurine 4.9 4.0 3.9 2.9 3.9 4.4 4.4 4.3 4.8 4.3 4.0 4.1 3.8 4.8 4.0 3.0 3.2 3.5 3.8 3.8 4.4 

Tyrosine 17.8 16.1 17.5 17.8 16.6 16.3 17.3 16.3 18.2 17.7 17.3 18.7 17.2 18.3 15.6 16.7 18.1 17.2 16.1 18.5 17.2 

Cystin 4.0 3.8 4.4 4.3 4.3 3.9 4.2 4.0 4.4 4.3 4.0 4.6 4.3 5.0 3.9 4.2 4.1 4.4 4.1 4.5 4.2 

Valine 28.4 26.0 27.1 27.7 26.2 26.3 26.8 25.0 28.6 27.9 27.7 28.8 27.6 28.8 24.7 25.7 28.5 27.6 25.7 28.9 27.4 

Methionine 11.6 10.0 10.8 11.2 10.7 10.8 10.9 10.1 12.1 11.6 11.9 12.2 12.0 12.5 9.4 9.9 12.3 11.5 10.5 9.3 11.3 

Isoleucine 26.3 24.5 24.7 25.3 24.1 24.0 24.4 22.6 26.3 25.7 25.1 26.5 25.1 25.7 22.9 23.0 26.3 25.3 23.5 26.0 25.5 

Tryptophan 5.8 5.5 5.8 5.8 6.0 5.4 5.7 5.6 6.0 5.8 5.6 6.5 5.7 6.0 5.7 5.5 6.3 6.0 5.4 5.8 6.4 

Phenylalani

ne 17.0 15.6 16.9 17.2 16.5 15.8 16.9 15.8 17.6 17.2 16.8 18.4 16.8 17.8 15.5 15.9 18.0 16.9 15.8 17.9 17.1 

Leusin 46.4 41.8 42.5 43.9 41.6 41.6 42.6 39.1 46.0 45.0 43.3 46.2 42.9 45.0 39.8 40.4 45.3 43.1 40.9 46.0 43.5 

Lysin 34.2 30.3 33.2 34.6 30.3 30.2 33.9 28.8 35.9 29.2 30.3 35.5 29.3 35.1 26.4 28.4 29.8 29.5 26.5 32.1 28.1 

Prolin 30.4 27.2 34.3 34.2 31.5 31.5 34.2 31.3 33.9 32.2 33.1 35.9 33.3 36.3 28.2 31.7 34.7 33.2 29.9 37.0 32.1 

Total AA 465.2 417.8 448.5 457.7 
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Supplementary table C Biological prosess (BP) gene ontology annotations (GOs) for 

Atlantic halibut micoroarray probes. 

Given are GO level, GO ID number, GO term, sequence number and GO graph score.  

Level GO ID Term #Seqs Graph Score 

1 GO:0008150 biological process 4060 5002 

2 GO:0009987 cellular process 2928 1676 

2 GO:0008152 metabolic process 2799 2542 

3 GO:0044238 primary metabolic process 2495 1541 

3 GO:0044237 cellular metabolic process 2030 899 

2 GO:0065007 biological regulation 1742 984 

3 GO:0050789 regulation of biological process 1709 1583 

3 GO:0043170 macromolecule metabolic process 1691 868 

3 GO:0009058 biosynthetic process 1432 850 

4 GO:0044260 cellular macromolecule metabolic process 1334 615 

4 GO:0034641 cellular nitrogen compound metabolic process 1176 504 

3 GO:0006807 nitrogen compound metabolic process 1176 302 

4 GO:0006139 nucleobase, nucleoside, nucleotide  metabolic process 1176 840 

4 GO:0019538 protein metabolic process 1143 778 

2 GO:0051179 localization 902 309 

4 GO:0006810 transport 902 859 

3 GO:0051234 establishment of localization 902 516 

0 GO:0071840 cellular component organization or biogenesis 844 366 

2 GO:0016043 cellular component organization 844 609 

2 GO:0032502 developmental process 841 764 

4 GO:0010467 gene expression 840 530 

4 GO:0044249 cellular biosynthetic process 832 311 

5 GO:0034645 cellular macromolecule biosynthetic process 832 518 

5 GO:0060255 regulation of macromolecule metabolic process 33 12 

7 GO:0040029 regulation of gene expression, epigenetic 33 33 

3 GO:0008037 cell recognition 16 16 

2 GO:0016032 viral reproduction 15 15 

2 GO:0051704 multi-organism process 9 3 

3 GO:0044419 interspecies interaction between organisms 9 5 

4 GO:0044403 symbiosis, encompassing mutualism through parasitism 9 9 

3 GO:0007028 cytoplasm organization 3 3 

4 GO:0007010 cytoskeleton organization 192 192 

3 GO:0065008 regulation of biological quality 185 57 

2 GO:0000003 reproduction 178 178 

3 GO:0019725 cellular homeostasis 139 139 

4 GO:0042592 homeostatic process 139 83 

2 GO:0040007 growth 129 113 

3 GO:0007154 cell communication 126 99 

3 GO:0009719 response to endogenous stimulus 105 105 

3 GO:0007610 behavior 90 90 

3 GO:0009628 response to abiotic stimulus 84 84 

3 GO:0007267 cell-cell signaling 83 83 

3 GO:0009607 response to biotic stimulus 71 71 

3 GO:0019748 secondary metabolic process 67 67 

7 GO:0016049 cell growth 50 50 

Table continues on next page 
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Supplementary table C continued 

Level GO ID Term #Seqs Graph Score 

5 GO:0032535 regulation of cellular component size 50 18 

4 GO:0090066 regulation of anatomical structure size 50 11 

6 GO:0008361 regulation of cell size 50 30 

4 GO:0007005 mitochondrion organization 45 45 

4 GO:0019222 regulation of metabolic process 33 7 

6 GO:0010468 regulation of gene expression 33 20 

4 GO:0006519 cellular amino acid and derivative metabolic process 380 380 

3 GO:0044281 small molecule metabolic process 380 228 

3 GO:0048856 anatomical structure development 353 212 

4 GO:0009653 anatomical structure morphogenesis 353 353 

3 GO:0007049 cell cycle 351 351 

4 GO:0006629 lipid metabolic process 302 302 

5 GO:0006811 ion transport 302 302 

6 GO:0006412 translation 301 301 

5 GO:0045184 establishment of protein localization 280 168 

3 GO:0033036 macromolecule localization 280 60 

4 GO:0008104 protein localization 280 101 

5 GO:0015031 protein transport 280 280 

2 GO:0016265 death 268 162 

3 GO:0008219 cell death 266 266 

2 GO:0008283 cell proliferation 259 259 

4 GO:0006091 generation of precursor metabolites and energy 253 253 

4 GO:0005975 carbohydrate metabolic process 250 250 

6 GO:0006259 DNA metabolic process 220 220 

4 GO:0009790 embryo development 220 220 

3 GO:0009605 response to external stimulus 207 207 

4 GO:0009059 macromolecule biosynthetic process 832 311 

2 GO:0023052 signaling 828 219 

2 GO:0032501 multicellular organismal process 787 500 

3 GO:0007275 multicellular organismal development 787 818 

4 GO:0023060 signal transmission 783 470 

3 GO:0023046 signaling process 783 282 

4 GO:0050794 regulation of cellular process 783 470 

5 GO:0007165 signal transduction 783 783 

5 GO:0044267 cellular protein metabolic process 762 467 

5 GO:0090304 nucleic acid metabolic process 713 470 

3 GO:0009056 catabolic process 698 698 

2 GO:0050896 response to stimulus 644 621 

6 GO:0006350 transcription 563 563 

0 GO:0071842 cellular component organization at cellular level 488 259 

3 GO:0006996 organelle organization 487 429 

4 GO:0043412 macromolecule modification 478 287 

3 GO:0006950 response to stress 478 478 

6 GO:0006464 protein modification process 478 478 

3 GO:0048869 cellular developmental process 406 244 

4 GO:0030154 cell differentiation 406 406 
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Supplementary table D Molecular function (MF) gene ontology annotations (GOs) for 

Atlantic halibut micoroarray probes. 

Given are GO level, GO ID number, GO term, sequence number and GO graph score.  

Level GO ID Term #Seqs Graph Score 

1 GO:0003674 molecular function 4391 3801 

2 GO:0005488 binding 3507 3447 

3 GO:0005515 protein binding 2221 2218 

2 GO:0003824 catalytic activity 2122 1422 

3 GO:0016787 hydrolase activity 911 732 

3 GO:0003676 nucleic acid binding 773 554 

3 GO:0000166 nucleotide binding 754 754 

3 GO:0016740 transferase activity 636 464 

4 GO:0003677 DNA binding 336 336 

2 GO:0005215 transporter activity 335 290 

2 GO:0005198 structural molecule activity 302 302 

4 GO:0003723 RNA binding 289 289 

2 GO:0060089 molecular transducer activity 286 127 

3 GO:0004871 signal transducer activity 286 211 

5 GO:0016301 kinase activity 259 198 

4 GO:0016772 transferase activity 259 119 

4 GO:0008233 peptidase activity 255 255 

2 GO:0030528 transcription regulator activity 222 222 

2 GO:0030234 enzyme regulator activity 205 205 

4 GO:0008092 cytoskeletal protein binding 200 190 

5 GO:0046872 metal ion binding 198 119 

4 GO:0043169 cation binding 198 71 

3 GO:0043167 ion binding 198 43 

6 GO:0005509 calcium ion binding 198 198 

4 GO:0004872 receptor activity 195 195 

4 GO:0005102 receptor binding 178 178 

5 GO:0022838 substrate-specific channel activity 56 34 

6 GO:0005216 ion channel activity 56 56 

5 GO:0004518 nuclease activity 53 53 

5 GO:0042578 phosphoric ester hydrolase activity 50 18 

7 GO:0004721 phosphoprotein phosphatase activity 50 50 

6 GO:0016791 phosphatase activity 50 30 

3 GO:0003682 chromatin binding 42 42 

2 GO:0016209 antioxidant activity 25 25 

2 GO:0045182 translation regulator activity 10 10 

4 GO:0005326 neurotransmitter transporter activity 6 6 

3 GO:0019825 oxygen binding 6 6 

5 GO:0016773 phosphotransferase activity 156 94 

6 GO:0004672 protein kinase activity 156 156 

3 GO:0008289 lipid binding 134 134 

5 GO:0003779 actin binding 133 133 

3 GO:0003700 sequence-specific DNA binding transcription factor  128 128 

2 GO:0009055 electron carrier activity 115 115 

4 GO:0016788 hydrolase activity, acting on ester bonds 103 43 

4 GO:0008135 translation factor activity, nucleic acid binding 87 87 

3 GO:0030246 carbohydrate binding 80 80 

5 GO:0016818 hydrolase activity 64 14 

4 GO:0016817 hydrolase activity, acting on acid anhydrides 64 8 

Table continues on next page 
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Supplementary table D continued 

Level GO ID Term #Seqs Graph Score 

8 GO:0003774 motor activity 64 64 

6 GO:0016462 pyrophosphatase activity 64 23 

7 GO:0017111 nucleoside-triphosphatase activity 64 38 

3 GO:0022857 transmembrane transporter activity 62 16 

4 GO:0022891 substrate-specific transmembrane transporter activity 56 20 

5 GO:0015075 ion transmembrane transporter activity 56 34 

5 GO:0015267 channel activity 56 20 

3 GO:0022892 substrate-specific transporter activity 56 12 

4 GO:0022803 passive transmembrane transporter activity 56 12 
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Supplementary table E Cellular component (CC) gene ontology annotations (GOs) for 

Atlantic halibut micoroarray probes. 

Given are GO level, GO ID number, GO term, sequence number and GO graph score.  

Level GO ID Term #Seqs Graph Score 

1 GO:0005575 cellular component 4090 2170 

2 GO:0005623 cell 3914 1779 

3 GO:0044464 cell part 3548 982 

4 GO:0005622 intracellular 3359 1300 

4 GO:0044424 intracellular part 3194 1453 

2 GO:0043226 organelle 2822 873 

5 GO:0043229 intracellular organelle 2762 1241 

5 GO:0005737 cytoplasm 2477 1732 

3 GO:0043227 membrane-bounded organelle 2371 891 

6 GO:0043231 intracellular membrane-bounded organelle 2371 1485 

5 GO:0044444 cytoplasmic part 1692 1303 

7 GO:0005634 nucleus 1420 1089 

2 GO:0032991 macromolecular complex 1362 788 

3 GO:0043234 protein complex 1164 1164 

6 GO:0043232 intracellular non-membrane-bounded organelle 943 607 

3 GO:0043228 non-membrane-bounded organelle 943 364 

4 GO:0044446 intracellular organelle part 737 311 

3 GO:0044422 organelle part 737 186 

6 GO:0044428 nuclear part 691 481 

6 GO:0070013 intracellular organelle lumen 608 245 

4 GO:0043233 organelle lumen 608 147 

2 GO:0031974 membrane-enclosed lumen 608 88 

7 GO:0031981 nuclear lumen 608 409 

5 GO:0005886 plasma membrane 543 543 

4 GO:0016020 membrane 543 326 

7 GO:0005739 mitochondrion 542 542 

6 GO:0005829 cytosol 519 519 

6 GO:0005654 nucleoplasm 482 482 

7 GO:0005856 cytoskeleton 421 409 

2 GO:0005576 extracellular region 366 248 

7 GO:0005783 endoplasmic reticulum 301 301 

7 GO:0005794 Golgi apparatus 266 266 

6 GO:0005840 ribosome 248 248 

5 GO:0030529 ribonucleoprotein complex 248 149 

6 GO:0005730 nucleolus 199 199 

3 GO:0044421 extracellular region part 174 93 

7 GO:0005694 chromosome 159 155 

3 GO:0031982 vesicle 142 51 

7 GO:0016023 cytoplasmic membrane-bounded vesicle 142 142 

4 GO:0031988 membrane-bounded vesicle 142 85 

6 GO:0031410 cytoplasmic vesicle 142 85 

4 GO:0005615 extracellular space 110 110 

4 GO:0031012 extracellular matrix 75 45 

5 GO:0005578 proteinaceous extracellular matrix 75 75 

7 GO:0005768 endosome 71 71 

7 GO:0005773 vacuole 69 37 

4 GO:0031975 envelope 67 24 

4 GO:0031967 organelle envelope 66 40 

4 GO:0012505 endomembrane system 66 40 

Table continues on next page 
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Supplementary table E continued  

 

Level GO ID Term #Seqs Graph Score 

5 GO:0005635 nuclear envelope 66 66 

7 GO:0005815 microtubule organizing center 61 61 

6 GO:0044430 cytoskeletal part 61 37 

8 GO:0015630 microtubule cytoskeleton 61 37 

7 GO:0000323 lytic vacuole 56 34 

8 GO:0005764 lysosome 56 56 

7 GO:0000228 nuclear chromosome 55 55 

7 GO:0005777 peroxisome 38 38 

7 GO:0042579 microbody 38 23 

6 GO:0005811 lipid particle 13 13 

5 GO:0005929 cilium 12 12 

4 GO:0042995 cell projection 12 7 

7 GO:0009536 plastid 5 5 

4 GO:0030312 external encapsulating structure 3 3 

5 GO:0030313 cell envelope 1 1 

5 GO:0005618 cell wall 1 1 
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Supplementary table F Uncharacterized maternal genes present in CL6. 

 
Probe name GenBank Accession  BLASTX hit gene description 

HH_Contig566 EB035999 unnamed protein product [Tetraodon nigroviridis] 

HH_166850885 FD698679 unnamed protein product [Tetraodon nigroviridis] 

HH_Contig2902 FK701210 unnamed protein product [Tetraodon nigroviridis] 

HH_Contig310 EB041103 unnamed protein product [Tetraodon nigroviridis] 

HH_90603209 EB036650 unnamed protein product [Tetraodon nigroviridis] 

HH_Contig569 EB039737 unnamed protein product [Tetraodon nigroviridis] 

HH_Contig2540 DT806209 ---NA--- 

HH_Contig1071 EB036838 ---NA--- 

HH_193889242 FK701753 ---NA--- 

HH_90988400 EB103569 ---NA--- 

HH_Contig2923 FK701620 ---NA--- 

HH_Contig2987 FK703367 ---NA--- 

HH_90988799 EB103968 ---NA--- 

HH_Contig2859 FK702420 ---NA--- 

HH_90988503 EB103672 ---NA--- 

HH_75737824 DT805824 ---NA--- 

HH_193889675 FK702270 ---NA--- 

HH_Contig2808 FK701258 ---NA--- 

HH_Contig2806 FK701852 ---NA--- 

HH_166850908 FD698966 ---NA--- 

HH_Contig2567 FK701248 ---NA--- 

HH_Contig3022 FK701593 ---NA--- 

HH_75738215 DT806215 ---NA--- 

HH_Contig3015 FK701942 ---NA--- 

HH_Contig2836 FK702443 ---NA--- 

HH_193889112 FK702534 ---NA--- 

HH_193890171 FK702823 ---NA--- 

HH_75737803 DT805803 ---NA--- 

HH_90603204 EB036645 ---NA--- 

HH_193889004 FK701637 ---NA--- 

HH_193890000 FK703214 ---NA--- 

HH_90988658 EB103827 ---NA--- 

HH_90603288 EB036729 ---NA--- 

HH_Contig96 EB103607 ---NA--- 

HH_193888931 FK701201 ---NA--- 

HH_Contig3098 FK702139 ---NA--- 

HH_193890524 FK703348 ---NA--- 

HH_Contig1168 EB036392 ---NA--- 

HH_Contig2972 FK702959 ---NA--- 

HH_193888687 FK701481 ---NA--- 

HH_Contig117 DN794342 ---NA--- 

HH_193890462 FK702895 ---NA--- 

HH_90599721 EB033162 ---NA--- 

HH_Contig1274 FK702709 ---NA--- 

HH_90988653 EB103822 ---NA--- 

HH_Contig1152 EB036435 ---NA--- 

HH_90988551 EB103720 ---NA--- 

HH_193889791 FK701911 ---NA--- 

HH_90988629 EB103798 ---NA--- 

HH_166850869 FD698663 ---NA--- 

Table continues on next page 
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Supplementary table F continued  

Probe name GenBank Accession BLASTX hit gene description 

HH_Contig3033 DT806219 ---NA--- 

HH_193889799 FK703165 ---NA--- 

HH_193889948 FK702750 ---NA--- 

HH_90988333  EB103502 ---NA--- 

HH_90606597 EB040038 ---NA--- 

HH_166851059 FD698418 ---NA--- 

HH_Contig3049 FK701393 ---NA--- 

HH_90601816 EB035257 ---NA--- 

HH_166850905 FD698963 ---NA--- 

HH_193888699 FK701493 ---NA--- 

HH_EST_193889508 FK702627.1 ---NA--- 

HH_Contig2797 FK702048 ---NA--- 

HH_90988209 EB103378 ---NA--- 

HH_193889740 FK702301 ---NA--- 

HH_90988269  EB103438 ---NA--- 
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Supplementary table G: Maternal genes common between Atlantic halibut and zebrafish 

according to i) Mathavan et al.  (2005) (Mathavan et al., 2005) and ii) Aanes et al. 

(2011)(Aanes et al., 2011).  

i)  

Gene name (Abbreviation)  Accession  

Apoptosis regulatory protein siva (siva1) BM101541 

Superoxide dismutase (sod1) NM_131294 

Claudin 4 (cldn4) NM_213274 

Nuclear distribution gene e homolog 1 (nde1) NM_201307 

Cyclin b2 (cycb2) NM_199430 

Actin binding protein anillin (anln) AI878452 

Rho gtpase activating protein 11a (arhagap11a) NM_001193539 

Nuclear autoantigenic sperm protein (nsap) NM_199782 

Novel protein lim domain 7 (lmo7b) NM_001128231 

Tartrate-resistant acid phosphatase type 5 precursor (acp5) NM_214773 

Elongin a (ela1) NM_200121 

Zinc finger protein 180 (znf180) AW232088 

Solute carrier family 16 (slc16a13) NM_212708 

Cue domain containing 2 (cuedc2) NM_001017994 

Moloney leukemia virus 10-like homolog (mov10l) EB909625 

 

ii) 

 

 

 

 

 

 

  

Gene name (Abbreviation)  Accession  

Spindle assembly 6 homolog (sass6) NM_213438 

Chloride intracellular channel 1 ( clic1) NM_212682 

Tropomyosin α1 ( tpm1) NM_001102629 

Bloom syndrome protein (blm) XP_701357 

Tudor domain containing 7(tdrd7) NM_001099343 

Novel protein lim domain 7 (lmo7b) NM_001128231 

Carbonic anhydrase 7 (ca7) NM_200813 

Zinc finger protein 451 (znf451) CD758949 

DNA (cytosine-5)-methyltransferase 1 (nmt1) NM_131189 

Kinesin family member 20a ( Kif20a) BC098606 

B-cell translocation gene 3 ( btg3) NM_001007351 

Wd repeat domain 83 ( Wdr83) NM_001002429 
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