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Abstract

Mark-recapture is a method of population estimation that involves capturing a num-

ber of animals from a population of unknown size on several occasions, and mark-

ing those animals that are caught each time. By observing the number of marked

animals that are subsequently seen, estimates of the total population size can be

made. There are various subclasses of the mark-recapture method called the Otis-

class of models (Otis, Burnham, White & Anderson 1978). These relate to the

assumed behaviour of the individuals in the target population.

More recent work has generalised the theory of mark-recapture to the so-called

plant-capture, where a known number of animals are pre-inserted into the target

population. Sampling is then carried out as normal, but with additional informa-

tion coming from knowledge of the number of planted individuals.

The theory underpinning plant-capture is less well-developed than mark-recapture,

with the difference on population estimation of the former over the latter not often

tested. This thesis shows that, under fixed and random sample-size models, the

inclusion of plants can improve the mean point population estimation of various

estimators. The estimator of Pathak (1964) is generalised to allow for the inclusion

of plants into the target population. The results show that mean estimates from

most estimators, under most models, can be improved with the inclusion of plants,

and the sample standard deviations of the simulations can be reduced. This im-

provement in mean point population estimation is particularly pronounced when

the number of animals captured is low.

Sample coverage, which is the proportion of distinct animals caught during sam-

pling, is also often sought by practitioners. Given here is a generalisation of the

inverse population estimator of Pathak (1964) to plant-capture and a proposed new

inverse population estimator, which can be used as estimates of the coverage of a

sample.
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Chapter 1

INTRODUCTION

1.1 Overview

This thesis investigates new methods of mark-recapture and plant-capture for esti-

mating animal abundance in a closed population. For the population to be closed,

no migrations, births or deaths can occur during sampling.

Using plant-capture can have theoretical advantages over mark-recapture, but these

advantages may be offset by practical difficulties, so one purpose of this work is

to determine whether including plants is beneficial. Plant-capture has been carried

out annually in New York City since 2005 to provide an estimate of the number

of homeless people resident there. The Homeless Outreach Population Estimate

(HOPE) census (Hopper, Shinn, Laska, Meisner & Wanderling (2008)) is carried

out on one night, with some volunteers acting as street dwellers throughout the

evening, allowing an estimate to be made from a single sampling occasion.1

Mark-recapture is the process of capturing a number of animals from a population

of unknown size N , which is to be estimated. The number caught may or may not

be predetermined, depending on which sampling scheme is used. These captured

animals are distinctively, and permanently, marked and released back into their

population. After a reintegration period the capturing process is repeated, with the

previously marked animals recorded and any unmarked animals uniquely marked.

This process is repeated until the experimenter deems appropriate, or some prede-

termined stopping criterion is satisfied. The total number of sampling occasions is

denoted by t. At the end of the process various statistics (see §1.4) are recorded,

some or all of which can be used for an estimate of abundance. Further informa-

tion about the assumptions required for valid estimation can be found in Otis et al.

(1978, pp 9-10) or Begon (1979, pp 8-9), and both provide tests of these assump-

tions. A test for closure can be found in the CloseTest program, given by Stanley

1Reports from previous surveys can be found at
http://www.nyc.gov/html/dhs/html/statistics/statistics.shtml
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& Richard (2005).

Plant-capture uses a similar approach, but differs in that, before the first captur-

ing occasion has taken place, a known number, R, of marked animals of the same

class is added to the resident population. Sampling from the augmented population

then proceeds as above. Plant-capture is a natural extension of mark-recapture, in

that plant-recapture can be thought of as mark-capture with the first sampling oc-

casion already having taken place. The jth sampling occasion of mark-recapture

(j = 2, . . . , t) thus coincides with the (j − 1)th sampling occasion in a plant-

capture scenario with t − 1 samples. A subtle difference, however, is that, in

mark-recapture situations, the number of plants, R, becomes random rather than

fixed, which it is under plant-capture trials.

For both methods, as the focus here is only on closed populations, sampling usually

takes place over a short period of time. This is consistent with Williams, Nichols

& Conroy (2002, p. 331), which states:

“A short period for the investigation increases the likelihood that the

population remains closed to gains and losses over the period of sam-

pling.”

The rest of this chapter is dedicated to giving first a brief history of mark-recapture

and plant-capture, defining the main variables and parameters that are required

throughout this work and giving a brief description of the various models used

throughout the next few chapters.

1.2 Background

The idea of marking animals can be traced back to the middle of the 17th century

when Sir Francis Bacon tied ribbon on salmon and saw which of them returned up-

stream later, (Cormack (1968)). The use of mark-recapture to estimate population

size, however, dates from the turn of the 20th century.

The earliest estimator was based on taking two samples and equating the propor-

tion of animals caught in the first sample to the proportion of marked animals in

the second sample. This is commonly referred to as the Petersen estimator, or as

the Lincoln-Index by biologists, about which more is given later. The use of the

ratio method can be traced back to the late 17th century when Graunt estimated

the population of London, and the late 18th century, when Laplace estimated the

population of France, (Cormack (1968)).

Mark-recapture estimation increased in popularity in 1938 with the paper by Zoe

Schnabel (1938). She allowed for multiple recapturing occasions, and for the

recapture probability to vary between capture occasions. This is referred to as

the time-heterogeneous or time-dependent model, or simply the Schnabel census.
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Since this time, mark-recapture theory and applications increased significantly2

and continues to expand. For a more detailed history of mark-recapture, see Buck-

land, Goudie & Borchers (2000). For an overview of current areas of research

on mark-recapture models, see Amstrup, McDonald & Manly (2005) or Pollock

(2000).

Plant-capture is a newer area in which there has been interest recently, motivated

originally by a desire by practitioners to generate population estimates from a sin-

gle capturing occasion (Laska, Meisner & Siegel (1988, 1989)).

The methodology for such an estimator can be traced back to Rupp (1966), who

gives an abundance estimator when there are “. . . two or more kinds of individuals

in a population at Time 1 [before the first sample] . . . ”. These kinds of individuals

can be taken to be planted and target animals, since this group classification does

not change throughout the trial. Rupp’s (1966) abundance estimator requires an

addition or removal of a known number of one or more types of animal at an inter-

mediate point in the sampling procedure, whereas the work in this thesis considers

populations of both the plant and target animals to be constant throughout the trial.

The United States Census Bureau used plant-capture methodology to estimate the

number of homeless people in the 1990 U.S. census. For this, Laska & Meisner

(1993) gives the likelihood function, and point and interval estimates for plant-

capture. Papers by Goudie (1995), Yip (1996), Martin, Laska, Hopper, Meisner

& Wanderling (1997), Goudie, Pollock & Ashbridge (1998), Goudie & Ashbridge

(2000), Goudie, Jupp & Ashbridge (2007) and Ashbridge & Goudie (2009) have

developed the subject further.

Mark-recapture was first put into a Bayesian framework by Freeman (1972, 1973),

where he estimated population size under a sequential recapture framework. Cas-

tledine (1981) sought point and interval estimates of N under certain models using

Beta priors for the capture probabilities. Smith (1991) used Bayes, empirical Bayes

and Bayes empirical Bayes methods to compute point and interval estimates of N

in the Schnabel census. George & Robert (1992) used Gibbs sampling to provide

point population estimates. Reversible jump Markov chain Monte Carlo methods

were used by King & Brooks (2001, 2002, 2008) to produce model averaged esti-

mates. For an overview of the early expansion of Bayesian mark-recapture papers,

one is referred to Schwarz & Seber (1999). Several Bayesian mark-recapture books

have been published recently, firmly establishing Bayesian mark-recapture meth-

ods in ecology. Such books include McCarthy (2007), King, Morgan, Gimenez &

Brooks (2009) and Link & Barker (2009).

2http://ncse.st-andrews.ac.uk/documents/posters/CapDataHistory.pdf
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1.3 Closed mark-recapture

The work that I am carrying out will focus on closed animal populations under

discrete-time sampling. In discrete-time sampling, sampling is carried out in dis-

tinct units, with a reintegration period between each sampling occasion. Thus, an

animal can only be captured once at most in any sampling occasion. The alterna-

tive to discrete-time sampling is continuous-time sampling. With continuous-time

sampling, it is often assumed that the capturing is carried out in one continuous in-

terval, with the animals being immediately released upon tagging. In plant-capture

situations, the population can also be assumed to be closed after the pre-marked

animals are planted into the target population and allowed to cohabit. Discrete or

continuous time recapturing can similarly be carried out.

Some useful notation is now defined, which is necessary for further discussion.

When working under discrete time models, the word sample is taken to mean one

process of capturing, and when trial is used, this is taken to mean the collection

of all samples. So, one trial consists of t samples, where t is a fixed number cho-

sen by the experimenter. A variety of models exist in mark-recapture and plant-

capture, depending on how the capture probabilities relate between animals and

between samples. For mark-recapture, the Otis-class of models, (Otis et al. 1978),

which is an extension of a set of models attributed to Pollock (unpublished dis-

sertation), attempts to account for various deviations from the equal-catchability

model, denoted as model M0, that are plausible in practise. The equal-catchability,

or homogeneous, model assumes that there is an equal probability of capturing any

animal in any sample. Variations from this include differing probabilities between

animals in a particular sample but staying constant for each animal over samples,

known as model Mh, differing probabilities between captured and uncaptured ani-

mals throughout the trial, referred to as model Mb, and model Mt, which assumes

that in any sample every animal has the same probability of capture, but this prob-

ability differs between samples. The remainder of the Otis-class of models are the

combinations of the three models, namely Mbh, Mtb, Mth andMtbh.

A model not considered by Otis et al. is the case when a predetermined number

of animals are caught on each sample, which shall be referred to here as the fixed

sample-size model, model Mf .

This work focuses mainly on plant-capture under model Mtp, where the p denotes

working under the knowledge that planted animals are present. In cases where

more than one subscript is used, the plant subscript will be placed in the final posi-

tion. Thus, the model associated with time-dependent probability including plants

will be referred to as the Mtp model, and so on.

As mark-recapture literature has expanded so much in the past 50 years, it is not

possible to cover all areas in this thesis. Some notable areas that are not included
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are open population mark-recapture, models with individual heterogeneity and be-

havioural variations in capture probabilities and model selection.

For open population modelling, one is referred to Chapters 2 and 5 of Amstrup

et al. (2005) and the many references therein.

For individual heterogeneity, Burnham & Overton (1978) proposed the jackknife

method, which is the method employed by the program CAPTURE. The difficulties

of estimating population size when animal heterogeneity is present are discussed

in great detail in Link (2003).

For populations assumed to have a behavioural response to capture, Cormack (1989)

proposed log-linear models and Lloyd (1994) proposed the martingale method.

Pledger (2000) gave a unified maximum likelihood framework to enable the fitting

of all eight models given by Otis et al. (1978). She also provided a model selection

procedure for choosing between the models. Other model selection methods have

been proposed by Burnham, White & Anderson (1995) and Buckland, Burnham &

Augustin (1997).

1.4 Statistics

The notation used in the mark-recapture literature is not standardised. Cormack

(1968, p. 457) gives a table of the different notation used up until that point by var-

ious authors, which serves as a useful cross-reference. However, the primary refer-

ence for mark-recapture notation that one should use for this thesis is the brief list

that is given below. Note that when subscripts are used, the letter i (i = 1, . . . , N )

will be used to indicate animal number and j (j = 1, . . . , t) will be used to repre-

5



sent sample number.

N = The total (usually unknown) number of target animals in the target

population.

R = The number of animals planted into the target population, R ≥ 0.

t = The pre-chosen number of samples.

pij = The probability of capturing the ith animal in the jth sample.

z = The total observed number of captures observed (including plants

when they are present) during the trial.

x = The number of distinct animals observed from the target population

captured in the trial.

n = (n1, . . . , nt), where nj is the number of animals (including plants

when they are present) caught in the jth sample. (Hence

0 ≤ nj ≤ N +R).

m = (m1, . . . ,mt), where mj is the number of marked animals caught

in the jth sample.

fk = The number of animals caught exactly k times, k = 0, . . . , t.

Note that some of the statistics and parameters differ when plants are introduced.

As before, the parameter N and statistic x of X refer only to the target population,

excluding plant captures. However, the other parameters and statistics given above,

namely pij , z, n, m andfk now include the target and planted populations. Other,

less-frequently used parameters and statistics will appear as they are required.

Another concept that is used widely is that of coverage. Sample coverage, C,

is defined as being the ratio of the sum of the capture probabilities of the animals

captured in the trial to the sum of the capture probabilities of all the animals (Chao,

Lee & Jeng (1992)). This is given by

C =

N∑
i=1

piI[the ith animal is captured]

N∑
i=1

pi

, (1.1)

where I is the standard indicator function, equalling 1 if the ith animal is caught,

and 0 otherwise. When there is no heterogeneity between animals, however, the

capture probability in any sample is the same for all animals. Thus, in homoge-
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neous cases, (1.1) can be simplified to

C =
x

N
. (1.2)

In practice the true population, N , and the capture probabilities, pi are not known,

so coverage must be estimated. Some such estimators are given in Chapter 6.

1.5 Scenarios

Discrete-time mark-recapture sampling generates observations that can be pre-

sented in an (N + R) × t matrix D, containing only 1s and 0s, where dij = 1

if the ith animal is caught in the jth sample, and dij = 0 otherwise, as first defined

by Hammersley (1953). In the case of plant-capture a typical matrix will look like

the following:

t

0 1 · · · 0

1 0 · · · 1
...

...
. . .

...

0 0 · · · 1

 x rows

D =

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 N − x rows (1.3)

0 1 · · · 1
...

...
. . .

...

1 0 · · · 0

 R rows.

Thus, without loss of generality, the matrix can be ordered in such a way that the

first x rows represent animals from the target population that have been caught at

least once, and so each must contain at least one 1. The next N − x rows contain

only 0’s, but this dimension is generally not known in practice. The final R rows

are animals that are known to be present, but are not necessarily seen. Whether

there is any relationship between the rows or columns depends on which model is

applicable. The models that I have focussed on are detailed below.
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Model No. of parameters Description

Mfp 1
Capture probability is not a parameter and so the
only unknown parameter is N .

Mp 2
A constant capture probability, p, and population size, N ,
are assumed to be the only parameters.

Mtp t+ 1
Capture probability assumed to differ in each sample, pj , and
population size, N is unknown, making t+ 1 assumed parameters.

Table 1.1: A brief summary of the number of assumed parameters for each model
considered in this thesis.

1.6 Models

The details in the following subsections are written with the assumption of working

under plant-capture scenarios, which subsume the corresponding mark-recapture

models. If R is set to zero, one can get mark-recapture results explicitly. When an-

imals are planted into a closed population, it is a requirement in the models given

below that they behave in exactly the same way as the resident population. Thus,

in this thesis, it is assumed that they integrate without rejection, and become, in

homogeneous cases, as equally catchable as the target population.

If behavioural or animal heterogeneity is allowed for, this assumption is not re-

quired. Under behavioural models, planted animals can be assumed to have a

different capture probability from the first sample onwards to that of the target

population animals. Behavioural or animal heterogeneity are beyond the scope of

this thesis, however.

1.6.1 Model Mfp

ModelMfp is not included in the Otis-class of models, but is one of the older mod-

els in mark-recapture history, and is covered in detail by Seber (1982). With this

model, the number of animals captured in each sample is fixed before sampling

begins. Thus, regardless of the catch-effort required, the specified number of an-

imals should be caught in each sample, making the capture probability parameter

redundant. This means that the only parameter is the unknown population size, N ,

as shown in Chapter 2.

1.6.2 Model Mp

ModelMp, the homogeneous case, is the simplest scenario when considering plant-

capture models that are generalisations of the Otis-class of mark-recapture models.

This model assumes that there are no behavioural differences between animals in

any particular sample and so the probability of capturing any animal is the same,
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and it also assumes that this probability of capture remains constant between sam-

ples. It may seem unlikely in practice for such strict conditions to hold, but, never-

theless, this model yields some interesting results for many situations. This model

provides a benchmark, giving a measure of the extent of the heterogeneity or be-

havioural effects present in the population when compared to the other models of

the Otis-class.

This model has only two parameters, namely N and p, where p represents a con-

stant probability of capture of any animal, i = 1, . . . , N + R, in any sample

j = 1, . . . , t.

1.6.3 Model Mtp

Model Mtp introduces more reality into plant-capture sampling in that, whilst still

assuming a common probability of capture for all animals in any particular sam-

ple, it assumes that the probability of capture differs between samples. Thus, this

model can more realistically replicate real life scenarios, when assuming that the

probability of capture remains constant over time can be hard to justify. One such

situation is if the weather is different between subsequent samples, then the like-

lihood of capture on different days could be altered. Some examples are given by

White, Anderson, Burnham & Otis (1982, p. 52) and Arnason, Kirby, Schwarz &

Irvine (1996). Most of the work in this thesis has focussed on Model Mtp. This

model has t+ 1 parameters, namely N and pj for j = 1, . . . , t.

1.6.4 Model Mct

Some reference will also be made to continuous-time models, where the nota-

tion adopted here will be to use a subscript, c, in the first position for a model

corresponding to cases that are in continuous-time. Thus, when referring to a

continuous-time, time-dependent model, the notation will be Mct.

Continuous-time sampling differs from discrete-time sampling in that sampling is

carried out continuously until a predetermined time or number of animals has been

reached. Animals that are caught are tagged and released with the assumption that

the time they were in captivity was negligible and had no significant effect on the

capture probabilities in terms of time. Thus, if sampling is carried out in the in-

terval (0, τ), then it is assumed that the sightings of any animal occur according

to a Poisson process with rate λ∗i (t), which can be made a time-varying function

defined in (0, τ), (see Hwang & Chao (2002)). The continuous time analysis can

also be applied to behavioural models, by declaring

λ∗i (t) =

{
λiα(t) for previously uncaptured animals

φλiα(t) for previously captured animals.
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For Mct scenarios, set λi = 1 and φ = 1, removing inter-animal heterogeneity and

behavioural effects. By using the parameters given in Amstrup et al. (2005) one

can get all continuous time equivalents of the Otis et al. (1978) class of estimators.

The only model mentioned in this work is the homogeneous model Mc. Under

model Mc it is assumed that there is a constant rate parameter λ. By standard

results, the total number of captures, Z, by time τ has a Poisson distribution with

mean Nλτ , given by

p(Z = z) =
eNλτ (Nλτ)z

z!
z = x, x+ 1, . . . . (1.4)

Given Z = z, we have, by the classical occupancy distribution (c.f. Goudie et al.

(1998)),

p(X = x|Z = z) =
(N)x
N z

S(x, z) x = 1, 2, . . . ,min(N, z), (1.5)

where S(x, z) =
1

x!

x∑
k=1

(−1)k
(
x

k

)
(x − k)z , a Stirling Number of the Second

Kind. Thus, the continuous-time joint probability distribution for X and Z for

model Mc is

p(X = x, Z = z) =
(λτ)z e−Nλτ

z!

(
N

x

) x∑
k=0

(−1)k
(
x

k

)
(x− k)z (1.6)

x = 0, 1, . . . , N

z = x, x+ 1, . . . .

This can then be used to find the maximum likelihood estimator for Mc, as (X,Z)

is sufficient for (N,λ). As shown by Craig (1953), the Mc MLE is the solution of

x∑
k=1

1

N − k + 1
=

z

N
. (1.7)

Goudie et al. (1998) give a generalisation, for a fixed time τ , to the plant-capture

equivalent model.

Another nice result, given by Lin & Chao (2005, p. 95), is that the MLEs for model

Mctp and model Mtp are asymptotically equivalent as t→∞.

1.7 Thesis summary

In Chapter 2, some work is carried out under models Mf and Mfp. For the mark-

recapture model Mf , a comparative study is carried out between an estimator of

Pathak (1964) and the commonly used estimators from the literature, comparing
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their means and standard deviations. For the plant-capture model Mfp, some the-

ory is given to allow for the inclusion of plants. A generalised Pathak estimator is

also derived under model Mfp, and compared against others from the literature. It

is of interest to determine whether plants improve the estimate of population size

sufficiently to compensate for the difficulties in satisfying the additional assump-

tions required.

In Chapter 3, the models M0 and Mp are briefly covered. A lot of work has al-

ready been published for these models (see Ashbridge (1998), Goudie & Ashbridge

(2005) and Ashbridge & Goudie (2009)), but the work contained here is intended

to illustrate the performance of the generalised Pathak estimator under these mod-

els, which are models outside of its derivation

In Chapter 4, working under models Mt and Mtp, some work is also carried out to

relate the generalised Pathak estimator to a class of estimators for restricted range

Factorial Series Distributions, FSDs, as defined by Berg (1974). For the mark-

recapture modelMf , Berg gives an equation for an unbiased estimator, conditional

on the total number of captures, z, exceeding the total population size, N . He also

offers an equation for the bias of the estimator when this condition is not satisfied.

This could help to ease the computational difficulties that occur for the generalised

Pathak estimator.

Chapter 5 is devoted to the specific case of mark-recapture and plant-capture where

there are very few captures throughout the trial. This is known as sparse data

mark-recapture. Under mark-recapture trials it has long been acknowledged that

the reliability of an abundance estimate decreases if the recapture rate is low (see

Borchers, Buckland & Zucchini (2002)).

Chapter 6 focusses on the estimation of sample coverage under plant-capture. It

compares the estimators of Chao (1989) with an estimator proposed here.

Discussion of the previous chapters and some areas that should be considered in

future work are given in the concluding chapter.
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Chapter 2

MODEL Mfp

2.1 Introduction

Model Mf has been extensively discussed over the years. Darroch (1958, p. 345)

showed that, for point and interval estimation of N , there is asymptotically no

difference between fixed and random sample sizes, and states

“. . . to estimate n [N ] as if the ai [ni] are constants, when in fact they

are not, is not a serious misrepresentation . . . ”.

Under model Mf , Pathak (1964) gives the minimum variance unbiased estimator

(MVUE) when z ≥ N . One aim of this thesis is to use as few samples as deemed

appropriate whilst obtaining a good estimate of N . Thus, as z increases propor-

tionately with the number of samples, this condition will not always be met in this

thesis. The effect of this condition not being met is addressed.

The generalisation of the unbiased estimator to give the MVUE under model Mfp

is given in §2.3.2. I am unaware of any previous work on model Mfp explicitly,

but Chapman (1952) allowed for the possibility of pre-marked individuals, without

referring to them as plants.

What is offered in this chapter is the probability distribution of the sufficient statis-

tic under model Mfp and the MLE for model Mfp. Also given is a generalisation

of the Pathak estimator to allow for plants. To aid computation of this generalised

Pathak estimator, equations (2.3) and (2.4) of Berg (1976) are generalised to model

Mfp.

Finally, I present a comparative study of whether including plants improves estima-

tion sufficiently to justify their inclusion, discuss what an optimal number of plants

would be and whether the simpler to compute Pathak approximation estimator can

be favoured over the Pathak estimator.
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2.2 Probability Theory

A generalisation of a result given by Seber (1982, p. 132), to allow for the inclu-

sion of plants, gives the distribution of the number of marked animals caught in

each sample given n. This makes use of the vector m = (m1, . . . ,mt), which

represent the number of animals caught in the jth sample (j = 1, . . . , t) that

were previously marked, as given in §1.4. This differs from Seber (1982, p. 130)

in that here, m1 is not necessarily 0, since plants are inserted prior to the first

sampling occasion. Also, we require u = (u1, . . . , ut), where uj represents the

number of animals caught in the jth sample j = 1, . . . , t that were previously

unmarked. We also define the vector M = (M1, . . . ,Mt) where M1 = R and

Mj = R+
∑j−1

k=1 uk, {j = 2, . . . , t+ 1}, which represents the number of marked

animals just before the jth sample is taken. Thus, we get Mt+1 = x+R. We also

define NA as being the total number of animals in the augmented population, i.e.

NA = N + R. Using these, we get a product of hypergeometric distributions (c.f.

Bishop, Fienberg & Holland (1975, §13.5)) for M, namely

f(m1, . . . ,mt|{nj}) =
t∏

j=1

(
Mj

mj

)(
NA −Mj

uj

)
(
NA

nj

)

=
N !

(N − x)!

t∏
j=1

(
Mj

mj

)
(
NA

nj

)
(uj)!

, (2.1)

for m1 = 0, . . . ,min(n1, R) and mj = 0, . . . ,min(nj , R +
∑j−1

k=0 nk), j =

2, . . . , t. The Neyman-Fisher factorisation theorem then gives that X is sufficient

for NA, or, equivalently, N , the size of the target population.

Thus, we seek to establish the probability distribution of X , (c.f. Goudie & Gorm-

ley (in submission)). For this we will use the inclusion-exclusion principle (c.f.

Johnson, Kotz & Kemp (2005, p. 432))

Inclusion-exclusion principle: Given N objects, suppose that n(a) have property

a, n(b) have property b,. . . , n(ab) have properties a and b,. . . , n(abc) have prop-

erties a, b and c etc. Then the inclusion-exclusion principle states that the total
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number of objects with none of these properties is

N(āb̄c̄ . . .) = N −n(a)− n(b)− n(c)− . . .

+ n(ab) + n(ac) + . . .

− n(abc)− . . .

+ . . .

�

Firstly we need to find the total number of ways to select all the t samples, such

that nj animals are caught in sample j (j = 1, . . . , t). This is the number of ways

that the t samples can be chosen from the N +R animals present. This is just

A(N,n, R) =
t∏

j=1

(
N +R

nj

)
. (2.2)

Also, the number of ways of getting x distinct captures from N animals is simply(
N

x

)
. If we now, without loss of generality, rearrange the animals such that the x

captured animals are ordered first, we get K = A(x,n, R) ⊆ A(N,n, R) as the

total number of ways that we can choose the samples from the x + R observed

animals.

We now need to find the total number of selections from K where all x animals

are seen at least once. Let ω denote a subset of {1, 2, . . . , x} and let Aω be such

that when i ∈ ω the ith of these x individuals is not seen in any of the t samples.

Let n(Aω) denote the number of selections from A(x,n, R) that have the property

Aω. The inclusion-exclusion principle gives the number of combinations in K in

which all x animals are caught at least once as

A(x,n, R) − n(A{1})− n(A{2})− . . .

+ n(A{1,2}) + n(A{1,3}) + . . .

− n(A{1,2,3})− . . .

= A(x,n, R)−
(
x

1

)
n(A{1}) +

(
x

2

)
n(A{1,2})− . . .

= x!a(x,n, R), (2.3)
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where

a(x,n, R) =
1

x!
∆x [A(N,n, R)]N=0

=
1

x!

x∑
k=0

(−1)k
(
x

k

) t∏
j=1

(
R+ x− k

nj

)
, (2.4)

and where

∆x [f(t)]ω=0 =
x∑
k=0

(
x

k

)
(−1)kf(x+ t− k) (2.5)

is the xth forward finite difference (x = max
j=1,...,t

(nj −R, 0), . . . ,min(N, z)), eval-

uated at ω = 0. Effectively this generalises Pathak (1964) to include plants. It

follows that the probability of X conditional on the njs is given by:

p(x|n) =
(N)x a(x,n, R)

A(N,n, R)
, (2.6)

where (N)ν = N(N − 1)(N − 2) . . . (N − ν + 1) is a truncated factorial and X

is defined between x = max
j=1,...,t

(nj −R, 0), . . . ,min(N, z).

This is of the form of a factorial series distribution, or FSD, with series function as

defined by Berg (1974), and implies the existence of a unique unbiased estimator

of N , which is given in §2.3. As this probability distribution is of closed form,

with a single unknown parameter, it is possible to calculate the moments of an

Mfp estimator exactly, without the need for simulation. Some such moments will

be given in §2.5.

2.3 Estimators

2.3.1 Maximum Likelihood Estimator for Mfp

Using (2.6) we can determine the maximum likelihood estimate for model Mfp,

since we have:

L(N ;x) ∝ (N)x
A(N,n, R)

.
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Figure 2.1: An example log-likelihood plot for a model Mf trial with
n={10,10,10,10,10}, R = 0 and x = 20 (given in red when the Mf MLE esti-
mate is 20) and x = 40 (given in green, where the Mf MLE estimate is 89). Both
plots have the arbitrary starting value of -120.

Taking logs of both sides gives the log-likelihood function under Mfp as:

`(N ;x) =
x−1∑
i=0

log(N − i)− log

 t∏
j=1

(
N +R

nj

)+ c1

=
x−1∑
i=0

log(N − i)−
t∑

j=1

log
[
(N +R)nj

]
+ c2

=

x−1∑
i=0

log(N − i)−
t∑

j=1

nj−1∑
i=0

log(N +R− i) + c3 (2.7)

where c1, c2 and c3 are constants. From here, we use the fact that the likelihood

is unimodal (c.f. Goudie & Gormley (in submission) or see Appendix A), and

seek to find its maximum value. Figure 2.1 gives a plot of (2.7) for a trial with

n = {10, 10, 10, 10, 10} and no plants present. Plotted are log-likelihood functions

for two possible values of x(= 20 and 40), which show the shift in the mode as x

increases. The log-likelihood remains unimodal, however.

No closed-form solution exists for this except for when t = 2, so a recursive

method is used to determine the maximum likelihood estimate N̂MLE of N . This is
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given as the largest ℵ ∈ {x, x+ 1, x+ 2, . . .} such that L(ℵ;x) > L(ℵ− 1;x), or:

log(ℵ)− log(ℵ − x) >

t∑
j=1

[log(ℵ+R)− log(ℵ+R− nj)]

log

(
ℵ
ℵ − x

)
> log

{
(ℵ+R)t∏t

j=1(ℵ+R− nj)

}

⇐⇒ ℵ
t∏

j=1

(ℵ+R− nj) > (ℵ − x)(ℵ+R)t. (2.8)

The maximum likelihood estimate is tested in §2.5 under various scenarios.

Profile likelihood confidence intervals can be calculated relatively easily for model

Mfp, as the profile (log-)likelihood is equal to the (log-)likelihood in this model, as

there is only one parameter. Thus, a confidence interval can be calculated without

assuming normality, allowing non-symmetric intervals.

Let `(N̂MLE) be the value of the profile log-likelihood evaluated at N̂MLE and `(N)

be the value of the profile log-likelihood evaluated at N ∈ {x, x + 1, x + 2, . . .}.
Thus, we have

W (N) = 2
[
`(N̂MLE)− `(N)

]
·∼· χ2

1. (2.9)

For a 95% confidence interval we use the fact that χ2
1;0.05 = 3.84 to find the lower

and upper tail values.

2.3.2 Generalised Pathak estimator

Pathak’s (1964) estimator was designed to be unbiased for Mf but is here adapted

to model Mfp. The results of Berg (1974) show that, under Mfp the estimator

Ñ(x,n, R) = x+
a(x− 1,n, R)

a(x,n, R)
(2.10)

is an unbiased estimator of N when z ≥ N . It is of interest to see how the gen-

eralised Pathak estimator performs when this condition fails. This is shown in

§2.5.1.

The generalised Pathak estimator (2.10) can be shown to be the minimum vari-

ance unbiased estimator under model Mfp by noticing the equivalence of (2.10) to

Berg’s (1974) equation (2.14), and then using the results therein.

Pathak (1964, p. 79) states that his estimator is “difficult to compute” unless n1 =

n2 = . . . = nt = 1 and t ≤ 50. The difficulty lies in the computation of the

a-coefficients, (2.4). Computation of the a-coefficients becomes increasingly diffi-

cult as the population size increases, as the terms of the coefficient can become too

large for some computer programs to handle. Computation can be made simpler
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by using a recursive formula for the a-coeffiicients, (2.4), which was given by Berg

(1976, eq. (2.3)) for the R = 0 case and generalised here to the plant-capture case.

We begin by defining n′ = (n1, . . . , nt−1) and writing (2.6) as

p(x|n) =
x∑
ν=0

p(x− ν|n′)

(
R+ x− ν
nt − ν

)(
N − (x− ν)

ν

)
(
N +R

nt

) , (2.11)

for x = max
j=1,...,t

(nj − R, 0), . . . ,min(N, z). Setting (2.11) equal to (2.6) and rear-

ranging for a(x,n, R) gives

a(x,n, R) =
1

(N)x

t−1∏
j=1

(
N +R

nj

) x∑
ν=0

p(x−ν|n′)
(
R+ x− ν
nt − ν

)(
N − (x− ν)

ν

)
.

(2.12)

Observing that

p(x− ν|n′) =
(N)x−νa(x− ν,n′, R)

A(N +R,n′, R)

and simplifying (2.12) gives

a(x,n, R) =

x∑
ν=0

1

ν!

(
R+ x− ν
nt − ν

)
a(x− ν,n′, R). (2.13)

Berg’s (1976, eq. (2.4)) can be similarly generalised to the plant-capture case by

firstly writing (2.6) as

p(x|n) =
R+ x− (nt − 1)

N +R− (nt − 1)
p(x|n′′)+

N − x+ 1

N +R− (nt − 1)
p(x−1|n′′), (2.14)

for x = max
j=1,...,t

(nj − R, 0), . . . ,min(N, z), n′′ = (n1, . . . , nt − 1) and where

n′′ = n′ if nt = 1. Setting (2.14) equal to (2.6), rearranging for a(x,n, R) and

simplifying gives

a(x,n, R) =
R+ x− (nt − 1)

nt
a(x,n′′, R) +

1

nt
a(x− 1,n′′, R). (2.15)

To compensate for the difficulties in calculating his estimator, Pathak (1964, p. 79)

also gives an approximation to his estimator, (2.10), using a ratio of what he calls

differences of zeroes, given in Pathak (1961). The Pathak approximation, ÑPA, is

defined as

ÑPA =
Cx(z + 1)

Cx(z)
, (2.16)
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where the differences of zeroes are defined as

Cx(z) = xz −
(
x

1

)
(x− 1)z + . . . (−1)x−1

(
x

x− 1

)
= x!S(z, x), (2.17)

where S(z, x) is the Stirling number of the second kind with arguments z and x,

given by

S(z, x) =
1

x!

x∑
k=0

(−1)k
(
x

k

)
(x− k)z.

The improved computational power now available, however, means that the gener-

alised Pathak estimator, (2.10), can be computed for non-unitary numbers of ani-

mals caught in each sample. The approximate estimator (2.16) is compared to the

generalised Pathak estimator (2.10) below.

2.3.3 The Mp conditionally unbiased estimator

The generalised Pathak estimator was shown to be the MVUE under model Mfp,

where there is only one sufficient statistic,X . In modelMp, there are two sufficient

statistics, X and Z. This model is the focus of the next chapter. However, the Rao-

Blackwellised Pathak estimator under model Mp gives the conditionally unbiased

estimator (CUE) under model Mp. This Mp CUE is used here in a model outside

of that for which it was derived. A detailed derivation will be given in the next

chapter, but the estimator is given as

Ñc = x+
G(z, x− 1, t, Rt)

G(z, x, t, Rt)
, (2.18)

where

G(z, x, t, Rt) =
1

x!
∆x [(Rt+ ωt)z]ω=0

=
z!

x!

x∑
k=0

(−1)k
(
x

k

)(
Rt+ xt− kt

z

)
. (2.19)

The G(z, x, t, Rt) coefficients are called the Gould-Hopper numbers (Gould &

Hopper 1962).

This Rao-Blackwellised Pathak estimator was compared with (2.8) and (2.10), and

the results are given in §2.5.
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2.4 Computation

Under model Mfp it is possible to compute moments of the above estimators ex-

actly, as the probabilities at all points in the support of the sufficient statistic,X , can

be computed relatively simply. The first moment, the mean or expected value, is

calculated by multiplying the particular estimator’s value at x ∈ X with p(X = x),

(2.6), and summing over all x ∈ X .

Results are given below of some computation carried out, where the assumption is

that the same number of animals are caught in each sample. Estimates are given

for trials with fixed population size, N (= 10, 50 or 100), both with and without

the addition of a fixed number of plants, R (= 0, 5, 10or15). For each choice ofN

and R, estimates are generated for almost every possible trial outcome, from 0 to

N captures in each sample. These are plotted on graphs, with the true population

and the line giving p(z = x) for each trial overlaid.

Also given is some analysis to determine the optimal number of plants that the ex-

perimenter should use. Another comparison made is to evaluate the performance

of the approximation to the Pathak estimator that is given in Pathak (1964) against

the Pathak estimator.

In all of the computations outlined above, the restriction that there must be at least

one recapture in the trial has been imposed on both the generalised Pathak estimator

and the Mp CUE. This assumption was deemed appropriate to allow for a consis-

tent comparison between them and the Mfp MLE, which requires this restriction

in order to have a finite mean. Another restriction imposed on the two non-MLE

estimators is to round their estimates to the nearest integer. This restriction is again

to allow for a fairer comparison between all three estimators.

2.5 Results

The results section is broken down into several parts. Subsection 2.5.1 attempts to

establish the optimal estimator under model Mfp. Subsection 2.5.2 then seeks to

provide evidence for the optimal number of plants to improve the mean population

point estimates for each estimator. Subsection 2.5.3 compares the Pathak estimator

(2.10) (with R = 0) with its approximation (2.16), as given in Pathak (1964).
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Figure 2.2: Plot of the generalised Pathak (red), Mfp MLE (blue) and Mp CUE estimates against the number of animals caught in each sample when
N = 10 and R = 0, under model Mf . Overlaid is the true population size and the probability that z = x for each trial (in black), which uses the
right-hand axis.

22



Figure 2.3: Plot of the generalised Pathak (red), Mfp MLE (blue) and Mp CUE estimates against the number of animals caught in each sample when
N = 10 and R = 10, under model Mfp. Overlaid is the true population size and the probability that z = x for each trial (in black), which uses the
right-hand axis.
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Figure 2.4: Plot of the generalised Pathak (red), Mfp MLE (blue) and Mp CUE estimates against the number of animals caught in each sample when
N = 50 and R = 0, under model Mf . Overlaid is the true population size and the probability that z = x for each trial (in black), which uses the
right-hand axis.
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Figure 2.5: Plot of the generalised Pathak (red), Mfp MLE (blue) and Mp CUE estimates against the number of animals caught in each sample when
N = 50 and R = 10, under model Mfp. Overlaid is the true population size and the probability that z = x for each trial (in black), which uses the
right-hand axis.

25



Figure 2.6: Plot of the generalised Pathak (red), Mfp MLE (blue) and Mp CUE estimates against the number of animals caught in each sample when
N = 100 and R = 0, under model Mf . Overlaid is the true population size and the probability that z = x for each trial (in black), which uses the
right-hand axis.
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Figure 2.7: Plot of the generalised Pathak (red), Mfp MLE (blue) and Mp CUE estimates against the number of animals caught in each sample when
N = 100 and R = 10, under model Mfp. Overlaid is the true population size and the probability that z = x for each trial (in black), which uses the
right-hand axis.
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2.5.1 Optimal estimator

From Figures 2.2–2.7 it can be seen that the expected value of theMfp MLE has the

steepest gradient when starting at the origin, having an expected value larger than

both of the other estimators when each nj is small. However, it is also evident that

this estimator, for at least 10% of the trials plotted, has an expected value that over-

estimates the true population, tending towards and then oscillating around the true

population size. This is an undesirable feature of the Mfp MLE, as overestimation

in practice can give falsely high predictions of abundance, which may understate

the severity of population decline, for example.

It can be seen from Figures 2.2–2.7 that the expected values of the generalised

Pathak estimator do not (within rounding) overestimate the true population size for

any Z or n that has been modelled. It also provides almost unbiased estimates for

most sample sizes modelled. Figures 2.2–2.7 also show that the condition z ≥ N

can be relaxed, as the estimator is unbiased for some trials when this condition is

not satisfied. Although the initial gradient is not quite as steep as the Mfp MLE for

very small sample sizes, this difference is small. It can also be seen that the gradi-

ent for the generalised Pathak estimator is slightly greater than that of the Mp CUE.

The mean of the Mp CUE has the shallowest gradient of the three estimators and it

lags behind the generalised Pathak estimator in tending towards the true population

size in each trial. It is evident, however, that mean estimates tend towards the true

population size for many of the constant sample size trial scenarios as the sample

sizes increase.

In Figures 2.6 and 2.7 the difference between the generalised Pathak estimator and

theMp CUE is particularly pronounced, with theMp CUE approaching the true pop-

ulation size, N = 100, but struggling to attain it exactly. The generalised Pathak

estimator, however, reaches 100 at {nj = 8, j = 1, . . . , t} when R = 0 and with

slightly fewer captures in each sample when R = 10. Also, once the generalised

Pathak estimator mean estimate reaches N , then it rarely deviates from producing

an unbiased expected value.

For all three population sizes simulated, it is evident that the gradient is steeper for

all three estimators when 10 plants are included than when no plants are present.

For the generalised Pathak estimator and theMp CUE this always leads to improved

mean estimates, but for the Mfp MLE it can lead to a trial producing an overesti-

mated mean rather than an underestimated mean. Thus, for theMfp MLE care must

be taken to ensure that a sufficient number of animals are caught in each sample,

although it is not straightforward to establish in practice what this number should

be. This problem can be avoided by using either the generalised Pathak estimator

or the Mp CUE.
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N=50
R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (2,2,2,2,2) 12.2512 11.0217 17.9132 16.9395 11.2850 10.1090

10 (2,2,3,2,2) 40.4810 21.1034 54.2548 31.9683 39.0576 20.5913
N=50

R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (5,5,5,5,5) 49.5716 19.5460 56.7757 25.1724 47.9544 18.9295

10 (6,6,6,6,6) 50.0304 15.3832 53.0356 17.4893 49.3536 15.1237
N=50

R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (10,10,10,10,10) 49.8815 7.8766 50.4909 8.4990 49.2826 7.8776
5 (11,11,11,11,11) 49.9988 7.5416 50.2682 7.7002 49.3870 7.2453

10 (12,12,12,12,12) 50.1829 7.1349 50.1862 7.2172 49.5874 6.9276
N=50

R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (25,20,15,10,5) 49.9656 3.9198 49.9497 3.9562 51.2572 4.2806
5 (30,22,15,11,4) 50.3090 3.8586 49.4962 3.8165 52.3108 3.9296

10 (35,25,15,10,5) 50.1763 3.7281 49.5065 3.4624 52.3231 3.6908
N=50

R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (25,25,25,25,25) 49.9570 1.5709 49.4269 1.1689 49.9570 1.5709

10 (30,30,30,30,30) 49.9595 1.5869 49.4255 1.1902 49.9595 1.5869

Table 2.1: Expected values from 1000 realisations of the estimators under various
Mfp scenarios for a population, N=50.

N=100
R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (5,5,5,5,5) 78.3102 36.3619 89.6988 36.2476 75.6684 34.9340

10 (6,5,6,5,6) 98.6520 44.5782 98.9818 26.8597 97.1603 43.6165
N=100

R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (10,10,10,10,10) 100.0925 28.6556 103.7340 25.3362 98.4572 28.1246

10 (11,11,11,11,11) 100.0481 23.7294 102.9997 23.2279 98.9709 23.4471
N=100

R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (20,20,20,20,20) 99.9725 11.2315 100.5807 11.6493 99.4046 10.9806
5 (21,21,21,21,21) 100.0139 10.7849 100.3271 11.1283 99.4741 10.7276

10 (22,22,22,22,22) 99.9968 10.5694 100.2684 10.6824 99.4734 10.3374
N=100

R n G. Pathak Std Dev. Mfp MLE Std Dev. Mp CUE Std Dev
0 (25,25,25,25,25) 99.9771 7.9520 99.9827 8.1174 99.5432 8.0327

10 (30,30,30,30,30) 99.9728 6.7360 99.8387 6.7338 99.7129 6.6646

Table 2.2: Expected values from 1000 realisations of the estimators under various
Mfp scenarios for a population, N=100.
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Tables 2.1 and 2.2 select just a few fixed sample size trials and compare the three es-

timators’ means and standard deviations, with and without the inclusion of plants.

Some adjustment is made to the sample sizes when plants are included to ensure

that the expected number of target animals captured in the trial is comparable to

the corresponding no-plant case. The effect of including plants is evident most

strongly by comparing the first two trial rows in each table. In Table 2.1 it can

be seen that the mean estimates from all three estimators more than treble in size

with the inclusion of 10 plants, from an initial estimate that is far too low for each

estimator. The generalised Pathak and Mp CUE still have mean estimates that un-

derestimate N , but these means are much improved. The Mfp MLE increases from

a mean estimate that underestimatesN by about 65% when no plants are present to

a mean estimate which overestimates N by about 10% when 10 plants are present.

It can be seen that including plants mostly reduces the sample standard deviations,

but there are some exceptions. In the first two rows of each table the sample stan-

dard deviation for all three estimators increases when 10 plants are included. This

can be explained, however, by the fact that the mean estimates increase by as much

as they do. It is also evident that in the other trials tabulated, the inclusion of plants

usually decreases the sample standard deviation, but the magnitude of this differ-

ence decreases as the number of captures in each sample increases. The exception

to this is the comparison of the last two trials given in Table 2.1, where the sam-

ple standard deviation actually increases for all three estimators when plants are

included. This may be a result of simulation error due to the fact that the initial

sample standard deviation is very low compared to the mean estimate.

It is difficult to determine the optimal estimator based on the sample standard devi-

ations, as no one estimator has a consistently lower sample standard deviation than

the others.

When comparing Tables 2.1 and 2.2 it appears that there is a similar pattern in both

tables, suggesting that the results are independent of N . This is a desired property,

as it is better for the practitioner if the optimal estimator is not a function of the

unknown population size, N .

It is concluded here, however, that the generalised Pathak estimator be the pro-

posed estimator under model Mfp.

Also given in Table 2.1 is a set of three trials where there is an unequal number

of captures in each sample. This is not explored any further in this thesis, but

these trials suggest that the Mp CUE may not perform as well when there is an

unequal number of animals captured in each sample. This unequal sample size

element may replicate heterogeneity amongst the animals, which is not captured in

the model Mp conditionally unbiased estimator.

The three trials also prove inconclusive when trying to determine whether adding

plants improves estimation. This suggests that further work is required in order to
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extrapolate the conclusions given above to the unequal sample sizes case.

2.5.2 The optimal number of plants

When adding plants, the two aims are to add as few plants as possible to satisfy

the assumptions required more easily but to add as many planted individuals as re-

quired to make a worthwhile improvement in estimation. The previous subsection

used 10 plants for the trials where there was a non-zero number of plants. That

choice is now examined.

Given below is an illustration of how the insertion of different numbers of plants

improve the generalised Pathak estimator in the cases whenN = 50 andN = 100.

In each case, there are five samples in each trial (t = 5). It would be beneficial to

the practitioner to get a good population size estimate with as few samples as pos-

sible, as this would be less expensive, time-wise and financially, and less invasive

for the species being targeted.

With the generalised Pathak estimator it was noted above that the estimator pro-

duced almost unbiased mean estimates for most of the range of sample sizes tried.

Improvement was needed at just the left-hand end of the plots, where there were

few captures in each sample. Thus, for populations N = 50 and N = 100 the

range 0, 1, . . . , N5 captures in each sample is plotted in Figures 2.8 – 2.9 to illus-

trate the effect of different numbers of plants.

Firstly, for N = 50, Figure 2.8 gives the generalised Pathak estimate for the range

when there are no captures in each sample to when there are 10 captures in each

sample. At the higher end, it is clear that there is no improvement required but the

lower end shows that, for each 5 additional plants included, the mean estimated

population size is much improved from the previous number of plants. Table 2.3

illustrates the lower end of Figure 2.8, giving the expected value of the generalised

Pathak estimator for the lower end of the plot. The largest increase in mean esti-

mate is seen around {nj = 2, j = 1, . . . , t} and {nj = 3, j = 1, . . . , t}, where

the generalised Pathak mean estimate when R = 0 is still poor but the inclusion of

plants begins to give a reasonable mean. With R = 10 and R = 15 the expected

value is within 10% of N = 50 from {nj = 3, j = 1, . . . , t} onwards. Thus, as

fewer plants are deemed more desirable, the recommendation is to use 10 plants,

as was done above. However, it is evident that adding only 5 plants can improve

the quality of estimation quite considerably.

For N = 100, Table 2.4 summarises the left-hand end of Figure 2.9, which gives

the expected values of the point population estimate from the generalised Pathak

estimator for the trials where there are up to 20 captures in each sample. Again,
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Figure 2.8: Plots of the expected value of the generalised Pathak estimator when N = 50 for the equal sample sizes case and varying R.
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Figure 2.9: Plots of the expected value of the generalised Pathak estimator when N = 100 for the equal sample sizes case and varying R.
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Number of plants
Number of animals caught in each sample

nj = 1 nj = 2 nj = 3 nj = 4 nj = 5

R = 15 20.38 42.80 49.16 50.00 50.13
R = 10 14.00 37.26 47.67 49.77 50.00
R = 5 6.99 27.20 43.50 49.18 50.06
R = 0 1.28 12.25 31.74 45.50 49.57

Table 2.3: The expected value of the generalised Pathak estimator when N = 50,
t = 5 and a varying number of plants and sample size.

Number of plants
Number of animals caught in each sample

nj = 1 nj = 2 nj = 3 nj = 4 nj = 5

R = 15 16.87 52.97 80.79 94.29 98.73
R = 10 10.21 39.19 69.09 88.17 96.69
R = 5 4.39 22.93 51.28 76.45 91.48
R = 0 0.66 7.69 26.93 54.34 78.31

Table 2.4: The expected value of the generalised Pathak estimator when N = 100,
t = 5 and a varying number of plants and sample size.

when {nj = 4, j = 1, . . . , t}, adding 15 plants results in an expected value within

10% of N . If an additional animal is caught in each sample, then all three trials

with the inclusion of plants have means within 10% of N . The trial where R = 0

only has an expected value of 78.31, however. Thus, the case for using plants is

quite strong in this situation.

An interesting question posed by this case is whether the addition of 5 more plants

improves point population estimation better than the capture of an additional ani-

mal in each sample. This question will not be answered in this thesis.
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2.5.3 Comparing the Pathak estimator with its approximation

Another analysis carried out here is to compare the Pathak estimator ((2.10) with

R = 0) with the approximation (2.16) given in Pathak (1964, p. 79). Pathak

states in his paper that his estimator (2.10) is difficult to compute, except when

n1 = n2 = . . . = nt = 1. The above sections have shown that the generalised

Pathak estimator can now be computed for the whole possible range (when the

sample sizes are constant) of nj ∈ {0, x+ R}, j = 1, . . . , t with accuracy. Com-

putation can still prove troublesome, however, so it is of interest to see how the

approximation performs.

As noted in Pathak (1964, p. 79), both estimators (2.10) and (2.16) are equal when

n1 = n2 = . . . = nt = 1, as shown in Figures 2.10–2.12. It is evident, however,

that the approximation then tends to overestimate the true population size as the

number of captures in each sample increases, leading to estimates outside of one

standard deviation of the Pathak estimator, (2.10). As the generalised Pathak esti-

mator is almost unbiased for the range of values calculated, a narrow confidence

interval was used for the comparison. It can be seen that, as N increases, the range

which the Pathak approximation is inside the generalised Pathak confidence inter-

val gets smaller. The Pathak approximation does, however, give estimates in only a

few seconds at most for the population and sample sizes in the trials here, whereas

the generalised Pathak estimator can take slightly longer as N increases.

Thus, the Pathak approximation estimator, (2.16), cannot be recommended for any-

thing other than offering an upper bound to N , except when the sample sizes are

small.
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Figure 2.10: Plots of the expected value of the generalised Pathak estimator when N = 10 and R = 0 with ± 1 standard deviation of the mean shaded
in light blue, along with the Pathak approximation overlaid.
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Figure 2.11: Plots of the expected value of the generalised Pathak estimator when N = 50 and R = 0 with ± 1 standard deviation of the mean shaded
in light blue, along with the Pathak approximation overlaid.
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Figure 2.12: Plots of the expected value of the generalised Pathak estimator when N = 100 and R = 0 with ± 1 standard deviation of the mean
shaded in light blue, along with the Pathak approximation overlaid.
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2.6 Summary

The strongest conclusion that can be drawn from this chapter is that adding plants

to the population before beginning sampling has some benefits. The improvement

in estimation that comes from the additional information gained from the plants

can be large, and so should be recommended if the effort is not too great and the

behavioral assumptions of including plants is met. From Tables 2.3 and 2.4, it can

be seen that adding plants can, in cases where few captures are made in each sam-

ple, give the generalised Pathak estimator an expected value much greater than the

corresponding estimator in a trial without plants present.

The graphs given in §2.5.1 also illustrate that the Mfp MLE is prone to overesti-

mating the true population for some values of Z, which is an undesirable quality

in ecological circumstances. This overestimation problem is not evident in either

the generalised Pathak estimator or the Mp CUE, leading to these estimators being

preferred over the Mfp MLE under model Mfp conditions.

Also shown in this chapter is the justification for using 10 plants, although there is

evidence to suggest that R ≥ 5 should also improve estimation over the no-plants

case.

One other point illustrated in this chapter is the poor performance of the Pathak

estimator approximation, (2.16), which is guilty of overestimating the true popula-

tion size in most of the trials modelled here.

Thus, it is the recommendation of this chapter that the generalised Pathak estima-

tor, (2.10) should be used under model Mfp.

39





Chapter 3

ESTIMATION OF POPULATION

SIZE UNDER HOMOGENEITY

3.1 Introduction

Of the Otis-class of models (Otis et al. 1978) the homogeneous model, M0, is the

simplest model and has been extensively covered in the literature. A novel aspect

will be to apply a Pathak’s estimator, which was derived under modelMf , to model

M0. This estimator will be compared to the Pathak estimator Rao-Blackwellised

under M0 to give the conditionally unbiased estimator under M0.

Model Mp, on which there is less literature, will be covered here also. The gen-

eralised Pathak estimator given above will be compared with the conditionally

unbiased estimator given by Ashbridge (Ashbridge (1998), Goudie & Ashbridge

(2005)), and some results stated to determine whether the inclusion of plants offers

improved population estimation.

3.2 Probability Theory

For the probability theory we summarise §1 of Goudie et al. (2007). This chapter

mainly deals with model Mp explicitly, but results for the non-plant model M0 can

be derived by letting R = 0 wherever it appears. Thus, both mark-recapture and

plant-capture distributions are given here.

For finding the probability of capturing z animals, given that the probability of cap-

turing any animal in any sample is p, one naturally chooses a binomial distribution

p(Z = z|N, p) =

(
Nt+Rt

z

)
pz(1− p)Nt+Rt−z, z ∈ {0, 1, . . . , Nt+Rt}

(3.1)
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since each of theNt+Rt elements ofD (c.f. (1.4)) gives the outcome of a Bernoulli

trial in which an animal is captured. These probabilities are then scaled to sum to

unity for all possible values of z ∈ (0, . . . , Nt + Rt). It is then shown that the

probability of capturing x distinct animals, given that z are captured in total, is

given by

p(x|Z = z,N, p) =
(N)xG (z, x, t, Rt)

(Nt+Rt)z
, (3.2)

where x ∈ {max{nj}, . . . ,min(N, z)} and G(z, x, t, Rt) is as defined in (2.19).

The Gould-Hopper numbers can also be calculated using a triangular recurrence

relation, given by

G(z + 1, x, t, Rt) = (xt+Rt− z)G(z, x, t, Rt) + tG(z, x− 1, t, Rt) z = 0, 1, . . . ;

x = 0, 1, . . .

(3.3)

where

G(z, 0, t, Rt) = (Rt)z z = 0, 1, . . .

G(0, x, t, Rt) = 0 x = 1, 2, . . . . (3.4)

When R = 0, this Gould-Hopper number simplifies to a C-number, as given by

Charalambides & Singh (1988), which is defined as

C(z, x, t) =
1

x!

x∑
ν=0

(−1)ν
(
x

ν

)(
t(x− ν)

)
z

=
1

z!
∆x [(Nt)z]N=0 . (3.5)

From (3.1) and (3.2) we get the joint distribution of z and x to be

p(z, x|N, p) =
(N)x
z!

G(z, x, t, Rt)pz(1− p)Nt+Rt−z. (3.6)

It can be seen from this that, since the unknown parameters (N, p) only appear in

terms along with the parameters (z, x), the variables Z and X are the sufficient

statistics under models M0 and Mp.

There is a nice result given by Ashbridge & Goudie (2009, p. 3), analogous to

Goudie & Ashbridge (2005, p. 1547) under model M0, which gives (3.6) as a

recurrence relation under model Mp. The joint probability function of z and x,

conditional on N and p, satisfies the recursion

p(z, x) =

[
(xt+Rt− z + 1)p(z − 1, x) + (N − x+ 1)tp(z − 1, x− 1)

] [
p

z(1− p)

]
(3.7)
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with starting conditions

p(z, 0) =

(
Rt

z

)
pz(1− p)Nt+Rt−z for z = 0, . . . , Rt

and

p(x, x) =

(
N

x

)
px (1− p)Nt+Rt−x x = 1, . . . , N

with

p(z, x) = 0 x > z > 0.

This recurrence relation form is useful when the expected values of various esti-

mators are sought, since the computational time is much reduced and reduces the

need for simulation. This is shown in the next section.

3.3 Estimators

Various estimators have been tested on M0 and Mp scenarios. The proposed esti-

mator in this chapter is an estimator generalised from an estimator of Pathak (1964)

that is unbiased, with minimum variance, under modelMf , under the condition that

the total number of animals captured over all samples exceeds the total population

size.

Another estimator that was considered was an estimator derived by Goudie & Ash-

bridge (2005), that was shown to be conditionally unbiased in the M0 case when

z ≥ N , and so takes the name Conditionally Unbiased Estimator.

The most commonly used estimator under model M0 is the M0 MLE, derived by

maximising (3.6). This is not a closed-form estimator, since it seeks to compute

the optimal value for N̂ amongst all permissible values, which come from the set

N = {x+ 1, x+ 2, . . .}. It also requires the condition that z > x if the estimator

is to remain finite, since in the case when z = x, the likelihood is monotonically

increasing through N , and so N̂ is infinite.

The purpose of this chapter is to provide a comparative study between the com-

monly used estimators and the under-used generalised Pathak estimator, and also

to see how the inclusion of plants affects the results in terms of bias and standard

deviation.

3.3.1 Generalised Pathak Estimator

It was shown in §2.5 that the generalised Pathak estimator had a lower bias than

theMfp maximum likelihood estimator under modelMfp. The generalised Pathak

estimator also has the benefit of being a closed-form estimator under both model
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Mfp and Mp, whereas the corresponding MLEs have no such closed form.

As was given in §2.3.2 the generalised Pathak Estimator has the form

Ñ(x,n, R) = x+
a(x− 1,n, R)

a(x,n, R)
, (3.8)

where a(x,n, R) is as given in (2.4).

Under model Mp n is a random sample with each animal having the same proba-

bility of capture over all samples.

3.3.2 Mp Conditionally Unbiased Estimator

The generalised Pathak estimator was shown to be the MVU estimator under model

Mfp, where there is only one sufficient statistic, X . As shown above, in model Mp

there are two sufficient statistcs, X and Z. The generalised Pathak estimate (3.8)

is here Rao-Blackwellised under Mp, giving the conditionally unbiased estimator

under model Mp (c.f. (Ashbridge & Goudie 2009)). The Rao-Blackwell theorem

is stated first:

Rao-Blackwell Theorem: Let θ̂ be an estimator of θ with E[θ̂2] <∞. Now let T

be sufficient for θ and θ∗ = E[θ|T ]. Then

E[θ∗ − θ]2 ≤ E[θ̂ − θ]2 ∀ θ.

�

The generalised Pathak estimator is Rao-Blackwellised over the set {n{z,x}|n1 +

. . . + nt = z, ni ≤ x for i = 1, . . . , t}, where the njs here are assumed to be

random:

E[N∗|Z,X] = x+
∑

n∈nz,x

a(x− 1,n, R)

a(x,n, R)

z!a(x,n, R)

G(z, x, t, Rt)

= x +
z!

G(z, x, t, Rt)

∑
n∈nz,x

1

(x− 1)!

x−1∑
k=0

(−1)k
(
x− 1

k

) t∏
j=1

(
R+ x− 1− k

nj

)

= x +
z!

(x− 1)!G(z, x, t, Rt)

x−1∑
k=0

(−1)k
(
x− 1

k

) ∑
n∈nz,x

t∏
j=1

(
R+ x− 1− k

nj

)

= x +
z!

(x− 1)!G(z, x, t, Rt)

x−1∑
k=0

(−1)k
(
x− 1

k

)(
t(R+ x− 1− k)

z

)
= x +

G(z, x− 1, t, Rt)

G(z, x, t, Rt)
.
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Thus, we have

ÑU (z, x) =

 x+

[
G(z, x− 1, t, Rt)
G(z, x, t, Rt)

]
z = 1, 2, . . . ; x = 1, . . . , z;

0 x = 0; z = 0, 1, . . . , Rt.
(3.9)

This estimator is hereby referred to as the model Mp Conditionally Unbiased Es-

timator, or Mp CUE, proposed by Ashbridge & Goudie (2009). The estimator was

shown in Goudie & Ashbridge (2005) to be unbiased under M0, under the condi-

tion that the total number of captures, z, exceeds N . It has the benefit of being

a closed-form estimator, with a probability distribution that can be evaluated via

a recurrence relation or by closed-form calculation. Thus, there are two possible

methods that can be employed in calculating Mp CUE estimates, namely analytical

and via simulation approximation. Exact computation is achieved by multiplying

ÑU (z, x) with the corresponding p(z, x), as given in (3.6), for each Z = z and

X = x and summing over all (z, x).

Alternatively, simulation can be used for calculating the moments, using the recur-

sive estimate ÑU found by rearranging

ÑU (z, x)− x
ÑU (z − 1, x)− x

=
tÑU (z − 1, x− 1) +Rt− z + 1

tÑU (z − 1, x) +Rt− z + 1
. (3.10)

In order to start the recursion some boundary conditions are required. These can be

determined from the Gould-Hopper numbers triangular recurrence relation, (3.3),

with boundary conditions given by (3.4), giving:

ÑU (z, x) =

x x = 1, . . . , N ; z = (R+ x− 1)t+ 1, . . . , (R+ x)t

0 x = 0; z = 0, . . . , Rt

ÑU (z, z) =
z(2Rt+ tz − z + t+ 1)

2t
for z = 0, 1, . . . .

Following Goudie & Ashbridge (2005), what was actually used in the simulation

was N̂U where N̂U = [ÑU + 0.5] and the square brackets denote the integer part.

This is done to provide a fairer comparison with the Mp MLE, as the MLE can only

be integer valued, so this condition is also added to the non-MLE estimators.

3.3.3 Mp Maximum Likelihood Estimator

As with model Mfp (c.f. p.2.3.1) there is not a closed-form estimator for the Mp

MLE and it also has the condition that z must exceed x in order for the maximum to
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remain finite. Thus, we seek the maximum for the likelihood given in §1.6.2. This

is done by differentiating (3.6) with respect to p and setting equal to zero. Hence,

we find that p is maximised when

p̂ =
z

t(N +R)
.

Thus, similar to what Otis et al. (1978, p. 105) did under model M0, we substitute

this into (3.6) to get the Mp MLE N̂ of N to be solution of

`(N̂ , p̂|X) = max
NεN

[
ln

(
N !

(N − x)!

)
+ z ln(z)

+ (t(N +R)− z) ln(t(N +R)− z)− t(N +R) ln(t(N +R))

]
, (3.11)

This requires sequential calculations through the range ofN to find the maximum.

This is unhelpful, but Goudie et al. (2007), showed that, for Mp, the profile like-

lihood is unimodal, so iterations can stop once a turning point has been reached.

This goes some way to shortening the computational time involved.

3.4 Mp Computation

3.4.1 Methods

Under Mp, (N, p) is sufficient, and the Mp CUE and Mp MLE are functions of Z

and X . Thus, it is relatively straightforward to produce exact moments for these

estimators. As the generalised Pathak estimator is a function of X and n, however,

producing exact moments is rather more difficult. Thus, in order to compare all

three estimators, simulation is the chosen method.

For each trial given below, 1000 realisations from randomly generated capture his-

tories for a specified set of parameters N , p, R and t are tabulated. The estimator

in widespread use for model M0 is the M0 MLE. Since this requires the condi-

tion z > x, then it was deemed appropriate initially to attach this condition to

all estimators, despite the closed form estimators remaining finite without such a

condition. This allows for a fairer comparison between the estimators. However,

the unconditioned generalised Pathak estimator and the Mp CUE are also given in

Tables 3.1 and 3.2.

The M0 and Mp cases assume that pj = p, a constant, ie, the probability differs

neither between animals nor between samples. Simulation results for three values

of p are given in the Tables below, namely p = 0.05, 0.1 and 0.2.
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3.4.2 Results

Some general results can be stated first. Applying the condition that z be greater

than x on the closed form estimators lowers their mean population estimate in most

cases when R = 0 and t = 5. When estimation under M0 is poor, the performance

of the estimators in terms of mean estimate is improved by the inclusion of plants.

This has the knock-on effect of increasing the sample standard deviation. This is to

be expected since the range of individual estimates has increased. The estimators

are bounded below by x, and so a very negatively biased estimator has only a small

range of possible estimates. By reducing the bias of the estimator, the range of

possible estimates will increase.

Also, it can be seen that the CUE and generalised Pathak estimators track each other

closely, both in terms of mean estimate and sample standard deviation. Also, the

M0 MLE almost always has the highest mean, which results in it also having the

largest standard deviation in almost every trial simulated.

The results for the non-plant homogeneous case, modelM0, are given in Table 3.1.

The Mp MLE and the conditional and unconditional forms of both the CUE and

Pathak estimator all show a large negative bias when p is small, ie, equal to 0.05.

This is rectified to some extent by increasing t.

When N = 10 there is evidence that 10 trials are preferable to 5 unless the capture

probability p = 0.2. The exception to this rule is that, when p = 0.2, the M0 MLE

mean estimate decreases when t is increased from 5 to 10. This decrease, however,

could possibly just be due to simulation error.

When N = 50, increasing t from 5 to 10 improves the means of the estimators

when p = 0.05 quite significantly. However, for p = 0.1 or p = 0.2, the mean

estimates when t = 5 are already satisfactory in many cases. Increasing t in these

cases, however, does still reduce the sample standard deviations by more than 50%.

Thus, there is still a benefit to having more samples, should it be practical to the

practitioner.

The results for the heterogeneous plant-capture case, model Mp, are given in Table

3.2. The first observation is that applying the condition that z > x does not affect

the generalised Pathak estimator and CUE as much as when R = 0. This is as

would be expected, as any planted animals that are caught are contained in Z but

notX . Thus, the more plants that are included, the smaller the probability of having

z = x. Also, when comparing Table 3.2 with Table 3.1, it is evident that including

plants improves estimation in terms of mean estimate and, in most cases, in terms

of the sample standard deviation. The improvement in the mean estimation is most

significant when p is small, and the most significant reduction in sample standard

deviation occurs when p is high. When p = 0.05 the means of the estimators
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N p Estimator
t = 5 t = 10

Mean
Sample

Mean
Sample

std dev. std dev.
Cond. Pathak 3.92 2.30 6.79 3.28

Uncond. Pathak 4.03 3.21 7.26 4.46
0.05 Cond. CUE 3.93 2.28 6.79 3.26

Uncond. CUE 4.03 3.15 7.26 4.43
Mp MLE 4.47 3.29 8.19 5.11

Cond. Pathak 6.60 3.21 9.44 3.06
Uncond. Pathak 7.25 4.29 9.90 3.75

10 0.1 Cond. CUE 6.61 3.20 9.43 3.02
Uncond. CUE 7.23 4.19 9.88 3.69
Mp MLE 7.94 4.91 10.26 4.59

Cond. Pathak 9.23 2.94 9.94 1.49
Uncond. Pathak 9.91 4.11 9.94 1.33

0.2 Cond. CUE 9.25 2.96 9.93 1.48
Uncond. CUE 9.93 4.09 9.94 1.32
Mp MLE 10.10 4.51 9.59 1.70

Cond. Pathak 29.31 13.22 48.64 17.86
Uncond. Pathak 38.85 22.33 48.31 20.58

0.05 Cond. CUE 29.28 13.11 48.59 17.75
Uncond. CUE 38.85 22.18 48.28 20.54
Mp MLE 42.74 24.28 58.14 31.05

Cond. Pathak 47.46 16.93 50.23 8.47
Uncond. Pathak 49.56 22.25 49.89 8.42

50 0.1 Cond. CUE 47.49 16.88 50.24 8.47
Uncond. CUE 49.56 22.17 49.89 8.43
Mp MLE 57.21 30.07 50.93 9.25

Cond. Pathak 49.61 8.31 49.90 2.94
Uncond. Pathak 49.58 8.07 49.95 3.07

0.2 Cond. CUE 49.60 8.26 49.50 2.94
Uncond. CUE 49.59 8.06 49.95 3.07
Mp MLE 50.24 8.99 49.48 2.98

Table 3.1: Mean estimates under modelM0 of population size based on 1000 boot-
strap samples where the condition is whether z = x is permitted or not.
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N p Estimator
t = 5 t = 10

Mean
Sample

Mean
Sample

std dev. std dev.
Cond. Pathak 8.55 6.19 10.02 5.30

Uncond. Pathak 9.41 8.40 10.16 5.40
0.05 Cond. CUE 8.55 6.19 10.02 5.30

Uncond. CUE 9.39 8.38 10.15 5.39
Mp MLE 11.70 10.68 11.09 7.61

Cond. Pathak 9.89 5.31 9.93 2.95
Uncond. Pathak 10.13 5.38 10.02 2.86

10 0.1 Cond. CUE 9.89 5.32 9.92 2.94
Uncond. CUE 10.12 5.37 10.02 2.86
Mp MLE 11.03 7.84 9.74 3.23

Cond. Pathak 10.03 2.93 10.03 1.27
Uncond. Pathak 9.86 2.77 10.04 1.22

0.2 Cond. CUE 10.03 2.93 10.03 1.26
Uncond. CUE 9.86 2.77 10.04 1.22
Mp MLE 9.83 3.22 9.53 1.34

Cond. Pathak 46.81 22.86 50.30 15.38
Uncond. Pathak 48.92 31.55 49.14 15.66

0.05 Cond. CUE 46.82 22.86 50.31 15.38
Uncond. CUE 48.91 31.59 49.14 15.65
Mp MLE 63.03 43.61 53.87 19.47

Cond. Pathak 50.00 16.63 49.73 7.65
Uncond. Pathak 50.39 15.83 50.25 7.50

50 0.1 Cond. CUE 49.98 16.61 49.73 7.64
Uncond. CUE 50.40 15.83 50.25 7.50
Mp MLE 53.74 22.62 49.93 7.97

Cond. Pathak 50.27 7.23 49.78 2.87
Uncond. Pathak 49.82 6.93 50.03 2.84

0.2 Cond. CUE 50.28 7.22 49.78 2.87
Uncond. CUE 49.83 6.93 50.03 2.83
Mp MLE 50.44 7.52 49.36 2.89

Table 3.2: Mean estimates under model Mp of population size, augmented by 10
plants, based on 1000 bootstrap samples where the condition is whether z = x is
permitted or not.
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under M0 are shown to be quite poor, underestimating N by more than 50% when

N = 10. The mean estimates under Mp when p = 0.05 are much closer to N .

3.5 Conclusion

It is shown in Tables 3.1 and 3.2 that the Mp CUE and generalised Pathak estimator

produce very similar estimates for the cases simulated. Due to the nature of sim-

ulation, one cannot analyse the numbers in fine detail and must be more cautious

when drawing conclusions. However, it seems evident that both the generalised

Pathak estimator and the Mp CUE have very similar means and sample standard

deviations for the cases simulated here. The means from both these estimators are

shown to be superior to that of the M0 and Mp MLEs in many of the cases simu-

lated. The M0 MLE is evidently better when p = 0.05 and t = 5, the case where

all estimators are negatively biased, but increasing t to 10 results in a mean over-

estimation when N = 50. The inclusion of plants can equally be seen to result in

the MLE overestimating when p = 0.05. Thus, the Mp MLE is not uniformly better

than the M0 MLE.

In almost all trials, the MLE has a larger standard deviation than the other esti-

mators. This seems intuitive, as the CUE is a Rao-Blackwellised estimator under

models M0 and Mp. The generalised Pathak estimator is the MVUE under models

Mf and Mfp, and the results suggest that it also has a very low standard deviation

under these models.

There is evidence from the comparison of Tables 3.1 and 3.2 that including 10

plants benefits the generalised Pathak estimator and the CUE. Thus, model Mp

is concluded to be more favourable than model M0, and the generalised Pathak

estimator or the Mp CUE recommended for this model.
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Chapter 4

ESTIMATION OF POPULATION

SIZE UNDER TIME-DEPENDENT

CAPTURE PROBABILITIES

4.1 Introduction

The main focus of this chapter is to extend the work that has been carried out on

plant-capture population estimation under homogeneous models to time hetero-

geneous models. Model Mtp assumes that there is homogeneity between all the

animals in any particular sample, but the probability of capture differs between

samples. This type of estimation has been carried out several times in recent years,

most notably in the 1990 US Census Bureau decennial census. This census aimed

to incorporate an estimate of the number of homeless people in the United States

(see Laska, Meisner & Siegel (1988), Laska & Meisner (1993) and Martin et al.

(1997) for more information on the survey).

The technique has been refined and used in the annual Homeless Outreach Popula-

tion Estimate (HOPE) survey (Hopper et al. (2008)). This paper details some of the

difficulties experienced when inserting plants, and illustrates the importance, under

the assumption of capture homogeneity between all individuals, of plants behaving

exactly like their native co-habitants.

The non-plant model, Mt, has had a great volume of literature written about it (see

Buckland et al. (2000, p. 2), Lin & Chao (2005, pp. 94-96) and references therein),

but one of the main goals here is explore the effect that including plants has on the

quality of estimation.

One aim of this chapter is to examine the benefits of model Mtp over model Mt.

Another aim is to examine the performance of the estimator of Pathak (1964) when,

unlike the context for which it was designed, the sample sizes are random. Also of
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interest is to establish whether the computational difficulties of Pathak’s estimator,

that existed in the era of its proposal, are manageable with the computing power

available nowadays.

4.2 Probability Theory

Results for model Mt can be derived from those for model Mtp by letting R = 0.

Model Mtp has t + 1 parameters, namely N, p1, p2, . . . , pt, where pj represents

the capture probability for all N animals for the jth sample, j = 1, . . . , t. Under

this model the number of animals caught in each sample, nj , j = 1, . . . , t, are

independent random variables. Darroch (1958) showed that the probability density

for this model is multinomial with parameters N, p1, . . . , pt. Generalising this to

model Mtp, we get

p(x,n|N,p) = (N)x a(x,n, R)

t∏
j=1

p
nj

j (1− pj)N+R−nj (4.1)

for x = 0, . . . , N and nj = 0, . . . , x, (j = 1, . . . , t), with a(x,n, R) as given in

(2.4).

From (4.1) it can be seen that (x,n) is sufficient for (N,p). It is clear from (4.1)

that, since the ranges of x and n increase with N , this probability space quickly

becomes very large, with the capture matrix D sparsely populated with 1s, making

exact computation of the properties of estimators difficult.

Taking the logarithm of (4.1) gives the multinomial log-likelihood of (N,p) as

`(N, p1, . . . , pt;x, n1, . . . , nt) = ln

(
N !

(N − x)!

)
+

t∑
j=1

nj ln(pj)

+
t∑

j=1

(N +R− nj) ln(1− pj) + const.

(4.2)

This will be used below to calculate the MLE for model Mtp.
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4.3 Bayesian mark-recapture under model Mtp

4.3.1 Introduction

A detailed analysis of Bayesian statistics is not carried out in this thesis. Instead,

the reader is directed to the growing list of Bayesian literature, amongst which are

McCarthy (2007), King et al. (2009) and Link & Barker (2009), books aimed at

ecologists and that assume only knowledge of classical statistical methods.

Under model Mtp classical statistical methods state that if the model has param-

eters (N, p1, . . . , pt), of which inference is made, the data x = (x, n1, . . . , nt) is

collected and used to estimate the fixed parameters. This can be done using the

log-likelihood function, (4.2).

The key distinction with Bayesian statistics is that it does not assume that the pa-

rameters fixed, but rather they have an underlying distribution that is assigned by

the user. This assigned distribution is referred to as the prior distribution, denoted

by π(θ), where θ is the vector of parameters. By multiplying this prior distribu-

tion with the likelihood function, denoted here by f(x|θ), one can get a posterior

distribution of the parameters, given the data x = (x1, . . . , xn), as

π(θ|x) ∝ π(θ)f(x|θ). (4.3)

Equality can be achieved here by calculation of the normalising constant, but this

can be arduous. Calculating this normalising constant is not required for estima-

tion, however, when one uses Markov Chain Monte Carlo (MCMC) methods. As

(4.3) gives the posterior distribution of the parameters, it is simple to get summary

statistics and construct various intervals. The summary statistics most often used

are the mean, median and mode, where each has a theoretical justification for be-

ing preferred. Similarly, a 100(1 − α)% interval (called a credible interval) can

be constructed in different ways. A 100(1 − α)% credible interval for θ, in the

one-dimensional case, is defined as the interval [a, b] that satisfies

P (θ ∈ [a, b]) =

∫ b

a
π(θ|x)dθ = 1− α, 0 ≤ α ≤ 1. (4.4)

It is evident, however, that there are many possible intervals [a, b] that can satisfy

(4.4), and so a further definition follows. A highest posterior density interval,
HPDI, is the 100(1− α)% interval [a, b], centred around the mode, satisfying:

1. [a, b] is a 100(1− α)% credible interval;

2. for all θ′ ∈ [a, b] and θ′′ /∈ [a, b], π(θ′|x ≥ π(θ′′|x).
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This can be generalised to the multi-parameter case quite simply. In many ‘nice’

cases, the posterior distribution, (4.3), will be a standard statistical distribution,

whose moments can be calculated exactly. Not all prior distributions or likelihoods

lead to these ‘nice’ posteriors, however, and in these cases, some other method

is required to calculate the moments. This is possible through the use of Markov

chain Monte Carlo, MCMC.

One method for estimating the moments is the Gibbs Sampler. A thorough de-

scription of its usage is given in Casella & George (1992). From above, the

model has parameters θ = (θ1, . . . , θk) with prior distribution, π(θ). From this,

a set of conditional probabilities, π(θj |θ(j)) are drawn, where the vector θ(j) =

(θ1, . . . , θj−1, θj+1, . . . , θk), with the relevant adjustment for j = 1 or j = k.

A starting point for the Gibbs sequence is specified, say a vector of parameters

θ0 = (θ01, . . . , θ
0
k). Then, from these initial conditions, rejection sampling can be

used to draw samples from the conditional distributions. To start the iterative step,

sampling is as follows:

θ11 is sampled from π(θ1|θ0(1))

θ12 is sampled from π(θ2|θ11, θ02, . . . , θ0k)
...

θ1j is sampled from π(θj |θ11, θ12, . . . , θ1j−1, θ0j+1, θ
0
k)

...

θ1k is sampled from π(θk|θ1(k))

Doing this, θ1 is generated from θ0. Continuing this, T vectors can be generated,

which, after a burn-in period, should represent random samples from the posterior

distribution π(θ|x). King & Brooks (2008) used T = 1, 000, 000 in their compu-

tations, with a burn-in period of 100,000.

4.3.2 Bayesian plant-capture probability theory

This section is an extension of George & Robert (1992) to Bayesian plant-capture

scenarios, and has an analogous structure. One can get the results given in George

& Robert (1992) by setting R = 0. Following their notation, let D = (x,n) be the

collected set of data from a mark-recapture experiment. From (4.1)

L(N,p|D) ∝ N !

(N − x)!

t∏
j=1

p
nj

j (1− pj)N+R−nj . (4.5)

Using the fact that N and p are a priori independent, the prior distribution has

the form π(N,p) = π(N)π(p). This independence gives posterior conditional
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distributions of N and p to be

π(N |p,D) ∝ N !

(N − x)!


t∏

j=1

(1− pj)


N

π(N) (4.6)

π(p|N,D) ∝


t∏

j=1

p
nj

j (1− pj)N+R−nj

π(p). (4.7)

Note that (4.6) is unchanged from that given in George & Robert (1992).

Now let the pjs be a priori independent, Be(α, β)-distributed random variables,

with mean µ =
α

α+ β
and variance σ2 =

αβ

(α+ β)2(α+ β + 1)
. Thus, π(p) =∏t

j=1 π(pj), where π(pj) ∼ Be(α, β). This gives a posterior conditional distribu-

tion for pj , j = 1, . . . , t, as

π(pj |N,D) ∼ Be(nj + α,N +R+ β − nj). (4.8)

Combining (4.6) and (4.8) gives

π(N |D) ∝ N !

(N − x)!


t∏

j=1

Γ(N +R+ β − nj)
Γ(N +R+ α+ β)

π(N). (4.9)

Taking a ratio of successive terms gives

π(N + 1|D)

π(N |D)
=

N + 1

N + 1− x


t∏

j=1

(N +R+ β − nj)
(N +R+ α+ β)

 π(N + 1)

π(N)
. (4.10)

In carrying out rejection sampling estimates drawn from (4.9), and calculating the

mean of a sufficiently large number of such estimates, a point estimate of the pop-

ulation size N can be found.
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4.4 Estimators

The intention here is to compare the performance of a quintet of estimators: the

Mtp MLE, the generalised Pathak estimator, the Mp MLE, the Mp CUE and a mod-

ified Petersen estimator. These were simulated both with and without plants, and

various summary statistics noted to determine optimality. The Mp estimators were

initially included to be a measure of the time-heterogeneous effect of the data. Fol-

lowing the results of Chapter 2, however, it is the intention to test whether they can

estimate the true population size to a similar level of accuracy to the Mtp estima-

tors.

The Petersen-type estimator is generalised to the multiple recapture case, utilis-

ing the inclusion of plants. The Petersen estimator lends itself naturally to plant-

capture scenarios, where it can be assumed that the ratio of the number of distinct

plants captured to those inserted would be expected to be similar to the correspond-

ing ratio of numbers caught from the target population. When this estimator was

used in non-plant simulations, it uses the first sample of any simulation to be a

‘planting’ occasion, and samples 2, . . . , t in standard mark-recapture fashion. It

would then mimic a Petersen-type estimator, which is detailed below. As the Pe-

tersen estimator has a natural stratification, it may be that this estimator performs

better under model Mtp than under model Mt.

4.4.1 Maximum Likelihood Estimator for Mtp

The most commonly used estimator under model Mt is the model Mt MLE. In the

case of no plants, the modelMt MLE, as given in Darroch (1958), Otis et al. (1978)

or Seber (1982) using various proofs, can be derived from (4.2) by setting R = 0.

This estimator is employed by various computer packages, including MARK. This

MLE is generalised here to accommodate for the inclusion of plants, using the log-

likelihood function (4.2). Two shortcomings of the MLE are that it is not, for t > 2,

a closed-form estimator and that it is infinite when z = x.

The MLE is given as the value of N that maximises the log-likelihood function

(4.2) over the rangeN = {x, x+ 1, x+ 2, . . .}. To find this value, one must firstly

maximise (4.2) for pj , j = 1, . . . , t, which, for a particular j, gives

nj
p̂j

=
N +R− nj

1− p̂j
⇒ p̂j =

nj
N +R

. (4.11)
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Inserting (4.11) into (4.2) then gives the log profile likelihood. Maximising this for

N over the range of N gives

ln{L(N̂t, p̂1(N̂t), . . . , p̂t(N̂t)|(X, ~N))} = max
NεN

[
ln

(
N !

(N − x)!

)
+

t∑
j=1

nj ln(nj)

+
t∑

j=1

(N +R− nj) ln(N +R− nj)− t(N +R) ln(N +R)

]
. (4.12)

This is calculated iteratively and the value of N corresponding to the maximum

value in this sequence thus becomes N̂Mtp , the Mtp MLE. The search is made

feasible by assuming that the profile likelihood function is unimodal. Pickands &

Raghavachari (1987) proved that the profile likelihood is unimodal under Mf and

Goudie & Gormley (in submission) (see Appendix A) have proven unimodality un-

der model Mfp. Goudie et al. (2007) have shown that the sub-model, model Mp,

is unimodal for R ≥ 0. Thus, the assumption is made that (4.12) is unimodal.

For a finite R, the variance estimator given by Darroch (1958, p. 352) is also suit-

able asymptotically under model Mtp. Thus, the variance estimator for N̂Mtp used

in §4.5 is

var
(
N̂Mtp

)
= N̂Mtp

 t∏
j=1

1

(1− p̂j)
+ t− 1−

t∑
j=1

1

(1− p̂j)

−1 . (4.13)

It is of interest here to see how this estimate of variance relates to the sample

variance in the simulation work given in the next section.

4.4.2 Generalised Pathak Estimator

The generalised Pathak estimator is used under models Mt and Mtp here to test

whether it performs well outside the confines of its original derivation. Recall

from Chapter 2 the generalised Pathak estimator

Ñ(x,n, R) = x+
a(x− 1,n, R)

a(x,n, R)
, (4.14)

for x = max
j

(nj −R, 0), . . . ,min(z,N), where a(x,n, R) is as given in (2.4).

As stated in Chapter 2, this follows from Berg’s (1974) unbiased estimator for

model Mf . It thus follows that this estimator is a conditionally unbiased estimator

under model Mtp, conditioning on the sample sizes, n. Under either Mfp or Mtp

there is also the condition that z ≥ N . This means that a unique, unbiased esti-

mator of the variance of the Generalised Pathak estimator follows naturally from

Berg (1974, eqn 2.15) when the latter condition holds, as x is an observation from
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a factorial series distribution. We will momentarily use the shorthand notation Ñx

to represent (4.14), and Ñx−1 to represent the corresponding estimator with x− 1

distinct captures. The variance estimate, if (x + R) > maxj{nj}, given by Berg

(1974), is

v̂ar
(
Ñx

)
=
(
Ñx − x

)(
Ñx − Ñx−1

)
. (4.15)

This variance estimator, (4.15), has a problem case, when (x+R) = max
j
{nj}, in

that the term N̂x−1 contains a ratio with a(x− 1,n, R) in the denominator, which

is defined as being 0 in this situation. In this situation, we must use the final, non-

numbered, equation given by Berg (1974) in the proof of his equation (2.15). This,

he gives as

v̂ar(N̂x) = h1(x)2 + h1(x)− h1(x)h1(x− 1)

= h1(x)2 + h1(x)− h2(x), (4.16)

where

hν(x) =


a(x− ν,n, R)
a(x,n, R)

for x ≥ ν, ν = 1, 2, . . .

0 otherwise.

Thus,

v̂ar
(
Ñx

)
= (Ñx − x)2 + (Ñx − x)

= 0 (4.17)

if (x+R) = max
j
{nj}, as h2(x) equals zero when this condition holds.

4.4.3 Maximum Likelihood Estimator for Mp

As with the model Mtp MLE (p. 56), this is not a closed-form estimator, but instead

seeks the maximum value of the likelihood function, L(N), for N ∈ N = {x, x+

1, x+ 2, . . .}, analogous to Goudie et al. (2007). It also requires the condition that

z exceeds x in order for the likelihood estimate to remain finite (see Goudie et al.

(2007, p. 245) for a proof). Thus, the log-likelihood of (N, p) is given by

`(N, p; z, x) = ln

(
N !

(N − x)!

)
+ z ln(p) + (Nt+Rt− z) ln(1− p).

As in Goudie et al. (2007) we find that `(N, p; z, x) is maximised over p ∈ [0, 1]

when p̂ = z/(Nt + Rt). Substituting this into the above log-likelihood function

gives the log profile likelihood from which the Mp MLE for N is obtained. The

maximum is obtained from iterative calculations through the range of N and the
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Mp MLE, N̂Mp , is this maximum value of N . The lack of a closed-form estimator

is unhelpful, but Goudie et al. (2007) showed that, under model Mp, the profile

likelihood is unimodal and so iterations can stop once a turning point has been

reached. They also gave a compact inequality for the value k ∈ N that gives the

maximum value of the profile likelihood. The given inequality states that N̂Mp

“...is the smallest such k for which

∆h(kt+Rt)−∆h(kt+Rt− z)− log{(k − x+ 1)/(k + 1)}

is negative, where h(k) = −k log k” and ∆ denotes the forward finite difference

operator. This goes some way to shortening the computational time involved.

An asymptotic variance estimate for the M0 MLE is given by Darroch (1958) for

model M0, and Goudie et al. (2007) proved that it also applies to model Mp. Thus,

the variance estimator for N̂Mp is

var
(
N̂Mp

)
= N̂Mp

[
1

(1− p̂)t
+ t− 1− t

(1− p̂)

]−1
. (4.18)

4.4.4 Mp CUE

The Mp CUE was given in §2.3, namely

Ñc = x+
G(z, x− 1, t, Rt)

G(z, x, t, Rt)
,

where G(z, x, t, Rt) is a Gould-Hopper number, as given by (2.19) or in Gould &

Hopper (1962). It is a function of the equal-catchability model sufficient statistics,

namely z and x, but is used here under the more general case of time-heterogeneity.

A unique, conditionally unbiased estimate of the variance follows naturally from

the paper of Berg (1974) if z ≥ N , as the conditional distribution of X given

Z is an FSD. Firstly, as in §4.4.2, we let Ñc−1 represent the corresponding CUE

estimate if (x − 1) distinct captures are observed. We also need a condition that

xt + Rt > z in order for the variance estimator to be finite. As in §4.4.2, we can

define the variance estimator by

var
(
Ñc

)
=


(
Ñc − x

)(
Ñc − Ñc−1

)
x =

z

t
−R+ 1, . . . , z;

0 x =
z

t
−R,

(4.19)

by replacing the a-coefficients in §4.4.2 by the Gould-Hopper numbers and using

the same methodology.
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4.4.5 Petersen estimator

Finally, another estimator that was tried was a modification of the Petersen estima-

tor. This estimator is sometimes referred to as the Lincoln-Petersen estimator, or

the Lincoln Index. For a detailed history of the estimator, see Goudie & Goudie

(2007).

Under model Mtp the ratio of x/N should be approximately equal to the corre-

sponding ratio for the planted population, as there is no between animal hetero-

geneity. Thus, if we let nR be the number of distinct R planted animals caught in

the trial, then we get a basic estimator Ñp, given by

x

ÑP

=
nR
R
. (4.20)

Rearranging gives an expression for ÑP .

If the number of plants is relatively small with respect to N , the number of distinct

planted animals caught, nR, will also be relatively small with respect to N . Thus,

there will be a non-negligible probability of having nR=0, which leads to an infi-

nite point population estimate. Thus, a modification, analogous to Bailey’s (1951)

binomial model modification, is made, giving a bias-corrected estimator

N̂P =
(R+ 1)x

nR + 1
. (4.21)

To get an estimate of the variance, we again refer to Bailey (1951) and get an almost

unbiased estimate, given by

var(N̂P ) =
x2(R+ 1)(R− nR)

(nR + 1)2(nR + 2)
. (4.22)

The version used for mark-recapture, where R = 0, is a modification of this, using

the animals captured in the first sample as the planted population, say R̃. It then

calculates the number of these that were caught in the remaining samples, nR̃.

This is then compared with the number of distinct animals caught from the “target”

population, nx, this being those distinct animals that were not captured in the first

sample, but subsequently caught. This gives an estimator

N̂P =
(R̃+ 1)nx
nR̃ + 1

+ R̃, (4.23)

where the addition of R̃ at the end is required as these animals are still part of the

target population, despite the analysis being carried out as if they were planted.
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4.5 Mtp Results

4.5.1 Method

Otis et al. (1978, Table N.2.b.) reported simulation results for theMt MLE for a va-

riety of fixed capture probabilities given in their Table N.2.a. Their intention was to

use capture probabilities that cover a wide range of scenarios that the practitioner

will encounter.

This approach is extended here to make the choices of capture probability more re-

alistic, by assigning them a distribution. Following Huggins (2002) and Dorazio &

Royle (2003) we assume that the capture probabilities are random variables from

a beta distribution with fixed parameters α and β, which lead to different means

and standard deviations. For the choice of means, further work not reported here

suggested that for a capture probability mean of above µ = 0.2, the difference in

population estimation of the simulation trials between the different estimators is

very marginal. Thus, α and β were chosen to reflect this. Further to this, the de-

sired means were 0.05, 0.1 & 0.2, following Goudie & Ashbridge (2005, p. 1549)

and Ashbridge & Goudie (2009, p. 7). For capture probabilities lower than 0.05,

one is referred to the later chapter on sparse data, Chapter 5. An example of the

capture probabilities produced under each distribution is contained in each of the

results tables, Tables 4.2 – 4.7.

Values of α and β were also chosen to represent different levels of variability from

the mean, and so were chosen to give standard deviations of 0.0125, 0.025, 0.05.

Thus, nine different combinations of mean and standard deviation were used, and

are given in Figure 4.1 and Table 4.1, which offer a wide range of possible sce-

narios that a practitioner would find out in the field. This should then allow for

determination of the optimal estimator for each situation, where optimality is de-

fined in terms of means and standard deviations.

In the simulations, one set of capture probabilities was drawn from the chosen dis-

tribution, and from this, 1000 realisations were simulated. For each realisation, a

population estimate, a standard deviation estimate and a 95% confidence interval

(based on a Normal approximation, which holds asymptotically (c.f. Fewster &

Jupp (2009))) were calculated for each of the different estimators. These were then

averaged, and it is these averages that are given in Tables 4.2 – 4.7. Also given is

the proportion of the 1000 intervals that contain the true population size, N . Since

a 95% confidence interval is calculated each time, the proportion of intervals con-

taining N should be around 0.95. The final column gives the average width of the

confidence interval throughout the 1000 realisations. The intervals are symmetrical

under the Normal assumption, therefore are not truncated at the lower end.
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Figure 4.1: Diagram of the grid used for the Beta-generated probabilities.

µ σ (α, β)

0.05
0.0125 (15.15, 287.85)
0.025 (3.75, 71.25)
0.05 (0.9, 17.1)

0.1
0.0125 (57.5, 517.5)
0.025 (14.3, 128.7)
0.05 (3.5, 31.5)

0.2
0.0125 (204.6, 818.4)
0.025 (51, 204)
0.05 (12.6, 50.4)

Table 4.1: A reference table for the parameters of the beta-distributed capture prob-
abilities used in the simulations
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4.5.2 Results

The results, given in Tables 4.2 – 4.7, will be analysed from several perspectives,

before general conclusions are given in §4.8. The first analysis will be to analyse

the effect that total population size has on the quality of estimation. Secondly, anal-

yses of the estimator results when 10 samples are carried out and when 5 samples

are taken are given, and the relevant conclusions drawn. The optimal situation for

the practitioner would be to plant as few additional animals as possible into the

target population, and to carry out as few samples as possible, whilst still having

a resultant estimate that can be assumed to have a small bias and a small standard

deviation. This would result in the most cost and time effective trial. One re-

quirement of the planted animals is that they do not alter the behaviour or capture

probabilities of the target population. The addition of only a few planted animals

would allow the practitioner to have more confidence in this assumption. Thus, it

is with these goals that the decision was made to add 10 plants in each simulation,

regardless of population size. This is to reflect the fact that the practitioner would

not have knowledge of the true population, and so relating the optimal number of

plants to the population would be impractical. Also, the plots shown in §2.5.2 are

consistent with simulation work carried out under model Mtp. These show that the

relative improvement in population estimation of each additional 5 plants becomes

smaller.

We will further subdivide the results by mean capture probability with the aim of

establishing the optimal estimator for any situation. This is a subdivision that is not

possible to make in practice, but the hope is to find consistency across all sampling

distributions or, failing that, to establish a pattern throughout the distributions sam-

pled.

The N=50, t=5, µ=0.05 case

We see from Table 4.2 that the Mp CUE performs well under this model Mtp sce-

nario, despite the estimator being a function of just X and Z. The mean point

estimate from the Mp CUE is very close to the true population size in this case,

with a sample standard deviation that is just over half the size of the point estimate.

The estimated standard deviation underestimates the sample standard deviation by

around 10% of N . This may explain why the proportion of 95% confidence inter-

vals containing the true value is below 0.95, the target value. This suggests that the

interval width is slightly smaller than it should be. This would lead to the practi-

tioner having a falsely high level of confidence about the estimates, a situation one

wishes to avoid.

In the first case the generalised Pathak mean estimate is much lower than N , mak-
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(µ, σ)
Example

Estimator
Mean Sample Mean est. Coverage Average

pjs Estimate std dev. std dev. proportion width

(0.05, 0.0125)

0.0508 Mp CUE 50.26 28.77 24.03 0.817 94.19
0.0652 Mp MLE 61.84 41.27 67.09 0.961 263.00
0.0228 G. Pathak 36.91 77.08 28.42 0.698 110.72
0.0432 Mtp MLE 56.99 37.81 64.53 0.946 252.95
0.0679 Petersen 44.31 25.64 20.56 0.713 80.61

(0.05, 0.025)

0.0720 Mp CUE 49.04 29.52 23.35 0.796 91.53
0.0508 Mp MLE 61.27 42.73 69.13 0.947 270.99
0.0652 G. Pathak 48.60 22.94 17.86 0.849 70.02
0.0228 Mtp MLE 57.45 38.23 66.55 0.962 260.87
0.0432 Petersen 44.13 27.61 20.56 0.700 80.59

(0.05, 0.05)

0.0228 Mp CUE 48.28 28.28 22.40 0.816 87.81
0.0058 Mp MLE 64.79 40.61 72.09 0.968 282.60
0.0244 G. Pathak 50.25 18.79 15.88 0.883 62.27
0.0150 Mtp MLE 56.08 31.62 38.84 0.954 152.25
0.1327 Petersen 43.35 26.21 19.48 0.701 76.35

(0.1, 0.0125)

0.0972 Mp CUE 50.33 17.26 14.50 0.880 56.85
0.1244 Mp MLE 53.35 20.85 23.40 0.951 91.73
0.1232 G. Pathak 49.97 16.44 14.93 0.889 58.54
0.0954 Mtp MLE 51.43 20.05 22.25 0.944 87.21
0.1221 Petersen 49.64 23.15 17.03 0.778 66.76

(0.1, 0.025)

0.0734 Mp CUE 50.11 16.15 14.40 0.880 56.45
0.0720 Mp MLE 53.56 21.58 23.27 0.950 91.22
0.1256 G. Pathak 50.21 15.71 13.91 0.893 54.54
0.1208 Mtp MLE 51.91 18.43 22.66 0.950 88.81
0.1420 Petersen 49.87 24.06 17.32 0.788 67.90

(0.1, 0.05)

0.0734 Mp CUE 51.17 18.96 15.56 0.889 61.01
0.2194 Mp MLE 54.13 20.04 24.95 0.956 97.79
0.0720 G. Pathak 49.72 15.25 14.24 0.888 55.79
0.1256 Mtp MLE 53.28 22.96 27.13 0.928 106.34
0.0584 Petersen 48.96 23.46 16.76 0.768 65.71

(0.2, 0.0125)

0.2196 Mp CUE 49.96 7.36 6.77 0.919 26.54
0.2017 Mp MLE 50.06 7.52 8.14 0.935 31.89
0.1882 G. Pathak 50.00 7.16 6.62 0.933 25.98
0.1896 Mtp MLE 49.62 7.51 8.03 0.924 31.50
0.1861 Petersen 50.14 13.05 9.99 0.812 39.18

(0.2, 0.025)

0.2196 Mp CUE 49.76 7.04 6.84 0.924 26.81
0.2017 Mp MLE 49.89 7.77 8.17 0.943 32.04
0.2132 G. Pathak 50.06 6.94 6.55 0.944 25.68
0.1882 Mtp MLE 49.77 7.10 8.00 0.928 31.37
0.1711 Petersen 49.41 11.69 9.69 0.813 38.00

(0.2, 0.05)

0.2196 Mp CUE 50.44 7.90 7.14 0.917 28.00
0.1420 Mp MLE 50.29 7.52 8.43 0.954 33.04
0.1622 G. Pathak 50.05 6.42 6.39 0.937 25.03
0.2017 Mtp MLE 49.82 7.36 8.23 0.946 32.26
0.1395 Petersen 50.15 12.54 9.97 0.811 39.08

Table 4.2: Simulated results for 1000 realisations from a population N = 50,
R = 10 and t = 5 with Beta-distributed capture probabilities.
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(µ, σ)
Example

Estimator
Mean Sample Mean est. Coverage Average

pjs Estimate std dev. std dev. proportion width

(0.05, 0.0125)

0.0508 Mp CUE 49.88 14.63 14.14 0.901 55.42
0.0652 Mp MLE 54.05 23.49 23.75 0.930 93.11
0.0228 G. Pathak 50.67 18.85 16.04 0.886 62.86
0.0432 Mtp MLE 53.35 19.47 22.59 0.939 88.56
0.0679 Petersen 49.24 23.02 16.91 0.778 66.30

(0.05, 0.025)

0.0720 Mp CUE 50.41 16.76 14.84 0.899 58.17
0.0508 Mp MLE 54.33 24.24 24.28 0.956 95.19
0.0652 G. Pathak 49.38 15.87 14.07 0.878 55.14
0.0228 Mtp MLE 53.35 23.17 24.75 0.935 97.03
0.0432 Petersen 49.46 22.80 17.13 0.795 67.15

(0.05, 0.05)

0.0228 Mp CUE 51.51 16.78 14.63 0.912 57.34
0.0058 Mp MLE 56.59 23.70 25.83 0.967 101.27
0.0244 G. Pathak 50.11 15.15 14.21 0.903 55.67
0.0150 Mtp MLE 51.65 18.89 22.42 0.928 87.87
0.1327 Petersen 49.49 25.03 16.38 0.782 64.21

(0.1, 0.0125)

0.0972 Mp CUE 50.04 7.52 7.19 0.922 28.19
0.1244 Mp MLE 50.21 7.90 8.56 0.944 33.56
0.1232 G. Pathak 49.99 7.67 7.22 0.928 28.28
0.0954 Mtp MLE 49.62 7.46 8.24 0.938 32.30
0.1221 Petersen 50.40 14.84 10.68 0.828 41.86

(0.1, 0.025)

0.0734 Mp CUE 49.88 7.42 7.11 0.925 27.89
0.0720 Mp MLE 50.28 7.76 8.54 0.945 33.50
0.1256 G. Pathak 49.95 7.22 6.90 0.933 27.04
0.1208 Mtp MLE 49.64 7.75 8.35 0.937 32.74
0.1420 Petersen 49.52 12.82 10.23 0.808 40.10

(0.1, 0.05)

0.0734 Mp CUE 50.48 7.77 7.32 0.928 28.70
0.2194 Mp MLE 50.81 8.27 9.03 0.952 35.40
0.0720 G. Pathak 49.94 9.93 9.26 0.924 36.33
0.1256 Mtp MLE 49.33 7.94 8.50 0.923 33.30
0.0584 Petersen 50.03 12.77 10.42 0.835 40.84

(0.2, 0.0125)

0.2196 Mp CUE 50.04 2.86 2.83 0.946 11.08
0.2017 Mp MLE 49.52 2.88 2.91 0.930 11.40
0.1882 G. Pathak 50.05 2.41 2.68 0.959 10.54
0.1896 Mtp MLE 49.34 2.83 2.86 0.921 11.21
0.1861 Petersen 50.05 5.99 4.31 0.704 16.91

(0.2, 0.025)

0.2196 Mp CUE 50.01 2.89 2.79 0.938 10.95
0.2017 Mp MLE 49.61 2.91 2.94 0.933 11.52
0.2132 G. Pathak 50.04 3.03 2.90 0.955 11.41
0.1882 Mtp MLE 49.39 2.87 2.89 0.924 11.33
0.1711 Petersen 50.14 5.97 4.24 0.673 16.63

(0.2, 0.05)

0.2196 Mp CUE 50.32 2.91 2.88 0.948 11.31
0.1420 Mp MLE 49.63 2.99 2.98 0.944 11.68
0.1622 G. Pathak 49.99 3.11 3.08 0.960 12.13
0.2017 Mtp MLE 49.32 2.93 2.89 0.911 11.32
0.1395 Petersen 49.98 6.13 4.17 0.666 16.34

Table 4.3: Simulated results for 1000 realisations from a population N = 50,
R = 10 and t = 10 with Beta-distributed capture probabilities.
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ing it the most biased of all the estimators in this trial. However, the mean estimates

improve as σ increases, to the point where it is the least biased estimator in the third

trial. In the first trial the estimated standard deviation of the point estimate dras-

tically underestimates the sample standard deviation. For the other two cases the

estimated standard deviation is close to, but an underestimate of, its sample equiv-

alent. This should explain why the coverage interval is much lower than 0.95 in

the first case and a better approximation to 0.95 in the other two cases.

The Petersen-type estimator has a mean point estimate that is below N by over

10% and a sample standard deviation that is just above 50% of the mean point

population estimate in all three trials. The mean estimated standard deviation un-

derestimates the sample standard deviation by about a fifth each time, which results

in the coverage proportion being less than 75%, which suggests that the average

width of the confidence interval is too small in a lot of simulations. This suggests

that the standard deviation estimator needs to be improved in this case.

Both MLEs have the opposite problem to the other 3 estimators in that their mean

point estimates overestimate the true population and their standard deviation esti-

mates are larger than their sample equivalents. With the exception of the third Mtp

MLE trial, these estimated standard deviations would result in a negative lower

bound for their average coverage values much higher than the non-MLE estimators.

This would imply that their lower bound in these cases would be the uninformative

value, x, with an upper bound that is more than double the true population value,

N . As a result of the higher standard deviations, the MLEs have coverage values

much larger than the non-MLE estimators. Practitioners, if animal conservation is

foremost in their minds, would often favour an underestimate of true population,

as this would not lead them into a false belief of abundance.

As the means of both MLEs overestimate N , they cannot be recommended for use.

The Mp CUE, the generalised Pathak estimator and the Petersen-type estimator

have a tendency to underestimate N on average, but the favoured estimator is the

Mp CUE, as it is the most consistent estimator, with its mean point estimate in

the sparsest data case (µ=0.05, σ=0.0125) being within 2% of N . It also has a

much lower sample standard deviation in this case than the generalised Pathak es-

timator, and a more reliable estimated standard deviation. The reason for its good

performance in a model with time-heterogeneity is probably attributable to the low

capture probabilities. Coupled with the small population, this will result in few

captures in each sample. Thus, there will be little variation between the samples,

resulting in the homogeneous estimator’s good performance.

The N=50, t=5, µ=0.1 case

The generalised Pathak has a mean point estimate that is within±1 of the true pop-

ulation, N , in all three trials, whilst the Mp CUE and Petersen-type mean estimates
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deviate by more than ±1 in only the σ = 0.05 trial. The confidence intervals for

the 1000 realisations always contain N less than 90% of the time, however, which

is lower than the target level. This is a result of the standard deviation estimators

underestimating the sample standard deviation of the point estimates.

The mean of the Mtp MLE here is seen to overestimate the population size in all

three trials, with no improvement as σ increases. Its estimated standard deviation

also overestimates the sample standard deviation in all three trials, yet its coverage

proportion never exceeds 0.95.

The Mp MLE overestimates the true population in all three trials, but is an im-

provement on the µ = 0.05 case. The mean estimated standard deviation still

overestimates the sample standard deviation, which implies that the confidence in-

terval associated with the meanMp MLE estimate is too conservative. The coverage

proportion is above 0.95 for each trial, which suggests that there is room for im-

provement in the standard deviation estimator.

Thus, overall, the generalised Pathak estimator is preferable in this case.

The N=50, t=5, µ=0.2 case

All estimators have mean point estimates within ±0.5 of the true population size

in this case, with the exception of one Petersen-type estimate. The mean estimated

standard deviations are lower than the corresponding estimate when µ = 0.1,

sometimes more than a third smaller. This suggests that if the capture probabil-

ity mean is 0.2, the precision of the estimates from any estimator is very high,

and there is little to distinguish between them. The MLEs’ mean estimated stan-

dard deviations again slightly overestimate their sample standard deviations, but

the coverage proportions for these estimators are still generally below 0.95. The

estimated and sample standard deviations of the Petersen-type estimator are again

larger than the rest, but it does not have a coverage proportion to justify this in-

crease. Thus, the Petersen estimator again has a good mean point estimate but is

poor in terms of interval estimation. There is little to distinguish between the rest

of the estimators, however, in terms of mean point estimate or interval estimate.

However, on the basis of having the mean point estimate closest to N in each trial,

and having the lowest estimated and sample standard deviations, the recommended

estimator is the generalised Pathak estimator.

The N=50, t=10, µ=0.05 case

The Mp CUE here has the least biased mean point estimate of all the estimators

for σ = 0.0125, but it increases as σ increases to the point where it overestimates

by roughly 3% when σ = 0.05. A larger capture probability standard deviation

means that there is liable to be a stronger time-heterogeneity element between the

samples. The sample standard deviation is lower than in the t = 5 case and the
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mean estimated standard deviation is much closer to the sample standard deviation

when t = 10. This leads to improved coverage proportions for each trial as the

variability in the data is being captured better by the standard deviation estimator.

Hence, the interval estimates are wide enough to contain N on more occasions.

The coverage proportion is around 90%, which is still somewhat below the desired

level of 95%.

The generalised Pathak estimator here estimatesN with almost no bias, but still has

a coverage proportion that only once manages to exceed 90%. This is because the

mean estimated standard deviation is underestimating the sample standard devia-

tion. The difference between the two is very small, however, and so is satisfactory.

The Petersen-type estimator has a mean population estimate that is within unity

of N , but it too suffers from having a standard deviation estimate that is too low,

making the confidence intervals too narrow to contain N the desired 95% of the

time.

The mean of the Mtp MLE when t = 10 is closer to N than when t = 5, but still

fails to get within 3% of N . It is evident here that the Mtp MLE is better than the

Mp MLE in terms of mean point estimate and also for sample standard deviation.

The Mp MLE has, in one trial, a lower estimated standard deviation than the Mtp

MLE, but overall the Mtp MLE is the superior of the two MLEs.

Considering all this, however, there is no clear recommendation. The generalised

Pathak estimator and Mp CUE both perform well when considering the mean point

population estimate and estimated standard deviation. The one flaw with the CUE

is that it may be becoming more biased as the heterogeneity among the animals is

increasing.

The N=50, t=10, µ=0.1 case

In this situation, there is very little to choose between the estimators, as all estima-

tors have mean population estimates within ±1 of the true population size of 50.

The Petersen-type estimator has a coverage proportion that is too low to be con-

sidered acceptable, despite having the highest mean estimated standard deviation.

The other estimators all have coverages of over 90%. The MLEs’ mean estimated

standard deviations overestimate their sample standard deviations consistently. For

the other estimators, their mean estimated standard deviation is always below their

sample standard deviation counterpart. However, by virtue of its very marginal

overall optimality in terms of mean point estimate, the generalised Pathak estima-

tor is proposed for this case.

The N=50, t=10, µ=0.2 case

All the estimators except from the Mtp MLE have average estimates that equal the

true population within rounding, and all estimators have a very low estimated stan-
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dard deviation.

As has been noticed in some of the other cases above, theMp CUE has a mean point

estimate very close to N for σ=0.0125 , but has a mean estimate that overestimates

when σ = 0.05, when the time-heterogeneity becomes more pronounced. In this

last trial, it still gives an estimate with an accuracy within rounding of N .

The generalised Pathak estimator gives mean point estimates that are very accurate

in all three trials. In one trial it has a mean estimated standard deviation above its

corresponding sample standard deviation.

The Mtp MLE underestimates N in every trial, as in the µ=0.1 case above it. The

mean population size estimate by the Mp MLE is now lower than N , although it

rounds up to the true value.

The Petersen-type estimator’s average standard deviation is larger than the rest, but

is still too low for its interval estimate to contain N in 95% of cases.

As the generalised Pathak estimator’s mean estimate is the most consistent out of

all the estimators in this case, this is the proposed estimator.

When N=100

For a small, fixed mean capture probability, µ = 0.05, the Mp CUE appears to lose

precision as the capture probability standard deviation increases, making the time-

heterogeneity more pronounced. This is similar to what was observed in Tables

4.2–4.3 and is understandable, as the estimator is designed to be unbiased under

homogeneous capturing. A high capture probability standard deviation causes an

overestimate of the population size. In the simulations, column 2 of Tables 4.2 – 4.7

give sample capture probabilities randomly generated from the associated Be(α, β)

distributions. For the (µ, σ) = (0.05, 0.05) trial with t = 5, for example, one sam-

ple had a capture probability of just 0.1%, whilst another had a capture probability

of 7%. This represents a strong time-heterogeneity effect between samples, giving

a major departure from the assumption of a constant capture probability, on which

the Mp CUE and the Mp MLE are based. This results in a deterioration of precision

in some cases. The effect of this violation appears to be reduced by increasing the

number of samples, resulting in more data being available.

The generalised Pathak estimator has a mean estimate, in all the cases shown,

within unity to the true population size, which is very desirable. It is only when

µ = 0.05 that there is some deviation away from the true population size. Its mean

estimated standard deviation also closely estimates the sample standard deviation

in most trials, especially when µ and/or t increase. The average coverage propor-

tion of the estimator is generally below the desired 0.95 level when µ = 0.05 but

improves with µ and t. Thus, the standard deviation estimator does well in most
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(µ, σ)
Example

Estimator
Mean Sample Mean est. Coverage Average

pjs Estimate std dev. std dev. proportion width

(0.05, 0.0125)

0.0508 Mp CUE 98.77 51.38 40.55 0.825 158.97
0.0652 Mp MLE 121.73 76.16 92.98 0.950 364.49
0.0228 G. Pathak 99.26 47.45 38.34 0.852 150.35
0.0432 Mtp MLE 117.47 72.64 89.55 0.941 351.05
0.0679 Petersen 93.06 54.04 45.03 0.734 176.52

(0.05, 0.025)

0.0720 Mp CUE 102.91 58.33 44.13 0.851 172.97
0.0508 Mp MLE 123.31 79.28 100.50 0.952 393.97
0.0652 G. Pathak 99.76 46.98 39.75 0.851 155.82
0.0228 Mtp MLE 119.66 80.22 99.48 0.942 389.95
0.0432 Petersen 89.85 50.15 42.43 0.719 166.34

(0.05, 0.05)

0.0228 Mp CUE 106.38 54.29 44.02 0.891 172.55
0.0058 Mp MLE 125.97 75.58 102.46 0.956 401.63
0.0244 G. Pathak 100.19 48.52 39.25 0.847 153.86
0.0150 Mtp MLE 114.90 68.28 98.74 0.949 387.08
0.1327 Petersen 87.29 50.66 39.63 0.717 155.36

(0.1, 0.0125)

0.0972 Mp CUE 100.08 23.53 22.51 0.892 88.23
0.1244 Mp MLE 105.89 29.57 30.87 0.949 121.03
0.1232 G. Pathak 99.59 23.15 22.51 0.907 88.23
0.0954 Mtp MLE 103.80 27.52 30.74 0.948 120.50
0.1221 Petersen 99.13 40.50 33.59 0.813 131.66

(0.1, 0.025)

0.0734 Mp CUE 100.30 24.20 23.00 0.901 90.14
0.0720 Mp MLE 104.84 26.94 31.13 0.942 122.01
0.1256 G. Pathak 99.25 24.64 21.51 0.895 84.30
0.1208 Mtp MLE 104.66 29.80 31.20 0.939 122.30
0.1420 Petersen 99.24 45.11 33.89 0.805 132.86

(0.1, 0.05)

0.0734 Mp CUE 103.57 30.53 25.06 0.929 98.22
0.2194 Mp MLE 106.24 31.03 33.55 0.956 131.50
0.0720 G. Pathak 100.37 17.92 16.76 0.920 65.68
0.1256 Mtp MLE 105.81 32.92 34.61 0.941 135.68
0.0584 Petersen 100.25 50.87 34.80 0.801 136.42

(0.2, 0.0125)

0.2196 Mp CUE 99.74 11.04 10.30 0.923 40.38
0.2017 Mp MLE 100.27 10.40 11.50 0.947 45.10
0.1882 G. Pathak 99.73 10.85 10.54 0.941 41.31
0.1896 Mtp MLE 99.60 10.86 11.22 0.946 43.98
0.1861 Petersen 100.25 24.54 20.10 0.836 78.78

(0.2, 0.025)

0.2196 Mp CUE 99.90 10.79 10.37 0.930 40.67
0.2017 Mp MLE 100.10 11.01 11.40 0.940 44.70
0.2132 G. Pathak 100.04 10.0 10.18 0.950 39.92
0.1882 Mtp MLE 100.15 10.54 11.40 0.962 44.70
0.1711 Petersen 98.47 22.38 19.08 0.825 74.79

(0.2, 0.05)

0.2196 Mp CUE 101.62 11.10 10.85 0.953 42.53
0.1420 Mp MLE 101.40 11.29 11.87 0.963 46.55
0.1622 G. Pathak 99.57 11.63 11.26 0.930 44.10
0.2017 Mtp MLE 99.51 10.63 11.40 0.942 44.70
0.1395 Petersen 100.59 23.27 20.25 0.863 79.37

Table 4.4: Simulated results for 1000 realisations from a population N = 100,
R = 10 and t = 5 with Beta-distributed capture probabilities.
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(µ, σ)
Example

Estimator
Mean Sample Mean est. Coverage Average

pjs Estimate std dev. std dev. proportion width

(0.05, 0.0125)

0.0508 Mp CUE 100.24 23.64 21. 53 0.908 84.40
0.0652 Mp MLE 103.70 26.15 27.66 0.957 108.41
0.0228 G. Pathak 99.40 27.60 25.56 0.886 100.20
0.0432 Mtp MLE 102.84 24.37 27.26 0.940 106.85
0.0679 Petersen 100.23 45.43 33.96 0.808 133.12

(0.05, 0.025)

0.0720 Mp CUE 100.77 31.11 27.91 0.895 109.40
0.0508 Mp MLE 105.99 32.45 32.94 0.946 129.14
0.0652 G. Pathak 99.83 20.82 20.11 0.920 78.85
0.0228 Mtp MLE 105.35 32.18 32.18 0.942 123.48
0.0432 Petersen 103.21 44.55 30.49 0.847 119.50

(0.05, 0.05)

0.0228 Mp CUE 104.82 34.03 29.77 0.904 116.69
0.0058 Mp MLE 117.01 39.54 44.03 0.976 172.60
0.0244 G. Pathak 99.49 12.46 12.71 0.932 49.87
0.0150 Mtp MLE 102.81 24.25 27.40 0.945 107.39
0.1327 Petersen 100.09 44.18 34.49 0.818 135.20

(0.1, 0.0125)

0.0972 Mp CUE 99.64 11.75 11.46 0.936 44.93
0.1244 Mp MLE 101.07 10.55 11.31 0.955 44.35
0.1232 G. Pathak 100.18 11.39 10.85 0.942 42.56
0.0954 Mtp MLE 99.69 10.79 11.14 0.948 43.68
0.1221 Petersen 99.73 25.12 20.79 0.833 81.50

(0.1, 0.025)

0.0734 Mp CUE 100.22 10.08 9.96 0.934 39.04
0.0720 Mp MLE 100.36 10.44 11.18 0.958 43.84
0.1256 G. Pathak 100.52 10.48 10.38 0.954 40.69
0.1208 Mtp MLE 100.45 10.43 11.05 0.951 43.31
0.1420 Petersen 100.93 23.98 19.89 0.835 77.96

(0.1, 0.05)

0.0734 Mp CUE 101.74 14.24 13.92 0.941 54.57
0.2194 Mp MLE 102.43 13.63 14.49 0.965 56.81
0.0720 G. Pathak 99.61 11.74 10.92 0.936 42.80
0.1256 Mtp MLE 99.49 9.35 9.96 0.950 39.05
0.0584 Petersen 99.81 20.67 17.64 0.843 69.15

(0.2, 0.0125)

0.2196 Mp CUE 100.11 3.72 3.70 0.940 14.50
0.2017 Mp MLE 99.47 3.99 4.06 0.943 15.93
0.1882 G. Pathak 100.23 4.04 4.01 0.961 15.70
0.1896 Mtp MLE 99.43 4.31 4.27 0.938 16.74
0.1861 Petersen 99.80 10.53 8.27 0.687 32.41

(0.2, 0.025)

0.2196 Mp CUE 99.95 3.74 3.75 0.947 14.70
0.2017 Mp MLE 99.58 4.50 4.64 0.954 18.20
0.2132 G. Pathak 99.91 3.67 3.75 0.967 14.72
0.1882 Mtp MLE 99.32 4.25 4.17 0.924 16.33
0.1711 Petersen 99.67 11.54 9.28 0.732 36.38

(0.2, 0.05)

0.2196 Mp CUE 100.35 4.65 4.48 0.937 17.58
0.1420 Mp MLE 100.09 4.01 4.11 0.948 16.13
0.1622 G. Pathak 100.04 4.56 4.32 0.956 16.93
0.2017 Mtp MLE 99.68 4.13 4.35 0.959 17.04
0.1395 Petersen 99.82 14.15 11.00 0.784 43.14

Table 4.5: Simulated results for 1000 realisations from a population N = 100,
R = 10 and t = 10 with Beta-distributed capture probabilities.
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cases, with an improvement perhaps possible when the mean capture probability is

small.

The MLEs have a tendency to overestimate the true population size when the cap-

ture probabilities are small, especially when t = 5, and have very wide confidence

intervals that may not offer the practitioner too much additional information. The

wide interval can be narrowed by carrying out 10 samples rather than 5, but this

may not be possible in practice. As with the cases when N = 50, the mean es-

timated standard deviations overestimate the sample standard deviations, but this

overestimation decreases as µ and/or t increase. As the mean capture probability

increases, the difference in the summary statistics of each of the estimators be-

comes small.

The Petersen-type estimator also performs well when the mean estimate is consid-

ered, but its average estimated and sample standard deviations are generally higher

than the other estimators’ standard deviations. Despite this, the coverage propor-

tion for the Petersen-type estimator is consistently lower than that of the other

estimators.

Thus, the proposed estimator is the generalised Pathak estimator, as this is the most

consistently optimal estimator.

When N=250

TheMp CUE performs well in most of the trials whenN = 250. When t = 5, µ =

0.1 and σ = 0.05 the mean point estimate is 266, which stands out as being a large

overestimate. In every other trial, the mean point estimate is within ±10 of N .

When µ = 0.05 the mean point estimate increases in bias between t = 5 and

t = 10, which is not evident in the previous tables. For µ=0.1 and µ=0.2 there is

an improvement in mean point estimate from t = 5 and t = 10. The sample and

mean estimated standard deviations decrease both as t is increased from 5 to 10

and as µ increases, which is consistent with the previous tables.

The generalised Pathak estimator is seen in every scenario to have a mean popu-

lation estimate very close to the true population size and, in all scenarios except

the µ = 0.05, t = 5 cases and one µ = 0.05 and t = 10 case, has a coverage

proportion greater than 0.9. For the µ = 0.05, t = 5 case, the mean estimated

standard deviation underestimates the sample standard deviation by between 8 and

15%. Apart from that, despite underestimating by 9% on one other occasion, the

mean estimated standard deviations appear to estimate the sample standard devia-

tion well, and lead to coverage proportions of over 0.9.

TheMtp MLE performs poorly when t = 5 and µ = 0.05 but has a mean point esti-

mate that is within 1% in most other trials. The mean estimated standard deviation
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(µ, σ)
Example

Estimator
Mean Sample Mean est. Coverage Average

pjs Estimate std dev. std dev. proportion width

(0.05, 0.0125)

0.0508 Mp CUE 248.26 76.59 69.14 0.896 271.02
0.0652 Mp MLE 272.60 103.17 100.72 0.946 394.83
0.0228 G. Pathak 249.84 91.84 76.03 0.869 298.06
0.0432 Mtp MLE 278.38 138.39 122.94 0.945 481.91
0.0679 Petersen 232.55 138.58 105.66 0.772 414.20

(0.05, 0.025)

0.0720 Mp CUE 255.97 89.23 78.07 0.893 306.04
0.0508 Mp MLE 310.47 182.23 173.58 0.958 680.43
0.0652 G. Pathak 245.90 76.34 70.26 0.890 275.44
0.0228 Mtp MLE 280.42 144.56 139.42 0.939 546.54
0.0432 Petersen 212.72 145.72 113.73 0.699 445.83

(0.05, 0.05)

0.0228 Mp CUE 254.87 78.44 73.15 0.915 286.76
0.0058 Mp MLE 324.92 119.40 126.62 0.991 496.37
0.0244 G. Pathak 247.63 68.18 62.62 0.890 245.49
0.0150 Mtp MLE 288.99 147.00 159.95 0.946 627.01
0.1327 Petersen 250.78 134.96 96.07 0.804 376.59

(0.1, 0.0125)

0.0972 Mp CUE 252.69 41.75 41.87 0.937 164.15
0.1244 Mp MLE 258.93 48.27 47.62 0.955 186.66
0.1232 G. Pathak 250.09 38.74 37.90 0.926 148.59
0.0954 Mtp MLE 253.71 43.43 44.77 0.951 175.49
0.1221 Petersen 241.71 102.23 80.17 0.809 314.25

(0.1, 0.025)

0.0734 Mp CUE 253.50 48.38 44.04 0.921 172.65
0.0720 Mp MLE 260.33 54.21 55.06 0.953 215.84
0.1256 G. Pathak 250.44 47.48 43.00 0.913 168.57
0.1208 Mtp MLE 255.19 44.31 45.91 0.953 179.97
0.1420 Petersen 244.76 103.57 84.32 0.825 330.55

(0.1, 0.05)

0.0734 Mp CUE 266.35 46.12 44.66 0.956 175.06
0.2194 Mp MLE 255.22 31.20 33.73 0.967 132.24
0.0720 G. Pathak 250.24 42.05 40.49 0.933 158.73
0.1256 Mtp MLE 252.65 48.69 48.08 0.932 188.49
0.0584 Petersen 254.97 106.32 75.40 0.848 295.57

(0.2, 0.0125)

0.2196 Mp CUE 250.64 18.33 18.10 0.948 70.95
0.2017 Mp MLE 250.61 17.01 17.51 0.957 68.63
0.1882 G. Pathak 249.07 16.89 17.09 0.943 67.00
0.1896 Mtp MLE 249.41 17.61 17.71 0.942 69.42
0.1861 Petersen 250.00 63.54 50.26 0.840 197.03

(0.2, 0.025)

0.2196 Mp CUE 251.08 15.61 16.12 0.959 63.17
0.2017 Mp MLE 250.77 15.64 16.58 0.960 65.01
0.2132 G. Pathak 249.42 18.50 18.18 0.938 71.25
0.1882 Mtp MLE 249.40 17.35 17.63 0.948 69.12
0.1711 Petersen 248.71 63.25 53.37 0.828 209.20

(0.2, 0.05)

0.2196 Mp CUE 253.13 16.34 15.81 0.943 61.99
0.1420 Mp MLE 253.50 20.03 19.84 0.953 77.76
0.1622 G. Pathak 250.26 18.65 17.99 0.932 70.50
0.2017 Mtp MLE 250.55 18.53 18.26 0.952 71.57
0.1395 Petersen 249.19 50.27 39.31 0.781 154.08

Table 4.6: Simulated results for 1000 realisations from a population N = 250,
R = 10 and t = 5 with Beta-distributed capture probabilities.
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(µ, σ)
Example

Estimator
Mean Sample Mean est. Coverage Average

pjs Estimate std dev. std dev. proportion width

(0.05, 0.0125)

0.0508 Mp CUE 252.80 38.89 37.41 0.935 146.64
0.0652 Mp MLE 258.83 43.90 42.58 0.959 166.90
0.0228 G. Pathak 251.30 38.52 37.89 0.938 148.53
0.0432 Mtp MLE 249.94 39.61 40.26 0.932 157.80
0.0679 Petersen 248.42 106.92 83.43 0.807 327.05

(0.05, 0.025)

0.0720 Mp CUE 257.66 38.69 37.03 0.956 145.16
0.0508 Mp MLE 261.33 44.93 47.14 0.963 184.77
0.0652 G. Pathak 248.93 45.86 41.49 0.917 162.66
0.0228 Mtp MLE 258.15 64.92 68.04 0.948 266.70
0.0432 Petersen 251.32 119.03 87.84 0.822 344.34

(0.05, 0.05)

0.0228 Mp CUE 259.37 37.09 37.51 0.964 147.02
0.0058 Mp MLE 295.40 59.82 61.00 0.986 239.13
0.0244 G. Pathak 247.01 63.01 59.95 0.898 235.00
0.0150 Mtp MLE 250.18 21.95 21.62 0.938 84.74
0.1327 Petersen 249.66 93.99 79.80 0.826 312.82

(0.1, 0.0125)

0.0972 Mp CUE 251.80 18.30 18.62 0.950 72.98
0.1244 Mp MLE 249.94 16.45 16.76 0.946 65.69
0.1232 G. Pathak 250.01 17.37 17.50 0.959 68.61
0.0954 Mtp MLE 250.29 18.07 19.20 0.958 75.26
0.1221 Petersen 246.06 57.61 51.47 0.835 201.76

(0.1, 0.025)

0.0734 Mp CUE 253.04 17.21 17.32 0.957 67.91
0.0720 Mp MLE 251.35 20.63 21.29 0.958 83.47
0.1256 G. Pathak 250.96 18.20 17.71 0.941 69.44
0.1208 Mtp MLE 250.11 18.87 18.77 0.951 73.58
0.1420 Petersen 249.38 61.90 49.74 0.836 194.98

(0.1, 0.05)

0.0734 Mp CUE 251.74 14.07 14.24 0.951 55.82
0.2194 Mp MLE 258.35 18.33 19.67 0.972 77.10
0.0720 G. Pathak 249.52 20.75 21.00 0.939 82.29
0.1256 Mtp MLE 248.82 13.81 13.72 0.929 53.77
0.0584 Petersen 249.75 61.65 53.16 0.835 208.37

(0.2, 0.0125)

0.2196 Mp CUE 250.16 5.80 6.09 0.963 23.89
0.2017 Mp MLE 249.66 6.62 6.74 0.950 26.41
0.1882 G. Pathak 250.05 5.96 6.18 0.953 24.19
0.1896 Mtp MLE 249.10 6.60 6.78 0.941 26.56
0.1861 Petersen 249.19 27.65 20.37 0.662 79.85

(0.2, 0.025)

0.2196 Mp CUE 250.40 6.15 6.23 0.952 24.41
0.2017 Mp MLE 249.89 6.35 6.48 0.948 25.41
0.2132 G. Pathak 250.27 6.70 6.84 0.956 26.80
0.1882 Mtp MLE 249.27 6.17 6.19 0.955 24.25
0.1711 Petersen 249.45 25.37 18.39 0.616 72.11

(0.2, 0.05)

0.2196 Mp CUE 250.51 7.86 7.69 0.939 30.13
0.1420 Mp MLE 250.62 6.75 6.96 0.957 27.27
0.1622 G. Pathak 250.33 9.03 9.19 0.955 36.02
0.2017 Mtp MLE 249.80 7.65 7.56 0.946 29.63
0.1395 Petersen 250.27 31.23 24.35 0.741 95.44

Table 4.7: Simulated results for 1000 realisations from a population N = 250,
R = 10 and t = 10 with Beta-distributed capture probabilities.
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is lower than the sample standard deviation on quite a few trials, and appears to

estimate the standard deviation quite well. This is to be expected, as the variance

estimator (4.13) holds asymptotically.

The Mp MLE has a poor mean estimate when µ = 0.05, and most of the trials

when µ = 0.1. There is no clear relationship between its sample and mean esti-

mated standard deviations. Based on its mean point population estimate, it cannot

be recommended when N = 250.

The Petersen-type estimator has, in most scenarios, a mean population estimate

very close to the true population size. However, its mean estimated and sample

standard deviations are often much larger than the corresponding standard devia-

tion estimates for the other estimators, but still lead to poor coverage proportions.

With this set of cases, the generalised Pathak estimator is a consistently good es-

timator in the cases where the other estimators perform poorly. Thus, again, the

generalised Pathak estimator is proposed as being optimal under model Mtp when

N = 250.

4.6 A brief analysis under model Mt

We will now have a brief look at how far these results remain valid in the non-plant

case, model Mt. It is of interest to note whether the generalised Pathak estimator

or the Mp CUE could be recommended for a different model to that for which

they were originally designed, and whether either could be preferred to the most

commonly used estimator, theMt MLE. The analysis for this will again be done via

simulation; firstly, using capture probabilities generated from the beta distributions

given in Table 4.1, and then in a similar vein to Otis et al.’s (1978, p. 126) Table

N.2.b. Thus, Table 4.8 below should be compared to Table 4.2 above. In this

table, 1000 realisations from each distribution are simulated to provide the mean

estimates. Otis et al.’s (1978) Table N.2.b. is recreated under model Mt in Table

4.9. Table 4.9 compares the values of the Mt MLE given in the Otis et al table

(using resimulated values) with that of the generalised Pathak estimator, and the

M0 CUE and M0 MLE. The number of realisations for each trial are the same as

those specified by Otis et al. (1978) in their Table N.2.b., column 7. The summary

statistics given in Table 4.9 are mean and average standard deviation estimates, as

well as some interval summary statistics. Thus, columns 6, 7, 8 and 9 of Table

4.9 should be compared to columns 3, 4, 5 and 6 respectively of Otis et al.’s Table

N.2.b. Column 10 of Table 4.9 can be compared to Otis et al.’s Table N.2.b by

evaluating (2× 1.96) · Ave
√

V̂ar(N̂), where Ave
√

V̂ar(N̂) is Otis et al.’s column

5.
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(µ, σ)
Example

Estimator
Mean Sample Mean est. Coverage Average

pjs Estimate std dev. std dev. proportion width

(0.05, 0.0125)

0.0508 M0 CUE 40.28 22.69 20.74 0.690 81.32
0.0652 M0 MLE 47.36 26.08 34.62 0.830 139.58
0.0228 G. Pathak 40.21 22.53 20.81 0.653 79.68
0.0432 Mt MLE 43.83 25.30 31.05 0.772 121.70
0.0679 Petersen 33.39 16.80 17.03 0.530 66.75

(0.05, 0.025)

0.0720 M0 CUE 44.37 25.80 22.82 0.736 89.44
0.0508 M0 MLE 53.41 29.66 37.98 0.867 152.69
0.0652 G. Pathak 40.67 22.62 20.88 0.690 81.83
0.0228 Mt MLE 38.21 22.53 28.27 0.720 110.81
0.0432 Petersen 34.47 17.14 17.30 0.565 67.81

(0.05, 0.05)

0.0228 M0 CUE 41.46 23.59 21.84 0.725 85.60
0.0058 M0 MLE 67.50 39.28 41.46 0.933 177.67
0.0244 G. Pathak 49.10 23.48 17.61 0.810 69.03
0.0150 Mt MLE 34.90 17.63 20.50 0.591 80.37
0.1327 Petersen 38.63 19.32 18.54 0.631 72.67

(0.1, 0.0125)

0.0972 M0 CUE 49.32 20.76 16.98 0.823 68.70
0.1244 M0 MLE 57.83 31.14 30.71 0.897 122.44
0.1232 G. Pathak 48.42 23.04 17.87 0.823 70.07
0.0954 Mt MLE 55.53 30.75 26.42 0.866 103.56
0.1221 Petersen 43.90 21.73 19.94 0.671 78.18

(0.1, 0.025)

0.0734 M0 CUE 49.73 21.55 17.53 0.853 68.70
0.0720 M0 MLE 58.43 31.54 28.07 0.897 112.02
0.1256 G. Pathak 49.93 24.70 18.60 0.830 78.88
0.1208 Mt MLE 54.22 25.34 20.69 0.883 81.10
0.1420 Petersen 44.61 23.36 20.27 0.663 79.45

(0.1, 0.05)

0.0734 M0 CUE 49.39 25.42 18.80 0.817 73.69
0.2194 M0 MLE 58.25 27.75 23.62 0.921 95.05
0.0720 G. Pathak 47.40 22.15 20.30 0.805 79.59
0.1256 Mt MLE 52.29 19.36 15.13 0.876 59.33
0.0584 Petersen 43.96 22.45 20.68 0.674 81.08

(0.2, 0.0125)

0.2196 M0 CUE 49.98 7.85 7.44 0.915 29.16
0.2017 M0 MLE 50.87 10.37 9.14 0.911 35.78
0.1882 G. Pathak 49.52 7.92 7.63 0.914 29.86
0.1896 Mt MLE 49.60 8.02 7.27 0.907 28.50
0.1861 Petersen 49.39 20.24 13.41 0.681 52.55

(0.2, 0.025)

0.2196 M0 CUE 50.20 8.87 8.37 0.912 32.80
0.2017 M0 MLE 50.57 9.11 8.01 0.891 31.24
0.2132 G. Pathak 49.79 7.33 6.88 0.937 26.97
0.1882 Mt MLE 49.26 8.01 8.09 0.914 31.73
0.1711 Petersen 49.07 20.55 13.53 0.674 53.02

(0.2, 0.05)

0.2196 M0 CUE 50.54 8.03 7.41 0.924 29.03
0.1420 M0 MLE 50.57 7.35 7.23 0.923 28.09
0.1622 G. Pathak 50.16 6.73 6.39 0.940 25.05
0.2017 Mt MLE 49.91 8.96 7.97 0.891 31.23
0.1395 Petersen 49.34 18.50 13.53 0.653 48.81

Table 4.8: Simulated results for 1000 realisations from a population of sizeN = 50
with t = 5 and Beta-distributed capture probabilities with no plants present.
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4.6.1 Results

Using the parameters given in Table 4.1, trials were simulated under model Mt

with beta-distributed capture probabilities, the results of which are given in Table

4.8. The first observation from Table 4.8 is that, without plants, in many cases, the

mean population estimates are a lot further from the true population size. The Mt

MLE mean estimate is underestimating N by around 20-30% when µ = 0.05, but

then overestimates N when µ = 0.1. When the mean capture probability is 0.2, it

performs well in terms of the mean point population estimate.

The M0 CUE mean population estimate is again seen to increase as the capture

probability mean increases, but, as it generally underestimates when µ is small,

this doesn’t lead to a major positive bias. Its standard deviation estimate consis-

tently underestimates the sample standard deviation in each trial, but the coverage

proportion gets closer to 0.95 as µ increases.

The generalised Pathak estimator mean population estimate also underestimates N

when µ = 0.05, but has a mean population estimate of within 1% for µ = 0.2.

Its average estimated standard deviation also underestimates the sample standard

deviation in every trial, but the coverage proportion exceeds 0.9 when µ = 0.2,

suggesting that the standard deviation estimate improves as µ increases.

The M0 MLE performs well when µ = 0.2 when considering its mean point pop-

ulation estimate, but when µ is smaller, it performs quite erratically. Its mean

estimated and average standard deviations are larger than those of the other esti-

mators (with the occasional exception of the Petersen estimator). For µ = 0.05 or

µ = 0.1 cases, this results in it having a coverage proportion that is closer to 0.95

than that of all the other estimators. This may be a result, however, of its general

overestimation of the population size.

The Petersen-type estimator performs poorly in terms of mean point population

estimate when µ = 0.05, where it underestimates by around 30%. When µ=0.1

its mean point population estimate improves somewhat, underestimating by just

over 10%. When µ=0.2, its point population estimate is within unity of the true

population size, N . Throughout the 9 trials given in Table 4.8, the sample standard

deviation remain roughly the same. The mean estimated standard deviation under-

estimates quite significantly when µ = 0.2, but otherwise is reasonably close. The

coverage proportions do not ever exceed 0.7, however. This would suggest that it

should not be used under model Mt.

Thus, the estimator that should be proposed under modelMt from the beta-distributed

samples simulated here is the generalised Pathak estimator.

Now consider Table 4.9. The first observation is that, when the generalised Pathak

estimator is considered, it has a mean point population estimate within a 1% range
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of the true population size in all but four trials. The Mt MLE has seven trials that

have a mean population estimate that is biased by more than 1%. The generalised

Pathak estimator also gives a reasonable point population estimate for the case in

which theMt MLE is poor, the trial withN=800. It gives a slight underestimate (of

just over 5%). This is bettered still by the M0 CUE, which gives a point population

estimate of just less than 1% below the true population size, N .

The two trials where the generalised Pathak estimator has its largest mean popula-

tion estimate bias correspond to trials with capture probabilities of either 0.01, 0.02

or 0.03. These are very low probabilities that would lead to few captures. This is

consistent with the case when µ=0.05 in Table 4.2, where the generalised Pathak

estimator also had a very low mean. In these two trials, the mean estimate of the

generalised Pathak estimator is bettered by that of the Mp CUE, but this is bettered

still by both MLEs.

When the mean estimated standard deviation column is considered, it can be noted

that the generalised Pathak estimator tends to have a lower mean estimated stan-

dard deviation than the other standard deviation estimators considered. In some

cases, this results in a coverage proportion much lower than the desired 0.95 level,

but, in many cases, the coverage is at a satisfactory level. Hence, there is again

evidence that the generalised Pathak estimator should be used under model Mt.

4.7 Deer Mice Pseudo Example

4.7.1 Introduction

As there are no published datasets of multiple recapture plant-capture trials, the

analysis given in Amstrup et al. (2005) on deer mice (Peronymscus maniculatus)

is extended here to a plant-capture analysis. The results, collected by V. Reid and

published in Otis et al. (1978), are based on six successive nights of capturing by

live-trapping and release before the next sample. The summary statistics are given

in Table 4.10. The Mt MLE for this trial is N̂ = 38 with an estimated standard

error of 0.62. The estimated population (s.e.) for the generalised Pathak estimator

is 38 (3.87), as is that for the Mp CUE.

To convert this dataset into a pseudo plant-capture dataset the captured mice from

x n1 n2 n3 n4 n5 n6
38 15 20 16 19 25 25

Table 4.10: Summary statistics for the deer mice data, giving the number of distinct
animals captured as well as the number caught in sample nj , (j = 1, . . . , t).
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j 1 2 3 4 5
nj 20 16 19 25 25
n0j 8 8 7 12 13

Table 4.11: Summary statistics for the deer mice data, giving the number caught
in sample nj , (j = 1, . . . , t). n0j gives the number of animals caught in sample
j, (j = 1, . . . , t) if the ‘plants’ are not included. The number of distinct animals
caught, x, was 23.

the first sample n1 will be used as ‘plants’ and the remaining samples treated in

the usual plant-capture manner. The summary statistics for this trial are given

in Table 4.11. Also given in Table 4.11 are the summary statistics of the trial

in which the ‘plants’ were not present in the population. These are denoted by

n0j (j = 1, . . . , t). The number of distinct captured animals, x, is the same for

both trials, as it does not include the number of plants captured. Thus, the latter

trial effectively discards the first 15 rows of the capture matrix.

4.7.2 Results

Three estimators (the Mtp MLE, the generalised Pathak estimator and the Mp CUE)

are compared for two pseudo trials: with and without the first sample ‘plants’. The

results are given in Table 4.12. These show that all three plant-capture estimators

give the same population estimate of 38. The Mtp MLE has the lowest estimated

standard error of 0.83. The generalised Pathak estimator and the Mp CUE have the

same form of variance estimator and give the same estimate for x − 1; they thus

have the same estimated standard error of 3.87.

When the first trial is excluded and samples 2 to 6 used as a mark recapture trial,

the Mt MLE estimates the population to be 39, with an estimated standard error of

5.10. For both the generalised Pathak estimator and the Mp CUE, the population

estimate and estimated standard error are 40 and 4.12 respectively. As the analy-

sis in the previous sections shows, on average, where the population estimates of

the plant and non-plant trials are equal or nearly equal, the plant-capture estimated

Estimator
R = 15 R = 0

N̂ est. s.e. N̂ est. s.e.
Mtp MLE 38 0.83 39 5.10

Generalised Pathak 38 3.87 40 4.12
Mp CUE 38 3.87 40 4.12

Table 4.12: Results of the pseudo trial. WhenR = 15 the first sample of the dataset
was used as a set of planted individuals. When R = 0, no information from these
15 animals is used.
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standard error is equal to or lower than the non-plant estimated standard error.

When this is the case the population estimate is very close to the true population.

In this case, the true population is not known, but the mark-recapture estimates for

the full dataset are consistent with the subsets. The inclusion of plants reduces the

estimated standard error for all three estimators. This is also observed in the simu-

lation results, as the mean estimates become close to the true population.

If one relates Table 4.12 to the comparison of Table 4.2 and Table 4.8 then it ap-

pears that the capture probabilities of each sample (if they can be assumed to have

been constant for each animal) of the deer mice trial may have been relatively high.

This follows from noting that the population estimates of the non-plant estimators

is close to the estimates when plants are included, but the former have higher esti-

mated standard errors. This assumption of no animal heterogeneity may not hold,

as the CAPTURE computer software (now part of MARK) found evidence of a

trap-happy behavioural response to capture, whilst Huggins (1991) and Pledger

(2000) found evidence of both behavioural and animal heterogeneity. By not tak-

ing account of heterogeneity when it is present, estimates can be negatively biased

(c.f. Burnham & Overton (1978, p. 625)). This may explain why the estimates for

the full model for all three estimators tested here were equal to the number of dis-

tinct animals present. Alternatively, it is possible that almost every animal present

was caught in the trial.

Thus, this deer mice example has shown that the results of the simulations carried

out above can apply to real data sets.

4.8 Conclusion

The strongest result from §4.5 and §4.6 is the fact the generalised Pathak estimator

has been shown to be an improvement on the Mt and Mtp MLEs. The Mt MLE is

the most commonly used estimator under model Mt, so is considered here to be

the benchmark estimator.

One problem probably holding back the use of the Pathak estimator was its relative

difficulty of computation. The work in this chapter, however, is evidence that mod-

ern computing power allows for it to be calculated with great accuracy. (The author

recommends the use of the Java package java.math.BigDecimal for computation.)

TheMp CUE performs well in many situations, particularly when the capture prob-

abilities are small, but its mean estimate appears to overestimate as the variance

of the capture probabilities increases. This is evidence that the extra information

that is gained from having knowledge of the number of captures in each sample be-

comes more important as the range of numbers caught increases. However, when

the goal is to have as few sampling occasions as possible, the Mp CUE should be

considered for use, as it is very strong in this situation.
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For the reason given above, the main comparison in this chapter is between the

Mtp MLE and the proposed estimator, the generalised Pathak estimator, both under

model Mtp.

The strongest argument favouring the generalised Pathak estimator is the fact that

its expected value does not exceedN when the capture probabilities are small. This

is a key property, as the capture probabilities could be small due to the sparsity of

the animal population, which could be as a result of a diminishing population. If

this is the case, a cautious estimate is required rather than one that offers a false

belief of a higher population abundance than really exists.

Another property of the generalised Pathak estimator is the fact that it generally

has an informative limit at both ends of the confidence interval. The Mtp MLE can

have a standard deviation estimate so high that it is larger than its mean population

estimate and hence the lower end-point of the confidence interval is uninformative.

This is an undesirable property, as mark-recapture and plant-capture trials can be

expensive and time-consuming to run, and so one would wish to gain an informa-

tive confidence interval at the end.

To answer another question posed earlier, using plants in the process is seen to

increase the stability of the estimation for each estimator. It is shown that just a

relatively small number of plants can improve the estimation, and also, on occa-

sion, cause a decrease in the average standard deviation. This was also observed in

the deer mice example of §4.7.

The effect of using 10 samples rather than 5 is now discussed. The main conclu-

sion is that there is a marked improvement in the estimation when 10 samples are

used. Performing 10 samples can provide equivalent mean estimates to those trials

with a mean capture probability which is double but run with 5 samples. However,

in a lot of cases when t = 5, there is not much improvement required for the point

estimates ofN , as many of the mean population estimates are very close to the true

population size. Thus, the recommendation here is that only five samples should

be run, unless the practitioner has a strong sense that the capture probabilities are

below 0.1 on average.

As the focus here was on models Mt and Mtp, there has been no analysis of model

selection. Consequently, the results here only apply to these models. If one wishes

to use the above conclusions, they should firstly carry out a model selection proce-

dure to confirm that a time-heterogeneous only model can be assumed. A test of

model Mt against the more general Jolly-Seber model is given in Stanley & Burn-

ham (1999). Other frequently used model selection procedures use the Akaike’s

Information Criterion, AIC or the Bayesian Information Criterion, BIC. Both of

these methods are excellently described and compared in Buckland et al. (1997).
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Chapter 5

MARK-RECAPTURE AND

PLANT-CAPTURE ESTIMATION

WITH SPARSE DATA

5.1 Introduction

This chapter is concerned with point and interval estimation of a closed popula-

tion of size N under model Mt of the Otis-class, and the equivalent plant-capture

model,Mtp. The capture histories are given by an (X+R)×tmatrix,D (see §1.5),

where, without loss of generality, the first X rows give the capture histories for the

distinct target animals caught, the next R rows give the capture histories for the

plants and t is the number of samples. The stipulation for D here is that it should

be sparsely filled with 1s, representing captures. By definition, each of the first X

rows must have at least one capture, but there should at most be few recaptures

for it to be defined as a “sparse data” set. Sparseness is difficult to define in more

quantitative terms, since it must be defined in terms that are known, rather than the

unknown N . This is why it is difficult to get an accurate mathematical definition.

The condition that produces a sparse data set is a set of small capture probabilities,

pj , j = 1, . . . , t.

Most population estimators perform poorly in such situations, as shown in the pre-

vious chapters and by other authors (Chao (1989), Chapman (1951), Otis et al.

(1978, p. 26)). These biases are generally caused by the estimators underestimat-

ing. Darroch’s (1958) MLE, however, has the problem that it gives an infinite es-

timate of population size when the total number of captures, z, equals x, which

becomes increasingly probable as the capture probabilities decrease.

Another problem caused by having small sample sizes is that of model selection,

as detailed in Borchers et al. (2002, §6.7.3). Although model selection will not be
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considered further here, it illustrates that sparse data sets can be more problematic

than the larger sample size trials.

Various authors have sought to improve the estimation of sparse data sets; Chao

(1989) looked at the problem under modelsMt andMh and Gazey & Staley (1986)

sought to find a Bayesian solution to sparse data problems. The recommended esti-

mator by Chao (1989) under Mt is one that estimates the number of animals never

caught, using the numbers of animals caught exactly once and exactly twice. She

shows this to be a bias-corrected form of an estimator that reduces to the Petersen

estimator when t = 2. She also states that this estimator has a bias of orderO
(
1
N

)
,

compared to a bias of order O(1) for the Mt MLE as calculated by Darroch (1958).

As a result, she recommends the use of the former rather than the latter.

Chao’s (1989) estimator is also recommended by Wilson & Collins (1992), who

compare it with the estimators of Darroch & Ratcliff (1980) and Zelterman (1988).

They conclude that “It is found that the bias adjusted estimator of Chao (1989) is

the best to use when the number of captures is relatively small . . . ”.

We will compare here Chao’s (1989) estimator under model Mt with the model

M0 conditionally unbiased estimator, derived by Goudie & Ashbridge (2005). As

was shown in the previous chapters, the M0 CUE performed very well in terms of

mean point estimate when the capture probabilities were low. Thus, it is tested here

against an estimator designed for sparse data trials.

It was also shown in the previous chapters that the generalised Pathak estimator

performed as well as, if not better than, the M0 CUE in many occasions with small

capture probabilities. However, the combination of a large population size and a

large number of samples precludes its use here, as the computations proved to be

too difficult.

This chapter also looks at the effect that plants have in improving estimation. Yip

(1996), in his work on the continuous-time heterogeneous model, states that “The

effect of R is more significant when p [the capture probability] is small”. He does

not, however, consider capture probabilities that would lead to the “sparse data”

case, which will be considered here. For model Mp Ashbridge & Goudie (2009)

derive a generalised version of the M0 CUE, which uses a ratio of Gould-Hopper

numbers, (Gould & Hopper 1962), in place of the C-numbers.

We also test here whether including plants can allow the experimenter to take

fewer samples whilst getting almost unbiased estimates of population size. Goudie

(1995) concludes that, under a continuous-time framework, “. . . the use of plants

can provide a useful reduction in the average time taken to achieve complete cov-

erage . . . ”. Through simulation, work is done to consider whether the number of

samples taken can be reduced by including plants.

This chapter proceeds as follows: §5.2 provides a reminder of the plant-capture

CUE of Ashbridge & Goudie (2009) and gives a generalisation of the estimator of
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Chao (1989); §5.3 gives simulation results and plots detailing the effect of plants

for various scenarios leading to sparse matrices. Finally, the conclusions of this

work are given in §5.4.

5.2 Theory

The sparse data estimator proposed by Chao (1989) for model Mt is here gener-

alised to model Mtp, the equivalent plant-capture model. For this estimator some

additional notation is required, which is given below.

XR = The number of distinct animals from the plant population caught in the trial.

fk = The number of animals from both target and plant populations caught exactly

k times, k = 0, 1, . . . , t.

Zj = The number of animals from both populations captured only in the jth

sample, j = 1, . . . , t.

When R = 0 the justification for Chao’s (1989) Mt estimator is based on the

equation N = X + f0. To generalise this estimator to model Mtp we estimate

the augmented population and then subtract the known number of plants, giving

N = (X +XR −R) + f0. In both cases, since f0 is not observed, the final term

must be estimated. This requires the two observed statistics f1 and f2, the number

of animals caught exactly once and twice respectively in the t samples. Thus, under

model Mtp we have

E[f0] = (N +R)
t∏

j=1

(1− pj)

E[f1] = (N +R)

t∏
j=1

(1− pj)

[
t∑

k=1

pk
1− pk

]

E[f2] = (N +R)
t∏

j=1

(1− pj)

[
t∑

k=1

t∑
l=k+1

pkpl
(1− pk)(1− pl)

]
.

Combining the above, we get

{
E[f1]

}2
− 2E[f0]E[f2] = (N +R)2

t∏
j=1

(1− pj)2
[

t∑
k=1

(
pk

1− pk

)2
]

=

t∑
j=1

{
E[Zj ]

}2
.
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Thus, rearranging to obtain an expression for the expected value of the unknown

f0, we get

E[f0] =
{E[f1]}2 −

∑t
j=1 {E[Zj ]}2

2E[f2]
,

which leads to an estimate (adjusted to allow for the possibility of f2 = 0) of N :

N̂t = (x+ xR −R) +
f21 −

∑t
j=1 Z

2
j

2(f2 + 1)
. (5.1)

A variance estimator for (5.1) (for the R = 0 case) is also given in Chao (1989)

but it is stated that it “slightly underestimates” the sample standard error.

Also stated in the conclusion of Chao (1989) is:

“For sparse data, the proposed N̂C [(5.1)] is preferable to Darroch’s

(1958) MLE in the sense of having smaller bias as well as smaller

variance. However, when data are not sparse so that there are rela-

tively more recaptures, Darroch’s MLE would perform better than the

proposed N̂C , for in such cases Darroch’s MLE will have negligible

bias and smaller variance.”

It is this split in optimality that makes this awkward, since it is difficult in practice

to know whether the data are sparse or not. Without knowing the true population

size, and even when one does, there is no clear boundary between sparse data and

non-sparse data. For this reason, a more unified approach is sought.

Chao’s estimator, (5.1), is compared here with the conditionally unbiased estima-

tor, CUE, under model M0 of Goudie & Ashbridge (2005), which is the unique

unbiased estimator of N under the conditional distribution given Z = z in the case

where N ≤ z. This estimator is generalised to model Mp in Ashbridge & Goudie

(2009), and was given in §2.3 as

Ñc = x+
G(z, x− 1, t, Rt)

G(z, x, t, Rt)
, (5.2)

where G(z, x, t, Rt) is a Gould-Hopper number (Gould & Hopper 1962) defined

by (2.19) and given again here for convenience:

G(z, x, t, Rt) =
1

x!
∆x [(Rt+ ωt)z]ω=0

=
z!

x!

x∑
k=0

(−1)k
(
x

k

)(
Rt+ xt− kt

z

)
.

As with the previous chapters, what is actually used in the simulation results is N̂U

where this is the integer rounded value (c.f. p.45).
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From §4.4.4 and defining Nc−1 to be (5.2) with (x− 1) distinct captures, we get:

var
(
Ñc

)
=


(
Ñc − x

)(
Ñc − Ñc−1

)
x =

z

t
−R+ 1, . . . , z;

0 x =
z

t
−R.

(5.3)

Also given in Ashbridge & Goudie (2009) is the probability distribution for (Z,X)

under model Mp. This distribution has probability function

p(z, x) =
(N)x
z!

G(z, x, t, Rt)pz(1− p)Nt+Rt−z (5.4)

for z = 0, . . . , Nt + Rt, x = min(1, z), . . . ,min(N, z). Under Mp one can

calculate the expected value for the Mp CUE by summing the product of (5.2) and

(5.4) over all Z andX . This is used in the results section to measure the simulation

error in the CUE estimates.

5.3 Results

This section begins in an analogous way to Chao’s (1989) paper, using 40 trials

and the same sets of probabilities that she gives in her Table 1, (Chao 1989, p.

433), given here in Table 5.1. These scenarios are given in Table 5.1 for the Mtp

trials, with the Mp adjusted scenarios given in Table 5.2. The results therein are

recalculated and given in Table 5.3.

The analysis then moves on to examine the effect that the number of samples plays

in the quality of the estimators, as the 40 samples that are used by Chao (1989)

would be very time-consuming and expensive for the practitioner. Thus, a mod-

ified set of Trials, for the case when there are 10 sampling occasions instead of

40, is given in Table 5.2. Where possible, the number of samples with a particular

capture probability was directly scaled down by a factor of 4, but when this was

not possible the sample probabilities were chosen to give ‘more sparse’ scenarios

than the t = 40 case. Also, when the Mtp scenarios were approximated by Mp

scenarios (for which the exact expected value of the Mp CUE can be calculated),

the average capture probability over all samples was used, given in the final column

of Table 5.2.

Finally, the trials are simulated with the inclusion of plants, to test whether includ-

ing plants can improve estimation.
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Trial Sample pj

1
j = 1, 20 0.003
j = 21, 40 0.005

2 j = 1, 40 0.005

3
j = 1, 20 0.003
j = 21, 30 0.005
j = 31, 40 0.01

4
j = 1, 30 0.005
j = 31, 40 0.01

5
j = 1, 20 0.005
j = 21, 40 0.01

6 j = 1, 40 0.01

Table 5.1: Model scenarios for t = 40 as given in Chao (1989), which lead to
sparse data situations.

Trial Sample pj Mp probability

1
j = 1, 5 0.003

p = 0.004
j = 6, 10 0.005

2 j = 1, 10 0.005 p = 0.005

3
j = 1, 6 0.003

p = 0.0048j = 7, 8 0.005
j = 9, 10 0.01

4
j = 1, 8 0.005

p = 0.006
j = 9, 10 0.01

5
j = 1, 5 0.005

p = 0.0075
j = 6, 10 0.01

6 j = 1, 10 0.01 p = 0.01

Table 5.2: Model scenarios for t = 10, similar to those given in Chao (1989),
which lead to sparse data situations. The final column gives the constant capture
probability used for the Mp CUE estimates.

5.3.1 Comparison of the Chao and CUE estimators under sparse data
conditions

For the trials specified in Table 5.1, simulated results, based on 500 realisations

for each trial, are given in Table 5.3. The results in Table 5.3 for the estimator N̂t

are similar to those of Chao (1989, p. 433, Table 1), but are based on new simu-

lations. The author believes that the discrepancies between the values in Table 5.3

and Chao’s Table 1 can be attributed to simulation error.

It can be seen from Table 5.3 that there is not much difference between the simu-

lated results of Chao’s estimator and theM0 CUE in terms of bias. TheM0 CUE has

a lower bias in 11 of the 18 cases simulated, but the margin of improvement is only

small in each case. This shows that there is no significant loss of accuracy when

using the CUE rather than Chao’s estimator. The difference in the quality of the
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Trial N
Chao N̂t M0 CUE

Mean Sample s.d. Chao s.d. Mean Sample s.d. CUE s.d.

1
250 234.47 135.28 95.81 239.47 131.76 152.43
500 496.35 219.15 102.83 497.49 202.82 218.89
1000 996.77 293.99 147.36 1001.56 275.52 294.60

2
250 243.08 126.13 70.23 245.50 119.76 130.03
500 497.97 188.95 91.02 499.34 161.86 168.52
1000 999.77 245.37 130.31 995.05 224.08 228.29

3
250 253.32 151.46 77.43 256.87 145.09 146.40
500 499.57 179.31 89.04 499.75 149.66 158.74
1000 1011.72 251.31 128.29 1013.47 219.58 222.50

4
250 255.28 134.77 63.66 255.65 126.25 120.28
500 505.36 168.04 81.42 503.98 134.12 133.25
1000 1003.98 196.47 114.90 998.18 172.30 172.30

5
250 252.89 98.38 51.60 255.32 89.41 86.13
500 500.50 120.57 72.19 502.90 105.55 106.73
1000 1003.90 168.87 102.86 996.35 145.14 145.34

6
250 251.60 77.45 42.82 249.45 50.95 54.86
500 503.23 89.35 60.58 504.10 76.40 77.34
1000 1002.70 130.61 85.63 998.25 106.03 106.20

Table 5.3: Comparison of the Chao and Mp CUE estimators under model scenar-
ios with t = 40 and R = 0 as given in Chao (1989), which lead to sparse data
situations.

Trial N
Chao N̂t M0 CUE

Mean Sample s.d. Chao s.d. Mean Sample s.d. CUE s.d.

1
250 50.00 29.42 45.88 49.98 29.40 37.93
500 163.84 79.44 141.74 165.27 78.74 121.54
1000 538.49 260.04 421.85 545.57 258.79 403.96

2
250 71.67 40.77 64.85 71.57 40.39 54.15
500 227.53 116.92 182.68 228.97 115.10 169.42
1000 710.82 383.34 487.12 716.81 379.21 534.13

3
250 64.55 35.87 57.89 66.37 36.92 49.83
500 210.02 104.30 175.92 218.69 106.36 161.80
1000 655.92 332.07 462.48 682.19 339.66 503.19

4
250 91.96 50.63 80.01 93.26 50.67 69.81
500 288.95 152.89 218.82 294.55 151.01 217.82
1000 836.72 480.52 485.17 853.90 482.57 630.51

5
250 126.46 70.70 103.69 128.86 70.54 96.37
500 372.23 207.25 245.29 380.48 204.89 278.73
1000 953.39 594.22 403.84 966.33 584.58 684.53

6
250 178.54 99.87 127.44 180.83 96.36 131.48
500 442.74 261.98 198.60 449.02 255.03 308.78
1000 984.84 548.31 234.91 987.72 531.23 565.35

Table 5.4: Comparison of the Chao and Mp CUE estimators under model scenar-
ios with t = 10 and R = 0 as given in Chao (1989), which lead to sparse data
situations.
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standard deviation estimates is more pronounced. It is evident that the estimator of

the standard deviation given by the square root of (5.3) for the M0 CUE estimates

the appropriate sample standard deviation more closely than the standard deviation

estimator given by Chao estimates the sample standard deviation of her estimator.

The estimated standard deviation for the Chao estimator is between 29% and 53%

smaller than the sample standard deviation in each case, which would lead to too

narrow a confidence interval. The corresponding difference between the estimated

and sample standard deviations for the CUE is between -16% and 5%, which leads

to wider, but more realistic, confidence intervals.

In every trial given in Table 5.4, however, the means of both estimators underesti-

mate the size of the true population. With the exception of the first and fourth rows,

the M0 CUE is consistently higher than N̂t, albeit only marginally. One might be

tempted to conclude that, in order to get estimates close to the true population when

the capture probabilities are small, one must sample on many occasions. This be-

comes very expensive and time-consuming, and also makes the assumption of a

closed population increasingly unjustifiable. It seemed plausible that the strong

negative bias evident when there are few samples might be reduced by introduc-

ing plants into the population before sampling begins. In the following section the

effect of introducing plants on the estimators’ biases are considered, by means of

simulation.

5.3.2 Comparison of plant and non-plant estimation when t=40

In order to test whether the use of plants improves the estimation of population size,

for each integer value of R in [0, 200], 1000 realisations of the sampling process

are simulated for the case whereN = 500 and t = 40. In Figure 5.1, for each value

of R shown on the horizontal axis, the mean of the 1000 realisations’ estimates is

plotted for both Chao’s N̂t and the CUE N̂U . This is done for each Trial given in

Table 5.1. Figure 5.2 contains plots of the sample standard deviations from both

estimators for each of these Trials.

It is evident from Table 5.3 that the mean point estimate for the no plant cases,

where R = 0, is almost unbiased for both estimators for all Trials given in Table

5.1, so there is not much room for improvement. It can be seen from Figure 5.1 that

the inclusion of any number of plants has no effect on the point population estima-

tion, as all six plots oscillate around the true value of N = 500 with no obvious

convergence. Figure 5.2, however, shows that, for the Mp CUE, there is a reduced

sample standard deviation as more plants are added. The reduction in sample stan-

dard deviation between no plants and 50 plants can be as much as 25%. However,

the reduction in size becomes negligible as the number of plants increase above
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Figure 5.1: Plots of means of the simulated (blue) and expected (red) Mp CUE

and Chao (green) estimators against the number of plants included for the case
N = 500 and t = 40.
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and Chao (green) estimates against the number of plants included for the caseN =
500 and t = 40.
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50. This is consistent with the conclusion of Yip (1996, p. 2037), which states

that adding too many plants should be avoided, as “. . . the improvement is quite

insignificant . . . ”.

As for the sample standard deviation of the Chao estimator, no reduction in size

is evident as the number of plants increase. In fact, the sample standard deviation

appears to increase linearly as R, and hence the augmented population, increases.

The suggestion here would be that the modified Chao estimator is not utilising the

information gained from the plant captures (i.e. not improving the estimate of f0)

and so the spread of estimates increases as the augmented population increases.

Here, we conclude that plants offer no increase in either estimate’s bias but equally

should not be considered an improvement if the non-plant estimate is almost un-

biased. For the Mp CUE introducing plants may reduce the standard deviation of

any estimate but no such reduction would be expected from any standard deviation

estimator for the Chao estimator.

5.3.3 Comparison between 40 samples and 10 samples

A more pertinent question is whether the use of plants is more efficacious when

fewer samples are taken and the data are consequently more sparse. Given in Fig-

ures 5.3 – 5.6 are plots of the means of the estimates based on 500 realisations of

the trials given in Table 5.2, but with the inclusion of between 0 and 200 plants.

Figure 5.3 gives the means of the estimates for the simulated CUE N̂U estimator

and the Chao N̂t estimator when the true population size is 100 and the number of

plants included ranges from 0 to 200 in increments of 1. Also included in the plots

is the exact mean of the CUE, where this assumes a constant capture probability,

p, in each sample. For Trials 2 and 6, this estimate should be the asymptotic limit

of the simulated mean, as the number of replicates goes to infinity. For the other

trials, it should offer an approximate asymptotic limit. Also marked in black on the

plots is the true population size of 100, for comparison.

Similar plots are given in Figures 5.4, 5.5 and 5.6 for populations N = 250, 500

and 1000 respectively. The ensuing analysis is concerned with answering the fol-

lowing questions: what is the effect of the true population size on the accuracy of

the estimation and what is the effect of including plants on the quality of estima-

tion?

To answer the first of these questions, it is evident that a similar story emerges from

each of Figures 5.3 – 5.6. With the exception of Trials 5 and 6 when N = 1000,

the estimates from all estimators when no plants are included are severely nega-
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Figure 5.3: Plots of means of the simulated (blue) and expected (red) M0 CUE

and Chao (green) estimators against the number of plants included for the case
N = 100 and t = 10.
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Figure 5.5: Plots of means of the simulated (blue) and expected (red) M0 CUE

and Chao (green) estimators against the number of plants included for the case
N = 500 and t = 10.
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Figure 5.6: Plots of means of the simulated (blue) and expected (red) M0 CUE

and Chao (green) estimators against the number of plants included for the case
N = 1000 and t = 10.
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tively biased. Thus, for Trials 1 – 4 of Table 5.2 it appears that the total population

size does not affect the relative bias of the estimator, whether it be Chao’s or the

CUE. As the population reaches 1000, however, it is noted that for the ‘less sparse’

cases, Trials 5 and 6, the estimate when R = 0 from each estimator is only mildly

negatively biased, with the values given in Table 5.4.

Regarding the more important question of whether plants decrease the bias of the

estimators, the answer depends on the estimator. When one considers Chao’s esti-

mator it can be seen from most plots that the inclusion of plants increases the bias

of the estimate, and it appears that the plants can have a negative effect for this

estimator. Since the Chao estimator effectively estimates the size of the augmented

population, it appears that the negative bias is so great that the subtraction of the

R term can make the estimate negative, and so the estimates given in Figures 5.3 –

5.6 are bounded below by X , which is the smallest size that the population can be.

For the CUE the simulated means of the estimator (shown in blue on the plots) can

be seen to approximate the expected value (given in red on the plots) very closely,

and the oscillations in the simulated line can be attributed to random variation. It

is also evident that, in every trial and for every population size considered, the in-

clusion of a sufficient number of plants leads to an unbiased estimate of the true

population size. When one wishes to find a balance between obtaining an unbi-

ased estimate and using as few plants as possible, the optimal number of plants to

include is not clear, but in most cases R = 50 appears to be sufficient to give an

almost unbiased estimate.

5.3.4 Distribution of the Mp CUE estimates with and without plants

Given in Figures 5.7 and 5.8 are histograms of the distribution of 1000 realisations

of the Mp CUE under Trial 2 probabilities. In Figure 5.7 N = 100 and in Figure

5.8N = 250. In both Figures 5.7 and 5.8 the left hand plot gives the distribution of

estimates when no plants are present and the right hand plot gives the distribution

of estimates when R = 50 (with a slightly reduced constant capture probability to

give the same expected number of captures). The histograms can be thought of as

slices of the Trial 2 (top right) plots in Figures 5.3 and 5.4, sliced at R = 0 and

R = 50.

What both Figures 5.7 and 5.8 both show is that, when R = 0, there is not a single

realisation that exceeds the true population size, N and the mode of both non-plant

histograms is far below N . Introducing plants is seen to shift the mean and mode

up towards N , and also stretch out the upper tail.

The addition of plants can cause a few outliers that are more than four times the

true population, which will have some influence on shifting the mean upwards.

The density of estimates that are close to N is much increased. Thus, despite the
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fact that underestimation is preferable to overestimation in most ecological circum-

stances, the mean improvement gained by inserting plants leads to the recommen-

dation of their use.

Distribution of 1000 realisations
for N=100, R=0, t=10 and p=0.005
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Figure 5.7: Distribution of 1000 realisations of Mp CUE estimates for the case
N = 100 and t = 10 with R = 0 (left) and R = 50, with the mean estimate given
by the red vertical line.
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Distribution of 1000 realisations
for N=250, R=0, t=10 and p=0.005

CUE estimates

Fr
eq
ue
nc
y

0 50 100 150 200 250

0
50

10
0

15
0

Distribution of 1000 realisations
for N=250, R=50, t=10 and p=0.0041667

CUE estimates

Fr
eq
ue
nc
y

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

Figure 5.8: Distribution of 1000 realisations of Mp CUE estimates for the case
N = 250 and t = 10 with R = 0 (left) and R = 50, with the mean estimate given
by the red vertical line.

5.4 Conclusion

This chapter has shown that the M0 CUE of Goudie & Ashbridge (2005), later gen-

eralised to model Mp in Ashbridge & Goudie (2009), is preferable to the estimator

of Chao (1989) under sparse data conditions. The CUE has a bias equal to, if not

lower than, Chao’s estimator, as well as having a superior variance estimator. It

was also shown that the mean of the Mp CUE is effectively unbiased when a suffi-

cient number of plants (at least 50) are inserted into the target population, whereas

Chao’s estimator is not improved by the inclusion of plants. This should not be

seen as a problem with plant-capture, but rather a problem specific to the Chao

estimator. It is possible that an improvement to this estimator can be made so that,

with the aid of the planted individuals, f0 is estimated more accurately.

Thus, it is recommended that the number of samples carried out in mark-recapture

experiments, when the capture probabilities are very small, can be vastly reduced

with the inclusion of around 50 plants. It has been shown here that one can expect

almost unbiased results when using the Mp CUE with the inclusion of planted indi-

viduals. This would drastically cut down on the number of samples, which would

make it more plausible that the closure assumption, a requirement of model Mtp,

holds.
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Chapter 6

COVERAGE ESTIMATORS

6.1 Introduction

The concept of coverage is important when one wants to consider which estimator

is optimal when estimating the size of animal populations. For this reason, an al-

ternative estimate of coverage is proposed here.

Chao et al. (1992), offer three estimators of coverage under model Mth, which can

be used under the special case of model Mt, in which the probability of capture in

any sample is the same for all animals. These estimators are given in §6.2.

Estimating coverage under the homogeneous models can equivalently be thought of

as estimating the inverse population, which, when multiplied by x, gives a coverage

estimate. An estimator of 1
N that exists in the literature is given by Pathak (1964),

which is shown to be the minimum variance unbiased estimator under model Mf .

This estimator is generalised to model Mfp below in §6.3.

A modified version of this generalised Pathak estimator to give the optimised es-

timator under model Mp, using the Rao-Blackwell Theorem, is presented in §6.4.

These estimators are compared via simulation, and the results are presented in §6.5.

6.2 Chao coverage estimators

Three estimators that directly estimate coverage (as opposed to estimators of 1
N )

have been proposed by Chao et al. (1992) for Model Mth. These estimators are

used here under Model Mt, which is a special case of Mth, assuming homogeneity

of animals in each sample.

For the derivation of the estimators, however, it is assumed that each animal has

an unknown probability of capture, pi, i = 1, . . . , N , the heterogeneity compo-

nent. The sample coverage is derived by summing the probabilities for all captured

animals, and dividing this by the sum of all probabilities. This, however, is equiva-

lent to 1 minus the ratio of the sum of capture probabilities of those animals never
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caught to the total sum. Thus, we get:

Ĉ = 1−

N∑
i=1

piI
[
the ith animal never captured

]
N∑
i=1

pi

. (6.1)

If there is also an unknown time-effect, ej , j = 1, . . . , t, in each sample, we get:

E[Ĉ] = 1−

N∑
i=1

pi

t∏
j=1

(1− piej)

N∑
i=1

pi

Multiplying top and bottom with
t∑

j=1

ej and using the fact that finite sums are

interchangeable gives

E[Ĉ] = 1−

N∑
i=1

t∑
j=1

[
piej

t∏
s=1

(1− pies)

]
N∑
i=1

t∑
j=1

piej

(6.2)

≈ 1−

N∑
i=1

t∑
j=1

piej∏
s 6=j

(1− pies)


N∑
i=1

t∑
j=1

piej

. (6.3)

Note that the approximation (6.3) of (6.2) should be an underestimate of Ĉ, since

factors in the product that are less than unity are being removed from the product,

thus increasing the overall sum.

Observing that the numerator of (6.3) is just E[f1], Chao et al. (1992, p. 205)

derived her first estimator of coverage, given by (6.4). She then gave two bias-

corrected estimators, given by (6.5) and (6.6). All three estimators use the fre-
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quency of captures, fk, as explanatory variables, and are as follows:

Ĉ1 = 1− f1∑t
k=1 kfk

(6.4)

Ĉ2 = min

{
1, 1− f1 − 2f2/(t− 1)∑t

k=1 kfk

}
(6.5)

Ĉ3 = min

{
1, 1− f1 − 2f2/(t− 1) + 6f3/[(t− 1)(t− 2)]∑t

k=1 kfk

}
. (6.6)

Note that (6.5) and (6.6) differ from Chao et al. (1992) in that they are bounded

above by unity, since they do not exclude the probability of estimates greater than

unity for the coverage. Note also that the denominator in these equations is simply

z, the total number of animals captured. These three estimators were proposed for

Model Mth scenarios, but are used in this thesis for Mt models only.

6.3 Pathak’s inverse population estimator under Mfp

Pathak (1964) wrote his paper with the purpose of estimating population size and

its inverse when sampling was carried out under model Mf , the fixed sample size

model. This estimator is generalised here to model Mfp. As seen in Chapter 2, eq.

(2.1), the sufficient statistic under model Mfp is X , the number of distinct animals

caught.

Pathak (1964) begins his paper by making use of the inclusion-exclusion principle

(c.f. Johnson et al. (2005, p. 432)):

Lemma 1.1: Let A1, . . . , Ax be x events defined on a probability space. Let

A =
⋃x
i=1Ai and Bi = (A−Ai), i = 1, . . . , x. Then

p

[
x⋂
i=1

Ai

]
= p(A)−

•∑
p(B1) +

•∑
p(B1 ∩B2)− . . . , (6.7)

where
•∑

is taken over all combinations of Bs chosen from B1, . . . , Bx.

�

To generalise Pathak (1964) to get an estimate of 1
N under model Mfp we use

equation (2.6), as given in §2.2, which is restated below:

p(X = x) =
(N)xa(x,n, R)

A(N,n, R)
, x = 0, . . . , N. (6.8)
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To get an unbiased estimate of the population inverse we firstly assume that at least

one animal from the target population is captured in each of the first two samples.

This assumption holds with probability 1 if both n1 and n2 are chosen to be greater

thanR. If we let u11 and u21 be the first units from the target population in samples

1 and 2 respectively, then p(u11 = u21) = 1
N . Thus, we have an unbiased estimator

of 1
N , given by:

t1 =

{
1 if u11 = u21

0 otherwise
. (6.9)

Since X is a complete sufficient statistic under model Mfp, we can use the Rao-

Blackwell Theorem (6.9) to get the minimum variance unbiased estimate of 1
N :

N̂−1(x) = E [t1 | X = x ] =
p
(
u11 = u21

⋂
X = x

)
p (X = x)

. (6.10)

To find the numerator in terms of x, n1, . . . , nt, we let u(1), . . . , u(x) represent

the x distinct animals captured in the sample. Thus, if we use Lemma 1.1 with

Aj =
[
u11 = u21 = u(i) and u(j) is selected in the sample

]
, j = 1, . . . , x, then,

in samples 1 and 2 we need only choose n1 − 1 and n2 − 1 animals respectively

from a total of R + x − 1, but nj animals in samples j = 3, . . . , t from a total of

R+x. To establish the probabilities in the form required for Lemma 1.1, we divide

this by all possible selections, choosing n1 − 1 animals from N + R − 1 for the
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first sample, etc, to get:

p
[
u11 = u21 = u(i)

⋂
u(2), . . . , u(x)

]

=

x−1∑
k=0

(−1)k
(
x− 1

k

)(
R+ x− 1− k

n1 − 1

)(
R+ x− 1− k

n2 − 1

) t∏
j=3

(
R+ x− k

nj

)

(N +R) · (N +R) ·
(
N +R− 1

n1 − 1

)(
N +R− 1

n2 − 1

) t∏
j=3

(
N +R

nj

)

=

x−1∑
k=0

(−1)k
x− k
x

(
x

k

)
n1n2

(R+ x− k)2

(
R+ x− k

n1

)(
R+ x− k

n2

) t∏
j=3

(
R+ x− k

nj

)

n1n2

(
N +R

n1

)(
N +R

n2

) t∏
j=3

(
N +R

nj

)

=

x−1∑
k=0

(−1)k
x− k

x(R+ x− k)2

(
x− 1

k

) t∏
j=1

(
R+ x− k

nj

)
t∏

j=1

(
N +R

nj

) . (6.11)

Thus, multiplying (6.11) by x
(
N

x

)
gives

p
[
u11 = u21

⋂
X = x

]
=

(
N

x

)[ x−1∑
k=0

(−1)k
x− k

(R+ x− k)2

(
x

k

) t∏
j=1

(
R+ x− k

nj

)]
A(N,n, R)

.

(6.12)

Thus, the generalisation to model Mfp of Pathak’s (1964) estimate of 1
N , which

he showed to be unbiased with minimum variance under model Mf , is found by

substituting (6.8) and (6.12) into (6.10) to get

N̂−1P (x) =

x−1∑
k=0

(−1)k
x− k

(R+ x− k)2

(
x

k

) t∏
j=1

(
R+ x− k

nj

)
x!a(x,n, R)

. (6.13)

Calculating xN̂−1P gives an estimate ĈP of C.

107



6.4 Goudie estimator

An improved estimator for (6.13) can be achieved under model Mp by the Rao-

Blackwell Theorem. Under Mp, the conditional distribution of n given the suffi-

cient statistics is

p(n|z, x) =
z!a(x,n, R)

G(z, x, t, Rt)
(6.14)

for

n ∈ nz,x = {n|n1 + . . .+ nt = z, ni ≤ x+R, i = 1, . . . , t}. (6.15)

Thus, if we use the Rao-Blackwell Theorem on (6.13), we get an estimator of
1
N that is unbiased, with minimum variance for all n ∈ nz,x, under model Mp

(Goudie (Personal communication) when R = 0). Simplifying (c.f. Feller (1968,

p. 58)) gives:

E[N̂−1|z, x] =
∑
n

z!

x!G(z, x, t, Rt)

x−1∑
k=0

(−1)k
x− k

(R+ x− k)2

(
x

k

) t∏
j=1

(
R+ x− k

nj

)

=
z!

x!G(z, x, t, Rt)

x−1∑
k=0

(−1)k
x− k

(R+ x− k)2

(
x

k

)(
t(R+ x− k)

z

)
.

(6.16)

(Note: This can be done since both summations have a finite number of terms, and

so their order can be reversed.)

Thus, on simplifying (6.16), Goudie’s estimate of coverage becomes

N̂−1G =
(z − 1)!t

(x− 1)!G(z, x, t, Rt)

x∑
s=1

(−1)x−s

R+ s

(
x− 1

s− 1

)(
t(R+ s)− 1

z − 1

)
, (6.17)

and Goudie’s coverage estimator is ĈG = xN̂−1G .

6.5 Computational work

Some computational work has been carried out to check that Pathak’s estimator of
1
N is in fact unbiased. This was a fairly crude analysis, under Model Mf , choos-

ing some capture histories and calculating expectations. It is evident from Table

6.1 (and others for larger t values) that the claims of unbiasedness hold in the Mf

model.

For analysis under model Mtp, simulation was carried out using selected beta dis-

tributions given in Table 4.1 to generate beta-generated capture probabilities. These
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N
n=(1,1) n=(2,1) n=(2,2)

N̂−1P N̂−1G N̂−1P N̂−1G N̂−1P N̂−1G

2 0.50 0.625 0.50 0.50 0.50 0.50
3 0.33 0.50 0.33 0.3611 0.33 0.3611
4 0.25 0.4375 0.25 0.2917 0.25 0.2830
5 0.20 0.40 0.20 0.25 0.20 0.2344
10 0.10 0.325 0.10 0.1667 0.10 0.1343
25 0.04 0.28 0.04 0.1167 0.04 0.0727

Table 6.1: Sample expectations of estimated coverage for the Pathak and Goudie
coverage estimators for pre-chosen n in cases where t=2.

capture probabilities were used for various values of N and t to assess how each

estimator performed under each scenario. The results are given in Tables 6.2 – 6.7

and summarised below.

6.5.1 N = 50, R = 0, t = 5 results

It can be seen that an increase in standard deviation of the capture probabilities

increases the sample standard deviation of the true coverage. A doubling of the

mean capture probability from 0.05 to 0.1 increases the true coverage by around

80%. Both of these results are roughly as would be expected. The mean estimates

from all estimators are below the true mean coverage in all the cases simulated.

The first observation from Tables 6.2 and 6.3 is that Chao et al.’s (1992) second

estimator, (6.5), is the best of their three proposed estimators in terms of mean

coverage estimate for these trials. It also has the highest sample standard deviation

of the three estimators, but this can be explained by the higher average point esti-

mates.

The generalised Pathak coverage estimator has the closest mean estimate to the true

coverage mean when µ = 0.05, but for µ = 0.1 Ĉ2 has the closest mean in two of

the three cases. In the first case of Table 6.2 the sample standard deviations of the

estimators are as high as three times that of the true sample standard deviation. The

generalised Pathak inverse estimator has the highest sample standard deviation of

all the estimators in Table 6.2, but this may be a consequence of its higher mean.

In Table 6.3, Ĉ2 has the highest sample standard deviation despite its mean only

being the closest to the true mean on only two occasions.

The Goudie estimator has a mean estimate and sample standard deviation that are

always below that of the generalised Pathak inverse estimator. In Table 6.2 its

mean is above that of Ĉ2 in all three situations, but below Ĉ2 in all three situations
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of Table 6.3. For µ = 0.05 it has a lower sample standard deviation than Ĉ2 in

two of the three cases, despite the higher mean point estimate. In Table 6.3 the

Goudie estimator sample standard deviation is always below Ĉ2, but this may be

correlated with the lower mean point estimate in each case. Thus, the Goudie es-

timator’s performance can be considered satisfactory when N = 50 and R = 0,

and be considered especially useful if there is no knowledge of individual capture

history or sample sizes.

6.5.2 N = 50, R = 0, t = 10 results

When N = 50, increasing the number of samples from 5 to 10 can be seen to

increase coverage by around 17.5% when µ = 0.05 and by around 24% when

µ = 0.1. Again, all estimators’ mean point estimates underestimate the true mean

coverage in all cases simulated and have sample standard deviations larger than the

true sample standard deviation.

When t = 10 there is no clear optimal estimator between ĈP and Ĉ2 in terms

of mean point estimate. In every case except from the (0.9, 17.1) case, ĈP has a

lower sample standard deviation than Ĉ2. In the (0.9, 17.1) ĈP has a mean point

estimate that is 3% higher than Ĉ2, which may explain the former’s higher standard

deviation in this case.

In every case, ĈG has a lower mean point estimate than both ĈP and Ĉ2. The ĈG
sample standard deviation is always less than or equal to ĈP and less than Ĉ2 in

the cases simulated. This may be explained by its lower mean point estimate than

the other two, however.

Taking both mean and standard deviation into account, the generalised Pathak in-

verse estimator is preferable to the others simulated when N = 50 and t = 10.

6.5.3 N = 50, R = 10, t = 5 results

It can be observed from Tables 6.6 – 6.7 that there does not appear to be any sys-

tematic difference in the true mean coverage between the Mt and Mtp simulations.

There is maybe an argument that the true sample standard deviation is slightly

smaller when R = 10, but the evidence presented here is not conclusive enough.

Table 6.7 offers weak evidence that the mean estimate from Ĉ2 is slightly improved

when R = 10. However, this is not supported in Table 6.6. Estimator Ĉ2 has the

closest mean estimate to the true mean out of all those simulated. There is even

one case (57.5, 287.85) where its mean overestimates the true mean coverage.

From the results for the cases whenR = 10, it is evident that ĈP and ĈG have neg-
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atively biased mean coverage estimations under model Mtp. Computation carried

out under Mfp evaluated that the expected value of the generalised Pathak inverse

estimator, N̂−1P , is

E
[
N̂−1P

]
=

1

N +R

(
2 +

R

N

) . (6.18)

This bias is independent of t and n. However, it is clear that ĈP should improve

asymptotically. The bias should decrease with increasing N and/or decreasing R.

This bias also results in N̂−1G being similarly biased.

Thus, under model Mtp the proposed coverage estimator is Ĉ2.

6.6 Conclusion

Under model Mt, it has been shown that both the generalised Pathak inverse es-

timator, ĈP , and the Goudie estimator, ĈG are preferable to the three coverage

estimators of Chao et al. (1992) in some of the cases simulated. In particular, ĈP
appears to be the optimal estimator when the capture probability standard devia-

tion is 0.2. This implies that when it is believed that there is strong heterogeneity

between the samples, ĈP should be favoured.

However, under model Mtp the generalisation of the Pathak inverse estimator is

shown to be biased, with the bias being proportional to 1
N . Thus, the generalised

Pathak inverse estimator, and the Goudie estimator under Mtp, are currently of

limited use. The estimators of Chao et al. (1992) appear to be unaffected by the

inclusion of plants, Thus, plant-capture is not currently recommended for use when

estimating sample coverage.
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(α, β) Estimator Mean estimate Sample std dev.

(15.15, 287.85)

True 0.2281 0.0618
Pathak 0.2194 0.1878
Goudie 0.2172 0.1846
Chao1 0.1761 0.1532
Chao2 0.2159 0.1873
Chao3 0.2133 0.1852

(3.75, 71.25)

True 0.2255 0.0766
Pathak 0.2080 0.1935
Goudie 0.1969 0.1799
Chao1 0.1589 0.1482
Chao2 0.1955 0.1815
Chao3 0.1935 0.1769

(0.9, 17.1)

True 0.2284 0.1096
Pathak 0.2384 0.2538
Goudie 0.1808 0.1852
Chao1 0.1401 0.1494
Chao2 0.1734 0.1847
Chao3 0.1722 0.1836

Table 6.2: True coverage and mean coverage estimates and sample standard devi-
ations for 1000 realisations of model Mt when N = 50, R = 0 and t = 5, with
beta-generated capture probabilities with mean 0.05.

(α, β) Estimator Mean estimate Sample std dev.

(57.5, 517.5)

True 0.4063 0.0716
Pathak 0.3922 0.1490
Goudie 0.3906 0.1482
Chao1 0.3278 0.1330
Chao2 0.3979 0.1606
Chao3 0.3902 0.1581

(14.3, 128.7)

True 0.4085 0.0786
Pathak 0.3913 0.1544
Goudie 0.3875 0.1525
Chao1 0.3246 0.1348
Chao2 0.3934 0.1616
Chao3 0.3855 0.1583

(3.5, 31.5)

True 0.4119 0.1036
Pathak 0.3937 0.1721
Goudie 0.3763 0.1658
Chao1 0.3164 0.1470
Chao2 0.3843 0.1763
Chao3 0.3774 0.1726

Table 6.3: True coverage and mean coverage estimates and sample standard devi-
ations for 1000 realisations of model Mt when N = 50, R = 0 and t = 5, with
beta-generated capture probabilities with µ = 0.1.
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(α, β) Estimator Mean estimate Sample std dev.

(15.15, 287.85)

True 0.4043 0.0733
Pathak 0.3884 0.1330
Goudie 0.3868 0.1325
Chao1 0.3574 0.1287
Chao2 0.3903 0.1397
Chao3 0.3888 0.1391

(3.75, 71.25)

True 0.4018 0.0830
Pathak 0.3855 0.1470
Goudie 0.3769 0.1446
Chao1 0.3469 0.1377
Chao2 0.3783 0.1486
Chao3 0.3767 0.1477

(0.9, 17.1)

True 0.4036 0.1215
Pathak 0.3927 0.1704
Goudie 0.3598 0.1589
Chao1 0.3319 0.1512
Chao2 0.3621 0.1633
Chao3 0.3606 0.1623

Table 6.4: True coverage and mean coverage estimates and sample standard devi-
ations for 1000 realisations of model Mt when N = 50, R = 0 and t = 10, with
beta-generated capture probabilities with mean 0.05.

(α, β) Estimator Mean estimate Sample std dev.

(57.5, 517.5)

True 0.6498 0.0699
Pathak 0.6453 0.0863
Goudie 0.6447 0.0861
Chao1 0.6044 0.0898
Chao2 0.6467 0.0947
Chao3 0.6420 0.0940

(14.3, 128.7)

True 0.6534 0.0711
Pathak 0.6449 0.0920
Goudie 0.6421 0.0920
Chao1 0.6034 0.0948
Chao2 0.6460 0.0994
Chao3 0.6413 0.0985

(3.5, 31.5)

True 0.6477 0.0932
Pathak 0.6467 0.1061
Goudie 0.6348 0.1051
Chao1 0.5985 0.1078
Chao2 0.6415 0.1130
Chao3 0.6370 0.1120

Table 6.5: True coverage and mean coverage estimates and sample standard devi-
ations for 1000 realisations of model Mt when N = 50, R = 0 and t = 10, with
beta-generated capture probabilities with mean 0.1.
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(α, β) Estimator Mean estimate Sample std dev.

(15.15, 287.85)

True 0.2254 0.0628
Pathak 0.1504 0.0560
Goudie 0.1499 0.0558
Chao1 0.1690 0.1355
Chao2 0.2078 0.1664
Chao3 0.2056 0.1649

(3.75, 71.25)

True 0.2231 0.0732
Pathak 0.1497 0.0621
Goudie 0.1477 0.0612
Chao1 0.1584 0.1413
Chao2 0.1951 0.1742
Chao3 0.1932 0.1730

(0.9, 17.1)

True 0.2272 0.1067
Pathak 0.1476 0.0820
Goudie 0.1410 0.0780
Chao1 0.1423 0.1452
Chao2 0.1758 0.1788
Chao3 0.1745 0.1774

Table 6.6: True coverage and mean coverage estimates and sample standard devi-
ations for 1000 realisations of model Mt when N = 50, R = 10 and t = 5, with
beta-generated capture probabilities with mean 0.05.

(α, β) Estimator Mean estimate Sample std dev.

(57.5, 517.5)

True 0.4033 0.0695
Pathak 0.2773 0.0511
Goudie 0.2770 0.0511
Chao1 0.3341 0.1170
Chao2 0.4045 0.1398
Chao3 0.3961 0.1388

(14.3, 128.7)

True 0.4103 0.0764
Pathak 0.2794 0.0561
Goudie 0.2781 0.0558
Chao1 0.3292 0.1171
Chao2 0.3994 0.1410
Chao3 0.3920 0.1388

(3.5, 31.5)

True 0.4145 0.0990
Pathak 0.2806 0.0718
Goudie 0.2754 0.0705
Chao1 0.3220 0.1306
Chao2 0.3911 0.1571
Chao3 0.3840 0.1540

Table 6.7: True coverage and mean coverage estimates and sample standard devi-
ations for 1000 realisations of model Mt when N = 50, R = 10 and t = 5, with
beta-generated capture probabilities with mean 0.1.
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Chapter 7

GENERAL DISCUSSION AND

FURTHER WORK

Chapter 2, working under modelMfp, gives the model’s probability theory and the

generalisation of the estimator of Pathak (1964) to allow for estimation with the

inclusion of plants. The chapter also makes use of Berg (1974) to give a variance

estimator under model Mfp. Also, by a derivation analogous to what Berg (1976,

Property 1) gave under Mf , two recurrence relations are given for the calculation

of the a-coefficients, (2.4), under Mfp, which can be difficult and long to compute.

It also compares the approximation given by Pathak (1964, p. 79) to his estima-

tor. An improved approximation may possibly be derived, but the need for such

an approximation under Mfp can be viewed as no longer crucial. This chapter has

shown that the generalised Pathak estimator can be computed for non-unitary sam-

ple sizes, reducing the need to approximate. A possible future piece of work would

be to derive some special cases of the generalised Pathak estimator, eg when t = 1

and R > 0 or when t = 2 and R ≥ 0. It may be possible to relate these to some

standard formulae.

This chapter also gives the calculation of the Mfp MLE. A future piece of work

could be to derive the asymptotic distribution of this MLE. Goudie et al. (2007)

show the asymptotic normality of the model Mp MLE, so it may be that the Mfp

MLE is also asymptotically normally distributed.

Chapter 2 mainly used trials where the sample sizes were constant between all

samples. A future piece of work cold be to extend these results to cases where the

sample sizes were different between the samples. This would involve establishing

a method of deciding how many captures there should be in each sample. It may

be that an ascending or descending number of captures in each sample could be

used, or that the number of captures in each sample are determined beforehand via

a chosen distribution.
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Chapter 3 gives an analysis of the effect that applying the condition that z > x

to the closed form estimators has on their estimation. It can be seen that this can

cause a lower mean point estimate, which should be taken into account whenever

this condition is applied. A lot of theory has been published for models M0 and

Mp, so future work would mainly consist of seeking to generalise these results.

It is shown in Chapter 3 that the generalised Pathak estimator and the Mp CUE

have very similar mean estimates and sample standard deviations. Thus, as the

generalised Pathak estimator made computation more complex, this could be omit-

ted from future work and one could just compare the Mp CUE with the Mp MLE.

This would allow a more complete picture to be presented, which could possibly

improve any conclusions made.

Chapter 4 details work carried out under model Mtp. The probability theory for

this model is given. Also, estimators are computed for this chapter that were de-

rived under simpler models. The first extension that may be possible would be to

show that the profile likelihood function under model Mtp is unimodal. The proof

of the unimodality of the Mp profile likelihood was given in Goudie et al. (2007)

and for model Mfp in Goudie & Gormley (in submission). It may be that either

of these papers can be generalised for such a proof. Also in the paper of Goudie

et al. (2007), the asymptotic distribution of the Mp MLE was proven to be normal.

It remains to be shown that the same holds under model Mtp.

Another point made in this Chapter was the possibility that the normal assumption

used for the construction of the Mp and Mtp MLE confidence intervals may not

hold. In some trials the mean estimated standard deviation for these estimators

were larger than their mean point estimate. Thus, one future piece of work could

be to use alternative methods of confidence interval estimation, like bootstrapping.

It was shown in Chapter 5 that the Mp CUE had a mean estimate that improved

with the inclusion of plants to have an unbiased mean. However, a clear area of

future work suggested by this work is the possibility of an improved sparse data

estimator for the Chao-type estimator under model Mtp. It appears that the infor-

mation gained from including plants is not being utilised. As such, a fair analysis

of the estimator’s performance under Mtp remains outstanding.

Chapter 6 has shown that the inverse population estimator given by Pathak may be

used as a coverage estimator and can be expected to be as good, if not better, than

the coverage estimators proposed by Chao et al. (1992). Also given is a new in-

verse population estimator, N̂−1G . When used to calculate coverage, ĈG had a mean

estimate below that of ĈP and Ĉ2 in almost every trial. It was stated in this chapter

that plant-capture could not be recommended for estimating coverage, based on
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the simulations therein. Thus, future work could be to improve the plant-capture

theory when estimating coverage, and improve the biased estimators ĈP and ĈG.

An area that was briefly looked into but not fully covered was a Bayesian approach

to plant-capture. Plant-capture lends itself quite naturally to Bayesian methods of

estimation, as the practitioner will normally have some prior information about

the population under study before the sampling begins, and the information gained

from the number of plants captured would assist in deriving posterior distribu-

tions. Mark-recapture was first put into a Bayesian framework by Freeman (1972)

and Freeman (1973), where he estimated the population size, N , under a sequen-

tial recapture framework. Castledine (1981) sought point and interval estimates

for N , under models M0 and Mt using Beta priors for the capture probabilities.

Smith (1991) used Bayes, empirical Bayes and Bayes empirical Bayes methods

to compute point and interval population size estimates under model Mt. George

& Robert (1992) used Gibbs sampling to estimate point estimates of N . Some

preliminary work was carried out, aiming to extend George & Robert (1992) to

a Bayesian plant-capture scenario under model Mtp using Gibbs sampling. This

offers a promising area of future research.

Another comment that appears variously throughout this thesis is that the Pathak

estimator was possibly considered too difficult to compute in the past. This work

has shown that this estimator and its generalisation can now be calculated for the

models considered here. However, a future project may be to create a front-end

user-friendly interface to the code that I wrote and allow its use by others. This

would possibly encourage its use amongst practitioners.

Thus, this thesis has offered some expansion of the plant-capture research work,

and has offered some suggestions of further areas of expansion.
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Appendix A

PROOF OF THE UNIMODALITY

OF THE Mfp MLE

To prove that, when x < z, the likelihood function is unimodal under model Mfp,

we first momentarily treat the likelihood function (2.7) as continuous and, with-

out loss of generality, label n1 = max(n1, . . . , nt). We can then write the score

function as

`′(N ;x) =
x−1∑
i=0

1

N − i
−
n1−1∑
i=0

ki+1

N +R− i
N ≥ x,

where ki is the number of samples at least size i, (i = 1, . . . , n1). Equivalently

`′(N ;x) = −
c−1∑
i=0

ki+1

N +R− i
−
n1−c−1∑
i=0

ki+c+1 − 1

N − i
+

x−1∑
i=n1−c

1

N − i
, (A.1)

where c = min{n1, R}. Note that, by standard mathematical convention, the

second sum is zero if c = n1. If there is a stationary point of the likelihood function

at N∗, then `′(N∗;x) = 0. Suppose now that N ′ > N∗. Then `′(N∗;x) −
`′(N ′;x) is given by

−
c−1∑
i=0

ki+1(N
′ −N∗)

(N∗ +R− i)(N ′ +R− i)
−
n1−c−1∑
i=0

(ki+c+1 − 1)(N ′ −N∗)
(N∗ − i)(N ′ − i)

+

x−1∑
i=n1−c

N ′ −N∗

(N∗ − i)(N ′ − i)

>
−(N ′ −N∗)

N ′ − n1 + c+ 1

{
c−1∑
i=0

ki+1

N∗ +R− i
+

n1−c−1∑
i=0

ki+c+1 − 1

N∗ − i

}
+

x−1∑
i=n1−c

N ′ −N∗

(N∗ − i)(N ′ − i)
.
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As N∗ gives a root of (A.1), this is equal to

−(N ′ −N∗)
N ′ − n1 + c+ 1

x−1∑
i=n1−c

1

N∗ − i
+

x−1∑
i−n1−c

N ′ −N∗

(N∗ − i)(N ′ − i)

= (N ′ −N∗)
x−1∑

i=n1−c

i− n1 + c+ 1

(N∗ − i)(N ′ − i)(N ′ − n1 + c+ 1)
,

which is positive. Hence, there is no value N ′ greater than N∗ at which the score

function takes the value zero, implying the unimodality of the likelihood function.

Hence, if non-integer values of the maximum likelihood estimate are permitted,

it must be unique. Using different approaches, Pickands & Raghavachari (1987)

and Leite, Oishi & de B. Pereira (1988) obtained the latter conclusion for the case

where no plants are present.
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