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Abstract

In this paper two systems of AGM-like Para-
consistent Belief Revision are overviewed, both
defined over Logics of Formal Inconsistency
(LFIs) due to the possibility of defining a for-
mal consistency operator within these logics.
The AGM◦ system is strongly based on this
operator and internalize the notion of formal
consistency in the explicit constructions and
postulates. Alternatively, the AGMp system
uses the AGM-compliance of LFIs and thus
assumes a wider notion of paraconsistency –
not necessarily related to the notion of formal
consistency.
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1 Introduction

The presentation will be divided in four main
parts:

• Present the Logics of Formal Inconsistency
[3];

• Recall the notion of AGM-compliance [4];

• Present the AGMp system [9, 10];

• Present the AGM◦ system [9, 10].

1.1 Rationality criteria of AGM sys-
tem

Gärdenfors and Rott [5] adopt the following
rationality criteria:

∗The very first ideas of this paper was presented
in [11]. The main final results are contained in the PhD
thesis [9] (in portuguese). This preprint is a short En-
glish version of those technical main results. A final
version, with substantial modifications and content in-
corporation, can be found in [10].
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1. Where possible, epistemic states should
remain consistent;1

2. Any sentence logically entailed by beliefs
in an epistemic state should be included in
the epistemic state;

3. When changing epistemic states, loss of in-
formation should be kept to a minimum;

4. Beliefs held in higher regard should be re-
tained in favour of those held in lower re-
gard.

1.1.1 Revision operation

Definition 1.1 (Internal Revision). K ∗ α =
(K − ¬α) + α

Definition 1.2 (External Revision). K ∗ α =
(K + α)− ¬α

Our main objective in constructing Para-
consistent Belief Revision systems is to allow
the reasoning in contradictory epistemic states.
Should the presence of contradictions make it
impossible to derive anything sensible from a
theory where such contradictions appear, as
the classical logician would maintain? Or are
there situations, like in the external revision,
in which contradictions in theories are at least
temporarily admissible?

2 On Paraconsistency

In classical logic, contradictoriness (the pres-
ence of contradictions in a theory) and trivial-
ity (the fact that such a theory entails all pos-
sible consequences) are assumed inseparable.
This is an effect of a logical property known
as explosiveness (ex falso quodlibet or ex con-
tradictione sequitur quodlibet, that is, anything
follows from a contradiction). According to it,
from a contradiction everything is derivable.
Therefore classical logic (as many other logics)

1That is, they must be non-trivial.
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equate consistency with freedom from contra-
dictions. Thus such logics forcibly fail to dis-
tinguish between contradictoriness and other
forms of inconsistency.

Paraconsistent logics are precisely the logics
that challenge this assumption by rejecting the
classical consistency presupposition.

2.1 The Logics of Formal Inconsis-
tency

The Logics of Formal Inconsistency (LFIs)
[3] constitute the class of paraconsistent log-
ics which can internalize the meta-theoretical
notions of consistency and inconsistency. As
a consequence, despite constituting fragments
of consistent logics, the LFIs can canonically
be used to faithfully encode all consistent in-
ferences.

Roughly, the idea in the LFIs is to express
the meta-theoretical notions of consistency and
inconsistency at the object language level, by
adding to the language a new connective • with
the intended meaning of “being inconsistent”.
However, it is the dual connective ◦ expressing
“being consistent” that is used more frequently.
Using the consistency operator, one can limit
the applicability of the explosion principle to
the case when α is consistent, that is, in any
LFI it holds the following:

(1) Explosion Principle α,¬α ` β is not
the case in general

(2) Gentle Explosion Principle
α,¬α, ◦α ` β is always the case.

The pragmatic point thus is not whether con-
tradictory theories exist, but how to deal with
them. In this work we present two systems
of Paraconsistent Belief Revision – AGMp and
AGM◦ (see [9] for more details). Both systems
are defined over Logics of Formal Inconsistency,
but the constructions of the second are spe-
cially related to the formal consistency opera-
tor.2

Specifically, we define the constructions over
a particular class of LFIs, developed by
Carnielli, Coniglio and Marcos [3], in which the
formal consistency is taken as a primitive op-
erator. The most basic LFI considered there is
the propositional logic mbC – which can be as-
sumed as being the smallest logic that respects
the above criteria, .

2Notably the terms consistency and inconsistency
captures a more sensible definition in the LFIs. In or-
der to avoid misunderstanding, in this presentation it
will be used, for those logics, specifically the terms for-
mal consistency and formal inconsistency. So the terms
consistency and inconsistency will maintain the usual
interpretation, namely non-triviality and triviality, re-
spectively.

Definition 2.1 (mbC[3]). The logic mbC is
defined as follows:
Axioms:

(A1) α→ (β → α)

(A2) (α→ β)→ ((α→ (β → δ))→ (α→ δ))

(A3) α→ (β → (α ∧ β))

(A4) (α ∧ β)→ α

(A5) (α ∧ β)→ β

(A6) α→ (α ∨ β)

(A7) β → (α ∨ β)

(A8) (α→ δ)→ ((β → δ)→ ((α ∨ β)→ δ))

(A9) α ∨ (α→ β)

(A10) α ∨ ¬α

(bc1) ◦α→ (α→ (¬α→ β))

Inference Rule:

(Modus Ponens) α, α→ β ` β

It is worth noticing that (A1)-(A9) plus
Modus Ponens constitutes an axiomatization
for the classical positive logic CPL+.

Different LFIs entail distinct logical conse-
quences and therefore substantially alter the
rationality captured by the principle of deduc-
tive closure.

Definition 2.2 (Extensions of mbC [2]). Con-
sider the following axioms:

(ciw) ◦α ∨ (α ∧ ¬α)

(ci) ¬◦α→ (α ∧ ¬α)

(cl) ¬(α ∧ ¬α)→ ◦α

(cf) ¬¬α→ α

Some relevant extensions of mbC are the fol-
lowing:

mbCciw = mbC+(ciw)

mbCci = mbC+(ci)

bC = mbC+(cf)

Ci = mbC+(ci)+(cf) = mbCci+(cf)

mbCcl = mbC+(cl)

Cil = mbC+(ci)+(cf)+(cl) =
mbCci+(cf)+(cl) = mbCcl+ (cf) +
(ci) = Ci+(cl)

The technical details of these logics as well
as a taxonomy of LFI systems can be found in
the references. Although these are fundamen-
tal to the AGM◦ system, mainly for the un-
derstanding of the various theorems presented,
the general facts outlined above are sufficient
for this presentation.
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3 The AGMp system

3.1 Formal Preliminaries

Let us assume an LFI, namely L, such that
L is an extension of mbC. The deductively
closed theories of L are called belief sets (or
epistemic states) of L. The set of belief sets
of L is denoted by Th(L), and CnL(X) is the
set of logical consequences (in L) of the set of
formulas X. The language L of L is gener-
ated by the connectives ∧,∨,→,¬, ◦ and the
constant f (falsum). The classical negation
(or strong negation) is defined by ∼α =def

(α → f), and α ↔ β is an abbreviation for
(α → β) ∧ (β → α). The consequence relation
of L will be denoted by `L or simply `, when L
is obvious from the context. Similarly, we will
write Cn(X) when L is obvious.

The following property of L is important
in order to prove the representation theorems
since it guarantees proof by cases. The full
proof of this result can be found in the ap-
pendix together with the proofs of the main
original results presented.

Lemma 3.1 (α-local non-contravention). Let
X ∪ {α} ⊆ L. Then,

X,α ` ¬α implies X ` ¬α.

3.2 AGM-compliance

An AGM-compliant logic is simply one in
which is possible to completely characterize the
contraction operation via the classical postu-
lates. Formally we have the following:

Definition 3.2 (AGM-compliance3). A logic
L is AGM-compliant if it admits at least one
operation − : Th(L)×L −→ Th(L) on L which
satisfies the postulates for contraction.

Such compatibility is related to the fact that
logic is decomposable. The intuition is that the
result K ′ of a contraction K − α should “fill
the gap” between K and α, i.e., it should be
possible the decomposition of K with respect
to α into two sets, namely Cn(α) and K ′, such
that they both contain less information than
K when taken separately but they have the
same informational power of K when combined
– they are equivalent to K. Thus the resulting
theory K ′ = K − α can be seen as a kind of
complement of K relative to α.

A logic is called in [4] decomposable if, for
every K and every α, there is at least one com-
plement of Krelative to α. Formally:

Definition 3.3 (Decomposability). A logic
〈L, Cn〉 is decomposable if, for every K ⊆ L
and every α /∈ Cn(∅), there is K ′ ⊆ L such
that:

3The definitions and the theorem in this section are
adaptations of the results in [4].

1. Cn(K ′) ⊂ Cn(K)

2. K ′ + α = Cn(K)

Given the definitions presented above, the
following theorem asserts wich logics are AGM-
compliant.

Theorem 3.4 (AGM-compliance – Flouris
[4]). A logic 〈L, Cn〉 is AGM-compliant iff is
decomposable.

Compact and supra-classical logics such as
the LFIs considered here are decomposable
and, hence, AGM-compliant. Furthermore, in
this kind of logic recovery (K ⊆ (K − α) + α)
and relevance (if β ∈ K \K −α then there ex-
ists K ′ such that K−α ⊆ K ′ ⊆ K, α /∈ K ′ and
α ∈ K ′ + β) are equivalent. Hence, although
this is not valid in general (see [7, 8]), relevance
and recovery can be used indistinguishably for
the logics considered here.

3.3 Expansion

Expansion is defined as in the classical AGM
way:

Definition 3.5 (expansion). An expansion
over L is a function + : Th(L)× L −→ Th(L)
defined by K + α = Cn(K ∪ {α}), for all K
and α.

3.4 Contraction

3.4.1 Postulates

Definition 3.6 (Postulates for AGMp con-
traction). A contraction over L is a function
− : Th(L)×L −→ Th(L) satisfying the follow-
ing postulates:

(closure) K − α = Cn(K − α).4

(success) If α /∈ Cn(∅) then α /∈ K − α.

(inclusion) K − α ⊆ K.

(relevance) If β ∈ K\K−α then there exists
K ′ such that K − α ⊆ K ′ ⊆ K, α /∈ K ′

and α ∈ K ′ + β

3.4.2 Partial meet contraction

Definition 3.7 (Remainder [1]). A set K ′ ⊆
L is a maximal subset of K that does not entail
α if and only if:

(i) K ′ ⊆ K.

(ii) α 6∈ Cn(K ′).

(iii) If K ′ ⊂ K ′′ ⊆ K then α ∈ Cn(K ′′).

4Rigorously speaking, this postulate is redundant
since by definition the co-domain of the function − is
Th(L). However, in order to keep closer to the classical
AGM presentation, we decide to maintain this postulate
in all the operations presented here.

3



The set of all the maximal subsets of K that
do not entail α is called the remainder set of
(K,α), and is denoted by K⊥α.

Lemma 3.8. If K ′ ∈ K⊥α, then K ′ ∈ Th(L).

Lemma 3.9 (Upper-bound). Let K be a belief
set in L and α ∈ L. If X ⊆ K is such that
α 6∈ Cn(X), then there is a set X ′ ∈ K⊥α
such that X ⊆ X ′.
Definition 3.10 (selection function). A se-
lection function in L is a function γ : Th(L)×
L −→ ℘(Th(L)) \ {∅} such that, for every K
and α:

1. γ(K,α) ⊆ K⊥α if α /∈ Cn(∅).
2. γ(K,α) = {K} otherwise.

The partial meet contraction is the intersec-
tion of the sets selected by the choice function:

K −γ α =
⋂
γ(K,α).

Theorem 3.11 (Representation for
AGMp contraction). An operation
− : Th(L) × L −→ Th(L) satisfies the
postulates of Definition 3.6 iff there ex-
ists a selection function γ in L such that
K − α =

⋂
γ(K,α), for every K and α.

3.5 Revision

Definition 3.12 (AGMp external revision).
An AGMp external revision over L is an op-
eration ∗ : Th(L)×L −→ Th(L) satisfying the
following postulates:

(closure) K ∗ α = Cn(K ∗ α)

(success) α ∈ K ∗ α

(inclusion) K ∗ α ⊆ K + α

(vacuity) if ¬α 6∈ K then K + α ⊆ K ∗ α

(non-contradiction) if ¬α ∈ K ∗ α then `
¬α

(relevance) if β ∈ K\(K∗α) then there exists
X such that K ∗ α ⊆ X ⊆ K + α, ¬α 6∈
Cn(X) and ¬α ∈ Cn(X) + β

(pre-expansion) (K + α) ∗ α = K ∗ α
By reverse Levi identity we use the partial

meet AGMp contraction to define a construc-
tion for an external revision operator defined
over belief sets:

K∗γα = (K+α)−γ¬α =
⋂
γ(Cn(K∪{α}),¬α).

As expected, external partial meet revision
is fully characterized by the postulates of Def-
inition 3.12.

Theorem 3.13. An operation ∗ : Th(L)×L→
Th(L) is an AGMp external revision over L iff
it is an external partial meet revision operator
over L, that is: there is a selection function γ
for AGMp in L such that K ∗ α =

⋂
γ(K +

α,¬α), for every K and α.

4 The AGM◦ system

4.1 Expansion

Let K be a belief set in L and α ∈ L. The
expansion of K by a sentence α, i.e. the op-
eration that just adds α and removes nothing,
denoted by K+α, is defined as in the classical
AGM way:

Definition 4.1 (expansion). An expansion
over L is a function + : Th(L)× L −→ Th(L)
defined by K + α = Cn(K ∪ {α}), for all K
and α.

4.2 Contraction

Definition 4.2 (Postulates for AGM◦ con-
traction). A contraction over L is a function
− : Th(L)×L −→ Th(L) satisfying the follow-
ing postulates:

(closure) K − α = Cn(K − α).

(success) If α /∈ Cn(∅) and ◦α /∈ K then
α /∈ K − α.

(inclusion) K − α ⊆ K.

(failure) If ◦α ∈ K then K − α = K.

(relevance) If β ∈ K\K−α then there exists
K ′ such that K − α ⊆ K ′ ⊆ K, α /∈ K ′

and α ∈ K ′ + β.

Our system, in particular, incorporates the
idea of non-revisibility in the selection function.
This strategy proves to be quite natural when
we consider that, in fact, the consistent beliefs
are not an option in the retraction – even if
they were retracted as the last option such as
the more entrenched beliefs. Rather, the con-
sistent belief remains in the epistemic state in
any situation, unless the agent retract the own
fact that such belief is consistent.

Definition 4.3 (selection function for
AGM◦ contraction). A selection function in
L is a function γ : Th(L)× L −→ ℘(Th(L)) \
{∅} such that, for every K and α:

1. γ(K,α) ⊆ K⊥α if α /∈ Cn(∅) and ◦α /∈
K.

2. γ(K,α) = {K} otherwise.

The partial meet contraction is the intersec-
tion of the sets selected by the choice function:

K −γ α =
⋂
γ(K,α).

Theorem 4.4 (Representation for AGM◦
contraction). An operation − : Th(L) ×
L −→ Th(L) satisfies the postulates of Defi-
nition 4.2 iff there exists a selection function γ
in L such that K − α =

⋂
γ(K,α), for every

K and α.
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The main objective of the AGM◦ system is to
allow modelling contradictory theories. Punc-
tually, the focus is to ensure the possibility of
modelling external revision, in which there is
an intermediate contradictory epistemic state
as perceived by the definition of reverse Levi
identity.

4.3 Internal Revision

Definition 4.5 (Postulates for internal
AGM◦ revision). An internal AGM◦ revi-
sion over L is an operation ∗ : Th(L)× L −→
Th(L) satisfying the following:

(closure) K ∗ α = Cn(K ∗ α).

(success) α ∈ K ∗ α.

(inclusion) K ∗ α ⊆ K + α.

(non-contradiction) If ¬α /∈ Cn(∅) and
◦¬α /∈ K then ¬α /∈ K ∗ α.

(failure) If ◦¬α ∈ K then K ∗ α = K + α

(relevance) If β ∈ K \K ∗α then there exists
K ′ such that K ∩ K ∗ α ⊆ K ′ ⊆ K and
¬α /∈ K ′, but ¬α ∈ K ′ + β.

It is worth noticing that the failure of this
operation illustrates the case in which the nega-
tion of the sentence to be incorporated is con-
sistent in K and thus the prior removal (as is
shown below) is not possible due to the failure
of contraction.

By Levi identity, as in the classical model,
we use the partial meet contraction to define a
construction for internal revision:

K∗γα = (K−γ¬α)+α = Cn((
⋂
γ(K,¬α))∪{α}).

Theorem 4.6 (Representation for inter-
nal AGM◦ partial meet revision). An op-
eration ∗ : Th(L)× L −→ Th(L) over L satis-
fies the postulates of Definition 4.5 if and only
if there exists a selection function γ in L such
that K ∗ α = (

⋂
γ(K,¬α)) + α, for every K

and α.

4.4 External Revision

Definition 4.7 (Postulates for external
AGM◦ revision). An external revision over
L is a function ∗ : Th(L) × L −→ Th(L) sat-
isfying the following postulates:

(closure) K ∗ α = Cn(K ∗ α).

(success) α ∈ K ∗ α.

(inclusion) K ∗ α ⊆ K + α.

(non-contradiction) if ¬α /∈ Cn(∅) and
∼α /∈ K then ¬α /∈ K ∗ α.

(failure) If ∼α ∈ K then K ∗ α = L

(relevance) If β ∈ K \K ∗α then there exists
K ′ such that K ∗ α ⊆ K ′ ⊆ K + α and
¬α /∈ K ′, but ¬α ∈ K ′ + β.

(pre-expansion) (K + α) ∗ α = K ∗ α.

The pre-expansion highlights the main fea-
ture of a external revision. Moreover, as in the
case of contraction, this operation fails – in this
case, by failure when trying to revise K by a
sentence α strongly rejected.

By reverse Levi identity we use the partial
meet AGM◦ contraction to define a construc-
tion for an external revision operator defined
over belief sets:

K∗γα = (K+α)−γ¬α =
⋂
γ(Cn(K∪{α}),¬α).

Theorem 4.8 (Representation for exter-
nal AGM◦ partial meet revision). An op-
eration ∗ : Th(L) × L −→ Th(L) over L sat-
isfies the postulates for external partial meet
AGM◦ revision (see Definition 4.7) iff there is
a selection function γ in L such that K ∗ α =⋂
γ(K + α,¬α), for every K and α.

Remark 4.9. The logical possibility of defin-
ing an external revision operator over L chal-
lenges the need of a prior contraction, as in
the internal revision. Thus, it is possible to
interpret the contraction underlying an inter-
nal revision as an unnecessary retraction and
therefore as a violation of the principle of min-
imality. On the other hand, if we consider the
non-contradiction principle as a priority, then
the internal revision remains to be the only ra-
tional option. This illustrates the clear opposi-
tion between the principle of non-contradiction
and that of minimality. Such opposition de-
serves further attention in future works.

By capturing two different principles of ra-
tionality, both revisions differ both intuitively
and logically.

4.5 Consolidation and Semi-revision

Definition 4.10 (Postulates for AGM◦
consolidation). An AGM◦ consolidation over
L is an operation ! : Th(L) −→ Th(L) satisfy-
ing the following postulates:

(closure) K! = Cn(K!).

(inclusion) K! ⊆ K.

(non-contradiction) If K 6= L, then K! is
not contradictory.

(failure) If K = L, then K! = L.

(relevance) If β ∈ K \ K! then there exists
K ′ such that K! ⊆ K ′ ⊆ K and K ′ is not
contradictory, but K ′+β is contradictory.
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It can be noted that consolidation is a par-
ticular case of contraction, so it is natural that
many of its postulates and the explicit con-
struction follow that operation.

As in the case of contraction, a choice func-
tion over a remainder set will be used for each
consolidation operator. The particularity of
the definition of remainder sets is that, in the
case of consolidation, these sets are defined
over collections of belief sets.

Definition 4.11 (Remainder for sets). Let
K be a belief set in L and A ⊂ L. The set
K⊥PA ⊆ ℘(L) is such that for all X ⊆ L,
X ∈ K⊥PA iff the following is the case:

1. X ⊆ K
2. A ∩ Cn(X) = ∅
3. If X ⊂ X ′ ⊆ K then A ∩ Cn(X ′) 6= ∅.

Consolidation considers a specific subset A,
that is, the one that represents the totality of
contradictory sentences in K, defined as fol-
lows:

Definition 4.12 (Contradictory set). Let
K be a belief set in L. The set ΩK of contra-
dictory sentences of K. is defined as follows:

ΩK = {α ∈ K : exists β ∈ L such that α = β∧¬β}.

Definition 4.13 (Consolidation function).
A consolidation function in L is a function γ :
Th(L) −→ ℘(Th(L)) \ {∅} such that, for every
belief set K in L:

1. If K 6= L then γ(K) ⊆ K⊥PΩK

2. If K = L then γ(K) = {K}

The consolidation operator defined by a con-
solidation function γ is then defined as follows:
for every belief set K in L,

K!γ =
⋂
γ(K)

Theorem 4.14 (Representation of consol-
idation). An operation ! : Th(L) −→ Th(L)
over L satisfies the postulates of definition 4.10
iff there exists a consolidation function γ in L
such that K! =

⋂
γ(K) for every belief set K

in L.

From consolidation for belief sets, it is now
possible to define semi-revision for belief sets.

As stated previously, both revisions require
effective integration of the new belief. On the
other hand, from the definition of external revi-
sion, it is possible to define a revision in which
the principle of primacy of new information,
tacitly accepted in internal and external re-
visions, is challenged. In the context of be-
lief bases it is called semi-revision by Hans-
son (see [6]), which is characterized by the
expansion-consolidation scheme.

The semi-revision for belief sets can be de-
fined as a generalization of external-revision, in
which the choice for the removal is left to the
selection function.

K?γα = (K + α)!γ

In short, the AGM◦ system of Paraconsis-
tent Belief Revision captures the dynamics of
contradictory theories, particularly represented
by the operators of external revision and semi-
revision. Diagonally, this system provides to
the Logics of Formal Inconsistency an intuitive
interpretation for the formal consistency con-
nective, and raises an interesting contrast be-
tween the principles of minimality and non-
contradiction. Moreover, the important dis-
tinction between consistency and coherence is
deepened, which certainly puts new perspec-
tives to the coherence interpretation of epis-
temic justification.

5 Final Remarks

The AGMp system can be seeing, in a sense, as
a complementary theory of classical AGM since
it permits, taken as primitive the classical con-
traction, to define external revision and also
semi-revision, by an expansion-consolidation
schema (like AGM◦). As previously stated, the
main difference between internal and external
revision is the primacy of the consistency cri-
terion in the former, and the minimality in the
latter. The semi-revision can also be under-
stood as a generalization of the latter in which
the primacy of the new information is not valid.
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Appendix: Proofs of the main
results

Lemma 3.1 Let X ∪ {α} ⊆ L. Then,

X,α ` ¬α implies X ` ¬α.

Proof: Suppose that X,α ` ¬α. It is always
the case that X,¬α ` ¬α, so X,α ∨ ¬α ` ¬α.
Here we are assuming that L have a classical
disjunction ∨, as it happens with every exten-
sion of mbC. But ` α ∨ ¬α and then X ` ¬α.

�
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Theorem 3.13 An operation ∗ : Th(L) ×
L → Th(L) is an AGMp external revision
over L iff it is an external partial meet revi-
sion operator over L, that is: there is a se-
lection function γ for AGMp in L such that
K ∗ α =

⋂
γ(K + α,¬α), for every K and α.

Proof: (construction ⇒ postulates)

closure: By the definition of ∗.

success: Let X ∈ (K + α)⊥(¬α) and sup-
pose that α 6∈ X. Consider X ′ = X ∪{α}.
Since X ⊂ X ′ ⊆ K+α then ¬α ∈ Cn(X ′),
by property iii. of definition 3.7 (it is
maximal), that is, X,α ` ¬α. Hence
X ` ¬α by lemma 3.1. But that contra-
dict the fact that ¬α 6∈ Cn(X), by item
ii. of definition 3.7. Hence α ∈ X for all
X ∈ (K+α)⊥(¬α). If (K+α)⊥(¬α) 6= ∅
then α ∈

⋂
γ((K +α)⊥(¬α)) = K ∗α. In

the case that (K +α)⊥(¬α) = ∅ then it is
the case that α ∈

⋂
γ((K + α)⊥(¬α)) =

K∗α, since in this case γ((K+α)⊥(¬α)) =
{K + α}, by definition of 4.3 (and obvi-
ously α ∈ K + α).

inclusion: Clearly K ∗ α = (K + α)−(¬α) ⊆
K + α, by the contraction postulates.

vacuity: Suppose that ¬α 6∈ K. Hence ¬α 6∈
(K + α), by lemma 3.1. Then K ∗ α =
(K + α)−(¬α) = (K + α) by contraction
postulates.

non-contradiction: Supose that ¬α ∈ K ∗α =
(K+α)−(¬α). By contradction postulates
` ¬α.

relevance: Let β ∈ K \ ((K + α)−(¬α)).
Hence (K + α)⊥(¬α) 6= ∅ (otherwise
(K + α)−(¬α) = K + α and then K \
((K + α)−(¬α)) = ∅, a contradiction).
Then there exists X ∈ Υ(K + α,¬α) ⊆
(K + α)⊥(¬α) such that β 6∈ X. By def-
inition of ∗, K ∗ α ⊆ X ⊆ K + α. Let
X ′ = X ∪ {β}. Hence X ⊂ X ′ ⊆ K + α
since β ∈ K. By definition 3.7, X ′ ` ¬α,
that is, X,β ` ¬α.

pre-expansion: (K + α) ∗ α = ((K + α) +
α)−(¬α) = (K + α)−(¬α) = K ∗ α.

(postulates ⇒ construction)
Let ∗ be an operator satisfying the postulates
and let γ be the following function:

γ(K,¬α) = {X ∈ K⊥¬α : K ∗ α ⊆ X}

We will prove that 1) it is a selection function
for AGMp (recall Definition 3.10), and 2) K ∗
α =

⋂
γ(K + α,¬α).

1. It is obvious that γ(K + α,¬α) ⊆ (K +
α)⊥(¬α) when (K + α)⊥(¬α) 6= ∅. In or-
der to consider γ as a selection function for
AGMp we must prove that γ(K+α,¬α) 6=
∅ if (K+α)⊥(¬α) 6= ∅. Then suppose that
(K+α)⊥(¬α) 6= ∅. Hence 0 ¬α by item ii
of Definition 3.7. By non-contradiction it
is the case that ¬α 6∈ K∗α. By closure and
inclusion ¬α 6∈ K ∗α = Cn(K ∗α) ⊆ K+
α. Hence, by the upper bound property,
there exists X ∈ (K + α)⊥(¬α) such that
K ∗ α ⊆ X. Then X ∈ γ(K + α,¬α) and
so γ(K+α,¬α) 6= ∅ if (K+α)⊥(¬α) 6= ∅.

2. Now let us prove that K ∗ α = (K + α) −
(¬α) =

⋂
γ(K + α,¬α).

1. Suppose that (K + α)⊥(¬α) 6= ∅.
Clearly K ∗ α ⊆

⋂
γ(K + α,¬α) by

definition of γ.

Let β 6∈ K ∗ α. We have to prove
that there exists X ∈ γ(K + α,¬α)
such that β 6∈ X. If β 6∈ K + α then
β 6∈ X for all X ∈ γ(K+α,¬α) (since
all X ∈ γ(K + α,¬α) is in K + α).
Suppose that β ∈ K + α. By pre-
expansion β 6∈ (K + α) ∗ α and then
by relevance, there exists Z such that
K ∗α = (K+α)∗α ⊆ Z ⊆ (K+α)+
α = K + α, ¬α 6∈ Cn(Z) and ¬α ∈
Cn(Z)+β. By upper bound property
there exists X ∈ (K + α)⊥(¬α) such
that K ∗ α ⊆ Z ⊆ X. Hence X ∈
γ(K+α,¬α). Since ¬α ∈ Cn(Z)+β,
then X,β ` ¬α and hence X 0 β
(otherwise X ` ¬α). Then β 6∈ X
and β 6∈

⋂
γ(K + α,¬α). It proves

that K ∗α =
⋂
γ(K+α,¬α) if (K+

α)⊥(¬α) 6= ∅.
2. Finally suppose that (K + α)⊥(¬α) =

∅. Then
⋂
γ(K+α,¬α) = K+α, by

definition of γ. On the other hand, if
there exists β ∈ (K+α)\(K∗α) then,
by the same way it was proved above,
(K + α)⊥(¬α) 6= ∅, a contradiction.

Hence, K ∗ α = K + α =
⋂
γ(K + α,¬α).

�

Lemma 3.8 If K ′ ∈ K⊥α, then K ′ ∈
Th(L).

Proof: If β ∈ Cn(X ′) \X ′ then α ∈ Cn(X ′ ∪
{β}). Since L is Tarskian, this implies that α ∈
Cn(X ′), a contradiction. Then X ′ = Cn(X ′)
and so X ′ ∈ K⊥α. �

Lemma 3.9 Let K be a belief set in L and
α ∈ L. If X ⊆ K is such that α 6∈ Cn(X), then
there is a set X ′ ∈ K⊥α such that X ⊆ X ′.
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Proof: First, assuming that the language L is
denumerable, let us arrange the sentences of K
into a sequence β1, β2, . . . (if L is not denumer-
able, the proof above must be extended in order
to use transfinite induction). Let X = X0 and
for each i ≥ 1 we define Xi as follows:

Xi =

{
Xi−1 if α ∈ Cn(Xi−1 ∪ {βi})
Xi−1 ∪ {βi} otherwise

By construction, for every i, α 6∈ Cn(Xi).
Let X ′ =

⋃
iXi. It is easy to verify that X ⊆

X ′ ⊆ K. By compactness, if α ∈ Cn(X ′) then
α ∈ Cn(X ′′) for some finite X ′′ ⊆ K. It follows
that α ∈ Cn(Xj) for some j, a contradiction.
Then α 6∈ Cn(X ′). Moreover, if β ∈ K and
β 6∈ X ′ then, in particular, β 6∈ Xi where i
is such that β = βi. This means that α ∈
Cn(Xi−1 ∪ {β}), by construction, and so α ∈
Cn(X ′ ∪ {β}), by monotonicity. �

Theorem 4.4 An operation − : Th(L) ×
L −→ Th(L) satisfies the postulates of Defi-
nition 4.2 iff there exists a selection function γ
in L such that K − α =

⋂
γ(K,α), for every

K and α.

Proof: (construction ⇒ postulates)

closure: Let X ∈ K⊥α and β ∈ Cn(X) then
α /∈ Cn(X∪{β}) and, since X is maximal,
β ∈ X. So for all X ∈ K⊥α it is the case
that X = Cn(X). So K−γ α =

⋂
γ(K,α)

and the elements of γ(K,α) are closed sets
and, since the intersection of closed sets
are also closed, it is the case that K −γ α
is closed.

sucess: If α /∈ Cn(∅) then by the upper bound
lemma K⊥α 6= ∅.

inclusion: Follows directly from the construc-
tion.

failure: Follows directly from the construc-
tion.

relevance: If β ∈ K \K−α than exists a X ∈
γ(K,α) such that β /∈ X. By definition,
K −γ α ⊆ X ⊆ K, α /∈ Cn(X) and α ∈
Cn(X ∪ {β}).

(postulates ⇒ construction)
Let − be an operator satisfying the postu-

lates for contraction and let γ be the following
function:

γ(K,α) = {X ∈ K⊥α : K − α ⊆ X} if

α /∈ Cn(∅) or ◦ α /∈ K
= {K} otherwise.

We have to prove that 1) γ is a selection func-
tion and 2) K − α =

⋂
γ(K,α).

1. The fact thats γ(K,α) ⊆ K folows directly
from construction. If α /∈ Cn(∅) e ◦α /∈ K
then the sucess and inclusion guarantees
that α /∈ K−α ⊆ K. By the upper bound
lemma, exists X such that K − α ⊆ X ∈
K⊥α and, hence, γ(K,α) 6= ∅.

2. If α ∈ Cn(∅) then relevance and inclusion
guarantees that K − α = K. Similarly
◦α ∈ K and failure guarantees that K −
α = K. In both cases

⋂
γ(K,α) = K,

since γ(K,α) = {K}. If α /∈ Cn(∅) then
K − α ⊆ K −γ α by construction. Now
we have to show that K −γ α ⊆ K − α.
Let β /∈ K − α and suppose that β ∈ K
(otherwise β /∈

⋂
γ(K,α) trivially). By

relevance, exists K ′ such that K − α ⊆
K ′ ⊆ K, α /∈ Cn(K ′) and α ∈ Cn(K ′ ∪
{β}). By the upper bound lemma exists X
such that K ′ ⊆ X ∈ K⊥α. Since K ′ ⊆ X,
α ∈ Cn(K ′ ∪ {β}) e α /∈ Cn(X), it is the
case that β /∈ X. Hence, β /∈

⋂
γ(K,α).

�

Theorem 4.6 An operation ∗ : Th(L) ×
L −→ Th(L) over L satisfies the postulates
of Definition 4.5 if and only if there exists a
selection function γ in L such that K ∗ α =
(
⋂
γ(K,¬α)) + α, for every K and α.

Proof:
(construction ⇒ postulates)
Let γ be a selection function, and define

K ∗ α = (
⋂
γ(K,¬α)) + α. We have to

prove that ∗ satisfies the postulates for internal
AGM◦ partial meet revision.

The postulates of closure, success, inclusion
and non-contradiction follows like the pre-
vious theorem.

relevance: Let β ∈ K \ K ∗ α then β 6∈⋂
γ(K,¬α) +α hence there exists X such

that β 6∈ X ∈ K⊥¬α. Besides K
⋂
K ∗γ

α ⊆ X + α. From the fact that X ∈
K⊥¬α, then X ⊆ K, ¬α 6∈ X and, by
the fact that β ∈ K \X, ¬α ∈ X + β.

failure: If ◦¬α ∈ K then K − ¬α = K by
definition of selection function, hence (K−
¬α) + α is K + α.

(postulates ⇒ construction)
Let ∗ be an operator satisfying the postulates

and let γ be the following function:

γ(K,¬α) = {X ∈ K⊥¬α : K ∩K ∗ α ⊆ X}
if K⊥¬α 6= ∅

= {K} otherwise.

Like the previous theorem, γ is well defined and
we will prove that 1) γ is a selection function
and 2) K ∗ α =

⋂
γ(K,¬α) + α
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1. γ(K,¬α) ⊆ K⊥¬α by definition. If
¬α 6∈ Cn(∅) and ◦¬α 6∈ K then by non-
contradiction ¬α 6∈ K ∗ α and by upper
bound there exists X ′ such that K ∩K ∗
α ⊆ X ′ ∈ K⊥¬α, hence X ′ ∈ γ(K,¬α)
and therefore γ(K,¬α) 6= ∅

2. First we must prove that K ∗ α ⊆⋂
γ(K,¬α) + α. By construction, K ∩

K ∗ α ⊆
⋂
γ(K¬α). Hence (K ∩ K ∗

α) + α ⊆
⋂
γ(K¬α) + α and therefore

K + α ∩ (K ∗ α+ α) ⊆
⋂
γ(K¬α) + α by

distributivity. Besides, by success, inclu-
sion and closure, K ∗α ⊆

⋂
γ(K,¬α) +α.

To prove the other side, we have two
cases.:

1. if ◦¬α ∈ K, in this case by failure, K ∗
α = K+α and since

⋂
γ(K,¬α) ⊆ K

it follows, by closure and siccess that⋂
γ(K,¬α) + α ⊆ K ∗ α.

2. If ◦¬α 6∈ K, then we have two cases:

1. if ¬α ∈ Cn(∅), then in this case,
by relevance, it follows that K ⊆
K ∗ α. In that way, since there
can not exists β ∈ K\K∗α, then⋂
γ(K,¬α) ⊆ K ∗ α.

2. Let ¬α 6∈ Cn(∅). In this case,
suppose by absurd that β ∈⋂
γ(K,¬α) \ K ∗ α. Since β ∈⋂
γ(K,¬α) then β ∈ K and

hence β ∈ K \ K ∗ α. By rele-
vance, there exists K ′ such that
K ∩K ∗ α ⊆ K ′, K ′ ⊆ K, ¬α 6∈
K ′ and ¬α ∈ K ′ + β. By upeer
bound, there exists K ′′ such that
K ′ ⊆ K ′′ ∈ K⊥¬α. Since
◦¬α 6∈ K and ¬α 6∈ Cn(∅) then⋂
γ(K,¬α) ⊆ K ′′ and therefore

β ∈ K ′′.
Since ¬α ∈ K ′ + β e K ′ ⊆ K ′′

then if β ∈ K ′′ it is the case that
¬α ∈ Cn(K ′′). Therefore β 6∈
K ′′, by the previous cases 1 and
2. Hence

⋂
γ(K,¬α) ⊆ K ∗ α.

In both cases since
⋂
γ(K,¬α) ⊆ K∗

α,
⋂
γ(K,¬α) + α ⊆ K ∗ α + α and

by success and closure,
⋂
γ(K,¬α)+

α ⊆ K ∗ α.

�

Theorem 4.8 An operation ∗ : Th(L) ×
L −→ Th(L) over L satisfies the postulates for
external partial meet AGM◦ revision (see Defi-
nition 4.7) iff there is a selection function γ in
L such that K ∗α =

⋂
γ(K+α,¬α), for every

K and α.

Proof: (construction ⇒ postulates)

closure: Follows as the previous theorem.

sucess: In the cases that ¬α ∈ Cn(∅) or ◦α ∈
K by definition it is the case that K∗γα =
K + α and sucess follows trivially.

Let X ∈ (K + α)⊥¬α, and suppose (by
absurd) that α /∈ X. Let X ′ = X ∪ {α}.
Since X ⊂ X ′ ⊆ K + α, it is the case
that ¬α ∈ Cn(X ′) by the maximality of
⊥. Therefore ¬α ∈ Cn(X ∪ {α}) and
by the lemma 3.1 it is the case that α ∈
Cn(X). That contradicts the fact that
¬α /∈ Cn(X). Therefore α ∈ X for all
X ∈ (K + α)⊥¬α. Therefore α ∈ K ∗γ α.

inclusion: Follows by construction.

non-contradiction: Suppose that ¬α ∈ K ∗
α = (K + α)−¬α. By success and con-
traction ¬α ∈ Cn(∅) or ◦α ∈ K.

failure: If ∼α ∈ K than K+α = L and hence
◦¬α ∈ K + α. By failure (of contraction)
K + α− ¬α = L.

relevance: Let β ∈ K \ ((K + α)−¬α).

Therefore (K + α)⊥¬α 6= ∅ (otherwise
(K + α)−¬α = K + α and K \ ((K +
α)−¬α) = ∅, a contradiction). Hence ex-
ists X ∈ γ(K + α,¬α) ⊆ (K + α)⊥¬α
such that β /∈ X. By construction K ∗α ⊆
X ⊆ K + α. Let X ′ = X ∪ {β}. There-
fore X ⊂ X ′ ⊆ K + α by the fact that
β ∈ K. By definition ¬α ∈ Cn(X ′) and
hence ¬α ∈ X + β.

pre-expansion: (K + α) ∗ α = ((K + α) +
α)−¬α = (K + α)−¬α = K ∗ α.

(postulates ⇒ constructions)
Let ∗ be an operator satisfying the postulates

and let γ be the following function:

γ(K,¬α) = {X ∈ K⊥¬α : K ∗ α ⊆ X}
if ◦ α /∈ K and ¬α /∈ Cn(∅)

= {K} otherwise.

We have to prove that 1) γ is a selection func-
tion and 2) K ∗ α = (K + α)−¬α =

⋂
γ(K +

α,¬α)

1. It follows direct by construction that
γ(K + α,¬α) ⊆ (K + α)⊥¬α in the case
that ◦α /∈ K e ¬α /∈ Cn(∅).
If ◦α ∈ K or ¬α ∈ Cn(∅) then γ(K +
α,¬α) = {K} by definition. Otherwise
we have to show that γ(K + α,¬α) 6= ∅.
By non-contradiction we have that ¬α /∈
K ∗ α. By closure and inclusion, ¬α /∈
K ∗α = Cn(K ∗α) ⊆ K+α. Therefore by
the upper bound lemma exists X ∈ (K +
α)⊥¬α such that K ∗ α ⊆ X. It follows
that X ∈ γ(K + α,¬α) and then γ(K +
α,¬α) 6= ∅.
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2. Let ◦α /∈ K e ¬α /∈ Cn(∅). In this case,
K ∗ α ⊆

⋂
γ(K + α,¬α) by construction.

Let β /∈ K ∗ α. We have to show that
X ∈ γ(K+α,¬α) such that β 6∈ X. If β 6∈
K+α then β 6∈ X for all X ∈ γ(K+α,¬α)
(since all X ∈ γ(K+α,¬α) are in K+α).

Let β ∈ K + α. By pre-expansion, β /∈
(K + α) ∗ α and then, by relevance, exists
Z such that K ∗ α = (K + α) ∗ α ⊆ Z ⊆
(K + α) + α = K + α, ¬α /∈ Cn(Z) and
¬α ∈ Z + β. By upper bound lemma,
exists X ∈ (K+α)⊥¬α such that K ∗α ⊆
Z ⊆ X. Hence X ∈ γ(K + α,¬α). Since
¬α ∈ Z+β, then ¬α ∈ X+β and therefore
β ∈ Cn(X) (otherwise, ¬α ∈ Cn(X)). It
follows that β /∈ X and then β /∈

⋂
γ(K +

α,¬α). We conclude thatK∗α =
⋂
γ(K+

α,¬α).

Now, if ◦α ∈ K or ¬α ∈ Cn(∅) we have,
by construction, that

⋂
γ(K + α,¬α) =

K + α. In the other hand, if exists β ∈
(K+α)\ (K ∗α) then (K+α)⊥¬α 6= ∅, a
contradiction. We conclude that K ∗ α =
K + α =

⋂
γ(K + α,¬α).

�

Theorem 4.14 An operation ! : Th(L) −→
Th(L) over L satisfies the postulates of defini-
tion 4.10 iff there exists a consolidation func-
tion γ in L such that K! =

⋂
γ(K) for every

belief set K in L.

Proof:

(construction ⇒ postulates)

closure: It follows as the previous theorem

inclusion: It follows from construction.

non-contradiction: By upper bound
K⊥PΩK 6= ∅. Then by definition⋂
γ(K) ∩ ΩK = ∅.

failure: Follows from definition of γ.

relevance: Let β ∈ K \K!. There exists X ∈
γ(K) ⊆ K⊥PΩK such that β /∈ X. By
construction, K! ⊆ X ⊆ K. Let X ′ = X∪
{β}. Then X ⊂ X ′ ⊆ K by the fact that
β ∈ K. By definition, ΩK ∩ Cn(X ′) 6= ∅,
that is, ΩK ∩ (X + β) 6= ∅.

(postulates ⇒ construction)

Consider the following function:

γ(K) = {X ∈ K⊥PΩK : K! ⊆ X} if K 6= L

γ(K) = {K} otherwise

We must prove that 1) γ is a consolidation
function 2) K! =

⋂
γ(K)

1. It follows from construction that γ(K) ⊆
K⊥PΩK . We need to show that γ(K) 6= ∅.
By non-contradiction it follows that ΩK ∩
K! = ∅. By inclusion, K! ⊆ K. By upper
bound there existsX ∈ K⊥PΩK such that
K! ⊆ X. It follows that X ∈ γ(K) and
then γ(K) 6= ∅.

2. It follows by construction that K! ⊆ γ(K).
We must show that γ(K) ⊆ K!. It is suffi-
cient to show that there exists β /∈ K! such
that β /∈

⋂
γ(K). Let β /∈ K! and suppose

that β ∈ K (otherwise β /∈ γ(K) triv-
ially). By relevance there exists K ′ such
that K! ⊆ K ′ ⊆ K, K ′ ∩ ΩK = ∅, but
K ′ + β ∩ ΩK 6= ∅. By upper bound X ∈
K⊥PΩK such that K! ⊆ K ′ ⊆ X. Hence
X ∈ γ(K). Since ΩK∩K ′+β 6= ∅ it follows
that β /∈ Cn(X) (otherwise ΩK ∩X 6= ∅).
Hence β /∈

⋂
γ(K).

�
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