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Abstract

We use characteristic functions to construct α-multistable measures and integrals, where
the measures behave locally like stable measures, but with the stability index α(x) varying
with x. This enables us to construct α-multistable processes on R, that is processes whose
scaling limit at time t is an α(t)-stable process. We present several examples of such mul-
tistable processes and examine their localisability.

1 Introduction
Stochastic processes where the local regularity varies with a parameter t (usually time) are use-
ful both theoretically and for practical applications. A well-known example is multifractional
Brownian motion, where the Hurst exponent h of fractional Brownian motion is replaced by
a functional parameter h(t), permitting the Hölder exponent to vary in a prescribed way, see
[2, 3, 5, 12] and references therein. Close to time t, the process behaves like index-h(t) frac-
tional Brownian motion, but, nevertheless, this local form may vary considerably with time.
This variability is suited to modelling phenomena where the volatility is time dependent, for
example in financial or medical data.

However, there are situations where non-Gaussian processes may be more suitable. In par-
ticular, stable processes allow the possibility of divergent moments and discontinuities in sam-
ple paths. For example, linear fractional stable motion, see (4.5), involves both a self-similarity
parameter which relates to the degree of long range dependence of the process and a stability
parameter which reflects the heaviness of the tails of the marginal distributions. Such processes
are used to model, for example, financial data, epileptic episodes in EEG, internet traffic, noise
on telephone lines, signal processing and atomospheric noise, see [14] for many references, but
again the nature of irregularity, including the stability level, may vary. Thus it is natural to set
up α-multistable processes, where α : R→R+, which behave locally like α(t)-stable processes
close to time t, in the sense that the local scaling limits are α(t)-stable processes, but where the
stability index α(t) varies with t.
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For a fixed α0 there are several ways of constructing α0-stable processes, that is stochastic
processes such that the finite-dimensional distributions of the process at any finite set of m
times is an m-dimensional α0-stable vector, see [17]. Similarly, a number of constructions
for multistable processes have been given recently, generalizing the various constructions of
stable processes. One approach is based on Poisson point process [8] and another is based on
sums of random series [11]. Here we first use characteristic functions to construct multistable
integrals and measures. We show that these multistable measures behave locally like stable
measures and may be approximated by sums of many independent α0-stable measures defined
on short intervals but with differing constants α0. We then define multistable processes in terms
of multistable integrals and give sufficient conditions for such processes to be localisable or
strongly localisable, that is to have a local scaling limit at time t that is an α(t)-stable process.
It turns out that these multistable processes differ significantly from those of [8, 11] in the nature
of their finite-dimensional distributions. We give a range of examples of these processes.

2 Definition of α(x)-multistable measure and integral
Throughout this paper, for given 0 < a≤ b < ∞, the function α : R→ [a,b] will be a Lebesgue
measurable function that will play the role of a varying stability index. We will work with
various linear spaces of measurable functions on R. For 0 < p < ∞ let

Fp := { f : f is measurable with ‖ f‖p < ∞} where ‖ f‖p =
(Z
| f (x)|pdx

)1/p

;

thus ‖ · ‖p is a quasinorm (i.e. there is a weak triangle inequality ‖ f + g‖p ≤ k(‖ f‖p + ‖g‖p)
for some k > 0) which becomes a norm if 1≤ p < ∞. It is convenient to write

| f (x)|a,b := max
{
| f (x)|a, | f (x)|b

}
,

and to define the space of the functions

Fa,b := Fa∩Fb = { f : f is measurable with
Z
| f (x)|a,bdx < ∞}.

We also define variable exponent Lebesgue spaces (special cases of Orlicz spaces, see for ex-
ample [6]) by

Fα := { f : f is measurable with ‖ f‖α < ∞} where ‖ f‖α :=
{

λ > 0 :
Z ∣∣∣ f (x)

λ

∣∣∣α(x)
dx = 1

}
,

where α : R→ [a,b]. Then ‖ · ‖α is a quasinorm that reduces to ‖ · ‖p if α(x) ≡ p is constant,
and is a norm if 1≤ a≤ α(x)≤ b for all x.

Note that with a≤ α(x)≤ b we have Fα ⊆ Fa,b with

‖ f‖α ≤ ca,b max
{
‖ f (x)‖a,‖ f (x)‖b

}
,

where ca,b depends only on a and b.
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We will define the multistable stochastic integral I( f ) of a function f ∈ Fα by specifying
the finite-dimensional distributions of I as a stochastic process on the space of functions Fa,b
and then using the Kolmogorov Extension Theorem to show that the process is well-defined.

Given f1, f2, ..., fd ∈ Fα, the following proposition shows that we can define a probabil-
ity distribution on the vector (I( f1), I( f2), ..., I( fd)) ∈ Rd by the characteristic function φ f1,... fd
given by (2.1). The essential point is that α(x) may vary with x.

Lemma 2.1. Let d ∈ N and f1, f2, ..., fd ∈ Fα, where 0 < a≤ α(x)≤ 2 for all x ∈ R . Then

φ f1,... fd(θ1, ...,θd) = E
(

exp i
d

∑
j=1

θ jI( f j)
)

= exp
{
−

Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣α(x)dx

}
(2.1)

for (θ1,θ2, . . . ,θd) ∈ Rd , is the characteristic function of a probability distribution on the ran-
dom vector (I( f1), I( f2), ..., I( fd)).

Proof. First, assume that α(x) is given by the simple function

α(x) =
m

∑
k=1

αk1Ak(x), (2.2)

where αk ∈ (0,2] are constants, and Ak are disjoint Lebesgue measurable sets with ∪m
k=1Ak = R.

For (θ1, . . . ,θd) ∈ Rd

exp
{
−

Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣α(x)dx

}
= exp

{
−

m

∑
k=1

Z ∣∣ d

∑
j=1

θ j f j(x)1Ak(x)
∣∣αkdx

}
=

m

∏
k=1

exp
{
−

Z ∣∣ d

∑
j=1

θ j f j(x)1Ak(x)
∣∣αkdx

}
. (2.3)

Now, exp
{
−

R ∣∣∑d
j=1 θ j f j(x)1Ak(x)

∣∣αkdx
}

is the characteristic function of the αk-stable sym-
metric random vector (I( f11Ak), . . . , I( fd1Ak)), see [17, Equation (3.2.2)]. Hence (2.3) is the
product of the characteristic functions of m αk-stable random vectors and so is the characteristic
function of a d-dimensional random vector given by the independent sum of αk-stable random
vectors. Hence (2.1) is a valid characteristic function of a random vector (I( f1), . . . , I( fn)) in
the case when α(x) is a simple function (2.2).

Now let 0 < a≤ α(x)≤ 2 be measurable. Given f1, . . . fd ∈Fα write A = {x : ∑
d
j=1 | f j(x)| ≤

1}. Take a sequence of simple functions αp : R→ (0,2], (p = 1,2. . . .) such that αp(x)→ α(x)
pointwise almost everywhere; we may assume that αp(x) ≥ α(x) if x ∈ A and αp(x) ≤ α(x) if
x /∈ A, for all x and p. Then∣∣ d

∑
j=1

θ j f j(x)
∣∣αp(x) ≤ max

l

{
max{|θl|a, |θl|2}

}( d

∑
j=1
| f j(x)|

)αp(x)

≤ max
l

{
max{|θl|a, |θl|2}

}( d

∑
j=1
| f j(x)|

)α(x)
,
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an expression that is integrable since f1, . . . fd ∈ Fα. By the dominated convergence theorem,Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣αp(x)dx→

Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣α(x)dx, (2.4)

and so

exp
{Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣αp(x)dx

}
→ exp

{Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣α(x)dx

}
, (2.5)

as p→ ∞, for all θ1, . . . ,θd ∈ R.
For f1, . . . , fd ∈ Fα,Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣α(x)dx≤max

j
max{|θ j|a, |θ j|2}

d

∑
j=1
| f j(x)|α(x)→ 0

as max j{|θ j|} → 0. Thus (2.1) is continuous at 0. Moreover from (2.3)

exp
{
−

R ∣∣∑d
j=1 θ j f j(x)

∣∣αp(x)dx
}

is a valid characteristic function of a d-dimensional random
vector for all p. Applying Lévy’s continuity theorem to (2.5), there is a probability distribution
on the random vector (I( f1), I( f2), ..., I( fd)), with characteristic function given by (2.1).

As with α0-stable integrals for constant α0, see [17], Kolmogorov’s extension theorem al-
lows us to define α(x)-stable integrals consistently on Fα. (Note that we use the variable ‘x’
here; whilst it might be thought of as a ‘time’ we reserve ‘t’ for the time variable in processes
defined as integrals with respect to α(x)-stable measures in Section 4.)

Theorem 2.2. Let 0 < a≤α(x)≤ 2. There exists a stochastic process {I( f ), f ∈Fα}with finite-
dimensional distributions given by (2.1), that is with φI( f1),...,I( fd) = φ f1,..., fd for all f1, . . . , fd ∈
Fα.

Proof. For f1, . . . , fd ∈ Fα it follows from (2.1) that, for any permutation (π(1),π(2), ...,π(d))
of (1,2, ...,d), we have

φ fπ(1),...,π(d)(θπ(1), ...,θπ(d)) = φ f1,..., fd(θ1, ...,θd),

and also that, for any n≤ d,

φ f1,..., fn(θ1, ...,θn) = φ f1,..., fn,..., fd(θ1, ...,θn,0, ...,0).

Thus the probability distributions given by (2.1) satisfy the consistency conditions for Kol-
mogorov’s Extension Theorem, so, applying this theorem to the space of functions Fα, there
is a stochastic process on Fα which we denote by {I( f ), f ∈ Fα}, whose finite-dimensional
distributions are given by the characteristic functions (2.1).

We call I( f ) the α-multistable integral or α(x)-multistable integral of f . By applying (2.1)
with functions (a1 f1 +a2 f2), f1, f2 and variables θ, −a1θ, −a2θ it follows that the multistable
integral is linear, that is if f1, f2 ∈ Fα and a1,a2 ∈ R, then

I(a1 f1 +a2 f2) = a1I( f1)+a2I( f2) a.s. (2.6)
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Let L be Lebesgue measure on R, let E be the Lebesgue measurable subsets of R and
let E0 = {A ∈ E : L(A) < ∞} be the sets of finite Lebesgue measure. Let α : R→ [a,b] be
measurable where 0 < a≤ b≤ 2. Analogously to [17, Section 3.3] for α0-stable measures, we
define the α-multistable random measure Mα by

Mα(A) := I(1A) (2.7)

for A ∈ E0, where 1A is the indicator function of the set A; thus Mα(A) is a random variable for
each A ∈ E0.

It is natural to write Z
f (x)dMα(x) := I( f ), f ∈ Fα, (2.8)

since there are many analogues to usual integration with respect to a measure. Clearly, linearity
of this integral is a restatement of (2.6), andZ

1A(x)dMα(x) = Mα(A).

With this notation the characteristic function (2.1) may be written as

E
(

exp i
{ d

∑
j=1

θ j

Z
f j(x)dMα(x)

})
= exp

{
−

Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣α(x)dx

}
(2.9)

for f j ∈ Fα. For the random measures, taking f j = 1A j with A j ∈ E0,

E
(

exp i
{ d

∑
j=1

θ jMα(A j)
})

= exp
{
−

Z ∣∣ d

∑
j=1

θ j1A j(x)
∣∣α(x)dx

}
. (2.10)

We may estimate the moments of an α-multistable integral in terms of the norm ‖ · ‖α.

Proposition 2.3. Let 0 < a≤α(x)≤ b≤ 2 and let g∈Fα. Then there is a number c1 depending
only on a and b such that for all λ > 0

P
(∣∣∣Z g(x)dMα(x)

∣∣∣≥ λ

)
≤ c1

Z ∣∣∣∣g(x)
λ

∣∣∣∣α(x)

dx. (2.11)

Moreover, if 0 < p < infx∈R α(x) there is a number c2 depending only on p and b such that

E
(∣∣∣Z g(x)dMα(x)

∣∣∣p)≤ c2‖g‖p
α. (2.12)

Proof. A simple calculation using distribution functions (see [4, p.47]) gives

P
(∣∣∣Z g(x)dMα(x)

∣∣∣≥ λ

)
≤ λ

2

Z 2/λ

−2/λ

(
1−E

(
exp
(
iθ

Z
g(x)dMα(x)

)))
dθ

=
λ

2

Z 2/λ

−2/λ

(
1− exp

(
−

Z
|θg(x)|α(x)dx

))
dθ

≤ λ

2

Z 2/λ

−2/λ

(Z
|θ|α(x)|g(x)|α(x)dx

)
dθ

≤ c1

Z ∣∣∣g(x)
λ

∣∣∣α(x)
dx.
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Assuming as we may that c1 ≥ 1 and writing λ0 = ‖g‖α > 0 for the number such thatR
λ
−α(x)
0 |g(x)|α(x)dx = 1, we have

E
(∣∣∣Z g(x)dMα(x)

∣∣∣p) = p
Z

∞

0
λ

p−1P
(∣∣∣Z g(x)dMα(x)

∣∣∣≥ λ

)
dλ

≤ c1 p
Z

∞

0
λ

p−1 min
{

1,
Z

λ
−α(x)|g(x)|α(x)dx

}
dλ

≤ c1 p
Z

λ0

0
λ

p−1dλ+ c1 p
Z Z

∞

λ0

λ
p−1−α(x)|g(x)|α(x)dλdx

≤ c3λ
p
0 + c3λ

p
0

Z
λ
−α(x)
0 |g(x)|α(x)dx

= c2‖g‖p
α.

Note that Ayache [1] has recently pointed out that the right hand side of (2.12) essentially
characterizes the tail behaviour of the multistable integrals, from which it follows that ‖g‖α < ∞

is also a necessary condition for
R

g(x)dMα(x) to have a finite pth moment.
Recall that a random measure M on R is independently scattered if M(A1),M(A2), ...,M(Ad)

are independent whenever A1,A2,...,Ad ∈E0 are pairwise disjoint, and is σ-additive if whenever
A1,A2,...∈ E0 are disjoint and

S
∞
j=1 A j ∈ E0 then almost surely

M
( ∞[

j=1

A j
)

=
∞

∑
j=1

M(A j),

taking an independent sum.

Theorem 2.4. The α-multistable measure Mα is independently scattered and σ-additive.

Proof. This is a slight variant of [17, Section 3.3]. Let A1,A2,...,Ak ∈ E0 be pairwise disjoint.
Then using (2.10)

E
(

exp
{

i
d

∑
j=1

θ jMα(A j)
})

=
d

∏
j=1

exp
{
−

Z ∣∣θ j1A j(x)
∣∣α(x)dx

}
=

d

∏
j=1

E(exp{iθ jMα(A j)}).

so Mα(A1),Mα(A2), ...,Mα(Ad) are independent, and Mα is independently scattered.
If A1,A2,...,Ak ∈ E0 is a finite collection of disjoint sets, using (2.7) and (2.6),

Mα

( k[
j=1

A j

)
= I
(
1∪k

j=1A j

)
= I
( k

∑
j=1

1A j

)
=

k

∑
j=1

I(1A j) =
k

∑
j=1

Mα(A j).

For a countable family of disjoint sets A1,A2, ... ∈ E0 with B ≡
S

∞
j=1 A j ∈ E0, so that B =Sk

j=1 A j∪
(S

∞
j=k+1 A j

)
, it follows from above that

Mα(B) = Mα

( k[
j=1

A j

)
+Mα

( ∞[
j=k+1

A j

)
=

k

∑
j=1

Mα(A j)+Mα

( ∞[
j=k+1

A j

)
. (2.13)
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Since limk→∞ L(
S

∞
j=k+1 A j) = 0 and α(x) ∈ [a,b], for each θ ∈ R

lim
k→∞

E
(

exp i
{

θMα(
∞[

j=k+1

A j)
})

= lim
k→∞

exp
{
−

Z
|θ1∪∞

j=k+1A j(x)|α(x)dx
}

= 1,

so Mα(
S

∞
j=k+1 A j)

d→ 0 as k→ ∞ by Lévy’s Continuity Theorem.

By (2.13) we get Mα(B)−∑
k
j=1 Mα(A j)

d→ 0 and so Mα(B)−∑
k
j=1 Mα(A j)

p→ 0 as k→ ∞.

Thus limk→∞ ∑
k
j=1 Mα(A j)

p
= Mα(B), and, since the summands Mα(A j) are independent, this

implies convergence almost surely, by a theorem of Kolmogorov, see [10, Theorem 6.1]. Thus
Mα is σ-additive.

Next we obtain conditions for convergence of a sequence of multistable measures with dif-
ferent multistable indexes.

Proposition 2.5. Let 0 < a≤ b≤ 2 and αn,α : R→ [a,b] be Lebesgue measurable. Let Mαn,Mα

be the associated αn-multistable and α-multistable measures characterised by (2.10). Suppose
αn(x)→ α(x) for almost all x ∈ R. Then Mαn

fdd→ Mα as n→ ∞, that is for all m ∈ N and
A1,A2, ...,Am ∈ E0,

(Mαn(A1),Mαn(A2), ...,Mαn(Am)) d→ (Mα(A1),Mα(A2), ...,Mα(Am)).

Proof. Let A1, A2,...,Am ∈ E0. Then for all n and all x ∈ R

∣∣ m

∑
j=1

θ j1A j(x)
∣∣αn(x) ≤ c1A(x)

where A =
Sm

j=1 A j ∈ E0 and c = max
{(

∑
m
j=1 |θ j|

)a
,
(

∑
m
j=1 |θ j|

)b}
. Since

R
1A(x)dx < ∞, the

dominated convergence theorem implies that

lim
n→∞

exp
(
−

Z ∣∣ m

∑
j=1

θ j1A j(x)
∣∣αn(x)dx

)
= exp

(
−

Z ∣∣∣ m

∑
j=1

θ j1A j(x)
∣∣α(x)dx

)
,

so from (2.10),

E
(

exp i
{ m

∑
j=1

θ jMαn(A j)
})
→ E

(
exp i

{ m

∑
j=1

θ jMα(A j)
})

as n→ ∞. By Lévy’s continuity theorem Mαn
fdd→Mα.

To get a feel for α-mutistable measures, we show that, for a continuous α, the α-multistable
measure M may be approximated by random measures that are the sum of many independent
α0-stable measures defined on short intervals but with differing constants α0.
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Assume that α : R→ [a,b] ⊂ (0,2] is continuous and let Mα be the α-multistable measure
on the sets E0. We now use the same procedure but with piecewise constant functions αn : R→
[a,b] to obtain approximating measures Mαn .

For each n, let αn : R→ [a,b]⊂ (0,2) be given by

αn(x) = α(r2−n) if x ∈ [r2−n,(r +1)2−n) for all r ∈ Z

and let Mαn be the αn-multistable measure obtained from αn as above, so in particular Mαn has
finite-dimensional distributions given by the characteristic function

E
(

exp i
{ d

∑
j=1

θ jMαn(A j)
})

= exp
{
−

Z ∣∣ d

∑
j=1

θ j1A j(x)
∣∣αn(x)dx

}
.

It follows from Theorem 2.4 that each Mαn is independently scattered and σ-additive.

Theorem 2.6. Let 0 < a≤ b≤ 2 and α : R→ [a,b] be continuous. Let Mn,r denote the restriction
of α(r2−n)-stable symmetric measure to the interval [r2−n,(r +1)2−n)), that is

Mn,r(A) := Mα(r2−n)(A∩ [r2−n,(r +1)2−n)) = Mαn(A∩ [r2−n,(r +1)2−n)),

where Mα(r2−n) is α(r2−n)-stable symmetric measure. Then Mαn is a random measure given by
the independent sum of random measures

Mαn(A) = ∑
r∈Z

Mn,r(A)

almost surely for A ∈ E0. Moreover Mαn
fdd→Mα as n→ ∞.

Proof. Since Mαn is independently scattered, we have that for each A ∈ E

Mαn(A∩ [r2−n,(r +1)2−n)) = Mn,r(A)

are independent for distinct r.
Let A ∈ E0. Since Mαn is σ-additive,

Mn(A) = Mαn(A)

= Mαn

([
r∈Z

A∩ [r2−n,(r +1)2−n)
)

= ∑
r∈Z

Mαn(A∩ [r2−n,(r +1)2−n))

= ∑
r∈Z

Mn,r(A)

where the summands are independent.
For each n we have αn(x) = α(r2−n) for all x ∈ [r2−n,(r + 1)2−n). Since α is assumed

continuous, we have limn→∞ αn(x) = α(x) for all x. Thus by Proposition 2.5, Mαn
fdd→ Mα as

n→ ∞.
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One would expect an α-multistable measure to ‘look like’ an α(u)-stable measure in a small
interval around u. We now make this idea precise.

For u ∈ R, r > 0, let Tu,r : R→ R be the scaling map, Tu,r(x) = (x− u)/r. This induces a
mapping T #

u,r on random integrals and measures, given byZ
f (x)d(T #

u,rMα)(x) =
Z

f
(x−u

r

)
dMα(x)≡ I

(
f
( .−u

r

))
.

In particular
(T #

u,rMα)(A) = Mα(T−1
u,r (A)) = I(1T−1

u,r (A))

for A ∈ E0 by (2.7).
We show that scaling an α-multistable random measure about a point u yields α(u)-stable

measure Mα(u).

Theorem 2.7. Let α : R→ [a,b]⊆ (0,2] be continuous with

|α(x+ r)−α(x)|= o(1/ logr) (2.14)

uniformly on bounded intervals and let u ∈ R. Then for all functions f1, . . . , fd ∈ Fa,b with
compact support, the vectors(

r−1/α(u)
Z

f1(x)d(T #
u,rMα)(x), . . . ,r−1/α(u)

Z
fd(x)d(T #

u,rMα)(x)
)

d→
(Z

f1(x)dMα(u)(x), . . . ,
Z

fd(x)dMα(u)(x)
)

(2.15)

as r→ 0. In particular,

r−1/α(u)((T #
u,rMα)(A1), . . . ,(T #

u,rMα)(Ad)
) d→ (Mα(u)(A1), . . . ,Mα(u)(Ad)) (2.16)

as r→ 0, for all bounded sets A1, . . . ,Ad ∈ E0.

Proof. Let f1, f2, ..., fm ∈ Fa,b be functions with compact support, say in [−z0,z0]. Let θ j ∈ R,
j = 1,2, ...,m, and consider the characteristic functions.

E
(

exp i
m

∑
j=1

θ jr−1/α(u)
Z

f j(x)d(T #
u,rMα)(x)

)
= E

(
exp i

m

∑
j=1

θ jr−1/α(u)
Z

f j

(x−u
r

)
dMα(x)

)
= exp

(
−

Z ∣∣ m

∑
j=1

θ jr−1/α(u) f j

(x−u
r

)∣∣α(x)dx
)

= exp
(
−

Z ∣∣ m

∑
j=1

θ jr−1/α(u) f j(z)
∣∣α(rz+u)rdz

)
= exp

(
−

Z ∣∣ m

∑
j=1

θ j f j(z)
∣∣α(rz+u)r1−α(rz+u)/α(u)dz

)
, (2.17)
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on writing (x−u)/r = z.
From condition (2.14) it is easy to see that limr→0 r1−α(rz+u)/α(u) = 1 uniformly for z ∈

[−z0,z0], and also limr→0 α(rz+u) = α(u) uniformly for all z ∈ [−z0,z0] since α is continuous.
Noting that there is a constant c such that for r sufficiently small,∣∣ m

∑
j=1

θ j f j(z)
∣∣α(rz+u)r1−α(rz+u)/α(u) ≤ c

m

∑
j=1
| f j(z)|a,b,

for z ∈ [−z0,z0] and f j ∈ Fa,b, the dominated convergence theorem gives

lim
r→0

exp
(
−

Z ∣∣ m

∑
j=1

θ j f j(z)
∣∣α(rz+u)r1−α(rz+u)/α(u)dz

)
= exp

(
−

Z ∣∣ m

∑
j=1

θ j f j(x)
∣∣α(u)dx

)
,

so by (2.17)

lim
r→0

E
(

exp i
m

∑
j=1

θ jr−1/α(u)
Z

f j(x)d(T #
u,rMα)(x)

)
= E

(
exp i

m

∑
j=1

θ j

Z
f j(x)dMα(u)(x)

)
.

Lévy’s continuity theorem now implies (2.15) and (2.16).

3 Multistable processes and localisability
In this section we introduce processes defined by multistable integrals, and in particular consider
their local form, with the aim of constructing ‘multistable’ processes with a prescribed local
form. Thus, given α : R→ [a,b]⊂ (0,2], we write

Y (t) :=
Z

f (t,x)dMα(x), (3.1)

for t ∈ R and f ∈ Fa,b, where the integrals are with respect to an α-multistable measure Mα as
in (2.8). By (2.9), for each (t1, t2, . . . , td) ∈ Rd , the characteristic function of the random vector
(Y (t1),Y (t2), . . . ,Y (td)) is

E
(

exp i
d

∑
j=1

θ jY (t j)
)

= E
(

exp i
d

∑
j=1

Z
f (t j,x)dMα(x)

)
= exp

(
−

Z ∣∣ d

∑
j=1

θ j f (t j,x)
∣∣α(x)dx

)
(3.2)

for all (θ1,θ2, . . . ,θd) ∈ Rd .
We first give conditions for Y in (3.1) to have a continuous version.

Proposition 3.1. Let α : R→ [a,b] ⊆ (1,2] be measurable and suppose f (t, ·) ∈ Fα for all
t ∈ R. Let Y be given by (3.1). Suppose that there exists 1/a < η < 1, such that for each
bounded interval J we can find c > 0 such that

‖ f (t, ·)− f (u, ·)‖α ≤ c|t−u|η (t,u ∈ J). (3.3)
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Then Y has a continuous version satisfying an a.s. β-Hölder condition on each bounded interval
for all 0 < β < (ηa−1)/a. In particular, (3.3) holds ifZ ∣∣ f (t,x)− f (u,x)

∣∣α(x)dx≤ c1|t−u|aη (t,u ∈ J), (3.4)

a form that may be easier to check in practice.

Proof. Take p such that 1/η < p < a. By Proposition 2.3

E
(
|Y (t)−Y (u)|p

)
= E

(∣∣∣Z ( f (t,x)− f (u,x)
)
dMα(x)

∣∣∣p)≤ c2‖ f (t, ·)− f (u, ·)‖p
α≤ c2c|t−u|ηp.

The conclusion follows from Kolmogorov’s continuity theorem, see [16, Theorem 25.2].

Localisability has been considered by a number of authors, particularly in the context of
Gaussian processes and fractional Brownian motion, see for example [3, 12] where it is termed
local asymptotic self-similarity. Note that ‘stable-like’ processes were defined and studied in
[13]. These processes are ‘localizable’ in a different sense, in that they are solutions of an α(x)-
fractional stochastic differential equation. In [13, Theorem 2.1] the local form of sample paths
is considered, rather than the limiting process. Moreover, stable-like processes are Markov
whereas, in general, the multistable processes considered here are not.

Here we say that a stochastic process Y is localisable at a point if it has a unique non-trivial
scaling limit, formally Y = {Y (t) : t ∈R} is h-localisable at u with local form or tangent process
Y ′u = {Y ′u(t) : t ∈ R} if

Y (u+ rt)−Y (u)
rh

fdd→ Y ′u(t) (3.5)

as r → 0. If Y and Y ′u have versions in C(R) (the space of continuous functions on R) and
convergence in (3.5) occurs in distribution with respect to the metric of uniform convergence
on bounded intervals we say that Y is strongly localisable. For the simplest example, a self-
similar process with stationary increments Y is localisable at all u with local form Y ′u = Y and is
strongly localisable if it has a version in C(R). In general there are considerable restrictions on
the possible local forms, see [7].

We call a stochastic process {Y (t), t ∈ R} multistable if for almost all u, Y is localisable at
u with Y ′u an α-stable process for some α = α(u), where 0 < α(u) ≤ 2. Various constructions
of multistable processes are given in [8, 9, 11].

For a stochastic process Y , it is natural to ask under what conditions Y is localisable. The
following theorem, which is a multistable analogue of [9, Proposition 2.1], gives a sufficient
condition.

Theorem 3.2. Let
Y (t) =

Z
f (t,x)dMα(x), (3.6)

where Mα is an α-multistable measure for continuous α : R→ [a,b] ⊆ (0,2]. Assume that
f (t, .) ∈ Fa,b for all t and

lim
r→0

Z ∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz) −h(t,z)

∣∣∣a,b
dz = 0 (3.7)
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for a jointly measurable function h(t,z) with h(t, .) ∈ Fa,b for all t. Then Y is h-localisable at u
with local form

Y ′u =
{Z

h(t,z)dMα(u)(z) : t ∈ R
}

(3.8)

where Mα(u) is α(u)-stable measure.
If, in addition, there exists η > 1/a such that for each bounded interval J we can find c > 0

such that ∥∥∥ f (u+ rt, ·)− f (u+ rv, ·)
rh

∥∥∥
α

≤ c|t− v|η (t,v ∈ J) (3.9)

for all sufficiently small r > 0, then Y is strongly localisable at u. Condition (3.9) is implied byZ ∣∣∣ f (u+ rt,u+ rz)− f (u+ rv,u+ rz)
rh−1/α(u+rz)

∣∣∣α(u+rz)
dz≤ c1|t− v|aη (t,v ∈ J) (3.10)

which can be more convenient to use in practice.

To prove Theorem 3.2, we need some convergence estimates.

Lemma 3.3. Let 0 < a ≤ b. There is a constant c that depends only on a and b such that, for
all measurable α : R→ [a,b] and g,k ∈ Fa,b,∣∣∣Z |g(x)|α(x)dx−

Z
|k(x)|α(x)dx

∣∣∣
≤c
(
‖g− k‖a‖k‖

max{0,a−1}
a +‖g− k‖a

a +‖g− k‖b‖k‖
max{0,b−1}
b +‖g− k‖b

b

)
. (3.11)

Proof. If 0 < a≤ α(x)≤ b≤ 1 for all x ∈ R, then∣∣∣Z |g(x)|α(x)dx−
Z
|k(x)|α(x)dx

∣∣∣≤ Z
|g(x)− k(x)|α(x)dx≤ ‖g− k‖a

a +‖g− k‖b
b.

On the other hand, if 1≤ a≤ α(x)≤ b for all x ∈ R, then by the mean value theorem there
exists 0 < λ(x) < 1 such that∣∣∣|g(x)|α(x)−|k(x)|α(x)

∣∣∣ = α(x)
∣∣∣|g(x)|− |k(x)|

∣∣∣ ∣∣∣|k(x)|+λ(x)
(
|g(x)|− |k(x)|

)∣∣∣α(x)−1

≤ b
∣∣∣|g(x)|− |k(x)|

∣∣∣ ∣∣∣|k(x)|+ |g(x)− k(x)|)
∣∣∣a−1

+b
∣∣∣|g(x)|− |k(x)|

∣∣∣ ∣∣∣|k(x)|+ |g(x)− k(x)|)
∣∣∣b−1

.

Integrating and using Hölder’s inequality gives∣∣∣∣Z |g(x)|α(x)dx−
Z
|k(x)|α(x)dx

∣∣∣∣≤ c
(
‖g−k‖a

∥∥∥|k|+ |g−k|
∥∥∥a−1

a
+‖g−k‖b

∥∥∥|k|+ |g−k|
∥∥∥b−1

b

)
,

which gives (3.11) in this case.
In general, for 0 < a≤ α(x)≤ b, letting A = {x : a≤ α(x)≤ 1}, inequality (3.11) holds for

g1A and k1A and also for g1R\A and k1R\A, and combining these cases we get (3.11) for g and k
for an appropriate c.
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We require the following Corollary.

Corollary 3.4. Let 0 < a≤ b and g : R+×R→ R with g(r, .) ∈ Fa,b for all r > 0. Let k ∈ Fa,b
and let β : R→ [a,b] be continuous at 0. If

lim
r→0

Z
|g(r,z)− k(z)|a,bdz = 0, (3.12)

then
lim
r→0

Z
|g(r,z)|β(rz)dz =

Z
|k(z)|β(0)dz. (3.13)

Proof. By (3.12) and Lemma 3.3

lim
r→0

∣∣∣Z |g(r,z)|β(rz)dz−
Z
|k(z)|β(rz)dz

∣∣∣= 0.

Since k ∈ Fa,b, the dominated convergence theorem gives

lim
r→0

∣∣∣Z |k(z)|β(rz)dz−
Z
|k(z)|β(0)dz

∣∣∣= 0,

and (3.13) follows on combining these two limits.

We can now complete the proof of Theorem 3.2.

Proof of Theorem 3.2 Fix u ∈ R. We consider the characteristic function of the finite-
dimensional distributions of r−h(Y (u + rt)−Y (u)). Let θ j ∈ R and t j ∈ R for j = 1,2, ...,m.
Then, using (3.6) and (2.9),

E
(

exp i
m

∑
j=1

θ jr−h(Y (u+ rt j)−Y (u))
)

(3.14)

= E
(

exp i
m

∑
j=1

θ jr−h
Z

( f (u+ rt j,x)− f (u,x))dMα(x)
)

= exp
{
−

Z ∣∣ m

∑
j=1

θ jr−h( f (u+ rt j,x)− f (u,x))
∣∣α(x)dx

}
= exp

{
−

Z ∣∣ m

∑
j=1

θ jr−h+1/α(rz+u)( f (u+ rt j,rz+u)− f (u,rz+u))
∣∣α(rz+u)dz

}
,

(3.15)

after setting x = rz+u.
Defining

Z(t) =
Z

h(t,z)dMα(u)(z),

where Mα(u) is α(u)-stable symmetric measure, its finite-dimensional distributions are given by
the characteristic function

E
(

exp i
m

∑
j=1

θ jZ(t j)
)

= exp
{
−

Z ∣∣ m

∑
j=1

θ jh(t j,z)
∣∣α(u)dz

}
. (3.16)
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We now use Corollary 3.4, taking

g(r,z) =
m

∑
j=1

θ j
f (u+ rt j,rz+u)− f (u,rz+u)

rh−1/α(rz+u) ,

k(z) =
m

∑
j=1

θ jh(t j,z),

and
β(x) = α(u+ x).

Then Z
|g(r,z)− k(z)|a,bdz→ 0,

as r→ 0, using (3.7) and the quasi norm properties of ‖ · ‖a and ‖ · ‖b. Thus by Corollary 3.4Z ∣∣ m

∑
j=1

θ jr−h+1/α(rz+u)( f (u+ rt j,rz+u)− f (u,rz+u))
∣∣α(rz+u)dz→

Z ∣∣ m

∑
j=1

θ jh(t j,z)
∣∣α(u)dz,

as r→ 0.
Since the exponential function is continuous, (3.15), and hence (3.14), is convergent to

(3.16) as r→ 0 for all (θ1, . . . ,θm). By Lévy’s Continuity Theorem, r−h(Y (u + rt)−Y (u)) fdd→
Z(t) as r→ 0, noting that (3.16) is a characteristic function. Thus Y is h-localisable with local
form Y ′u given by (3.8).

Finally, if (3.9) holds then by Proposition 2.3, for 0 < p < a,

E(|Yr(t)−Yr(v)|p) = E
(∣∣∣Z f (u+ rt,x)− f (u− rv,x)

rh dMα(x)
∣∣∣p)

≤ c2

∥∥∥ f (u+ rt, ·)− f (u− rv, ·)
rh

∥∥∥p

α

≤ c3|t− v|η p.

By choosing p such that 1/η < p < a, Kolmogorov’s continuity theorem, see [16, Theorem
25.2], implies that, for each 0 < β < (ηa− 1)/a and each bounded interval J, the process Yr
satisfies an a.s. Hölder condition

|Yr(t)−Yr(v)| ≤Cr|t− v|β (t,v ∈ J),

where the random constants behave uniformly in r, i.e, sup0<r≤r0
P(Cr ≥ m)→ 0 as m→ ∞.

Thus for all ε,τ > 0 there exists δ > 0 such that

limsup
r→0

P
(

sup
|t−v|<δ, t,v∈J

|Yr(t)−Yr(v)|> τ

)
< ε.

In other words, the Yr are strongly stochastically equicontinuous on J which, along with con-
vergence of the finite-dimensional distributions, implies that Yr converges to Y ′ in distribution
on the space of continuous functions with the metric of convergence on bounded intervals, see
[4, Theorem 8.2] or[15, Theorem 10.2] . 2
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4 Examples
We give a number of examples to illustrate Theorem 3.2. Some of these are considered in
[8, 9, 11] using alternative definitions of multistable processes.

It is convenient to make the convention that

1[u,v] =−1[v,u],

if v < u in the following examples.

Example 4.1. Weighted multistable Lévy motion.
Let

Y (t) =
Z

w(x)1[0,t](x)dMα(x),

where α : R→ [a,2] is continuous and a > 0, and w : R→ R is continuous. Let u ∈ R be such
that w(u) 6= 0 and suppose that as v→ u,

|α(u)−α(v)|= o
(
1/
∣∣ log |u− v|

∣∣). (4.1)

Then Y is 1/α(u)-localisable at u with local form

Y ′u =
{Z

w(u)1[0,t](z)dMα(u)(z), t ∈ R
}

= w(u)Lα(u),

where Mα(u) is α(u)-stable measure and Lα(u) is a α(u)-stable Lévy motion

Proof. Take f (t,x) = w(x)1[0,t](x) and h(t,z) = w(u)1[0,t](z). Condition (4.1) ensures that
r1/α(u)−1/α(u+rz) → 1 as r → 0 uniformly for z ∈ [0, t] which is needed to ensure that (3.7)
holds. Then Theorem 3.2 gives the conclusion.

Next we consider multistable reverse Ornstein-Uhlenbeck motion. Notice that in the multi-
stable case, we get a curious restriction on the range of α.

Example 4.2. Multistable reverse Ornstein-Uhlenbeck motion.
Let

Y (t) =
Z

∞

t
exp(−λ(x− t))dMα(x), (4.2)

where α: R→ [a,b] ⊆ (1,2] is continuous with 1 <
√

b < a ≤ b ≤ 2. Let u ∈ R and suppose
that as v→ u,

|α(u)−α(v)|= o
(
1/
∣∣ log |u− v|

∣∣). (4.3)

Then Y is 1/α(u)-localisable at u with local form

Y ′u =
{Z
−1(0,t)(z)dMα(u)(z), t ∈ R

}
, (4.4)

where Mα(u) is α(u)-stable measure.
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Proof. We take f (t,x) = exp(−λ(x− t))1[t,∞)(x) and h(t,z) =−1[0,t)(z) in Theorem 3.2. After
a little simplification,Z ∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)

r1/α(u)−1/α(u+rz) −h(t,z)
∣∣∣a,b

dz

=
Z |t|
−|t|

∣∣∣−exp(−λrz)1[0,t)(z)

r1/α(u)−1/α(u+rz) +1[0,t)(z)
∣∣∣a,b

dz+
Z

∞

|t|

∣∣∣exp(−λrz)(exp(λrt)−1)1[t,∞)(z)

r1/α(u)−1/α(u+rz)

∣∣∣a,b
dz.

The first integral converges to 0, noting that r1/α(u)−1/α(u+rz)→ 1 as r→ 0, uniformly on z ∈
[−t, t]. The second integral is bounded byZ

∞

|t|

∣∣r−1/a+1/b exp(−λrz)(exp(λrt)−1)
∣∣a,bdz

≤ r1−b/a
Z

∞

|t|

∣∣exp(−λrz)(exp(λrt)−1)
∣∣a,bdz

≤ c1r1−b/a|exp(λrt)−1|a
Z

∞

|t|

∣∣exp(−λarz)
∣∣dz

≤ c2r1−b/a(λr|t|)a exp(−λar|t|)(λra)−1

≤ c3ra−b/a,

for fixed t, where c1, c2 and c3 are independent of r < 1. Since a−b/a > 0 the second integral
converges to 0, so the conclusion follows from Theorem 3.2.

The next example is linear fractional multistable motion. Recall from [17] that asymmetric
linear fractional α0-stable motion, α0 ∈ (0,2], is given by

Lα0,h,b+,b−(t) =
Z

∞

−∞

ρα0,h(b
+,b−, t,x)dMα0(x) (4.5)

where t,b+,b− ∈ R, and

ρα0,h(b
+,b−, t,x) = b+((t− x)h−1/α0

+ − (−x)h−1/α0
+

)
+b−

(
(t− x)h−1/α0

− − (−x)h−1/α0
−

)
,

and Mα0 is α0-stable random measure (0 < α < 2). By convention, if h−1/α0 = 0, we take

ρα0,h(b
+,b−, t,x) = (b+−b−)1[0,t](x)

if t ≥ 0, and
ρα0,h(b

+,b−, t,x) =−(b+−b−)1[t,0](x)

if t < 0. Then (4.5) is an α0-stable process.
For a multistable version, let α : R→ [a,b] ⊆ (0,2) be continuous. We define linear frac-

tional α-multistable motion by

Lα,h,b+,b−(t) =
Z

∞

−∞

ρα,h(b+,b−, t,x)dMα(x) (4.6)
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where t ∈ R, b+,b− ∈ R, and

ρα,h(b+,b−, t,x) = b+((t− x)h−1/α(x)
+ − (−x)h−1/α(x)

+
)
+b−

(
(t− x)h−1/α(x)

− − (−x)h−1/α(x)
−

)
,

where Mα is α-multistable random measure.
It may be checked directly that if t ∈R and 1/a−1/b < h < 1+1/b−1/a then ρα,h(b+,b−, t, .)∈

Fa,b so that (4.6) is well-defined.
We show that linear fractional multistable motion has linear stable motion as its local form.

We consider the case when b+ = 1 and b− = 0, the argument is similar for other b+ and b−.

Proposition 4.3. Linear fractional multistable motion.
Let

Y (t) =
Z

(t− x)h−1/α(x)
+ − (−x)h−1/α(x)

+ dMα(x)

=
Z

ρα,h(1,0, t,x)dMα(x)

= Lα,h,1,0(t),

where α: R→ [a,b]⊆ (0,2) is continuous. If

1/a−1/b < h < 1+1/b−1/a, (4.7)

then Y is h-localisable at each u ∈ R with local form

Y ′u(t) =
{Z (

(t− z)h−1/α(u)
+ − (−z)h−1/α(u)

+
)
dMα(u)(z), t ∈ R

}
= Lα(u),h,1,0(t),

where Mα(u) is α(u)-stable measure. Furthermore, if 1/a < h < 1 + 1/b− 1/a, then Y has a
continuous version and is strongly localisable at each u ∈ R.

Proof. We take f (t,x) = (t− x)h−1/α(x)
+ − (−x)h−1/α(x)

+ ∈ Fa,b, given (4.7), and h(t,z) = (t−
z)h−1/α(u)

+ − (−z)h−1/α(u)
+ in Theorem 3.2. ThenZ ∣∣∣ f (u+ rt,u+ rz)− f (u,u+ rz)
rh−1/α(u+rz) −h(t,z)

∣∣∣a,b
dz

=
Z ∣∣∣(t− z)h−1/α(u+rz)

+ − (−z)h−1/α(u+rz)
+ − (t− z)h−1/α(u)

+ +(−z)h−1/α(u)
+

∣∣∣a,b
dz.

This integral converges to 0 as r→ 0. This may be established by breaking the range of inte-
gration in the parts: |z| < δ, |z− t| < δ, |z| > M and A = {z : δ ≤ |z| ≤M and δ ≤ |z− t|}. By
choosing sufficiently small δ and large M, the integral over the first three parts can be made arbi-
trarily small, uniformly as r→ 0. The integrand converges to 0 pointwise on A and the bounded
convergence theorem gives the integral over A convergent to 0. The conclusion follows from
Theorem 3.2.

Finally, if 1/a < h < 1 it is easily checked by a routine integral estimate (if t > u splitting the
resulting integral at u) that (3.4) holds so Y has a continuous version, and similarly that (3.10)
if 1/a < η < h, so Y is strongly localisable by Theorem 3.2.
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5 Further remarks
In the classical theory of stable distributions and processes, see [17], stable integrals may be
defined in several ways. In particular, by first setting up the theory of stable random vari-
ables and random vectors, stable integrals may be defined as stochastic processes whose finite-
dimensional distributions are jointly stable, with the properties of integrals following from the
theory of stable distributions. Here, multistable integrals are set up in Lemma 2.1 in terms of
the finite-dimensional distributions of integrals of a set of functions, rather than based on any
notion of ‘joint multistable distribution’ of random vectors.

In this light, we may compare the definition of the multistable processes of Section 3 with the
other definitions of multistable processes given in [8, 11] which depend on defining a random
field in terms of a suitable function f (t,v,x) and taking a diagonal section by setting v = t.
It is shown in [11, Proposition 6.13] that the finite-dimensional distributions of the processes
obtained by both the Poisson point representation [8] and the random series representation [11]
are given by

E
(

exp i
d

∑
j=1

θ jY (t j)
)

= exp
(
−2

Z
∞

0

Z
∞

0
sin2

( m

∑
j=1

θ jb(t j)C
1/α(t j)
α(t j)

2y−1/α(t j) f (t j, t j,x)
)

dydx
)

where b(t) is an amplitude factor and C−1
α =

R
∞

0 x−α sinxdx. Note that this form is intrinsically
different from the finite-dimensional distributions (3.2) of our processes, in that they depend
only on the values of α at the ti whereas in (3.2) they depend on the values of α at all x; thus the
multistable processes obtained here differ from the other constructions.

The multistable measures and integrals that we have considered in this paper are a general-
ization of stable symmetric processes. We could extend our definition to permit asymmetry by
taking the characteristic function in Lemma 2.1 to be

φ f1,... fd(θ1, ...,θd)= exp
{
−

Z ∣∣ d

∑
j=1

θ j f j(x)
∣∣α(x)

(
1−iβ(x)sign

( d

∑
j=1

θ j f j(x)
)

tan
(1

2πα(x)
))

dx
}

where β : R→ [−1,1] is a skewness function, with a logarithmic variant when α(x) = 1; com-
pare [17, Equation (3.2.2)]. Provided α(x) 6= 1 a similar argument shows that this process exists
and similar properties should hold, albeit with more awkward algebra. However, if α(x) passes
through the value 1 then convergence difficulties arise.
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