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Abstract

Special-purpose constraint propagation algorithms frequently make implicit use of short
supports — by examining a subset of the variables, they can infer support (a justification
that a variable-value pair may still form part of an assignment that satisfies the constraint)
for all other variables and values and save substantial work – but short supports have not
been studied in their own right. The two main contributions of this paper are the identifi-
cation of short supports as important for constraint propagation, and the introduction of
HaggisGAC, an efficient and effective general purpose propagation algorithm for exploit-
ing short supports. Given the complexity of HaggisGAC, we present it as an optimised
version of a simpler algorithm ShortGAC. Although experiments demonstrate the effi-
ciency of ShortGAC compared with other general-purpose propagation algorithms where
a compact set of short supports is available, we show theoretically and experimentally
that HaggisGAC is even better. We also find that HaggisGAC performs better than
GAC-Schema on full-length supports. We also introduce a variant algorithm HaggisGAC-
Stable, which is adapted to avoid work on backtracking and in some cases can be faster
and have significant reductions in memory use. All the proposed algorithms are excellent
for propagating disjunctions of constraints. In all experiments with disjunctions we found
our algorithms to be faster than Constructive Or and GAC-Schema by at least an order of
magnitude, and up to three orders of magnitude.

1. Introduction

Constraint solvers typically employ a systematic backtracking search, interleaving the choice
of an assignment of a decision variable with the propagation of the constraints to determine
the consequences of the assignment made. Propagation algorithms can broadly be divided
into two types. The first are specialised to reason very efficiently about constraint patterns
that occur frequently in models. Examples include the global cardinality constraint (Régin,
1996) and the element constraint (Gent, Jefferson, & Miguel, 2006b). It is not feasible to
support every possible constraint expression with a specialised propagator in this way, in
which case general-purpose constraint propagators, such as GAC-Schema (Bessière & Régin,
1997), GAC2001/3.1 (Bessière, Régin, Yap, & Zhang, 2005), STR2 (Lecoutre, 2011) or
MDDC (Cheng & Yap, 2010) are used. These are typically more expensive than specialised
propagators but are an important tool when no specialised propagator is available.

A support in a constraint for a domain value of a variable is a justification that the value
may still form part of an assignment that satisfies the constraint. It is usually given in terms
of a set of literals: variable-value pairs corresponding to possible assignments to the other
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variables in the constraint. One of the efficiencies typically found in specialised propagators
is the use of short supports: by examining a subset of the variables, they can infer support
for all other variables and values and save substantial work. This use is typically implicit,
i.e. achieved through a specialised algorithm which does not examine all variables in all
cases. One of our contributions is to highlight the general importance of short supports.

As an example, consider the element constraint xy = z, with x0, x1, x2, y ∈ {0 . . . 2},
z ∈ {0 . . . 3}. This constraint is satisfied iff the element in position y of vector [x0, x1, x2]
equals z. Consider the set of literals S = {x0 7→ 1, y 7→ 0, z 7→ 1}. This set clearly satisfies
the definition of the constraint xy = z, but it does not contain a literal for each variable.
Any extension of S with valid literals for variables x1 and x2 is a support. S is an example
of a short support.

In our previous work we introduced ShortGAC (Nightingale, Gent, Jefferson, & Miguel,
2011), a general-purpose propagation algorithm that exploits short supports. Until the in-
troduction of ShortGAC, general-purpose propagators relied upon supports involving all
variables. In this paper we develop the concept further and introduce a new algorithm
HaggisGAC,1 which is consistently more efficient than ShortGAC. Where available, the
use of compact sets of short supports allows HaggisGAC to outperform greatly exist-
ing general-purpose propagation algorithms. In some cases, HaggisGAC even approaches
the performance of special-purpose propagators. HaggisGAC is also very well suited to
propagating disjunctions of constraints, and outperforms the traditional Constructive Or
algorithm (Lagerkvist & Schulte, 2009; Würtz & Müller, 1996) by orders of magnitude.
HaggisGAC is also more efficient than GAC-Schema on full-length supports. We also
describe a variant, HaggisGAC-Stable, in which supports do not need to be deleted on
backtracking. Applied to full-length supports, this version has greatly reduced memory
usage.

ShortGAC, HaggisGAC and HaggisGAC-Stable are all instantiated with a func-
tion named findNewSupport (and are similar to GAC-Schema in this way). This function
can be specific to a constraint, and generate short supports procedurally. Alternatively, a
generic findNewSupport can retrieve short supports from a data structure.

Section 2 presents the necessary background, and Section 3 introduces the concept
of short support. Section 4 outlines the basic idea used to deal with implicit supports
throughout the paper. Section 5 gives full details of ShortGAC, including the complexity of
key operations and alternative implementations for when short supports are provided in list
form. Section 6 presents the new algorithm HaggisGAC as a development of ShortGAC.
Both ShortGAC and HaggisGAC are evaluated experimentally in Section 7. Section 8
describes HaggisGAC-Stable, with corresponding experiments in Section 9. Finally,
Sections 10 and 11 discuss related work and present our conclusions.

1. HaggisGAC is named for the legendary wild haggis of Scotland, which has both short legs and long
legs for walking around hills. Like its namesake, HaggisGAC copes with both full-length and shorter
supports and originates in Scotland. Details of the wild haggis can be found on Wikipedia, http:

//en.wikipedia.org/wiki/Wild_haggis, and in the Veterinary Record (King, Cromarty, Paterson, &
Boyd, 2007).
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2. Supports, GAC, Triggers

A constraint satisfaction problem (CSP) is defined as a set of variables X, a function that
maps each variable to its domain, D : X → 2Z where each domain is a finite set, and a set
of constraints C. A constraint c ∈ C is a relation over a subset of the variables X. The
scope of a constraint c, named scope(c), is the set of variables that c constrains.

A solution to a CSP is a function s : X → Z that maps each variable x ∈ X to a value
from D(x), such that for every constraint c ∈ C, the values of scope(c) form a tuple that is
in c (i.e. the constraint is satisfied).

During a systematic search for a solution to a CSP, values are progressively removed
from the domains D. Therefore, we distinguish between the initial domains and the current
domains. The function D refers to the current domains unless stated otherwise. A literal
is defined as a variable-value pair, and is written x 7→ v. A literal x 7→ v is valid if v is in
the current domain of x (i.e. v ∈ D(x)).

Definition 2.1. [Support] A support S for constraint c and domains D is defined as
a set of valid literals that contains exactly one valid literal for each variable in scope(c)
and satisfies c. Where necessary for disambiguation, we call such a support a full-length
support or simply long support, to contrast with short supports as defined later.

A property commonly established by constraint propagation algorithms is generalised
arc consistency (GAC) (Mackworth, 1977). A constraint c is GAC if and only if there exists
a full-length support for every valid literal of every variable in scope(c). GAC is established
by identifying all literals x 7→ v for which no full-length support exists and removing v from
the domain of x. We consider only algorithms for establishing GAC in this paper.

A GAC propagation algorithm is usually situated in a systematic search. Hence, it
must operate in three contexts: initialisation (at the root node), where support is established
from scratch; following the deletion of one or more domain values (as a result of a branching
decision and/or the propagation of other constraints), where support must be re-established
selectively; and upon backtracking, where data structures must be restored to the correct
state for this point in search. Our primary focus will be on the second context, operation
following value deletion, although we will discuss efficient backtracking in Section 8. A
GAC propagation algorithm would typically be called for each deleted domain value in
turn. Once the algorithm has been called for each such domain value, the constraint will
be GAC.

The propagation algorithms we present have the concept of active support, inspired by
GAC-Schema (Bessière & Régin, 1997). An active support is a support that is currently
in use to support a set of literals. Each literal has a set of active supports that support
it. When an active support is found to be invalid, it is removed. When the set for some
literal is empty, we say the literal has lost support. A new support is sought for the literal,
and if found the new support becomes active. If no new support is found, the literal has no
support and it is deleted.

In the propagation algorithms we present, for efficiency we make use of ‘watched literals’
as provided in Minion (Gent et al., 2006b), because propagators need not be called for every
deleted domain value to establish GAC. We say that propagators attach and remove triggers
on literals. When a domain value v for variable x is deleted, the propagator is called if and
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only if it has a trigger attached to the literal x 7→ v. Doing so means that when a literal
is deleted which is not attached to a trigger, zero work is incurred. We should emphasise
that the use of watched literals is not fundamental to our work. If they are not available
in a given solver, our algorithms only need a minor adaptation. When called on any literal
removal, we may just return immediately if the literal is not in any active support, which
can be checked in time O(1). Thus our algorithms fit the traditional fine-grained scheme
(Bessière & Régin, 1997) except that in some cases they will not be invoked because they
use watched literals.

3. Short Supports

The concept of a short support is a generalisation of full-length support. It is defined below.

Definition 3.1. [Short support] A short support S for constraint c and domains D is
defined as a set of valid literals x 7→ v such that x ∈ scope(c), x occurs only once in S,
and every superset of S that contains one valid literal for each variable in scope(c) is a
full-length support. A strict short support is a short support that is not a full-length
support.

The definition of short support includes both extremes. The empty set is a short sup-
port when the constraint is entailed (i.e. every tuple on scope(c) within D satisfies the
constraint). Similarly, every full-length support S is necessarily a short support, because
the only superset of S is itself. In our case studies we will see examples of both empty short
supports and short supports that also happen to be full length.

Short supports can be used to maintain GAC. Just as with a full-length support, a
short support provides GAC support for each literal contained within it. We call this
explicit support for those literals. The new feature is that a short support also provides
support for all valid literals of all variables not contained in the short support. This is
because, by definition, every valid extension of the short support to cover all variables in
scope(c) is a full-length support. We say that a short support gives implicit GAC support
for all valid literals of variables not in the short support.

We also define the concept of a complete set of short supports for a constraint.

Definition 3.2. [Short support set] A short support set S(c,D) is a set of short supports
for constraint c under domains D, such that every full-length support S of c under D is a
(not necessarily strict) superset of at least one short support S′ ∈ S(c,D).

A constraint may have many short support sets. This gives us some latitude to imple-
ment one that is efficient to compute.

It is natural to ask how we can identify correct short supports given a constraint c. A
simple but fundamental result is given in Lemma 3.3.

Lemma 3.3. Given a constraint c and domains D, the empty set {} is a short support for
c iff GAC propagation for the constraint not(c) leads to an empty domain.

Proof. {} is a short support if and only if every valid assignment to variables in scope(c)
satisfies c. Every assignment satisfies c iff every assignment violates not(c). If every assign-
ment violates not(c), then GAC propagation for the constraint not(c) leads to an empty
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domain. To complete this last equivalence, note that if any assignment does not violate
not(c), all literals in that assignment are supported, so GAC propagation cannot cause an
empty domain.

This lemma has two important consequences. First, we can check any short support for
correctness, not just the empty support. To check a short support S = {x1 7→ v1, . . . , xk 7→
vk}, we can simply set D(x1) = {v1}, . . . , D(xk) = {vk}. All assignments now extend S, so
S is a short support iff {} is. Lemma 3.3 applies so we can check the correctness of S by
propagating not(c) and seeing if a domain is emptied.

The second consequence is negative, however. Determining whether GAC propagation
will empty a domain is polynomially equivalent to actually performing GAC propagation
(Bessière, Hebrard, Hnich, & Walsh, 2007). Since some constraints are NP hard to GAC
propagate, it follows that it is not easy even to check if the empty set is a short support.
Thus we cannot expect to find a method which is both fast and general for finding short
supports for a constraint.

Given the provable difficulty of finding short supports from a set of full-length supports,
we construct sets of short supports specifically for each of three experimental case studies
in Section 7. The focus of this paper is to show the value of strict short supports if they
are given to the system. The situation is analogous with that in an important area of
constraints, namely that of exploiting symmetries in constraint problems (Gent, Petrie,
& Puget, 2006). A large majority of research has assumed that sets of symmetries are
provided to the system, even though finding such sets is hard. This has not inhibited
research in exploiting symmetry, within which the automated detection of symmetry has
become an important subarea (Mears, 2009; Puget, 2005): however we leave the automated
construction of compact short support sets to future research. Analogously to patterns such
as matrix symmetries (Flener, Frisch, Hnich, Kiziltan, Miguel, Pearson, & Walsh, 2002),
we can at least identify a pattern which often lets us identify strict short supports, as we
now describe.

3.1 Short Supports and Disjunction

Strict short supports arise naturally from disjunctions. If a constraint can be expressed as
a disjunction of shorter constraints, then a set of strict short supports can be constructed
for it. Suppose we have the following constraint.

c(x1, x2, x3, x4) ≡ c1(x1, x2) ∨ c2(x2, x3) ∨ c3(c3, x4)

Suppose also that A = {x1 7→ 2, x2 7→ 1} is a valid assignment that satisfies c1. If we satisfy
c1, we satisfy c regardless of the values of x3 and x4. Therefore A = {x1 7→ 2, x2 7→ 1} is a
strict short support for c.

Lemma 3.4. Given constraint c, a domain set D, and a set of constraints {c1 . . . ck} where
∀ci ∈ {c1 . . . ck} : scope(ci) ⊆ scope(c) and c ≡ c1 ∨ · · · ∨ ck, the following is a short support
set (where we write fls(ci, D) to mean the full-length supports of ci w.r.t. domains D):

S(c,D) = {S | S ∈ fls(c1, D) ∨ · · · ∨ S ∈ fls(ck, D)}
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Proof. (a) Each element of S(c,D) is a short support according to Definition 3.1 by the
semantics of disjunction. (b) S(c,D) is a short support set by Definition 3.2. Every full-
length support of c must satisfy some disjunct ci, therefore the full-length support contains
a full-length support for ci that is included in S(c,D).

Lemma 3.4 allows a short support set to be created for any disjunction, given the initial
domains. We do this for two of our three case studies (for the third, the set is prohibitively
large).

Using a similar approach to Lemma 3.4 we can create a function that generates short
supports on demand. The function takes a valid literal x 7→ v and the current domains
D, and returns a short support that supports x 7→ v (explicitly or implicitly), or Null if
none exists. The function can be constructed as follows. We create new domains D′ where
D′(x) = {v}, and otherwise D′ is identical to D. If no disjunct is satisfiable under D′, then
the function returns Null. Otherwise, the function picks any disjunct ck that is satisfiable
under D′, and returns a satisfying assignment of ck that is valid under D′. For each of the
three case studies in Section 7, we created a function that follows this scheme with some
optimisations.

Propagating disjunctions is recognised to be an important topic. Many papers have
been published in this area (Würtz & Müller, 1996; Lhomme, 2003; Lagerkvist & Schulte,
2009; Jefferson, Moore, Nightingale, & Petrie, 2010). Exploiting strict short supports in the
algorithms ShortGAC, HaggisGAC and HaggisGAC-Stable allows us to outperform
the traditional Constructive Or algorithm (Würtz & Müller, 1996) by orders of magnitude.

3.2 Backtrack Stability of Short Supports

Within a search tree, propagation algorithms often spend significant time backtracking
data structures. Reducing or eliminating backtracking can improve efficiency. For example,
avoiding backtracking triggers can speed up a simple table propagator by more than 2 times
(Gent et al., 2006b), and MAC-6 and MAC-7 can be much more efficient (in both space
and time) if backtracking is avoided (Régin, 2005). There are two potential advantages
of reducing use of backtracking state: it saves time restoring data structures, and it saves
space by avoiding storing supports on the backtrack stack.

Definition 3.5. [Backtrack Stable] A short support of constraint c with current domains D
is backtrack stable iff it always remains a short support (according to Definition 3.1) after
backtracking up the search tree.

A short support s may support some variable x implicitly, and as we backtrack we may
add values back into the domain of x that are not consistent with s, meaning that s no
longer meets the definition of a short support. We give an example below.

Example 3.1. Consider the constraint b → M [x] = y, for a boolean variable b, array of
variables M and variables x and y. When b is assigned False, this constraint is entailed,
and so the empty short support can be used to support all literals in M,x and y. This
support is not backtrack stable, as on backtracking when True is restored to the domain of
b, the empty set is no longer a short support.
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Any support that is full length is backtrack stable: whenever the support is valid it
supports all literals it contains. Backtrack stable supports always exist because we can use
full-length supports in all cases (as in GAC-Schema), although these may be much longer
than necessary.

In Section 8 we exploit backtrack stability to define a new algorithm.

4. ShortGAC: An Overview

This section summarises the key ideas of the ShortGAC propagation algorithm, along
with an illustrative example.2

ShortGAC maintains a set of short supports sufficient to support all valid literals of
the variables in the scope of the constraint it is propagating. We refer to these as the active
supports. The algorithm rests on exploiting the observation that, using short supports,
support can be established for a literal in two ways. First, as usual, a short support that
contains a literal supports that literal. Second, a literal x 7→ v is supported by a short
support that contains no literal of variable x. Hence, the only short supports that do not
support x 7→ v are those which contain a literal x 7→ w for some other value w 6= v.

The following data structures are central to the operation of the ShortGAC algorithm:

numSupports is the total number of active short supports.

supportsPerVar is an array (indexed by [x]) indicating the number of active short supports
containing each variable x.

supportListPerLit is an array (indexed by [x 7→ v]) of lists of active short supports con-
taining each literal x 7→ v.

If the number of supports containing some variable x is less than the total number of
supports then there exists a support s that does not contain x. Therefore, s supports all
literals of x. The algorithm spends no time processing variables all of whose literals are
known to be supported in this way. Only for variables involved in all active supports do we
have to seek support for literals with no active supports.

To illustrate, we consider the element example from the introduction: xy = z, with
x0, x1, x2, y ∈ {0 . . . 2}, and z ∈ {0 . . . 3}. This constraint is satisfied iff the element in
position y of vector [x0, x1, x2] equals z. Suppose in the current state ShortGAC is storing
just one support: A = {x0 7→ 1, y 7→ 0, z 7→ 1}. The data structures are as follows, where
× indicates that a literal is not valid.3

2. The details we present here are different from those we presented previously (Nightingale et al., 2011), as
we have optimised the data structures and algorithms compared with our previous work. The two most
significant changes are: we no longer keep a count of supports per literal, saving overhead in maintaining
this; and data is stored in a one dimensional vector by literal, instead of a two dimensional array by
variable/value, saving space if variables in a constraint have very different domain sizes. Experiments in
Appendix A demonstrate that the algorithms and data structures presented here perform better than
our previous implementation.

3. For clarity, we have presented the one-dimensional array supportListPerLit in a two-dimensional format.
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Supports: A: x0 7→ 1, y 7→ 0, z 7→ 1
supportListPerLit: Variable

Value x0 x1 x2 y z
0 {} {} {} {A} {}
1 {A} {} {} {} {A}
2 {} {} {} {} {}
3 × × × × {}

supportsPerVar: 1 0 0 1 1
numSupports: 1

All values of x1 and x2 have support, since their supportsPerVar counters are both
less than numSupports. Therefore the ShortGAC algorithm can ignore x1 and x2 and
only look for new supports of x0, y and z. Consider finding a new support for literals
in z. ShortGAC can ignore the literals with at least one support – in this case z 7→ 1.
The algorithm looks for literals z 7→ a where supportListPerLit[z, a] = {}. Here, z 7→ 0
is such a literal, so ShortGAC seeks a new support for it. A possible new support is
B = {x1 7→ 0, y 7→ 1, z 7→ 0}. Following its discovery, we update the data structures:

Supports: A: x0 7→ 1, y 7→ 0, z 7→ 1
B: x1 7→ 0, y 7→ 1, z 7→ 0

supportListPerLit: Variable
Value x0 x1 x2 y z

0 {} {B} {} {A} {B}
1 {A} {} {} {B} {A}
2 {} {} {} {} {}
3 × × × × {}

supportsPerVar: 1 1 0 2 2
numSupports: 2

Now variable x0 is also fully supported, since supportsPerVar[x0] < numSupports. There
remain three literals for which support has not been established: y 7→ 2, z 7→ 2 and z 7→ 3.
For the first two ShortGAC finds supports such as C = {x0 7→ 2, y 7→ 0, z 7→ 2} and
D = {x2 7→ 0, y 7→ 2, z 7→ 0}. No support exists for z 7→ 3, so 3 will be deleted, giving:

Supports: A: x0 7→ 1, y 7→ 0, z 7→ 1
B: x1 7→ 0, y 7→ 1, z 7→ 0
C: x0 7→ 2, y 7→ 0, z 7→ 2
D: x2 7→ 0, y 7→ 2, z 7→ 0

supportListPerLit: Variable
Value x0 x1 x2 y z

0 {} {B} {D} {A,C} {B,D}
1 {A} {} {} {B} {A}
2 {C} {} {} {D} {C}
3 × × × × ×

supportsPerVar: 2 1 1 4 4
numSupports: 4

All valid literals are now supported. Nothing further need be done until a change in
state, such as the removal of a value by a branching decision or propagation.
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5. ShortGAC: Details

The key tasks in implementing ShortGAC are: data structure update; iteration over
variables where supportsPerVar equals numSupports; and iteration over the unsupported
values of a variable. This section describes the infrastructure that allows us to perform
each of these tasks efficiently.

5.1 ShortGAC Data Structures

An active short support S of arity k provides explicit support for each of the k literals it
contains. Therefore, a reference to S must appear in k of the lists of supportListPerLit. To
do this, we represent S with two types of object: ShortSupport and ShortSupportCell. The
ShortSupport object contains k ShortSupportCell objects, each of which contains a literal
x 7→ v,4 and a reference to the parent ShortSupport. The elements of the array support-
ListPerLit are doubly-linked lists of ShortSupportCells. Through the reference to the parent
ShortSupport, we can iterate through all active short supports for a given literal.

The algorithm iterates over all variables x where supportsPerVar[x] equals numSupports.
The following data structure represents a partition of the variables by the number of sup-
ports. It allows constant time size checking and linear-time iteration of each cell in the
partition, and allows any variable to be moved into an adjacent cell (i.e. if the number
of supports increases or decreases by 1) in constant time. It is inspired by the indexed
dependency array in Gecode (Schulte & Tack, 2010).

varsBySupport is an array containing a permutation of the variables. Variables are ordered
by non-decreasing number of active supports (supportsPerVar[x]).

supportNumLowIdx is an array of integers, indexed from 0 to the number of literals, that
being the maximum number of active supports possible. Either supportNumLowIdx[i] is
the smallest index in varsBySupport with i or more active supports, or (when there are
no such variables) supportNumLowIdx[i]= k where k is the total number of variables.
k acts as a sentinel value. The set of variables with i supports is:

varsBySupport[supportNumLowIdx[i] . . . supportNumLowIdx[i+ 1]− 1]

Initially, all variables have 0 active supports, so supportNumLowIdx[0] = 0 and the rest
of the array is set to k.

The following table illustrates how the partition data structure works (on a different
example with 11 variables). Suppose supportsPerVar[x2] changed from 7 to 6. x2 and y1

(boxed) are swapped in varsBySupport and the cell boundary is moved so that x2 is in the
lower cell. Consequently, supportNumLowIdx[7] is incremented by 1.

varsBySupport[] w1 w2 y1 x1 x2 y2 y3 x3 z1 z2 z3

supportsPerVar 6 6 7 7 7 7 7 7 8 8 8

x2 updated w1 w2 x2 x1 y1 y2 y3 x3 z1 z2 z3

4. A literal x 7→ v is represented using a single integer i. There is a mapping between x 7→ v and i, which
allows O(1) access to x and v from i and vice-versa.
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Require: sup: a ShortSupport
1: for all sc: ShortSupportCell ∈ sup do
2: (x 7→ v) ← sc.literal
3: if supportListPerLit[x 7→ v] = {} then
4: attachTrigger(x 7→ v)
5: Add sc to doubly linked list supportListPerLit[x 7→ v]
6: supportsPerVar[x]++
7: sx ← supportsPerVar[x]
8: cellend ← supportNumLowIdx[sx ]−1
9: swap(x, varsBySupport[cellend ])

10: supportNumLowIdx[sx ]--
11: numSupports++

Procedure 1: addSupport(sup)

For a variable x with supportsPerVar[x] = numSupports, ShortGAC iterates over the
values with zero explicit supports. To avoid iterating over all values, we use a set data
structure:

zeroLits is an array (indexed by [x]) of stacks containing the literals of variable x with zero
explicit support, in no particular order.

inZeroLits is an array (indexed by [x 7→ v]) of booleans indicating whether literal x 7→
v ∈ zeroLits[x].

When supportListPerLit[x 7→ v] is reduced to the empty list, if inZeroLits[x 7→ v] is
false then x 7→ v is pushed onto zeroLits[x] (and inZeroLits[x 7→ v] is set to true). As an
optimisation, values are not eagerly removed from the set; they are only removed lazily when
the set is iterated. Also, the set is not backtracked. During iteration, a non-zero value is
removed by swapping it to the top of the stack, and popping. This lazy maintenance never
costs work overall because, if the value would have been removed eagerly, then it will be
removed the next time the set is iterated, costing O(1). It can save work, because we may
never iterate over the list before the value would have been restored to the set again.

We use a free list to manage the set of ShortSupport objects to avoid the cost of unnec-
essary object construction/destruction. The ShortSupport object retrieved from the free list
may contain too few ShortSupportCell objects, so we use a resizable vector data structure.
The size is only ever increased.

5.2 Adding and Deleting Supports

When a support is added or deleted, all the data structures described above must be
updated. This is done by Procedures 1 (addSupport) and 2 (deleteSupport). Both these
procedures iterate through the given short support, and for each literal in it they update
supportListPerLit, supportsPerVar, varsBySupport and supportNumLowIdx. Procedure 2 also
inserts the literal into zeroLits if necessary. We briefly explain the maintenance of varsBy-
Support as it will become important in Section 6.2. Suppose we are adding support for
literal x 7→ v in Procedure 1. Because it has an additional support, x must be moved to the
next cell in varsBySupport. Line 8 finds the end of the cell that x is in, then we swap x to the
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Require: sup: a ShortSupport
1: for all sc: ShortSupportCell ∈ sup do
2: (x 7→ v) ← sc.literal
3: Remove sc from doubly-linked list supportListPerLit[x 7→ v]
4: supportsPerVar[x]--
5: if supportListPerLit[x 7→ v] = {} then
6: removeTrigger(x 7→ v)
7: if ¬inZeroLits[x 7→ v] then
8: inZeroLits[x 7→ v] ← true
9: zeroLits[x].push(x 7→ v)

10: sx ← supportsPerVar[x]
11: cellend ← supportNumLowIdx[sx+1]
12: swap(x, varsBySupport[cellend ])
13: supportNumLowIdx[sx+1]++
14: numSupports--

Procedure 2: deleteSupport(sup)

Require: x 67→ v (where v has been pruned from the domain of x)
1: while supportListPerLit[x 7→ v] 6= {} do
2: deleteSupport(supportListPerLit[x 7→ v].pop())
3: repeat
4: continueLoop ← false
5: for all i ∈ {supportNumLowIdx[numSupports]. . . supportNumLowIdx[numSupports+1]-1} do
6: y ← varsBySupport[i]
7: if ShortGAC-variableUpdate(y) = true then
8: continueLoop ← true
9: break out of for loop Line 5

10: until continueLoop = false

Procedure 3: ShortGAC-Propagate: propagate(x 67→ v)

end of its cell using a subroutine swap(xi, xj). This simple procedure (not given) locates
and swaps the two variables in varsBySupport, leaving other variables unaffected. To do so
it makes use of a second array, varsBySupInv, which is the inverse mapping of varsBySupport.
Having done this, the cell boundary is decremented so that (in its new position), x is now
in the higher cell. Another point to note is that addSupport will add a trigger for x 7→ v
if sup is the only active explicit support to contain that literal, while deleteSupport will
remove the trigger if the deleted support is the only support.

Finally, we note that we do not have special-purpose methods to undo these changes
on backtracking. On backtracking past the point where a support is added, we simply
call deleteSupport, and similarly we call addSupport when we backtrack past a support’s
deletion.
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Require: variable x
1: for all (x 7→ v) ∈ zeroLits[x] do
2: if supportListPerLit[x 7→ v] 6= {} then
3: Remove (x 7→ v) from zeroLits[x]
4: else
5: if v ∈ D(x) then
6: sup ← findNewSupport(x 7→ v)
7: if sup = Null then
8: prune(x 7→ v)
9: else

10: addSupport(sup)
11: if supportListPerLit[x 7→ v] 6= {} then
12: Remove (x 7→ v) from zeroLits[x]
13: return true
14: return false

Procedure 4: ShortGAC-variableUpdate: (x). Here and in other pseudocode we abstract
the detailed maintenance of the zeroLits and inZeroLits data structures. It might seem that
the test on Line 11 must always succeed. However, although sup must support x 7→ v, it
does not have to contain x 7→ v as it might be an implicit support. The findNewSupport
function is discussed in Section 5.5.

5.3 The Propagation Algorithm

The ShortGAC propagator (Procedure 3) is only invoked when a literal contained in
one or more active short supports is pruned.5 It first deletes all supports involving the
pruned literal. Then it checks all variables y which are not implicitly supported, i.e. where
supportsPerVar[y]=numSupports (Line 5). Each such variable y is checked by Procedure 4
(ShortGAC-variableUpdate, described below). If this call results in a new support being
found, then the data structures will have changed (ShortGAC-variableUpdate(y) returns
true to indicate this) and we must break out of the for-all-loop (Line 9) and go round again.
Iteration therefore continues until either no new support is necessary or no new support
can be found.

ShortGAC-variableUpdate (Procedure 4) is used to check the status of every variable
lacking implicit support. It iterates over zeroLits, i.e. the literals for a variable which might
have zero explicit supports. Since zeroLits is maintained lazily, on each iteration we first
check that the literal does indeed have no explicit support, and correct zeroLits if necessary
(Lines 2–3). The important case is that the literal indeed has no support. Then, provided
that v is in the current domain of x, we must seek a new support by calling findNewSupport
for the constraint. If there is no support, value v must be pruned from the domain of x, or
if we have found a support we update data structures by calling addSupport.

To initialise data structures at the root of search, Lines 3–10 of Procedure 3 are invoked.
Notice that these lines do not refer to the parameter x 67→ v, and on first calling there are
no supports at all so the initial iteration at Line 5 is over all variables.

5. As we noted earlier, if watched literals are not available in a solver, a simple check can be made at the
start of the procedure, to return immediately if the removed literal is in no active support.
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5.4 Complexity Analysis of ShortGAC

In this section we provide a complexity analysis of ShortGAC as it is used incremen-
tally during search in a constraint solver. The analysis has as parameters the arity of the
constraint n, the maximum domain size d, and the cost f of calling findNewSupport. We
assume that both attaching and removing a trigger to a literal are O(1). This is the case
in Minion 0.12.

First we observe that the swap procedure executes in O(1) time: each operation in swap
is O(1) and it does not loop. Secondly we establish the time complexity of the procedures
addSupport and deleteSupport, which are key to the algorithm.

Lemma 5.1. Procedure 1 (addSupport) has time complexity O(n).

Proof. The outer loop on Line 1 iterates over the literals in the short support. In the worst
case, there are n literals. We now consider the steps within this loop. The list test on
Line 3 is O(1), as is the call to attachTrigger on Line 4. Adding the ShortSupportCell to
the doubly-linked list on Line 5 is O(1), as are the following five array dereferences. As
established above, the swap procedure is also O(1). Hence, addSupport is O(n).

Lemma 5.2. Procedure 2 (deleteSupport) has time complexity O(n).

Proof. Similarly to the add Support procedure, the outer loop on Line 1 has at most n
iterations. The removal from the doubly-linked list on Line 3 is O(1), as are the array
dereferences on Line 4 and subsequently. The list test on Line 5 and the call to removeTrig-
ger on Line 6 are both O(1), as is the stack push operation on Line 9. Recalling once again
that the swap procedure is O(1), deleteSupport is O(n).

Theorem 5.3. Procedure 3 (ShortGAC-propagate) has time complexity in O(n2d2 +ndf).
The upper bound can be obtained, i.e. the worst case time complexity is in Ω(n2d2 + ndf).

Proof. Analysis for the first statement breaks down into three parts.
First, the loop on Line 1 is over the elements of supportListPerLit. The worst case occurs

when nd literals have an explicit support. Of these supports, a maximum of (n − 1)d + 1
can involve a particular literal, because this literal may be in the short support for every
literal of every other variable ((n− 1)d), and itself (1). The cost of the body of this loop is
O(n) from Lemma 5.2, so the total is O(n2d). This will be dominated by the next part.

The second part is the loop from lines 3–10. The maximum number of iterations in
Line 5 is n when all supports are full length and so the iteration in Line 5 contains all n
variables. Successive calls to Procedure 4 at Line 7 can add at most O(d) new supports.
But each support addition triggers a restart of the loop beginning on Line 5 over all n
variables, for a total of at most O(n2d) calls to Procedure 4. Each such call involves O(d)
iterations of the loop on Line 1 of Procedure 4. Therefore the innermost loop is run at most
O(n2d2) times.

To complete the proof of the first statement, we consider the cost of the innermost loop
of Procedure 4. Within this loop, most operations are O(1), the exceptions being the call
to findNewSupport on Line 6 (cost f) and the call to addSupport on Line 10 (cost n from
Lemma 5.1). But f is the dominating cost, since it must at least traverse the new support to
record it. However, of the n2d2 iterations, there can be at most nd calls to findNewSupport,
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after which time all valid literals will have an explicit support. So the cost is either O(n2d2)
or O(ndf), whichever is greater. In any case the cost is O(n2d2 + ndf).

The upper bounds of ndf and n2d2 can be attained in the worst case. If each literal
needs a new support, we have Ω(ndf) calls to findNewSupport. We can have cost Ω(n2d2)
if there are nd literals with explicit support, each of size n, and each variable ends up
with (for example) d/2 values supported and d/2 values deleted. The worst case is thus
Ω(n2d2 + ndf).

Procedure 3 can be invoked at most n(d − 1) times in one branch of the search tree,
therefore the complexity for one branch is O(n3d3 + n2d2f).

5.4.1 A Second Complexity Analysis

The analysis above can be very conservative when the total number, and maximum size, of
short supports is small. Therefore, we give another complexity analysis with two additional
parameters: the maximum length l of short supports returned by findNewSupport, and
the total number s of distinct short supports that may be returned by findNewSupport.
This analysis also pertains to a branch of search rather than a single call to the propagate
algorithm.

The first part of this complexity analysis concerns the s short supports of length l.
Each short support may be added to the active set once, and may be deleted once down a
branch. Each short support must also be found by calling findNewSupport, with cost O(f).
Lemma 5.1 shows that the addSupport procedure takes O(n) time. The same lemma can
be re-stated in terms of l, because the loop in addSupport will iterate O(l) times, giving a
total time of O(l). This also applies to deleteSupport. Since there are s short supports, the
cost of finding, adding and deleting (collectively processing) short supports is O(s(l + f))
down a branch.

Secondly, the algorithm may make calls to findNewSupport that return Null. This can
happen at most n(d− 1) + 1 times, because this is the maximum number of domain values
that may be deleted. Therefore the cost is O(ndf).

In addition, ShortGAC does some operations that have not been charged to either of
the above categories. To analyse these, we must do a top-down analysis of algorithm.

Procedure 3 is invoked O(s) times (each time a short support is invalidated). Lines 1–2
are already charged to processing short supports. The body of the loop on lines 3–10 may
be executed s times when a new support is found, and a further s times when no new
support is found, therefore O(s) times in total down a branch of search.

Now we come to the inner loop on lines 5–9. From Lemma 5.4 (below), unless a domain
is empty there is always one or more active short support. Therefore, at most l variables
will be contained in all active short supports, so at most l variables are in the relevant
partition of varsBySupport, and the loop body will be executed O(l) times.

Lemma 5.4. After initialisation, Procedure 3 always has at least one active short support
or a variable domain is empty.

Proof. Suppose the opposite. The algorithm is invoked each time a literal in an active short
support is pruned, therefore to delete all active short supports they must all contain one
literal x 7→ v. If all active short supports contain variable x, then all values in the domain
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of x are not implicitly supported and must be explicitly supported. Therefore v must be
the last remaining value in D(x). Now to prune x 7→ v empties the domain and we have a
contradiction.

Down a branch, this causes O(sl) calls to ShortGAC-variableUpdate, on Line 7. Each
call to ShortGAC-variableUpdate takes O(d) time because there may be d − 1 invalid
literals or d explicitly supported literals in zeroLits. Other time spent in this procedure is
charged to processing short supports, or to pruning domains. Therefore in the top-down
analysis the cost is O(sld).

Overall, the time complexity is O(s(l + f) + ndf + sld), a tighter bound in some cases
than the one given in the section above. For example, a SAT clause has s = n, f = n, l = 1
and d = 2, giving a time complexity of O(n2) for a branch of search.

5.5 Instantiation of findNewSupport

Similarly to GAC-Schema (Bessière & Régin, 1997), ShortGAC must be instantiated with
a findNewSupport function. The function takes a valid literal, and returns a support if one
exists, otherwise returns Null. One way to do this is to write a specialist findNewSupport
function for each constraint. We do this in each of the empirical case studies below. In
each case, the findNewSupport function is much simpler than a propagator for the same
constraint. We use Lemma 3.4 to build the findNewSupport functions, which reduces the
task to finding satisfying tuples of simple constraints like x < y and x = y.

The alternative is to write a generic version of findNewSupport for the case where all
short supports are given as a list. We now detail two generic instantiations of findNewSup-
port for lists, and in our case studies below we compare them with the specialist functions.

5.5.1 findNewSupport-List

We provide a generic instantiation named findNewSupport-List (Procedure 5) that takes a
list of short supports for each literal (supportList), including both the explicit and implicit
short supports for that literal. This is analogous to the Positive instantiation of GAC-
Schema (Bessière & Régin, 1997). FindNewSupport-List has persistent state: listPos, an
array of integers indexed by variable and value, initially 0. This indicates the current
position in the supportList. The algorithm simply iterates through the list of supports,
seeking one where all literals are valid. ListPos is not backtracked, with the consequence
that when the end of the list is reached, we cannot fail immediately and must search again
from the start back to listPos. Down a branch of the search tree, any particular element
of the list may be looked at more than once. However, this algorithm is optimal in both
time and space across the search tree (Gent, 2012). This surprising result is achieved by
amortizing the cost across all branches. Practically, using listPos stops the algorithm always
starting from the first element of the list, and it seems to be a good tradeoff between avoiding
provably unnecessary work and doing too much data structure maintenance.

A constraint-specific findNewSupport can sometimes find shorter supports than find-
NewSupport-List. This is because a specific findNewSupport can take advantage of current
domains whereas the supportList may only contain supports given the initial domains. For
example, if the constraint becomes entailed, the specific findNewSupport can return the
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Require: x, v, supportList
1: for all j ∈ {listPos[x, v]. . .(supportList[x, v].size-1)} do
2: sup ← supportList[x, v, j]
3: if all literals in sup are valid then
4: listPos[x, v] ← j
5: return sup
6: for all j ∈ {0 . . .listPos[x, v]−1} do
7: sup ← supportList[x, v, j]
8: if all literals in sup are valid then
9: listPos[x, v] ← j

10: return sup
11: return Null

Procedure 5: findNewSupport-List: findNewSupport(x, v). The first block searches from
the location of the previous support to the end of the support list. If it is unsuccessful the
search restarts from the start of the list in the second block. This circular approach removes
the need to backtrack listPos.

empty support whereas the list version we have presented cannot. We exploit this fact in
Case Study 3 below.

5.5.2 findNewSupport-NDList

The list instantiation has two major disadvantages. First, it can be inefficient because it
is unable to skip over sets of invalid tuples. The literature contains many solutions to
this problem in the context of full-length supports, for example binary search (Lecoutre &
Szymanek, 2006) or tries (Gent, Jefferson, Miguel, & Nightingale, 2007). Second, it can
require a large amount of memory. For each short support S, there are potentially nd
pointers to S, because there is a pointer to it for each literal that S implicitly supports.

In this section we give a second generic list instantiation based on NextDifference lists
(Gent et al., 2007). We have a single list (named supportList) containing all short sup-
ports (indexed by an integer), and a second list named NDList where for each support
s =supportList[j], for each literal in the support s[k], NDList[j][k] is the index of the next
support that does not contain literal s[k]. Thus, when searching the list, the algorithm
is able to jump over sets of short supports that all contain the same invalid literal. The
version of findNewSupport for NextDifference lists is given in Procedure 6.

This approach solves both of the problems with the list instantiation: it is able to jump
over sets of invalid short supports, and usually requires substantially less memory. In fact
it it is optimal in space (unlike the list instantiation): given t short supports of length at
most l, the NextDifference list is O(tl). However it uses only one list of supports, therefore
it can spend time searching through short supports that do not support the desired literal.

5.6 Literals of Assigned Variables

Suppose ShortGAC discovers a new support S that contains a literal x 7→ v, and x is as-
signed to v. Since x can take no value other than v, it is sound to remove x 7→ v from S and
save the overhead of adding it. We apply this minor optimisation in all cases when using
ShortGAC, and also in all cases when using HaggisGAC (described in Section 6). How-
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Require: x, v, supportList, NDList
1: j ← listPos[x, v]
2: while j < supportList.size do
3: sup ← supportList[j]
4: nextDiff ← NDList[j]
5: for k ∈ {0 . . . sup.size− 1} do
6: (y 7→ b)← sup[k]
7: if b /∈ D(y) or (x = y and v 6= b) then
8: j ← nextDiff [k] {Jump to next short support where y is assigned a different value.}
9: continue while loop at Line 2

10: listPos[x, v] ← j
11: return sup
12: j ← 0
13: while j < listPos[x, v] do
14: sup ← supportList[j]
15: nextDiff ← NDList[j]
16: for k ∈ {0 . . . sup.size− 1} do
17: (y 7→ b)← sup[k]
18: if b /∈ D(y) or (x = y and v 6= b) then
19: j ← nextDiff [k] {Jump to next short support where y is assigned a different value.}
20: continue while loop at Line 13
21: listPos[x, v] ← j
22: return sup
23: return Null

Procedure 6: findNewSupport-NDlist: findNewSupport(x, v)

ever this optimisation cannot be used with HaggisGAC-Stable (described in Section 8)
because that algorithm retains active supports as it backtracks, and after backtracking the
literal x 7→ v may no longer be assigned.

6. HaggisGAC: Dealing with Both Full-Length and Strict Short Supports

We now introduce HaggisGAC. We show that it has better theoretical properties than
ShortGAC. Furthermore, experiments show it runs substantially faster in many cases on
strict short supports than ShortGAC (which is specialised for strict short supports), and
substantially faster on full-length supports than GAC-Schema.

6.1 Introduction and Motivating Example

ShortGAC is designed to exploit the concept of implicit support, but has some inefficien-
cies when dealing with explicit supports and especially full-length supports. Consider for
example the constraint AllDifferentExceptZero, in which the constraint is that all non-zero
values in the array must be different, but that zero may occur freely. This constraint might
be used, for example, in a timetabling problem where classes taking place in different rooms
must be different, but we use zero to represent a room being unused and this can occur
multiple times. Suppose we have AllDifferentExceptZero([w, x, y, z]), each variable with ini-
tial domain {0, 1, 2, 3}. Supports for the constraint are full-length supports in which every
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non-zero value is different, or any three variables equalling zero where the last variable may
take any value. Suppose we execute ShortGAC and reach the following situation:

Supports: A: w 7→ 0, x 7→ 2, y 7→ 3, z 7→ 1
B: w 7→ 0, x 7→ 3, y 7→ 2, z 7→ 1
C: w 7→ 3, x 7→ 0, y 7→ 1, z 7→ 2
D: x 7→ 0, y 7→ 0, z 7→ 0
E: w 7→ 0, x 7→ 1, y 7→ 2, z 7→ 3

supportListPerLit: Variable
Value w x y z

0 {A,B,E} {C,D} {D} {D}
1 {} {E} {C} {A,B}
2 {} {A} {B,E} {C}
3 {C} {B} {A} {E}

supportsPerVar: 4 5 5 5
numSupports: 5

Notice that the lack of explicit supports for w 7→ 1 and w 7→ 2 is acceptable because we
have supportsPerVar[w] = 4 < numSupports = 5. Now suppose the literal y 7→ 0 is deleted
by some other constraint. This causes support D to be deleted, causing the following state:

Supports: A: w 7→ 0, x 7→ 2, y 7→ 3, z 7→ 1
B: w 7→ 0, x 7→ 3, y 7→ 2, z 7→ 1
C: w 7→ 3, x 7→ 0, y 7→ 1, z 7→ 2
E: w 7→ 0, x 7→ 1, y 7→ 2, z 7→ 3

supportListPerLit: Variable
Value w x y z

0 {A,B,E} {C} × {}
1 {} {E} {C} {A,B}
2 {} {A} {B,E} {C}
3 {C} {B} {A} {E}

supportsPerVar: 4 4 4 4
numSupports: 4

At this point ShortGAC iterates through the zeroLits lists for all variables where
supportsPerVar = numSupports, in this case all four variables. It will discover that we must
find new supports for w 7→ 1, w 7→ 2 and z 7→ 0. However, this is inefficient for two reasons.
First, we should not need to check zeroLits[z] to discover z 7→ 0, because the support list for
z 7→ 0 became empty during the deletion of support D, so we could have discovered it then.
Second, we should only need to look at zeroLits[w] because the deletion of D has caused
w to lose its implicit support. We should not need to check zeroLits for x, y, z because
these variables were not implicitly supported prior to D’s deletion. Removing these two
reasons for inefficiency is the motivation behind our development of HaggisGAC. In this
example, it can focus directly on the literal z 7→ 0 and the set zeroLits[w] as the only literals
potentially needing new support.

The fundamental problem with ShortGAC is that it cannot efficiently detect when a
literal loses its last support. Every variable with no implicit support is checked every time
any support is deleted, so ShortGAC can take O(nd) time to find a single literal that needs
a new support or to discover that there is no such literal. To improve upon this, we wish
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i 0 1 2 3 4 5 6 7 8 9 10

varsBySupport[i] w1 w2 y1 x1 x2 y2 y3 x3 z1 z2 z3
supportsPerVar 6 6 7 7 7 7 7 7 8 8 8

x2 updated w1 w2 x2 x1 y1 y2 y3 x3 z1 z2 z3

x3 updated w1 w2 x2 x3 y1 y2 y3 x1 z1 z2 z3

z2 updated w1 w2 x2 x3 y1 y2 y3 x1 z2 z1 z3

x1 updated w1 w2 x2 x3 x1 y2 y3 y1 z2 z1 z3

z3 updated w1 w2 x2 x3 x1 y2 y3 y1 z2 z3 z1

z1 updated w1 w2 x2 x3 x1 y2 y3 y1 z2 z3 z1
supportsPerVar 6 6 6 6 6 7 7 7 7 7 7

Figure 1: Illustration of how deleteSupport concentrates all variables that have just lost
their last implicit support. See main text for the full description.

HaggisGAC to be able to detect the loss of a literal’s last explicit support in time O(1),
and the loss of a variable’s last implicit support in time O(1). Perhaps surprisingly, both
these goals are achievable by the use of data structures already existing in ShortGAC.

6.2 Finding Literals With No Support Efficiently

Of the two types of support, detecting when the last explicit support for a literal is lost
is the simpler task. When we delete a support, Procedure 2 iterates through the literals
in a short support. For each literal it removes a ShortSupportCell from the corresponding
supportListPerLit and updates data structures appropriately. If the list is empty – tested at
Line 5 of Procedure 2 – the literal has lost its last explicit support. We now add this literal
to a scratch list of literals which have lost their last explicit support: we describe below
how we process the scratch list. The additional cost is O(1) when we detect an empty list.
Because we are inside an existing test, there is zero additional cost when the literal has not
lost its last support. This contrasts with ShortGAC which tests (in Procedure 4) every
variable with no implicit support, for a worst case cost of O(n) even when no literal has
lost its last explicit support.

The more subtle task is to detect when a variable (and thus all literals involving it)
has lost its last implicit support. The reason this is more difficult is that we are seeking
variables that are not involved in the support being deleted, but in Procedure 2 we iterate
through the literals that are in the support being deleted. The variables we seek are
those x which have supportsPerVar[x] = numSupports after the support deletion, while they
had supportsPerVar[x] < numSupports before the support deletion. (Variables that have
supportsPerVar[x] = numSupports both before and after the deletion have no implicit support
now, but did not lose implicit support because of this deletion.) Fortunately, our existing
maintenance of data structures happens to compact exactly these variables into a particular
region of varsBySupport, so we can find them very easily and efficiently. The compaction
happens through the sequence of calls to the Procedure swap made by Procedure 2. We
first show a worked example and we then prove the general properties we need.

In Figure 1, we suppose there are 11 variables in a constraint, there are currently 8
supports, and we are deleting a support involving variables x1, x2, x3, z1, z2 and z3, with
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the literals deleted in an arbitrary order from top (start) to bottom (finish). Before we
start, the z variables already have supportsPerVar = numSupports = 8; variables x and y
have supportsPerVar = 7; and variables w have supportsPerVar = 6. As we process literals
in deleteSupport, pairs of variables are swapped (marked by boxes in each line) and the
boundaries move between cells (marked by vertical lines) of variables with equal supports-
PerVar. At the end, w and x variables still have supportsPerVar = 6 < numSupports = 7.
The z variables have supportsPerVar=numSupports both before and after deletion. The only
variables that have lost their last implicit support are the y variables. The crucial point
is that at the end they lie precisely between the final boundary between 6 and 7 supports
(from i = 5), and the initial boundary between 7 and 8 supports (from i = 8). The following
simple results show that variables losing their last implicit support are always compacted
in a similar way.

Lemma 6.1. Suppose, before we delete a support S, that numSupports = p (and so num-
Supports = p− 1 afterwards). For a variable x to lose its last implicit support, it has p− 1
explicit supports both before and after the deletion of S.

Proof. If x initially has fewer than p−1 explicit supports, then x has more than one implicit
support and deleting S removes at most one of these. If x initially has p explicit supports,
then it is involved in S (since it is involved in all supports) and so has no implicit support
to lose. Hence, x must initially have p − 1 explicit supports and one implicit support and
S must be that one implicit support. Therefore after the deletion of S, x has p− 1 explicit
supports and no implicit supports.

Lemma 6.2. We set p as in Lemma 6.1, i as the value of supportNumLowIdx[p] when
deleteSupport is called, and j as the value of supportNumLowIdx[p − 1] when deleteSupport
exits. When deleteSupport finishes, the variables that lost their last implicit support during
the call to deleteSupport are exactly the set of variables at indices in the range [j, i) in
varsBySupport.

Proof. All variables with no implicit supports when deleteSupport exits lie at index j or
greater in varsBySupport. This establishes the lower bound on the index range.

Any variable z that has no implicit support at the start of the call must have p explicit
supports and so must be at index i or higher. z must be in the support being deleted,
because it is in all supports. When z is updated by deleteSupport, it is always swapped with
the variable at index supportNumLowIdx[p]. The index supportNumLowIdx[p] only increases
during deleteSupport, so z stays at index i or higher throughout. Thus the variables from
index i upwards at the finish are a permutation of those at the start, meaning that variables
which lost their last implicit support must be in the range [j, i). Finally, any variable in
the range [j, i) has no implicit support at the end of the call (as it is at index j or above)
but had an implicit support at the start (as it is before i). Therefore all and only variables
which lost their last implicit support lie at indices in the range [j, i).

From Lemma 6.2, after we run deleteSupport it is trivial to enumerate all variables
which have lost their last implicit support as a result. They are exactly the variables
varsBySupport[k] for k = j, j+1, ...i−1 with i and j as defined in the Lemma. Enumerating
this list is the only additional work over that already done by Procedure 2, so we have:
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Corollary 6.3. Given a constraint on n variables, the additional work to identify variables
which have lost their last implicit support is O(1) for each such variable where there are
some, and O(1) if there are none.

Proof. We have already argued the case where there are variables which have lost implicit
support. If there are no such variables, there is still O(1) work to check that the range is
empty.

This low level of complexity contrasts very favourably with ShortGAC. When a sup-
port is deleted, Procedure 4 iterates over all variables with numSupports explicit supports.
In the worst case this is O(n) work even if no variable has lost its last implicit support, com-
pared to the O(1) work that we now have. We now move on to the details of incorporating
these optimisations into a full suite of procedures for maintaining GAC.

6.3 HaggisGAC: Details

Two issues complicate the implementation of HaggisGAC compared with ShortGAC.
First, the Lemmas above depend on all literals in a support being deleted in a single pass.
Therefore, instead of acting immediately on finding a literal with no supports, we keep a list
of literals with lost supports for later treatment. Second, we now have two cases in which
we might detect lost support – when the lost support is explicit or implicit – compared to
the single case in ShortGAC, where all lost supports are detected in the same way.

We introduce two simple data structures for storing literals and variables that have lost
explicit or implicit support as we find them.

litsLostExplicitSupport is a set containing literals that have lost their final explicit support
and are not supported implicitly.

varsLostImplicitSupport is a set containing variables that have lost their final implicit
support.

We have to adapt the deleteSupport procedure from Procedure 2. The new version is
shown as Procedure 7. When we find a literal which has no explicit support, we immediately
check if it has an implicit support instead (Line 8). If it does not, then we add it to the
set litsLostExplicitSupport for later processing to find a new support or delete it. Variables
which have no implicit support are detected after all literals have been deleted. This is done
by lines 15-16, which are justified by Lemma 6.2.

The new propagate procedure is shown in Procedure 8. Like the earlier Procedure 3,
we first delete all supports involving the literal to be deleted, but the rest of the procedure
is very different. We first iterate through all literals which lost their last explicit support,
and then the variables which lost their last implicit support.

For the lost explicit supports, we call HaggisGAC-literalUpdate (Procedure 9). This
procedure has no analogue in ShortGAC, but is straightforward. The only point of interest
is that we still check whether a literal is supported, even though it was only added to
litsLostExplicitSupport if it was not. The reason is that some support found by an unrelated
call to findNewSupport might also support this literal. If so we are done, but if not then
Procedure 9 calls findNewSupport. If a new support is found it is added, but if not then
we have to prune the literal as being no longer supported.
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Require: Short Support sup
1: oldIndex ← supportNumLowIdx[numSupports]
2: for all (x 7→ v) ∈ sup do
3: Remove sup from supportListPerLit[x 7→ v]
4: if supportListPerLit[x 7→ v] = {} then
5: detachTrigger(x,v)
6: if (x 7→ v) 6∈ zeroLits[x] then
7: Add (x 7→ v) to zeroLits[x]
8: if supportsPerVar[x] = numSupports then
9: Add (x 7→ v) to litsLostExplicitSupport

10: sPV ← supportsPerVar[x]
11: swap(x, varsBySupport[sPV])
12: supportNumLowIdx[sPV] ← supportNumLowIdx[sPV]+1
13: supportsPerVar[x]← sPV−1
14: numSupports--
15: for all i ∈ {supportNumLowIdx[numSupports] . . . oldIndex − 1} do
16: Add varsBySupport[i] to varsLostImplicitSupport

Procedure 7: HaggisGAC-DeleteSupport: (sup). One subtlety is that we must add (x 7→
v) to zeroLits (line 7) even if we also add it to litsLostExplicitSupport (line 9). The only
case where this matters is that we seek and find a new implicit support, i.e. not containing
x 7→ v, but this is later lost. At the later point Procedure 10 requires x 7→ v to be in zeroLits
because x 7→ v might still have no explicit support.

Require: x 67→ v (where v has been pruned from domain of x)
1: litsLostExplicitSupport← {}
2: varsLostImplicitSupport← {}
3: while supportListPerLit[x 7→ v] 6= {} do
4: sup← first element of supportListPerLit[x 7→ v]
5: deleteSupport(sup)
6: for all (y 7→ b) ∈ litsLostExplicitSupport do
7: HaggisGAC-literalUpdate(y 7→ b)
8: for all z ∈ varsLostImplicitSupport do
9: HaggisGAC-variableUpdate(z)

Procedure 8: HaggisGAC-Propagate: propagate(x 67→ v)

For variables with lost implicit supports, we call HaggisGAC-variableUpdate (Proce-
dure 10), which is similar to Procedure 4. The differences are that the return statements
from Procedure 4 are omitted; we check at every iteration whether a new implicit support
has been found for x and if so exit the loop; and we do not remove x 7→ v from zeroLits if a
new explicit support has been found, allowing this to be done lazily in a later call at Line 5.

We gain efficiency over ShortGAC for two reasons. First, variableUpdate is only
called for variables that have just lost implicit support. Second, there is no outer loop in
HaggisGAC-Propagate which must be restarted when a new support is found, as there
is in Procedure 3. If we write m for the number of variables which have lost their last
implicit support, we have reduced the worst case number of calls to variableUpdate from
HaggisGAC-Propagate from O(n2d) where n is the arity of the constraint to m. Since
m ≤ n and m can often be much smaller than n or even zero, this is a significant gain.
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Require: x 7→ v, where last explicit support of x 7→ v has been deleted
1: if v ∈ D(x) and supportsPerVar[x] = numSupports and

supportListPerLit[x 7→ v] = {} then
2: sup ← findNewSupport(x, v)
3: if sup = Null then
4: prune(x 7→ v)
5: else
6: addSupport(sup)

Procedure 9: HaggisGAC-literalUpdate(x 7→ v)

Require: variable x
1: for all (x 7→ v) ∈ zeroLits[x] do
2: if supportsPerVar[x] < numSupports then
3: return
4: if supportListPerLit[x 7→ v] 6= {} then
5: Remove (x 7→ v) from zeroLits[x]
6: else
7: if v ∈ D(x) then
8: sup← findNewSupport(x 7→ v)
9: if sup = Null then

10: prune(x 7→ v)
11: else
12: addSupport(sup)

Procedure 10: HaggisGAC-variableUpdate(x)

6.4 Dealing Efficiently With Full-length Supports

When a full-length support is added, ShortGAC increments numSupports and supports-
PerVar for every variable. Since we are only interested in the condition numSupports =
supportsPerVar[x], a full-length support cannot change this status for any variable. There-
fore we can save overheads in the case where we add a full-length support. This is achieved
through a case split in HaggisGAC’s versions of addSupport and deleteSupport: if a
support is full length we do not update numSupports, supportsPerVar, and related data
structures. Note that the test we apply is not that the final support is of arity n, but
the initial one before the omission of any assigned literals as the optimisation is correct
even if assigned literals are omitted. We omit the pseudocode for this optimisation, as the
changes are straightforward. This optimisation often improves performance on instances
with all full-length supports by 20%, and has no important effect on our other instances
with runtimes all within ±2.5% with or without it. This optimisation is also applicable to
ShortGAC, but we did not implement it in that case because it does not address the key
inefficiency that algorithm has, i.e. the repeated checking of variables which cannot have
lost their last implicit support. This does not affect our experimental results dramatically:
in most cases we found that the improved performance of HaggisGAC was larger than
this optimisation provides.
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7. Experimental Evaluation of ShortGAC and HaggisGAC

The Minion solver 0.12 (Gent, Jefferson, & Miguel, 2006a) was used for our experiments,
with the only changes being the additional propagators. In all experiments, all the compared
methods maintain GAC. Therefore, the solver explores the same search space in each case.
Since the number of nodes searched is invariant, we compare the rate of search exploration,
measured in search nodes per second.6

We used an 8-core machine with 2.27GHz Intel Xeon E5520 CPUs and 12GB memory,
running Ubuntu Linux. Where possible we ran 12 processes in parallel. For each combina-
tion of problem instance and propagator, we report the median of 11 runs.7 In some cases it
is not possible to run 12 processes in parallel because they exceed 1GB memory. For these,
we ran just one process at a time, and we report the median of 5 runs. These instances
are marked with a ‘‡’ in the tables of results. If one method exceeded 1GB, we sometimes
ran other comparable methods in series as well. This allows consistent comparison between
List and NDList, and different propagation algorithms. It also means that ‘‡’ in the tables
does not necessarily indicate that the method uses more than 1GB memory. We find the
median to be a very robust measure of performance, for reasons described in Appendix B.

In all cases, we imposed a time limit of one hour, and a limit of 1,000,000 search nodes
(whichever is first). To avoid short runs when the solver can find a solution easily, we
searched for all solutions. We report complete cpu times, i.e. we have not attempted to
measure the time attributable to the given propagator and we include any initialisation.
This has the advantage that we automatically take account of all factors affecting runtime,
including aspects (e.g. cache usage) that we may not realise affect runtime. It does however
mean that our results tend to understate the difference between methods being studied.

For each case study, we implemented a findNewSupport method for ShortGAC and
HaggisGAC specific to the constraint. We also used the generic list instantiation (Sec-
tion 5.5.1) and the Next-Difference List instantiation (Section 5.5.2) for comparison where
possible. We compare ShortGAC and HaggisGAC with the special-purpose propagator
(when available).

We also compare with ShortGAC-Long (ShortGAC with full-length supports), with
HaggisGAC-Long, and with GAC-Schema (Bessière & Régin, 1997) as the closest equiva-
lent algorithm without strict short supports. We discuss GAC-Schema further in Section 7.4.
GAC-Schema, ShortGAC-Long and HaggisGAC-Long use the same (constraint-specific)
findNewSupport as ShortGAC, and subsequently extend the short support to full length
using the minimum value for each extra variable.

In each case, the constraint can be compactly represented as a disjunction. Therefore
we compare ShortGAC and HaggisGAC with Constructive Or. The algorithm used is
based on Lagerkvist and Schulte’s (2009), without the rule for entailment detection. The

6. Source code for the solver with the three algorithms is available at http://www.cs.st-andrews.ac.

uk/~pn/haggisgac-source.tgz and problem instances and experimental results at http://www.cs.

st-andrews.ac.uk/~pn/haggisgac-data-instances.tgz.
7. In preliminary investigations, we found that running 12 processes in parallel gives consistent cpu time

results, and this consistency is improved by taking the median.
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Figure 2: Summary comparison of ShortGAC and HaggisGAC. The x-axis is median
nodes per second for ShortGAC. The y-axis is speedup (or slowdown) of Hag-
gisGAC, i.e. the ratio of ShortGAC nodes per second to that of HaggisGAC.
Hence 1 represents equal behaviour, while above 1 means that HaggisGAC was
faster.

implementation in Minion is fully incremental: each disjunct is propagated incrementally
down a branch of search and backtracked as the search backtracks.8

We do not compare with table constraints, as described by (for example) Gent et al.
(2007), because the constraints are too large. For example, the smallest element constraints
reported below have 638 allowed tuples, making it impossible even to generate and store the
list of allowed tuples.

To aid comparison between HaggisGAC and ShortGAC, in addition to the tables we
compare them graphically in Figure 2. This figure shows the relative speedup (or in some
cases slowdown) of using HaggisGAC compared with ShortGAC.

7.1 Case Study 1: Element

We use the quasigroup existence problem QG3 (Colton & Miguel, 2001) to evaluate Short-
GAC and HaggisGAC on the element constraint. The problem class has one parameter
n, specifying the size of an n× n table (qg) of variables with domains {0 . . . n− 1}. Rows,
columns and one diagonal have GAC allDifferent constraints, following Colton and Miguel’s
model. The element constraints represent the QG3 property that (i ∗ j) ∗ (j ∗ i) = i (where
i and j are members of the quasigroup and ∗ is the quasigroup operator). This translates
as ∀i, j : element(qg, aux[i, j], i), and aux[i, j]= n × qg[i, j] + qg[j, i], where aux[i, j] has
domain {0 . . . n× n− 1}.

8. Personal communication with Pascal Van Hentenryck indicated that there is an unpublished optimisation
of Constructive Or whereby some disjuncts need not be propagated in some cases. We did not implement
this optimisation.
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n Watch ShortGAC HaggisGAC GAC Con
Elt. Specific List NDL Long Specific List NDL Long Sch. Or

6 27,825 6,956 4,122 2,182 25.9 11,131 5,300 2,473 36.5 22.5 53.5
7 22,259 4,866 3,226 1,233 ‡8.5 9,035 4,833 1,415 ‡15.2 7.1 24.2
8 15,635 2,773 1,609 545 ‡3.6 5,652 2,367 622 ‡6.2 ‡3.0 9.1
9 15,898 2,374 1,377 398 ‡2.2 5,419 2,116 451 ‡3.7 ‡3.0 ‡6.2

10 15,088 ‡1,594 ‡1,060 ‡280 ‡1.6 ‡4,227 ‡1,911 ‡317 ‡2.6 mem ‡4.2

Table 1: Nodes searched per second for quasigroup existence problems. ‘mem’ indicates
running out of memory (>12 GB). Columns correspond to propagation algorithms.
Watch Elt is the special-purpose propagator. Both ShortGAC and HaggisGAC
have four instantiations: Specific (special-purpose findNewSupport function for the
constraint), List, NDL (Next-Difference List), and Long (as described in the text).
GAC-Sch is GAC-Schema, and Con Or is Constructive Or.

For the constraint element(X, y, z), the findNewSupport method for ShortGAC returns
tuples of the form 〈xi 7→ j, y 7→ i, z 7→ j〉, where i is an index into the vector X and j is a
common value of z and xi. ShortGAC-list has all supports of this form. For Constructive
Or, we used (x0 = z ∧ y = 0) ∨ (x1 = z ∧ y = 1) ∨ · · · .

We compare ShortGAC and HaggisGAC with the special-purpose Watched Element
propagator (Gent et al., 2006b), GAC-Schema and Constructive Or. Table 1 presents our
results on QG3. Of the general purpose methods, using short supports (with Specific, List or
NDList instantiations) is dramatically better than any alternative. For example at n = 10,
even the HaggisGAC-List method (which is slower than HaggisGAC-Specific) is more
than 450 times faster than Constructive Or, the best of the other methods.

ShortGAC-Long runs about 10–20% faster than GAC-Schema for n = 6 to 8, slower at
n = 9 but better at n = 10 because GAC-Schema uses more memory. Recall that they both
use the same findNewSupport method, so this is a fair comparison of how efficiently they
exploit these supports. This is in contrast to our results reported previously (Nightingale
et al., 2011), where ShortGAC was about half the speed of GAC-Schema. Two substan-
tial differences account for the improvement: the improved data structures described in
Section 5; and that we remove assigned literals from the full-length supports as described
in Section 5.6. HaggisGAC-Long is consistently faster than both ShortGAC-Long and
GAC-Schema.

While much faster than methods using full-length supports, list variants HaggisGAC-
List and HaggisGAC-NDList are both slower than HaggisGAC-Element (and the same
is true for ShortGAC). This is to be expected as neither is specialised to the Element
constraint, and both have to deal with data structures containing the lists of tuples. Of the
two list variants, the NDList variant runs much more slowly. However, its memory usage is,
as we expected, much less than HaggisGAC-List. It used less than half as much memory
at n = 6, improving to almost 10 times less memory at n = 10.

HaggisGAC-Element is approximately twice as fast as ShortGAC-Element on these
instances. We believe this is because two variables are in all short supports – the index
and result variables – meaning that they are always supported explicitly. As can be seen
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n GACLex ShortGAC HaggisGAC GAC- Con
Specific Long Specific Long Schema Or

3 104,955 87,463 7,020 91,265 9,288 3,622 5,735
4 103,950 99,602 6,481 100,100 8,628 3,030 4,997
5 95,420 89,127 6,358 90,009 8,503 2,734 4,104
6 80,841 73,260 3,456 74,184 4,666 1,638 2,109
7 72,307 65,062 2,424 65,359 3,271 1,190 1,188
8 66,445 51,335 1,290 52,659 1,609 670 456
9 64,267 47,059 786 47,847 914 451 263

10 57,208 38,344 557 39,683 634 318 184
12 48,146 31,626 293 32,425 311 170 105
14 36,751 22,712 139 23,063 142 82.3 ‡99.1
16 30,057 17,813 85.9 18,420 90.9 51.5 ‡62.6
18 22,432 13,843 52.4 13,845 53.8 33.3 ‡48.3
20 16,625 10,734 35.9 10,711 38.9 21.0 ‡36.7
22 12,450 7,976 24.9 8,141 26.0 12.5 ‡27.0
24 9,526 6,255 14.3 6,268 18.9 ‡7.3 ‡21.8

Table 2: Nodes searched per second for BIBDs. GACLex is the special-purpose propagator,
and other columns are named as in Table 1.

in Figure 2, List, NDList and Long instantiations of HaggisGAC are also faster than
the same instantiations of ShortGAC but by a smaller margin. The special purpose
Watched Element propagator is the fastest method, being 3.6 times faster when n = 10.
Watched Element also appears to be scaling better as n increases. Constructive Or is
much slower than all the methods that exploit strict short supports, however it is faster
than HaggisGAC-Long. Overall it is clear that exploiting strict short supports is very
beneficial compared with other general purpose methods.

7.2 Case Study 2: Lex-ordering

We use the BIBD problem to evaluate ShortGAC and HaggisGAC on the lexicographic
ordering constraint. The lex constraint is placed on both the rows and columns, to perform
the ‘Double Lex’ symmetry breaking method (Flener et al., 2002). We use the BIBD model
given by Frisch, Hnich, Kiziltan, Miguel, and Walsh (2002), and the GACLex propaga-
tor given by Frisch, Hnich, Kiziltan, Miguel, and Walsh (2006). We use BIBDs with the
parameter values (4n+ 3, 4n+ 3, 2n+ 1, 2n+ 1, n).

For the constraint lexleq(X, Y ) on arrays X and Y , we define mxi = min(Dom(xi))
and myi = max(Dom(yi)). The findNewSupport method for ShortGAC finds the lowest
index i ∈ {0 . . . n} such that mxi < myi, or i = n. The case i = n arises when X cannot
be lexicographically less than Y , so a support is sought for X = Y . If i < n, the support
contains xi 7→ mxi, yi 7→ myi. For each index j < i, if mxj = myj , then the short support
contains xj 7→ mxj , yj 7→ myj otherwise there is no valid support and Null is returned.

The lex constraint on two arrays of length n and domain size d has more than dn short
supports in any short support set, because all assignments where the two arrays are equal
satisfy the constraint and cannot be reduced. ShortGAC-List and ShortGAC-NDList
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are not practical for any substantial constraint so we omit them from the comparison. For
Constructive Or we use the following representation with n+ 1 disjuncts: (x0 < y0)∨ (x0 =
y0 ∧ x1 < y1) ∨ · · · , including the final case where all pairs are equal.

Table 2 presents the results of our experiments on non-list based methods with values of
n from 3 to 24. It is clear that the best method is the special-purpose GACLex propagator,
with HaggisGAC coming second. On this problem, HaggisGAC and ShortGAC per-
form similarly. HaggisGAC and ShortGAC are by far the best general purpose methods.
For the largest instances they run about 1.5 times slower than the special purpose method,
while outperforming the next best method by almost 300 times. Again, HaggisGAC-Long
and ShortGAC-Long outperform GAC-Schema, and on these instances the difference is
even more marked.

HaggisGAC-Long can be substantially faster than ShortGAC-Long, as can be seen
in Figure 2: this is largely explained by the optimisation of Section 6.4.

To summarise, these experiments on the Lex constraint clearly show the benefit of
HaggisGAC and ShortGAC compared with other general-purpose propagation methods.
Their speed even approaches that of the special purpose GACLex propagator.

7.3 Case Study 3: Rectangle Packing

The rectangle packing problem (Simonis & O’Sullivan, 2008) (with parameters n, width and
height) consists of packing all squares from size 1 × 1 to n × n into the rectangle of size
width × height . This is modelled as follows: we have variables x1 . . . xn and y1 . . . yn, where
(xi, yi) represents the Cartesian coordinates of the lower-left corner of the i × i square.
Domains of xi variables are {0 . . .width − i}, and for yi variables are {0 . . . height − i}.
Variables are branched on in decreasing order of i (to place the largest square first), with
xi before yi, smallest value first. The only type of constraint is non-overlap of squares i
and j: (xi + i ≤ xj) ∨ (xj + j ≤ xi) ∨ (yi + i ≤ yj) ∨ (yj + j ≤ yi). Minion does not
have the special-purpose non-overlap constraint (Simonis & O’Sullivan, 2008), so we only
report a comparison of general-purpose methods. For the experiment we used the optimum
rectangle sizes reported by Simonis and O’Sullivan.

The domains of xn and yn are reduced to break flip symmetries as described by Simonis
and O’Sullivan (2008). Our focus is performance of the non-overlap constraint, and so we
did not implement the commonly-used implied constraints.

The findNewSupport function for ShortGAC is as follows. If any of the four disjuncts
above are entailed given the current domains, return the empty support (indicating entail-
ment). Otherwise, return a support with two literals to satisfy one of the four disjuncts.
The list used for ShortGAC-List and ShortGAC-NDList has all supports of size 2.

In Table 3, we compare HaggisGAC and ShortGAC with other general purpose
methods. We can see that HaggisGAC is the fastest method, with ShortGAC second.
HaggisGAC-List and HaggisGAC-NDList (as well as ShortGAC-List and ShortGAC-
NDList) performed well compared to GAC-Schema and Constructive Or. However at
n = 20, HaggisGAC-List consumes 971MB memory and HaggisGAC-NDList 496MB,
and with n > 20 it was not possible to run these methods with 12 processes in parallel.
Interestingly, the performance of the two List variants of HaggisGAC is reversed from
Case Study 1: here, NDList is significantly faster than List in most cases. As expected,
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ShortGAC HaggisGAC GAC Con
n-w-h Specific List NDL Long Specific List NDL Long Sch. Or

18-31-69 14,923 6,339 6,919 1,093 19,524 7,999 7,988 1,471 1,033 441
19-47-53 38,329 4,446 8,460 1,282 39,185 5,295 9,330 1,684 1,181 478
20-34-85 13,949 3,181 3,911 914 21,000 4,261 4,734 1,296 775 276
21-38-88 8,568 ‡2,668 ‡2,781 641 12,262 ‡3,955 ‡3,981 886 592 245
22-39-98 8,059 ‡1,865 ‡1,889 599 11,966 ‡3,013 ‡2,896 858 518 185
23-64-68 31,486 ‡1,226 ‡2,805 718 30,628 ‡1,663 ‡3,863 971 590 349
24-56-88 12,317 ‡1,717 ‡2,238 492 16,075 ‡2,441 ‡3,152 702 474 167
25-43-129 5,310 ‡1,007 ‡986 377 10,228 ‡1,634 ‡1,506 583 348 96
26-70-89 25,860 ‡909 ‡1,977 455 23,132 ‡1,219 ‡2,577 584 376 245
27-47-148 2,943 ‡1,034 ‡786 252 4,677 ‡1,265 ‡1,187 400 272 74

Table 3: Nodes searched per second for Rectangle Packing instances. All columns are named
as in Table 1.

NDList used less memory, though less dramatically than before. It used from about 30%
to 50% of the memory of HaggisGAC-List.

Of the other methods, all are always at least 10 times slower than HaggisGAC.
HaggisGAC-Long is faster than GAC-Schema in all cases. Also ShortGAC-Long is
faster than GAC-Schema on all instances except 27-47-148 (this contradicts the result we
previously reported (Nightingale et al., 2011), and some explanation of this is given in the
first case study).

Table 3 shows that HaggisGAC (with the SquarePack instantiation) is substantially
faster than ShortGAC on most of the instances, with the exception of n = 23 and n = 26
where ShortGAC is slightly faster. When compared with ShortGAC for List, NDList,
and Long instantiations in Figure 2, we see that HaggisGAC is mostly between 10 and
50% faster. In summary, these results very clearly show the benefits of using strict short
supports.

7.4 Comparing HaggisGAC With GAC-Schema

Across all the above experiments, HaggisGAC-Long runs significantly faster than GAC-
Schema – from a minimum of about 20% faster to more than three times faster – even
though our code contains overhead for dealing with strict short supports. We compared
memory usage across all experiments, and found very similar performance across all in-
stances. We found that HaggisGAC-Long uses less than 5% more memory on all except
BIBD instances, and on BIBD it uses less than 17% more memory than GAC-Schema.

However, the comparison has been only on functional instantiations of full-length sup-
ports, and on constraints that admit strict short supports. In this section, we broaden the
comparison by using the list instantiations rather than functional ones, and using problem
instances that have been used previously for comparing table constraints.

We compared against GAC-Schema because it is very similar to HaggisGAC and
ShortGAC conceptually. All three algorithms maintain a list of supports for each literal,
which is updated and backtracked during search. GAC-Schema was carefully implemented
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Figure 3: Comparison of GAC-Schema and HaggisGAC-List on full-length table con-
straints. x-axis is nodes per second for GAC-Schema, y-axis is speedup of
HaggisGAC-List.

following the pseudocode of the original paper (Bessière & Régin, 1997). While some code
is shared among all three algorithms, each was optimised independently. For example,
GAC-Schema has a different implementation of supportListPerLit, named SC in (Bessière &
Régin, 1997), which is specialised to full-length supports.

In contrast to GAC-Schema, other table constraint propagators such as STR2 (Lecoutre,
2011) and MDDC (Cheng & Yap, 2010) are entirely different to HaggisGAC, and it would
be difficult to create truly comparable implementations of them.

We report on the use of HaggisGAC-List only, because it searches for supports in the
same way as GAC-Schema (with one difference we discuss below.) We used the structured
instances from Gent et al. (2007), except the Semigroup class. In addition, we used Car
Sequencing instances from Nightingale (2011), specifically model B instances numbered
60-79. These instances contain a large number of ternary table constraints.

Figure 3 shows that HaggisGAC-List is almost always faster than GAC-Schema on
these problems. For BIBDs it is not clear which algorithm is better. HaggisGAC is
always at least marginally faster on the Sports Scheduling, Prime Queens and Graceful
Graphs instances, in most cases in the range 10-20% faster. HaggisGAC is substantially
faster on Car Sequencing. To seek new supports, HaggisGAC calls Procedure 5, and when
it finds a new support it stores the index of it in listPos. HaggisGAC does not backtrack
listPos as described in Section 5.5.1. GAC-Schema is similar, but it does backtrack listPos,
and it ensures optimality down a branch of search by iterating only from listPos to the
end of the list (Bessière & Régin, 1997). Profiling shows that GAC-Schema is hindered by
backtracking listPos (by block-copying memory) on Car Sequencing, where there are a very
large number of table constraints (2000 on instance 60) and large domains (some of size
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over 1000). Alternative memory management techniques might speed up GAC-Schema, so
we do not claim that HaggisGAC is fundamentally 10 times faster than GAC-Schema.

7.5 Results Summary

To summarise the three case studies, HaggisGAC does indeed outperform ShortGAC
on many instances, sometimes by more than two times and commonly by more than 25%.
ShortGAC is only rarely faster, but only on one instance by as much as 10%. Overall, in
our experiments, HaggisGAC is clearly a better algorithm than ShortGAC. Furthermore,
HaggisGAC and ShortGAC perform very well compared to Constructive Or and GAC-
Schema, a result which validates the idea of strict short supports.

Finally, we have shown experimentally that HaggisGAC can outperform GAC-Schema
on problems containing only full-length supports. We discuss why this should be in Ap-
pendix C as it is not a major focus of this paper.

8. Backtrack Stability and Short Supports

Within a search tree, HaggisGAC often spends significant time backtracking data struc-
tures. Reducing or eliminating backtracking can improve efficiency. For example MAC-6
and MAC-7 can be much more efficient (in both space and time) if backtracking is avoided
(Régin, 2005). In this section we present a new algorithm that saves time by not deleting
short supports on backtrack, and saves memory by bounding the total number of stored
short supports (including those on the backtrack stack).

The new algorithm requires that short supports have the backtrack stability property.
A short support is backtrack stable iff it remains a short support after backtracking (Sec-
tion 3.2).

In our three case studies, we find that the short supports we construct for the element and
lex constraints are backtrack stable, but for rectangle packing they are not. For rectangle
packing, we generate the empty support when the constraint is entailed. The empty support
is not backtrack stable unless the constraint is entailed at the root node of search.

We introduce the algorithm HaggisGAC-Stable where we know all short supports
are backtrack stable. The key change is that we do not delete supports when we backtrack
past their point of introduction. Because they are stable, they are still correct at ancestors
of the node they were introduced at. This can save time over the previous algorithms, since
we sometimes need to do no work at all on backtracking. Also, as we show below, we obtain
very tight limits on space usage of stored supports.

To present HaggisGAC-Stable, we introduce the notion of a prime support of a
deleted literal. A prime support of a deleted literal is a support (either explicit or implicit)
which will be a valid support for that literal when the literal is restored on backtracking.
The invariant we maintain after deleting a literal is that either we have labelled a deleted
support on the backtrack stack as its prime support or the literal’s variable is currently
implicitly supported. With this invariant, we guarantee that when we backtrack to the
point where the literal is restored, it must be supported again: either by the prime support
which we can restore, or by the known implicit support.

The task of finding the prime support for a literal naturally splits into three cases. The
simplest case is that HaggisGAC-Stable itself deletes literals when not able to find a
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necessary new support. The prime support is then just the implicit or explicit support
whose deletion caused the fruitless search for a new support.

The second case is where a literal is pruned by some other constraint or the search
procedure, and the pruned literal had an explicit support in this constraint. All its explicit
supports must be deleted as no longer valid, and we can label an arbitrary one to be the
literal’s prime support: we simply choose the last one to be deleted.

The third case is unfortunately complicated. It is that a literal is pruned outside the
current constraint, and the literal had an implicit support but no explicit support. This is
difficult precisely because the pruned literal does not have any link to its implicit support.
Providing and maintaining such a link throughout search would negate the efficiencies we
have gained. Our solution to this problem is to be lazy. The variable of the pruned
literal is implicitly supported. While we have any implicit support for the variable, we are
maintaining the invariant described above. So when the literal is pruned we need do nothing
in this case. We only need do any work when this variable loses its last implicit support,
if it ever does. When this happens, an invalid literal which had no explicit support must
by definition be in the relevant zeroLits list. Whereas previously we ignored invalid literals
when iterating through zeroLits, we now can label the deleted implicit support as a prime
support for the invalid literal.

We will show in Lemma 8.1 that HaggisGAC-Stable stores at any time at most
O(z) supports, where z is the total number of literals. This can save a lot of memory
because HaggisGAC and ShortGAC may store O(z2) supports, because there can be
O(z) deletions of literals down a branch, and for each deletion a new set of O(z) supports
may be stored. Our experiments later will show that this difference in memory usage can
be significant in practice. At its most effective, memory usage was reduced by 20 times.

8.1 Details of HaggisGAC-Stable

In HaggisGAC-Stable, we have to control with great care the deletion and restoration of
supports, instead of (as in the rest of this paper) simply reversing the addition or deletion
of a support at a node by respectively deleting or adding it back when we backtrack past
that node. In short we never delete an active support on backtracking, and only add back
in a deleted support if it is a prime support for a literal with no current active support.

When deleting a support, we setup a counter numPrimeSupported. It is initially 0, and
is incremented each time we find the support is a prime support. When the propagation
algorithm finishes, for any support with numPrimeSupported = 0, the support can be de-
stroyed and its space reclaimed. Otherwise, we place numPrimeSupported new pairs on the
backtrack stack. Each pair consists of the deleted support and the literal it is a prime
support for. On backtracking, when we pop a pair, we first check if any current support
already supports the literal. If so, we simply decrement numPrimeSupported, and if this
reduces to 0, again we reclaim the support’s space. If the literal is not supported, then we
restore the support via a call to addSupport. In this way all literals the support was prime
for are now guaranteed to be supported.

A relatively minor difference is that when we iterate through zeroLits we now delete in-
valid literals from zeroLits. We can do this because on backtracking we can restore them into
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Require: x 7→ v, where last explicit support of x 7→ v has been deleted
1: if v ∈ D(x) then
2: if supportsPerVar[x] = numSupports and supportListPerLit[x 7→ v] = {} then
3: sup ← findNewSupport(x, v)
4: if sup = Null then
5: prune(x 7→ v)
6: increment lastSupportPerLit[x 7→ v].numPrimeSupported
7: push 〈x 7→ v, lastSupportPerLit[x 7→ v]〉 onto BacktrackStack
8: else
9: addSupport(sup)

10: else
11: increment lastSupportPerLit[x 7→ v].numPrimeSupported
12: push 〈x 7→ v, lastSupportPerLit[x 7→ v]〉 onto BacktrackStack

Procedure 11: HaggisGAC-Stable-literalUpdate: (x 7→ v). In comparison to Proce-
dure 9, we update numPrimeSupported and BacktrackStack.

zeroLits because they are on the backtrack stack, and doing so enables the space complexity
result in Lemma 8.1.

HaggisGAC-Stable is similar to HaggisGAC. Where appropriate we simply describe
differences to save space. The Procedure HaggisGAC-Stable-Propagate is almost the
same as Procedure 8, calling the backtrack stable variants of deleteSupport, literalUpdate
(Procedure 11) and variableUpdate (Procedure 12). In addition, at the end of this algorithm
we destroy and reclaim the space for any deleted support for which numPrimeSupported = 0.
The Procedure HaggisGAC-Stable-DeleteSupport (called with support S) is also very
similar to its predecessor, Procedure 7, with some additions. First, it initialises numPrime-
Supported for S to 0. Second, we have new data structures lastSupportPerLit for a deleted
literal x 7→ a and lastSupportPerVar for a variable x. In terms of Procedure 7, these are
both assigned to S at Line 9 and Line 16 (respectively). Note these assignments do not
make S a prime support: this will be checked later.

Procedure 11 is analogous to Procedure 9 but with enough differences that we show it
in detail here. It identifies prime supports, and when necessary increments numPrimeSup-
ported and pushes invalid literal/support pairs onto the backtrack stack. We also present
Procedure 12 in detail, the analogue to Procedure 10. Again it identifies prime supports,
increments the counter and adds pairs to BacktrackStack. One difficult case arises, from
Line 17. Here, x 7→ a has been pruned, but externally to this constraint. If it had been
pruned by Procedure 11, it would not be in zeroLits. When x 7→ a is restored on back-
tracking we still need to make sure it has support. Since it has no explicit support (it is in
zeroLits), its last support must be this implicit support we are deleting. Therefore we store
the support on BacktrackStack. A minor change to note is that we remove literals from
zeroLits, at Lines 13 and 19.

Whenever a new search node (including the root) is entered, a Null is pushed onto
the BacktrackStack. This is used as a marker for the procedure HaggisGAC-Stable-
Backtrack (Procedure 13), which processes literal/support pairs until it reaches the Null.
This restores prime supports for literals being put back into the domain on backtracking,
but only if no other support is currently known. If the numPrimeSupported counter for
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Require: variable x
1: for all (x 7→ v) ∈ zeroLits[x] do
2: if supportsPerVar[x] < numSupports then
3: return
4: if supportListPerLit[x 7→ v] 6= {} then
5: Remove (x 7→ v) from zeroLits[x]
6: else
7: if v ∈ D(x) then
8: sup← findNewSupport(x, v)
9: if sup = Null then

10: prune(x 7→ v)
11: increment lastSupportPerVar[x].numPrimeSupported
12: push 〈x 7→ v, lastSupportPerVar[x]〉 onto BacktrackStack
13: Remove (x 7→ v) from zeroLits[x]
14: else
15: addSupport(sup)
16: else
17: increment lastSupportPerVar[x].numPrimeSupported
18: push 〈x 7→ v, lastSupportPerVar[x]〉 onto BacktrackStack
19: Remove (x 7→ v) from zeroLits[x]

Procedure 12: HaggisGAC-Stable-variableUpdate: (x). This is similar to Procedure 10
with the addition of maintenance of numPrimeSupported and BacktrackStack.

1: while the top element of BacktrackStack is not Null do
2: pop 〈x 7→ v, sup〉 from BacktrackStack
3: if sup has not yet been restored then
4: if supportsPerVar(x) = numSupports and supportListPerLit[x 7→ v] = {} then
5: HaggisGAC-Stable-AddSupport(sup)
6: else
7: {Another support exists for x 7→ v}
8: decrement sup.numPrimeSupported
9: if sup.numPrimeSupported = 0 then

10: destroy sup and reclaim space
11: if supportListPerLit[x 7→ v] = {} then
12: Add (x 7→ v) to zeroLits[x]
13: pop Null from BacktrackStack

Procedure 13: HaggisGAC-Stable-Backtrack. Performs backtracking using Backtrack-
Stack.

a support becomes zero, the support can be destroyed as it is no longer necessary. Note
that literals are put back into zeroLits if necessary at Line 12, reversing their deletion in
Procedure 12.

We cannot use the optimisation described in Section 5.6, of deleting literals in supports
for variables that are assigned, because this may break the backtrack stability property.
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However, we retain the optimisation of Section 6.4 for full-length supports, but again omit
pseudocode showing this in the interest of focusing on the essential aspects of the algorithms.

8.2 Improved Space Complexity of HaggisGAC-Stable

Our approach improves the space complexity of HaggisGAC-Stable compared with Hag-
gisGAC, as the following lemma shows.

Lemma 8.1. For a constraint involving z literals, at most 2z supports are stored, either as
active or as deleted supports on the backtrack stack.

Proof. We define a function from supports to literals. If the support is still active, it was
found from a call to findNewSupport for a specific literal, and we map the support to this
literal. Similarly, if the support is on the backtrack stack, then it is in a pair with at least
one literal it is a prime support for. Map the support to any one of these literals. Every
stored support falls into one of these two categories, because if a support is deleted and it
is not put onto the backtrack stack, its space is reclaimed. No three supports are mapped
to the same literal because:

• For valid literals, findNewSupport will not be called again if an existing active support
exists for that literal.

• For invalid literals, each literal appears in a pair on the backtrack stack at most
twice. The only case where a literal appears as often as twice is that a literal with a
prime support already on the stack is processed when its variable loses its last implicit
support. In this case, the literal must be in zeroLits, and the newly deleted implicit
support will be added to the backtrack stack for this literal. But this can only happen
once because we delete the literal from zeroLits the first time it happens.

Thus the number of supports is bounded above by 2z.

The bound 2z in Lemma 8.1 would improve to z if we maintained zeroLits eagerly
instead of lazily, but at the expense of higher overheads elsewhere.

9. Experimental Evaluation of HaggisGAC-Stable

We compare HaggisGAC-Stable to HaggisGAC using the same experimental setup as
in Section 7. As well as tables of results, we provide a graphical comparison of runtimes of
HaggisGAC-Stable and HaggisGAC in Figure 4, and of their memory usage in Figure 5.

Table 4 and Figure 4 shows results for the instances of Section 7.1. We present all
four instantiations of HaggisGAC-Stable, along with the fastest instantiation of Hag-
gisGAC, the Watched Element special-purpose propagator, and Constructive Or (which
was faster than GAC-Schema in Table 1). For element, we observe about a 10% slowdown,
and again a slight slowdown for both List variants. For full-length supports, we see almost
identical performance.

Table 5 shows the results for instances of Section 7.2. HaggisGAC-Stable-Lex per-
forms slightly worse than HaggisGAC-Lex, though is in fact never more than 10% worse
and very slightly faster on the largest instances. This might be because supports found

35



Nightingale, Gent, Jefferson, & Miguel

deep in search are likely to contain more literals than supports found earlier, meaning that
when we backtrack the longer supports are retained instead of replaced by the earlier and
more efficient short supports. If so, this advantage disappears for the Long variants. In-
deed, HaggisGAC-Stable-Long performs much better than HaggisGAC-Long, and the
improvement increases with n, being about 4.5 times for n = 24.

The Rectangle Packing instantiation of ShortGAC described in Section 7 generates an
empty support when the constraint becomes entailed, causing all variables to be implicitly
supported from that point on. This empty support is not backtrack stable, so cannot
be used with HaggisGAC-Stable. We implemented a new backtrack stable variant of
findNewSupport, in which the empty support is not returned, but is otherwise the same
as before. The List and Long variants are not affected because they do not return the
empty support in this case. In Table 6, we use the instances from Section 7.3. Results show
significant slowdowns by using backtrack stability for rectangle packing, more than 2 times
for n = 24. This is probably because of the inability to return the empty support. On the
other hand, we see speedups of about 50% for the list variants, and in some cases a factor
of 2 speedup for full-length supports.

We see in Figure 5 that the memory usage goes down greatly when stability is used
on full-length supports, possibly contributing to speedups in these cases. The greatest
reductions are in the case of element, in two cases more than 20 times less memory. On the
other hand, there is no significant reduction in memory usage in any non-long variant.

We also tested HaggisGAC-Stable against GAC-Schema as in Section 7.4. This gave
very similar performance to HaggisGAC and was therefore better than GAC-Schema: we
omit detailed results. There was no significant memory advantage compared to Haggis-
GAC, with the Stable variant saving less than 25%. We therefore do not seem to gain the
advantages we saw earlier from backtrack stability on full-length supports.

We conclude that backtrack stability can speed up HaggisGAC significantly, and
greatly reduce memory usage when using full-length supports. However, care must be
used, because backtrack stability can be harmful if insisting on backtrack stability increases
the size of returned supports.

10. Related Work

Our use of counters to count supports is inspired by AC4 (Mohr & Henderson, 1986). There
has been some study of compressing the tuples of a constraint into a compact data structure
in order to make propagation more efficient. For example, Gent et al. (2007) used tries, and
Cheng and Yap (2010) applied MDDs. There has also been extensive study of searching
the list of tuples to find the first valid tuple. Approaches include binary search (Lecoutre &
Szymanek, 2006), trie search (Gent et al., 2007), and approaches similar to skip lists such as
NDLists (Gent et al., 2007) and hologram-tuples (Lhomme, 2004; Lhomme & Régin, 2005).
All these techniques are orthogonal to the main focus of this paper because they assist in
finding supports, not in maintaining the set of active supports. We have adapted NDLists
to contain short supports in Section 5.5.2; it may also be interesting to adapt some of the
other approaches.

STR2 maintains a sparse set of all valid satisfying tuples of the constraint (Lecoutre,
2011). Updated variable domains are computed from this set each time the algorithm is
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n WatchElt HaggisGAC HaggisGAC-Stable Con
Specific Specific List NDList Long Or

6 27,825 11,131 10,305 4,881 2,358 30.3 53.5
7 22,259 9,035 8,302 4,225 1,349 ‡15.1 24.2
8 15,635 5,652 4,986 1,950 550 ‡7.0 9.1
9 15,898 5,419 4,579 1,711 388 ‡4.4 ‡6.2

10 15,088 ‡4,227 ‡4,008 ‡2,409 ‡309 ‡2.5 ‡4.2

Table 4: Nodes searched per second for quasigroup existence problems. All columns are
named as in Table 1.

n GACLex HaggisGAC HaggisGAC-Stable GAC- Con
Specific Long Specific Long Schema Or

3 104,955 91,265 9,288 90,473 12,008 3,622 5,735
4 103,950 100,100 8,628 103,470 9,056 3,030 4,997
5 95,420 90,009 8,503 93,382 7,248 2,734 4,104
6 80,841 74,184 4,666 76,777 3,844 1,638 2,109
7 72,307 65,359 3,271 67,273 2,615 1,190 1,188
8 66,445 52,659 1,609 52,113 1,591 670 456
9 64,267 47,847 914 47,881 1,114 451 263

10 57,208 39,683 634 39,176 806 318 184
12 48,146 32,425 311 32,310 533 170 105
14 36,751 23,063 142 23,709 345 82.3 ‡99.1
16 30,057 18,420 90.9 18,556 248 51.5 ‡62.6
18 22,432 13,845 53.8 14,504 177 33.3 ‡48.3
20 16,625 10,711 38.9 10,438 135 21.0 ‡36.7
22 12,450 8,141 26.0 8,159 106 12.5 ‡27.0
24 9,526 6,268 18.9 6,165 85 ‡7.3 ‡21.8

Table 5: Nodes searched per second for BIBDs. GACLex is the special-purpose propagator
for Lex, and all other columns are named as in Table 1.

n-w-h HaggisGAC HaggisGAC-Stable GAC-
Specific Specific List NDList Long Schema

18-31-69 19,524 16,950 9,544 8,383 1,686 1,033
19-47-53 39,185 22,580 4,663 8,264 1,621 1,181
20-34-85 21,000 12,865 4,950 4,840 2,607 775
21-38-88 12,262 9,783 ‡6,492 ‡5,827 957 592
22-39-98 11,966 8,798 ‡4,744 ‡4,319 921 518
23-64-68 30,628 28,987 ‡2,377 ‡4,511 1,095 590
24-56-88 16,075 6,741 ‡3,894 ‡3,998 1,149 474
25-43-129 10,228 5,706 ‡2,405 ‡2,199 1,265 348
26-70-89 23,132 27,507 ‡1,689 ‡4,024 890 376
27-47-148 4,677 3,996 ‡1,591 ‡1,735 344 272

Table 6: Nodes searched per second for Rectangle Packing instances. All columns are named
as in Table 1.
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Figure 4: Summary comparison of HaggisGAC and HaggisGAC-Stable. The x-axis is
median nodes per second for HaggisGAC. The y-axis is speedup (or slowdown)
of HaggisGAC-Stable.
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Figure 5: Summary comparison of memory usage (KiB) of HaggisGAC and HaggisGAC-
Stable. The x-axis is median memory usage for HaggisGAC. The y-axis is
reduction (or increase) in usage of HaggisGAC-Stable, i.e. the ratio of Hag-
gisGAC memory usage to that of HaggisGAC-Stable. Hence 1 represents
equal behaviour, while below 1 means that HaggisGAC-Stable used less mem-
ory.
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invoked. There is no concept of maintaining support, or seeking new support for a literal.
It would be interesting to investigate adapting STR2 to handle short supports. This would
result in an entirely different algorithm to the ones presented in this paper, possibly with
complementary strengths.

The MDD propagator MDDC (Cheng & Yap, 2010) maintains an MDD incrementally
during search. The MDD is a compressed representation of the satisfying tuples of the
constraint. The time complexity of MDDC is linear in the initial size of the MDD, therefore
the degree of compression is vital to the efficiency of the algorithm. In some cases, if a
constraint is amenable to strict short supports, it will also compress well into an MDD
(given an appropriate variable ordering). For example, the lex constraint compresses well
partly because (given the variable order x1, y1, x2, y2, . . .) the constraint can be satisfied by
assigning a prefix of the variables. Lex is amenable to short supports for the same reason.
However, some constraints have a small set of short supports but cannot be compressed
effectively into an MDD. Suppose we have a disjunction of equality constraints for each pair
of n variables of domain size d. After n− 1 variables, the MDD must have dCn−1 states.

Another property of MDD compression might indicate an interesting direction for future
work. Lex also compresses well into an MDD because multiple assignments to a prefix of the
variables lead to the same subsequent vertex (e.g. {x1 7→ 1, y1 7→ 1} and {x1 7→ 2, y1 7→ 2}).
This is something that our short support algorithms are not currently able to exploit.

Katsirelos and Walsh (2007) proposed a different generalisation of support, named c-
tuples. A c-tuple contains a set of values for each variable in the scope of the constraint. Any
valid tuple whose values are drawn from the c-tuple is a (full-length) support. Katsirelos and
Walsh give an outline of a modified version of GAC-Schema which directly stores c-tuples.
They also present experiments based on a different propagator, GAC3.1r, demonstrating
a modest speed improvement for c-tuples compared to conventional full-length supports.
When a c-tuple contains all values of some variable, it will nevertheless be recorded (in SC)
as support for each value individually (Katsirelos & Walsh, 2007). The algorithm has no
concept of implicit support.

In the context of Constructive Or, Lhomme (2003) observed that a support for one
disjunct A will support all values of any variable not contained in A. The concept is similar
to a short support albeit less general, because the length of the supports is fixed to the
length of the disjuncts. He presented a non-incremental Constructive Or algorithm for two
disjuncts.

Our algorithms have a similar flavour to GAC-Schema (Bessière & Régin, 1997), so it
was natural to compare them to GAC-Schema. However there are other GAC algorithms
such as GAC2001/3.1 (Bessière et al., 2005) and it would be interesting to compare these
to our algorithms.

11. Conclusions

We have introduced and detailed three general purpose propagation algorithms for short
supports. They each can either be given a specialised function to find new supports for each
constraint, or used with a function that accepts an explicit list of short supports. Where
strict short supports are available, all three algorithms perform very well, and provide much
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better performance than the general purpose methods GAC-Schema and Constructive Or.
This shows the value of using strict short supports.

The first algorithm we studied was ShortGAC, for which we described improvements
compared to our earlier report on this algorithm (Nightingale et al., 2011). We identi-
fied a significant inefficiency with ShortGAC when dealing with explicit supports. We
introduced a new algorithm, HaggisGAC which corrects this flaw, has better theoretical
complexities, and performs much better than ShortGAC in our experiments. In three
case studies, HaggisGAC is far faster than the general purpose methods. In the best case
it even achieved speeds more than 90% of that of a special purpose propagator. Perhaps
remarkably, while able to deal with both strict short and full-length supports, Haggis-
GAC outperformed ShortGAC on strict short supports and GAC-Schema on full-length
supports, i.e. the cases which those algorithms are respectively specialised for.

Our third algorithm, HaggisGAC-Stable, can retain supports on backtracking. It can
be less effective than HaggisGAC if it invalidates the use of certain strict short supports,
but it can also be significantly faster on problems with only full-length supports, and reduce
memory usage greatly in those cases.

All the proposed algorithms are excellent for propagating disjunctions of constraints. In
all experiments with disjunctions we found our algorithms to be faster than Constructive Or
and GAC-Schema by at least an order of magnitude, and up to three orders of magnitude.

To summarise, we have shown the value of the explicit use of strict short supports in
general purpose propagation algorithms for generalised arc consistency. When strict short
supports are available, exploiting them yields orders of magnitude improvements for generic
propagation algorithms. In some cases, we even found that a generic algorithm can come
close to the performance of a specialised propagator. Previously, short supports do not
seem to have been recognised as important in their own right. Our overall contribution is
to correct this and focus on short supports as first class objects.
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Appendix A. Comparison of ShortGAC and ShortGAC-IJCAI

In Section 4, we noted that we have optimised data structures and algorithms for Short-
GAC, compared with our previous presentation (Nightingale et al., 2011). To demonstrate
that these are indeed improvements, we compared the two implementations of ShortGAC
on the three case studies used in this paper. We use the name ShortGAC-IJCAI for the
previous version. We are not quoting results from our previous work (Nightingale et al.,
2011), but have rerun all experiments using the environment described in Section 7. We
also updated the codebase to Minion 0.12 instead of Minion 0.10 in our earlier paper. For
each algorithm and instance, we report nodes searched per second and peak memory use.

Table 7 shows results for the instances of Section 7.1. It is clear from the results that
ShortGAC makes much better use of memory and is also faster than ShortGAC-IJCAI
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Figure 6: Scatterplot of median nodes per second (x-axis) against the median absolute
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main experiments of Sections 7 and 9, the cases where medians were of only 5
runs, the list variants used on table constraints in Section 7.4, and data in the
paper for GAC-Schema and Constructive Or.

on these instances. Table 8 shows the results for instances of Section 7.2. As with Element,
ShortGAC makes better use of memory and is faster than ShortGAC-IJCAI, although
improvements are not as great as before. In Table 9, we use the instances from Section 7.3.
As in the previous two case studies, ShortGAC is consistently better in both speed and
memory use. We conclude that the algorithms and data structures used in this paper are
indeed superior to those we used previously (Nightingale et al., 2011).

Appendix B. Median Absolute Deviation of our Experiments

In our experiments we report the median of either 11 or 5 runs. To assess how robust the
median was as a measure we looked, for each combination of instances and algorithm, at
the median absolute deviation (MAD), i.e. the median of the absolute difference of data
points from the median. Figure 6 shows the MAD for all algorithm/instance combinations
as a fraction of the median for that case. This shows 511 algorithm/instance combinations
we tested (including some combinations not reported in detail in this paper). For nodes per
second, the maximum MAD we found is always less than 15% of the median, with a worst
case of 14.5%. This was HaggisGAC-Long for n = 9 in Table 1. There were only four
more cases with MAD above 8% of the median. Figures for memory usage were even more
consistent, with only two cases (at 6.3% and 6.1%) showing MAD above 5% of the median
and and no others above 2%. Any major conclusions we draw do not regard a 10% change
of behaviour between one method and another as significant, and therefore we can say that
the median is a robust measure of performance.
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ShortGAC ShortGAC-IJCAI ShortGAC ShortGAC-IJCAI
n node rate node rate memory memory
6 6,956 4,839 5,684 27,880
7 4,866 3,273 6,624 72,916
8 2,773 1,673 8,996 188,812
9 2,374 1,511 12,560 461,648

10 ‡1,594 ‡1,294 ‡17,048 ‡991,768

Table 7: Nodes searched per second and memory use (KiB) for quasigroup existence prob-
lems. Comparison of ShortGAC with ShortGAC-IJCAI.

ShortGAC ShortGAC-IJCAI ShortGAC ShortGAC-IJCAI
n node rate node rate memory memory
3 87,463 83,964 7,476 8,392
4 99,602 98,135 11,680 12,992
5 89,127 89,286 16,408 18,512
6 73,260 74,184 22,568 26,260
7 65,062 63,091 31,348 36,356
8 51,335 50,480 42,420 49,012
9 47,059 45,085 55,660 65,684

10 38,344 36,179 74,348 85,700
12 31,626 29,455 120,024 138,496
14 22,712 20,868 181,252 209,492
16 17,813 16,087 263,792 308,400
18 13,843 12,356 360,500 422,536
20 10,734 9,614 493,368 570,188
22 7,976 7,208 632,064 735,548
24 6,255 5,398 811,104 939,796

Table 8: Nodes searched per second and memory use for BIBD problems. Comparison of
ShortGAC with ShortGAC-IJCAI.

ShortGAC ShortGAC-IJCAI ShortGAC ShortGAC-IJCAI
n-w-h node rate node rate memory memory
18-31-69 14,923 10,892 11,876 24,568
19-47-53 38,329 29,647 10,172 19,680
20-34-85 13,949 10,288 13,988 33,020
21-38-88 8,568 6,109 16,100 38,828
22-39-98 8,059 5,821 18,868 46,344
23-64-68 31,486 24,528 13,988 31,700
24-56-88 12,317 8,386 17,548 43,708
25-43-129 5,310 3,828 27,580 74,064
26-70-89 25,860 21,146 19,796 49,512
27-47-148 2,943 2,086 39,848 106,144

Table 9: Nodes searched per second and memory use for rectangle packing. Comparison of
ShortGAC with ShortGAC-IJCAI.
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Appendix C. Comparison of GAC-Schema and HaggisGAC

We showed in Section 7.4 that HaggisGAC outperforms GAC-Schema when dealing with
full-length supports. This is despite the fact that HaggisGAC has small overheads for
dealing with strict short supports even when none exist. We now discuss briefly why this
may be so.

GAC-Schema has the concept of current supports – each literal has one current support,
which is one of the active supports that contain the literal. There is an additional data
structure S(τ). For each active support τ , S(τ) is a list of all literals that have τ as their
current support. Hence when τ is invalidated, GAC-Schema finds a new current support
for each literal in S(τ) (or deletes the literal). In HaggisGAC we dispensed with this
entirely. The sign that a literal needs a new support is not that it lost its current support,
but that its support list (supportListPerLit) is empty. There is a small potential saving from
not maintaining S(τ).

A second, possibly more important, difference is that GAC-Schema is more eager than
HaggisGAC. When a literal x 7→ v loses its current support, GAC-Schema will check if
other active supports containing x 7→ v are valid, an O(n) operation for each one. If they
are all invalid, GAC-Schema then calls findNewSupport. If this returns Null then x 7→ v
is deleted. HaggisGAC does none of this, avoiding completely the cost of checking valid-
ity. This is safe because if every support is invalid, the literal deletion from each support
will cause a call to deleteSupport and the last will result in the empty list, causing a call
to findNewSupport. Both approaches are correct, but GAC-Schema’s is wasteful because
it performs unnecessary validity checks. However, one cannot guarantee time saving, be-
cause GAC-Schema can perform deletions sooner, possibly affecting the way the propagator
interacts with the other propagators.
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Lhomme, O., & Régin, J.-C. (2005). A fast arc consistency algorithm for n-ary constraints.
In Proceedings AAAI 2005, pp. 405–410.

Lhomme, O. (2003). An efficient filtering algorithm for disjunction of constraints. In
Proceedings CP 2003, pp. 904–908.

Lhomme, O. (2004). Arc-consistency filtering algorithms for logical combinations of con-
straints. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CP-AI-OR’04), pp. 209–224.

Mackworth, A. K. (1977). On reading sketch maps. In Reddy, R. (Ed.), IJCAI, pp. 598–606.
William Kaufmann.

Mears, C. D. (2009). Automatic Symmetry Detection and Dynamic Symmetry Breaking for
Constraint Programming. Ph.D. thesis, Clayton School of Information Technology,
Monash University.

Mohr, R., & Henderson, T. C. (1986). Arc and path consistency revisited. Artificial Intel-
ligence, 28 (2), 225–233.

44



Short and Long Supports for Constraint Propagation

Nightingale, P. (2011). The extended global cardinality constraint: An empirical survey.
Artificial Intelligence, 175 (2), 586–614.

Nightingale, P., Gent, I. P., Jefferson, C., & Miguel, I. (2011). Exploiting short supports
for generalised arc consistency for arbitrary constraints. In Proceedings IJCAI 2011,
pp. 623–628.

Puget, J.-F. (2005). Automatic detection of variable and value symmetries. In Proceedings
CP 2005, pp. 475–489.
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