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ABSTRACT 

 In the  Western world, breast cancer is the most frequent malignancy in 

women and still the leading cause of cancer related deaths, therefore, a better 

understanding of the disease is needed. Adequate therapeutic targets for all breast 

cancer types have not been identified yet, and patients with the same type of cancer 

have often different outcomes. Polycomb proteins are emerging as important factors 

involved in breast cancer formation. Polycomb proteins play a crucial role in 

embryogenesis, early development, stem cell renewal and establishing and 

maintaining cell identity. Their alteration leads to mis-regulation of several important 

cellular factors including tumour suppressors, DNA repair factors, cell cycle 

regulation factors and cell-cell interaction factors.  

In this thesis the importance of several polycomb proteins in breast cancer 

has been investigated. The effect of EZH2 knockdown has been tested in breast 

cancer cell lines expressing different level of the protein and with different features. 

The results obtained are in line with other studies and suggest that the effect of EZH2 

down-regulation in breast cancer cells is dependent on cellular context. In vitro 

experiments, using both established breast cell lines and primary epithelial cells have 

been used for investigating the importance of CBX8 in breast cancer. The results 

obtained showed that the polycomb proteins CBX8 does not play a central role in 

malignant transformation of the mammary epithelial cells tested.  
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1 CHAPTER 1: INTRODUCTION 

1.1 The basis of cancer 

 The transformation of normal cells in to neoplastic cells occurs through a 

multistep process, consisting of the accumulation of genetic and epigenetic 

alterations. Tumour cells are characterized by distinct properties, including, self-

sufficiency in growth signals, unlimited replicative potential, abrogation of 

programmed cell death (apoptosis), insensitivity to growth-inhibitory signals, 

sustained angiogenesis, and tissue invasion and metastasis (Albini et al. 2007; 

Hanahan & Weinberg 2000; Hanahan & Weinberg 2011; Kufe 2003). In order for a 

cell to acquire these characteristics, several different cellular pathways must be 

altered. This can be achieved by a number of different mechanisms e.g. mutations, 

gene amplification, gene deletion and alteration of epigenetic pathways. Self-

sufficiency in growth can be the result of alterations involving the extracellular 

growth signals and/or the intracellular circuits that translate the growth signals (i.e. 

alterations of HER family receptors, integrins and the SOS-Ras-Raf-MAP kinase 

pathway) (Aplin et al. 1998; Yarden et al. 1988). The insensitivity to growth signals 

and the consequent uncontrolled cell proliferation, is the result of alterations  

affecting  pathways involved in the regulation of cell cycle progression (i.e. pRb/E2F 

pathway) (Weinberg 1995).   As a consequence of de-regulation of cell cycle control, 

tumour cells also acquire the ability of unlimited replicative potential (the two major 

pathways are involved are p53 and/or pRb). Escape from apoptosis can be the results 

of alterations in a number of different pathways, including DNA damage sensors, 

pathways involved in the transmission of apoptotic signals and factors regulating the 

release of pro-apoptotic or anti-apoptotic effectors (Cotter et al. 1990). Lastly, 
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alterations affecting proteins involved in cell–cell interaction and cell to extracellular 

matrix component interactions are responsible for the ability of tumour cells to 

migrate and invade other organs.  

 

1.2 Breast cancer biology 

The human mammary gland consists of usually 15-20 lobes immersed in 

connective and adipose tissue. Each lobe is divided into lobules, connected to the 

nipples through lactiferous ducts (Figure1.1). The development of the mammary 

gland occurs during puberty under the effect of oestrogens and growth hormones and 

will reach complete development only with pregnancy (Cowin & Wysolmerski 

2010). 

Figure 1.1: Schematic representation of mature human mammary glands. The mature human breast is 
composed of ducts diffusing from the nipple into the fat tissue. Each duct terminates into lobules. The 
distal ends of the ducts are called terminal duct lobular units (TDLU). A cross-section of the ducts 
reveals the presence of three different types of cells lining inside the basal membrane. 
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Breast cancer derives from the cells lining the terminal duct lobular units 

(TDLU) as a result of the accumulation of mutations and epigenetic changes leading 

to the activation of proto-oncogenes, the inactivation of tumour suppressor genes and 

alterations in DNA repair genes and cell cycle control genes (Huang et al. 1997; 

Koeffler et al. 1991; Weiss 2004). The entire process starts with abnormal 

proliferation in TDLU which leads to cystic structures that become highly 

proliferative without acquiring atypical characteristics. This stage is called 

proliferative disease without atypia (PDWA).  PDWA may evolve into atypical 

hyperplasia that manifests as either ductal (ADH) or lobular (ALH) hyperplasia.  The 

difference between ADH and ALH does not reflect differences in site or type of cell 

of origin, as it was originally proposed, but simply differences in cell morphology 

and immunohistochemistry of the lesions. The lobular subtypes stain negatively for 

E-cadherin (Gillett et al. 2001) and consist of small, non-polarized cells, while the 

ductal subtype consists of moderate to large and frequently polarized cells (Wellings 

et al. 1975). The atypical hyperplasia stages are the non-obligatory precursors of the 

pre-malignant non-invasive lesions, ductal carcinoma in situ (DCIS) and lobular 

carcinoma in situ (LCIS) respectively (Arpino et al. 2005; Cichon et al. 2010; Lopez-

Garcia et al. 2010; Ma et al. 2003). About 15% to 30% of women diagnosed with 

pure DCIS develop invasive breast carcinoma within the first decade after treatment 

with lumpectomy (Kerlikowske et al. 2003). The transition from DCIS to invasive 

carcinoma involves disruption of the basement membrane (BM) and invasion of 

other tissue throughout the lymphatic system (Bombonati et al. 2011; Ma et al. 

2009).  The exact genetic and epigenetic changes characterizing every stage of the 

progression from atypical hyperplasia to invasive carcinoma remain poorly 

understood. What emerges from different expression analysis studies is the fact that 
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many alterations associated with the aggressive phenotype of invasive cancer are 

already present in the pre-malignant lesions (Ma et al. 2003; Yao et al. 2006). First of 

all, from the histo-morphological point of view, it has been shown that ADH and 

DCIS share many features (Tavassoli et al. 1990).  In addition, Ma et al. have 

performed a comparison study in which patient-matched phenotypically normal 

breast tissue (N) from the TDLU and ADH, DCIS, and IDC were analysed. The 

gene-expression profile analysis revealed that the most alterations occur at the N to 

ADH transition and that the transcriptional alterations are maintained throughout 

DCIS and IDC (Ma et al. 2003). However the study conducted by Ma et al., failed to 

identify a clear defined gene expression signature for the progression from ADH to 

IDC.  

Transcriptional profile studies have shown that the transition from DCIS to 

invasive carcinoma is the result of alterations affecting different component of the 

mammary gland, including epithelial cells, myoepithelial cells and fibroblasts.   

DCIS-associated myoepithelial cells have a different expression profile compared to 

normal myoepithelial cells, showing downregulation of genes involved in their 

normal function (thrombospondin, laminin, and oxytocin receptor) and upregulation 

of genes involved in increased proliferation, migration, invasion and angiogenesis 

(Allinen et al. 2004). Moreover, cancer-associated myoepithelial cells acquire the 

ability of producing matrix metalloproteinases (MMPs) and cathepsins that degrade 

the basement membrane, whereas normal myoepithelial cells secrete maspin and 

other proteinase inhibitors that suppress cancer cell proliferation and invasion 

(Barsky et al. 2005). Fibroblasts also have a key role in promoting progression from 

DCIS into invasive cancer (Hu et al. 2008). Studies using mouse models have shown 

that cancer-associated fibroblasts promote angiogenesis and increased cancer cell 
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proliferation through secretion of CXCL12 (chemokine (C-X-C motif) ligand 12 that 

interact with CXCR4, chemokine (C-X-C motif) receptor 4, expressed by tumour 

cells (Orimo et al. 2005). 

Some of the well-known risk factors for breast cancer include family history, 

age of menopause, age of menarche, diet, parity, alcohol consumption and smoking 

(Alsaker et al. 2011). In a recent study, Tamimi et al. have evaluated the contribution 

of several risk factors to the cumulative risk of breast cancer (Tamimi et al. 2010). 

They reported that in women with a history of a benign breast disease the cumulative 

risk of breast cancer at age 70 was increased by 57%. In women who had used 

hormonal replacement therapy the cumulative risk increased by 23%, compared to 

women who had not used hormones. This study confirmed that of all the risk factors, 

hormones and susceptibility genes play a main role in breast carcinoma development. 

Some of the factors that play a crucial role in breast tumourigenesis, including 

steroid hormone receptors (ER, PR and RAR), peptide growth receptors (HER 

family), selected tumour suppressor genes and oncogenes (p53 and HRAS) and 

hereditary predisposition (susceptibility genes) (Clark 1995; Hulka et al. 2008; Keen 

et al. 2003) will be further discussed in the next sections.  

 

1.2.1 Role of hormones and hormone receptors 

 Progesterone and oestrogen are key regulators of normal development of the 

ovary, uterus and mammary gland; however they also play a crucial role in the 

neoplastic transformation of these tissues. One of the critical risk factor for 

developing breast cancer is the prolonged exposure to oestrogens. Several studies 

have shown that removal of endogenous oestrogen via oophorectomy decreases the 
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risk of the development of breast carcinoma, and the earlier the ovaries are removed, 

the greater the risk is reduced (Hulka & Moorman 2008; MacMahon et al. 1982). 

Oestrogens and progesterone exert their biological activity through binding to the 

intracellular receptors oestrogen receptor (ER) and progesterone receptor (PR). For 

both receptors (ER and PR) different isoforms exist: ERα/ERβ and PRA/PRB 

respectively. The oestrogen receptors and progesterone receptors belong to the 

nuclear hormone receptor superfamily which are normally present in an inactive 

form (in conjunction with HSP 90) and become active upon ligand binding. Upon 

ligand binding, ER and PR undergo a series of events, including dissociation from 

heat shock protein complexes, dimerization, phosphorylation, and translocation to 

the nuclear compartment (Lange et al. 2007).  

The homology between ERα and ERβ is extremely high within the DNA 

binding domain (95%) and much lower within the ligand binding domain (59%) 

(Gustafsson 1999; Hall et al. 1999). The active form of the oestrogen receptors 

consists of phosphorylated dimers which will either bind directly to oestrogen 

response elements (EREs) present in the promoters of target genes (e.g. mammalian 

prolactin, pS2, cathepsin D, lactoferrin), or indirectly via other transcription factors 

such as AP1, SP1 or variant cyclic-AMP response elements (CRE) (Kushner et al. 

2000a; Kushner et al. 2000b; McKenna et al. 1999; Saville et al. 2000). Many genes 

that are regulated by ER are involved in tissue remodelling and proliferation, 

including collagenase genes and other metalloproteinase genes, insulin growth 

factor-1 (IGF-1) gene (proliferation), cyclin-D gene (cell cycle control). In addition, 

ER is able to down-regulate target genes via the NF-KB transcription factor and 

examples are TNFα and cytokines IL-1 and IL-6 (An et al. 1999b). This effect of ER 

on anti-inflammatory factors is in line with the anti-inflammatory property of ER 
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(Pfeilschifter et al. 2002).   The use of two separate promoters of a single gene 

produces the two progesterone receptor isoform, PR-A and PR-B (Richer et al. 

2002). PR-A represents a truncated form of PR-B and their relative expression is 

dependent on cellular context, and physiological and hormonal status. As for ER, 

over-expression of PR is associated with cellular hyperplasia and breast cancer 

(Graham et al. 1996). The transcription control exerted by PRs is dependent on the 

presence and binding to coactivators and corepressors (Gao et al. 2002; McKenna et 

al. 1999). Alteration of coactivators and corepressors factors expression pattern is 

associated with alteration of normal development of the mammary gland (Brisken et 

al. 2010; Rowan et al. 2000). 

 Both ER and PR positivity are breast cancer markers for good prognosis 

(Gustafsson 1999). Approximately 70-80% of all breast cancers express ERα and 

about 65% of these cases also express PR (Caldarella et al. 2011). These tumours 

grow more slowly, are better differentiated and have a better prognosis compared to 

the ERα negative tumours. Patients with ER/PR-positive breast cancer have a better 

overall survival due to response to endocrine therapy (Elledge et al. 2000; Pritchard 

2005; R. M. Elledge 2000). In contrast, ER-positive/PR-negative tumours are less 

responsive to endocrine therapy, suggesting that PR is required for the positive 

outcome with endocrine therapy (Graham et al. 1995).  Endocrine therapy is based 

on the use of selective oestrogen receptor modulators, called SERM, which block the 

effects of oestrogen in the breast tissue (Pritchard 2005). The vast majority of 

oestrogen receptor modulators (SERMs developed in past few decades (i.e.  

Tamoxifen, Raloxifene, Arzoxifene and Idrxifene) have been proven to be effective 

against breast cancer and have beneficial effects on bones and the cardiovascular 

system (Bryant et al. 1999). Crystallography studies have shown that the ER 
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antagonist SERMs (specifically tamoxifen and raloxifene) induce conformational 

changes that block the interaction of ERs with coactivator proteins (Brzozowski et al. 

1997). At the molecular level, SERMs cause down-regulation of cyclins D1 and E 

and inhibition of phosphorylation of retinoblastoma protein (Rb). As a result, SERM 

therapy induces tumour shrinkage, reduces the number of cells in S-phase and 

increases of expression of apoptotic markers. However, most SERMs are associated 

with an increased risk of endometrial cancer (Jordan 2004), an effect that might be 

due to the fact that SERM-liganded ERα (specifically Tamoxifen) is recruited to 

different promoter genes in different tissues (Shang et al. 2002). Moreover, in many 

cases patients develop resistance to SERMs (Jiang et al. 1992). About 20-30% of all 

breast cancers do not express ERα and so do not respond to endocrine therapy. ER-

negative breast cancers are more aggressive, less differentiated and more 

proliferative compared to ER-positive breast cancer (Hulka et al. 2001). For this 

group of breast cancers the treatment consists of chemotherapy and radiation therapy 

(Cristofanilli et al. 2004). Several studies have investigated the mechanism of loss of 

ER and PR expression and several hypotheses have been proposed including 

mutations, deletions, polymorphisms within the ER gene and epigenetic 

modifications such as histone deacetylation and DNA methylation (Ferguson et al. 

1995; Lapidus et al. 1996; Ottaviano et al. 1994; Yang et al. 2001). However, the 

absence of ER does not account for all the negative features that distinguish ER-

negative breast cancer. This will be further discussed in section 1.3. The 

identification of other pathways altered in ER-negative breast cancers and the exact 

mechanism by which ER-positive breast cancers lose the expression of the ER is 

essential in order to develop new therapeutic agents.  
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1.2.2 Role of growth factors and growth factor receptors 

 Several growth factors and their receptors have been linked to breast 

tumourigenesis, including the epidermal growth factor (HER) family (Dickson et al. 

1992; Rudland et al. 1995), tumour growth factor-β (Drabsch et al. 2011) and 

Insulin-like growth factor family (Yerushalmi et al. 2010). The most studied and well 

characterized group is the receptor tyrosine kinase HER family. It comprises four 

different members: HER1, HER2, HER3 and HER4. The activation of HER, caused 

by ligand binding, results in the formation of homodimers or heterodimers with 

subsequent activation of the PI3K-Akt pathway or the MAPK pathway and 

phosphorylation of specific target genes playing crucial roles in apoptosis, cell cycle 

control, angiogenesis and proliferation  (Muthuswamy et al. 2001; Press et al. 1990; 

Rudland et al. 1995; Zhou et al. 2000). Deregulation of epidermal growth factor 

receptors is associated with tumour formation and progression. Amplification of the 

genes coding for the receptors, over-expression of the protein and presence of 

mutation and/or SNP inducing constant activation of the receptor, are the alterations 

normally associated with the dysfunction of HER receptors (Benusiglio et al. 2005; 

Wenandy et al. 2009). 

 The HER-2 protein is overexpressed in 25% of breast cancers and its over-

expression is associated with poor prognosis and poor overall survival (Press et al. 

1990; Slamon et al. 1987; Thor et al. 2000). Similar to ER, HER-2 is a good target 

for developing new therapies. The most commonly used agents targeting HER-2 are 

the monoclonal antibodies raised against the ectodomain of HER-2, Trastuzumab 

(Kita et al. 1996; Kunisue et al. 2000) and Iressa (ZD1839) (Moasser et al. 2001; 

Moulder et al. 2001).  Trastuzumab acts as inhibitor of both PI3K pathway and 

MAPK pathway, resulting in reduction of proliferation, accumulate of cells in G1 
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phase and increased apoptosis (De Lorenzo et al. 2005; Jahanzeb 2008; Mohsin et al. 

2005). Iressa was initially developed as HER-1 inhibitor, but later it was found out to 

be also effective against HER-2. Some of the effects exerted by Iressa include 

inhibition of cell cycle progression, by down-regulation of cyclin D1, Cdk4, p27 and 

Cdk2, inhibition of proliferation and induction of apoptosis (Moasser et al. 2001; 

Moulder et al. 2001).  

 

1.2.3 Role of tumour-suppressor deregulation and oncogene activation 

 The neoplastic phenotype is the result of accumulation of genetic and 

epigenetic changes which normally cause activation of proto-oncogenes, inactivation 

of tumour suppressor genes, alterations of key regulators of DNA repair and cell 

cycle control. One of the tumour suppressors often mutated and deregulated in 

human cancer is the p53 tumour suppressor (also called the “guardian of the 

genome”). p53 is activated by phosphorylation (by kinases proteins including CHK2) 

in  response to DNA damages and/or hypoxia (Okorokov et al. 2009). The active 

form of p53 forms tetrameric complexes which in turn induce the transcription of 

downstream targets such as p21 which inhibits Cyclin E and CDK2, leading to arrest 

at the G1-S cell cycle phase for either damage repair or apoptosis (Giaccia et al. 

1998; Sherr et al. 1999). As a result of p53 mutations the cells are unable to activate 

the G1-S cell cycle checkpoint and its associated DNA repair or apoptosis, resulting 

in replication of damaged DNA and accumulation of genetic alterations. About 35% 

of invasive breast cancers carry mutated p53 and, as for many other human cancers, 

breast cancers with mutated p53 have a more aggressive behaviour, are highly 

invasive/metastatic, have a high grade and are poorly differentiated (Borresen-Dale 

2003; Lee et al. 2010). There is a positive correlation between the presence of p53 
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and ER negativity in breast cancer, suggesting a possible interaction between the ER 

and p53. Indeed, a physical association between p53 the p53 regulator MDM2 and 

ERα has been shown. ERα protects p53 from the degradation activity of MDM2, 

therefore ERα might be responsible for the up-regulation and stabilization of p53.  

(Hurd et al. 1997; Liu et al. 2000; Moudgil et al. 2001; Yu et al. 1997). However, 

other evidence suggest that overexpression of ERα causes over-expression of MDM2 

and consequent decreased p53 activity (Hori et al. 2002), suggesting another possible 

mechanism of tumourigenesis by  loss of p53 function. p53 germline mutations are 

present in members of families with Li-Fraumeni syndrome, which is characterized  

by an increased risk of breast cancer, sarcomas, brain tumours, leukemias and 

adrenal tumours (Malkin et al. 1990). Fibroblasts derived from patients with Li-

Fraumeni syndrome exhibit permanent loss of G1 or G2 cell cycle checkpoint control 

confirming that loss of p53 results in loss of cell cycle checkpoint control and, 

consequently, increased cellular proliferation (Boyle et al. 1998). 

 H-Ras belongs to the ras oncogene family. Ras is a monomeric membrane 

protein that has been defined as a “molecular switch” that converts signals from the 

cell membrane to the nucleus (Adjei 2001), via several effector pathways (P13K, 

PKC, MEK, SAPK, MAPK) with consequent regulation of cell survival, 

proliferation, and differentiation (Adjei 2001; DeNicola et al. 2009; Shaw et al. 2006; 

von Lintig et al. 2000). Oncogenic mutations of ras consist of point mutations 

affecting specific sites (amino acids 12, 13, 59, and 61) that result in abolishing the 

GAP-induced GTP hydrolysis of the Ras proteins and constitutive activation of the 

protein (DeNicola & Tuveson 2009). The aberration activity of Ras can be driven by 

deregulation/mutations of Ras interacting proteins. For instance, inactivation of RAS 

is regulated by GTPase activating proteins (GAPs).  Neurofibromin1 (NF1) protein is 
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a tumour suppressor that belongs to the family of GAPs and its mutational 

inactivation leads to accumulation of activated RAS and then tumourigenesis (Shaw 

& Cantley 2006). In breast cancer, direct mutational activation of H-Ras is a rare 

event, but its hyperactivation caused by growth factor signalling (EGFR and HER2 

overexpression) is more frequent (Clark et al. 1995; von Lintig et al. 2000). Recently, 

the presence of mutated H-Ras has been linked to BMI1 and its role in breast cancer 

formation (see section 1.8.1). 

 ER-negative and grade III breast cancers are associated with loss of RB1 

(Retinoblastoma) protein expression (Berge et al. 2010; Chano et al. 2010).  RB1 

gene mutations were first identified as germline mutations in patients with 

retinoblastoma, a childhood eye tumour (Friend et al. 1986). Later, somatic 

mutations of RB1 were identified in different types of human cancers including 

osteosarcomas, small cell lung cancers and 10% of breast cancers (Lee et al. 1988; 

T'Ang et al. 1988). The retinoblastoma (RB) pathway play a crucial role in regulating 

the G1 to S-phase progression of the cell cycle (Genovese et al. 2006). During the G1 

phase, upon mitogenic stimulation, the RB1 protein is phosphorylated by Cyclin D1 

(with either CDK4 or CDK6 cyclin-dependent kinases) or Cyclin E/CDK2 

complexes with subsequent release from the E2F transcription factor. E2F then 

becomes able to initiate E2F-dependent transcription of genes necessary for DNA 

replication and S-phase entry (Cam et al. 2003; Genovese et al. 2006). p16 protein 

inhibits the entire process, being responsible for inhibition of RB1 phosphorylation 

by the Cyclin D1/CDK complexes (Genovese et al. 2006). Loss of p16, loss of the 

RB1 tumour suppressors, or amplification and overexpression of Cyclin D1 or CDK4 

are involved in human tumourigenesis (Sherr et al. 2002). Loss of p16 is present in 

about 30% of human breast cancers. While, in other tumours inactivation of p16 
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occurs through either deletions or point mutations (i.e. pancreatic cancers) (Caldas et 

al. 1994; Quesnel et al. 1995), in breast cancer inactivation occurs mainly through 

promoter hypermethylation (Quesnel et al. 1995; Silva et al. 2003).  About 25% of 

all breast cancers have amplification or over-expression of Cyclin D1, which is 

associated with ER-positive breast cancers (Barbareschi et al. 1997; Bartkova et al. 

1994), and about 15% have amplification of the CDK4 (An et al. 1999a). 

  

1.2.4 Role of susceptibility genes  

 Hereditary breast cancers account only for a small proportion of all breast 

carcinomas. Women carrying germline mutations of the BRCA1 gene or BRCA2 

gene have a high risk of developing breast cancer and ovarian cancer. It has been 

estimated that women carrying BRCA1 mutations have up to an 80% risk of 

developing breast cancer and up to a 50% risk of developing ovarian cancer, by the 

age of 70 (Antoniou et al. 2003; King et al. 2003; Petrucelli et al. 1993), whereas, 

men carrying germline mutations of BRCA1 and BRCA2 have a higher risk of 

developing prostate cancer compared to non-carriers (Gallagher et al. 2010). Tumour 

formation in individuals carrying germline BRCA1 or BRCA2 mutations is normally 

caused by the loss of the remaining wild type allele with consequent production of a 

non-functional protein, leading to loss of cell cycle control and loss of DNA repair 

mechanisms (Boyle et al. 1998). Both BRCA1 and BRCA2 mutant breast cancers 

have a higher frequency of p53 mutations and a high degree of aneuploidy (Crook et 

al. 1998; Marcus et al. 1996), confirming the role of the proteins in maintaining 

genome integrity. BRCA1 preserves genomic stability by playing a key role in a 

wide range of activities, including DNA repair, cell cycle control and DNA damage 

signalling (Mullan et al. 2006). Distinct domains of the protein interact with different 
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co-factors. The amino-terminal RING finger domain is important for the association 

of BRCA1 with several factors, including BARD1 (Baer et al. 2002). The two 

nuclear localization signals (NLSs) in the central region of the protein are 

responsible for the nuclear localization of BRCA1, and the two BRCA1 C-terminal 

(BRCT) domains, which are also present in other proteins involved in cell cycle 

control and DNA damage repair, are responsible for the high affinity of the protein 

for phosphoserine and phosphothreonine residues (Manke et al. 2003). BRCA1, 

together with RAD51, plays a crucial role in homologous recombination (HR) repair 

of the DNA during S and G2 phase of the cell cycle. Indeed, BRCA1 colocalizes 

with RAD51 at DNA repair foci and cells without BRCA1 display defects in HR 

(Bhattacharyya et al. 2000; Snouwaert et al. 1999). Several studies have shown the 

involvement of BRCA1 in other DNA repair mechanisms, including non-

homologous end joining (NHEJ) mediated double strand break (DSB) repair pathway 

and nucleotide excision repair (NER) pathway (Wang et al. 2000; Zhong et al. 2002). 

Wang et al. have shown that BRCA1 is part of the BRCA1-associated genome-

surveillance complex (BASC), which includes ATM, RAD50, MRE11 and NBS1 

and the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 (Wang et al. 

2000). BASC contains at least 15 units which also have a complex-independent 

function. MSH2 and MSH6 are required for transcription-coupled repair and their 

association with BRCA1 suggests that BRCA1 has a role in this pathway (Wang et 

al. 2000).  

BRCA1 forms an E3 ubiquitin ligase complex with BARD1 (Boulton 2006). 

Starita et al. have shown  that the BRCA1/BARD complex specifically ubiquitinates 

and degrades RNA Pol II stalled at DNA damage site, therefore allowing access for 

repair machinery (Starita et al. 2005). How the BRCA1/BARD complex is recruited 
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to DNA damage sites is not clear. Rpb1, the largest subunit of RNA Pol II is 

specifically targeted by BRCA1, therefore might be responsible for BRCA1 

recruitment to DNA damage sites. The involvement of histone H3 and H2AX  and 

RNF8  (ring finger protein 8) have also been proposed as a possible mechanism 

(Mailand et al. 2007). In summary, Mailand et al. have proposed that H3 and H2AX 

histones recruit BRCA1 to DNA damage sites through RNF8/Ubc13.  

Due to the ability of BRCA1 to interact with RNA Pol II, (along with several 

co-activator and repressor factors) and proteins involved in chromatin remodelling, 

including  histone deacetylases and components of SWI/SNF-related complexes, 

BRCA1 can participate in either transcription activation or transcription repression 

(Mullan et al. 2006; Yarden et al. 1999). In line with the role of BRCA1 in 

maintaining genome integrity, BRCA1 is involved in transcriptional regulation of 

transcription factors, including the p53 and retinoblastoma RB (Fabbro et al. 2004) 

(Figure 1.2).  BRCA1 is involved in the regulation of several others factors involved 

in cell cycle regulation pathways in response to DNA damage, including Nbs1 and 

Smc1  (S-checkpoint arrest), CtIP  and Chk1 (G2/M checkpoint), FANC proteins (S 

phase cell cycle arrest).  BRCA1 also regulates the mitotic spindle checkpoint, a 

process that guarantees equal segregation of sister chromosomes through the action 

of the regulatory proteins responsible for metaphase/anaphase arrest, throughout 

transcriptional regulation of both BubR1 and Mad2 (Bae et al. 2005). 
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Figure 1.2: Schematic representation of the BRCA1 pathway. In response to DNA damage, ataxia 
telangiectasia mutated (ATM), CHK2 and other kinases are activated and, in turn, induce BRCA1 
activation. Downstream targets of BRCA1 activation include p53 and the retinoblastoma protein 
(RB), important for checkpoint regulation.  FANCD2 is also a target of activated BRCA1, and 
BRCA2/RAD51 complex that is believed to interact with FANCD2 and promotes S-phase or G2 
arrest. BRCA1 forms a heterodimer with BARD1 to activate the ubiquitin-ligase function of BARD1. 
DNA repair by homologous recombination and transcription regulation are mediated by the BRCA1-
associated surveillance complex (BASC) which comprises BLM, MSH2–MSH6 and MRE11–
RAD50–NBS1. BRCA1 can form complexes with SW1/SNF to mediate chromatin remodelling and 
homologous recombination, while HDACs regulate the access of the SW1/SNF–BRCA1 complex to 
DNA. BRCA1 interacts with CHK1 and polo-like kinase 1 (PLK1) to regulate the G2/M and G1/S 
checkpoints (GADD45 might be involved, linking BRCA1 to the regulation of apoptosis). 

 

DNA 

FANCD2 

S-phase G2 arrest 

HR DNA repair 

Ubiquitination 

BRCA2/RAD51 

ATM/ATR 

Chk2 

BRCA1 

BRCA1/BARD1 

BASC complex 

Homologous recombination 

Swi/SNF - HDACs 

Chromatin remodelling 

Checkpoint regulation 

Chk1 

Rb 

p53 

MSH2-MSH6 

MRE11-RAD50-NBS1 

PLK1 
G2/M phase 

G1/S phase 



17 
 

The ER pathway is also regulated by BRCA1.  Several studies have shown the 

ability of BRCA1 to repress both oestrogen dependent and independent signalling 

(Xu et al. 2005; Zheng et al. 2001).  BRCA1 can exert its transcriptional repression 

activity on ER through interaction with several cofactors. The association between 

the N-terminal domain (aa 1-300) of the BRCA1 protein and the C-terminal 

activation domain of ERα seems to be responsible for the transcription repression 

activity of BRCA1 on ERα (Xu et al. 2005). This is confirmed by the fact that 

mutations occurring in the N-terminal domain of BRCA1 abolish or reduce the 

ability of BRCA1 to inhibit oestrogen dependent ERα signaling (Fan et al. 1999). 

However, some BRCA1 mutants with an intact N-terminal interaction domain show 

a reduced ability of inhibiting ERα transcription activity. This suggests that the C-

terminus of BRCA1 might be involved in the ligand independent transcription 

repression activity of BRCA1 exerted on ERα signalling (Fan et al. 2001). It has 

been suggested that the oestrogen independent repression of ERα transcription 

involves histone deacetylase activity, since the repression activity is reversed by 

treatment with the deacetylase inhibitor trichostatin A (Zheng et al. 2001). Another 

mechanism through which BRCA1 could mediate ERα repression is through its 

ability to repress and compete with the co-activator p300 for binding to the activating 

domain AF-2 of ERα (Fan et al. 2001). In a similar manner, cyclin D1 has also been 

reported to compete with BRCA1 for ER-α binding. As a result of cyclin D1 binding 

to the ERα activation domain, the BRCA1-mediated ERα transcriptional repression 

is inhibited (Wang et al. 2005). BRCA1 can induce ERα repression via its co-factor 

COBRA1. COBRA1 is a subunit of the human-negative elongation factor (NELF) 

which induces transcriptional repression by stalling the RNA Pol II at the promoter 

region (Aiyar et al. 2004). However, BRCA1 might also induce transcription 
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activation of ERα. Hosey et al. have shown that BRCA1 can interact with the Oct-1 

transcription activator factor and that both factors (BRCA1 and Oct-1) co-localize to 

the ERα promoter. Therefore they might act in concert to coactivate ERα (Hosey et 

al. 2007). This last property of BRCA1 is extremely relevant in the context of breast 

cancer aetiology. As discussed in section 1.2.1, ER status is a well-established 

prognosis marker for breast cancer. Breast cancers carrying a BRCA1 mutation 

and/or breast cancers with reduced expression of BRCA1 (sporadic breast cancers) 

are often associated with ER-negativity (Chen et al. 2009) and the link between the 

two pathways can be explained by the transcription activation activity of BRCA1 on 

ERα.  The link between BRCA1 defect and ERα-negativity can also explain the 

resistance of BRCA1 mutated cancers to antioestrogen drugs. As for antioestrogen 

drugs, BRCA1 status might also be a predictive factor for response to new developed 

drugs. Recent studies have shown a possible interaction between BRCA1 and the 

polycomb protein EZH2 (Gonzalez et al. 2009). EZH2 plays a crucial role in breast 

carcinogenesis (see section 1.5 and 1.7.2) and it has been proposed to be a good 

therapeutic target.  Understanding the interplay between BRCA1 and EZH2 might be 

useful in developing new therapeutic drugs and/or response predictors. The possible 

interaction between BRCA1 and EZH2 will be discussed in chapter 4.  

 

1.3 Breast cancer is a heterogeneous disease 

  According to the histological grading system, invasive ductal carcinomas 

(IDCs) are classified into three distinct groups:  low (grade I), intermediate and high 

(grade III) (Elston et al. 1991). Grade I tumours are well differentiated, while grade 

III tumours are poorly differentiated and grade II are intermediate. Several groups, 

using aCGH analysis, have  shown that specific tumour grades exhibit distinct 
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genomic aberrations (Roylance et al. 1999), and demonstrate that low grade tumours 

have less chromosomal aberrations compared to high-grade tumours. Grade I 

tumours, generally, display loss of 16q and gains of 1q, 16p, and 8q, while high-

grade tumours display high-level amplifications of 17q12 and 11q13 along with 

losses of 8p, 11q, 13q, 1p,and 18q; and gains of 1q, 8q, 17q, 20q, and16p  (Buerger 

et al. 1999; Roylance et al. 1999). Intermediate-grade tumours share genomic 

alterations of both low-grade or high-grade carcinomas. The evidence that, in the 

vast majority of the cases, low grade tumours display loss of 16q while high grade 

tumours do not (Roylance et al. 1999), supports a proposed hypothesis, according to 

which the majority of grade I carcinomas may not evolve to grade III tumours, but an 

early divergence gives rise to distinct sub-types of tumours (Buerger et al. 1999). 

This idea is further supported by the observation that, similarly to IDC, DCIS can be 

sub-divided in to low, intermediate and high grade and the genomic alterations 

associated with the three different DCIS subgroups are similar to the genomic 

alterations associated with the three IDC subgroups (Buerger et al. 1999; Ivshina et 

al. 2006; Ma et al. 2003; Sotiriou et al. 2003).  

The use of gene expression profiling has allowed further characterization of 

IDCs and has revealed the existence of five sub-types of breast cancer (Sorlie et al. 

2001; Sorlie et al. 2003). A decade ago, Sorlie et al. identified gene expression 

patterns that distinguish different breast tumour subclasses. Five different sub-types 

of IDCs have been identified: the luminal A and luminal B subtypes (both ERα-

positive), basal-like subtypes (ERα-negative), the HER2-positive and the normal-like 

sub-group (Constantinidou et al. 2010; Gatza et al.; Gluz et al. 2009; Haupt et al. 

2010; Keller et al. 2010; Lopez-Garcia et al. 2010; Perou et al. 2000). Each group is 

characterized by the expression and/or repression of a distinct group of genes. In 
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their original paper Perou et al. described the normal-like subtype as a sub-group 

characterized by fewer alterations compared to the other sub-groups and displaying 

high expression of the adipose and non-epithelial gene cluster, including FACL2, 

AKR1C1, PIK3R1 (Perou et al. 2000). Further studies, showed the existence of 

similarity between normal-like sub-type breast cancers and basal-like, consisting of 

low expression of genes such as ERα, GATA3, XBP1, TFF3, HNF3α and LIV1 

(luminal-like cluster). The immuno-histochemical analysis revealed that, similar to 

basal-like tumours, normal-like tumours are ER/PR/HER2 negative, but they lack 

expression of CK5/6 and EGFR typical of basal-like tumours. Moreover, these 

tumours have better prognosis compared to basal-like  (Hu et al. 2006; Rakha et al. 

2007a; Rakha et al. 2009b; Sorlie et al. 2001; Sorlie et al. 2003; Yu et al. 2004).  The 

HER2-positive subtype comprises tumours with high expression of genes from the 

ERBB2 amplicon at chromosome 17q, including ERBB2, GRB7 and TRAP100. This 

group contains both ER positive and ER negative tumours. The HER2/ER negative 

are more similar to the basal-like, while the HER2/ER positive are similar to the 

luminal B (Raica et al. 2009). The luminal subtypes (subtype A and B) are both ER-

positive and have high expression of genes including GATA3, XBP1, TFF3, HNF3α 

and LIV. Both luminal A and B tumours express hormone receptors (oestrogen and 

progesterone), but the luminal B sub-type is characterized by proliferative signatures 

(Cheang et al. 2009). The specific gene expression signature associated with luminal 

B tumours is enriched in genes that drive the proliferation of cancer cells, including 

CCNE1, MKI67 or MYBL2 (Sorlie et al. 2001). Functional and clinic-pathological 

studies have shown that the risk of relapse in women treated with hormone therapy is 

higher in women with a luminal B tumour compared to women with a luminal A 

tumour and that the luminal B sub-type is associated with loss of RB1 (Cheang et al. 
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2009; Herschkowitz et al. 2008). In addition, luminal B tumours are associated with 

poor disease-specific survival when treated with chemotherapy (Cheang et al. 2009; 

Sotiriou et al. 2003). Both,  luminal A and luminal B sub-types metastasized more 

frequently to bone and pleura (Rouzier et al. 2005; Smid et al. 2008; Sorlie et al. 

2001; Sotiriou et al. 2003). The basal-like subtype was first identified as a ER-

negative sub-group with high expression of genes including CK14, ANXA8, CX3CL1 

and TRIM29,  laminin, fatty acid binding protein 7 and is characterized by high p53 

mutation frequency (50% of basal-like breast cancer have p53 mutated) (Livasy et al. 

2007) and high proliferation index (67% of basal-like breast cancer have high Ki67) 

(Livasy et al. 2007; Perou et al. 2000; Sorlie et al. 2001; Sorlie et al. 2003; Sotiriou et 

al. 2003). Basal-like breast cancers are characterized by the presence of CK5/6, 

CK14, CK17, vimentin and EGFR (Rakha et al. 2009b). Basal-like breast cancers are 

associated with worse clinical outcome (Sotiriou et al. 2003) and are more frequent 

in younger women (Bauer et al. 2007). Further clinical studies have also shown that 

basal-like (as well as HER2-positive subtypes) metastasized more frequently to the 

brain (Rouzier et al. 2005; Smid et al. 2008; Sorlie et al. 2001; Sotiriou et al. 2003).  

Later evidence supports the idea that the basal-like group might represent a 

sub-group of triple negative breast cancers (ER-negative, PR-negative/HER2 

negative) (de Ruijter et al. 2011; Rakha et al. 2007b). According to de Ruijter et al., 

only a proportion of basal like breast cancers are triple negative and the triple 

negative breast cancer can originate from either non-basal breast cancer (N-BBC) or 

basal-like breast cancer (BBC). This hypothesis is supported by several other studies 

(Bertucci et al. 2008; Morris et al. 2007; Rakha et al. 2009b). Triple negative basal-

like breast cancers (TNBBCs) have high expression of Ki-67, vimentin, laminin and 

p53, and low expression of Bcl-2. This group of breast cancers also have higher 
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frequency of mutations affecting PTEN, the tumour suppressor retinoblastoma gene 

(RB1) and the KRAS oncogene (Hu et al. 2009; Rodriguez-Pinilla et al. 2007). Other 

features of TNBBCs include, high frequency of copy number alterations, high 

frequency of BRCA1 mutation/down-regulation and high expression of EGFR, CK5 

and CK6 (Collins et al. 2009; Turner et al. 2007). Whereas, the non-basal-like triple 

negative breast cancers (NB-TNBC) are mostly characterized by the presence of 

random mutations causing loss of HR expression (de Ruijter et al. 2011) (Figure1.3).  

 

 

Figure 1.3: Origin and related pathways of different types of triple-negative and basal-like breast 
tumours. The non-basal-like triple-negative breast cancers (NB-TNBC) may originate from non-basal-
like breast cancer (N-BBC), and the non-triple-negative basal-like breast cancer (NTN-BBC) as well 
as triple-negative basal-like breast cancers (TNBBC) may originate from basal-like breast cancers 
(BBC). Only the TNBBC subtype can be regarded as a homogeneous breast cancer subgroup. From 

(de Ruijter et al. 2011). 



23 
 

The origin and progression of the different sub-types of breast cancer is not 

known. To date, two possible hypotheses have been proposed to explain the 

heterogeneity of breast invasive carcinomas: the “cancer stem cell theory”, the 

“clonal evolution theory” (Campbell et al. 2007; Lindeman et al. 2010) . According 

to the “cancer stem cell theory”, a group of tumour cells with stem cell-like 

properties, called “cancer stem cells,” drive tumour initiation and progression. Due to 

their abilities of self-renewal and differentiation, cancer stem cells lead to the 

production of tumour cell types and generate tumour heterogeneity (Polyak 2007).  

According to the “clonal evolution theory”, tumour initiation occurs in one single 

random cell as a consequence of accumulated mutations  that provide selective 

growth advantages (Nowell 1976). As the tumour progresses, genetic instability and 

uncontrolled proliferation allow the accumulation of additional mutations and the 

acquisition of new characteristics (Campbell & Polyak 2007). Polyak suggested that 

breast tumour heterogeneity is probably caused by a combination of the two theories. 

Tumour initiation may take place in a normal mammary stem or progenitor cell 

which can undergo a combination of differentiation and clonal selection, driven by 

the micro-environment and mutations. As a result, a variety of genetically and 

developmentally distinct tumour cells are formed. Some differentiated cells may 

have less proliferative potential, some mutated cells may acquire self-renewal 

capacity, some a higher proliferation rate  and other cancer-promoting traits. 

Differences in microenvironment and/or specific mutations in cells with different 

molecular properties may drive different breast tumours (Polyak 2007).  

Several different studies have tried to clarify the origin and the heterogeneity 

of breast cancer using cells derived from human reduction mammoplasty (both non-

malignant and malignant).  Lim et al., analysing the expression of the surface 
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markers CD49f (integrin alpha 6) and EpCAM (epithelial-specific antigen), have 

identified and characterized three different sub-populations of cells: the 

CD49fhighEpCAM-population, CD49f+EpCAM+ population and the CD49f-EpCAM+ 

population. They have shown that the CD49fhighEpCAM-population represents the 

myoepithelial/basal cells, the CD49f+EpCAM+population represents the luminal 

progenitor cells and the CD49f-EpCAM+ population represent the mature luminal 

cells. A comparison with expression profile of the six tumour subtypes revealed that 

the mature luminal signature (CD49f-EpCAM+) was associated with the luminal A 

and luminal B subtypes, whereas the luminal progenitor signature (CD49f+EpCAM+) 

resembled the basal-like signature, which is in line with the bipotential progenitor 

theory (luminal progenitors giving rise to basal-like tumours). Lastly, the 

myoepithelial/basal cell signature (CD49fhighEpCAM-) was associated with the 

claudin-low and normal-like subtypes (Lim et al. 2009). The claudin-low sub-group 

is characterized by low gene expression of the tight junction proteins claudin 3, 4 and 

7 and E-cadherin, and enriched for tumour initiating cell (TIC) markers (i.e. 

CD44+/CD24-/low) (Herschkowitz et al. 2007; Prat et al. 2010). 

Cells derived from human mammary glands can be cultured in vitro and 

characterized using several different methods. However, due to different culture 

conditions, different groups often report different results (Ethier 1996; Speirs et al. 

1998; Stampfer et al. 2000; Taylor-Papadimitriou et al. 1993; Yaswen et al. 2002). 

Most studies report that cytokeratin 8 (CK8) and cytokeratin 18 (CK18) are luminal 

markers, while cytokeratin 5 (CK5) and cytokeratin 14 (CK14) are progenitor cell 

markers/myoepithelial cell markers. While CD10 has been described as specific 

progenitor myoepithelial cells, mucin 1 (MUC1) has been described as a marker of 

both luminal and progenitor cells (Stingl et al. 1998). Other markers, including the 
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epithelial cellular adhesion molecule (ESA), SMA, CK14, and integrin α6 (ITGA6) 

shows contradictory results (Polyak 2007). A study conducted by Zhang et al. 

showed that some morphologically distinct myoepithelial cells fail to stain for the 

classical myoepithelial marker SMA, along with other myoepithelial markers (CD10, 

CK14, CK5 and CK17) (Zhang et al. 2003). The loss of myoepithelial markers might 

be due to a dynamic and reciprocal interaction between epithelial and myoepithelial 

cells. However further studies are need to identify the exact mechanism. A few other 

studies have also shown that some of the specific epithelial markers have been found 

expressed in basal cells and vice versa (Gusterson et al. 2005; Malzahn et al. 1998). 

More agreement exists among markers used to identify breast stem cells (CD44+ / 

CD24- normally define a less differentiated phenotype typical of stem cells) (Al-Hajj 

et al. 2003; Polyak 2007). Markers that can be used for an accurate definition of stem 

cells, committed progenitors, and terminally differentiated luminal epithelial and 

myoepithelial cells are still not available. However, a subpopulation of cells situated 

in the basal layer of the TDLU has been defined as a stem cell population (Stingl et 

al. 2001). This population of cells comprises slowly dividing cells that have the 

ability of self-renewal and, in response to hormonal stimuli, give rise to transient 

populations that, following specific transcriptional programs, may differentiate into 

different epithelial lineages. Dontu et al. have shown that ERα-negative progenitors 

usually differentiate into myoepithelial cells, which form the basal layer of mammary 

ducts whereas other progenitors give rise to luminal epithelial cells, some of which 

appear are ERα-positive (Dontu et al. 2003a; Dontu et al. 2005; Pechoux et al. 1999). 

The stem/progenitor cell phenotype and the differentiation fate is maintained by a 

well-defined epigenetic program, whose deregulation may result in clonal 
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proliferation of transformed progenitor cells, also called tumour-initiating cells 

(TIC). (See section 1.6) 

 

1.4 Epigenetic alterations in breast cancer 

 “An epigenetic trait is a stably heritable phenotype resulting from changes in 

a chromosome without alterations in the DNA sequence” (Berger et al. 2009). 

Epigenetic changes consist of conformational modifications of the chromatin, 

modifications that consist of DNA methylation of CpG dinucleotide sequences found 

at gene promoters and post-translational modifications of histone proteins (Jovanovic 

et al. 2010; Watanabe et al. 2010). Epigenetic changes are particularly important 

during development, being responsible for the correct expression of tissue specific 

sets of genes (Jovanovic et al. 2010; Watanabe & Maekawa 2010). The mammary 

gland represents a good model for studying these changes, due to the fact that 

complete development and differentiation occurs post-natally (puberty pregnancy 

and involution) (Cowin & Wysolmerski 2010). Different changes in chromatin 

conformation correlates with different stages of mammary gland development 

(Berger et al. 2009), however how these changes are regulated throughout the 

development remains not fully understood. Factors including hormone changes, 

growth factors and extracellular matrix (ECM) components play an important role. 

For instance, it has been suggested that the ECM component laminin-1 can mediate 

epigenetic changes at the E-Cadherin promoter in human breast cancer cells, via 

reduction of Dnmt1 levels (Benton et al. 2009). Other factors involved in the 

regulation of epigenetic changes characterizing mammary gland development 

include transcription factors and non-protein-coding RNA (ncRNA) (Khalil et al. 

2009). Transcription factors such as YY1 and SNAIL are able to interact with 
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complexes involved in transcriptional repression, including the Polycomb repressive 

complex 2 (see section 1.5). These transcription factors target the repressive complex 

in certain sites of the genome and induce transcriptional repression. YY1 is known to 

be involved in β-casein gene repression and possibly other milk proteins, while 

SNAIL is known to be involved in E-cadherin gene repression and EMT processes 

(Herranz et al. 2008; Rosen et al. 1998; Thomas et al. 1999). ncRNAs also have been 

proposed to play a role in targeting chromatin modifying complexes to specific loci 

in the genome (Khalil et al. 2009).  

 Alterations of methylation of promoter CpG islands (either hypermethylation 

or hypomethylation) are associated with tumour initiation, progression, invasion and 

endocrine resistance (Cheng et al. 2008).  CpG island methylation has been proposed 

to be the “second hit” of the Knudson two-hit hypothesis and BRCA1 is a good 

example (Palii et al. 2007). In BRCA1 mutation carriers, silencing of the second wild 

type allele is often observed and linked to development and progression of breast 

cancer. Several different genes have been found to be hypermethylated and  silenced 

in breast cancer, including genes encoding for cell cycle regulation (i.e., p16INK4a and 

p14ARF), DNA repair (i.e., MLH1 and GST3), tumour suppression (BRCA1), tissue 

remodeling (i.e., E-cadherin), and hormone receptor (i.e., ESR1 and ESR2). 

(Birgisdottir et al. 2006; Reynolds et al. 2006; Tlsty et al. 2001). Interestingly, many 

of these genes are also hypermethylated in normal epithelium surrounding the 

tumour site (Dworkin et al. 2009). The observation that DNA hypermethylation has 

been reported in both pre-malignant lesions (atypical hyperplasia) and invasive 

breast carcinoma, suggests that it might be a potential marker for early detection and 

risk assessment.  The Ras-associated domain family member 1 gene (RASSF1A) is 

another example of a gene often hypermethylated and associated with breast cancer 
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development (Dworkin et al. 2009). RASSF1A is involved in the regulation of 

apoptosis, cell growth and microtubule dynamics during mitotic progression. 

Knockout experiments in mice have shown that RASSF1A-/- mice are prone to 

develop breast cancer (Dworkin et al. 2009). Analysis of DNA methylation patterns 

in normal and breast cancer derived tissue has shown that the promoter of the gene 

encoding for RASSF1A is often hypermethylated in breast cancer tissue (75% of the 

cases) (Dworkin et al. 2009). As for other cases, an increase in RASSF1A promoter 

methylation has been reported also in areas surrounding the lesions (Dworkin et al. 

2009; Visvanathan et al. 2006).   

Hypomethylation of promoter CpG islands has also been proposed to be 

involved in breast cancer (Jovanovic et al. 2010). The hypomethylation associated 

with the cancer phenotype is due to deficiency of the production of S-

adenosylmethionine (SAM), which is the methyl donor in the methylation reaction.  

The existence of an active demethylase has also been proposed and the T-G 

mismatch glycosylase, 5-methyl-CpG binding domain protein 4 (MBD4) is a good 

candidate.  MBD4 has recently been found to induce active demethylation of 

methylated CpG sites (Kim et al. 2009). As a consequence of demethylation, genes 

that are normally silenced, i.e. oncogenes, get reactivated. Hypomethylation has also 

been observed in repeat elements (e.g., Alu, LINE, and α satellites), contributing to 

reactivation of transposable elements, promotion of chromosomal translocation, 

deletion, and duplication and genomic instability (Ehrlich 2002). 

 Post-translational modifications of histone proteins has also been associated 

with several different human cancers including breast cancer, and with cancer stem 

cells (Widschwendter et al. 2007). Cancer stem cells have different gene activity, but 

the same DNA sequence, compared to normal stem cells and post-translational 
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histone modifications and DNA methylation could explain the different 

programming of these cells (Widschwendter et al. 2007). Following this general idea, 

Feinberg et al. have proposed an “epigenetic progenitor origin of human cancer” 

model(Feinberg et al. 2006). A polyclonal epigenetic disruption of stem/progenitor 

cells would be an early event in the non-malignant tissue. Later, other genetic and 

epigenetic lesions would lead to complete tumour formation (Feinberg et al. 2006). 

The epigenetic variation affecting progenitor cells would also be a good explanation 

for the  plasticity and heterogeneity of human cancer and particularly breast cancer 

(Feinberg et al. 2006). Histone modifications and their relevance in breast cancer will 

be further discussed in the next sections. 

 

1.5 Post-translational modifications and gene expression: Trithorax and 

Polycomb protein  

Chromatin is composed of a nucleosome core particle and a linker region in 

between nucleosomes (or inter-nucleosomal region) that joins adjacent cores.  The 

core particle is highly conserved between species and is composed of 146 base pairs 

of DNA wrapped 1.7 turns around a protein octamer composed of one histone H3-H4 

tetramer and two histones H2A-H2B (Campos et al. 2009). The core histones, H3, 

H4, H2A and H2B, are small, basic proteins highly conserved in evolution and the 

most conserved region of these histones is their central domain, while the N-terminal 

tails of each core histone are more variable and unstructured (Campos & Reinberg 

2009). The tails, particularly rich in lysine and arginine residues, represent the site of 

numerous post-translational modifications, including acetylation, phosphorylation, 

ubiquitylation, and methylation (Korber et al. 2010). The best characterized, and 

most stable, modifications are acetylation and methylation of lysine residues. Both 
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modifications influence gene transcription by either enhancing or inhibiting the 

accessibility of transcription factors to target loci (Korber & Becker 2010). While 

generally, acetylation is associated with open chromatin structure and active 

transcription, methylation can be associated with either an active or repressive 

chromatin structural conformation (Wang et al. 2009).  

The correct expression of genes involved in development and differentiation is 

maintained by the activity of two kinds of proteins: the Polycomb group (PcG) and 

the trithorax group (trxG). PcG and trxG proteins function in distinct multiprotein 

complexes that are believed to control transcription by changing the structure of 

chromatin, organizing it into either a 'closed' (PcG) or an 'open' (TrxG) conformation 

(McKeon et al. 1994; Pelegri et al. 1994; Pirrotta 1998). While methylation of 

histone H3 lysine 27, catalyzed by PcG is associated with transcriptional repression, 

methylation of histone H3 lysine 4, catalysed by the Trx proteins is associated with 

transcriptional activation (Pirrotta 1998; Whitcomb et al. 2007).Polycomb group 

(PcG) and trithorax group (trxG) proteins were discovered in Drosophila 

melanogaster as repressors and activators of Hox genes (Orlando et al. 1995; Pirrotta 

1998). Different classes of TrxG proteins have been identified and they seem to be 

recruited to their targets in different ways (Orlando & Paro 1995). One class of TrxG 

binds specific sequences of DNA. A second class of trxG comprises SET domain 

factors like Drosophila Trx and Ash1 and vertebrate MLL. This class of proteins 

methylate lysine 4 of histone H3 (H3K4). A third class of trxG comprises protein 

components of ATP-dependent chromatin remodelling complexes like the SWI/SNF 

or the NURF complexes. Despite the fact that many TrxG proteins have been 

identified, the precise mechanisms by which these proteins regulate transcription 

remain unclear. Moreover, it has been suggested that, in addition to chromatin 
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conformation modification, trxG proteins are able to recruit factors necessary for 

transcription elongation, and noncoding RNAs involved in gene regulation (Caldas et 

al. 1999; Mahmoudi et al. 2001; Mazo et al. 2007). 

In Drosophila melanogaster, polycomb proteins form 3 different complexes 

called Polycomb Repressive Complex 1 (PRC1) Plycomb Repressive Complex 2 

(PRC2) and PhoRC complex (Levine et al. 2002; Orlando & Paro 1995). In 

vertebrates two major complexes have been identified, PRC1 and PRC2 (Levine et 

al. 2002). The two complexes cooperate to maintain long term gene silencing. PRC1 

contains more than 10 subunits including the onco-protein BMI-1 and the 

heterochromatin associated (HPC) proteins (CBX2, CBX4, CBX7, and CBX8), 

HPHI-3, RING1-2 and SCML; components of this complex possess H2A-K119 

ubiquitin E3 ligase activity. PRC2 contains EZH2, EED, SUZ12 and RbAp48. EZH2 

is the active component of the complex and exerts specific histone methyltransferase 

activity toward Lys 27 of H3 and Lys 26 of H1 (Hansen et al. 2008). 

Trithorax and Polycomb proteins establish their role early during 

embryogenesis and are required for correct establishment of cell identity. In 

Drosophila melanogaster the two complexes work antagonistically via PRE/TRE 

(Polycomb responsive elements/ Thritorax responsive elements) to maintain 

active/silenced transcriptional states (Ringrose et al. 2007). No functional 

mammalian PREs/TREs have been identified yet. Lee et al., using genome-wide 

technique (ChiP arrays), have discovered that loci bound by one PcG protein (i.e. 

SUZ12) are highly conserved regions and they overlap with region of the vertebrate 

genome previously identified as highly conserved non-coding elements (HCNEs) 

(Lee et al. 2006). There are about 200 regions containing HCNEs, but their function 

is still unknown. Further studies will be required in order to prove and confirm that 
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these HCNEs correspond to PRE/TRE. Bracken et al., (Bracken et al. 2006) using 

expression profiling studies and ChIP-on-chip experiments have identified 43 PcG 

target genes whose expression is dependent on the PcG proteins. These targets 

include some known markers of bone, cartilage, fat and neuronal differentiation, 

such as BMP3, CRELD2, MDF1, THPO, OLIG2, CD4 and NOTCH4. The 

identification of these target genes still does not help in understanding the 

mechanism by which PcGs repress transcription during development/differentiation 

(Bracken et al. 2006). Two alternative models have been proposed: according to the 

first model, the two complexes are bound to their target genes, and upon induction to 

differentiate, both PRC1 and PRC2 are displaced by undefined mechanisms, leading 

to their de-repression. A second model derives from the observation that Polycomb 

proteins, in some cases, are bound to their target genes in undifferentiated cells, 

despite the gene being actively expressed. According to this alternative model, 

specific developmental signals could trigger the PcG-repressive capacity 

(Kuzmichev et al. 2005; Martinez et al. 2006a).  

PRC1 and PRC2 do not interact with each other but they are both required for 

transcriptional repression. The most accepted working model for PRC1/PRC2 in 

transcription repression is illustrated in figure 1.4. The PRC2 complex is responsible 

for specifically “marking” (histone trimethylation) target regions of the genome, 

which will be recognized by components of the PRC1 complex. It is not clear how 

the two complexes exactly mediate stable gene silencing, although a few hypotheses 

have been proposed, including direct inhibition of the transcriptional machinery by 

PRC1, PRC1-mediated ubiquitylation (Ub) of H2AK119, simply chromatin 

compaction which makes specific target region inaccessible to the transcription 

machinery and recruitment of DNA methyltransferases (DNMTs) by PRC2 to target 
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gene loci (Cao et al. 2005; Sparmann et al. 2006; Wang et al. 2004; Whitcomb et al. 

2007).  

The first step of the silencing process mediated by the two PRCs is the 

recruitment of PRC2 to target regions. The PRC2 complex is recruited to a specific 

chromatin domain through YY1, which is a transcription factor that binds a specific 

nucleotide sequences (CXGCCATXXXXGX); subsequently, DNMTs and HDACs 

are recruited to the complex to establish transcriptionally silenced states. Next, EZH2 

trimethylates Lys 27 of histone H3, through its SET domain, a mark that is 

recognized by the chromodomain of sub-units belonging to PRC1 (Cao et al. 2002; 

Czermin et al. 2002; Min et al. 2003).  

Figure 1.4: PRC1 and PRC2 induce transcriptional repression. PRC2 (Polycomb repressive complex 
2) initiation complex binds to PcG targets and induces EZH2-mediated methylation of histone 
proteins, primarily at lysine 27 of histone H3 (K27me3). PRC1 is able to recognize the trimethylated 
K27 marks through the chromodomain of Polycomb proteins. Interaction between the two complexes 
induces gene silencing. See text for more details. 
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The role of PcG proteins is not limited to early differentiation in early 

development. Several lines of evidence suggest that PcG proteins are important for 

cellular memory (the maintenance of a defined transcriptional state over many cell 

divisions), and are also involved in the regulation of the cell cycle (Martinez et al. 

2006b). The first evidence comes from a study involving Bmi1. The absence of Bmi1 

in primary embryonic fibroblasts impairs their progression into S phase and induces 

premature senescence (possibly due to the fact that the locus INK4a/ARF is a 

downstream target of Bmi1 (Jacobs et al. 1999)). Similar results were obtained with 

SUZ12, another component of PRC2. SUZ12 knockdown induces abrogation of 

H3K27Me3 marks with consequent impaired S phase progression (Aoto et al. 2008). 

In this study, it was unclear whether or not this defect in S phase progression was due 

to de-repression of a critical cell cycle inhibitory factor. Evidence showing a specific 

transcriptional regulation of EZH2 and EED by the pRB/E2F pathway suggests that 

EZH2 and EED have a role in the regulation of normal cell proliferation (Bracken et 

al. 2003). Moreover, both pRB and its upstream regulator p16 suppress EZH2 and 

EED transcription in non-proliferating cells (Bracken et al. 2003). In human cancers, 

inactivation of the pRB/E2F pathway which leads to increased E2F activity and 

deregulation of E2F target genes is a frequent event (Pasini et al. 2004a). In line with 

this observation, both EZH2 and EED are highly expressed in a variety of human 

cancers. However, specific deregulation of other  PcG proteins contribute to 

carcinogenesis (Bracken et al. 2003; Ding et al. 2006a; Pasini et al. 2004a; Pasini et 

al. 2004b). 

In terms of regulation of cell cycle, not all the PcG proteins have that same 

regulatory effect. This can be explained, in part, by the ability of PcG complexes to 

change in composition and, consequently, in their target specificity (Kuzmichev et al. 
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2005). Indeed, in humans several PcGs orthologues are present and the PcG complex 

composition varies in relation to the type of tissue. For instance, CBX7 acts like 

BMI1 by inhibiting the transcription of INK4a/ARF. However, CBX7 does not 

interact or co-localize with BMI1 or HPC2, suggesting that the two proteins function 

independently from each other (Gil et al. 2004). Ectopic expression of BMI1 rescues 

CBX7 knockdown-induced premature senescence in mouse embryonic fibroblast; 

and ectopic CBX7 expression rescues premature senescence in BMI1-/- fibroblasts, 

suggesting that CBX7 and BMI1 might regulate the same loci (e.g. INK4a/ARF) as 

part of separate PRC1 complexes (Gil et al. 2004). 

 

1.6 Polycomb proteins and stem cell renewal 

Embryonic stem cells (ESCs) are characterized by an unlimited potential for 

self-renewal and the ability to differentiate into all kinds of somatic cell types. 

Multiple factors are required for maintaining the pluripotency of ESCs, including 

ESC-selective transcription factors such as Oct4, Nanog, and Sox2 and extracellular 

signaling molecules such as leukaemia inhibitory factor (LIF) and bone morphogenic 

proteins (Boiani et al. 2005). Recent studies have suggested that maintenance of 

ESCs pluripotency and their ability to differentiate under appropriate stimuli, involve 

histone modification mechanisms (Azuara et al. 2006; Bernstein et al. 2006a). The 

first evidence of the PcG involvement in ESCs biology came from genome-wide 

location analysis in murine ES cells showing that the Polycomb repressive 

complexes PRC1 and PRC2 associate with genes encoding for transcription factors 

with important roles in development, including  OCT4, SOX2, and NANOG (Boyer 

et al. 2006; Lee et al. 2006).  PcG deficient mice show stem cell defects, including 

hematopoietic stem cells, neuronal stem cells, cerebellar progenitor and ESCs 
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(Molofsky et al. 2003; O'Carroll et al. 2001; Park et al. 2003) Lessard et al., have 

shown that in mice lacking Rae28 and Bmi1, the self-renewal ability of 

hematopoietic stem cells is impaired. Interestingly, excessive proliferation was 

observed in Eed-deficent and in Eed/Bmi1-deficent primitive hematopoietic cells 

(Lessard et al. 1999) indicating that Eed is involved in the negative regulation of the 

pool size of lymphoid and myeloid progenitor cells. 

It has been proposed that key lineage-control genes in ESCs are marked with a 

unique combination of activating and repressive histone modifications (Azuara et al. 

2006). Data obtained from quantitative chromatin immunoprecipitation (ChIP) 

analysis have shown that in ESCs a number of critical transcription factors for cell 

lineage determination (i.e. Sox1, Nkx2-2, Msx1, Irx3, and Pax3) are not expressed 

and their promoters are associated with both activating (H3 Lys-9 acetylation and H3 

Lys-4 methylation) and repressive (H3 Lys-27 methylation) histone modifications. 

This combination has been reported by several studies and has been called “bivalent” 

histone modifications (Azuara et al. 2006; Bernstein et al. 2006a). Bivalent histone 

modification patterns change during the differentiation from ESCs into a neuronal 

cell lineage:  neuron-specific gene promoters will maintain H3 Lys-4 methylation, 

whereas H3 Lys-27 methylations will disappear. Promoters of other genes that 

remain silent in differentiated neurons lose H3 Lys-4 methylation and retain H3 Lys-

27 methylation. In conclusion, when ESCs receive appropriate stimuli to differentiate 

into a particular lineage, the repressive histone modifications are removed from the 

required lineage-control gene loci, while the activating modifications are maintained. 

However, some promoters of multiple lineage-control gens do not show the bivalent 

histone modifications (i.e. Myf5 and Mash1) (Williams et al. 2006). Myf5 is a 

member of MyoD transcription factor family and regulates muscle lineage 
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determination (Pownall et al. 2002),  Mash1 is a critical transcription factor for the 

production of neural precursor cells (Williams et al. 2006). In addition, some key 

developmental genes in ESCs appear to be marked only by H3 Lys-4 methylation, or 

they do possess neither H3 Lys-4 methylation nor H3 Lys-27 methylation (Williams 

et al. 2006). Therefore, it has been proposed that only a subset of key developmental 

genes and lineage-control genes in ESCs display the bivalent chromatin marks, while 

other lineage-control genes could be regulated by different mechanisms. However, it 

remains unclear why only a subset of lineage-control genes exhibit bivalent histone 

modification marks while others exhibit a different regulation mechanism (Pownall 

et al. 2002).  

 

1.7 Polycomb proteins and Breast cancer 

 Members of both polycomb repressive groups, PRC1 and PRC2, are often up-

regulated in breast cancers and have been showed to play a crucial role in breast 

tumourigenesis and progression (Pasini et al. 2004a; Pasini et al. 2004b; Raaphorst 

2005). Two classical examples of PcG proteins upregulated in breast cancer are 

BMI1 and EZH2.  However, many other components of polycomb repressive 

complexes, including the CBX proteins, are emerging as key regulators of neoplastic 

transformation in several different human cancers.  
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1.7.1 BMI1 

BMI1, the main component of PRC1, was first identified as a factor 

cooperating with the oncogene c-myc in inducing tumourigenesis (Haupt et al. 1993). 

Normal levels of BMI1 in normal cells prevent premature expression of the 

INK4a/Arf locus. It has been shown that BMI1 physically interacts and binds the 

INK4a locus both in vitro and in vivo (Bracken et al. 2009; Bracken et al. 2007). The 

repression of the INK4a locus by BMI1 is dependent on the continued association of 

the EZH2-containing PRC2 complex (Bracken & Helin 2009; Bracken et al. 2007; 

Kheradmand Kia et al. 2009). The levels of EZH2 are down-regulated in senescent 

and stressed cells, this causes loss of H3K27me3 followed by displacement of BMI1 

and activation of INK4A transcription, resulting in senescence (Bracken et al. 2007). 

Over-expression of BMI1 can keep the INK4A/Arf locus silenced, causing 

alterations in cell cycle checkpoint control  and apoptosis, leading to transformation 

(Shakhova et al. 2005). Studies conducted with breast cancer cell lines, along with 

transgenic mice, have shown a correlation between BMI1 over-expression and a 

highly aggressive phenotype, including increased metastasis to liver, spleen and 

brain (Hoenerhoff et al. 2009). The increase in metastasis due to over-expression of 

BMI1 has been reported in other human cancers, including gastric cancer, melanoma, 

non-Hodgkin B-cell lymphoma, oral squamous cell and nasopharyngeal cancers 

(Huang et al. 2007; Kang et al. 2007; Mihic-Probst et al. 2007). Hoenerhoff et al. 

have shown that BMI1 is able to contribute to breast cancer formation and 

progression via an INK4A-independent mechanism. According to their data, BMI1 

collaborates with H-RAS to induce neoplastic transformation, through the de-

regulation of multiple growth regulatory pathways, including the AKT and 

MAPK/ERK pathways, and cell cycle mediators CDK4 and cyclin D (Datta et al. 
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2007; Hoenerhoff et al. 2009). In several human cancers, such as leukaemia and 

hepatocellular carcinomas, BMI1 over-expression is associated with a poor prognosis 

and reduced overall survival (Kang et al. 2007; Kim et al. 2004b). In breast cancer, 

however, a few studies have shown that over-expression of BMI1 is associated with 

good prognosis and increased overall survival (Choi et al. 2009). A possible 

exaplanation comes from the fact that BMI1 expression is associated with ER-

positivity (Arnes et al. 2008; Choi et al. 2009). Pietersen et al. have shown that the 

level of BMI1 is particularly high in luminal A breast cancers compared with basal-

like cancers and they proposed that ER-positive cells derive a selective advantage 

from BMI1over-expression (Pietersen et al. 2008). In the normal mammary gland 

ER-positive cells undergo growth arrest. When cells derived from human mammary 

glands are grown in vitro, they normally lose the expression of ER and stop growing 

(Dontu et al. 2003a; Dontu et al. 2003b). However, Duss et al. have shown that over-

expression of BMI1 in these cells prevents their growth arrest and allows for ER 

expression (Duss et al. 2007). In addition, when these cells (over-expressing BMI1 

and ER-positive) were injected into immune-compromised mice they gave rise to 

tumours resembling human adenocarcinomas. However, the metastasis derived from 

these primary tumours showed a squamous phenotype, which is rare in human breast 

cancers.  

It would be interesting to determine whether other components of the PRC1 

have the same effect on normal mammary gland cells. This idea has been further 

investigated in this thesis and results will be presented in chapter 6.  
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1.7.2 EZH2  

EZH2 is the catalytic component of PRC2 (Figure 1.5). EZH2 tri-methylates 

histone H3 lys 27 (H3K27), an activity that requires the presence of two additional 

members of PRC2, embryonic ectoderm development (EED) and suppressor of zeste 

12 (SUZ12) (Kuzmichev et al. 2005).  

 

 

 

Figure 1.5: Schematic representation of EZH2 protein domains. EZH2 contains 4 conserved regions: 
Domain I, Domain II, a cysteine-rich amino acid stretch and a carboxy-terminal SET domain. The 
SET domain is linked to HMTase activity. Domain I and Domain II are involved in interaction with 
several different factors (see text for details). 

 

The H3 tri-methylation activity of EZH2 is also modulated by other 

interacting factors, including the jumonji AT rich interactive domain 2 (Jarid2), PHD 

finger protein 1 (PHF1), which specifically stimulates H3K27 trimethylation and 

sirtuin 1 (SIRT1) (Kuzmichev et al. 2005; Sarma et al. 2008). However, EZH2 also 

participates in transcription repression also via interaction with other factors (e.g. 

methyltransferases and deacetylases). EZH2 can bind DNA methyltransferases 

(DNMT1, DNMT3A, and DNMT3B) inducing promoter methylation and gene 

repression (Rush et al. 2009; Vire et al. 2006). EZH2 can also recruit histone de-

acetylases (HDAC) (van der Vlag et al. 1999). De-acetylation has been suggested to 

be an additional mechanism for the transcriptional repression function of PRC2. The 

α-globin locus appears to be normally repressed, hypoacetylated and enriched in 

1 159 217 605 611 731 329 522 

Domain I Domain II Cys SET 
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H3K27me3 in non-erythroid cells. When these cells are treated with the HDAC 

inhibitor ,trichostatin A, the  α-globin gene is re-expressed and PRC2 depleted (van 

der Vlag & Otte 1999), suggesting a possible role of acetylation in gene repression. 

Many genes can be re-activated by silencing H3K27me3 without interfering with the 

level of DNA methylation (Tan et al. 2007). Why some genes are regulated by 

histone methylation activity only while others require additional modifications, such 

as DNA methylation and de-acetylation is unknown. Understanding the multiple 

ways by which EZH2 is involved in epigenetic modification/gene silencing is 

important for clarifying how its de-regulation can induce tumourigenesis.   

 EZH2 is frequently over-expressed in many human cancers, including, breast 

cancer, prostate cancer, colon cancer, Lymphomas and hepotacellular carcinomas 

(Ding et al. 2006b; Dukers et al. 2004; Kleer et al. 2003; Raaphorst et al. 2000; Sudo 

et al. 2005). In clinically localized prostate cancer, as well as in breast cancer, EZH2 

over-expression has been found to be a predictive marker for poor outcome (Kleer et 

al. 2003). In breast cancer an increase of the EZH2 mRNA transcript and protein 

level is already detected in DCIS and comparison analysis between normal breast 

and various stages of malignant breast lesions have shown that the level of over-

expression is proportional to the malignant stage. In other words, the more advanced 

and aggressive the disease is, the higher the EZH2 expression (Kleer et al. 2003). 

The highest level of EZH2 protein is detected in high grade ER/PR-negative 

tumours.  High EZH2 expression is associated with a shorter disease-free interval 

after initial surgical treatment, lower overall survival and high probability of disease-

specific death (Kleer et al. 2003). EZH2 protein over-expression is already detectable 

in DCIS, suggesting that misregulation of EZH2 might be one of the first step 

towards neoplastic transformation (Ding et al. 2006a).  This hypothesis is supported 
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by the fact that ectopic over-expression of EZH2 in normal mammary epithelial cells 

confers on them anchorage-independent growth capacity and cell invasion potential 

(Kleer et al. 2003). EZH2 de-regulation contributes to tumourigenesis via different 

mechanisms and influences several cellular pathways, including DNA repair, cell 

cycle control and proliferation (Cao et al. 2004; Kodach et al. 2010; Richter et al. 

2009; Zeidler et al. 2006).   

EZH2 (PRC2) can induce silencing of tumour suppressor genes (Kodach et 

al. 2010), either solely via tri-methylation of histone H3 or via a combination of 

activities, tri-methylation and DNA methylation. Suppression of tumour suppressor 

genes such as p16, CDKN1C (p57) and E-cadherin are good examples (Kotake et al. 

2007; Yang et al. 2009; Zhao et al. 2005).   

Several studies have reported that the over-expression of Ezh2 is associated 

with a more aggressive and undifferentiated tumour phenotype, not only in breast, 

but also in brain and bone (Crea et al. 2010; Puppe et al. 2009; Richter et al. 2009), 

supporting the idea that Ezh2 over-expression can enhance the development of 

undifferentiated highly proliferative tumours (Richter et al. 2009). As discussed in 

section 1.6, PcG protein play a crucial role in maintaining pluripotency and 

inhibiting differentiation of stem cells.  Genome-wide studies have shown that the 

expression signature of poorly differentiated tumours is very similar to the 

expression signature of stem cells (Bracken et al. 2006). In mammary epithelial cells, 

HOXA9 is a positive regulator of terminal differentiation and it has been proposed to 

be also a tumour suppressor gene. The up-regulation of PcG proteins EZH2 and 

SUZ12 causes down-regulation of HOXA9 expression and therefore inhibits terminal 

differentiation and promotes the maintenance of a progenitor-like/undifferentiated 

phenotype (Reynolds et al. 2006).  
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EZH2 over-expression can impair the homologous recombination (HR) 

process. In breast cancer cells over-expression of EZH2 is accompanied by a 

significant decrease in the number of RAD51 repair nuclear foci after induction of 

DSBs (Zeidler & Kleer 2006). Zeidler et al. have shown that in normal spontaneous 

immortalized breast cells, EZH2 over-expression causes a reduction in expression of 

RAD1 (along with other RAD51 paralogues involved in HR repair) and consequent 

aneuploidy.  

EZH2 over-expression can impair apoptosis. EZH2, as well as SUZ12 are 

downstream targets of Rb-E2F pathway (Cao & Zhang 2004), which is a pro-

apoptotic pathway acting either via p53 or activation of other target genes, including 

the BCL2 family members (Bim, PUMA and Noxa) (Hallstrom et al. 2008). The pro-

apoptotic activity of E2F can be altered in cancer in different ways: p53 deficiency, 

PI3K, MDM2 and HDAC defects (Zhao et al. 2005). Wu et al. showed that the 

activation of EZH2 by E2F1 inhibits E2F1-mediated apoptosis in cancer cells and 

this is achieved through epigenetic repression of Bim expression (Wu et al. 2010).  

EZH2 has a dual function in transcription: activation and repression. While 

the SET domain of EZH2 is involved in its repression activity, domain I is involved 

in its gene activation ability. Data obtained from two independent studies provide the 

evidences that EZH2 transcription activation is involved in breast cancer formation 

(Li et al. 2009; Shi et al. 2007). Two major pathways are often deregulated in breast 

cancer, the Wnt/β-catenin signalling pathway, which plays an important role in 

regulating cell proliferation and differentiation at several stages during mammary 

gland development, and the ER pathway, which has been discussed in section 1.1.1. 

Alteration of the Wnt/β-catenin signalling pathway has been linked to several 

different types of human cancers, including breast.  Disruption of the β-catenin 
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pathway induces mammary hyperplasia in mice (Li et al. 2009). Examples of genes 

often mis-regulated in breast cancer are c-myc and cyclin D and they are under the 

control of both ER and Wnt/β-catenin signalling (Li et al. 2009). Li et al., have 

shown that EZH2 physically interacts with β-catenin, inducing its nuclear 

accumulation in mammary epithelial cells and activation of the Wnt/β-catenin signal 

pathway. In line with these data, Shi et al. have proposed that EZH2 functions as a 

connector between the ER pathway and β-catenin pathway. EZH2 interacts with both 

ER and β-catenin enhancing the transcription and function of two common targets 

Cyclin D and c-myc. An additional connection between EZH2 and the Wnt/β-catenin 

signals derives from studies conducted in hepatocellular carcinoma. EZH2 has the 

ability to repress the expression of several antagonists of the Wnt/β-catenin (Cheng 

et al. 2010). 

To date, the most common mechanism by which EZH2 induces 

tumourigenesis in breast cancer is over-expression. However, other factors or 

modification can influence EZH2 oncogenic potential. A recent study has shown the 

existence of acquired EZH2 heterozygous missense mutation at amino acid Y641 

within the SET domain in lymphoma and myeloid neoplasms (Chase et al. 2011). 

Wild type EZH2 displays greatest catalytic activity for mono-methylation of H3K27 

and a weaker efficiency for the subsequent (mono- to di- and di- to trimethylation) 

reactions. Y641 mutants have a weak catalytic activity for the first methylation and a 

much stronger catalytic activity for the subsequent methylation. Therefore, the 

heterozygous Y641mutation, together with wild type EZH2, could enhance the 

catalytic efficiency of EZH2 in histone methylation (Chase & Cross 2011; 

Sneeringer et al. 2010). In addition, Chen et.al have shown the phosphorylation of 

EZH2 at position 350 is essential for its oncogenic function in prostate cells (Chen et 



45 
 

al. 2010). Lastly, EZH2 also forms cytosolic complexes and regulates actin 

polymerization in different type of cells, suggesting its involvement in cell adhesion, 

migration and metastatic potential (Su et al. 2005). These data suggest that EZH2 is 

an excellent therapeutic target candidate.  

In this thesis (Chapter 3 and 4), the effect of EZH2 knockdown, using 

shRNA, has been investigated in several different type of breast cancer cell, in order 

to clarify whether different type of cells respond differently to EZH2 silencing and to  

identify which factors might induce a different response.  

 

1.7.3 CBX proteins 

CBX proteins are chromodomain-containing proteins, evolutionarily related 

to the Drosophila HP1 (dHP1) and Pc (dPc) proteins that are involved in regulation 

of heterochromatin, gene expression, and developmental programs (Kingston et al. 

1996). Both heterochromatin protein (HP1) and polycomb protein (Pc) recognize 

repressive marks such as trimethylated Lys-9 and Lys-27 on histone H3, via their 

chromodomain. Eight homologous CBX proteins have been identified in Humans: 

three dHP1 homologues (CBX1, CBX4 and CBX5) and five dPc homologues 

(CBX2/M33, CBX4/Pc2, CBX6, CBX7 and CBX8/Pc3). However, the binding 

specificity and function of the human homologues, CBX1–8 is not fully understood 

(Jacobs et al. 2002; Simon 2003; Simon et al. 2002; Whitcomb et al. 2007). 

Crystallography studies, conducted by Fischle et al., have shown that HP1 

preferentially bind to methylated Lys9 on Histone H3, while Pc proteins 

preferentially bind to methylated Lys27 on histone H3 (Fischle et al. 2003). This is in 

line with fact that the five human homologues of Pc (CBX2, 4, 6, 7 and 8) belong to 



46 
 

the PRC1, which is the complex responsible for recognizing and binding H3K27me3 

marks for transcription repression. A recent study conducted by Kaustov et al., 

showed that the human HP1 homologs CBX1, -3, and -5 preferentially recognize 

H3K9me3 in a manner similar to their dHP1 counterpart and show strong affinity for 

the H3K9me3 markers. Chromodomains from the human Pc homologues showed a 

very low affinity for H3K9me3 and H3K27me3 peptides, and they do not seem to be 

able to distinguish well between the two marks. Kaustov et al. proposed the 

electrostatic surface of HP1 and Pc dictates the target specificity. CBX1, 3, and 5  

have a large electronegative peptide binding surface complementing perfectly the 

basic histone peptides, while the  CBX2, 4, 6, 7 and 8 have more hydrophobic 

surface, responsible for a less stable binding. The binding of CBX2 -8 to their targets 

may require other histone modification or modulators (Kaustov et al. 2011).  

CBX proteins have two well conserved domains, a C-terminal domain called 

“C-box” involved in interaction with other members of PRC1 and a N-terminal 

domain called Chromo-domain (chromatin organization modifier domain) involved 

in the interaction with trimethylated Lys27 of histone H3 tail (Jacobs et al. 2001; 

Lachner et al. 2001). Three caging aromatic residues necessary for Lys methylation 

recognition have been identified within the Pc chromodomain (Jacobs & 

Khorasanizadeh 2002), and a consensus sequence, ARKS, surrounding lys 27 of 

Hystone H3 (Jacobs et al. 2001). However, surrounding residues could also 

contribute to target selectivity and function (Fischle et al. 2003; Kaustov et al.; 

Vincenz et al. 2008).  Moreover, some CBX proteins have been shown to recognize 

and bind other modifications in vitro, including H3K9me3 and non-coding RNA 

molecules (Bernstein et al. 2006b). 
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Alterations of CBX protein expression and/or mutations have been associated 

with developmental diseases and cancer. CBX2 (Pc1), known as M33 in mouse, is 

involved in neoplastic transformation, abnormality in sexual development and an 

inherited disease called campomelyc syndrome (Biason-Lauber et al. 2009; Core et 

al. 2004; Gecz et al. 1995). CBX4 (Pc2) mutations cause de-repression of the proto-

oncogene c-myc, leading to neoplastic transformation (Satijn et al. 1997). CBX6 was 

first identified as a putative integral membrane protein interacting with neuronal 

pentraxin 1 and 2 and later classified as a Pc protein (Dodds et al. 1997; Gil et al. 

2004; Vincenz & Kerppola 2008) but very little is known about its function and its 

possible involvement in cancer. Of all CBX proteins, CBX7 is the most studied. 

CBX7 mis-regulation has been shown to be associated with different types of cancer, 

including prostate, colon and gastric. CBX7 controls cellular lifespan through 

regulation of both the p16(Ink4a)/Rb and the Arf/p53 pathways (Gil et al. 2004), 

leading to tumourigenesis (Bernard et al. 2005; Gil et al. 2004; Maertens et al. 2009; 

Mohammad et al. 2009; Pallante et al. 2008). CBX8 also has been suggested as an 

important regulator of cell proliferation, acting through repression of p16Ink4a and 

p19Arf in mouse cells, enabling the cells to bypass senescence and apoptosis under 

stress and oncogenic stimuli (Bardos et al. 2000; Dietrich et al. 2007; Kirmizis et al. 

2003). The role of CBX8 in both human and mouse fibroblasts has been investigated 

by Dietrich et al.. They showed that inhibition of CBX8 expression in mouse and 

human fibroblasts results in growth arrest, and ectopic expression of CBX8 bypasses 

stress-induced senescence in mice, suggesting a cell growth promoting function for 

CBX8. In addition, they showed that both CBX8 and BMI1 associate with the 

INK4A-ARF locus in human and mouse fibroblasts, and that BMI1 is dependent on 

CBX8 and viceversa for binding INK4A-ARF, suggesting that the chromodomain of 
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CBX8 alone is not sufficient for its binding to the INK4A-ARF locus, and that only 

when the two protein are bound together in a complex a correct conformation and 

stability is achieved. Upon the observation that downregulation of CBX8 leads to 

loss of proliferation and a decrease in cyclin A2 levels before a significant increase 

in p16INK4A levels, they suggested the possibility that CBX8 might regulate cell 

proliferation also through a pathway independent of INK4A-ARF (Dietrich et al. 

2007). This hypothesis was confirmed by gene expression profiling.  Of the 90 genes 

directly regulated by CBX8, at least 5 of them were candidate tumour suppressors 

(INK4A, MTUS1, PERP, GJB2/CX26 and SORBS1) (Dietrich et al. 2007). PERP is a 

target of p53 involved in p53-induced apoptosis, suggesting that CBX8 in mouse 

cells, could work both up- and down-stream of p53 (Attardi et al. 2000). The MTUS1 

gene is a candidate tumour suppressor involved in control of cell proliferation 

(Dietrich et al. 2007; Seibold et al. 2003) GJB2/CX26 belongs to the connexin family 

and a mediator of gap junctional intercellular communication (GJIC). GJB2/CX26 is 

often silenced by CpG methylation in breast cancer (Miyamoto et al. 2005) and its 

loss is associated with uncontrolled proliferation and cancer progression.  Lastly, 

SORBS1 has been found to be downregulated in prostate cancer (Vanaja et al. 2006).  

To date, the Dietrich et al. study is the only comprehensive CBX8 study 

conducted and it is based on experiments conducted in fibroblasts (both mouse and 

human). PRC1, as well as PRC2, is composed of several subunits and many other 

might be identified. It is likely that many combinations of subunits can associate with 

each other to form different functional complexes. Moreover, each subunit is 

expressed in a distinct set of cells and tissues, and the compositions of the complexes 

are therefore likely to vary depending on the cell type (Kerppola 2009). With this in 

mind, I have investigated the role of CBX8 in different types of human cells, two 
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immortalized non-tumourigenic breast epithelial cell lines and breast primary 

epithelial cells (chapter 5 and chapter 6).  

 

1.8 The use of different models for investigating breast cancer  

 The most used model for investigating breast cancer is represented by the use 

of established breast cancer cell lines. These cells have many advantages including 

easy propagation, easy genetic manipulation and reproduction of results. The cells 

can also be used for in vivo studies, since they can be grown as xenografts (Vargo-

Gogola et al. 2007). However, due to that fact that most of them have been 

propagated for many years, there are multiple variants of the same cell line and some 

of them have acquired a different phenotype. Results from a comprehensive study, 

including 51 different breast cancer cell lines, which was based on a comparison of 

gene expression profile and genomic alterations between breast cancer cell lines and 

breast tumours have shown that in many cases breast cancer cell lines have many of 

the recurrent abnormalities found in breast cancers (Neve et al. 2006). However, 

some important differences in terms of expression profile were found. For instance 

the remarkably strong difference in gene copy numbers observed between luminal 

tumours and basal-like tumours is lost when luminal breast cancer cells and basal-

like breast cancer cells are compared. Moreover, not all breast cancer sub-types were 

reflected in breast cancer cell lines classification. Neve et al., also described two new 

subtypes of basal-like cells, basal A and Basal B, referred only to established cell 

lines (Neve et al. 2006). The reason for the absence of a perfect match between 

breast cancer cell lines and tumours could be due to the fact that most established 

breast cancer cell lines do not derive from the primary tumour but from pleura 

effusion or an advanced breast cancer. One of the main limitations of the use of 
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breast cancer cell lines is the conditions used for growing the cells which is 

remarkably different from the breast microenviroment. The cells are grown on plastic 

and lack some of the important external factors, including stromal components which 

play a crucial role in tumour growth (Albini & Sporn 2007). Several culture methods 

have been developed in order to overcome some of these problems, including 3D 

culture (Dontu et al. 2003b; Dontu et al. 2005), non-adherent mammosphere culture 

(specific for propagation of self-renewal and progenitor cells) (Dontu et al. 2003b; 

Dontu et al. 2005)and co-culture with fibroblasts or macrophages (Tsutsui et al. 

2005). 

 A good alternative to the long-term culture of established breast cancer cell 

lines is represented by the use of cells derived from primary human breast tissues. 

Normal cells derived from reduction mammoplasty represent a useful method to 

study the contribution of different type of genes towards the development of breast 

cancer, since primary cells have an unaltered genotype. Several different culture 

methods have been developed in the past years (Emerman et al. 1990). However, in 

most of the cases only a small number of the original population of cells continues to 

grow and growth is normally limited to a certain length of time (cells normally stop 

growing after 5 or 6 population doublings). The use of extracellular matrices, 

including endothelial cell extracellular matrix, or the use of dishes coated with 

collagen gel, improve the growth and the attachment of primary cells (Berthon et al. 

1992; Ince et al. 2007). Another critical point is the manipulation of different types 

of cells will give different results and most growth media also induces the growth of 

fibroblast cells. A number of serum-free media have been developed in order to 

selectively grow mammary epithelial cells (Duss et al. 2007; Emerman & Wilkinson 

1990; Hammond et al. 1984; Ince et al. 2007; Stampfer & Yaswen 2000).  
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Duss et al. have developed a culture system model that combines the use of 

defined serum free media and growing cells as floating mammospheres, in order to 

favour the growth of mammary gland progenitor cells and to eliminate fibroblasts. 

The mammosphere approach was first developed by Dontu et al. and was especially 

designed for the enrichment for bipotent progenitor cells that are capable of 

differentiating into myoepithelial and luminal cells, with production of milk proteins 

by the latter after treatment with prolactin in three-dimensional Matrigel culture 

(Dontu et al. 2003b). 

Successfully growing and manipulating normal primary epithelial cells from 

reduction mammoplasty can be useful in shedding light on some controversies 

regarding the origin and the heterogeneity of breast cancers. While some ascribe the 

phenotypic heterogeneity of breast cancers to subtype-specific genetic and epigenetic 

alterations, others propose that breast cancer heterogeneity is also due to their 

derivation from a variety of distinct normal epithelial cell types (cell of origin theory)  

(Bocker et al. 2002; Dontu et al. 2003b; Keller et al. 2010; Welm et al. 2003). Ince et 

al. have shown that the use of chemically defined growth medium can enhance the 

growth ability of epithelial cells derived from reduction mammoplasties (Ince et al. 

2007). Moreover, different growth media can give rise to different populations of 

cells (Ince et al. 2007). Indeed, they showed that these cells, injected into 

immunocompromised mice, gave rise to two tumour phenotypes with distinct 

morphology, tumourigenicity and metastatic behaviour. Their observations are 

therefore in support of the cell of origin theory.  

Epithelial cells derived from reduction mammoplasty and cultured according to 

the Ince et al. protocol have been used in this thesis for the investigation of the 

involvement of CBX 8 polycomb protein in breast cancer (see chapter 6).   
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1.9 Aim and scope of the thesis 

 The overall aim of this thesis was to investigate the importance of alterating 

two polycomb proteins (EZH2 and CBX8) in breast cancer. For this purpose, breast 

cancer cell lines and breast primary epithelial cells derived from human reduction 

mammoplasty have been used.  

EZH2 is over-expressed in many type of human cancer, including breast (Cao 

et al. 2002; Chase & Cross 2011; Ding & Kleer 2006b; Kamminga et al. 2006; Kleer 

et al. 2003; Pietersen et al. 2008; Sudo et al. 2005; Wu et al. 2010; Zeidler et al. 

2005). In breast cancer, EZH2 is a good marker for aggressiveness and prognosis 

(Kleer et al. 2003) but its exact role in breast tumourigenesis and progression is not 

fully understood. EZH2 may represent a good therapeutic target candidate (Takawa 

et al. 2010), but the high heterogeneity of the disease has to be taken in account.  It is 

possible that even within a group of breast cancers over-expressing EZH2, only a 

fraction might benefit from the use of a therapeutic agent specifically designed to 

target EZH2 (Puppe et al. 2009). In order to gain insight in to what factors might 

influence the response of cancer cells to therapeutic agents targeting EZH2, the effect 

of EZH2 knockdown has been carried out in cell lines with different characteristics, 

and some neoplastic features, including proliferation, invasion ability and migration 

have been evaluated (chapter 3 and 4).   

 CBX8 acts as a cell proliferation promoting gene in mouse and human 

fibroblasts, but its role in human epithelial cells and its role in breast cancer is 

unknown (Dietrich et al. 2007). In mouse and human fibroblasts, ectopic expression 

of CBX8 causes repression of the Ink4a-Arf locus and bypass of senescence. In 

addition, CBX8 regulates a number of other genes important for cell growth and 

survival, therefore CBX8 promotes immortalization, cell proliferation and survival 
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(Dietrich et al. 2007).  According to Dietrich et al., CBX8 is an essential component 

of PRC1 complexes, and directly regulates the expression of numerous target genes, 

including the INK4A-ARF locus. In order to test whether CBX8 acts as a cell 

proliferation promoting gene in human epithelial cells and whether it is an important 

component of PRC1 in epithelial cells, CBX8 was ectopically expressed in MCF10A 

cells, normal human primary breast cells derived from reduction mammoplasty and 

B42CP cells. Several different in vitro assays were then used to evaluate the effect of 

CBX8 over-expression on specific cellular features (Chapter 5 and 6).  
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2 CHAPTER 2: MATERIALS AND METHODS 

2.1 Materials 

HsCD00045684, HsCD00079712, HsCD00079972, plasmids were obtained 

from the Harvard plasmID clone resource. Lentiviral vectors expressing shRNA-

EZH2 (IDV2LHS_17507) and the human GIPZ lentiviral shRNA control were 

obtained from Open Biosystems. pBABE puro HRas-V12  was obtained from 

Addgene. VSV-G (pVF11) construct, the packaging construct (pVF16), the lentiviral 

expression plasmid pSD69 were obtained from the Dr. R. Iggo group. 

All virus work was performed in Class II biosafety cabinets with appropriate 

additional safety measures determined by local regulations. Both solid and liquid 

waste was autoclaved before final disposal. 

MCF10A, MDA-MB-231, T47, 293T, PhoenixA, cells were obtained from 

ATCC. HCC1937-EV28 and HCC1937-BR69 cells were obtained from Dr. P. 

Harkin group. B42CP cells were obtained from Prof Riches. SNB19 cells were 

obtained from Prof Bredel group. Cell culture reagents were purchased from 

Invitrogen, Sigma and Lonza.  

Custom oligonucleotides were purchased from Invitrogen.  Gateway reagents 

were purchased from Invitrogen.  Plasmid DNA extraction kits (miniprep and 

maxiprep) were purchased from Qiagen. PCR reagents were purchased from NEB. 

Enzymes, buffers and DNA markers were purchased from NEB. Chemically 

competent cells were purchased from Invitrogen. DNA purification and gel 

extraction kit were purchased from Qiagen. Rapid DNA ligation kit and complete 

protease inhibitor were purchased from Roche. Mirus TransIT®-LT1 transfection 
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reagent was purchased from Cambridge Bioscience. All chemicals were purchased 

from Sigma (unless stated otherwise). HeLa nuclear extract was purchased from 

Millipore. ECL and protein assay kit were purchased from Pierce. Protein marker 

and PVDF membrane were purchased from GE healthcare. 0.45 µm filter were 

purchased from Elkay UK Ltd. Regular plates for tissue culture were purchased from 

Nunc/Thermo Fisher scientific. Ultra Low Attachment plates were purchased from 

Fisher. Primaria plasticware were purchased from BD Biosciences. Polyethylene 

terephthalate (PET) membranes were purchased from VWR. 

 

2.2 Methods 

2.2.1 Lentiviral vector production 

The gateway recombination cloning technique (Invitrogen) was used for 

lentiviral vector production (Figure 2.1). The technique relies on two major steps: 

1. Constructing an entry clone 

2. Constructing the expression clone. 

Full length cDNA of CBX7 (reference sequence NM_175709) and CBX8 (reference 

sequence BC009376) was used and derived from a HsCD00079712 and 

HsCD00079972 plasmid (from the Harvard plasmid clone resource) respectively.  
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Figure 2.1 Schematic representation of the Gateway cloning system. This cloning technology is based 
on the nature of site-specific recombination. The recombination between attR and attL sites results in 
attB sites that flank the DNA integrated in the expression clone. 
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2.2.1.1 PCR amplification of ORF 

Approximately 80 ng of plasmid DNA was used for each reaction; reactions were 

conducted in 50 µl total volume (1X PCR buffer, 0.25mM dNTPs, 2 µM Forward 

primer, 2 µM Reverse primer and 1.5 U of Taq DNA polymerase) in 0.2 ml thin wall 

PCR tubes (Axygen, cat # 321-02-051). The primer sequences were as follows: 

• attB1-CBX7-Forward:   

5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTGCCACCATGGG 
CCAGACTGGGAAGAA-3’ 

• attB2-CBX7-Reverse: 

5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCAGGGATTTCCA 
TTTCTCTTTCG-3’  

• attB1-CBX8-Forward: 

5’-GGGGACAAGTTTGTACAAAAAAGCAAGCTGCAACCATGGAG 
CTTTCAGCGGTGGG-3’ 

• attB2-CBX8-Reverse: 

5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCATCTTTTCTCTT 
TAAAAAAGCC-3’ 

PCR was conducted on a BioRad thermocycler using the following condition: 

• Pre-heat lid at 100 °C 

• Initialize: 98 °C for 30 seconds 

• Cycle of 25 repeats: 

o Denaturing: 98 °C for 15 second 

o Annealing: 54 °C for 15 seconds 

o Extending: 72 °C for 1 minute 

• Final extension: 72 °C for 10 minutes 

PCR products were stored at -20 °C. 
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2.2.1.2 Agarose gel electrophoresis    

A 0.8% agarose gel was made by adding 0.4 g agarose (Sigma, cat# A9539) 

to 50 ml TBE (Tris-Borate-EDTA) running buffer along with 1µL of 10 mg/mL 

ethidium bromide and heated in microwave. After 15-20 minutes gel was poured into 

mould; more buffer was added on top before samples were loaded. 0.8 µl of 6X blue 

loading buffer (NEB, cat # N3232S) was added to each sample. 5 µl of PCR products 

were loaded (together with) plus 5 µl of 1 Kb ladder (NEB, cat # N3232S). The gel 

was run at 95-100 V for about one hour and then the DNA visualized under 

transilluminator light and digital image captured (Syngene Genetools software). 

 

2.2.1.3 PCR product purification 

40 µl of PCR products were loaded onto 0.8% low melting agarose gel and 

run at 90 V for about one hour. The correct products were visualized using a 

transilluminator and the products were then cut out of the gel using a clean scalpel 

and transferred into 1.5 ml eppendorf tubes. QIAquick Gel Extraction Kit (Qiagen, 

cat # 28704) was used to purify the PCR products. Briefly, 3 volumes of QG buffer 

was added to 1 volume of gel and incubated at 50 °C for 10 minutes (or until the gel 

was completely dissolved). One volume of isopropanol was subsequently added and 

the mixture was transferred to a QIAquick column. The column containing the mix 

was placed in a 1.5 ml eppendorf tube and centrifuged at 13000 rpm for 1 minute. 

Afterwards, the column was washed twice, once with QC buffer and once with PE 

buffer. The DNA was eluted using 35 µL of EB buffer. 3 µL of elution product was 

used for quantification of DNA using a spectrophotometer (Nanoview). 5 µl was 

loaded onto 0.8% agarose gel to confirm the size of purified product. 
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2.2.1.4 Constructing the entry clone – BP Reaction 

Entry clones were prepared following the BP reaction protocol (Invitrogen). 

50 fmol of PCR product and 100 ng of donor vector (pDONR201) were used to carry 

out the BP reaction. 2 µl of BP Clonase™ II enzyme mix were added to the reaction 

mixture followed by incubation at 25 °C for 5 hours; the reaction was stopped by 

adding 1 µl of Proteinase K and incubation at 37 °C for 10 minutes. The BP reaction 

was either stored at -20 °C or used for transformation of competent cells.  

 

2.2.1.5 Constructing the expression clone – LR reaction 

Expression clones were prepared following the LR reaction protocol 

(Invitrogen). The destination vector used was the plasmid pSD69, a construct 

containing the human PGK promoter, the Gateway attR cassette, the mouse PGK 

promoter and the puromycin acetyltransferase gene. 120 ng of destination vector 

pSD69 was combined either with 154 ng of entry clone containing CBX6, or 200 ng 

of entry clone containing CBX7 or 219 ng of entry clone containing CBX8. The BP 

reaction was carried out in 10 µl total volume, containing 2 µl of LR Clonase ™II 

enzyme mix. The samples were incubated at 25 °C for 4 hours and the reaction was 

stopped by adding 1 µl of Proteinase K and incubation at 37 °C for 10 minutes. The 

LR reaction was either stored at -20 °C or used for transformation of competent cells.  

 

2.2.1.6 Transformation of competent cells 

1 µl of each BP or LR reaction was used to transform 50 µl of One Shot® 

chemically competent E. coli. Competent cells plus DNA were incubated on ice for 

30 minutes, followed by heat-shock at 42°C for 30 seconds. 250 µl of S.O.C. 
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medium was then added and incubated at 37°C for 1 hour with shaking. 50 µl and 

100 µl of each transformation were plated onto selective plates and grown overnight 

at 37 °C. 100ng of pUC19 DNA was used as a control for transformation efficiency.  

The following day plates were checked for colonies. An average of 12 colonies per 

plates were picked and grown overnight in LB broth containing the appropriate 

antibiotic for selection. 

 

2.2.1.7 Extraction of plasmid DNA 

Spin miniprep kit (Qiagen, cat # 27104) was used for plasmid DNA 

extraction which involves an alkaline/ SDS procedure and the use of silica membrane 

columns that bind plasmid DNA. 3 mL of overnight bacteria culture was centrifuged 

at 13000 rpm for 5 minutes using a microcentrifuge. The media was aspirated and the 

bacteria pellet resuspended in 250 µL of resuspension buffer, containing RNase A, 

followed by 250 µl of Lysis buffer and gently mixed. After 5 minutes incubation at 

room temperature 250 µl of precipitation buffer was added and the samples were 

centrifuged at 13000 rpm for 10 minutes. The supernatant, containing the plasmid 

DNA, was then transferred to the silica membrane column and centrifuged for 30-60 

minutes. In order to remove contaminants, the column was washed twice with 

washing buffer and the DNA was eluted in 50 µl of elution buffer.  3 µl of elution 

product was used for quantification of DNA using a spectrophotometer (Nanoview). 

 

2.2.1.8 Restriction enzyme digestion of plasmid DNA 

In order to identify the plasmid containing the correct insert, a restriction 

enzyme analysis was performed. 250 ng of plasmid DNA was digested in 20 µl total 
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volume reaction, containing 1X buffer, 1X BSA (when required) and 0.5 µl of 

restriction enzyme. After 1.5 hours of incubation at 37 ºC, 5 µl of reaction was 

loaded onto a 1% agarose gel and fragments were separated by electrophoresis. The 

DNA fragments were visualized under transilluminator light and a digital image was 

captured (Syngene Genetools software). 

 

2.2.1.9 DNA Sequencing 

600ng of plasmid DNA along with 10 µl of 3.2 µM primer was sent for 

sequencing to the DNA sequencing Services, University of Dundee. Samples were 

processed/ sequenced using Applied Biosystems Big-Dye version 3.1 on an Applied 

Biosystems model 3730 automated capillary DNA sequencer. 

The primers sequences were as follows: 

For the entry clone 

• OXS4_pENTR201seq_forward: 

5’-TCGCGTTAACGCTAGCATGGATC-3’ 

• OXS5_pENTR201seq_reverse: 

5’-GTAACATCAGAGATTTTGAGACAC-3’ 

For the expression clone 

• OSD48seq: 

5’-CTGTGACCGAATCAC-3’ 

• OSD49seq: 

5’-GCGTAAAAGGAGCAACATAG-3’ 
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2.2.2 Large scale plasmid DNA extraction – Maxiprep 

EndoFree Plasmid Maxi Kit (Qiagen, cat # 12362) was used for large scale 

plasmid DNA extraction. 100 mL of overnight bacteria culture was centrifuged at 

6000 x g for 15 minutes at 4ºC using a Beckman J2-MC centrifuge. The media was 

aspirated and the bacteria pellet resuspended in 10 mL of resuspension buffer, 

containing Rnase A, followed by 10 ml of Lysis buffer and gently mixed. After 5 

minutes incubation at room temperature 10 mL of pre-chilled neutralization solution 

was added and gently mixed. The lysate was then cleared using QIA filter Maxi 

Cartridge: lysate was added to the cartridge and incubated at room temperature for 10 

minutes. The cap from the cartridge outlet nozzle was then removed, the plunger was 

inserted and the lysate was filtered in a clean 50 ml tube. 2.5 ml of Endotoxin 

removal buffer was added followed by 30 minutes incubation on ice. Meanwhile 10 

ml of equilibrating solution was used to equilibrate the Qiagen-Tip (anion-exchange 

column where plasmid DNA selectively binds under appropriate low-salt and pH 

conditions). The clear lysate was poured into the equilibrated Qiagen-Tip added and 

allowed to enter the resin by gravity flow. In order to remove contaminants, the 

column was washed twice with wash buffer and the DNA was eluted in 15 ml of 

high salt elution buffer.  DNA was then concentrated and desalted by isopropanol 

precipitation and collected by centrifugation; 10.5 ml of room temperature 

isopropanol was added to the DNA and centrifuged at 15000 x g for 30 minutes at 4 

ºC. The supernatant was then gently removed and the DNA pellet was washed with 5 

mL of 70% ethanol and centrifuged at 15000 x g for 10 minutes. Pellet was air dried 

at room temperature for 15 minutes and resuspended in either 120 µl of buffer TE or 

120 µl dH2O. 3 µl of elution product was used for quantification of DNA using a 

spectrophotometer (Nanoview). 



63 
 

2.2.3 Lentivirus production 

24 hours prior to transfection, 4.0 x 106 293T cells were seeded in 10 cm 

dishes; Mirus TransIT®-LT1 transfection reagent (Cambridge Bioscience, cat # MIR 

2300) was used for transient transfection of the cells, at a ratio 1:3 (DNA:LT1). On 

the day of transfection the growth media (DMEM, 10%FBS) was changed and the 

transfection mix was prepared as follows (see also table 2.1):  for each plate 2.1 µg of 

VSV-G (pVF11), construct providing the viral coat, 6.3 µg of packaging construct 

(pVF16), and 6 to 10 µg of viral expression construct (depending on the size of the 

plasmid) were mixed together. In a separate tube an appropriate amount of Mirus 

LT1 reagent was gently mixed with 1.5 ml of serum free OPTIMEM and incubated 

at room temperature for 20 minutes. The DNA transfection mix was then added to 

the OPTIMEM-LT1 solution and incubated for 30 minutes at room temperature; the 

OPTIMEM-LT1-DNA solution was then added dropwise to the cells. The media was 

changed 6 hours later. 24 hours post-transfection the media was removed and 

replaced with 4 ml, for each plate, of fresh DMEM, 2% FBS). Media containing 

newly produced virus was collected at 48 and 72 hours post-tranfection, polybrene 

(SIGMA, cat # H9268) at 8 µg/ml final concentration was added and filtered with 

0.45 µm filter (Elkay UK Ltd., cat # E25-PV45-50S). A small amount of virus was 

kept at 4 °C for titration, while the rest was aliquoted into cryovials and stored at       

-80°C. 
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Table 2.1 Transfection mixture components for lentivirus production. 

 

2.2.4 Lentiviral infection 

24 hours prior to infection, an appropriate number of cells were seeded in 10 

cm dishes, usually 5x105 cells. Vials containing lentivirus, stored at -80 °C, were 

thawed at 37 °C and the media aspirated from the plates containing the cells and 

replaced with the lentivirus solution. After 4 to 6 hours of incubation at 37 °C the 

lentiviral solution was aspirated and replaced with fresh media. 48 hours post-

infection an appropriate amount of antibiotic (depending on cell type) was used to 

start antibiotic selection. 

Expression clone 

(E.C.) 

Plates 
pSD11 

(ul) 

pSD16 

(ul) 

E.C. (ul) 
Mirus 

LT1 (ul) 

DMEM 

(ml) 

pSD82 (ESR1) 1 2.1 6.3 7.8 48.5 1.5 

pSD83 (hTERT) 1 2.1 6.3 21.3 52.6 1.5 

pSD84 (BMI1) 1 2.1 6.3 7.1 46.6 1.5 

pSD69-EZH2 1 2.1 6.3 13.5 49.5 1.5 

pSD69-CBX6 1 2.1 6.3 17.0 47.2 1.5 

pSD69-CBX7 1 2.1 6.3 16.8 46.0 1.5 

pSD69-CBX8 1 2.1 6.3 7.3 47.0 1.5 

pSD3 (GFP) 1 2.1 6.3 6.0 43.1 1.5 

pGIPZmirEZH2 

(17507) 

1 2.1 6.3 11.7 53.6 1.5 

pGIPZmircontrol 1 2.1 6.3 9.5 53.6 1.5 
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2.2.5 Lentiviral titration 

24 h prior to infection cells were seeded in 6 wells plate (3x104 cells per 

well): 

1. Positive control (no lentivirus, no puromycin) 

2. Negative control (no lentivirus, puromycin) 

3. 10-3 dilution 

4. 10-2 dilution 

5. 10-1 dilution 

6. Undiluted 

On the day of infection a series of dilutions (from 1x10-1 to 1x10-3) were prepared 

using fresh media with 1X polybrene. Media was aspirated from the wells and 

replaced either with fresh media (wells number 1 and 2) or lentivirus dilution. Media 

was changed after 6 hours. Puromycin selection was started 2 days post infection. 48 

hours post-puro treatment the selection was checked and once it was established 

which lentivirus dilution killed 100% of the cells, the titre was calculated as follows. 

Titre (infectious particles/ml) =  

number of cells at infection (Cells/ml) X dilution factor  

 

2.2.6 Retrovirus production 

24 h prior transfection 2.5x106 Phoenix A cells were seeded in 10 cm dishes; 

Mirus TransIT®-LT1 transfection reagent (Cambridge Bioscience, cat # MIR 2300) 

was used for transient transfection of the cells, at a ratio 1:3 (DNA:LT1). On the day 

of transfection the growth media (DMEM, 10%FBS) was changed and the 
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transfection mix was prepared as follow: for each plate an appropriate amount of 

Mirus LT1 reagent (three times the amount of DNA) was gently mixed with 1.5 ml 

of serum free OPTIMEM and incubate at room temperature for 20 minutes. 6 to 10 

µg of retroviral construct (pBABE puro HRas - V12) was then added and gently 

mixed, followed by 30 minutes incubation at room temperature. The OPTIMEM-

LT1-DNA solution was then added dropwise to the cells. 24 hours post-transfection 

the media was removed and replaced with 4 ml, for each plate, of fresh DMEM, 10% 

FBS. Media containing newly produced virus was collected at 48 and 72 hours post-

tranfection, polybrene (SIGMA, cat # H9268) at 8 µg/ml final concentration was 

added and the virus solution was filtered with 0.45 µm filter (FISHER, cat # 

FDR050-400U). A small amount of virus was kept at 4 °C for titration, while the rest 

was aliquoted into cryovials and stored at -80 °C. 

 

2.2.7 Retroviral infection 

24 hours prior to infection, an appropriate number of cells were seeded in 10 

cm dishes, usually 5x105 cells. Vials containing retrovirus, stored at -80 °C, were 

thawed at 37 °C and the media aspirated from the plates containing the cells and 

replaced with the retrovirus solution. After 8 hours of incubation at 37 °C the 

retroviral solution was aspirated and replaced with fresh media. 48 hours post-

infection an appropriate amount of antibiotic (depending on cell type) was used to 

start antibiotic selection. 
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2.2.8 Cell culture 

2.2.8.1 Culture of cell lines 

Breast cancer cell lines MDA-MB-231, T47-D, the immortalized line 

MCF10A and packaging cell lines 293T and Phoenix A were grown in media 

according to ATCC instructions. MCF10A cells were grown in DMEM/F12 media 

(Invitrogen) supplemented with 5% Horse serum (Invitrogen), 20 ng/ml human 

recombinant EGF (Sigma), 0.5 µg/ml Hydrocortisone (Sigma), 100 ng/ml Cholera 

toxin (Sigma), 10 µg/ml Bovine Insulin (Sigma) and 1% Penicillin/ Streptomycin 

(Invitrogen). MDA-MB-231 and T47-D cells were grown in RPMI1640 media 

supplemented with 10% Fetal Bovine Serum (Invitrogen) and 1% Penicillin/ 

Streptomycin (Invitrogen). HCC1937 cells were grown in RPMI1640 media 

supplemented with 20% Fetal Bovine Serum (Invitrogen) and 1% Penicillin/ 

Streptomycin (Invitrogen). 293T and Phoenix A cells were grown in DMEM media 

containing 10% Fetal Bovine Serum and 1% Penicillin/ Streptomycin (Invitrogen). 

B-42CP cells were grown in MEGM (Lonza, cat. Number CC3150) containing 

growth supplements. SNB19 were grown in DMEM media containing 10% Fetal 

Bovine Serum. All cell lines were routinely maintained at 37 ºC in a humidified 

atmosphere in 5% CO2 and passaged using 0.25% Trypsin-EDTA every 2-3 days, 

depending on cell type growth rate. Cells were counted using a haemocytometer. 

2.2.8.2 Cell freezing and thawing 

Freezing: cell were suspended in freeze medium (growth media containing 

20% FBS + 10% FBS (Sigma, cat # D2650)) and frozen at -80 ºC using an 

isopropanol-filled cryo-freezing container (Nalgene). After 3 or 4 days cells were 

transferred to liquid nitrogen. Thawing: cells were warmed in a waterbath at 37 ºC 

and immediately resuspended in 5 ml of appropriate medium, centrifuged at 1200 
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rpm for 3 min then plated and grown at 37 ºC in 5% CO2. Medium was changed 24 

hours later.  

2.2.8.3 Puromycin kill curve 

1x105 cells per well were seeded in 6 wells plate with the appropriate growth 

media. The following day media was replaced with fresh growth media containing a 

range of antibiotic concentration, normally from 1.5 µg/ml to 4.0 µg/ml. Cells were 

monitored for about a week during which selective media was replaced every 2 days. 

The minimum antibiotic concentration to use was determined as the lowest 

concentration that kills 100% of cells. 

2.2.8.4 Culture of primary mammary epithelial cells 

Reduction mammoplasty tissue was obtained from Ninewells hospital, 

Dundee upon examination by a clinical pathologist and release, by them, for research 

use. Patients were free from observable disease, with no breast cancer family history 

and younger than 45 years of age. Ethical approval was gained from both the Tayside 

tissue bank and University of St Andrews (TBR83, MD4357). 

Primary human mammary epithelial cells (HMECs) and breast primary 

epithelial cells (BPECs) were prepared following established protocols (Duss et al., 

2007 and Ince et al., 2007). Briefly, the reduction mammoplasty samples were 

minced in a sterile biosafety cabinet using sterile scalpel blades and digested 

overnight at 37°C in DMEM/F12 media supplemented with Collagenase A (Roche 

cat. # 1088793) at 1mg/mL final concentration. The resulting multicellular structures 

were processed either following Duss et al. protocol to produce human mammary 

epithelial cells HMEC, or Ince et al. protocol to produce breast primary epithelial 

cells BPEC.  



69 
 

• Culture HMEC 

Duss et al.: two different epithelial cell fractions and one fibroblast fraction were 

separated,  first epithelial cell fraction was obtained after 4 min centrifugation at 

1400 rpm; the supernatant was then centrifuged for 4 min at 1800 rpm in order to 

obtain the second epithelial cell fraction, which is thought to contain progenitor cells. 

The supernatant obtained was then centrifuged at 2400 rpm for 4 min in order to 

obtain the fibroblast fraction. Each epithelial cell fraction was washed twice with 

warm PBS 2% FBS (Biosera, cat # S1810-500). Pellets were either aliquoted and 

froze down or processed to obtain single cells. Organoids were frozen in cryotubes 

using freezing medium (10% DMSO, 90% FBS). In order to obtain single cells 

organoids were resuspended in 4 ml of warm HMM (Human Mammosphere 

Medium): Hepes-buffered DMEM/F12 without phenol red supplemented with 20 

ng/mL EGF, 1x B-27 and 1 nM β-oestradiol and transferred to 15 ml falcon tube. 

After 2 min centrifugation at 500 rpm, cell pellet was resuspended in 3 ml of Trypsin 

and pipetted against the tube wall for 2 min using a 5 ml pipette. Trypsin was then 

neutralized using 5 mL of PBS + 2% FBS and the cell mixture was centrifuged at 

1400 rpm for 3 min. 3 ml of warm filtered Dispase (GIBCO cat # 17105-041) and 

200 µl of DNase I (SIGMA, cat. # D-5025-15KU) was used to resuspend the cells; 

cell suspension was passed through a 40 µm cell strainer (VWR cat. # 734-0002) and 

transfer in to a new 15 ml falcon tube. Cells were centrifuged at 1400 rpm for 3 min 

and then plated onto Corning ULA (Ultra Low Attachment) plates (Fisher, cat # 

TKT523070M). Cells were passaged every 7 days.  
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• Passaging HMECs 

Cell suspension containing HMECs was transferred to a 15 ml falcon tube, 

using a 5 ml pipette. Cells were separated from the media by centrifugation at 500 

rpm for 30 sec; 0.5 ml of Trypsin EDTA at room temperature was used to resuspend 

the cells followed by 2 minutes incubation at room temperature. Cell suspension was 

pipetted against the tube wall for about one minute in order to obtain single cells. 

Trypsin was neutralized using 1 ml of PBS-2% FBS; after 1 min incubation at room 

temperature, 4 ml of sterile PBS was added followed by a centrifugation at 1400 rpm 

for 1 min. Cell pellet was resuspended in 5 ml of sterile PBS and re-centrifuged at 

1400 rpm for 2.5 minutes; the supernatant was removed and cells were plated onto 

Corning ULA plate either using HMM (Human Mammosphere Medium) or WIT 

medium.  

• Culture BPEC 

Ince et al: the organoids were separated by centrifugation at 800 rpm for 5 

min. and either cultured in a chemically defined media WIT (table 1) on BD 

Biosciences Primaria plasticware (VWR, cat # 734-0072), or aliquoted in cryotubes 

using freezing medium (10% DMSO, 90% FBS) and frozen down. Within 4 to 5 

days colonies of BPEC started to grow from the organoids. Cells were passaged 

every 4 to 5 days. BPEC were cultured in p-WIT medium (table 1) after lentivral 

infection. 

• Passaging BPEC 

Medium was aspirated from the plates and cells were incubated with 3 ml of 

0.15% Trypsin at 37°C; 20% serum containing medium was used to neutralize 
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trypsin. Cell suspension was then centrifuged at 800 rpm for 5 min; cells were 

resuspended using WIT medium and plated onto Primaria plasticware (BD 

Biosciences). Medium was changed after 12 hours. 
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Additive Source and Catalogue 

number 

Final conc. 

F12 Ham, w L-glut. bicarb. SIGMA N6658 1x 

M199 SIGMA M4530 1x 

HEPES pH 7.4 Invitrogen I5630-056 10 mM 

Glutamine SIGMA G7513 2 mM 

Insulin solution 

(Human recombinant) 

SIGMA I9278 10 µg/ml/20 µg/ml 

EGF Invitrogen 132247-051 0.5 ng/ml/10 ng/ml 

Hydrocortisone SIGMA H4001 0.5 ng/ml/0.5 µg/ml 

Apo-transferrin SIGMA T2036 10 µg/ml 

3,3’,5-Triiodo-L-thyronine 

sodium 

SIGMA T6397 0.2 pg/ml 

O-Phosphoethanolamine SIGMA P0503 5 µg/ml 

Selenious acid SIGMA S9133 8 ng/ml 

17-beta-estradiol SIGMA E2758 0.5 ng/ml 

Linoleic acid SIGMA L1012 5 µg/ml 

All-trans retinoic acid SIGMA R2625 0.025 µg/ml 

Hypoxanthine Na SIGMA H9636 1.75 µg/ml 

(+/-)-alpha-Lipoic Acid SIGMA T1395 0.05 µg/ml 

Cholesterol SIGMA C3045 0.05 µg/ml 

Glutathione SIGMA G2140 0.012 µg/ml 

Xanthine sodium SIGMA X3627 0.085 µg/ml 

L-Ascorbic Acid SIGMA A4544 0.012 µg/ml 

(+/-)-alpha-tocopherol 

phosphate 
SIGMA T2020 0.003 µg/ml 
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Calciferol (Vit D2)/ 

Ergocalciferol 

SIGMA E9007 0.025 µg/ml 

Choline chloride SIGMA C7527 3.5 µg/ml 

Folic acid SIGMA F8758 0.33 µg/ml 

Vitamin B12 SIGMA V6629 0.35 µg/ml 

Thiamine hydrochloride 

(Vitamin B1) 

SIGMA T1270 0.08 µg/ml 

myo-Inositol SIGMA I7508 4.5 µg/ml 

Uracil SIGMA U1128 0.075 µg/ml 

D(-)Ribose SIGMA R9629 0.125 µg/ml 

Para-aminobenzoic acid SIGMA A9878 0.012 µg/ml 

Bovine serum albumin SIGMA A8412 1.25 mg/ml 

Cholera toxin SIGMA C8052 25 ng/ml/100 ng/ml 

 

Table 2.2: Basic WIT medium composition (Ince et al., Cancer Cell 2007 12, 160-
170).Concentrations in bold are for primary BPEC culture-WIT (pWIT): basic WIT medium + insulin 
(20 µg/ml) + EGF (10 ng/ml) + hydrocortisone (0.5 µg/ml) + cholera toxin (100 ng/ml).  

 

2.2.9 Western blotting 

2.2.9.1 SDS-Polyacrylamide gel electrophoresis (PAGE) 

Protein lysates were prepared from cells at 70-80% confluency. The cells were 

washed once with cold PBS and then extracted using lysis buffer containing 1% NP-

40, 1% SDS, 1% Na Deoxycholate, 1 mM EDTA, 150 mM NaCl, 10 mM Tris pH 

8.0 and 1X complete protease inhibitor (Roche, cat # 11697498001). Protein 
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concentrations were determined using the Pierce protein assay kit (Thermo 

Scientific, cat # 23225) and compared to a BSA standard. 30 µg of total lysates, 5 µl 

of protein marker (GE Healthcare, cat # RPN 800E) and a positive control, normally 

HeLa nuclear extract (Millipore, cat # 12-309), were loaded for each lane along with 

loading buffer (4% SDS, 40% glycerol, 0.05% bromophenol blue, 4 mM DDT, 0.05 

M Tris pH 6.8). A 10 % SDS acrylamide resolving gel and a 3.4 % top stacking gel 

was prepared (table 2) and allowed to set at room temperature for about 20 minutes; 

samples were denatured at 100 ºC for 5 minutes and loaded onto the gel. 

Electrophoresis was carried out using the Mini-PROTEAN Tetra Electrophoresis 

System (Bio-Rad laboratories, cat # 165-8003) in running buffer (0.25 M Trs-Base, 

1.9 M Glycine and 1% SDS) at 100V for 10 minutes, then at 80V for 1.5 hours or 

until the dye front reached the bottom of the gel. 

2.2.9.2 Transfer of proteins to nitrocellulose membrane 

The gel containing the resolved proteins was then transferred to a 

polyvinylidene difluoride membrane (PVDF) membrane, (GE healthcare cat. # 

RPN303-F) using a biorad Mini-PROTEAN trans blotting system (Bio-Rad 

laboratories, cat # 165-8003) in transfer buffer (0.25 M Tris-Base, 0.19 M Glycine, 

0.05% SDS and 20% Methanol) at 90V for 45 minutes.  

2.2.9.3 Western blot analysis 

Membranes were briefly washed in PBS-T (PBS containing 0.2 % Tween-20) 

then blocked in 5 % Milk in PBS-T (PBS-T + 5% w/v skimmed milk powder) for 1 

hour at room temperature. Three washes in PBS-T of 5 minutes each were carried out 

before the overnight incubation with the appropriate primary antibody (Table 2.4). 

Membranes were subsequently washed 3 times with PBS-T for 5 minutes and probed 

with the appropriate secondary antibody (Table 2.4) for 1 hour.A chemiluminescent 
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method (ECL, Pierce cat. # 34080) was used for secondary antibodies detection and 

an Image Reader LAS-3000 system was used for acquiring digital images of blots. 

Densitometric analysis was carried out using ImageJ software. 

 

10% SDS Resolving Gel (5 ml) Stacking gel (2 ml) 

30% 
acrylamide/Bisacrylamide 

1.6 ml 30% 
acrylamide/Bisacrylamide 

0.825 ml 

2 M Tris-HCl pH 8.8 0.9 ml 1 M Tris-HCl pH 6.8 0.625 ml 

10% SDS 0.05 ml 10% SDS 0.05 ml 

Water 2.4 ml Water 0.445 ml 

10% APS 50  µl 10% APS 50 µl 

TEMED 5 µl TEMED 5 µl 

 

Table 2.3: SDS-PAGE resolving gel and stacking gel components. APS: Ammonium persulfate; 

TEMED: tetramethylethylenediamine. 
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Table 2.4: List of primary and secondary antibodies used for western blot analysis. 

Primary Antibodies 

Name Species Concentration Source ant cat. number 

Anti-EZH2 Rabbit 
1:1000 

(5% BSA in PBS-T) 

NEB, 4905 

Anti-CBX8 Rabbit 
1:500  

(5% Milk in PBS-T) 

Abgent, AP2515b 

Anti-CBX7 Mouse 
1:500  

(5% Milk in PBS-T) 

Abnova, H00023492-B01P 

Anti-CBX6 Rabbit 
1:200  

(5% Milk in PBS-T) 

Aviva SystemBiology, 
ARP39074_T100 

Anti-HRas Rabbit 
1:200 

(5% Milk in PBS-T) 

Santa Cruz, sc-520 

Anti-BMI1 Mouse 
1:1000 

(5% Milk in PBS-T) 

Millipore, 05-637 

Anti-p16 Rabbit 
1:500 

(5% Milk in PBS-T) 

Millipore, 04-239 

Anti-BRCA1 (D9) Mouse 
1:100 

(5% Milk in PBS-T) 

Santa Cruz, sc-6954 

Anti-BRCA1 (M13) Mouse 
1:100 

(5% Milk in PBS-T) 

Calbiochem, OP-93 

Anti-BRCA1p Rabbit 
1:2500 

(5% Milk in PBS-T) 

AbCam, ab-2838 

Anti-hTERT Rabbit 
1:500 

(5% Milk in PBS-T) 

Tebu Bio Ltd, 039600-401-252 

Anti-ER Rabbit 
1:500 

(5% Milk in PBS-T) 

Thermo Fisher, RM-9101-SO 

Anti-β-Actin Mouse 
1:20000 

(5% Milk in PBS-T) 

Sigma, A1978 

Anti-GAPDH Mouse 
1:20000 

(5% Milk in PBS-T) 

Sigma, G8795 

Secondary Antibodies 

HRP anti-mouse Goat 
1:500 

(5% Milk in PBS-T) 

Jackson, 115035062 

HRP anti rabbit Goat 
1:500 

(5% Milk in PBS-T) 

Jackson, 111035045 
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2.2.10 Determining antibody specificity using a blocking peptide 

When non-specific signal was detected upon western blotting, a blocking 

peptide was used to determine antibody specificity. Two identical SDS-PAGE gels 

were run and transferred to 2 separate PVDF membranes. Then two different primary 

antibody solutions were prepared: one containing only the antibody at the established 

working dilution in 5% milk PBS-T; the second containing the antibody at the 

established working dilution plus the blocking peptide at a final concentration 4 to 10 

times the antibody concentration in 5% milk PBS-T. The two solutions were 

incubated for 8 hours at 4ºC before they were used for the overnight incubation of 

the membranes. The detection was carried out as usual. The signal which diminishes 

in the presence of the blocking peptide is the one specific to the antibody. 

 

2.2.11 Analysing cell proliferation 

Cells were seeded either in 6 wells plates at 7x104 cells per well or 10 cm 

dishes at 5x105 cells per dish and counted every 24 hours for 6 days, using a 

haemocytometer or using the electronic Beckman Coulter Particles Counter Z1. The 

results were then plotted on a graph as the number of cells vs. time. Each data point 

was the average of 3 counts.  

 

2.2.12 Migration Assay 

Cells were trypsinized, counted and resuspended in appropriate media:  

MCF10A cells were resuspended in serum free and EGF free growth media, other 

cell lines were resuspended in serum free growth media. Cell suspension was 

normally between 5.0x104 and 1.4x105.  Polyethylene terephthalate (PET) 
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membranes with 8 µm pores (VWR, cat # 734-0038) were used for this experiment; 

0.5 ml aliquots of cells suspension were added to the top chamber. The chamber was 

then put into 24 well plate, each well containing 0.5 ml regular growth media.  After 

18 – 24 hours, the top side of the insert membrane was cleaned several times using a 

cotton swab and 1X PBS washes. The bottom side of the chamber was stained by 

using 0.1% crystal violet solution in PBS, 20% ethanol. Cells were visualized and 

counted using a regular inverted microscope (Zeiss, Axiovert 40 CFL). 

 

2.2.13 Colony formation in soft agar 

For the bottom agar layer, 1% Agarose in ddH2O was prepared and 

autoclaved; the solution was let cool down to 40 ºC in a water bath, while a 2X 

growth media was being warmed up to 40 ºC. Equal volumes of the two solutions 

were mixed together to give 0.5% agar + 1X DMEM/F12; 2 mL of mixture was poor 

into each well of a 6 wells plate and allowed to set. The plates were either stored at 4 

ºC for up to one week or used for the following step. For the top agar layer, 0.7% low 

melting Agarose in ddH2O was prepared and autoclaved; the solution was let cool 

down to 40 ºC in a water bath, while a 2X growth media was being warmed up to 40 

ºC. Cells were trypsinized, counted and resuspended in specific media at 2.0x105 

cells per mL. 0.1 ml of cell suspension was then gently mixed with 3ml 2X growth 

media and 3ml 0.7% low melting agar, 1.5ml of the mixture was added to each 

replicate well (normally in triplicate) and allowed to set.   2 ml of growth media was 

added to each well and plates were transferred to a 37 ºC incubator for 21 days, 

during which the media was changed every 2 days. After 21 days, plates were stained 

with 0.1% INT (Sigma cat # I7375). Colonies were visualized and counted using an 
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inverted microscope (Zeiss, Axiovert 40 CFL) and digital images were acquired 

using Axiovision imaging System. 

 

2.2.14 Immunofluorescent Imaging 

 Cells were plated on 24 well Primaria plasticware plates (BD Biosciences) 

and grown for 24 hours at 37 ºC in 5% CO2. After 24 hours cells were washed three 

times with cold PBS and then fixed for 10 minutes with neutral buffered formalin 

(NEB, 3.7% Formaldheyde, 1.5% MethylAlcholl, 1.0% Sodium phosphate). After 10 

minutes, the cells were exposed to cold 0.5% Triton X in PBS over ice for 10 minute. 

Cells were then washed 3 times with PBS followed by block with 5% bovine serum 

albumin (BSA) in PBS at room temperature for 20 minutes. After the blocking stage, 

BSA was removed and cells were washed with PBS before incubation with primary 

antibody for two hours at room temperature. The primary antibodies used are listed 

in table 2.5. Cell were subsequently washed 5 times for 2 minute with PBS, and then 

incubated with the appropriate secondary antibody for 1 hour at room temperature, 

protected from the light. Cells were washed 4 times for two minutes with PBS, 

before adding Vectashield with DAPI (Vector Laboratories). Cells were viewed 

under 10 x magnification using a fluorescence microscope. Slides were visually 

analysed and classified either as positive (presence of stain) or negative (absense of 

stain).  
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Name Concentration Source and cat. number 

CK5 1:50 Abcam, ab53121 

CK14 1:50 
ThermoScientific,  
MS-115-PO 

CK18 1:50 
ThermoScientific,  
MS-142-PO 

CK19 1:50 
ThermoScientific,  
MS-198-PO 

 

Table 2.5: List of primary antibodies used for immunofluoresecnce analysis. 

 

 

 

2.2.15 Analysis of cell viability – MTT assay 

 5000 cells were seeded in triplicate on 96 well Primaria plasticware plates 

(BD Biosciences) and grown at 37 ºC in 5% CO2. 20µl of 5mg/ml MTT was added 

to each well every 24 hours and incubated at 37 ºC for 3.5 hours. After incubation 

with MTT, the growth media was removed and 150µl of DMSO was added to each 

well. Plates were incubated at room temperature, protected from the light, for 15 

minutes. The absorbance at 570, with a reference filter at 620, was then read using 

the Dynex MRX microplate reader (Dinex Technologies) and plotted on a graph as 

the absorbance vs. time. 

 

 



81 
 

2.2.16 Scratch Assay 

 Cells were seeded on 10 cm plates and allowed to reach confluency. Using a 

p500 or a p200 pipet tip, the cell monolayer was scraped in a straight line to create a 

scratch. Cells were washed twice with 1 ml of sterile PBS to remove debris. The 

wound edges were imaged using Axiovision imaging System (day 0). The area of the 

scratch imaged was marked on the outer bottom of the dish with an ultrafine marker. 

The cells were then incubated at 37 °C for 24 hours. Cells were periodically checked 

during the 24 hours. After 24 hours a second image of the marked area of the scratch 

was acquired using Axiovision imaging System (day 1). The size of the scratch was 

evaluated using the software ImageJ (http://rsbweb.nih.gov/ij), as described 

elsewhere (www.le.ac.uk/biochem/microscopy/wound-healing-assay.html).  Briefly, 

the images acquired (day 0 and day 1) were converted in 8-bit mode and opened with 

with imagej program. The image scale was setup to pixel and the size values were set 

up 0 -1.0 (in a scale between 1X105 and 5X107). The area measurements were made 

using “analyze particle” mode of the software. The measurements obtained were then 

exported into excel file. Cell migration was calculated using the following formula: 

(Pre-migration area – Migration area)/Pre-migration area X 100 and represented 

in a graph as percent of cell migration. The “pre-migration area” is the area free of 

cells at time zero, while the “migration area” is the area free of cells at day one or at 

14 hours. 
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3 CHAPTER3: INVESTIGATING THE EFFECT OF ABROGATED EZH2 

EXPRESSION IN BREAST CANCER  

3.1 Introduction 

 The polycomb group protein EZH2 is the catalytically active component of 

Polycomb Repressive Complex 2 (PRC2) (Cao et al. 2002; Czermin et al. 2002; 

Schneider et al. 2002; Simon et al. 2008) and it is over-expressed in several types of 

human cancers, including pancreatic (Toll et al. 2010), prostate (Varambally et al. 

2002), bladder (Arisan et al. 2005; Weikert et al. 2005), gastric (Matsukawa et al. 

2006), lung (Watanabe et al. 2008), liver (Sudo et al. 2005) and breast (Kleer et al. 

2003). Abnormal levels of EZH2 are already present in precancerous breast lesions 

and EZH2 expression levels progressively increase from DCIS to metastatic breast 

tumours (Kleer et al. 2003) making EZH2 a good marker of aggressiveness in breast 

cancer and a good candidate for a therapeutic target. In breast cancer EZH2 

overexpression correlates positively with aggressiveness, bad prognosis, metastasis, 

resistance to Paclitaxel and ER-negativity (Bachmann et al. 2006; Collett et al. 2006; 

Gonzalez et al. 2009; Kleer et al. 2003; Reijm et al. 2010). ER status is one of the 

most important prognostic factors in breast cancer (Knight et al. 1977; Rakha et al. 

2007a; Swain et al. 2004) and patients with ER negative breast cancers have poor 

outcome and lower overall survival compared to patients with ER positive breast 

cancer. EZH2 over-expression might be one of the factors contributing to the poor 

outcome and prognosis of ER negative breast cancer patients. In addition, it might 

represent a good target for the development of a novel strategy for basal breast 

cancer treatment.  

The aim of this chapter was to investigate the effect of EZH2 down regulation 

in breast cancer cell lines. EZH2 was knocked down in two breast cancer cell lines, 
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HCC1937 (Coene et al. 2011; Gazdar et al. 1998; Tomlinson et al. 1998) and MDA-

MB-231(Cailleau et al. 1974; Mladkova et al. 2010). Both cell lines are highly 

aggressive and ERα negative but they have different level of expression of EZH2 

(Neve et al. 2006). The effect of EZH2 knockdown on cell proliferation, migration 

and anchorage-independent growth was then tested in both breast cancer cell lines.  

 

3.2 EZH2 expression in breast cancer cell lines 

In order to identify breast cancer cell lines over-expressing EZH2, the 

transcription profiles of a collection of breast cancer cell lines analysed by Neve et 

al. were used (http://www.cell.com/cancer-cell/supplemental/S1535-

6108%2806%2900314-X. See also appendix A). The probe ID associated with EZH2 

“203358_s_at” was identified and the expression value of each cell line was 

annotated. The relative expression of EZH2 was calculated relative to the cell line 

with the lowest expression level of EZH2, SUM52PE (Table 3.1).  

Cell lines with high level of EZH2 were called “EZH2-High” and cell lines 

with low level of EZH2 were called “EZH2-low”. T47D and HCC1937 (ER positive 

and ER negative respectively) were selected within the “EZH2-low” group (first 15 

in table 3.1) and MDA-MB-231 and CAMA1 (ER negative and ER positive 

respectively) were selected within the “EZH2-High” group (last 15 in table 3.1). 
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Cell line 203358_s_at 
Relative 
expression 

Cell line 203358_s_at 
Relative 
expression 

SUM52PE 4.5082 1 HCC1008 6.4767 1.43664877 

SUM185PE 5.1597 1.14451444 SUM190PT 6.5029 1.44246041 

UACC812 5.1968 1.15274389 SUM1315 6.526 1.4475844 

HCC38 5.6466 1.25251763 MDAMB415 6.5436 1.4514884 

MDAMB435 5.7264 1.27021871 SUM159PT 6.5655 1.45634621 

ZR751 5.7307 1.27117253 MCF7 6.5875 1.46122621 

HCC1007 5.7875 1.28377179 LY2 6.5997 1.46393239 

HCC1500 5.8376 1.29488488 HCC1143 6.636 1.47198438 

SUM149PT 5.9101 1.31096668 HCC202 6.6486 1.47477929 

MDAMB157 5.9424 1.3181314 AU565 6.6713 1.47981456 

T47D 5.9634 1.32278958 BT20 6.6773 1.48114547 

ZR7530 5.9984 1.33055321 BT483 6.7528 1.49789273 

SKBR3 6.0059 1.33221685 HCC1599 6.808 1.51013708 

SUM44PE 6.0907 1.35102702 HCC2185 6.8098 1.51053636 

HCC1937 6.0917 1.35124884 BT474 6.8147 1.51162326 

MDAMB175 6.1376 1.36143028 MCF12A 6.9434 1.54017124 

MDAMB361 6.188 1.37260991 HCC3153 6.9493 1.54147997 

600MPE 6.1922 1.37354155 MCF10A 6.9494 1.54150215 

HCC1428 6.1947 1.37409609 MDAMB134 6.9647 1.54489597 

HCC1954 6.2031 1.37595936 ZR75B 7.0262 1.55853778 

SUM225CWN 6.2155 1.37870991 HCC1569 7.0909 1.5728894 

HS578T 6.3218 1.40228916 DU4475 7.1831 1.59334102 

BT549 6.4114 1.42216406 CAMA1 7.4147 1.64471408 

HCC2157 6.42 1.42407169 HCC70 7.4838 1.6600417 

MDAMB436 6.4424 1.42904042 MDAMB468 7.5411 1.67275187 

MDAMB453 6.4659 1.43425314 MDAMB231 7.6266 1.69171732 

HBL100 6.4747 1.43620514 HCC1187 8.1892 1.81651213 

 

Table 3.1: EZH2 expression level in breast cancer cell lines used in Neve et al. study (2006). 
“203358_s_at” represents the Affymetrix probe set associated with EZH2 mRNA and values are 
represented in Log2 after Robust Multichip Avarage (RMA). EZH2 relative expression was calculated 
relative to SUM52PE cell line. Cells lines in bold were used in the experiments in this chapter. 
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Short hairpin RNA (shRNA) targeting human EZH2 and a second generation 

lentiviral system was used to knockdown EZH2 (section 2.2.3 and 2.2.4). EZH2 

expression was not significantly reduced in both ER positive cell lines, T47D and 

CAMAI (Figure 3.1), while it was significantly reduced in both ER negative cell 

lines (Figure 3.3 and 3.8). Therefore further experiments were performed only on 

HCC1937 and MDA-MB-231cells.  

Figure 3.1: EZH2 knockdown in T47D cells and CAMAI cells. Cells were infected using lentiviral 
particles carrying either the shRNA oligo targeting EZH2 or the GIPZ shRNA control. The HeLa 
nuclear extract was used as a positive control. Representative image and graph of western blot 
analysis performed three times. A. Infected cells were harvested five days after puromycin selection. 
Extracted proteins were resolved by 10% SDS-PAGE and membrane was probed with the indicated 
antibodies. β-Actin was used as a loading control. B. Results obtained after integrated density 
quantification of A using ImageJ software (measurements expressed in arbitrary units). All values 
were normalized against β-Actin. 
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In order to confirm and compare the level of EZH2 expression in HCC1937 

and MDA-MB-231 cell lines, western blot analysis was performed. This confirmed 

that the level of protein expression of EZH2 in MDA-MB-231cells is higher 

compared to the level of expression of EZH2 in HCC1937 cells (Figure 3.2).  

Figure 3.2: EZH2 expression level in MDA-MB-231 cells and HCC1937 cells. Representative image 
and graph of western blot analysis. A. Extracted proteins were resolved by 10% SDS-PAGE and 
membrane was probed with the indicated antibodies. β-Actin was used as a loading control. B. Results 
obtained after integrated density quantification of A using ImageJ software (measurements expressed 
in arbitrary units). All values have been normalized against β-Actin. 

 

3.3 EZH2 Knockdown in MDA-MB-231 breast cancer cells 

EZH2 knockdown in MDA-MB-231 cells was performed using shRNA and a 

second generation lentiviral system (section 2.2.3 and 2.2.4). Briefly, 293T 

packaging cells were used for production of lentivirus particles. Cells were 

transfected with the required amount of packaging constructs and viral expression 

construct (V2LHS_17507 targeting EZH2) using Mirus TransIT®-LT1 transfection 

reagent. GIPZ scrambled shRNA was used as negative control for lentiviral 

infection. Only batches containing infectious particles between 107 and 108 per ml 

were used for MDA-MB-231 infection, which was carried out as described in 

materials and methods (section 2.2.4). Four days after infection, MDA-MB-231 cells 
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see Section 2.2.8.3). Cells infected with lentivirus containing V2LHS-17507 shRNA 

targeting EZH2 were called MDA-MB-231 17507, while cells infected with 

lentivirus containing GIPZ control were called MDA-MB-231 GIPZ. 

To confirm the reduced expression of EZH2 protein in MDA-MB-231 17507, 

western blot analysis was performed (Figure 3.3). Total protein extracted from non-

infected MDA-MB-231 cells, MDA-MB-231 17507 cells and MDA-MB-231 GIPZ 

cells were analyzed. For each sample, 30 µg of proteins were loaded onto a 10% SDS 

acrylamide resolving gel and western blot analysis was performed as described in 

materials and methods (section 2.2.9.1 – 2.2.9.3). Western blot analysis showed a 

significant decrease of EZH2 protein expression in MDA-MB-231 17507 cells 

compared to non-infected MDA-MB-231 cells and MDA-MB-231 GIPZ cells 

(Figure 3.3).  

 

Figure 3.3: EZH2 knockdown in MDA-MB-231 cells. Cells were infected using lentiviral particles 
carrying either the shRNA oligo targeting EZH2 or the GIPZ shRNA control. Representative image 
and graph of western blot analysis. A. Infected cells were harvested five days after puromycin 
selection. Extracted proteins were resolved by 10% SDS-PAGE and membrane was probed with the 
indicated antibodies. β-Actin was used as a loading control. B. Results obtained after integrated 
density quantification of A using the software ImageJ (measurements expressed in arbitrary units). All 
values were normalized against β-Actin. 
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3.3.1 Effect of EZH2 knockdown on MDA-MB-231 cell proliferation 

 Growth curve analysis was performed in order to test whether EZH2 

knockdown in MDA-MB-231 cells has any effect on cell proliferation (Figure 3.4). 

Non-infected MDA-MB-231 cells, MDA-MB-231 GIPZ and MDA-MB-231 17507 

cells were seeded in 10 cm plates, starting with 4.0x104 cells. Cells were trypsinized 

and counted, using Beckman Coulter Particles Counter Z1, every 48 hours. MDA-

MB-231 17507 cells showed a much slower proliferation rate compared to non-

infected cells and MDA-MB-231 GIPZ cells. EZH2 knockdown resulted in a 

doubling time increase of about 12 hours. Cells with reduced EZH2 expression, in 

fact, showed a doubling time of 36 hours while non-infected cells and the negative 

control showed a doubling time of less than 24 hours (Figure 3.4 Day 2 to day 3 

interval). A clear difference in proliferation between MDA-MB-231 17507 cells and, 

either, non-infected MDA-MB-231 cells or MDA-MB-231 GIPZ cells was observed 

over the six days. These results agree with those reported by Gonzalez et al. 2009, 

that EZH2 knockdown decreases MDA-MB-231 cell proliferation.  

Figure 3.4: The effect of EZH2 knockdown on the growth rate of MDA-MB-231 cells. 
Representative graph of MDA-MB-231 cells growth rate. Cells were infected using lentiviral particles 
carrying either the shRNA oligo targeting EZH2 or the GIPZ shRNA control. Five days after 
puromycin selection, 4.0x104 cells were plated in 10 cm plates. Cells were counted every 48 hours. 
The experiment was performed three times in triplicate (n=9; error bars ±SEM). See appendix A for 
raw data. 
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3.3.2 Effect of EZH2 knockdown on MDA-MB-231 anchorage-independent 

growth 

To determine whether EZH2 knockdown reduces anchorage-independent 

growth of the highly malignant MDA-MB-231 cells, a colony formation in soft agar 

assay was performed (Figure 3.5). MDA-MB-231 cells, MDA-MB-231 GIPZ cells 

and MDA-MB-231 17507 cells were tested in triplicate (section 2.2.13). For each 

replicate, 5000 cells were used and the cells were grown at 37 ºC for 21 days. After 

21 days, colonies were counted. Non-infected MDA-MB-231 cells, as well as MDA-

MB-231 GIPZ cells and MDA-MB-231 17507 cells formed colonies in soft agar 

(Figure 3.5).  

 

Figure 3.5: The effect of EZH2 knockdown on anchorage-independent growth of MDA-MB-231 
cells. Cells were infected using lentiviral particles carrying either the shRNA oligo targeting EZH2 or 
the GIPZ shRNA control. Cells were grown for 21 days and colonies were stained with INT. The 
graph is representative of an experiment performed three times in triplicate (n=9; error bars ±SEM). 
See appendix A for raw data. 

 

The number of colonies formed by MDA-MB-231 17507 was significantly 

lower compared to non-infected cells and MDA-MB-231 GIPZ cells (an average of 

25 colonies for MDA-MB-231 17507 cells vs an average of 110 colonies for both 

non-infected and MDA-MB231 GIPZ cells). The results obtained showed that EZH2 

knockdown in MDA-MB-231 breast cancer cells reduces their anchorage-

independent growth.  
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3.3.3 Effect of EZH2 knockdown on MDA-MB-231 cell migration 

 MDA-MB-231 cells are highly migratory cells  (Mladkova et al. 2010; Neve 

et al. 2006; Wang et al. 2007), The ability of EZH2 knockdown to reduce MDA-MB-

231 cell migration was tested using two different assays: the transwell Boyden 

chamber assay  (Chen 2005; Li et al. 1999) and the scratch assay (Liang et al. 2007) 

(Section 2.2.12 and 2.2.16).  

For the transwell Boyden chamber assay, non-infected MDA-MB-231 cells, 

MDA-MB-231 GIPZ cells and MDA-MB-231 17507 cells were trypsinised and 

separately re-suspended in serum free growth media. 2.5x104 cells were added to the 

top of each PET membrane (section 2.2.12). After 18-24 hours, three randomly 

selected fields in the central part of the chamber were chosen and the number of 

migrating cells was counted. The stained cells which were often observed in the 

peripheral area of the chamber were considered to be background noise and only the 

central part of the chamber was taken into consideration (Figure 3.6A). For each cell 

type the experiment was performed in triplicate and a total of 9 counts were made (3 

counts for each chamber) which were then averaged in order to give an estimation of 

the number of migrating cells. The number of migratory cells for non-infected MDA-

MB-231 and MDA-MB-231 GIPZ was significantly higher compared to the number 

of migratory cells for MDA-MB-231 17507 (Figure 3.6 B). An average of 110 

migrated cells was counted for non-infected MDA-MB-231 and MDA-MB-231 

GIPZ cells vs. an average of 50 migrating cells for MDA-MB-231 17507.   The 

results obtained showed that EZH2 knockdown reduces MDA-MB-231 migration 

using the Boyden chamber assay.  
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Figure 3.6: The effect of EZH2 knockdown on migration of MDA-MB-231 cells assessed by 
transwell Boyden chamber assay. Cells were infected using lentiviral particles carrying either the 
shRNA oligo targeting EZH2 or the GIPZ shRNA control. 2.5x103 cells were resuspended in serum 
deprived media and added to the top of a Boyden chamber. The Boyden chambers were placed in 24 
well plates containing complete grow media. After 24 hours, migrating cells were stained and counted 
under a microscope. A. Representative fields showing reduced migration caused by EZH2 
knockdown. B. The graph is representative of an experiment performed three times in triplicate (n=9; 
error bars ±SEM). See appendix A for raw data. 

 

The scratch assay was performed as described in section 2.2.16. Non-infected 

MDA-MB-231 cells, MDA-MB-231 GIPZ cells and MDA-MB-231 17507 cells 

were seeded in 10 cm plates and allowed to reach confluency. At day 0 a scratch was 

created in the monolayer of cells using a sterile 500 µl pipette and the cells were 

observed for 24 hours. The area of a marked scratch was measured at day 0 and at 

day 1 using the software imagej. Cell migration was calculated using the following 

formula: “(Pre-migration area – Migration area)/Pre-migration area X 100” and 

represented in a graph as percent of cell migration (Figure 3.7 A and B). Compare to 

non-infected MDA-MB-231 and to MDA-MB-231 GIPZ cells, MDA-MB-231 17507 

cells showed a significant reduction of the migrating area. 
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Figure 3.7: The effect of EZH2 knockdown on migration of MDA-MB-231 cells assessed by scratch 
assay. Migration is reduced in MDA-MB-231 17507 compared to non-infected MDA-MB-231 and 
MDA-MB-231 GIPZ. A: Representative images showing difference in migration between non–
infected MDA-MB-231 cells, MDA-MB-231 GIPZ cells and MDA-MB-231 17507 cells. Photographs 
of the cells were taken at day 0 and day 1 at 10X magnification. B: The graph is representative of a 
single experiment and single marked scratches. The size of the scratch was measured at day 0 and at 
day 1, using the software imageJ. Cell migration was expressed in percentage and was calculated 
using the formula: “(Pre-migration area – Migration area)/Pre-migration area X 100”. (see section 
2.2.16 for more details) 
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3.4 EZH2 Knockdown in HCC1937 breast cancer cells 

 EZH2 knockdown in HCC1937 cells was performed using shRNA and a 

second generation lentiviral system (section 2.2.3 and 2.2.4; see also section 3.3). 

V2LHS_17507 targeting EZH2 was used for EZH2 knockdown and GIPZ scrambled 

shRNA was used as negative control for lentiviral infection. Cells infected with 

lentivirus containing V2LHS-17507 shRNA targeting EZH2 were called HCC1937 

17507, while cells infected with lentivirus containing GIPZ control were called 

HCC1937 GIPZ.  

 To confirm the reduced expression of EZH2 protein in HCC1937 17507, 

western blot analysis was performed (Figure 3.8). Total protein extracted from non-

infected HCC1937 cells, HCC1937 17507 cells and HCC1937 GIPZ cells were 

analyzed. For each sample, 30 µg of proteins were loaded onto a 10% SDS 

acrylamide resolving gel and western blot analysis was performed as described in 

materials and methods (section 2.2.9.1 – 2.2.9.3). Western blot analysis showed a 

significant decrease of EZH2 protein expression in HCC1937 17507 cells compared 

to non-infected HCC1937 cells and HCC1937 GIPZ (Figure 3.8).  
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Figure 3.8: EZH2 knockdown in HCC1937 cells. Non-infected cells, cells infected using lentiviral 
particles carrying either the shRNA oligo targeting EZH2 or the GIPZ shRNA control are shown. 
Representative image and graph of western blot analysis. A. Infected cells were harvested five days 
after puromycin selection. Extracted proteins were resolved by 10% SDS-PAGE and membrane was 
probed with the indicated antibodies. β-Actin was used as a loading control. B. Results obtained after 
integrated density quantification of A using ImageJ software (measurements expressed in arbitrary 
unit). All values were normalized against β-Actin. 

 

 

3.4.1 Effect of EZH2 knockdown on HCC1937 cell proliferation 

 In order to test whether EZH2 knockdown affects HCC1937 cell 

proliferation, a growth curve analysis was performed (Figure 3.9).  Non-infected 

HCC1937 cells, HCC1937 GIPZ cells and HCC1937 17507 cells were seeded in 6 

cm plates, starting with 2.0x105 cells. Cells were trypsinized and counted, using 

Beckman Coulter Particles Counter Z1, every 24 hours for 6 days. An accurate 

estimation of doubling time for the HCC1937 cells was not possible due to the high 

death rate of the cells.  The high mortality rate of the cells confounded the results and 

caused some problems in quantification of proliferation rate. Focusing on the interval 

between day 2 and day 3 non-infected HCC1937 and HCC1937 GIPZ cells showed 

an increase in cell number of 44000 and 78000 respectively, while the HCC1937 
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17507 showed an increase in cell number of only 4700 cells. These results suggested 

that reduced expression of EZH2 in HCC1937 cells inhibits cell proliferation. 

 

 

Figure 3.9: The effect of EZH2 knockdown on the growth rate of HCC1937 cell. Representative 
graph of HCC1937 cell growth rate. Cells were infected using lentiviral particles carrying either the 
shRNA oligo targeting EZH2 or the GIPZ shRNA control and. Five days after puromycin selection, 
cells were plated in 6cm plates. Cells were counted every 24 hours. The experiment was performed 
three times in triplicate (n=9; error bars ±SEM). See appendix A for raw data. 
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3.4.2 Effect of EZH2 knockdown on HCC1937 anchorage-independent growth 

 To assess whether EZH2 knockdown influences the anchorage-independent 

growth of the HCC1937 cells, a colony formation in soft agar assay was performed 

(Figure 3.10). HCC1937 cells, HCC1937 GIPZ cells and HCC193717507 cells were 

tested in triplicate (section 2.2.13). For each replicate 5000 cells were used and the 

cells were grown at 37 ºC for 21 days. After 21 days, colonies were counted. Both, 

non-infected HCC1937 and HCC1937 GIPZ cells  formed a higher number of 

colonies compared to HCC1937 17507 cells (Figure 3.10). An average of 20 colonies 

were counted for HCC1937 17507 cells , while an average of  70 and 75 colonies 

was counted for non-infected HCC1937 cells and HCC1937 GIPZ cells. The results 

obatained showed that EZH2 knockdown in HCC1937 breast cancer cells reduces 

their anchorage-independent growth. 

Figure 3.10: The effect of EZH2 knockdown on anchorage–independent growth of HCC1937 cells. 
Cells were infected using lentiviral particles carrying either the shRNA oligo targeting EZH2 or the 
GIPZ shRNA control. Cells were grown for 21 days and colonies were stained with INT. The graph is 
representative of an experiment performed three times in triplicate (n=9; error bars ±SEM). See 
appendix A for raw data. 

 

 

 

0

15

30

45

60

75

90

HCC1937 HCC1937  GIPZ HCC1937 17507

N
u

m
b

er
 o

f 
co

lo
n

ie
s 

(a
v

a
ra

ge
)



97 
 

3.4.3 Effect of EZH2 knockdown on HCC1937 cell migration 

 HCC1937 cells are also highly motile aggressive cells (Coene et al. 2011). 

Two different assays, the trans-well Boyden chamber assay  (Chen 2005; Li & Zhu 

1999) and the scratch assay (Liang et al. 2007) (Section 2.2.12 and 2.2.16), were 

used in order to test whether EZH2 knockdown reduce HCC1937 cell migration.  

The transwell Boyden chamber assay was performed as described in 

materials and methods (section 2.2.12). Non-infected HCC1937 cells, HCC1937 

GIPZ cells and HCC1937 17507 cells were trypsinised and separately re-suspended 

in serum free growth media. 2.5x104 cells were added to the top of each PET 

membrane. After 18-24 hours, three randomly selected fields in the central part of the 

chamber were chosen and the number of migrating cells was counted. Representative 

images of randomly selected field are shown in figure 3.11A. For each cell type the 

experiment was performed in triplicate and a total of 9 counts were made (3 counts 

for each chamber) which were then averaged in order to give an estimation of the 

number of migrating cells per field. The number of migratory cells for non-infected 

HCC1937 was similar to the number of migrating cells for HCC1937 17507 (about 

70 migrating cells), suggesting that EZH2 knockdown did not influence cell 

migration using the transwell Boyden chamber assay. Surprisingly, the number of 

migratory cells for HCC1937 GIPZ control was significantly lower compared to the 

number of migratory cells for non-infected HCC1937. The unexpected result could 

be due to either experimental error or to the fact that the GIPZ control had an effect 

on the migration ability of HCC1937 cells. In order to clarify this point, and to test 

whether a different assay would give the same results, a scratch assay was 

performed. 
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Figure 3.11: The effect of EZH2 knockdown on HCC1937 migration as assessed by transwell 
Boyden chamber assay. Migration is not significantly reduced in HCC1937 17507 compared to non-
infected HCC1937. Cells were infected using lentiviral particles carrying either the shRNA oligo 
targeting EZH2 or the GIPZ shRNA control. 2.5x103 cells were resuspende in serum deprived media 
and added to the top of a Boyden chamber. After 24 hours migrating cells were stained and counted 
under a microscope. A. Representative fields of two Boyden chambers after staining. B. The graph is 
representative of an experiment performed three times in triplicate (n=9; error bars ±SEM). See 
appendix A for raw data. 
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The scratch assay was performed as described in section 2.2.16. Non-infected 

HCC1937 cells, HCC1937 GIPZ cells and HCC1937 17507 cells were seeded in 10 

cm plates and allowed to reach confluency. At day 0 a scratch was created in the 

monolayer of cells using a sterile 500 µl pipette and the cells were observed for 24 

hours. The area of a marked scratch was measured at day 0 and at day 1 using the 

software imageJ. Cell migration was calculated using the following formula: “(Pre-

migration area – Migration area)/Pre-migration area X 100” and represented in a 

graph as percent of cell migration (Figure 3.12 A and B). No significant difference in 

terms of migration area was observed when non-infected HCC1937 cells, HCC1937 

GIPZ cells and HCC1937 17507 cells were compred (Figure 3.12 B and Table A.11 

Appendix A). Cell migration for non infected HCC1937 and HCC1937 GIPZ was 

81,9% and 80,92% respectively and cell migration for HCC1937 17507 73,94% (see 

Table A.11). Moreover, using this assay, the GIPZ control did not have any effect on 

cell migration.  
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Figure 3.12: The effect of EZH2 knockdown on HCC1937 migration as assessed by a scratch assay. 
Migration is not significantly reduced in HCC1937 17507 compared to non-infected HCC1937 and 
HCC1937 GIPZ control. A: Representative images showing difference in migration between non–
infected HCC1937 cells, HCC1937 GIPZ cells and HCC1937 17507 cells. Photographs of the cells 
were taken at day 0 and day 1 at 10X magnification. B: The graph is representative of a single 
experiment and single marked scratches. The size of the scratch was measured at day 0 and at day 1, 
using the software imageJ. Cell migration was expressed in percentage and was calculated using the 
formula “(Pre-migration area – Migration area)/Pre-migration area X 100” (see section 2.2.16 for 
more details). 

HCC1937 

A 

HCC1937 GIPZ 

B 

HCC1937 17507 

0

10

20

30

40

50

60

70

80

90

HCC1937 HCC1937 GIPZ HCC1937 17507

C
el

l 
m

ig
ra

ti
o
n

 (
%

) 



101 
 

3.5 Discussion 

 In this chapter I sought to investigate the effect of knocking down EZH2 in 

breast cancer cell lines expressing different levels of EZH2.  Two breast cancer cell 

lines were used MDA-MB-231 and HCC1937 (See also table A.1, appendix A). 

They derive from different breast cancer subtypes and from different sources 

(adenocarcinoma/pleural effusion for MDA-MB-231 and infiltrating ductal 

carcinoma/primary breast for HCC1937) but they have some features in common i.e. 

they are both highly aggressive, ER/PR and HER2 negative (Neve et al. 2006). 

MDA-MB-231 is a cell line with a very high level of EZH2, while HCC1937 is a cell 

line with a lower level of EZH2 (Table 3.1). This was confirmed also at the protein 

level (Figure 3.2).  

 shRNA-mediated knockdown of EZH2 induced inhibition of cell 

proliferation in both cell lines with a stronger effect on MDA-MB-231 cells 

compared to HCC1937 cells (Figure 3.4 and 3.9). The fact that EZH2 knockdown 

had a more drastic effect on MDA-MB-231 (high EZH2) cells proliferation 

compared to HCC1937 (low EZH2), suggests that the level of EZH2 overexpression 

might influence the behaviour of the cells. The differences observed was not due to 

the amount of EZH2 knockdown i.e. the higher the amount of knockdown the more 

drastic effect on cell proliferation. In fact, when the amounts of EZH2 knockdown 

was compared, HCC1937 cells actually showed higher amount of knockdown 

compared to MDA-MB-231 cells (70% and 50% respectively) (Figure 3.3 and 3.8). 

The two cell lines are both ERα negative therefore the implication of the oestrogen 

receptor status can be excluded. Repression of EZH2 causes inhibition of cell 

proliferation and induces G2/M arrest (Gonzalez et al. 2009; Sharif et al.; Tang et al. 

2004).  Tang et al. have shown that activated p53 suppresses EZH2 and they 
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proposed that repression of EZH2 by p53 is one of the pathway by which p53 

mediates G2/M checkpoint arrest (Tang et al. 2004).  The MDA-MB-231 cell line 

has high level of a mutant p53 (Hui et al. 2006; Olivier et al. 2002), EZH2 

knockdown in these cells might compensate for the lack of wild type p53. However, 

HCC1937 also have mutated p53 suggesting that the different effect of EZH2 

knockdown in the two cell lines is not linked to p53 status. The inhibition of cell 

proliferation, upon EZH2 knockdown, supports and confirms data reported by others 

(Bryant et al. 2007; Francis et al. 2001; Gonzalez et al. 2009; Zhang et al. 2011). In 

fact, it has been suggested that different EZH2 levels can be used to identifying 

patients with breast cancer of a more aggressive phenotype (Kleer et al. 2003; Li et 

al. 2009).  

In both cell lines EZH2 knockdown significantly reduced their ability of 

forming colonies in soft agar (Figure 3.5 and 3.10). However, EZH2 knockdown had 

different effect on cell migration when the two cell lines were compared and two 

different invitro assays were performed. Using the trans-well Boyden chamber assay 

a significant reduction in cell migration was observed in MDA-MB-231 cells upon 

EZH2 knockdown (Figure 3.6), while no effect was observed in HCC1937 cells upon 

EZH2 knockdown (Figure 3.11). The results obtained using the Boyden chamber 

assay in HCC1937 cells suggest that the control transfection GIPZ had an effect on 

cell migration (Figure 3.11). In order to verify this hypothesis, the Boyden chamber 

assay should have been repeated using a different infection control vector. However,  

Neve et al. have classified HCC1937 as Basal A subtype of cell. They have reported 

that Basal A cells are normally less invasive in Boyden chamber assay (Neve et al. 

2006). Since, the outcome of an in vitro assay to test specific features correlated to 

neoplastic transformation is often influenced by the cell type used,  the use of an 
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alternative assay might be more suitable for testing migration of HCC1937 cells. The 

alternative assay was also chosen in order to test whether the GIPZ control would 

still show an effect on cell migration. In MDA-MB-231 cells the results obtained 

using Boyden chamber assay were also confirmed by the scratch assay results, the 

migration ability of MDA-MB-231 was reduced by 50% upon knockdown of EZH2 

(Figure 3.7). In HCC1937 cells the results obtained using Boyden chamber assay 

were confirmed by the scratch assay results, the migration ability of HCC1937 cells 

was not significantly influenced by knockdown of EZH2, infact only a 10% 

reduction in cell migration was observed upon EZH2 knockdown (Figure 3.12). In 

addition, using the scratch assay the control GIPZ did not show any effect on cell 

migration. Both cell lines showed reduction of anchorage-independent growth and 

cell proliferation, upon EZH2 knockdown. The identification of genes involved in 

these processes represent an important instrument for identifying more aggressive 

tumours (Bozzuto et al. 2010; Mori et al. 2009).    

The more aggressive breast cancers are normally the ER negative tumours. 

Compared to patients with ER positive tumours, patients with ER negative tumours 

have worse outcome and prognosis. There is a proportion of ER positive breast 

cancer, even though small, that over-expresses EZH2. It would be interesting to test 

whether knocking down EZH2 in ERα positive breast cancer cell lines have the same 

effect as EZH2 knockdown in ERα negative cell lines. For this purpose CAMA1 and 

T47D cell lines were selected (table 3.1). CAMA1 cells are ER positive cells with 

high level of EZH2 while T47D cells are ER positive with a lower level of EZH2 

(Table 3.1). The unsuccessful EZH2 knockdown in ERα positive CAMA1 cells and 

T47D cells (Figure 3.1) was probably due to technical problems, i.e. low infection of 

lentiviral particles, even though the cells were successfully selected with puromycin. 
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The idea of ERα positive cells resistant to EZH2 knockdown can be excluded, since 

EZH2 knockdown has been successfully performed in other ERα positive breast 

cancer cell lines (Reijm et al. 2010). Additional experiments and troubleshooting will 

be necessary in order to further investigate the effect of EZH2 knockdown in ERα 

positive breast cancer cells. 

  A distinct characteristic of HCC1937 cells is the presence of mutated 

BRCA1 (5382insC mutation in one allele and a deletion of the second allele) (Foray 

et al. 2002; Tomlinson et al. 1998). BRCA1 plays a crucial role in S and G2/M 

checkpoints during DNA damage response (Cortez et al. 1999; Venkitaraman 2002; 

Xu et al. 2001; Yan et al. 2005). A link between EZH2 mis-regulation and BRCA1 

has been previously reported with contrasting conclusions. Puppe et al reported that 

EZH2 knockdown has an effect only in BRCA1deficent tumours (Puppe et al. 2009), 

while Gonzalez et al. reported wild type BRCA1 is required in order to observe 

effect on cell proliferation upon EZH2 knockdown (Gonzalez et al. 2009). The 

presence of mutated BRCA1 in HCC1937 might explain the observed less significant 

effect of EZH2 knockdown on cell proliferation and cell migration. This will be 

further investigated in chapter 4.  
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4 CHPTER 4: INVESTIGATING THE RELATIONSHIP BETWEEN EZH2 

AND BRCA1 

4.1 Introduction  

 Basal-like breast carcinomas consist of a morphologically heterogeneous 

subgroup of aggressive breast cancers exhibiting distinct features, such as hormone 

receptors negativity, HER2 negativity (i.e. triple negative), expression of high-

molecular-weight cytokeratin, BRCA1 mutations/down regulation and EZH2 over-

expression. This group of cancers could be further subdivided. For example, within 

the basal-like group not all tumours are triple negative (ER/PR/HER2), and, even 

though the basal-like phenotype has been associated to BRCA1 mutation and EZH2 

mis-regulation, not all basal cancers have mutated BRCA1 or over-express EZH2   

(Gluz et al. 2009; Rakha et al. 2009a; Sorlie et al. 2001; Tischkowitz et al. 2006; 

Venkitaraman 2002; Xu et al. 2001; Yoshida et al. 2004). The tumour suppressor 

BRCA1 plays a central role in maintaining genome stability acting through different 

pathways involved in regulation of cell cycle, DNA repair, apoptosis and 

transcriptional regulation (Harkin 2009; Rosen et al. 2003; Savage 2009; 

Venkitaraman 2002; Yoshida & Miki 2004).  EZH2 is an important regulator of cell 

development, differentiation and proliferation (Aoki et al. 2010; Bracken et al. 2003; 

Cao et al. 2002; Collett et al. 2006; Li et al. 2009; Matsukawa et al. 2006; Tonini et 

al. 2008). BRCA1, as well as EZH2 are involved in the regulations of the G2/M 

phase of the cell cycle (Gonzalez et al. 2009; Xu et al. 2001). Two recent studies 

have reported contrasting data on the interplay between BRCA1 and EZH2. 

Gonzalez et al. suggested that EZH2 is a regulator of BRCA1 and proposed that in 

breast cancer the over-expression of EZH2 caused a decrease of BRCA1 
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(accompanied by high levels of Cdc2-CyclinB1 complex) and consequently 

uncontrolled proliferation and cell cycle which contributes to breast cancer 

formation. In their model the effect of EZH2 knockdown on cell proliferation is 

dependent on the presence of wild type BRCA1. Puppe et al. have suggested that the 

effect of EZH2 knockdown on cell proliferation is more apparent in the absence of 

BRCA1 (Puppe et al. 2009). However, the two studies followed different 

experimental procedures: Gonzalez et al study used human breast cancer cells while 

Puppe et al. used mouse tumour cell lines. The aim of this chapter was the further 

investigation of the relationship between BRCA1 status and the effect of EZH2 

knockdown in breast cancer cells. In order to do so, the effect of EZH2 knockdown 

on cell proliferation, migration and anchorage independent growth was tested in the 

context of HCC1937 breast cancer cell line that carries a mutated BRCA1. Two cell 

lines were compared, a derivative (HCC1937 BR69) expressing ectopic wild type 

BRCA1 and a derivative expressing an empty vector (HCC1937 EV28).  

 

4.2 EZH2 knockdown in HCC1937EV28 and HCC1937BR69 breast cancer 

cell lines 

 Two cell lines, HCC1937EV28 and HCC1937BR69, were obtained from Dr 

Harkin’s group.  HCC1937EV28 cells are homozygous for the BRCA1 5382insC 

mutation, resulting in the formation of a truncated protein of 1829 aa (compared to a 

full length BRCA1 with 1863 aa) (Foray et al. 2002; Tomlinson et al. 1998) 

transfected with a control empty construct, while HCC1937BR69 cells are cells 

stably transfected with a construct containing wild type BRCA1(Quinn et al. 2003). 

Cells were grown according to instructions (see section 2.2.8.1). 
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The expression of BRCA1 protein in HCC1937BR69 was confirmed by western blot 

analysis and compared to the expression in HCC1937EV28 cells (Figure 4.1). The 

level of expression of BRCA1 in HCC1937BR69 was 2 fold higher compared to the 

level of expression of BRCA1 in HCC1937EV28. 

Figure 4.1:  BRCA1 expression level in HCC1937EV28 cells and HCC1937BR69 cells. 
Representative image and graph of western blot analysis performed three times. A. Extracted proteins 
were resolved by 8 % SDS-PAGE and membranes were probed with the indicated antibodies. β-Actin 
was used as a loading control. B. Results obtained after integrated density quantification of A using 
ImageJ software (measurements expressed in arbitrary units). 

 

EZH2 knockdown in HCC1937EV28 and HCC1937BR69 cells was 

performed using shRNA and a second generation lentiviral system (section 2.2.3 and 

2.2.4; see also section 3.4). V2LHS_17507 targeting EZH2 was used for EZH2 

knockdown and GIPZ scrambled shRNA was used as negative control for lentiviral 

infection. Cells infected with lentivirus containing V2LHS-17507 shRNA targeting 

EZH2 were called HCC1937EV28 17507 and HCC1937BR69 17507, while cells 

infected with lentivirus containing GIPZ control were called HCC1937EV28 GIPZ 

and HCC1937BR69 GIPZ. To confirm the reduced expression of EZH2 protein in 

HCC1937BR69 17507 cells and HCC1937EV28 17507 cells, western blot analysis 

was performed (Figure 4.2).  
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Figure 4.2: EZH2 knockdown in HCC1937EV28 cells and HCC1937BR69 cells. Cells were infected 
using lentiviral particles carrying either the shRNA oligo targeting EZH2 or the GIPZ shRNA control. 
Infected cells were harvested 5 days after puromycin selection. Representative image and graph of 
western blot analysis performed three times. A. Extracted proteins were resolved by 10 % SDS-PAGE 
and membranes were probed with the indicated antibodies. β-Actin was used as a loading control. B. 
Results obtained after integrated density quantification of A using ImageJ software (measurements 
expressed in arbitrary units). 

 

Total protein extracted from non-infected HCC1937BR69 cells, 

HCC1937BR69 17507 cells, HCC1937BR69 GIPZ cells, non-infected 

HCC1937EV28 cells, HCC1937EV28 17507 cells and HCC1937EV28 GIPZ cells 

were analyzed. For each sample, 30 µg of proteins were loaded onto a 10% SDS 

acrylamide resolving gel and western blot analysis was performed as described in 

materials and methods (section 2.2.9.1 – 2.2.9.3). In both cell lines western blot 

analysis showed about 60% reduction of EZH2 protein expression in cells infected 
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with lentiviral particles carrying shRNA targeting EZH2 compared to non-infected 

cells and GIPZ control (Figure 4.2).  

4.2.1 Effect of EZH2 knockdown on HCC1937EV28 and HCC1937BR69 cells 

anchorage independent growth 

To assess whether the presence of wild type BRCA1 has any effect on the 

anchorage-independent growth of the HCC1937 cells in relation to EZH2 

knockdown, a colony formation in soft agar assay, using HCC1937BR69 cell line, 

was performed and results were compared to those obtained for HCC1937EV28 cells 

(Figure 4.3) (see section 3.4.2). Non-infected HCC1937BR69 cells, HCC1937BR69 

GIPZ cells and HCC1937BR69 17507 cells were tested three times in triplicate 

(section 2.2.13). For each replicate 5000 cells were used and the cells were grown at 

37 ºC for 21 days. After 21 days, colonies were stained and counted. 

 

Figure 4.3: The effect of EZH2 knockdown on anchorage independent growth in HCC1937EV28 and 
HCC1937BR69 cells. Cells were infected using lentiviral particles carrying either the shRNA oligo 
targeting EZH2 or the GIPZ shRNA control. 5 days after puromycin selection cells were seeded in  
3.5 % low melting agarose containing RPMI1640 media plus supplements. Colonies were stained with 
INT and counted after 21 days. The graph is representative of an experiment performed three times in 
triplicate (n=9; error bars ±SEM). A. EZH2 knockdown in HCC1937BR69 cells. B. EZH2 
knockdown in HCC1937EV28 cells. See appendix B for raw data. 
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The number of colonies formed by HCC1937BR69 17507 cells was not 

significant different compared the number of colonies formed by non-infected cells 

and HCC1937BR69 GIPZ cells (Figure 4.3 A and Table B.3 Appendix B). The 

number of colonies formed by HCC1937EV28 17507 cells was significantly lower 

compared to the number of colonies formed by non-infected cells and 

HCC1937EV28 GIPZ cells (Figure 4.3 B and Table B.4 Appendix B). Non-infected 

HCC1937EV28 cells and HCC1937EV28 GIPZ cells formed an average of 80 and 

66 colonies respectively, while HCC1937 EV28-17507 cells formed an average of 20 

colonies. Morover, the number of colonies formed by HCC1937BR69 cells was 

lower compared to the number of colonies formed by HCC1937EV28 cells (5 and 80 

colonies respectively) and no difference in size of colonies was observed. These 

results suggest that the inhibition of anchorage-independent growth upon down-

regulation of EZH2 is not dependent on the presence of wild type BRCA1.  

 

4.2.2 Effect of EZH2 knockdown on HCC1937EV28 and HCC1937BR69 cells 

migration 

 To test whether the migration ability of HCC1937 cells after EZH2 

knockdown is affected by the presence of wild type BRCA1, a comparison between 

HCC1937BR69 and HCC1937EV28 cells was performed. As in the previous 

chapter, two different assays were used, the trans-well Boyden chamber assay  (Chen 

2005; Li & Zhu 1999) and the scratch assay (Liang et al. 2007) (Section 2.2.22 and 

2.2.23). 

The scratch assay was performed as described in section 2.2.16. Non-infected 

HCC1937BR69 cells, HCC1937BR69 GIPZ cells and HCC1937BR69 17507 cells 
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were seeded in 10 cm plates and allowed to reach confluency.  At day 0 a scratch 

was created in the monolayer of cells using a sterile 500 µl pipette and the cells were 

observed for 24 hours. The area of a marked scratch was measured at day 0 and at 

day 1 using the software imageJ. Cell migration was calculated using the following 

formula: “(Pre-migration area – Migration area)/Pre-migration area X 100” and 

represented in a graph as percent of cell migration (Figure 4.4 A and B). When 

compared to non-infected HCC1937BR69 cells and to HCC1937BR69 GIPZ cells, 

HCC1937BR69 17507 cells showed a reduction of cell migration of 22% (Figure 4.4 

and Table B.7 Appendix B). Cell migration for non infected HCC1937BR69 cells 

and HCC1937BR69 GIPZ cells was 85,92% and 85,54% respectively, while cell 

migration for HCC1937BR69 17507 cells was 66,56% (Table B.7 Appendix B). 
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Figure 4.4: The effect of EZH2 knockdown on HCC1937BR69 cell migration as assessed by a 
scratch assay. Migration is reduced in HCC1937BR69 17507 compared to non-infected 
HCC1937BR69 and HCC1937BR69 GIPZ. A: Representative images showing difference in migration 
between non–infected HCC1937BR69, HCC1937BR69 GIPZ and HCC1937BR69 17507 cells. 
Photographs of the cells were taken at day 0 and day 1 at 10X magnification. B: The graph is 
representative of a single experiment and single marked scratches. The size of the scratch was 
measured at day 0 and at day 1, using the software imageJ. Cell migration was expressed in 
percentage and was calculated using the formula: “(Pre-migration area – Migration area)/Pre-
migration area X 100”. (see section 2.2.16 for more details) 
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These results were different from results obtained with HCC1937EV28 cells 

(Figure 4.5, see also section 2.4.3). When compared to non-infected HCC1937EV28 

and to HCC1937EV28 GIPZ cells, HCC1937EV28 17507 cells showed a reduction 

of cell migration of 10%. Cell migration for non infected HCC1937EV28 and 

HCC1937EV28 GIPZ was 81,9% and 80,92% respectively and cell migration for 

HCC1937EV28 17507 was 73,94% (see Table A.11). The results obtained using the 

scratch assay, sugget that EZH2 knockdown has a more pronounced effect in 

reducing migration of HCC1937 cells in the presence of wild type BRCA1. In order 

to confirm these data, additional experiments should have been performed using 

measurements taken from multiple scratches. The experiment was not repeated due 

to the fact that the HCC1937BR69 cells available had lost the expression of BRCA1 

during passaging (see section 4.3 and 4.4). 
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Figure 4.5: The effect of EZH2 knockdown on HCC1937EV28 migration as assessed by a scratch 
assay. Migration is not significantly reduced in HCC1937EV28 17507 cells compared to non-infected 
HCC1937EV28 and HCC1937EV28 GIPZ cells. A. Representative images showing difference in 
migration between non–infected HCC1937EV28, HCC1937 EV28 GIPZ and HCC1937EV28 17507. 
Photographs of the cells were taken at day 0 and day 1 at 10X magnification. B: The graph is 
representative of a single experiment and single marked scratches. The size of the scratch was 
measured at day 0 and at day 1, using the software imageJ. Cell migration was expressed in 
percentage and was calculated using the formula: “(Pre-migration area – Migration area)/Pre-
migration area X 100”. (see section 2.2.16 for more details) 
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In order to confirm data obtained with the scratch assay, a transwell Boyden 

chamber assay was also performed (section 2.2.12). Non-infected HCC1937BR69 

cells, HCC1937BR69 GIPZ cells and HCC1937BR69 17507 cells were trypsinized 

and separately re-suspended in serum free growth media. 2.5x104 cells were added to 

the top of each PET membrane. After 18-24 hours, three randomly selected fields in 

the central part of the chamber were chosen and the number of migrating cells was 

counted. For each cell type the experiments was performed in triplicate and a total of 

9 counts were made (3 counts for each chamber) which were then averaged in order 

to give an estimation of the number of migrating cells per field.  

 

Figure 4.6: The effect of EZH2 knockdown on HCC1937EV28 cells and HCC1937BR69 cells 
migration ability as assessed by transwell Boyden chamber assay. Cells were infected using lentiviral 
particles carrying either the shRNA oligo targeting EZH2 or the GIPZ shRNA control. 5 days after 
puromycin selection 2.5x103 cells were resuspended in serum deprived media and added to the top of 
a Boyden chamber; after 24 hours migrating cells were stained with crystal violet and counted under 
microscope. The graphs are representative of experiments performed in triplicate (n=9; error bars 
±SEM). A. EZH2 knockdown in HCC1937 BR69 cells. B. EZH2 knockdown in HCC1937EV28 cells. 
(See appendix B for raw data) 

 

Using the transwell Boyden chamber assay, migration of HCC1937BR69 

cells was reduced by 50% upon EZH2 knockdown (Figure 4.6.A). About 110 

migrating cells were counted for non-infected cells and cells infected with GIPZ 

control, while only 50 migrating cells were counted for HCC1937BR69 17507 cells. 
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 In contrast, using the transwell Boyden chamber assay, migration of 

HCC1937EV28 cells was not influenced by EZH2 knockdown (Figure 4.6 right). 

The number of migratory cells for non-infected HCC1937EV28 was similar to the 

number of migrating cells for HCC1937EV28 17507 (about 80 in both cases). 

However, the number of migratory cells for HCC1937EV28 GIPZ was significantly 

lower compared to the number of migratory cells for non-infected HCC1937EV28, 

suggesting that the vector GIPZ control could have had an effect on cell migration 

(discussed in section 3.5). In addition, the data presented here show that 

HCC1937BR69 cells migrate faster than HCC1937EV28, suggesting that re-

expression of BRCA1 increases the migratory ability of HCC1937 cells, which is in 

clear  disagreement with previously reported data (Coene et al. 2011). These 

unexpected results could be due to the fact that the HCC1937BR69 cells had lost 

BRCA1 expression during passaging (see section 4.3). 

 

4.2.3 Effect of EZH2 knockdown on HCC1937EV28 and HCC1937BR69 cells 

proliferation 

 In order to test whether EZH2 knockdown effects on HCC1937 cell 

proliferation is dependent on the presence of wild type BRCA1, growth curve 

analysis of HCC1937BR69 cells was performed and compared to growth curve 

analysis of HCC1937EV28 cells (Figure 4.7).  Non-infected HCC1937BR69 cells, 

HCC1937BR69 GIPZ cells and HCC1937BR69 17507 cells were seeded in 6 cm 

plates, starting with 2.0x105 cells. Cells were trypsinized and counted, using 

Beckman Coulter Particles Counter Z1, every 24 hours for 6 days (section 2.2.11).  
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Figure 4.7: The effect of EZH2 knockdown on HCC1937EV28 cells and HCC1937BR69 cell growth 
rate. Cells were infected using lentiviral particles carrying either the shRNA oligo targeting EZH2 or 
the GIPZ shRNA control. Five days after puromycin selection, 2.0x105 cells were plated in 6cm 
plates. Cells were trypsinized and counted every 24 hours using the Beckman Coulter Particles 
Counter Z1. The graph is representative of an experiment performed three times in triplicate (n=9; 
error bars ±SEM).  A. EZH2 knockdown in HCC1937BR69 cells. B. EZH2 knockdown in HCC1937 
EV28 cells. See appendix B for raw data. 

 

The doubling time for the non-infected HCC1937BR69 and HCC1937BR69 

GIPZ cells was about 48 hours, while the HCC1937BR69 17507 cells did not show 

any growth. As discussed in previous chapter (section 3.4.1) an accurate estimation 

of doubling time for the HCC1937EV28 cells was not possible due to the high death 

rate of the cells.  The data obtained suggest that EZH2 knockdown in HCC937EV28 

cells reduces their growth rate, but the inhibition effect is much stronger in 

HCC1937BR69. However, these data show that the HCC1937BR69 cells have 

higher proliferation rate compared to HCC1937EV28 cells. These results strongly 
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disagree with previously reported data (Promkan et al. 2009) and suggest that the 

HCC1937BR69 cells might have lost BRCA1 expression with passaging (see section 

4.3). 

 

4.3 Evaluation of BRCA1 expression after EZH2 knockdown in late passage 

HCC1937EV28 and HCC1937BR69 

 In order to test whether the HCC1937BR69 cells have lost the expression of 

BRCA1 with passaging, western blot analysis was performed. Total protein extracted 

from non-infected HCC1937BR69, HCC1937BR69 GIPZ, HCC1937BR69 17507, 

non-infected HCC1937EV28, HCC1937EV28 GIPZ and HCC1937EV28 17507 cells 

was analyzed (Figure 4.8). For each sample, 30 µg of proteins were loaded onto a 8% 

SDS acrylamide resolving gel and western blot analysis was performed as described 

in materials and methods (section 2.2.9.1 – 2.2.9.3). The BRCA1 antibody D9 from 

Santa Cruz (against the C-terminal domain of the protein) was used for the analysis. 

The expression of BRCA1 protein was higher in HCC1937BR69 17507 and 

HCC1937BR69 GIPZ cells compared to non infected HCC1937EV28, 

HCC1937EV28 17507 and HCC1937EV28 GIPZ cells. However, no increase in 

BRCA1 expression was detected when the non-infected HCC1937BR69 cells were 

compared to the non-infected HCC1937EV28 cells (Figure 4.8). The difference in 

the expression of BRCA1 between HCC1937BR69 cells and HCC1937EV28 cells 

initially observed (Figure 4.1) was no longer detected. These results suggest that the 

HCC1937BR69 cells have lost the expression of BRCA1 during passaging and shed 

light on the unexpected results obtained when Boyden chamber migration assay and 

proliferation assay were performed (Figure 4.6 and 4.7).  
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Figure 4.8: BRCA1 expression level in HCC1937EV28 cells and HCC1937BR69 cells after EZH2 
knockdown. Representative image and graph of western blot analysis performed three times. A. 
Extracted proteins were resolved by 8 % SDS-PAGE and membranes were probed with the indicated 
antibodies. β-Actin was used as a loading control. B. Results obtained after integrated density 
quantification of A using the software ImageJ (measurements expressed in arbitrary units).  
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4.4 Discussion 

 Many lines of evidence support the idea that EZH2 might represent a good 

target for the development of a novel strategy for breast cancer treatment (Gonzalez 

et al. 2009; Kunju et al. 2011; Li et al. 2009; Puppe et al. 2009; Sun et al. 2009; 

Wicha 2009; Xiao 2011). Knowing the exact role of EZH2 in tumourigenesis and its 

potential interaction with other pathways is crucial in order to develop a selected 

therapy and identify what group of tumours might benefit from it. Recently the idea 

of a possible interaction between EZH2 and BRCA1 has emerged, suggesting that 

the beneficial effect of EZH2 down-regulation in breast cancer might be dependent 

on BRCA1 status (Gonzalez et al. 2009; Puppe et al. 2009; Wicha 2009).  

The over-expression of EZH2 is associated with several tumour 

characteristics, i.e. high proliferation, aggressiveness and metastatic behaviour. In 

this thesis no experiments were performed in order to test whether these tumour 

characteristics would be modified by down-regulation of EZH2 in cells grown in 

vivo in whole organisms. However, some features of neoplastic cells were tested, 

such as proliferation rate, anchorage independent growth and migration.  

EZH2 knockdown significantly reduced the ability of anchorage-independent 

growth in cells carrying mutated/non-functional BRCA1 but not in cells carrying 

wild type BRCA1 (Figure 4.3). When the number of colonies formed by the two cell 

lines HCC1937EV28 and HCC1937BR69 (mutated BRCA1 and wild type BRCA1 

respectively) were compared, a significant difference was observed: HCC1937EV28 

cells form a higher number of colonies compared to HCC1937BR69. Therefore, the 

difference observed, upon EZH2 knockdown, may simply be due to the fact that re-

expression of wild type BRCA1 causes loss of the ability of anchorage independent 

growth. Indeed several studies have reported that expression of wild type BRCA1 
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inhibits the malignant behaviour of cancer cell lines, including the ability of cancer 

cells of growing in an anchorage-independent manner (El-Tanani et al. 2006; 

Promkan et al. 2009; Tassone et al. 2003). The exact mechanism through which 

BRCA1 inhibits malignant behaviour is not fully understood. It might act through 

several different regulators i.e. by maintaining a correct level of cyclin-dependent 

kinase inhibitor p21/Waf1 and p27 (Promkan et al. 2009), or by maintaining correct 

expression pattern of P-cadherin, Caveolin-1 and E-cadherin (Yasmeen et al. 2008). 

It has also been shown that in rats, BRCA1 represses neoplastic transformation by 

repression of the adhesive glycophosphoprotein, OPN (El-Tanani et al. 2004; Oates 

et al. 1996). However, some cell lines, even though expressing wild type BRCA1, 

retain the ability of growing in anchorage-independent manner. MDA-MB-231 cells 

are a good example (see previous chapter), they have a wild type BRCA1, but they 

maintain the ability of forming colonies in soft agar, suggesting that expression of 

wild type BRCA1 might not be the only regulator of anchorage-independent growth.  

Results obtained with HCC1937EV28 cells and HCC1937BR69 cells were 

contradictory across different assays (migration and proliferation assays) and, in 

some cases, in disagreement with data reported in other studies (Coene et al. 2011; 

Promkan et al. 2009). Using the scratch assay, a 22% reduction in cell migration 

upon EZH2 knockdown was observed in cells carrying the wild type BRCA1, 

whereas a 10% reduction in cell migration upon EZH2 knockdown was observed in 

cells with mutated BRCA1 (Figure 4.4 and 4.5). Using the transwell assay, a 

reduction of cell migration upon EZH2 knockdown was observed only in cells with 

wild type BRCA1 (Figure 4.6). In addition, migration appeared to be drastically 

reduced in HCC1937EV28 GIPZ cells (Figure 4.6 B), suggesting that the infection 

control vector GIPZ had an effect on cell migration and that a different vector control 
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should have been tested (see discussion chapter 3). The highly mortality rate 

observed for HCC1937EV28 cells could have caused some errors when migrating 

cells were counted (see section 3.4.1). In order to clarify whether the results obtained 

were due to experimental error or were due to the infection control vector GIPZ, 

further experiments using a different control vector would be required. In addition, 

data obtained with the transwell Boyden chamber assay showed that the migratory 

ability of HCC1937BR69 cells was higher than migratory ability of HCC1937EV28 

cells (Figure 4.6), suggesting that reconstitution of BRCA1 increases migration of 

HCC1937 cells. This is in contrast with data recently reported (Promkan et al. 2009). 

A recent study has shown that re-expression of wild type BRCA1 in HCC1937 cells 

significantly reduces their migration, suggesting a new role for BRCA1 in regulation 

of motility of breast cancer cells (Coene et al. 2011). According to this study, wild 

type BRCA1 exerts its tumour suppression activity through the interaction between 

its N-terminal domain BRCT (Glover 2006) and the ezrin-radixin-moesin (ERM) 

complex which plays a role in cell motility regulation (Ou-Yang et al. 2011).    

Data presented in this thesis show that EZH2 knockdown drastically reduces 

the proliferation rate of HCC1937 breast cancer cells in the presence of wild type 

BRCA1 while it has less stronger effect in the presence of mutated BRCA1 (Figure 

4.7). However, the HCC1937EV28 cells appeared to grow more slowly than the 

HCC1937BR69 cells. These data are also in disagreement with data previously 

reported (Coene et al. 2011; Promkan et al. 2009) 

The contradictory results obtained using the transwell assay and the 

proliferation assay strongly suggests that the HCC1937BR69 cells had reverted back 

to their original phenotype (i.e. they have lost BRCA1 expression during passaging).  

Indeed, an expression analysis of later passage cell showed no difference in   BRCA1 
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expression between HCC1937BR69 and HCC1937EV28 cells (Figure 4.8), 

confirming that  HCC1937BR69 cells had lost the expression of BRCA1 during 

passaging. 

The loss of BRCA1 expression in HCC1937BR69 cells and the contradictory 

results obtained are not sufficient to further clarify the relationship between EZH2 

and BRCA1 status. Due to the lack of HCC1937 cells expressing BRCA1 and to the 

fact that a new study investigating the relationship between EZH2 and BRCA1 was 

published, no further experiments were performed. Gonzalez et al. proposed  that 

EZH2 knockdown acts through BRCA1 and pBRCA1 in regulating cell proliferation 

and G2/M phase (Gonzalez et al. 2009). In normal mammary cells the low level of 

EZH2 regulates cell proliferation via modulation of BRCA1 and pBRCA1 s1423 

level and consequently Cdc2-Cyclin B1 complex level. EZH2 over-expression 

induces inhibition of BRCA1 and pBRCA1 s1423 level which leads to upregulation 

of Cdc2-Cyclin B1 complex and uncontrolled cell proliferation. These data, together 

with the observation that a direct physical interaction between EZH2 and BRCA1 

has not been reported suggests that other factors are involved. One of the major roles 

assigned to BRCA1 is linked to DNA damage response, therefore maintenance of 

genome stability. A followup study suggested that activation of the PI3K/Akt-1 

signalling pathway could be the link between EZH2 and BRCA1 (Gonzalez et al. 

2011). They showed that up-regulation of EZH2 in non-tumourigenic cells promotes 

aneuploidy, genomic instability and translocation of BRCA1 from nucleus to the 

cytoplasm and that down-regulation of EZH2 exerts opposite effects, and they 

proposed that Akt-1 functions as an intermediate in this process. In fact, Akt 

activation  has been shown to induce BRCA1 cytoplasmic localization (Plo et al. 
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2008) and over-expression of EZH2 induces activation of Akt-1 (Gonzalez et al. 

2011) with a consequent influence on the intracellular localization of BRCA1.  

It would be interesting to investigate the possible role of other factors. 

Recently, BRIT1/MCPH has been identified as new regulator of the DNA damage 

response, via the ATM/ATR pathway (Chaplet et al. 2006; Peng et al. 2009). BRIT1 

binds to SWI/SNF, a complex involved in chromosomal relaxation which is also an 

antagonist of polycomb complexes (Wilson et al. 2010). In addition, BRIT1-deficient 

cells show premature chromosome condensation (Jeffers et al. 2008; Wood et al. 

2008). Interestingly, it has been shown that BRIT1 regulates the expression of  

BRCA1 and Chk1 (Lin et al. 2005) and it is required for regulation of G2/M cell 

cycle in response to ionizing radiation. Reduced levels of BRIT1 cause a reduction of 

BRCA1 and Chk1 expression levels and consequently loss of G2/M checkpoint 

control. The connection between BRIT1 and G2/M cell cycle control, DNA damage 

response, and chromatin status, together with high density array comparative 

genomic hybridization data showing a reduced level of BRIT1 in several human 

cancers, including ovarian, and in breast cancer cell lines (Lin et al. 2010; Rai et al. 

2006), suggests that BRIT1 might be an alternative mechanistic link between EZH2 

and BRCA1 (Figure 4.10). One of the mechanisms through which EZH2 has been 

proposed to be involved in tumourigenesis and cancer progression is silencing of 

tumour suppressor genes and BRIT1 might be one of the possible tumour 

suppressors down-regulated by EZH2.  
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Figure 4.9: Schematic representation of possible interaction between BRCA1 and EZH2. In normal 
breast epithelial cells low levels of EZH2 regulates the level of BRCA1 resulting in controlled 
proliferation and cell cycle progression. In tumour cells over-expression of EZH2 causes down-
regulation of BRCA1 resulting in uncontrolled and cell cycle progression. A direct interaction 
between EZH2 and BRCA1 has not been reported, therefore other factors might be involved. The 
PI3K/Akt-1 signalling pathway has been proposed  as the link between EZH2 and BRCA1 (Gonzalez 
et al. 2011).  However, other factors, i.e. BRIT1, might be involved (see text for details). 
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5 Chapter 5: THE EFFECT OF ECTOPIC EXPRESSION OF CBX 

POLYCOMB PROTEINS IN MCF10A CELLS 

5.1 Introduction 

The human chromodomain-containing protein, CBX8 (also known as PC3, 

RC1, HPC3) has been identified a decade ago as part of the polycomb repressive 

complex 1 (PRC1); its well conserved C-terminal domain (14 aa) binds to other 

components of PRC1, such as RING1 and BMI1 and it has been shown to be 

involved in repression of transcriptional activity (Bardos et al. 2000). CBX8 and its 4 

homologues, CBX2, CBX4, CBX6 and CBX7, have not been completely 

characterized and very little is know about their role in normal and transformed cells. 

This chapter describes the effect of expressing various chromobox-containing 

proteins (CBX) in immortalized breast epithelial cells MCF10A. In order to assess 

whether and to what extent CBX proteins are involved in breast cancer initiation 

three different CBX proteins (CBX6, CBX7 and CBX8) were ectopically expressed 

in MCF10A cells, and their ability to alter cell growth was tested. Out of the three 

CBX proteins tested, CBX8 significantly altered cell growth of MCF10A cells, and 

therefore was chosen for further analysis. The ability of CBX8 to alter cell migration 

and anchorage-independent growth was also assessed. MCF10A cells are considered 

to be similar to normal cells having a near-diploid karyotype, few genetic changes 

typical of culture-adapted breast epithelial cells and loss of the p16 locus but normal 

p53 expression. MCF10A cells do not form colonies in soft agar, and they do not 

grow in immuno-compromised mice (Imbalzano et al. 2009).  
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5.2 CBX proteins overexpression in MCF10A cells 

MCF10A cells were obtained from ATCC and grown in media according to 

ATCC instructions (section 2.2.8.1) and were passaged every 2 or 3 days. CBX 

protein ectopic expression was carried out using a second generation lentiviral 

system. Three different CBX lentiviral constructs were prepared as described below 

(see also section 2.2.1). Plasmids containing CBX6 (HsCD00045684), CBX7 

(HsCD00079712) and CBX8 (HsCD00079972), were obtained from Harvard 

plasmID clone resource (http://plasmid.med.harvard.edu/PLASMID/). Each plasmid 

consist of the recombinant Gateway donor clone pDONR221 containing respectively 

CBX6 cDNA (http://www.ncbi.nlm.nih.gov/gene/23466) or CBX7 cDNA 

(http://www.ncbi.nlm.nih.gov/gene/23492) or CBX8 cDNA 

(http://www.ncbi.nlm.nih.gov/gene/57332). CBX7 and CBX8-containing plasmids 

did not contain a STOP codon and so one was created by PCR amplification from the 

pDONR221-CBX template, and a purified cDNA was inserted into the pDONR201 

donor vector using the Gateway cloning system (section 2.2.1.1 – 2.2.1.5). Since the 

CBX6 ORF contained a STOP codon, it was used directly in the Gateway cloning 

system. The destination vector used for constructing the expression clone was 

pSD69, a lentiviral vector obtained from Prof. R. Iggo (Figure 5.1). The resulting 

expression clones were named pSD69-CBX6, pSD69-CBX7 and pSD69-CBX8 

(Figure 5.1). pSD3 was the lentiviral vector used as a control (obtained from Prof. 

Iggo). 
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Figure 5.1: An outline of the cloning method used to produce expression clones carrying the CBX 
genes tested (see also materials and methods paragraph 2.2). The 9535bp pSD69 plasmid contains 
Rous Sarcoma Virus (RSV) enhancer/promoter, HIV-RU5, Rev-responsive element (RRE), the 
human phosphoglycerokinase gene (PGK) promoter, and Mouse PGK promoter, HIV-U3’RU5, the 
SV40 pA/ORI, the F1 ORI, the puromycin resistance gene, the ampicillin resistance gene and the 
Gateway attB cassette. The entry plasmid (pENTR201 clone) contains the Gateway attL cassette and 
carries the gene of interest (CBX6, CBX7 or CBX8). The expression clone is the result of 
recombination between the empty expression clone pSD69 and the entry clone pENTR201via the 
gateway cassettes (attL x attR). 

Gene of interest: 
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Inserts size were verified by restriction enzyme digestion (Figure 5.2) and 

DNA was sent to the DNA sequencing Services, University of Dundee and 

sequenced using the primers OSD48 and OSD49 (section 2.2.1.9). pSD69-CBX6 

(9089bp) plasmid DNA was digested using the EcoRI restriction enzyme producing 

three fragments of 697 bp, 1714 bp and 6678 bp respectively. pSD69-CBX7 

(8636bp) plasmid was digested using two restriction enzymes,  BglII and EcoRI, 

producing four fragments of 3773 bp, 1946 bp, 1706 bp, and 1192 bp respectively.  

pSD69-CBX8 (9020) was digested using two restriction enzymes BamHI and PstI, 

producing four fragments of 4822 bp, 2198 bp, 1252 bp and 848 bp respectively 

(Figure 5.2). 

 293T packaging cells were used for production of lentivirus particles. Cells 

were transfected with the required amount of packaging constructs providing the 

viral coat (pVF11 and pVF16) and viral expression constructs using Mirus 

TransIT®-LT1 transfection reagent (section 2.2.3). A small amount of packaged 

lentiviruses was used for titration (section 2.2.5) and only batches containing 

between 108 and 107 infectious particles per ml were used for MCF10A infection, 

which was carried out as described in materials and methods (section 2.2.4). At four 

days post infection, MCF10A cells were treated with an amount of puromycin 

previously found to be sufficient to kill non-infected cells (Debnath et al. 2003). 

MCF10A cells over-expressing CBX proteins were subsequently grown in the 

appropriate growth media (section 2.2.8.1) containing the selective antibiotic 

puromycin.  
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Figure 5.2: Analysis of Plasmid DNA by Restriction Digestion. The presence of CBX genes within 
the pSD69 expression clone was verified by restriction enzymes digestion. A.pSD69-CBX6 digested 
with EcoRI; two different clones are shown. The uncut (U) plasmid is 9089 bp and three fragments are 
expected (697, 1714 and 6678 bp respectively) after restriction enzyme digestion (D). B. pSD69-
CBX7 digested with BglII and EcoRI. The uncut (U) plasmid is 8636 bp and four fragments are 
expected (3773, 1946, 1706, and 1192 bp respectively) after restriction enzyme digestion (D). C. 
pSD69-CBX8 digested with BamHI and PstI. The uncut (U) plasmid is 9020 bp and four fragments 
are expected (4822, 2198, 1252and 848bp respectively); after restriction enzyme digestion (D). Two 
digested clones are shown.  
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materials and methods (section 2.2.9.1 – 2.2.9.3). Western blot analysis showed a 

significant increase of CBX6 protein expression in cells infected with CBX6 

containing lentivirus compared to non-infected MCF10A cells (Figure 5.3 A). 

Similarly, a significant increase of CBX7 protein expression in cells infected with 

CBX7 containing lentivirus was detected by western blot analysis when compared to 

non-infected MCF10A cells (Figure 5.3B). MCF10A cells infected with CBX8 

containing lentivirus also showed a robust increase of CBX8 protein expression 

when compared to non-infected MCF10A cells, as shown by western analysis 

(Figure 5.3C). The batches of cells over-expressing the three different CBX proteins 

were used for growth curve analysis. 

Figure 5.3: Analysis of CBX6, CBX7 and CBX8 protein expression in MCF10A cells after lentiviral 
infection. MCF10A cells were infected using lentiviral particles carrying CBX6 (A), CBX7 (B) or 
CBX8 (C) cDNA. Infected cells were harvested 5 days after puro selection and extracted proteins 
were resolved by 10 % SDS-PAGE and membranes were probed with the indicated antibodies. β-
Actin or GADPH antibodies were used as loading controls. Images are representative of western blot 
analysis performed three times. 
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MCF10A cells infected either with CBX6, or CBX7 or CBX8 were seeded in 6-

weels plates, starting with either 3.0x104 cells for CBX6 or 1.5x104   for CBX7 and 

CBX8. Cells were trypsinized and counted, using Beckman Coulter Particles Counter 

Z1, every 48 hours (Figure 5.4).  

Figure 5.4: Growth analysis of MCF10A cells overexpressing CBX6, CBX7 or CBX8 protein. A. 
The growth rate of MCF10A overexpressing CBX6 is compared to the growth rate of parental cell 
line. B. The growth rate of MCF10A overexpressing either CBX7 or CBX8 is compared with the 
growth rate of parental cell line. Cells were infected using lentiviral particles carrying either CBX8 
cDNA , CBX7 cDNA or  CBX8 cDNA and, 5 days after puro selection, cells were plated in 6 wells 
plates. Cells were trypsinized and counted every 48 hours using the Beckman Coulter Particles 
Counter Z1. The experiments were performed in triplicate and each replica was counted three times. 
The graph is representative of one experiment performed three times in triplicate (n=9; error 
bars±SEM). See appendix C for raw data. 
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three CBX proteins analyzed, only CBX8 showed ability to alter proliferation rate of 

MCF10A cells, therefore, it was chosen for further experiments.  However, the fact 

that the experiment was carried out without using a vector control represents an 

issue, and in all the subsequent experiments performed a vector control containing 

GFP was used. 

To test whether CBX8 acts as cell growth promoting gene in normal 

epithelial breast cells and whether it has a long term effect or a more temporary 

effect, additional growth curve analysis experiments were performed. The 

experiments were performed using  non infected MCF10A cells, MCF10A cells 

over-expressing CBX8 and MCF10A cells expressing GFP as a control. The over-

expression of CBX8 was confirmed by western blot analysis (Figure 5.5).  

Figure 5.5 Analysis of CBX8 protein expression in MCF10A cells after lentiviral infection. MCF10A 
cells were infected using lentiviral particles carrying CBX8 cDNA. Infected cells were harvested 5 
days after puro selection and extracted proteins were resolved by 10 % SDS-PAGE. Membranes were 
probed with the indicated antibodies. β-Actin  antibody was used as loading controls. 
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hours (Figure 5.6 A). At day five, however, MCF10A cells over-expressing CBX8 

proliferation rate was significantly reduced and the growth rates of the three cells 

type were similar. This was probably due to the fact that MCF10A over-expressing 

CBX8 cells had reached confluency and had stopped growing. Cells were then 

transferred to larger plates and their growth rate measured (Figure 5.6 B) from day 

five on the growth rate of MCF10A over-expressing CBX8 was similar to growth 

rate of non-infected MCF10A cells or MCF10A expressing GFP. These data suggest 

that CBX8 initially increases the proliferation rate of MCF10A cells, but this is only 

a transient or temporary effect. Other genetic and/or epigenetic changes might be 

required for the high proliferative phenotype to become stable. 

Figure 5.6: Growth analysis of MCF10A cells overexpressing CBX8 protein. The growth rate of 
MCF10A cells overexpressing CBX8 was compared to growth rate of non infected MCF10A cells and 
MCF10A cells expressing GFP. A. Cells were infected using lentiviral particles carrying either CBX8 
cDNA or GFP cDNA control and, 5 days after puro selection, cells were plated in 6cm plates. Cells 
were trypsinized and counted every 24 hours using the Beckman Coulter Particles Counter Z1. B. 
Cells were trypsinized and transferred to larger plates. Cells were couted every 24 hours using the 
Beckman Coulter Particles Counter Z1. The graphs are representative of one experiment performed 
three times in triplicate (n=9; error bars±SEM). See appendix C for raw data. 

 

 

 

 

0,00E+00

5,00E+05

1,00E+06

1,50E+06

2,00E+06

2,50E+06

3,00E+06

3,50E+06

4,00E+06

Day 0 Day 1 Day 2 Day 3 Day 4

2,00E+06

3,00E+06

4,00E+06

5,00E+06

6,00E+06

7,00E+06

8,00E+06

Day 5 Day 6 Day 7 Day 8

MCF10A

MCF10A + GFP

MCF10A + CBX8

A B 



135 
 

5.2.3 CBX8 over-expression has no effect on MCF10A cell migration 

As normal cells transform into tumour cells, they acquire new characteristics 

and properties. One new property tumour cells exhibit is their ability to migrate from 

one site to another, generally in response to chemical signal. To test whether CBX8 

ectopic expression affects the ability of MCF10A cells to migrate, a transwell 

(Boyden chamber) assay was carried out (section 2.2.12). Non infected MCF10A 

cells, MCF10A cells expressing GFP and MCF10A cells expressing CBX8 were 

trypsinised and separately resuspended in serum free and EGF free growth media. 

2.5x104 cells were added to the top of each chamber. After 18-24 hours, three 

randomly selected fields in the central part of the chamber were chosen and number 

of migrating cells was counted. For each cell type the experiment was performed in 

triplicate a total of 9 counts were made (3 counts for each chamber) which were then 

averaged in order to give an estimation of the number of migrating cells. The stained 

cells which were often observed in the peripheral area of the chamber were 

considered to be background noise and only the central part of the chamber was 

taken into consideration (Figure 5.7). Non infected MCF10A cells and MCF10A 

cells infected with GFP control did not migrate across the PET membrane, as 

expected.  MCF10A cells over-expressing CBX8 did not show any difference 

compared to the uninfected and control cells. Ectopic expression of CBX8 did not 

affect MCF10A migratory behavior using modified Boyden chamber assay. 
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Figure 5.7: The effect of over-expression of CBX8 on MCF10A cells as assessed by transwell 
Boyden chamber assay. Cells were infected using lentiviral particles carrying either CBX8 cDNA or 
the GFP control control. 5 days after puromycin selection 2.5x104 cells were resuspended in serum 
free and EGF free media and added to the top of a Boyden chamber. After 24 hours migrating cells 
were stained with crystal violet and counted under microscope. A. Image showing the difference 
between the peripheral and central area of the chamber. B. The graphs are representative of single 
experiments performed three times in triplicate (n=9; error bars ±SEM).  
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MCF10A cells infected with CBX8 and MCF10A cells infected with the GFP 

control, did not form colonies in soft agar, in each of the three wells analyzed. The 

ectopic expression of CBX8 alone is not sufficient to confer the ability to form 

colonies in soft agar to MCF10A cells . 

 

Figure 5.8: The effect of ectopic expression of CBX8 on anchorage-independent growth in MCF10A 
cells. Cells were infected using lentiviral particles carrying either CBX8 or the GFP control. Five days 
after puro selection cells were seeded in 3.5% low melting agarose containing growth media plus 
additives. A. After 21 days colonies were stained with INT and counted. B. The graph is 
representative of an experiment performed three times in triplicate. T47D cells were used us positive 
control.  
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5.3 Discussion 

Several studies have shown the involvement of two major polycomb proteins 

in breast cancer. Over-expression of EZH2, the main component of PRC2, has been 

related to breast cancer as well as over-expression on BMI1, the main component of 

PRC1 (Bezsonova et al. 2009; Elsheikh et al. 2009; Feinberg et al. 2006; Kerppola 

2009; Kingston et al. 1996; Kirmizis et al. 2003; Kleer et al. 2003; Raaphorst et al. 

2000; Ren et al. 2008; Schumacher et al. 1997; Simon 2003; van Kemenade et al. 

2001; Varambally et al. 2002; Whitcomb et al. 2007).  It is not clear whether altered 

expression of other polycomb proteins plays any role in breast cancer. CBX protein 

mis-regulation can alter the expression pattern of key regulator genes, such as genes 

encoding for factors involved in cell cycle regulation, DNA repair or development. 

Therefore, they might have a role in tumourigenesis. A clear association between 

CBX proteins and neoplastic transformation in various tissue has been already shown 

in several studies (Bernard et al. 2005; Dietrich et al. 2007; Federico et al. 2009; Gil 

et al. 2004; Kaustov et al.; Kerppola 2009; Kingston et al. 1996; Leeb et al.; Li et al. 

2007; Maertens et al. 2009; Min et al. 2003; Mohammad et al. 2009; Pallante et al. 

2008; Scott et al. 2007; Simon & Tamkun 2002; Vincenz & Kerppola 2008), but 

very little is known about the role of CBX proteins in breast cancer. In this chapter, 

the effect of ectopic expression of CBX8 in human immortalized epithelial cells was 

investigated. A preliminary analysis of three CBX proteins was first performed. The 

CBX proteins chosen were CBX6, CBX7 and CBX8. There is no evidence 

supporting the role of CBX6 in cancer (Dodds et al. 1997; Gil et al. 2004; Vincenz & 

Kerppola 2008). More information about CBX7 and CBX8 is available, they both 

alter cell proliferation, acting through repression of p16(Ink4a)/Rb and the Arf/p53 

pathways, causing abnormal proliferation and neoplastic transformation in different 
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type of cells such as prostate cells, gastric cells, lymphocytes and fibroblasts 

(Bernard et al. 2005; Bracken & Helin 2009; Dietrich et al. 2007; Gil et al. 2004; 

Kirmizis et al. 2003; Maertens et al. 2009; Mohammad et al. 2009; Pallante et al. 

2008; Scott et al. 2007; Vincenz & Kerppola 2008; Zhang et al.) . 

The preliminary results obtained with ectopic expression of CBX6, CBX7 and 

CBX8 have shown that CBX proteins have different effects on MCF10A cell 

proliferation (Figure 5.4). The three CBX proteins were successfully ectopically 

expressed in MCF10A cells as shown by western blot analysis (Figure 5.3), but only 

CBX8 over-expression significantly increased the proliferation rate of MCF10A cells 

(Figure 5.4 - 5.5), therefore only CBX8 protein was chosen for further experiments. 

As already mentioned in section 5.2.2, this first set of experimenst lacks the presence 

of a control vector. It would have been appropriate to use a control vector in order to 

confirm that the increase of proliferation rate of MCF10A cells was specifically 

caused by the ectopic expression of CBX8. In the later experiments carried out to 

investigate the effect of CBX8, a GFP containing vector was used as a control 

(Figure 5.5). The growth curve experiments showed that ectopic expression of CBX8 

significantly increased the proliferation rate of MCF10A cells, suggesting that CBX8 

might act as a cell growth promoting gene in MCF10A cells (Figure 5.5) and it might 

contribute to cancer initiation. However, when the effect of CBX8 over-expression 

on cell migration and anchorage independent growth was tested, no significant 

changes were observed (Figure 4.6 and 4.7). CBX8 alone is not sufficient to confer 

anchorage-independent growth, neither it is sufficient to influence the ability of 

MCF10A cells to migrate. One of the reasons why these results were observed might 

be due to the fact that MCF10A cells infected with CBX8, after a short period of 

time tend to revert back to their wild type phenotype. Late passage MCF10A cells 
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could have lost CBX8 expression which could be the reason why CBX8 did not 

show any effect when anchorage-independent growth and migration ability was 

tested. However, other possibilities must be considered, it is unlikely that the over-

expression of one single gene could cause transformation..  

CBX8 over-expression might be just enough to increase the proliferation rate 

of MCF10A cells but it is not sufficient to completely transform the cells. MCF10A 

cells are immortalized cells which exhibit few abnormalities, altered karyotype and 

loss of both copies of the p16. However, these abnormalities and the introduction of 

a single potential oncogene are not enough to transform the cells.  A similar scenario 

was observed when the potential oncogenic activity of BMI1 in epithelial breast cells 

was tested (Datta et al. 2007). The study showed that over-expression of BMI1 alone 

does not have any effect on proliferation activity and ability to form colonies in soft 

agar of immortalized breast epithelial cells. However when a second oncogene, 

HRAS, was introduced the cells became highly proliferative and were able to form 

colonies in soft agar. Moreover, when the BMI1/HRAS over-expressing cells were 

injected into nude mice, they were able to form tumors. In this chapter the ability of 

CBX8 to transform MCF10A cells was tested and the results obtained showed that 

CBX8 promotes transient cell proliferation when over-expressed in MCF10A cells, 

but its over-expression alone is not sufficient to transform the cells. Neoplastic 

transformation is a multistage process, a series of genetic and epigenetic changes, 

with or without exposure to carcinogens, is required for a cell to become malignant 

(Boehm et al. 2005; Loeb et al. 2003). 

Other oncogenic stimuli and genetic/epigenetic changes, along with CBX8 de-

regulation, may be required in order to observe more definitive switch towards the 

cancerous phenotype. This hypothesis will be further investigated in chapter six.  
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6 CHAPTER 6: THE EFFECT OF ECTOPIC EXPRESSION OF CBX8 

AND BMI1 IN BREAST PRIMARY EPITHELIAL CELLS 

6.1 Introduction 

 In this chapter the effect of ectopic expression of CBX8 in two different types 

of breast epithelial cells was investigated: BPEC (breast primary epithelial cells) 

(Ince et al. 2007) and B42CP cells (Unger et al. 2010). The aim of the experiments 

performed with BPEC was to analyse the effect of ectopic expression of CBX8 and 

compare it to the effect of ectopic expression of BMI1. The aim of the experiments 

performed with B42CP cells was to better clarify the effect of ectopic expression of 

CBX8 in immortalized breast epithelial cells. CBX8 belong to PRC1 and its key 

component is BMI1 (Sparmann & van Lohuizen 2006). BMI1 is an oncogene 

frequently over-expressed in many different types of cancer, including breast cancer 

(Bea et al. 2001; Duss et al. 2007; Kim et al. 2004a; Kim et al. 2004b; van Kemenade 

et al. 2001; Vonlanthen et al. 2001). Previous studies have shown that BMI1 binds 

and down-regulates the INK4A/ARF locus and its over-expression prevents 

senescence in human fibroblasts, rodent fibroblasts and human mammary epithelial 

cells (Dimri et al. 2002; Itahana et al. 2003; Jacobs et al. 1999). BMI1, however, can 

also lead to neoplastic transformation via INK4a/ARF–independent mechanism 

(Dimri et al. 2002). In MCF10A immortalized non tumourigenic breast cells lacking 

both p16 and p19, for instance, BMI1 over-expression, along with G12V mutant of 

H-Ras, is sufficient for oncogenic transformation (Datta et al. 2007).  

Previous studies have investigated the role of CBX8 over-expression in 

human and mouse fibroblasts, showing that CBX8 promotes abnormal proliferation 

and leads to neoplastic transformation through direct binding and repression of 

INK4A/ARF locus, and through regulation of other genes important for cell growth 
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and survival (Dietrich et al. 2007). In the previous chapter, the effect of CBX8 

ectopic expression in MCF10A immortalized non tumourigenic breast epithelial cells 

was investigated. When over-expressed in MCF10A cells, CBX8 promotes transient 

cell proliferation, but it does not promote neoplastic transformation (see chapter 5). 

MCF10A cells lack expression of both p16 and p19 and to explore the possibility 

that CBX8 acts through the INK4A/ARF locus in breast epithelial cells, cells with an 

intact INK4A/ARF locus may be required. However, most tumour cell lines have 

altered p16 expression. A good alternative system is the use of primary epithelial 

cells. Breast primary epithelial cells (BPEC) derived from reduction mammoplasty of 

healthy women (see section 2.2.8.4) were used for the first set of experiments 

performed in this chapter.  Using lentiviral and retroviral particles, BPEC were 

infected with different combination of genes, including BMI1 and CBX8. BPEC 

expressing GFP and BPEC over-expressing human telomerase reverse transcriptase 

(hTERT) and Harvey rat sarcoma viral oncogene homolog (HRAS), called 

respectively BPEC plus GFP and BPEC plus hTERT/HRAS were used as controls. 

The different sets of genes chosen were: BMI1 along with ERα (BPEC plus 

BMI1/ERα), BMI1 along with ERα, hTERT and HRAS (BPEC plus 

BMI1/ERα/hTERT/HRAS), CBX8 either alone or with ERα (BPEC plus CBX8 and 

BPEC plus CBX8/ERα respectively), CBX8 along with hTERT and HRAS (BPEC 

plus CBX8/hTERT/HRAS) and CBX8 along with ERα, hTERT and HRAS (BPEC 

plus CBX8/ERα/hTERT/HRAS). 

Infected and non-infected breast mammary epithelial cells were observed 

every day and morphological changes were annotated (see appendix D). Protein 

expression analysis was performed by western blot and, where enough cells were 
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available, they were characterised by immunofluorescence assay, proliferation assay 

and soft agar assay.  

Due to the high variability of the system used for growing BPEC, and several 

technical difficulties, it was not possible to fully evaluate to effect of CBX8 ectopic 

expression in BPEC and compare it to the effect of BMI1 ectopic expression. 

Therefore, the attention was focused only on CBX8, using the well characterised 

human mammary epithelial cell line B42CP. B42CP cells are cells isolated from 

tumour free breast tissue that have been immortalized by transduction with hTERT 

(Unger et al., 2010). Since B42CP is a well estabished and characterized cell line, 

there was no limitation in terms of number of cells available for invitro assays. The 

different sets of genes chosen to infect B42CP cells were HRAS alone, HRAS/CBX8 

and HRAS/CBX8/ERα. After ectopic expression of the appropriate transgenes, the 

following assays were performed: proliferation assay, soft agar assay and migration 

assay. 

 

6.2 BPEC conditions allow growth of a mixed heterogeneous population of 

cells 

 Reduction mammoplasty tissue obtained from Ninewells hospital, Dundee 

was processed and digested overnight (see section 2.2.8.4 and Figure 6.1). The 

resulting multicellular structures, organoids, were then cultured using 2 different 

protocols: Duss et al. protocol or Ince et al. protocol (Duss et al. 2007; Ince et al. 

2007). The human mammary epithelial cells (HMEC), obtained and cultured 

according to the Duss et al. protocol, had a very short survival time. Cells were 

passaged once and medium was changed every two days, but after one week the 
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HMEC stopped proliferating and insufficient cells were available to carry out 

lentiviral infection (see appendix D).  

The Ince et al. protocol produced a greater number of cells. Breast Primary 

Epithelial Cells (BPEC), obtained and cultured according to the Ince et al. protocol 

were cultured in the chemically defined serum free WIT media, passaged every four 

or five days and observed at regular intervals (see section 2.2.8.4).  Organoids of 

different sizes were visible for the first 5 or 6 days and a monolayer of cells started to 

clearly appear at day 4 (Figure 6.2). The organoids cultured in WIT media produced 

a heterogeneous population of cells. At day 10 at least three morphologically distinct 

types of cell were present, which were defined as: “stellate cells”, “epithelial-like 

cells” and “elongated cells” (Figure 6.2). “Stellate cells” represented a very small 

proportion of the mixed population of cells and presented morphological features 

resembling neuronal cells i.e. very small and characterised by the presence of two or 

three protrusion (Kadar et al. 2009). The “epithelial-like cells” had a defined regular 

shape and their morphology resembles MCF10A morphology. The “elongated cells” 

were generally irregular larger cells and their shape resembled the myo-epithelial 

cells.  The mixed population of cells were kept in culture for 7 weeks. (See appendix 

D for more images). 
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Figure 6.1: Schematic representation of the experimental procedure used to study the effect of CBX8 
ectopic expression in normal epithelial breast cells. Reduction mammoplasty tissue from healthy 
women was processed overnight, the resulting multicellular structures were separated by 
centrifugation and cultured in a chemically defined media (WIT) on Primaria plates. The monolayer 
of cells obtained was then infected with lentiviral particles carrying the appropriate expression 
construct. 
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Figure 6.2: Images of Breast Primary Epithelial Cells (BPEC). Multicellular structures derived from 
reduction mammoplasty were cultured with WIT media on Primaria plates. At day four organoids of 
different sizes are visible and monolayer of cells starts to appear (top two images). At day ten a 
monolayer of morphologically heterogeneous cells is visible. Three morphologically distinct types of 
cells are visible: “stellate cells” which are very small and have two or three protrusions (blue arrow). 
“Epithelial-like” cells which are also small and have defined regular shape (red arrow). “Elongated 
cells” which are larger cells characterized by more irregular shape (yellow arrow). Photos were taken 
every 4 or 6 days using the Axiovision imaging System. Objective magnification 10X. 
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Figure 6.3: Images of early passage BPEC and late passage BPEC. Cells were grown in WIT media 
on primaria plates. Early passages BPEC are defined as cells grown for less than two weeks. Late 
passages BPEC are defined as cells grown for more than two weeks. Photos were taken every 4 or 6 
days using the Axiovision imaging System. Objective magnification 10X. 

 

In order to confirm the heterogeneity of the cell population, the expression of 

two cytokeratins was tested by immunofluorescence: cytokeratin 14 (CK14), a basal 

marker, and cytokeratin 18 (CK18), a luminal marker. The immunofluorescence 

analysis showed that different cell morphology corresponded to a distinct expression 

of cytokeratins. The “epithelial-like cells” were all CK18 positive (Figure 6.4 right 

panel), while the “elongated cells” were all CK14 positive (Figure 6.4, left panel) 

suggesting heterogeneity and the presence of a mixed population of cells. The 

“stellate cells” fraction was present only for the first two weeks and it was not 

possible to further characterize them, while the remaining two types of cells, 

“epithelial-like and elongated” were still distinguishable for all 7 weeks. From now 

on the “epithelial-like” cells will be referred to as CK18+ cells and the “elongated” 

cells as CK14+ cells. 

Early passage Late passage 
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Figure 6.4: Expression of cytokeratins in non-infected BPEC assessed by Immunofluorescence. At 
least two morphologically distinct cells are visible: small cells with a more regular shape resembling 
epithelial cells are CK18-positive (red arrow) and larger cells with an elongated shape resembling 
myoepithelial cells are CK14-positive (yellow arrow). No double labelling was performed. Cells were 
visualized using an inverted microscope (Zeiss, Axiovert 40 CFL) and digital images were acquired 
using Axiovision imaging System. Objective magnification 10X. See appendix D for a representative 
image of secondary antibody only control. 

 

6.3 Evaluating the effect of BMI/ERα expression in BPEC 

BPEC were infected with three different lentiviral particles carrying three 

different cDNA (the polycomb proteins BMI1, Oestrogen receptor alpha and human 

telomerase reverse transcriptase) and retroviral particles carrying the Harvey rat 

sarcoma viral oncogene homolog HRAS-G12V (see section 2.2.3, 2.2.4, 2.2.6 and 

2.2.7). Two rounds of infections were performed and different batches of BPEC were 

infected with different combination of genes. The first round of infections consisted 
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of polycomb protein BMI1 along with ERα. Seven days later, the cells were infected 

with lentiviral particles containing hTERT and retroviral particles containing HRAS. 

BPEC infected with lentiviral particles containing GFP and BPEC infected with 

hTERT/HRAS were used as controls (called respectively BPEC plus GFP and BPEC 

plus hTERT/HRAS). Changes in morphology and cytokeratin expression were 

evaluated  (sections 6.3.1 and 6.3.2).  
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6.3.1 Effect on morphology 

When BPEC plus GFP were analyzed no changes in cell morphology were 

observed, cells kept their original shape and heterogeneity (Figure 6.5), confirming 

that lentiviral infection per se did not affect cell morphology. All viral particles, 

lentiviral and retroviral, carry the puro resistance gene. Infected BPEC were selected 

using 2.5 µg/ml of puromycin. BPEC infected with lentiviral particles containing 

BMI1 and ERα and selected using the appropriate amount of puromycin were called 

BPEC plus BMI1/ERα. BPEC infected with lentiviral particles carrying hTERT and 

retroviral particles carrying HRAS and selected with the appropriate amount of 

puromycin were called BPEC plus hTERT/HRAS. BPEC infected with lentiviral 

particles containing BMI1, ERα, hTERT and retroviral particles carrying HRAS and 

selected using the appropriate amount of puromycin were called BPEC plus 

BMI1/ERα/hTERT/HRAS.  

BPEC plus BMI1/ERα grew as a homogeneous sheet of cells (Figure 6.6). 

The second round of infections (hTERT and HRAS) led to contradictory results: in 

some cases, the cells kept their epithelial-like morphology and homogeneity, while in 

other cases some changes were observed. Large vacuoles started to appear inside the 

cells, most cells lost their regular original shape and appear similar to BPEC plus 

hTERT/HRAS (Figure 6.6). The BPEC that kept their original epithelial like 

morphology appeared to be growing faster than the BPEC that showed 

morphological changes. In order to distinguish between the two, they were called 

BPEC plus BMI1/ERα/hTERT/HRAS_2009 and BPEC plus 

BMI1/ERα/hTERT/HRAS_2010 respectively. The differences observed might 

reflect differences in the level of expression of each ectopic protein and this was 

investigated further in section 6.3.3.  
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Figure 6.5 Images of BPEC after infection with GFP. GFP expression was used as a control. The 
figure shows a representative image of BPEC infected with lentiviral particles containing GFP. Photos 
were taken 6 days after infection using the Axiovision imaging System. Objective magnification 10X. 

 

 

Figure 6.6: Representative images of Breast Primary Epithelial Cells (BPEC) after infection with 
lentiviral particles carrying the appropriate expression construct (see text for details). Photos were 
taken using the Axiovision imaging System. Objective magnification 10X. 
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6.3.2 Effect on cytokeratin expression 

To test whether the infection of BPEC with different combination of lentiviral 

particles induced any change in the expression of specific basal and luminal markers, 

the expression of CK14 and CK18 was measured by immunofluorescence (Figure 

6.7, 6.8 and 6.9). BPEC, after infection with lentiviral particles carrying BMI1 and 

ERα were analysed and they were positively stained for CK14 but not for CK18 

(Figure 6.7). These cells, did lose their original heterogeneity and grew as a 

homogeneous epithelial-like sheet of cells. 

Figure 6.7: Expression of cytokeratins in BPEC, after infection with lentiviral particles carrying 
BMI1 and ERα, assessed by Immunofluorescence. BPEC,  after infection with lentiviral aprticles 
carrying BMI1 and ERα,  displays CK14 but not CK18 expression. Cells were visualized using an 
inverted microscope (Zeiss, Axiovert 40 CFL) and digital images were acquired using Axiovision 
imaging System. Objective magnification 10X. 
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Both batches of BPEC infected with viral particles carrying 

BMI1/ERα/hTERT/HRAS showed positive staining for CK14 but showed an 

inconsistent staining for CK18 (Figure 6.8). BPEC plus 

BMI1/ERα/hTERT/HRAS_2010 showed positive staining for CK18 (Figure 6.8 

lower panel) BPEC plus BMI1/ERα/hTERT/HRAS_2009 showed no staining for 

CK18 (Figure 6.8 upper panel). Therefore, two additional markers were tested, CK5, 

a basal/myoepithelial maker and CK19, a luminal/epithelial marker. Both batches of 

BPEC infected with viral particles carrying BMI1/ERα/hTERT/HRAS showed 

positive staining for CK5 but showed an inconsistent staining for CK19 (Figure 6.9). 

BPEC plus BMI1/ERα/hTERT/HRAS_2009 showed positive staining for CK19 

(Figure 6.9 lower panel), while BPEC plus BMI1/ERα/hTERT/HRAS_2010 showed 

no staining for CK19 (Figure 6.9 upper panel). These results confirmed the 

heterogeneity of the cells and suggested that the inconsistent results of cytokeratin 

analysis could be due to the fact that expression of ectopic proteins varied between 

the different batches of cells (see section 6.3.3). 
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Figure 6.8: Expression of cytokeratins CK14 and CK18 in BPEC after infection with viral particles 
carrying BMI1/ERα/ hTERT/HRAS assessed by Immunofluorescence. Cells were infected with viral 
particles containing BMI1, ERα, hTERT and HRAS. BPECs, after infection with lentiviral particles 
carrying BMI1, ERα hTERT and HRAS, display CK14 expression. The expression of CK18 was not 
observed in all batches of BPECs. Single labelling only was performed. Cells were visualized using an 
inverted microscope (Zeiss, Axiovert 40 CFL) and digital images were acquired using Axiovision 
imaging System. Objective magnification 10X. 
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Figure 6.9: Expression of cytokeratins CK5 and CK19 in BPEC after infection with viral particles 
carrying BMI1/ERα/ hTERT/HRAS assessed by Immunofluorescence. Cells were infected with viral 
particles containing BMI1, ERα, hTERT and HRAS. BPEC, after infection with lentiviral particles 
carrying BMI1, ERα hTERT and HRAS displays CK5 expression. The expression of CK19 was low 
and not observed in all batches of BPECs. Only single labelling was performed. Cells were visualized 
using an inverted microscope (Zeiss, Axiovert 40 CFL) and digital images were acquired using 
Axiovision imaging System. Objective magnification 10X. 

 

 

 

C
K

1
9

 
C

K
5

 

B
M

I1
/E

R
α/

h
T

E
R

T
/H

R
A

S
_

2
0

1
0

 

Phase contrast DAPI 

Dyelight 488 (CK19) 

Dyelight-594 (CK5) 

B
M

I1
/E

R
α/

h
T

E
R

T
/H

R
A

S
_

2
0

0
9

 

C
K

5
 

C
K

1
9

 



156 
 

6.3.3 Evaluating expression of ectopic proteins 

To confirm the ectopic expression of the different proteins, western blot 

analysis (section 2.2.9.1 – 2.2.9.3) was performed on samples derived from 

independent batches of infected BPECs (Figure 6.10, 6.11 and 6.12). The level of 

expression of BMI1, ERα, HRAS and hTERT varied between different batches of 

BPEC analyzed.  Infection of BPEC with lentiviral particles containing BMI1 was 

carried out in three independent batches of cells (Figure 6.10A, lanes 2, 6 and 7 

marked in bold). Red arrows in the figure indicate the appropriate band for BMI1. A 

significant increase of BMI1 protein expression was detected by western blot 

analysis in one (Figure 6.10.A, lane 6 and Figure 6.10.B) of the three independent 

batches of BPEC, corresponding to BPEC plus BMI1/ERα/hTERT/HRAS_2010. The 

level of expression of BMI1 detected in the other two batches of BPECs was very 

low or absent (Figure 6.10.A, lanes 2 and 7 and Figure 6.10.B). An increase of ERα 

protein expression was detected by western blot analysis in both batches of BPEC 

infected with viral particles carrying BMI1/ERα/hTERT/HRAS (Figure 6.10.A lane 

6 and 7, and Figure 6.10.B). In contrast no increase of ERα expression in BPEC plus 

BMI1/ER was detected by western blot (Figure 6.10.A lane 2, and Figure 6.10.B). A 

significant increase of HRAS expression was detected in both batches of BPEC plus 

BMI1/ERα/hTERT/HRAS (Figure 6.10.A lanes 6 and 7 and Figure 6.10.C). HRAS 

expression level in BPEC infected with lentiviral particles carrying BMI1/ERα was 

similar to endogenous level (non-infected BPEC) (Figure 6.10.A lanes 2, 8 and 9 and 

Figure 6.10 C).  

Western blot analysis showed a very low hTERT level of expression in both 

batches of BPEC plus BMI1/ERα/hTERT/HRAS (Figure 6.11.A lanes 2 and 3, and 

Figure 6.11.B). 
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Figure 6.10: Analysis of BMI1, ERα and HRAS expression in BPEC. Representative images and 
graph of western blot analysis. A. Protein extracted from BPEC were resolved by 10% SDS-PAGE. 
Membranes were probed with the indicated antibodies. β-Actin was used as a loading control. Red 
arrows indicate the appropriate band for BMI1 and ERα. B. and C. Results obtained after integrated 
density quantification of A using the software ImageJ (measurements expressed in arbitrary units refer 
to cell type in bold in A). All values have been normalized against β-Actin. 
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Figure 6.11: Analysis of hTERT and α-SMA expression in BPEC. BPEC were infected using 
lentiviral particles carrying either hTERT or α-SMA. Representative images and graph of western blot 
analysis performed twice. A. Infected cells were harvested and the extracted proteins were resolved by 
10% SDS-PAGE. Membranes were probed with the indicated antibodies. Red arrows indicate the 
appropriate band for hTERT. GAPDH was used as a loading control. B. Results obtained after 
integrated density quantification of A using the software ImageJ (measurements expressed in arbitrary 
units refer to cell type in bold in A). All values have been normalized against GADPH. 
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BPEC plus BMI1/ERα/hTERT/HRAS_2010 showed ectopic expression of 

the polycomb protein BMI1. To test whether the cells obtained upon ectopic 

expression of BMI1 represent a distinct subtype of cell, expressing specific markers, 

the expression of the basal marker α-smooth muscle actin (α-sma) was tested. There 

was no difference in the level of α-SMA protein expression across the different 

batches of BPEC (Figure 6.11.A and 6.11.B). 

In order to test whether BMI1 regulates the INK4A/ARF locus in BPEC, 

expression of p16 was measured by western blot. A low/moderate expression of p16 

protein was detected in non infected BPEC, BPEC infected with GFP, BPEC 

infected with HRAS/hTERT and BPEC infected with BMI1/ERα (Figure 6.12.A lane 

2, 3,8, 9, and Figure 6.12.B). A moderate increase in the expression of p16 protein 

was detected in both batches of BPECs infected with BMI1/ERα/hTERT/HRAS 

(Figure 6.12.A lane 6, 7 and Figure 6.12.B). Only BPEC plus 

BMI1/ERα/hTERT/HRAS_2010 showed expression of BMI1, however the level of 

p16 expression in this batch of BPEC was similar to the level of p16 expression 

detected in BPEC plus BMI1/ERα/hTERT/HRAS_2009, which showed a very low 

level of BMI1 (Figure 6.10). These data suggest that the level of p16 expression in 

BPEC was not affected by BMI1 expression.  
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Figure 6.12: Analysis of p16 expression in BPEC. BPEC were infected using lentiviral particles 
carrying either, BMI1, ERα, hTERT, HRAS. Representative images and graph of western blot 
analysis performed twice. A. Infected cells were harvested and the extracted proteins were resolved by 
10% SDS-PAGE. Membranes were probed with the indicated antibodies. β-Actin was used as a 
loading control. B. Results obtained after integrated density quantification of A using the software 
ImageJ (measurements expressed in arbitrary units refer to cell type in bold in A). All values have 
been normalized against β-Acrtin. 
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6.3.4 Evaluating the effect of BMI1/ER on proliferation   

 To test the effect of ectopic expression of BMI1 on BPEC cell proliferation, 

the calorimetric MTT proliferation assay was performed (section 2.2.15). Results are 

represented in Figure 6.13. The assay measures cell viability and is based on the 

activity of the mitochondrial enzyme, succinate dehydrogenase, which reduces the 

yellow tetrazolium (MTT) into insoluble purple formazan crystals.  The crystals can 

be solubilized, using either isopropanol or DMSO and the purple solution can be 

spectrophotometrically read at 570 nm. An increase in absorbance is a reflection of 

an increase of MTT formation due to an increase in cell number. 

BMI1/ERα/hTERT/HRAS_2010 showed expression of BMI1, HRAS and low 

moderate expression of ERα and hTERT (see section 6.3.3). The proliferation rate  of 

BPEC plus BMI1/ERα/hTERT/HRAS_2010 was analysed and compared to BPEC 

plus BMI1/ERα/hTERT/HRAS_2009, which did not show an increase in BMI1 

expression and a very low ERα and  hTERT expression. BPEC infected with 

lentiviral particles carrying BMI1 and ERα were not analysed because they did not 

show any expresson of ERα and BMI1. Two batches of non infected BPEC were 

used as a control, BPEC early passage (less than two weeks in culture) and BPEC 

late passage (more then than two weeks in culture) were analysed and compared to 

early passage (less than two weeks in culture) (Figure 6.13).  
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Figure 6.13: Breast primary epithelial cell proliferation analysis upon BMI1 ectopic expression. Cells 
were infected using lentiviral particles carrying the appropriate cDNA (BMI1, ERα, hTERT, HRAS). 
Infected cells were plated in 24 well primaria plates. Cells were treated with MTT and DMSO before 
reading absorbance at a wavelength of 570nm with background subtraction at 650nm. The graph is 
representative of one experiment performed in triplicate. (n=3; error bars±SEM).  

 

Focusing on the interval between day 2 and day 4 (Figure 6.13), the cells that 

had a highest proliferation rate were BPEC plus BMI1/ERα/hTERT/HRAS_2009, 

which were late passage cells, and non infected BPEC early passage.  While BPEC 

plus BMI1/ERα/hTERT/HRAS_2010 and non infected BPEC late passage had the 

lowest growth rate. The batch of BPEC showing higher expression of the transgenes 

were the BPEC plus BMI1/ERα/hTERT/HRAS_2010, which are the cells that 

showed the lowest proliferation rate (Figure 6.13). Even though there was a high 

variability in the data, the fact that BPEC with an higher expression of the single 

transgene had a lower proliferation rate compared to non infected BPEC, suggested 

that the over-expression of BMI1/ERα/hTERT/HRAS does not increase the 

proliferation rate of BPEC. However, the results obtained do not explain why the 

BPEC plus BMI1/ERα/hTERT/HRAS_2009 (with lower expression of the 

transgenes) showed an higher proliferation rate compared to the BPEC plus 

BMI1/ERα/hTERT/HRAS_2010 and to BPEC late passage, and if cells were 

early passage 

late passage 
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available  additional experiments should be performed in order to clarify these 

results.  

6.3.5 Evaluating the effect of BMI1/ERα on anchorage independent growth 

 To determine whether breast primary epithelial cells acquire the ability of 

anchorage independent growth due to ectopic expression of BMI1/ERα, a colony 

formation in soft agar assay was performed. Non-infected BPEC, BPEC plus GFP, 

BPEC plus BMI1/ERα/hTERT/HRAS_2009, BPEC plus 

BMI1/ERα/hTERT/HRAS_2010 were tested in triplicate (section 2.2.13, T47D cells 

were used as positive control). For each replicate 5000 cells were used and the cells 

were grown at 37 ºC for 21 days. After 21 days, colonies were counted. Non-infected 

BPEC and BPEC plus GFP did not form colonies, while BPEC plus 

BMI1/ERα/hTERT/HRAS_2010 did form colonies (Figure 6.14). However, BPEC 

plus BMI1/ERα/hTERT/HRAS_2009, which did not show an adequate expression of 

the transgenes used, also showed the ability of forming colonies. It was not possible 

to repeat the assay, due to lack of cells. 
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Figure 6.14: The effect of polycomb protein BMI1 on BPEC anchorage–independent growth. 
Representative graph of one experiment performed in duplicate.  Cells were infected using lentiviral 
particles carrying the appropriate cDNA (BMI1, ERα, hTERT, HRAS). Infected cells were seeded in 
3.5 % low melting agarose containing WIT media. Colonies were stained with INT and counted after 
21 days. The graph is representative of an experiment performed twice in duplicate (n=4; error 
bars±SEM).  
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6.4 Evaluating the effect of CBX8/ERα in BPEC 

 Ectopic expression of polycomb proteins CBX8, Oestrogen Receptor alpha 

(ERα) and human telomerase reverse transcriptase (hTERT) was carried out using a 

second generation lentiviral system (see section 2.2.4). Ectopic expression of Harvey 

rat sarcoma viral oncogene homolog (HRAS-G12V) was carried out using a 

retroviral system (see section 2.2.7). Two rounds of infection were performed and 

different batches of BPEC were infected with different combination of genes. The 

first round consisted of CBX8 with or without ERα. Seven days after the first round 

of infection, the cells were infected with viral particles containing hTERT and 

HRAS.  

6.4.1 Effect on morphology 

When BPEC plus GFP were analyzed no changes in cell morphology were 

observed, cells kept their original shape and heterogeneity (Figure 6.5), confirming 

that lentiviral infection per se did not affect cell morphology. All viral particles, 

lentiviral and retroviral, carry the puromycin resistance gene. Infected BPEC were 

selected using 2.5 µg/ml of puromycin. BPEC infected with lentiviral particles 

containing CBX8 and selected using the appropriate amount of puromycin were 

called BPEC plus CBX8. BPEC infected with lentiviral particles containing CBX8 

and ERα and selected using the appropriate amount of puromycin were called BPEC 

plus CBX8/ERα. After the second round of infection with lentiviral particles carrying 

hTERT and retroviral particles carrying HRAS, the cells were selected using the 

appropriate amount of puromycin and called BPEC plus CBX8/ERα/hTERT/HRAS 

and BPEC plus CBX8/hTERT/HRAS.  

BPEC plus CBX8 and BPEC plus CBX8/ERα maintained their original 

morphological heterogeneity and grew as a mixed population of cells (Figure 6.15). 



165 
 

However in the BPEC plus CBX8/ERα the “epithelial like cells” defined in section 

6.2, started to disappear and some cells acquired a different morphology, they 

appeared to be much larger than the rest, irregular in shape and characterized by 

large nuclei and large cytoplasmic portion (See appendix D for more images).  

When BPEC plus CBX8/ERα and BPEC plus CBX8 were infected with 

lentiviruses and retroviruses containing hTERT and HRAS respectively, the vast 

majority of cells lost their original shape (Figure 6.15). The cells appeared to be 

much larger with irregular shape, and much flattened compared to other cells. These 

cells also did have small nuclei, large cytoplasmic portion, and multi-vacuoles started 

to appear in many of them.  The morpholgy of BPEC plus 

CBX8/ERα/hTERT/HRAS and BPEC plus CBX8/hTERT/HRAS appear to be very 

similar to the morphology of BPEC plus HRAS/hTERT (see Figure 6.6). Fifteen 

days after infection, undefined structures were visible, along with cells containing 

large vacuoles. The cells gradually became bigger, started to lose their original shape 

and stopped growing.   
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Figure 6.15: Representative images of BPEC after infection with lentiviral particles carrying CBX8, 
HRAS and ERα (see text for more details). Photos were taken using the Axiovision imaging System. 
Objective magnification 10X. 

 

6.4.2 Effect on cytokeratin expression 

Upon infection of BPEC with CBX8, the cells formed a very heterogeneous 

and disorganized layer of slow growing cells with undefined shape (Figure 6.15). To 

test whether these differences in shape also reflect differential expression of specific 

basal and luminal markers, the expression of two cytokeratins, CK14 and CK18, was 

measured by immunofluorescence (section 2.2.14). Only single labelling was 

performed. BPEC infected with lentiviral particles carrying CBX8 and ERα stained 

positively for both markers CK14 and CK18 (Figure 6.16), as well as BPEC plus 

CBX8/hTERT/HRAS (Figure 6.16). The expression of cytokeratins in BPEC 

infected with CBX8/ERα/hTERT/HRAS and BPEC infected with CBX8 alone was 

not performed as cells were no longer available. 

 

BPEC + CBX8 BPEC + CBX8/ERα 

BPEC + CBX8/hTERT/HRAS BPEC + CBX8/ER/hTERT/HRAS 
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Figure 6.16: Expression of cytokeratins in BPEC after infection with lentiviral particles carrying 
CBX8 and ERα, assessed by Immunofluorescence. Cells were infected with lentivaral particles 
containing CBX8, and ERα. BPEC, after infection with lentiviral aprticles carrying CBX8 and ERα 
displays CK14 and CK18 expression. No double labelling was performed. Cells were visualized using 
an inverted microscope (Zeiss, Axiovert 40 CFL) and digital images were acquired using Axiovision 
imaging System. Objective magnification 10X. 

Figure 6.17: Expression of cytokeratins in BPEC after infection with lentiviral particles carrying 
CBX8, hTERT and HRAS assessed by Immunofluorescence. Cells were infected with lentivaral 
particles containing CBX8, hTERT and HRAS. BPEC, after infection with lentiviral particles carrying 
CBX8, hTERT and HRAS displays both CK14 and CK18 expression. No double labelling was 
performed. Cells were visualized using an inverted microscope (Zeiss, Axiovert 40 CFL) and digital 
images were acquired using Axiovision imaging System. Objective magnification 10X. 
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6.4.3 Evaluating expression of ectopic proteins 

To confirm the ectopic expression of the different proteins, western blot 

analysis (section 2.2.9.1 – 2.2.9.3) was performed on samples derived from 

independent batches of infected BPECs (Figure 6.18, 6.19 and 6.20). Western blot 

analysis showed a significant increase of CBX8 protein expression in cells infected 

with CBX8-containing lentivirus compared to non-infected BPEC (Figure 6.18.A, 

lanes 1, 4 and 5). A robust increase of ERα protein expression was detected by 

western blot analysis in BPEC plus CBX8/ERα (lane 1, Figure 6.18.A), while a 

lower level of ER expression was detected in a separate batch of BPEC plus 

CBX8/ERα/hTERT/HRAS (lanes 4, Figure 6.18.A). In BPEC plus CBX8/ERα 

expression of ERα was 13.5 fold higher compared to BPEC plus 

CBX8/ERα/hTERT/HRAS (Figure 6.18C and Table D.3 AppendixD). Western blot 

analysis showed a significant increase of HRAS expression in BPEC plus 

CBX8/hTERT/HRAS, while a level of HRAS similar to endogenous level was 

detected in BPEC plus CBX8/ERα/hTERT/HRAS and BPEC plus CBX8/ERα (lane 

1, 4, 8 and 9 Figure 6.18.A and Figure 6.18.B).  

No expression of hTERT was detected in non infected BPEC, BPEC plus 

GFP and BPEC plus CBX8/ERα (Figure 6.19.A lane 1, 7, 8 and Figure 6.19.B). 

BPEC infected with viral particles carrying CBX8, hTERT and HRAS showed a very 

low expression of hTERT compared to BPEC infected with viral particles carrying 

hTERT and HRAS(Figure 6.19.A lane 4, 5 and Figure 6.19.B). 
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Figure 6.18: Analysis of CBX8, ERα and HRAS expression in BPEC. Representative images and 
graph of western blot analysis. A. Protein extracted from BPEC were resolved by 10% SDS-PAGE. 
Membranes were probed with the indicated antibodies. β-Actin was used as a loading control. Red 
arrows indicate the appropriate band for ERα. B. and C. Results obtained after integrated density 
quantification of A using the software ImageJ (measurements expressed in arbitrary units refer to cell 
type in bold in A). All values have been normalized against β-Actin. 
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The expression of the basal marker α-smooth muscle actin (α-sma) was also 

tested and compared to non-infected BPEC. Western blot analysis showed the same 

level of α-SMA protein expression across the different batches of BPEC over-

expressing CBX8 and the level of α-sma expression was similar to non-infected 

BPEC (Figure 6.19.A and 6.19.B).  

In order to test whether CBX8 regulates the INK4A-ARF locus in BPEC, the 

level of expression of p16 was measured by western blot (Figure 6.20). BPECs plus 

CBX8/hTERT/HRAS showed a small increase on p16 expression compared to non 

infected BPEC and BPEC plus GFP (Figure 6.20.A lanes 5, 8, 9 and Figure 6.20). A 

weak expression of p16 was also detected in BPEC expression CBX8/ERα and 

BPEC expressing hTERT/HRAS (Figure 6.20.A lanes 1,3 and Figure 6.20.B). BPEC 

plus CBX8/ERα/hTERT/HRAS, showed no expression of p16 protein (Figure 6.20.A 

lane 4 and Figure 6.20.B). The level of p16 in BPEC expressing the highest level of 

CBX8 was not significant different from the level of p16 in BPEC not expressing 

CBX8. Based on the data presented here, it is not possible to establish whether 

CBX8 has an effect on the expression of p16.   
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Figure 6.19: Analysis of hTERT and α-SMA expression in BPEC after infection with lentiviral 
particle carrying CBX8, hTERT and HRAS. BPEC were infected using lentiviral particles carrying 
CBX8, ERα, hTERT and HRAS. Representative images and graph of western blot analysis performed 
twice. A. Infected cells were harvested and the extracted proteins were resolved by 10% SDS-PAGE. 
Membranes were probed with the indicated antibodies. Red arrows indicate the appropriate band for 
hTERT. GAPDH was used as a loading control. B. Results obtained after integrated density 
quantification of A using the softwareImageJ (measurements expressed in arbitrary units refer to cell 
type in bold in A). All values have been normalized against GADPH. 
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Figure 6.20: Analysis of p16 expression in BPEC after infection with lentiviral particles carrying 
either, CBX8, ERα, hTERT, HRAS. Representative images and graph of western blot analysis 
performed twice. A. Infected cells were harvested and the extracted proteins were resolved by 10% 
SDS-PAGE. Membranes were probed with the indicated antibodies. β-Actin was used as a loading 
control. B. Results obtained after integrated density quantification of A using the software ImageJ 
(measurements expressed in arbitrary units refer to cell type in bold in A). All values have been 
normalized against β-Acrtin. 
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6.4.4 Evaluating the effect of CBX8/ERα on proliferation   

To test the effect of ectopic expression of CBX8 on BPEC cell proliferation, 

the colorimetric MTT proliferation assay was performed (section 2.2.15 and section 

6.3.3). Results are represented in Figure 6.13. Due to the low number of cells 

available, only late passage BPECs over-expressing CBX8/ERα were analysed and 

compared to non-infected BPEC (early and late passage) and BPEC plus 

BMI1/ERα/hTERT/HRAS_2010 (Figure 6.21). Focusing on the interval between day 

2 and day 4, the proliferation rate of BPEC over-expressing CBX8/ERα was slightly 

higher compered to the proliferation rate of BPEC plus 

BMI1/ERα/hTERT/HRAS_2010, but similar to the proliferation rate of non infected 

BPEC late passage (Figure 6.21)  (see also appendix). As expected, late passage non-

infected BPEC had a lower proliferation rate compared to early passage non-infected 

BPEC.  

Figure 6.21: Breast primary epithelial cell proliferation analysis upon CBX8 ectopic expression. Cells 
were infected using lentiviral particles carrying the appropriate cDNA (CBX8, BMI1, ERα, hTERT, 
HRAS). Infected cells were plated in 96well primaria plates. Cells were treated with MTT and DMSO 
before reading absorbance at a wavelength of 570nm with background subtraction at 650nm. The 
graph is representative of one experiment performed in triplicate. (n=3; error bars±SEM).  
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The results obtained suggested that the over-expression of CBX8/ERα in late 

passage BPEC does not increase the proliferation rate of non infected late passage 

BPEC. However the BPEC plus CBX8/ERα showed an higher proliferation rate 

compared to BPEC plus BMI1/ERα/hTERT/HRAS_2010. It was not possible to 

repeat the experiment in order to confirm these data as cells were no longer available.  

 

6.4.5 Evaluating the effect of CBX8/ERα on anchorage independent growth 

  To determine whether breast primary epithelial cells acquire the ability of 

anchorage independent growth due to ectopic expression of CBX8, a colony 

formation assay was performed. Non-infected BPEC, BPEC plus GFP, BPEC plus 

CBX8/ERα, were tested in triplicate (section 2.2.13, T47D cells were used as 

positive control). For each replicate 5000 cells were used and the cells were grown at 

37 ºC for 21 days. After 21 days, colonies were counted. Non-infected BPEC and 

BPEC plus GFP did not form colonies, while BPEC over-expressing CBX8/ERα did 

form colonies (Figure 6.22). However the number of colonies was low compared to 

the number of colonies formed by BPEC plus BMI1/ERα/hTERT/HRAS_2010 and 

this might be due to the fact that the additional over-expression of hTERT/HRAS is 

required. It was not possible to test this hypothesis due to the lack of available cells.  
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Figure 6.22: The effect of polycomb protein CBX8 on anchorage–independent growth in 
BPEC.Representative graph of one experiment performed in triplicate.  Cells were infected using 
lentiviral particles carrying the appropriate cDNA (CBX8, BMI1, ERα, hTERT, HRAS). Infected 
cells were seeded in 3.5 % low melting agarose containing WIT media. Colonies were stained with 
INT and counted after 21 days. The graph is representative of an experiment performed in triplicate 
(n=3, error bars±SEM).  

 

6.5 Effect of CBX8 expression on B42CP cells 

B42CP cells are mammary epithelial cells immortalized with the  human 

telomerase reverse transcriptase (hTERT) (Unger et al., 2010). B42CP cells were 

infected with two different lentiviral particles carrying two different cDNA (the 

polycomb proteins CBX8 and the Oestrogen receptor alpha) and retroviral particles 

carrying the Harvey rat sarcoma viral oncogene homolog HRAS-G12V (see section 

2.2.3, 2.2.4, 2.2.6 and 2.2.7). Two rounds of infections were performed and different 

batches of BPEC were infected with different combination of genes. The first round 

consisted of polycomb protein CBX8 along with ERα. Seven days after the first 

round of infection, the cells were infected with retroviral particles containing HRAS. 

B42CP cells infected with lentiviral particles containing GFP (Figure 6.23) and 

B42CP cells infected with HRAS only were used as controls. Cells were selected 

using 2.4 µg/ml of puromycin. After 7 days of puro selection no change in terms of 

morphology was observed (figure 6.24). 
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Figure 6.23: Representative image of B42CP cells after infection with GFP. GFP expression was used 
a control. The figure shows a representative image of B42CP cells infected with lentiviral particles 
containing GFP. Photos were taken six days after infection using the Axiovisionimaging System. 
Objective magnification 10X. 

 

 

 

 

Figure 6.24: Representative images of B42CP cells after infection with lentiviral particles carrying 
the appropriate expression construct. Lentiviral particles containing cDNA encoding CBX8, ERα and 
HRAS were used for infection of B42CP cells. The figure shows representative images of non 
infected B42CP, B42CP infected with HRAS, B42CP infected with CBX8/HRAS and B42CP 
infected with ERα/HRAS/CBX8. Photos were taken using the Axiovision imaging System. Objective 
magnification10X.   
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6.5.1 Evaluating expression of ectopic protein 

To confirm the ectopic expression of the different proteins, western blot 

analysis (section 2.2.9.1 – 2.2.9.3) was performed on samples derived from 

independent batches of infected B42CP cells (Figure 6.25). A robust increase of ERα 

protein expression was detected by western blot analysis in B42CP cells plus 

ERα/CBX8/HRAS (Figure 6.25, lane 4). Western blot analysis showed a significant 

increase of CBX8 protein expression in cells infected with CBX8-containing 

lentivirus compared to B42CP control GFP, B42CP infected with HRAS only 

(Figure 6.25, lanes 3 and 4). Western blot analysis showed a significant increase of 

HRAS expression in B42CP cells infected with lentiviral particles carrying HRAS 

only, HRAS/CBX8 and HRAS/ERα/CBX8 respectively (Figure 6.25 lanes 2, 3 and 

4).  

 

Figure 6.25: Analysis of CBX8, ERα and HRAS expression in B42CP cells. Representative images 
of western blot analysis. Protein extracted from B42CP cells was resolved by 10% SDS-PAGE. 
Membranes were probed with the indicated antibodies. β-Actin was used as a loading control.  
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6.5.2 Evaluating the effect of CBX8 on proliferation of B42CP cells 

To test the effect of ectopic expression of CBX8 on B42CP cells 

proliferation, the colorimetric MTT proliferation assay was performed (section 

2.2.15). Focusing on the exponential phase of the growth curve (interval between day 

2 and day 4), the proliferation rate of B42CP cells overexpressing CBX8, along with 

HRAS and with or without ERα, is  similar to the proliferation rate of non infected 

B42CP cells and B42CP GFP control (Figure 6.26). The results obtained suggested 

that the over-expression of CBX8 in B42CP cells does not increase the proliferation 

rate of B42CP cells.  

Figure 6.26: B42CP cell proliferation analysis upon CBX8 ectopic expression. Cells were infected 
using lentiviral particles carrying the appropriate cDNA (CBX8, ERα and HRAS). Infected cells were 
plated in 24 well plates, 12 replica for each cell type. Cells were treated with MTT and DMSO before 
reading absorbance at a wavelength of 570nm with background subtraction at 650nm. The graph is 
representative of one experiment conducted with 12 replicates (n=12; error bars±SEM).  

 

6.5.3 Evaluating the effect of CBX8 on B42CP cell migration 

To test whether the migration ability of B42CP cells was affected by the 

over-expression of the polycomb protein CBX8, two different assays were 

performed, the trans-well Boyden chamber assay  (Chen 2005; Li & Zhu 1999) and 

the scratch assay (Liang et al. 2007) (Section 2.2.22 and 2.2.23). 
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The scratch assay was performed as described in section 2.2.16. Non-infected 

B42CP cells, B42CP plus GFP, B42CP plus HRAS, B42CP plus HRAS/CBX8 and 

B42CP plus CBX8/HRAS/ERα cells were seeded in 10 cm plates and allowed to 

reach confluency.  At time 0 a scratch was created in the monolayer of cells using a 

sterile 200 µl pipette and the cells were observed for 24 hours. The area of a marked 

scratch was measured at time 0 and every 4 hours afterwards using the software 

imageJ. Cell migration was calculated using the following formula: “(Pre-migration 

area – Migration area)/Pre-migration area X 100” and represented in a graph as percent 

of cell migration (Figure 6.27 A and B). The results obtained using the scratch assay 

suggest that the ectopic expression of CBX8 did not effect the migration ability of 

B42CP cells (see Figure D.1 and table D.7 appendix D for measurements performed 

on additional scratches).  
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Figure 6.27:  The effect of CBX8 ectopic expression on cell migration of B42CP cells as assessed by 
a scratch assay. Migration of B42CP cells is not affected by ectopic expression of CBX8 protein. A: 
Representative images showing migration of non infected B42CP, B42CP GFP control, B42CP 
HRAS, B42CP HRAS/CBX8 and B42CP HRAS/CBX8/ERα in 14 hours. Photographs of the cells 
were taken at time 0 and 14 hours later at 10X magnification. B: The graph is representative of a 
single experiment and single marked scratches. The size of the scratch was measured at time 0 and at 
14 hours, using the software imageJ. Cell migration was expressed in percent and was calculated 
using the formula: “(Pre-migration area – Migration area)/Pre-migration area X 100”. (see section 
2.2.16 for more details) 
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In order to confirm data obtained with the scratch assay, a transwell Boyden 

chamber assay was also performed (Figure 6.28 and section 2.2.12). Non infected 

B42CP cells, B42CP plus GFP, B42CP plus HRAS, B42CP plus HRAS/CBX8 and 

B42CP plus HRAS/CBX8/ERα cells were trypsinized and separately re-suspended in 

serum free growth media. 2.5x104 cells were added to the top of each PET 

membrane. The whole chamber was examined for migrating cells (Figure 6.28). For 

each cell type the experiment was performed in triplicate. Migration of B42CP cells 

was not effected by ectopic expression of CBX8 (Figure 6.28). 
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Figure 6.28: The effect of CBX8 ectopic expression on B42CP cells migration ability as assessed by 
transwell Boyden chamber assay. Cells were infected using lentiviral particles carrying either the GFP 
control, HRAS, HRAS/CBX8 and HRAS/CBX8/ERα. 5 days after puromycin selection 2.5x103 cells 
were added to the top of a Boyden chamber and placed in serum deprived media; after 24 hours 
migrating cells were stained with crystal violet and counted under microscope. A. Representative 
images of Boyden chamber membranes after staining. B. The graph is representative of two 
experiments performed in triplicate (n=6; error bars ±SEM).   
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6.5.4 Evaluating the effect of CBX8 on B42CP anchorage independent growth 

To determine whether B42CP cells acquire the ability of anchorage 

independent growth due to ectopic expression of CBX8, a colony formation in soft 

agar assay was performed. Non-infected B42CP, B42CP plus GFP, B42CP plus 

HRAS, B42CP plus HRAS/CBX8 and B42CP plus HRAS/CBX8/ERα cells were 

tested in triplicate (section 2.2.13, SNB19 cells were used as positive control). For 

each replicate 5000 cells were used and the cells were grown at 37 ºC for 21 days 

After 21 days, colonies were counted. Non infected B42CP cells, B42CP plus 

GFP cells and B42CP plus HRAS cells did not form colonies in soft agar, while the 

positive control SNB19 cells did form colonies (Figure 6.29 A and B) as previously 

reported (Kuppumbatti et al. 2001). Both, B42CP cells infected with CBX8, with or 

without ERα, did not form colonies in soft agar, in each of the three wells analyzed. 

B42CP cells do not aquire the ability of forming colonies in soft agar upon ectopic 

expression of CBX8. 
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Figure 6.29: The effect of ectopic expression of CBX8 on anchorage-independent growth in B42CP 
cells. Cells were infected using lentiviral particles carrying respectively, GFP, HRAS, HRAS/CBX8 
and HRAS/CBX8/ERα. Seven days after puro selection cells were seeded in 3.5% low melting 
agarose containing growth media plus additives. A. After 21 days colonies were stained with INT and 
counted. B. The graph is representative of an experiment performed in triplicate showing total number 
of colonies in all wells. (SNB19 cells were used as positive control). 
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6.5.5 Evaluating the expression of ectopic proteins after invtro assays 

To confirm the ectopic expression of the different proteins after the invitro 

assays were performed, western blot analysis (section 2.2.9.1 – 2.2.9.3) was carried 

out on samples derived from independent batches of infected B42CP cells (Figure 

6.30). The results from western blot analysis showed that the cells maintained the 

expression of the appropriate proteins.  

 

 

Figure 6.30: Analysis of CBX8, ERα and HRAS expression in B42CP cells after invitro assays. 
Representative images of western blot analysis. Protein extracted from B42CP cells was resolved by 
10% SDS-PAGE. Membranes were probed with the indicated antibodies. β-Actin was used as a 
loading control.  
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6.6 Discussion  

 The use of mammary primary epithelial cells derived from reduction 

mammoplasty for studying the process of malignant transformation has many 

advantages compared to traditional approaches (Dimri et al. 2005; Garbe et al. 2009; 

Gudjonsson et al. 2005; Ince et al. 2007; Kendrick et al. 2008; Nardone et al.; 

Pechoux et al. 1999; Petersen et al. 2001; Stampfer & Yaswen 2000; Stampfer et al. 

2003; Stingl et al. 2001; Tlsty et al. 2004; Veneziani et al. 2007). The traditional 

approach consists of using  established breast cancer cell lines which often have an 

altered genetic background, including abnormal DNA content and mutations or 

altered expression of oncogenes and/or tumour suppressor genes (Burdall et al. 

2003). Primary cells derived from healthy donors are more likely to have a normal 

genetic background, therefore representing a good alternative to the traditional 

approach. Several different methods have been developed for culturing primary cells 

(Duss et al. 2007; Garbe et al. 2009; Ince et al. 2007). The protocol followed for 

experiments in this chapter was the Ince protocol, which involves the use of WIT 

media, a chemically defined serum-free medium, and the use of modified plastic 

surface plates, called primaria plates (section 2.2.18.6). Compared to others, this 

protocol claims the advantage of overcoming the growth arrest, termed M0, normally 

observed in the first 2 weeks of culturing primary cells (Romanov et al. 2001; 

Stampfer & Yaswen 2000; Stampfer & Yaswen 2003). Ince et al., have shown that 

BPEC can be grown in WIT media for up to 150 days (and 40 population doublings) 

without significantly inducing p16. Moreover, this homogeneous population of cells 

has a gene signature similar to epithelial cells (i.e. high epithelial marker claudin and 

low myoepithelial marker CD-10). They also showed that transformed BPEC 
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implanted in nude mice gave rise to tumours resembling those naturally occurring in 

humans. 

Despite the fact that WIT media and primaria plates were used, the results 

obtained in this thesis did not recapitulate those reported by Ince et al., in terms of 

the propagation time and type of cells grown. After fifty days BPEC stopped 

growing (see appendix), suggesting that cells were not able to overcome the M0 

growth arrest (Ethier et al. 1991; Ratsch et al. 2001; Yaswen & Stampfer 2002). The 

different result might be due the size of the biopsy used, which is related to the 

number of potential different type of cells presents. 

Unlike reported by Ince et al., the organoids derived from a healthy donor, 

grown in WIT media, gave rise to a heterogeneous population of cells (Figure 6.2). 

Two of the three morphologically distinct types of cells initially visible, “epithelial-

like” cells and “elongated” cells, were characterized by immunofluorescence analysis 

which showed that they were CK18 positive and CK14 positive respectively (Figure 

6.4).  The presence of a mixed population of cells might be expected, since the 

mammary gland is not composed of one type of cell. The terminal ducts of the 

mammary gland consist of an inner single layer of epithelial cells and an outer layer 

of a mixed population of cells consisting in myoepithelial cells and progenitor stem 

cells (Dimri et al. 2005; Smalley et al. 2003).   The presence of three distinct types of 

cells in short-term cultures of normal human breast cells have been previously 

reported (Stingl et al. 1998; Stingl et al. 2001): epithelial cells, expressing luminal 

specific markers, myoepithelial cells, expressing basal marker and a third fraction of 

cells expressing both epithelial and myoepithelial markers which are suggested to be 

bipotent progenitor cells. This last fraction of cells, under appropriate stimuli,  can 

differentiate into epithelial or myoepithelial cells (Stingl et al. 2001). Based on the 
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limited number of experiments performed, the three different types of cells initially 

distinguishable in the present system might represent the same mixed population 

reported by Stingl et al. However, further analysis would be necessary in order to 

confirm this possibility, i.e. FACS sorting using specific markers for 

epithelial/luminal (MUC1+, CK19+ and EpCAM+), myoepithelial/basal (CALLA+ 

and α6 integrin+) and bipotent cells (α6 integrin+/EpCAM+). 

 Normal breast primary epithelial cells when put in culture loose ERα 

expression, do not proliferate and rapidly stop growing (Anderson 2002; Clarke et al. 

1997).  Duss at al. showed that ectopic expression of polycomb protein BMI1 in 

breast primary epithelial cells is able to overcome this growth arrest. Their model 

showed for the first time that ectopic expressions of BMI1/ERα allowed the cells to 

grow in response to Estradiol and maintain ERα expression, as well as the ability of 

anchorage independent growth. In this chapter I sought to verify whether ectopic 

expression of CBX8/ERα in BPEC would have the same effect of ectopic expression 

of BMI1/ERα and recapitulate what was reported by Duss et al..  

CBX8 belongs to a mammalian family of chromobox-containing proteins 

(Flanagan et al. 2005; Nielsen et al. 2002) and is part of the Polycomb Repressive 

Complex 1 (PRC1) (Bardos et al. 2000). Several different studies have shown the 

importance of deregulated polycomb protein expression in cancer initiation and 

progression, but their exact role is not completely understood. Since polycomb 

complex compositions may vary depending on cell type (Gunster et al. 2001; 

Kerppola 2009; Maertens et al. 2009), deregulation of individual components could 

have effects that are cell type dependent. It has been shown that CBX8 can bypass 

senescence, acting through the INK4A/ARF locus, in human and mouse fibroblasts, 

but its effect in human mammary epithelial cells has not been investigated. One of 
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the unsolved questions is whether deregulation of any component within a polycomb 

repressive complex has the same effect. BMI1 is the main component of PRC1 and 

was first identified as oncogene cooperating with cMYC to induce lymphomas in 

mice (van Lohuizen et al. 1991). It has been shown that BMI1 is able to transform 

MCF10A cells in presence of HRAS alone (Datta et al. 2007) and it is also able to 

transform normal primary epithelial mammary cells in presence of ERα, hTERT and 

cMYC (Duss et al. 2007). It has not been tested whether breast primary epithelial 

cells would become cancerous cells upon ectopic expression of BMI1, in the absence 

of cMYC. In order to answer some of these questions I planned to overexpress BMI1 

(without cMYC) and CBX8 in BPEC and compare the effects that the two polycomb 

proteins would have on BPECs. The cells were infected with lentiviral particles 

carrying either BMI1 or CBX8, along with a different combination of genes, 

including ERα, hTERT and HRAS. The rationale behind the choice of this 

combination of genes relies on their importance in breast cancer: HRAS is an 

important prognostic factor in breast cancer (Watson et al. 1991) (Clark & Der 1995; 

Miyakis et al. 1998) and evidence suggests that HRAS alterations are some of the 

earliest events involved in breast cancer formation. It is well know that Oestrogen 

Receptor α over-expression plays a major role in breast cancer and it is one of the 

first alterations detected in pre-cancerous lesions (Fowler et al. 2007; Hartmann et al. 

2005; Holst et al. 2007). Finally, the immortalization of cells is required for 

neoplastic transformation (Hahn 2002; Hahn 2005; Hahn et al. 1999), hence the 

ectopic expression of hTERT.  

After BPEC were infected with lentiviral particles carrying different 

combination of genes, cells were checked for changes in  morphology and expression 

of specific basal/myoepithelial and luminal/epithelial cytokeratins, in order to verify 
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whether the two polycomb proteins would affect differently the morphology of the 

cells and the cytokeratins expression. According to Duss et al. paper primary 

epithelial breast cells, upon ectopic expression of the full set of genes BMI1, ERα, 

hTERT and cMYC, become tumourigenic cells expressing initially only CK18 and 

later on both CK14 and CK18. The use of Ince et al. protocol and the transformation 

of primary cells with a different set of genes, gave contradictory and inconsistent 

results. In addition, due to a lack of available BPECs it was not possible to repeat the 

experiments, which made it not possible to draw any conclusion. Two batches of 

BPEC, infected with viral particles carrying BMI1, ERα, hTERT and HRAS were 

compared and they clearly behaved differently in terms of morphology, CKs 

expression and growth rates (Figures 6.6, 6.7, 6.8, 6.9 and 6.13). One of two batches 

consisted of very homogeneous, morphologically well-defined cells with higher 

proliferation rate compared to the second batch of cells consisting of a very 

heterogeneous group of cells, with a not well defined morphology and containing 

multiple vacuoles. These cells also appear to be similar to BPEC infected with 

HRAS/hTERT (Figure 6.6). The two batches were named 2009 and 2010, indicating 

higher proliferating regular cells and lower proliferating irregular cells respectively. 

The 2009 batch expresses basal/myoepithelial cytokeratins (CK14 and CK5) and 

showed a very low expression of epithelial/luminal marker (CK18 and CK19), while 

the 2010 batch showed unclear results in terms of epithelial/myoepithelial 

cytokeratin expression (Figure 6.7, 6.8 and 6.9). These results underline the 

variability of the system and put an emphasis on some of the issues associated with 

the use of cytokeratins expression for characterizing and distinguishing 

epithelial/luminal cells vs. myoepithelial/basal cells. The 2010 batch also showed 

signs resembling senescence (Figure 6.6) which may be caused by a higher level of 
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HRAS expression. However, cells were not tested for markers for senescence. HRAS 

is an oncogene that requires either the presence of a cooperating oncogene or 

mutated tumour suppressor genes in order to exert its oncogenic activity (DeNicola 

& Tuveson 2009; Hahn et al. 1999; Ince et al. 2007; Serrano et al. 1997). In primary 

rodent and human primary cells it causes growth arrest and senescence (Serrano et al. 

1997). The growth arrest observed upon ectopic expression of HRAS in primary cells 

is also known as oncogene-induced senescence, which is characterized by 

morphological changes such as flattened cells, large nucleus with a prominent 

nucleolus, along with other changes including chromatin reorganisation and 

activation of the p53 and p16INK4a pathways. HRAS ectopic expression in primary 

cells does not always causes senescence though. When the level of HRAS expression 

is similar to the level of expression driven by endogenous promoter HRAS can act as 

an oncogene and does not cause senescence (DeNicola & Tuveson 2009; Tuveson et 

al. 2004). This observation may explain why two batches of BPEC infected with the 

same set of genes behave differently. When the level of expression of HRAS is too 

high the cells undergo growth arrest and senescence, which would explain the 

difference observed in terms of proliferation rate (Figure 6.13), but they might still 

retain their oncogenic behaviour due to the presence of other oncogenes, therefore 

they are still able to form colonies in soft agar (Figure 6.14). However, western blot 

analysis showed that the level of HRAS expression in BPEC infected with 

BMI1/ERα/hTERT/HRAS_2010 is only slightly higher compared to 

BMI1/ERα/hTERT/HRAS_2009 and similar to HRAS level in BPEC infected with 

hTERT/HRAS (Figure 6.10). Due to the lack of cells, it was not possible to repeat 

the experiment and clarify whether the change in morphology observed in BPEC 

plus BMI1/ERα/hTERT/HRAS_2010 were caused by the higher expression of 
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HRAS. More contradictory results were obtained when the cells were tested for 

anchorage-dependent growth and change in proliferation rate. Both batches of BPEC 

infected with BMI1/ERα/hTERT/HRAS were able to form colonies but only the 

2009 batch showed an increase in proliferation rate (Figure 6.13 and Figure 6.14). 

However, western blot analysis showed that BPEC plus 

BMI1/ERα/hTERT/HRAS_2010 had higher expression of BMI1, HRAS, ERα and 

hTERT, compared to the BPEC plus BMI1/ERα/hTERT/HRAS_2009 batch (Figure 

6.10 and 6.11). Based on these data it was not possible to draw any conclusion. If 

more cells were available the experiments should have been repeated, performing a 

western blot analysis before the invitro assay, in order to make sure that the cells 

express a similar level of all the transgenes used. 

Duss et al. study showed that primary breast epithelial cells require ectopic 

expression of both BMI1 and ERα in order to bypass ER-dependent growth arrest 

(Duss et al. 2007). They also showed that primary breast epithelial cells required 

ectopic expression of both BMI1 and ERα in order to form colonies in soft agar. In 

BPEC it was not possible to evaluate whether BMI1/ERα would have same effects 

because no expression of BMI1 and ERα in BPEC plus BMI1/ERα was detected 

(Figure 6.10), therefore these cells can be considered as non infected BPEC. Studies 

conducted in fibroblasts and primary epithelial cells showed that BMI1 acts through 

a p16-dependent mechanism (Itahana et al. 2003). The level of p16 in the infected 

BPEC was checked, however  the high variability in terms of expression of single 

proteins obtained in these set of experiments did not make possible to establish any 

correlation between BMI1 expression and p16 expression, it was not possible to 

evaluate the effect of BMI1 ectopic expression, along with other oncogenes, in 

BPEC. A limitation of the system used for this set of experiments was represented by 
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the short lifespan of the primary cells. After fifty days cells stopped growing, 

limiting the number of experiments.  

After infection with lentiviral particles carrying CBX8/ERα, BPECs appeared 

to be much larger with irregular shape, and much flattened compared to other cells. 

These cells also did have small nuclei, large cytoplasmic portion, and multi-vacuoles 

started to appear in many of them (Figure 6.15) and the original shape of BPEC 

(Figure 6.2) was completely lost. The analysis of cytokeratin expression performed 

on the limited number of cells available showed positivity for both type of 

cytokeratins (epithelial/basal) in BPEC after infection with lentiviral particles 

carrying CBX8/ERα and CBX8/hTERT/HRAS (Figure 6.16 and 6.17). Western blot 

analysis showed that the levels of both CBX8 and ERα in BPEC plus CBX8/ERα 

were much higher compared to the batch of BPEC plus CBX8/hTERT/HRAS 

(Figure 6.18 and Table D.3 Appendix D). In fact, the level of CBX8 expression was 

2.6 fold higher in BPEC plus CBX8/ERα compared to BPEC plus 

CBX8/hTERT/HRAS and to BPEC plus CBX8/ERα/hTERT/HRAS (Table D.3 

Appendix D). The level of ERα expression was 13.5 fold higher in BPEC plus 

CBX8/ERα compared to BPEC plus CBX8/ERα/hTERT/HRAS (Table D.3 

Appendix D). In order to establish a clear relationship between ectopic expression of 

CBX8/ERα and cytokeratin expression in BPEC, cells with similar level of 

expression of CBX8 and ERα would have been more informative. Due to lack of 

cells available it was not possible to test cytokeratin expression in BPEC plus 

CBX8/ERα/HRAS/hTERT, which expressed a level of CBX8 similar to BPEC plus  

CBX8/hTERT/HRAS and a much lower level of ERα expression (Figure 6.15 and 

Table D.3 Appendix D).  
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  Ectopic expression of CBX8 and ERα did not confer any advantage in terms 

of proliferation (Figure 6.21). BPEC overexpressing CBX8/ERα showed a lower 

growth rate compared to non infected BPEC (late or early passage), and a slightly 

higher growth rate compared to BPEC plus BMI1/ERα/HRAS/hTERT (Figure 6.21). 

In addition, breast primary epithelial cells acquired the ability of   anchorage-

independent growth upon over-expression of CBX8/ERα (Figure 6.22), although 

when compared to BPEC plus BMI1/ERα/hTERT/HRAS, the number of colonies 

were lower. BPEC over-expressing CBX8 stopped growing and started to show signs 

of senescence (figure 6.6; see also appendix for more images), this effect might be 

due to fact that the cells were not immortalized properly. The level of hTERT 

expression detected in BPEC plus CBX8/hTERT/HRAS, in fact, was very low 

(Figure 6.20). The limited number of experiments performed and the unavailability 

of more BPEC did not make it possible to establish whether CBX8 and BMI1 act 

through different mechanism in breast primary epithelial cells.  Upon CBX8 over-

expression, very low or no expression of p16 was detected suggesting that CBX8 

might act through a p16 independent mechanism, as reported in fibroblast studies 

(Dietrich et al. 2007). However, based only on the western blot analysis performed 

(Figure 6.20) it is not possible to make any hypothesis to this regard. 

The system used for this first set of experiments showed too much variability 

and several technical problems, mainly due to lack of cells. Therefore a different 

system was chosen in order to elucidate the possible role of CBX8 ectopic expression 

in breast epithelial cells. A well established non tumourigenic epithelial breast cell 

line stably immortalizied was chosen, B42CP (Unger et al., 2010) and some 

attributes of neoplastic transformation were tested, including proliferation rate, 

migration ability and anchorage dependent growth in soft agar. Infected B42CP cells 
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were tested for protein expression before and after invitro assays were performed 

(Figure 6.25 and 6.30) and western blot analysis showed expression of the correct 

proteins. The attention was focused only on CBX8 polycomb protein. The 

experiments were performed using independent batches of B42CP cells infected with 

different combination of genes: B42CP cells infected with lentiviral particles 

carrying GFP, B42CP cells infected with retroviral particles carrying HRAS and non 

infected B42CP cells were used as controls. For the two of the invitro assays 

(migration assay and colonies formation assays in soft agar) the GBM SNB19 

(Welch et al. 1995) cell lines was used as control.  

Even though cytokeratins are normally used for characterizing basal and 

luminal breast cancer cells they do not always give a clear answer in terms of 

myoepithelial/epithelial differentiation (Abd El-Rehim et al. 2004; Gusterson et al. 

2005; Malzahn et al. 1998; van de Rijn et al. 2002; Yalcin-Ozuysal et al. 2009). 

Within breast cancer tumour expressing luminal CKs, between 16% and 27% also 

express myoepithelial CKs (this group of cells is called mixed or bimodal), and 

cancer expressing purely myoepithelial CKs are extremely rare (Gusterson et al. 

2005; Malzahn et al. 1998).   Evidence that chemical addition to the cells growth 

media can cause transition of a cell subpopulation from luminal to myoepithelial has 

been reported  (Sartorius et al. 2005). A clear CKs expression pattern, allowing 

distinguishing between pure epithelial and myoepithelial cells, has not been 

identified. In addition, several studies have shown that breast cancer cells are 

subjected to morphological transition over time and these changes are accompanied 

by switch in CKs expression. Luminal cells, for instance, can give rise to 

myoepithelial cells (Pechoux et al. 1999). Taking this into account, changes in 
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cytokeratin expression upon ectopic expression of CBX8 in B42CP cells was not 

investigated. 

Dietrich et al. showed that inhibition of CBX8 expression in mouse and 

human fibroblasts results in growth arrest, and ectopic expression of CBX8 bypasses 

stress-induced senescence in mice, suggesting a cell growth promoting function for 

CBX8. In addition, they showed that both CBX8 and BMI1 associate with the 

INK4A-ARF locus in human and mouse fibroblasts, and that BMI1 is dependent on 

CBX8 and viceversa for binding INK4A-ARF, suggesting that the chromodomain of 

CBX8 alone is not sufficient for its binding to the INK4A-ARF locus, and that only 

when the two protein are bound together in a complex a correct conformation and 

stability is achieved. Upon the observation that downregulation of CBX8 leads to 

loss of proliferation and a decrease in cyclin A2 levels before a significant increase 

in p16INK4A levels, they suggested the possibility that CBX8 might regulate cell 

proliferation also through a pathway independent of INK4A-ARF (Dietrich et al. 

2007).  

To date the effect of ectopic expression of CBX8 polycomb protein in breast 

epithelial cells has not been investigated. Results obtained from experiments carried 

out in this thesis suggest that ectopic expression on polycomb protein CBX8 in 

mammary epithelial cells does not influence cell proliferation (Figure 6.26), and does 

not have any effect on other attributes of neoplastc transformation, including 

migration ability (Figure 6.27 and 6.28) and anchorage dependent growth in soft agar 

(Figure 6.29).  
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7 CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 The association between increased PcG protein expression and breast cancer 

has been reported by several groups (Dietrich et al. 2007; Duss et al. 2007; Gonzalez 

et al. 2009; Pasini et al. 2004a; Pasini et al. 2004b; Raaphorst 2005; Widschwendter 

et al. 2007). However, exactly how PcG proteins participate in breast cancer 

formation is not fully understood. The work presented here investigated the effects of 

alterating EZH2 and CBX8 in breast epithelial cells.  

In chapters three and four I investigated the effect of EZH2 knockdown in 

several different types of breast cancer cells, in order to clarify whether different 

types of cells responded differently to EZH2 silencing and to identify which factors 

might induce a different response. Down regulation of EZH2 influenced all the 

cancer phenotypes tested, including anchorage-independent growth, cell migration 

and cell proliferation, suggesting that EZH2 may be a good therapeutic target for 

breast cancer. However, the effect of EZH2 knockdown varied between cell lines. In 

the presence of wild type BRCA1, down regulation of EZH2 induced a significant 

reduction of cell proliferation and cell migration, while a less significant effect was 

observed in the context of mutated BRCA1.  These results support those by Gonzalez 

et al. and suggest that the presence of wild type BRCA1 is necessary in order to 

observe decreased cell proliferation, migration and anchorage-independent growth, 

upon EZH2 knockdown. There is no physical interaction reported between EZH2 

and BRCA1 (Gonzalez et al. 2009), but it is possible there may be an indirect 

interaction via BRIT1. BRIT1/MCPH is a recently identified regulator of the DNA 

damage response, via the ATM/ATR pathway (Chaplet et al. 2006; Peng et al. 2009), 

and it is involved in chromatin state changes, (Wilson et al. 2010). It also regulates 

the expression of BRCA1 and Chk1 (Lin et al. 2005) and it is required for regulation 
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of G2/M cell cycle in response to ionizing radiation, since reduced levels of BRIT1 

cause a reduction of BRCA1 and Chk1 expression levels and consequently loss of 

G2/M checkpoint control. Moreover, BRIT1 is reduced in several human cancers, 

including ovarian, and in breast cancer cell lines (Lin et al. 2010; Rai et al. 2006). 

EZH2 could be responsible for silencing BRIT1, which in turn cause reduction of 

BRCA1. Additional studies will be required in order to investigate this hypothesis, 

including analysis of level of expression of BRIT1 in breast cancer cell lines and 

tumours, and evaluation of any changes in the expression of BRIT1 upon EZH2 

downregulation.  

 In chapter five I investigated the effect of ectopic expression of CBX8 in 

MCF10A cells. Ectopic expression of CBX8 in MCF10A cells did not exert any 

effect on cell migration and anchorage-independent growth, whereas there was a 

temporary increase in cellular proliferation. Studies conducted on human and mouse 

fibroblast have shown that CBX8 causes abnormal proliferation and neoplastic 

transformation acting through repression of p16(Ink4a)/Rb and the Arf/p53 pathways 

(Dietrich et al. 2007). The fact that MCF10A cells lack both copies of the p16 locus 

suggest that cells with an intact p16 locus are required for investigating the potential 

neoplastic transformation activity. Moreover, other oncogenic stimuli and 

genetic/epigenetic changes, along with CBX8 de-regulation, may be required in 

order to observe more definitive switch towards the neoplastic phenotype, e.g. H-

RAS (Datta et al. 2007). 

In Chapter six I further investigated the importance of CBX8 in breast cancer 

transformation using breast primary epithelial cells (BPEC) derived from reduction 

mammoplasty. The protocol used for growing primary cells was the protocol 

described by Ince et al. 2007.  Using this protocol, a mixed population of cells was 
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observed, consisting of “epithelial-like” cells and “elongated” cells. 

Immunofluorescence analysis showed that the two distinct populations of cells 

expressed distinct CKs, “epithelial-like” cells were CK18 positive and “elongated” 

cells were CK14 positive. The use of this protocol presented a number of technical 

problems, including limited number of cells available and high variability in the 

expression of single proteins, therefore the data obtained cannot be used to shed light 

on the effect of ectopic expression of CBX8 in primary epithelial breast cells.  

However, the choice of a different model, B42CP, suggests that CBX8 does 

not play a crucial role in neoplastic transformation of breast epithelial cells. 

Althought additional experiments using different cells would be necessary to confirm 

these results.  

In summary, data obtained in this thesis confirm the importance of de-

regulation in EZH2 expression in breast cancer and further support the idea that 

EZH2 may represent a good therapeutic target candidate. Moreover, preliminary data 

about CBX8 suggest that not every PcG protein de-regulation may be linked to breast 

cancer. Understanding how different PcG participate in breast cancer formation and 

progression will help the identification of additional prognostic markers and 

therapeutic targets.  
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8 APPENDICES 

8.1 Appendix A: Raw data and additional tables of chapter 3 

Cell Line 
Gene 

Cluster 
ER PR HER2 TP53 

Tumor 
Type 

600MPE Lu + [-]  - IDC 

AU565 Lu - [-] + +WT AC 

BT20 BaA - [-]  ++WT IDC 

BT474 Lu + [+] + + IDC 

BT483 Lu + [+]  - IDC, pap 

BT549 BaB - [-]  ++M IDC, pap 

CAMA1 Lu + [-]  + AC 

HBL100 BaB - [-]  ++ N 

HCC1007 Lu + [-]  [+/-] Duc.Ca 

HCC1143  BaA - [-]  ++M Duc.Ca 

HCC1187  BaA - [-]  ++M Duc.Ca 

HCC1428  Lu + [+]  [+] AC 

HCC1500  BaB - [-]  - Duc.Ca 

HCC1569  BaA - [-] + -M MC 

HCC1937  BaA - [-]  [-] Duc.Ca 

HCC1954  BaA - [-] + [+/-] Duc.Ca 

HCC202  Lu - [-] + [-] Duc.Ca 

HCC2157  BaA - [-]  [+] Duc.Ca 

HCC2185  Lu - [-]  [+] MLCa 

HCC3153  BaA - [-]  [-]  

HCC38  BaB - [-]  ++M Duc.Ca 

HCC70  BaA - [-]  ++M Duc.Ca 

HS578T BaB - [-]  +M IDC 

LY2 Lu + [-]  +/- IDC 

MCF10A BaB - [-]  +/-WT F 

MCF12A BaB - [-]  + F 

MCF7 Lu + [+]  +/-WT IDC 

MDAMB134VI Lu + [-]  +/-WT IDC 

MDAMB157 BaB - [-]  - MC 

MDAMB175VII Lu + [-]  +/-WT IDC 

MDAMB231 BaB - [-]  ++M AC 

MDAMB361 Lu + [-] + -WT AC 

MDAMB415 Lu + [-]  + AC 

MDAMB435 BaB - [-]  +M IDC 

MDAMB436 BaB [-] [-]  [-] IDC 

MDAMB453 Lu - [-]  -WT AC 

MDAMB468 BaA [-] [-]  [+] AC 

SKBR3 Lu - [-] + + AC 

SUM1315MO2 BaB - [-]  [+] IDC 

SUM149PT  BaB [-] [-]  [+] Inf Duc.Ca 

SUM159PT  BaB [-] [-]  [-] AnCar 

SUM185PE  Lu [-] [-]  [-] Duc.Ca 

SUM190PT  BaA - [-] + [+/-] Inf 

SUM225CWN  BaA - [-] + ++ IDC 

SUM44PE  Lu [+] [-]  [-] Ca 

SUM52PE  Lu [+] [-]  [-] Ca 

T47D Lu + [+]  ++M IDC 

UACC812 Lu + [-] + -WT IDC 

ZR751 Lu + [-]  - IDC 

ZR7530 Lu + [-] + -WT IDC 

ZR75B Lu + [-]  +/-  

 

Table A.1: Features of breast cancer cell lines adapted from Neve et al., (2006). ER/PR/HER2/TP53 
status: ER/PR positivity, HER2 overexpression and TP53 protein levels and mutational status are 
reported. Gene cluster and tumour type: Lu luminal, BaA basal A, BaB basal B, AC, 
Adenocarcinoma;  AnCar, Anaplastic Carcinoma; Duc.Ca, Ductal Carcinoma; F, fibrocystic disease; 
IDC, Invasive Ductal Carcinoma; MC, metaplastic carcinoma; MLCa, Metastatic lobular carcinoma; 
N, Normal. Cells lines highlighted in yellow were used in the experiments in chapter 3. 
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 Day 0 Day 1 Day 2 Day3 Day4 Day 5 Day 6 

Number of 
cells 

 

MDA-MB-231 40000 324622.2 1390370 4060089 5006133 5871585 6473807 

MDA-MB-231 
GIPZ 

40000 341392.6 1579881 4385067 4885185 5602015 6649393 

MDA-MB-231 
17507 

40000 252800 1000711 2441393 3620474 4764889 4839111 

Standard error 
of the mean 

 

MDA-MB-231 1 316800 9443.63 186911 30446.1 93267.76 7812.17 

MDA-MB-231 
GIPZ 

1 6143.92 2250.1 11244.71 27919.24 31809.16 6356.3 

MDA-MB-231 
17507 

1 1495.34 6276.8 4410.64 67299.6 19412 6695.05 

 

Table A.2. Raw data of figure 3.4. Cells were counted every 24 hours. The experiment was performed 
in triplicate and for each replica cells were counted three times. Values represent the mean of 9 counts 
(n=9). The error bars are calculated using the standard error of the mean. 

 

 

 

 MDA-MB-231 
MDA-MB-231 

GIPZ 
MDA-MD-231 

17507 

Replica 1 125 106 38 

Replica 2 113 107 27 

Replica 3 99 132 31 

Mean 112.33 115 32 

Standard error of the mean 7.51 8.50 3.21 

 

Table A.3 Raw data of figure 3.5. The experiment was performed in triplicate (replica 1, 2 and 3) and 
for each replica colonies were counted three times. Values represent the mean of 9 counts (n=9). The 
error bars are calculated using the standard error of the mean. 
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Table A.4. Raw data of figure 3.6. The experiment was performed in triplicate (replica 1, 2 and 3) and 
for each replica migrating cells from three randomly selected fields in the central part of the chamber 
were counted. Values represent the mean of 9 counts (n=9). The error bars are calculated using the 
standard error of the mean. 

 

 Day 0 (AU) Day 1 (AU) Cell migration (%) 

MDA-MB-231 47.45 10.03 78.87 

MDA-MB-231 GIPZ 42.86 8.30 80.63 

MDA-MB-231 17507 31.97 19.08 40.32 

Table A.5. Raw data of figure 3.7. The area of the scratch free of cells was measured at day 0 and day 
1 using the image j software. Values of the scratch at day 0 and day1 are reported in arbitrary units 
(AU). Cell migration is presented as pecent closure using the formula: (Pre-migration area – 
Migration area)/Pre-migration area X 100. 

 

 Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

Number of 
cells 

 

HCC1937 200000 192266.6 263911.1 307733.3 378755.5 368355.5 233155.5 

HCC1937 GIPZ 200000 235555.5 272177.7 350488.8 346755.5 393422.2 300355.5 

HCC1937 
17507 

200000 266666.6 258133.3 262844.4 301333.3 287555.5 255200.0 

Standard error 
of the mean 

 

 

HCC1937 1.00 18400 13851.56 5019.665 15139.32 4871.89 1001.73 

HCC1937 GIPZ 1.00 8738.28 12629.73 13819.01 33717.37 19831.79 18476.06 

HCC193717507 1.00 25333.33 28310.66 13040.64 15279.33 25858.57 15172.69 

 

Table A.6. Raw data of figure 3.9. Cells were counted every 24 hours. The experiment was performed 
in triplicate and for each replica cells were counted three times. Values represent the mean of 9 counts 
(n=9). The error bars are calculated using the standard error of the mean. 

 MDA-MB-231 
MDA-MB-231 

GIPZ 
MDA-MB-231 

17507 

Replica 1 101.6 94.6 12.6 

Replica 2 150 74.6 115.6 

Replica 3 94.6 160 41 

Mean 115.44 109.78 56.44 

Standard error of the mean 9.14 13.37 15.52 
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Table A.7. Raw data of figure 3.10. The experiment was performed in triplicate (replica 1, 2 and 3) 
and for each replica colonies were counted three times. Values represent the mean of 9 counts (n=9). 
The error bars are calculated using the standard error of the mean. 

 

 

 HCC1937 HCC1937 GIPZ HCC1937 17507 

Replica 1 77 25.5 74.67 

Replica 2 62 24.5 80.5 

Replica 3 87 24 75.6 

Mean 75.33 24,67 77.58 

Standard error  
of the mean 

7.27 3.75 1.81 

 

Table A.8. Raw data of figure 3.11. The experiment was performed in triplicate (replica 1, 2 and 3) 
and for each replica migrating cells from three randomly selected fields in the central part of the 
chamber were counted. Values represent the mean of 9 counts (n=9). The error bars are calculated 
using the standard error of the mean. 

 

 

 

 

 HCC1937 HCC1937 GIPZ HCC1937 17507 

Replica 1 81 55 18 

Replica 2 82 84 26 

Replica 3 78 58 22 

Mean 80.33 65.67 22 

Standard  error of 
the mean 

1.20 9.21 2.31 
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 Day 0 (AU) Day 1 (AU) 
Cell migration 

(%) 

HCC1937 48.46 8.77 81.9 

HCC1937 
GIPZ 

48.29 9.21 80.92 

HCC1937 
17507 

51.04 13.31 73.94 

 

Table A.11. Raw data of figure 3.12. The area of the scratch free of cells was measured at day 0 and 
day 1 using the image j software. Values of the scratch at day 0 and day1 are reported in arbitrary 
units (AU). Cell migration is presented as pecent closure using the formula: (Pre-migration area – 
Migration area)/Pre-migration area X 100.
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8.2 Appendix B: Raw data and additional tables of chapter 4 

 Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

HCC1937 
BR69 

200000.00 323022.22 513866.67 661866.67 661866.67 846133.33 788977.78 

HCC1937 
BR69 GIPZ 

200000.00 376088.89 470044.44 638577.78 665688.89 606400.00 602488.89 

HCC1937 
BR69 17507 

200000.00 271822.22 234488.89 248355.56 256088.89 362844.44 316133.33 

Standard error 
of the mean 

       

HCC1937 
BR69 

 6711.553 43725.47 36214.01 42729.12 23688.35 29164.90 

HCC1937 
BR69 GIPZ 

 43739.11 42722.28 24516.1 8483.65 11749.48 25749.72 

HCC1937 
BR69 17507 

 25789.27 28673.94 23644.44 5426.59 18387.97 18171.69 

 

Table B.1. Raw data of figure 4.7 A. Cells were counted every 24 hours. The experiment was 
performed in triplicate and for each replica cells were counted three times. Values represent the mean 
of 9 counts (n=9). The error bars are calculated using the standard error of the mean.  

 

 Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

HCC1937 
EV28 

200000 192266.67 263911.11 307733.33 378755.56 368355.56 233155.56 

HCC1937 
EV28 GIPZ 

200000 235555.56 272177.78 350488.89 346755.56 393422.22 300355.56 

HCC1937 
EV28 17507 

200000 266666.67 258133.33 262844.44 301333.33 287555.56 255200.00 

Standard error 
of the mean 

 

EV28  18400 13851.56 5019.66 15139.32 4871.89 1001.72 

EV28GIPZ  8738.28 12629.73 13819.01 33717.37 19831.79 18476.06 

EV2817507  25333.33 28310.66 13040.64 15279.33 25858.57 15172.69 

 

Table B.2: Raw data of figure 4.7 B. Cells were counted every 24 hours. The experiment was 
performed in triplicate and for each replica cells were counted three times. Values represent the mean 
of 9 counts (n=9). The error bars are calculated using the standard error of the mean. 
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 HCC1937 BR69 HCC1937 BR69 
GIPZ 

HCC1937 BR69 
17507 

Replica 1 9 3 5 

Replica 2 4 5 4 

Replica 3 3 4 1 

Mean 5.33 4 3.33 

Standard error of 
the mean 

1.86 0.58 1.20 

 

Table B.3: Raw data of figure 4.3. A. The experiment was performed in triplicate (replica 1, 2 and 3) 
and for each replica colonies were counted three times. Values represent the mean of 9 counts (n=9). 
The error bars are calculated using the standard error of the mean. 

 

 HCC1937 EV28 HCC1937 EV28 
GIPZ 

HCC1937 EV28 
17507 

Replica 1 81 55 18 

Replica 2 82 84 26 

Replica 3 78 58 22 

Mean 80.33 65.67 22 

Standard error of 
the mean 

1.20 9.21 2.31 

 

Table B.4: Raw data of figure 4.3.B. The experiment was performed in triplicate (replica 1, 2 and 3) 
and for each replica colonies were counted three times. Values represent the mean of 9 counts (n=9). 
The error bars are calculated using the standard error of the mean. 

 

 

 

 

 

 

 

Table B.5. Raw data of figure 4.6.A. The experiment was performed in triplicate (replica 1, 2 and 3) 
and for each replica migrating cells from three randomly selected fields in the central part of the 
chamber were counted. Values represent the mean of 9 counts (n=9). The error bars are calculated 
using the standard error of the mean. 

 

 HCC1937 BR69 
HCC1937 BR69 

GIPZ 
HCC1937 BR69 

17507 

Replica 1 136 104 46 

Replica 2 70 101 60 

Replica 3 133 124 57 

Mean 113 109.67 54.33 

Standard error of the mean 21.52 7.22 4.26 
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 HCC1937 
HCC1937 EV28 

GIPZ 
HCC1937 EV28 

17507 

Replica 1 77 25.5 74.67 

Replica 2 62 14.5 80.5 

Replica 3 87 14 75.6 

Mean 75.33 18 77.58 

Standard error 
of the mean 

7.27 3.75 1.81 

 

Table B.6: Raw data of figure 4.6.B. The experiment was performed in triplicate (replica 1, 2 and 3) 
and for each replica migrating cells from three randomly selected fields in the central part of the 
chamber were counted. Values represent the mean of 9 counts (n=9). The error bars are calculated 
using the standard error of the mean. 

 

 Day 0 (AU) Day 1 (AU) Cell migration (%) 

HCC1937 BR69 60.82 8.56 85.92 

HCC1937 BR69-GIPZ 56.94 8.23 85.54 

HCC1937 BR69 -
17507 

54.60 18.25 66.56 

 

Table B.7: Raw data of figure 4.4. The area of the scratch free of cells was measured at day 0 and day 
1 using the image j software. Values of the scratch at day 0 and day1 are reported in arbitrary units 
(AU). Cell migration is presented as pecent closure using the formula: (Pre-migration area – 
Migration area)/Pre-migration area X 100. 

 

 Day 0 (AU) Day 1 (AU) 
Cell migration 

(%) 

HCC1937EV28 48.46 8.77 81.9 

HCC1937EV28 
GIPZ 

48.29 9.21 80.92 

HCC1937EV28 
17507 

51.04 13.31 73.94 

 

Table B.8: Raw data of figure 4.5. The area of the scratch free of cells was measured at    day 0 and 
day 1 using the image j software. Values of the scratch at day 0 and day1 are reported in arbitrary 
units (AU). Cell migration is presented as pecent closure using the formula: (Pre-migration area – 
Migration area)/Pre-migration area X 100.
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8.3 Appendix C: Raw data and additional tables of chapter 5 

 Day 0 Day 1 Day 2 Day 3 Day 4 

Number of cells  

MCF10A 71925.00 42866.67 182666.67 274066.67 142666.67 

MCF10A + CBX6 37050.00 25466.67 135800.00 195333.33 114933.33 

Standard 
error of the mean 

 

MCF10A 1.00 1841.50 3653.92 7603.80 4000.56 

MCF10A + CBX6 1.00 569.60 3407.83 8473.75 2520.14 

 

Table C.1: Raw data of Figure 5.4 A. Cells were counted every 48 hours. The experiment was 
performed in triplicate and for each replica cells were counted three times. Values represent the mean 
of 9 counts (n=9). The error bars are calculated using the standard error of the mean. 

 

 

 Day1 Day2 Day3 Day4 

MCF10A 16900 57900 226000 457000 

MCF10A+CBX7 11000 48500 143000 329000 

MCF10A+CBX8 17700 75600 354000 809000 

Standard error of 
the mean 

    

MCF10A 1.00E+00 4684.13 3859.19 1489.22 

MCF10A+CBX7 1.00E+00 2979.01 3075.35 1507.02 

MCF10A+CBX8 1.00E+00 2458.32 7266.67 14722.47 

 

Table C.2: Raw data of figure 5.4.B. Cells were counted every 48 hours. The experiment was 

performed in triplicate and for each replica cells were counted three times. Values represent the mean 

of 9 counts (n=9). The error bars are calculated using the standard error of the mean. 
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  Day 0 Day 1 Day 2 Day 3 Day 4 

Number of cells           

MCF10A 70000 288600 257500 1188000 2370000 

MCF10A + 
GFP 

70000 99900 287700 565500 2235500 

MCF10A + 
CBX8 

70000 329600 1210000 3640000 3377500 

Standard error 
of the mean 

          

MCF10A 1 29796.42 55132.42 22978.25 112101.1 

MCF10A + 
GFP 

1 29554.19 30056.56 22588.71 735712.4 

MCF10A + 
CBX8 

1 25026.92 103037.2 214320.6 209617.7 

 

 

 

  Day 5 Day 6 Day 7 Day 8 

Number of cells         

MCF10A 2588000 5765000 6840000 6735000 

MCF10A + GFP 3225000 6253333 6168000 6058000 

MCF10A + CBX8 3036000 6453333 7530666 7019256 

Standard error of the 
mean 

        

MCF10A 196326.2 500824.3 248000 238700 

MCF10A + GFP 167549.7 408982.5 399493.0 299893.0 

MCF10A + CBX8 62780.03 448060.6 358406.3 337446.3 

 

Table C.3: Raw data of figure 5.6. Cells were counted every 48 hours. The experiment was performed 
in triplicate and for each replica cells were counted three times. Values represent the mean of 9 counts 

(n=9). The error bars are calculated using the standard error of the mean. 
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 MCF10A MCF10A_GFP MCF10A_CBX8 

Count 1 25 44 49 

Count 2 28 35 48 

Count 3 17 49 38 

Count 4 36 33 16 

Count 5 30 30 37 

Count 6 44 35 32 

Count 7 23 44 20 

Count 8 32 31 35 

Count 9 27 23 55 

Avarage 29.11 36 36.67 

Standard error of the mean 2.6 2.73 4.33 

 

Table C4: Raw data of Figure 5.7. The experiment was performed in triplicate (replica 1, 2 and 3) and for 
each replica migrating cells from three randomly selected fields in the central part of the chamber were 
counted. Values represent the mean of 9 counts (n=9). The error bars are calculated using the standard 
error of the mean.
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8.4 Appendix D: Raw data and additional images of cultured primary cells of 
chapter 6 

 

 

Figure D.1: Image of Human Mammary Epithelial Cells (HMEC). Cells were grown according to 
Duss et al. protocol. Photos were taken using the using the Axiovision imaging System. Objective 
magnification 10X. 
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Figure D.2: Images of breast primary epithelial cells (BPEC). Rapresentative images of cells grown 
according to Ince et al. protocol. Photos were taken using the using the Axiovision imaging System. 
Objective magnification 10X. 
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Figure D.3: Images of BPEC after ectopic over-expression of BMI1/ERα. Photos were taken using 
the using the Axiovision imaging System. Objective magnification 10X. 

 

 

 

 

Figure D.4: Images of BPEC after ectopic expression of BMI1/ERα/hTERT/HRas_2009. Photos 

were taken using the using the Axiovision imaging System. Objective magnification 10X. 
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Figure D.5: Images of BPEC after ectopic expression of BMI1/ERα/hTERT/HRas_2010. Photos 
were taken using the using the Axiovision imaging System. Objective magnification 10X. 

 

 

 

 

Figure D.6: Images of BPEC after ectopic expression of CBX8. Photos were taken using the using 
the Axiovision imaging System. Objective magnification 10X. 
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Figure D.7: Images of BPEC after ectopic expression of CBX8/ERα.  Photos were taken using the 
using the Axiovision imaging System. Objective magnification 10X. 

 

 

 

 

Figure D.8: Immages of BPEC after ectopic expression of CBX8/ER/hTERT/HRas. Photos were 
taken using the using the Axiovision imaging System. Objective magnification 10X. 
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Figure D.9: Immages of BPEC after ectopic expression of CBX8/hTERT/HRas. Photos were taken 
using the using the Axiovision imaging System. Objective magnification 10X. 

 

 
Figure D.10: Immages of BPEC after ectopic expression of hTERT/Hras. Photos were taken using 
the using the Axiovision imaging System. Objective magnification 10X. 
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Figure D.11: Immunofluorescense secondary antibody controls. Cells were visualized using an 
inverted microscope (Zeiss, Axiovert 40 CFL) and digital images were acquired using Axiovision 
imaging System. Objective magnification 10X. 
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 BMI1 ERα p16 HRAS 

BPEC + BMI1/ERα 0.83 1.19 1.1 0.75 

BPEC + hTERT/HRAS   0,43 1,35 

BPEC + 
BMI1/ERα/hTERT/HRAS_2010 

36.43 28.96 1.94 1.57 

BPEC + 
BMI1/ERα/hTERT/HRAS_2009 

2.78 18.34 1.69 1.36 

BPEC+GFP   0.69 0.71 

BPEC 0.77 0.77 1 1 

 

Table D.1: Quantification of western blot analysis Figure 6.10 and 6.12. the quantification was 
performed using the imageJ software. 

 

 hTERT a-SMA 

BPEC+GFP 0 0.81 

BPEC + 
BMI1/ERα/hTERT/HRAS_2009 

0.95 0.56 

BPEC + 
BMI1/ERα/hTERT/HRAS_2010 

2.86 0.69 

BPEC + hTERT/HRAS 9.17 1.20 

BPEC + BMI1/ERα 0 0.49 

BPEC 0 0.69 

 

Table D2: Quantification of western blot analysis Figure 6.11. the quantification was performed using 
the imageJ software. 
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 CBX8 Hras p16 ERα 

BPEC + CBX8/ERα 8.59 0.92 0.76 41.52 

BPEC + hTERT/Hras 0.41 1.55 0.43  

BPEC + CBX8/ERαhTERT/Hras 3.33 0.42 0 3.73 

BPEC + CBX8/hTERT/Hras 3.11 1.40 1.27  

BPEC+GFP 0.75 0.82 0.89  

BPEC 0.26 1 1 0.77 

 

Table D.3: Quantification of western blot analysis Figure 6.18 and 6.20. the quantification was 
performed using the imageJ software. 

 

 

 

 hTERT a-SMA 

BPEC+GFP 0 0.81 

BPEC + 
CBX8/hTERT/HRAS 

1.4 0.67 

BPEC + hTERT/HRAS 9.17 1.20 

BPEC + CBX8/ERα 0 0.67 

BPEC 0 0.69 

 

Table D.4: Quantification of western blot analysis Figure 6.19. the quantification was performed 
using the imageJ software. 

 

 

 Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 

Growth media 0.02 0.02 0.02 0.02 0.03 0.03 

B42CP wt 0.07 0.25 0.38 1.04 1.44 0.64 

B42CP GFP 0.07 0.27 0.39 1.07 1.36 0.58 

B42CP HRAS 0.06 0.20 0.28 0.76 1.35 0.59 

B42CP 
CBX8/HRAS 

0.06 0.25 0.39 0.92 1.38 0.68 

B42CP 
ERα/CBX8/HRAS 

0.07 0.22 0.29 0.65 1.15 0.56 

 

Table D.5: Raw data of figure 6.26. For each cell type 12 replica were performed. Values represent 
the mean of 12 counts (n=12). The error bars are calculated using the standard error of the mean. 
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 Time 0 14 Hours 
Cell migration 

(%) 

B42CP 39.76 8.02 79.84 

B42CP GFP 42.20 12.63 70.07 

B42CP HRAS 40.07 10.03 74.97 

B42CP HRAS/CBX8 39.01 12.99 66.69 

B42CP 
HRAS/CBX8/ERα 

42.68 15.18 64.35 

 

Table D.6: Raw data of figure 6.27. The area of the scratch free of cells was measured at    time 0 and 
at 14hours using the imageJ software. Values of the scratch at day 0 and day1 are reported in arbitrary 
units (AU). Cell migration is presented as pecent closure using the formula: (Pre-migration area – 
Migration area)/Pre-migration area X 100. 

Time 0 
Scratch size 

(AU) 
 

 B42CP B42CP GFP 
B42CP 
HRAS 

B42CP 
HRAS/CBX8 

B42CP 
HRAS/CBX8/ERα 

Scratch 1 53.66 34.00 59.37 48.57 44.13 

Scratch 2 39.76 42.20 40.07 39.01 42.68 

Scratch 3 34.56 38.00 49.37 32.17 34.88 

14 hours 
Scratch size 

(AU) 
 

Scratch 1 11.03 10.21 13.00 9.03 12.25 

Scratch 2 8.02 12.63 10.03 12.99 15.18 

Scratch 3 9.03 10.21 9.46 8.26 8.87 

Cell 
migration (%) 

 

Scratch 1 79.45 69.95 78.10 81.41 72.24 

Scratch 2 79.84 70.07 74.97 66.69 64.35 

Scratch 3 73.96 73.12 80.84 74.33 74.56 

 

Table D.7: Measurements relative to additional scratch performed with B42CP cells. The area of 3 
different scratches free of cells was measured at time0 and at 14hours using the imageJ software. 
Values of the scratch at day0 and day1 are reported in arbitrary units (AU). Cell migration is presented 
as pecent closure using the formula: (Pre-migration area – Migration area)/Pre-migration area X 100. 

 

 

 



247 
 

Figure D.1: Scratch measurements in table D.7 are represented in a graph. The size of the scratch was 
measured at time 0 and at 14 hours, using the software imageJ. Cell migration was expressed in 
percent closure and was calculated using the formula (Pre-migration area – Migration area)/Pre-
migration area X 100 (see section 2.2.16 for more details). 

 

 

 Raplica 1 Replica 2 Repica 3 
Avarage 

migrating 
cells 

Standard 
error of the 

mean 

SNB19 856 864 889 869.67 17.21 

B42CP 0 0 0 0 0 

B42CP GFP 0 0 0 0 0 

B42CP HRAS 0 0 0 0 0 

B42CP HRAS/CBX8 0 0 0 0 0 

B42CP 
HRAS/CBX8/ERα 

0 0 0 0 0 

 

Table D.8: Raw data of figure 6.28. The experiment was performed in triplicate and for each replica 
the whole chamber was analyzed. The error bars are calculated using the standard error of the mean. 

 

 Replica1 Replica 2 Replica 3 
Average 
colonies 

Standard 
error of the 

mean 

SNB19 25 28 23 25.33 2.52 

B42CP 0 0 0 0 0 

B42CP GFP 0 0 0 0 0 

B42CP HRAS 0 0 0 0 0 

B42CP HRAS/CBX8 0 0 0 0 0 

B42CP 
HRAS/CBX8/ERα 

0 0 0 0 0 

 

Table D.9: raw data of figure 6.29. The experiment was performed in triplicate (replica 1, 2 and 3) 
and for each replica colonies were counted three times. Values represent the mean of 9 counts (n=9). 
The error bars are calculated using the standard error of the mean. 
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Researchers
Name(s):

School/Unit:
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I Dr. Paul Reynolds

Bute Medical School
I Email(s):PauI.Reynolds@st-and.ac.uk

Please Tick: Staff C8] Postgraduate 0 Undergraduate 0 (Module Code):
(double click on the box then click 'Checked' for a cross to appear in the box)

Project Title:

Supervisor(s):

Modelling human breast cancer

I Dr. Paul Reynolds
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•

Applications should be submitted electronically to either the Secretary or Convenor of the School Ethics
Committee as one single file containing all relevant documents. The email containing the application must

have the Researcher(s)' name in the 'subject' box. E.g. 'Ethics Application - Smith'
One original hard copy must also be submitted with the signatures of all applicants and supervisors.

Rationale: Please detail the project in 'lay language' This summary will be reviewed
by UTREC and may be published as part of its reporting procedures.

Human breast tissue that is usually discarded after a reduction mammoplasty will be taken
and used in experiments in the laboratory in order to model the origins of human breast
cancer. Genes will be added to the breast cells to convert these normal cells into tumour cells.
These tumour cells will then be compared with established cancer cell lines and tumour tissue
microarrays to understand the causal initiating events in breast cancer progression.

t
Ethical Considerations: Please detail the main ethical considerations raised by the project,
concentrating on any issues raised specifically in the red sections, and addressing, where
appropriate, the issue of whether basic ethical criteria has been met in all supporting
documentation and if not why not. This summary will be reviewed by UTREC and may be
published as part of its reporting procedures .
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Since there are no physical risks to the patient, confidentiality issue are the main consideration.

Tissue will be given specific numerical identifiers and there are no personal identifiers

associated with the tissue. The benefits of this research far outweigh any risks, which, due to

the nature of the tissue acquisition and the goals of this study are negligible for the patient.

If ethical approval has been obtained from the University of St Andrews for research so similar to this

project that a new review process may not be required, please give details of the application and the date of

its approval:

Approval Code:

Date Approved:

Project Title:

Researchers

Name(s):

MD1538

4/12/06

Analysis of mammary tumour models

Professor Richard Iggo

R E S E A R C H  I N F O R M A T I O N

1. Estimated Start Date:

2. Estimated Duration of

Project:

3. Is this research funded by an external sponsor or agency?

If YES please give

details:

1.4.08

ongoing

Yes No

For projects funded by ESRC please be aware of the Ethical and Legal Considerations found at

http://www.esds.ac.uk/aandp/create/ethical.asp

4. Does this research entail collaboration with other researchers?

If YES state names and

institutions of

collaborators:

5. If the research is collaborative has a framework been devised to

ensure that all participants are given appropriate recognition in

any outputs?

6. Where projects raise ethical considerations to do with roles in

research, intellectual property, publication strategies/authorship,

responsibilities to funders, research with policy or other implications etc, have you taken appropriate steps

to address these issues?

7. Location of

Research/Fieldwork to

be conducted:

8. Is this research solely concerned with

a. Published secondary data sources?

Yes No

Mr Stevenson, Dr Jordan, Tayside tissue bank (Dundee)

Dr. Faratian, University of Edinburgh

Prof. Iggo, University of St Andrews

N/A Yes No

N/A Yes No

University of St Andrews

Yes No
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b. Unpublished data but with appropriate permission, e.g. an archive

curator?

Yes No

If you have answered yes to Q8a or 8b but the project has other ethical considerations please go to

Q12, Q30 & Q 31. If there are no other ethical considerations please sign and submit the form.

9. Who are the Intended

Participants (e.g.

students) and how will

you recruit them?

N/A

10. Estimated duration of

Participant Involvement N/A

E T H I C A L  C H E C K L I S T

11. Have you obtained permission to access the site of research?

If YES state agency

/authority etc… &

provide documentation

If NO please indicate why.

N/A Yes No

Tayside tissue bank (Dundee)
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N/A Yes No

12. Has ethical approval been sought and obtained from an external body e.g.

NRES/LREC or other UK Universities?  If YES, please attach a copy of the

external application and approval.

13. Will you tell participants that their participation is voluntary?

14. Will you describe the main project/experimental procedures to participants in

advance so that they can make an informed decision about whether or not to

participate?

15. Will you tell participants that they may withdraw from the research at any time

and for any reason, without having to give an explanation?
X

16. Please answer either a. or b.

a. Will you obtain written consent from participants?

b. (Social Anthropology Geography/Geosciences & Biology only)

Will you obtain written consent from participants, in those cases where it is

appropriate?

17. Please answer either a. or b.

a. If the research is photographed or videoed or taped or observational, will you

ask participants for their consent to being photographed or videoed or taped

or observed?

b. (Social Anthropology & Biology only)

Will participants be free to reject the use of intrusive research methods such

as audio-visual recorders and photography?

18. Will you tell participants that their data will be treated with full confidentiality and

that if published, it will not be identifiable as theirs?

19. Will participants be clearly informed of how the data will be stored, who will have

access to it, and when the data will be destroyed?

20. Will you debrief participants at the end of their participation, i.e. give them a brief

explanation in writing of the study?

21.  With questionnaires and/or interviews, will you give participants the option of

omitting questions they do not want to answer?

If you have answered NO to any question 11 - 21, please give a brief explanation in the statement of Ethical

Considerations on Page. 1, and expand in Q31 if necessary.  If you answer YES, it must be clearly illustrated

in the relevant paperwork which must be attached i.e. Participant Information Sheet, Consent Form,

Debriefing Form, Questionnaires, Advertisement, etc…

W O R K I N G  W I T H  C H I L D R E N / V U L N E R A B L E  P E O P L E

Do participants fall into any of the following special groups?  If they do, please tick the appropriate answer,

refer to the relevant guidelines and complete Q31.

Yes No

22. a. Children (under 18 years of age)

b. People with learning or communication difficulties

c. Patients (including carers of NHS patients)

d. People in custody

e. Institutionalised persons
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f. People engaged in illegal activities e.g. drug-taking

g. Other vulnerable groups

If you have answered YES to Q22 you may need to obtain satisfactory Enhanced Disclosure Scotland,

Education Authority, Police, LREC (NHS) clearance.

Yes No

23. If working with children, institutionalised person(s) or vulnerable people, do you

have:

1. Your Enhanced Disclosure Scotland Certificate?!!

2. If you have been in the UK for less than a year, equivalent

documentation from the countries you have resided in? Information on

what is required can be obtained from UTREC.

If YES a copy (or copies) must be submitted with this application to be retained by

the School.  If NO please explain in Q31.

24. If working with children or vulnerable people, have you constructed appropriate

letters to, e.g. parents, children, headteachers, carers, institutions, police, etc.

R I S K  A N D  S A F E T Y

N/A Yes No

25. Are any of the participants in a dependent relationship with the investigator e.g.

lecturer/student?  If YES, please give full explanation in Q31.

26. Will your project involve deliberately misleading participants in any way?  If

YES, give details in Q31 and state why it is necessary and explain how

debriefing will occur.

27. Is there any realistic risk to any paid or unpaid participant(s), field assistant(s),

helper(s) or student(s), involved in the project, experiencing either physical or

psychological distress or discomfort?  If YES, give details in Q31 and state what

you will do if they should experience any problems e.g. who to contact for help.

28. Is there any realistic risk to the investigator?  If YES, have the appropriate risk

assessment forms been submitted to the appropriate Safety Committee(s)?

29. (Bute Medical School & Biology only) Have appropriate chemical, radiation and

biological (including GMAG) risk assessments been submitted to the appropriate

Safety Committee for approval?

30. Do you think the processes, including any results of your research have the

potential to cause any damage, harm or other problems for people in your study

area? If YES please explain in Q31 and indicate how you will seek to obviate the

effects.

There is an obligation on the Lead Researcher & Supervisor to bring to the attention of the School Ethics

Committee (SEC) any issues with ethical implications not clearly covered by the above checklist.
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E T H I C A L  S T A T E M E N T

31. Write a clear but concise statement of the ethical considerations raised by the project and how you

intend to deal with them.  It may be that in order to do this you need to expand on the Ethical

Considerations on page.1.

The breast tissue will be freshly acquired but no additional tissue will be taken for research other than

what would be removed as part of the usual surgical procedure. Subjects will be recruited after they have

been seen by a plastic surgeon and scheduled for reduction mammoplasty. Informed consent is obtained

by the research nurse (Dundee) after full disclosure of the planned research. Written documentation of

consent is kept under the authority of and administered by the Tayside Tissue bank. There are no

associated risks for the patient since the research tissue will have already been excised as part of the

patient’s reduction mammoplasty; the tissue will only be taken for research if there will be no impact on

the patient’s pathologic diagnosis. By definition, we will only use reduction mammoplasty tissue that is

free of any breast pathologic lesions. We have requested tissue from pre-menopausal women (age range

20-40), but there are no ethical implications in this selection that are additional to those described above.

We do not collect any personal data.

Since there are no physical risks to the patient, confidentiality issues are the main consideration. Tissue

will be given specific numerical identifiers and there are no personal identifiers associated with the tissue.

The benefits of this research far outweigh any risks, which, due to the nature of the tissue acquisition and

the goals of this study are negligible for the patient. It is hoped that the donation of normal breast tissue

that would otherwise be stored or discarded would have a significant benefit for women in the future if

this research proves fruitful and a test for early diagnosis of malignancy is developed.

There are no ethical issues related to the use of cancer cell lines obtained from recognised sources (e.g.

ATCC). They are laboratory reagents regulated by biological risk assessments.

Tumour tissue microarrays (TMAs) have numerical identifiers and are anonymised for use in this study,

so are not associated with personal information. They have external ethical approval (04/S1103/13 –

University of Edinburgh).

D O C U M E N T A T I O N  C H E C K L I S T

Please tick as appropriate: N / A Y e s N o

1. Eth ical  Applica t ion Form

2. Par t icipant  Information Sheet

3. Consent  Form

4. Debriefing Form

5. External  Permis sions

6. Let ters  t o  Parents /Ch ildren /Headteacher  etc…

7. Enhanced Disclo sure Scot land and Equiva lent  (as

necessary )

8 . Other

please l i s t :
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D E C L A R A T I O N

I am familiar with the UTREC Guidelines for Ethical Research

(http://www.st-andrews.ac.uk/utrec/guidelines.shtml) and *BPS, *ESRC, *MRC and *ASA (*please

delete the guidelines not appropriate to your discipline) Guidelines for Research practices, and have

discussed them with the other researchers involved in the project.

(Students only)

My supervisor has seen all relevant paperwork linked to this project.

Researcher(s)

Print Name

Signature

Date

Supervisor(s)

The supervisor must ensure they have read both the application and the guidelines before signing below.

Print Name

Signature

Date

Yes No

Dr. Paul Reynolds

19/3/08

Dr. Paul Reynolds

19/3/08

O F F I C I A L  U S E  O N L Y

S T A T E M E N T  O F  E T H I C A L  A P P R O V A L

This project has been considered using agreed University Procedures and has been:

 Approved

 Not Approved

               More Clarification Required

               New Submission Recommended

 Referred to UTREC

Conveners Name

Signature

Date: dd/mm/year



 
Personal details
 

 

 
Project Title
Analysis of mammary tumour models
 
Precis of Project
Human reduction mammoplasty tissue will be used to prepare cell cultures of mammary epithelial
cells and fibroblasts. These normal human cells will be infected with lentiviral vectors to introduce
cDNAs encoding putative oncogenes and miRNAs targeting putative tumour suppressor genes.
With current techniques, up to three lentiviruses can be used to infect the cells at one time with
near 100% efficiency. The infection is done within 24 hours of resection of the tissue. The
transduced cells will be tested in vitro and in mice for transformation/tumorigenicity and response
to drugs. A typical experiment would be to introduce the oestrogen receptor gene (ESR1), BMI1
oncogene, MYC oncogene and ERBB2 oncogene into epithelial cells to produce transformed cells
that are dependent on oestradiol for proliferation or to introduce the androgen receptor gene (AR),
FOXA1 transcription factor, p53 miRNA and ERBB2
oncogene to produce transformed cells that are dependent on testosterone for proliferation. These
transformed cells would act as models for the luminal and molecular apocrine classes of tumours
identified using breast cancer microarrays. Similar lentiviral vectors will be used to modify human
mammary fibroblasts to produce paracrine factors postulated to modify the response of tumour
cells to drugs. For example, introduction of Wnt2 or CXCL12 will be used to modify the response
to
anthracyclines. This work builds on microarray results obtained from a clinical trial (EORTC
10994), in which Dundee participates (Prof AM Thompson). The microarray results feed directly
back into the design
of clinical trials by the EORTC Breast Cancer Group, for example to develop trials testing the use
of antiandrogens in combination with Herceptin in molecular apocrine tumours or the use anti-
stromal agents in combination with FEC in ER-negative tumours. The in vitro work was originated

Tayside Tissue Bank - Request for Tissue Specimens

Request No: TR000083
Request Date: 28/01/2008

Researcher Institution Department
Paul Reynolds University of St Andrews Medicine

Co-workers
Co-researcher: Prof. Richard Iggo
Clinican: Mr Howard Stevenson
Pathologist: Dr Lee Jordan



in Switzerland by a student (Mr Stephan Duss) who was jointly supervised by Prof Richard Iggo
and Dr Cathrin Brisken at the Swiss Institute for Experimental Cancer Research. It is being
continued by Xenia Schmidt (iggo lab) and upon approval of this request by Vita Fedele (Reynolds
lab). I have obtained HSE approval for the viral work and am obtaining Home Office approval for
the animal work in the UK.
 
This work has not been approved by the ethics committee
 
Specimens requested
 

 
Services requested
Samples should not be frozen. Please arrange for samples to be collected from the operating
theatre, and for a pathologist to perform gross dissection to identify tissue containing ducts. I will
arrange for a person from my lab to go to Dundee to be ready to collect the tissue as soon as the
pathologist has completed the dissection. It is important to process the samples quickly to
maintain viability of the cells (eg <1 hour). Please take samples from pre-menopausal women (age
range 20-40) and take samples preferably from patients without malignant disease.
 
Funding
 

 
Additional comments
I am requesting my own authorization as a new PI. The Iggo lab has been receiving breast
reductions and is successfully using them in the analysis of mammary tumour models.
 
As soon as you have approved the project, I will present it to the St Andrews ethics committee.

Quantity Tumour Site In Form
50 Breast reduction

Name of funder Grant number
University of St Andrews CREYXX



 
2008-03-10
 

 
 
Dear Paul,
 
Re: Analysis of mammary tumour models
 
The Tissue Bank Committee has approved your recent application for the above project.
 
The committee were fully supportive of the project. However you might wish to consider comments
made by two of the members.
 
"A good project but patient selection and the mechanism for getting specimens to Pathology
quickly requires detailed discussion and will have to involve members of the research team."
 
"I wonder if a one hour turn round time is a realistic prospect from excision to collection, including
analysis by the pathologist and sugsequent transport to St Andrews."
 
The continuance of the Tissue Bank facility is dependent on the financial support of the MRC,
Cancer Research UK and NTRAC. Approval of projects, subsequent release and use of tissue
samples from the bank is on condition that the Tayside Tissue Bank is acknowledged in any
presentation, abstract or publication resulting from the use of the tissue. The Tayside Tissue Bank
must also be informed when any paper or abstract resulting from a study is published.
 
 
Regards,

David Kellock
Tissue Bank Co-ordinator

Tayside Tissue/Tumour Bank
Level 6

Ninewells Hospital & Medical School
Dundee  DD1 9SY
Tel: 01382 496432

Dr Paul A Reynolds
Medicine
University of St Andrews
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