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Abstract

The work in this thesis focuses primarily on equilibrium and stability properties of collisionless

current sheet models, in particular of the force-free Harris sheet model.

A detailed investigation is carried out into the properties of the distribution function found by
Harrison and Neukirch (2009b) for the force-free Harris sheet, which is so far the only known
nonlinear force-free Vlasov-Maxwell equilibrium. Exact conditions on the parameters of the dis-
tribution function are found, which show when it can be single or multi-peaked in two of the
velocity space directions. This is important because it may have implications for the stability of

the equilibrium.

One major aim of this thesis is to find new force-free equilibrium distribution functions. By using
a new method which is different from that of Harrison and Neukirch (2009b), it is possible to
find a complete family of distribution functions for the force-free Harris sheet, which includes the
Harrison and Neukirch (2009b) distribution function. Each member of this family has a different
dependence on the particle energy, although the dependence on the canonical momenta remains
the same. Three detailed analytical examples are presented. Other possibilities for finding further
collisionless force-free equilibrium distribution functions have been explored, but were unsuc-

cessful.

The first linear stability analysis of the Harrison and Neukirch (2009b) equilibrium distribution
function is then carried out, concentrating on macroscopic instabilities, and considering two-
dimensional perturbations only. The analysis is based on the technique of integration over un-
perturbed orbits. Similarly to the Harris sheet case (Harris, 1962), this is only possible by using
approximations to the exact orbits, which are unknown. Furthermore, the approximations for the
Harris sheet case cannot be used for the force-free Harris sheet, and so new techniques have to
be developed in order to make analytical progress. Full analytical expressions for the perturbed
current density are derived but, for the sake of simplicity, only the long wavelength limit is inves-

tigated. The dependence of the stability on various equilibrium parameters is investigated.
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Chapter 1

Introduction

1.1 Background

Most of the matter on the Earth occurs in one of three states: solid, liquid, or gas. In the whole
of the visible universe, however, it is estimated that over 99% of the matter takes the form of a
“fourth state of matter’, known as plasma. Most plasmas can be described as ionised gases, formed
when a neutral gas is heated to a sufficiently high temperature, such that the electrostatic forces
binding electrons to atomic nuclei are overcome (Dendy, 1994), meaning that the electrons and
positively charged ions can then move freely. Due to the ionisation, the behaviour of a plasma is
strongly influenced by electromagnetic fields, and so it will exhibit different and more interesting
behaviour than a neutral gas. As described by, for example, Krall and Trivelpiece (1973), the term
“fourth state of matter’ comes from the fact that heating a solid results in a change of state into a
liquid which, when heated further, changes state into a gas, and heating the gas further still results
in an ionised gas, which can be classed as a plasma provided certain conditions are satisfied (e.g.
Chen, 1995). This thesis will be concerned only with ionised gases, but it should also be noted
that conducting fluids and even solids can be classified as plasmas, provided they contain enough
free charged particles such that their behaviour is dominated by electromagnetic forces (Boyd and
Sanderson, 1969).

Examples of naturally occurring plasmas visible from the Earth’s surface are lightning and auroras.
Such plasmas are relatively uncommon, however, due to the low temperature and high density of
the Earth’s atmosphere (Krall and Trivelpiece, 1973). Consequently, to study plasmas experimen-
tally, they must be man-made in the laboratory, and much of laboratory research in plasma physics
is concerned with controlled thermonuclear fusion as a possible source of renewable power for the
future (e.g. Goedbloed and Poedts, 2004).

Although the natural occurrence of plasma on Earth is very rare, in the rest of the universe it occurs
almost everywhere. Examples from our solar system include the Sun, solar wind, and planetary
magnetospheres and ionospheres. Due to the abundance of plasma in the universe, a good under-
standing of the physics of plasmas is essential for an understanding of many astrophysical activity
processes. It is generally believed that the magnetic field is the source of energy for many of these

processes and, therefore, the storage of magnetic energy and its conversion into other forms of
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energy (bulk flow, heat, non-thermal energy) is now one of the core parts of theoretical plasma
astrophysics. Typical examples of activity processes in our solar system are magnetospheric sub-

storms, solar flares, and coronal mass ejections.

A key process for magnetic energy release and conversion is magnetic reconnection - a process
which changes the connectivity of field lines. This requires the plasma to be non-ideal. However,
the high temperatures and low densities of many astrophysical plasmas imply that they should
be very close to ideal, thus prohibiting the occurrence of magnetic reconnection. This apparent
contradiction can be resolved by noticing that a plasma only needs to be non-ideal in a small
region for magnetic reconnection to become possible. Of particular importance are so-called
“current sheets’ - regions of large electric current density that are strongly localised in one spatial

direction.

Due to their strong localisation, current sheets are very well described by one-dimensional equilib-
rium models. Using MHD, the task of finding such models is very simple. In many astrophysical
plasmas, however, the length scales over which the current density is believed to vary are often
microscopic. In such cases, it is more appropriate to use Kinetic plasma equilibria. In tenuous, hot

plasmas, collisions are very rare, and thus Vlasov-Maxwell theory has to be used.

Part of the work in this thesis, therefore, will focus on one-dimensional, non-relativistic, quasineu-
tral Vlasov-Maxwell equilibria, that is equilibria depending on only one spatial coordinate (cho-
sen here to be the z-coordinate). In such a set-up, the spatial invariance in the x- and y-directions
means that the canonical momentum is conserved in both directions. The total particle energy
(the Hamiltonian) must also be conserved, due to the time-independence of the problem. Thus,
the distribution functions will depend on these three constants of motion. There are many exam-
ples of collisionless equilibria of this type (e.g. Tonks, 1959; Weibel, 1959; Grad, 1961; Morozov
and Solov’ev, 1961; Hurley, 1961; Harris, 1962; Bertotti, 1963; Hurley, 1963; Nicholson, 1963;
Sestero, 1964, 1966; Sestero and Zannetti, 1967; Lam, 1967; Parker, 1967; Lerche, 1967; Davies,
1968; Alpers, 1969; Su and Sonnerup, 1971; Kan, 1972; Lemaire and Burlaga, 1976; Roth, 1976;
Mynick et al., 1979; Lee and Kan, 1979a,b; Greene, 1993; Roth et al., 1996; Attico and Pegoraro,
1999; Mottez, 2003, 2004; Fu and Hau, 2005; Yoon et al., 2006). There are also a small number of
known examples of such equilibria for force-free fields (Sestero, 1967; Channell, 1976; Bobrova
and Syrovatskif, 1979; Bobrova et al., 2001; Harrison and Neukirch, 2009b), which are fields sat-
isfying j x B = 0, such that the magnetic field and current density are aligned with each other.
Such fields can be used to model low-beta plasmas, such as that of the solar corona. Finding col-
lisionless distribution functions for force-free field profiles is, however, a highly non-trivial task,
which is reflected in the fact that relatively few examples are known. Of these known examples,
only one is of the nonlinear force-free type, which was found by Harrison and Neukirch (2009b)
for the force-free Harris sheet field profile, which is a force-free analogue of the well known Harris
sheet model (Harris, 1962).
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Knowledge of collisionless force-free equilibria is important for gaining a deeper understand-
ing of both macroinstabilities, such as the collisionless tearing mode, from which collisionless
reconnection can result (e.g. Schindler, 2007), and microinstabilities, which can result from a
non-Maxwellian distribution function (e.g. Gary, 2005). An important microscopic plasma phe-
nomenon is that of wave-particle interactions, such as Landau damping (e.g. Boyd and Sanderson,
2003; Gary, 2005), in which an exchange of energy can take place between plasma waves and par-
ticles that are moving with the same phase speed. In MHD models, the velocity space distribution
of the particles is not taken into account, and so microscopic plasma phenomena cannot be stud-
ied. Although microinstabilities will not be considered in this thesis, it is important to note that

kinetic models allow for investigations of a more diverse range of phenomena than MHD models.

Further discussion of the main points above will be given in the remainder of the present chapter.
The definition of a plasma will be discussed in more detail in Section 1.2. The kinetic and MHD
approaches for modelling plasmas will be described in Section 1.3. In Section 1.4, a discussion
of both MHD and Vlasov-Maxwell equilibria will be given. It should be noted that, although the
main focus of the work in this thesis is on Vlasov-Maxwell equilibrium theory, a discussion of
MHD equilibria is given to illustrate the differences from Vlasov-Maxwell equilibria, and also
because the MHD context is useful for introducing force-free magnetic fields. In the final section

of the chapter, the main aims of this thesis will be given.

1.2 Definition of a Plasma

As stated in the previous section, most plasmas are ionised gases. It is wrong, however, to assume
that all ionised gases can be described as plasmas, since all gases will be ionised to some degree,
however small. Chen (1995) describes a plasma as ’a quasineutral gas of charged and neutral
particles which exhibits collective behaviour’. This definition will be explained further in the
remainder of the present section, and three criteria will be given, which must be satisfied to allow

an ionised gas to be described as a plasma.

The term ’collective behaviour’ refers to the fact that the motion of charged particles induces
electromagnetic fields, which then have an effect on the motion of other charged particles in the
plasma. This occurs over a long range, due to the fact that as the distance between two regions of
plasma, r, is increased, the volume of plasma in one region that can affect the other increases as

r3

, even though the Coulomb force between the two original regions decreases as 1/72. Therefore,
the long-range Coulomb force is important in determining the behaviour of a plasma, which means

that it will exhibit different and more interesting behaviour than a neutral gas.

A quasineutral gas is one in which ions and electrons occur in roughly equal numbers, so that

n; ~ n. = n, where n; and n. are the number densities of ions and electrons, respectively. This
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will be true if A\p < L, where L is a typical length scale of the problem, and Ap is the Debye
length, defined as

1/2
Ap = <6°kBTe) : (1.1)

nee?

where ¢ is the permittivity of free space, kp is Boltzmann’s constant, 7 is the temperature of
the electrons and e is the charge of an ion. The Debye length is the distance over which any
charge imbalance is shielded out from the rest of the plasma. If A\p < L, therefore, then only a
small volume is affected by a charge imbalance, in comparison to the length scale L, and so the
electric fields which arise do not have an overall effect on the behaviour of the plasma. When
any charge imbalance is introduced, the electrons quickly move to establish neutrality, which
causes fluctuations about the equilibrium position (Boyd and Sanderson, 2003). These fluctuations

oscillate at a frequency known as the electron plasma frequency, given by

2\ 1/2
Wpe = <”ee ) , (1.2)

€0Me

where m, = 9.1094 x 10~ 3kg is the mass of an electron. An alternative expression for the Debye

length in terms of this frequency is

Ap = e (1.3)

Wpe
where vy, . = (kpTe/ me)l/ 2 is the electron thermal velocity.

The number of electrons in a Debye sphere (a sphere of radius Ap) is given by

1
A= %m?’ : (1.4)

where A is known as the plasma parameter. The plasma will exhibit collective behaviour if A > 1.

A third criterion which a plasma satisfies is that the short-range binary collisions between charged
particles and neutral atoms occur over a much longer time scale than that over which the oscillatory
motion due to collective behaviour occurs. This is required to ensure that the majority of particles
do not recombine into atoms, which would cause the ionised gas to behave as a neutral gas.
Denoting the typical binary collision time scale as 73, and the typical time scale of the collective
interactions as 7., the condition is 7. < 73, which can also be written as w.7, > 1, where w, is

the typical oscillation frequency (= 1/7.).

To summarise, according to Chen (1995), a plasma is a type of ionised gas satisfying the following

three conditions:
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1. \p< L
2. A>1

3. 7. L T

1.3 Plasma Models

1.3.1 Kinetic (Microscopic) Description of a Plasma

The kinetic description of a plasma is centred around the assumption that, for each particle species
s, with mass m and charge ¢, there exists a single particle distribution function f4(r, v, ¢), whose

evolution is described by the general kinetic equation

afs afs ds 8fs . 8f8
En +V-ar+TnS(E+VXB)~aV—<at>C, (1.5)

where (0f5/0t). is the rate of change of f5 with time due to collisions. The expression
f(r,v,t)d®rd®v (1.6)

gives the number of particles of species s in the six-dimensional phase space volume d*rd*v =
dxdydzdv,dvydv,, centred at (r,v), at time ¢. Once the distribution function is known, a number
of macroscopic quantities can be obtained from it by taking velocity moments, which involves
multiplying by different powers of the velocity and then integrating over velocity space. The
zeroth order velocity moment is obtained by multiplying by v° and integrating, which defines the

density of particle species s as
o
ns = / fsdPv, (1.7)
—00

where d3v = dvzdvydv,, and it is assumed that the distribution function has been normalised
appropriately. The first order velocity moment, obtained by multiplying by v and integrating,

defines the bulk flow velocity for species s as

1 o0
u, = — v sd3v. (1.8)

Ns J_co

Another important quantity is the pressure tensor, with the (4, j) component given by

Py = Y m, / (05 — s.) (v — ) fu®0
s — 00



1.3 Plasma Models 6

= ) ms / w; sw; s fsd>v, (1.9)

where w; s = v; — u; s is the deviation from the average velocity, v; (u; s is the drift velocity of

species s in the i-direction).

The charge and current densities are defined in terms of n; and us as
o = ) gsns, (1.10)
S

i =) qmu,, (1.11)
S

Knowledge of the distribution function is crucial, therefore, as it allows the charge and current
densities to be calculated, from which the magnetic and electric field profiles can then be found

via Maxwell’s equations of electromagnetism (e.g. Fleisch, 2008). These consist of:

e Ampere’s law,

. OE
V x B = ugj + poco (1.12)

Bt
which states that an electric current, j, and a time-varying electric field, 9E/0t, give rise to
a circulating magnetic field, B. The second term on the right-hand side of Equation (1.12)
is known as the displacement current, and can be neglected if typical speeds are less than

c = 2.99792458 x 10®ms~!, the speed of light in a vacuum. The quantities

po =4 x 10"Hm ! and €y = 1/(pgc?) are the permeability and permittivity of free space,

respectively.
e The solenoidal condition,
VB =0, (1.13)
which states that magnetic monopoles cannot exist.

e Faraday’s law,

VXE:—%I:, (1.14)

which states that a time varying magnetic field, B, induces a circulating electric field, E.
e Gauss’ law,

V.-E=—, (1.15)

o
€0
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Photosphere Corona
Number density n (m~>) 8 x 10%2 1 x 1015
Temperature 7' (K) 6 x 103 2 x 106
Magnetic field strength B (T) | 2 x 107! 1x1072
Debye length \p (m) 2x 1078 3x 1073
Plasma parameter A 2 1 x10%

Table 1.1: Typical parameter values for the solar corona (corresponding to an active region) and so-
lar photosphere (corresponding to a sunspot). The values have been taken from Schindler (2007).

which states that the electric flux passing through a closed surface is proportional to the

total charge within that surface.

The kinetic equation and Maxwell’s equations form a self consistent system of equations, since
the magnetic and electric fields depend on the distribution function through the charge and current
densities, given by Equations (1.10) and (1.11), and the distribution function in turn depends on
the fields through the kinetic equation (1.5).

The collision term on the right hand side of Equation (1.5) is, in general, a ’complicated, non
linear, integral function of f’ (Boyd and Sanderson, 1969). It is stated by Schindler (2007) that
such a term is the result of Coulomb collisions between charged particles, which are *based on
electric fluctuations in the Debye sphere’, a sphere with radius Ap, where Ap is the Debye length,
given by Equation (1.1). It is also stated that the typical Coulomb collision terms scale as In(A) /A,
where A is the plasma parameter given by Equation (1.4), which gives the number of electrons
in a Debye sphere. Using the definition (1.1) of the Debye length, the plasma parameter can be

written as

A

_dn <60’“B)3/2 r.” (1.16)

p 1/2°
3\ e nt/

which clearly scales as TP /2 / né/ ?. Coulomb collisions can, therefore, be neglected for values of
this ratio which make the plasma parameter very large, such that In(A)/A is negligible. This is
the case for plasmas with a sufficiently high temperature and low density. Such plasmas are de-
scribed as collisionless, because the collision term in Equation (1.5) can be neglected completely.
Table 1.1 shows typical parameter values for the solar corona, and solar photosphere (values from
Schindler, 2007). This table shows that the plasma in the solar corona, for example, is approxi-
mately collisionless, due to typical temperatures being in the region of 2 x 10K, with the typical
number density being in the region of 1 x 10'm~3, which gives A = 1 x 108. The plasma of
the solar photosphere, however, is an example of a plasma for which collision terms are signif-
icant, since typical temperatures are three orders of magnitude smaller than those of the corona

(6 x 103K), and the plasma is much more dense (the number density is of the order 8 x 102?2m~3),
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giving a value of just 2 for the plasma parameter. It should be noted, however, that the photosphere
contains a large amount of neutrals due to the lower temperature (only a small fraction of the gas
is ionised) and, as such, much of the collisions occur between neutrals and protons, as opposed to

collisions between charged particles.

In a collisionless plasma, the mean free path of collisions, A, is much larger than the length scale,

L, over which the macroscopic fields vary, so that
Ae> L. (1.17)

An alternative way to view this is that the collision frequency, €., is less than the characteristic

frequency, w, which describes the time rate of change of the macroscopic fields, so that

Qe < w. (1.18)

For a collisionless plasma, the evolution of the distribution function is described by the Vlasov

equation,
afs afs gs 8f5 _
T +v arerS(E+V><B)- By =0, (1.19)

and the above equation, together with Maxwell’s equations (1.12)-(1.15), form the Vlasov-Maxwell

system of equations. The left hand side of Equation (1.19) is the total time derivative of f, since

dfs(r,v,t) 8f5+8f5 dr+8fs dv

_— v dt’ (1.20)

dt T oot U or dt

where dr/dt and dv/dt are given by the equations of motion for a particle of mass m and charge

¢s moving in an electromagnetic field:

d

d;‘ v. (1.21)
dv qs

o = (E+v x B). (1.22)

Equations (1.21) and (1.22) are the characteristic equations of the Vlasov equation, and thus the
characteristic curves are simply the particle trajectories. The Vlasov equation, therefore, states

that the distribution function must be constant along particle trajectories.

1.3.2 Fluid (Macroscopic) Description of a Plasma

As a plasma is electrically conducting, the governing equations on the macroscopic, or fluid,

scale are the equations of magnetohydrodynamics (MHD), which consist of equations from fluid
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mechanics together with Maxwell’s equations of electromagnetism. In the fluid approach, all
variables depend only on space and time, since the distribution function is assumed to be close
to Maxwellian everywhere. The MHD equations can be derived from the kinetic equations, as
described in a number of textbooks (e.g. Boyd and Sanderson, 1969; Bittencourt, 1986; Dendy,
1994; Schindler, 2007). The derivation will not be given here, however, since the primary focus
of the work in this thesis is on Vlasov theory, and MHD will be discussed only briefly in order to

highlight the differences from the Vlasov approach.

The resistive MHD equations are given by

dp

el ad . = 1.2
o TV (oY) =0, (1.23)
p<g:—|—V~VV> = jxB—Vp, (1.24)

9 p _ o=l
(Gor0)(2) - v
OB

VXE = 30 (1.26)
V-B = 0, (1.27)
VxB = puj, (1.28)
E+vxB = nj, (1.29)

where p is the density of the plasma, p the pressure, + the polytropic index, and 7 the resistivity.
Equation (1.23) is the mass continuity equation, Equation (1.24) is the equation of motion, Equa-
tion (1.25) is the energy equation, and Equations (1.26)-(1.28) are the remaining three Maxwell
equations (Gauss’ law is not needed since it is assumed that the plasma is quasineutral). Equation
(1.29) is the resistive form of Ohm’s law, which couples Maxwell’s equations to the fluid equa-
tions through the plasma velocity, v. It describes the motion of the plasma as it moves through a

magnetic field, B, and electric field, E.

In ideal MHD (e.g. Schindler, 2007; Goedbloed and Poedts, 2004; Freidberg, 1987), it is assumed
that the plasma is a perfect conductor, such that the resistivity, 7, can be neglected. Ohm’s law,

given by Equation (1.29), then becomes the ideal Ohm’s law
E+vxB=0, (1.30)
and the energy equation (1.25) becomes

0 P\
(at +V-V) (m) 0. (1.31)

These equations imply that magnetic field lines move with the plasma. so they are ’frozen’ into

the plasma (Alfvén, 1942). As mentioned in Section 1.1, many plasmas can be assumed to satisfy
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the conditions of ideal MHD, which precludes the occurrence of non-ideal activity processes such
as magnetic reconnection. This contradiction can, however, be explained by the fact that current
sheets can form, where ideal MHD breaks down, and resistive MHD must then be used to model

the plasma dynamics.

1.4 Plasma Equilibria

1.4.1 MHD Equilibria

In the present section, static equilibria of the MHD equations will be considered, for which 9/0t =
0 and v = 0 (e.g. Neukirch, 1998; Biskamp, 1993; Schindler, 2007). MHD equilibria are discussed
here in order to a) explain some terminology that will later be used also for Vlasov-Maxwell
equilibria, and b) to introduce some one-dimensional MHD equilibria whose Vlasov-Maxwell

counterparts will be discussed later.

Setting 9/0t = 0 and v = 0 in the MHD equations (from Section 1.3.2) gives the equations of
magnetohydrostatics (MHS) as

jxB = Vp, (1.32)
VxB = i, (1.33)
V-B = 0. (1.34)

An equation of state or an energy equation is also required to complete the system of equations.
Note also that the electric field can be written as E = V¢, where ¢ is a scalar potential, since
Faraday’s law (1.26) gives V x E = 0.

Equation (1.32) is the momentum equation, which now has the form of a force balance equation,
and states that there must be a balance between the Lorentz force j x B and the pressure gradient
Vp. Equations (1.24) and (1.25) are Ampere’s law and the solenoidal condition. Note also that the
continuity equation (1.23) is automatically satisfied, and so, when neglecting gravity, the density
does not appear in the equilibrium equations. It can, therefore, be chosen in line with the physics
of the problem.

Using Ampere’s law (1.33) to eliminate the current density j from the momentum equation (1.32),

as well as using the vector identity

(VxB)xB=(B-V)B-— %V(yBP), (1.35)
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gives
1
Vp = —(VxB)xB
Ho
B-VB B2
= VB _ \Y () , (1.36)
o 210

where B = |B|. The first term in the second line of Equation (1.36) represents a magnetic tension

force, and the second term is a magnetic pressure force.

For cases where the gradient of the plasma pressure, Vp, can be neglected, the momentum (or

force balance) equation (1.32) reduces to
JxB=0, (1.37)
which implies that the current arising from the magnetic field is parallel to the magnetic field,
toj =V x B = a(r)B, (1.38)

where r = (x,y, z). A magnetic field which satisfies Equations (1.37) and (1.38) is said to be a
force-free field. Taking the divergence of Equation (1.38) gives

V-(aB) = V-(VxB),

=aV-B+BVa = 0,
=B -Va = 0, (1.39)
where the solenoidal condition (1.27) has been used, together with the vector identities
V-(VxB) = 0, (1.40)
V-(aB) = aV-B+B-Va. (1.41)

Equation (1.39) states that the derivative of « in the direction of B vanishes, meaning that v must
be constant along field lines. If « is constant with respect to r, then B is said to be a linear force-
free field. If o varies with r, however, then B is said to be a nonlinear force-free field. In this case,
« remains constant along a given field line, but varies from field line to field line. Note also that,
if j = 0, then B is said to be a potential field.

The plasma beta is defined as the ratio of the plasma pressure, p, to the magnetic pressure, B2 /20:

. p
B = (B2/25) (1.42)
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where B2 = B2 + B; + B2 in Cartesian coordinates. Force-free fields can be used to model low-
beta plasmas, since the pressure gradient can be neglected if § << 1 (if the magnetic pressure
is much greater than the plasma pressure). This situation arises in the solar corona, where the
field can be treated as being approximately force-free. Figure 1.1 shows estimates of how the
plasma beta varies for different regions on the Sun, from a model by Gary (2001). It shows
that, for the most part, the plasma beta in the solar corona is less than one (this is also true for
the chromosphere), but in the photosphere and solar wind, it is greater than one, meaning that
the force-free description would not be appropriate for these plasmas, since the plasma pressure

cannot be neglected.

Plasma Beta Model
10 T

[ Solar Wind
F  Acceleration Region

Corona

Height (Mm)
5]

F Chromosphere

[ Photosphere

1072 107!
Beto (16mnKT/B2)

10720 0 vl
1074 1073

Figure 1.1: Plot showing how the plasma beta varies for the different regions on the Sun (shaded
region). It is less than one throughout most of the solar corona and the chromosphere, and greater
than one for the photosphere and solar wind. The boundaries of the shaded region come from two
models: one of a plage, the other of the umbra of a sunspot. From Gary (2001).

The simplest solutions of the MHS equations are one-dimensional solutions. In a Cartesian coor-
dinate system, assuming that the variation is in the z-direction, this type of solution is known as a

sheet pinch, given by

B = B(2), (1.43)
p = pl2). (1.44)

For a one-dimensional equilibrium depending on z, the magnetic field must be of the form

B = (B.(2), By(2),0), (1.45)
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since B, must vanish in order to satisfy force balance. The field lines will, therefore, be straight

lines in planes parallel to the z-y-plane, and hence there will be no magnetic tension force.

The momentum equation (1.36) gives the force balance equation for a one-dimensional equilib-

rium as
d B?
- — =0 1.46
7 (p + 2uo) ; (1.46)

where B? = B2 + B;. This implies that the sum of the plasma and magnetic pressures (the total
pressure) is constant,
BZ

p+ QTLO = Ptotal = CONstant. (1.47)

1.4.1.1 The Harris Sheet

An example of a sheet pinch is the Harris sheet model (Harris, 1962). This is a well known model
for a one-dimensional current sheet, and has been widely used in studies of plasma instabilities.
Note that Harris (1962) actually found this as a Vlasov-Maxwell equilibrium. The MHD counter-
part will first be introduced here, and the Vlasov-Maxwell case will be discussed later.

The magnetic field of the Harris sheet is given by
BHarris = BO (tanh(z/L), 0, 0) 5 (148)

where By is a constant and L is a parameter which specifies the thickness of the sheet. The

pressure is given by

B} 1

S Y 1.49
240 cosh?(z/L) ’ (149

Harris —

where P, is a constant background pressure. Solving Ampere’s law (1.33) gives the current density

as

Bo 1
i = 0, 0). 1.50
JHarris MOL ( COSh2 (Z/L) > ( )
(1.51)

Figure 1.2 (from Harrison, 2009) shows a plot of normalised magnetic field, pressure and cur-
rent density profiles for the Harris sheet, and a field-line plot is shown in Figure 1.3 (also from
Harrison, 2009). Since there is no y-component of the magnetic field, the field lines are in the x-

z-plane. As z gets larger in both the positive and negative directions, the field tends to a constant,
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jy0= Bo//—LuL

Po=Bo?/ 2o i
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A 2 4

0
z/L

Figure 1.2: Plot of normalised magnetic field, current density and pressure profiles for the Har-
ris sheet. Note that —j, has been plotted since j, has the same profile as the pressure when
normalised. From Harrison (2009).

Z-axis

Figure 1.3: Field line plot for the Harris sheet (From Harrison, 2009).
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lim |BHarris‘ = BO: (1.52)

z—+o00

and so the field lines are equally spaced at higher values of z. The direction of the field lines are
not shown in Figure 1.3 but, for positive values of z, they point in one direction and, for negative

values of z, they point in the opposite direction.

1.4.1.2 The Force-Free Harris Sheet

A force-free analogue of the Harris sheet model is the force-free Harris sheet, which is a nonlinear
force-free model for a one-dimensional current sheet. It consists of a magnetic field profile as

follows,

Bffhs = By <tanh(z/L), (1.53)

where By is a constant and L is a parameter which specifies the thickness of the sheet. The x-
component of the field is the same as that of the Harris sheet, and the addition of the shear field
component in the y-direction makes the field force-free, since B* = B} + B2 = Bj. Figure
1.4 (from Harrison, 2009) shows a plot of the field lines for the force-free Harris sheet. Using

Figure 1.4: Field line plot for the force-free Harris sheet (from Harrison, 2009).
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Ampere’s law (Equation (1.33)), the current density is given by

By 1 1

j = ————— | tanh(2/L), —————,0 1.54

s shs poL cosh(z/L) < anh(z/L), cosh(z/L)’ ) ’ (1.54)
and so it can be seen that j x B = 0, as is required for a force-free field. The magnetic pressure is
given by

B> Bi+B; B?

P _ "= Y =0 (1.55)

240 210 2410
which is constant, and so the plasma pressure is given by

P = Piota1 — Pragnetic = constant. (1.56)

It is the y-component of the field, therefore, which maintains the force balance across the sheet,
since both the plasma and magnetic pressure are constant, but the magnetic field itself varies with
z. Figure 1.5 (from Harrison, 2009) shows normalised magnetic field and current density profiles

for the force-free Harris sheet.

T T : , |
1'0 ._ ."".
0.5F
0.0 prufme
—0.5F
: Jo=Bo/ jal
: 1.0=Ba/ 12
oo Jo=Bo/tal ]
—
—4 -9 5 "

0
z/L

Figure 1.5: Plot of normalised magnetic field, current density and pressure profiles for the force-
free Harris sheet (from Harrison, 2009).

As the magnetic field (1.53) is force-free, the current density is parallel to the magnetic field,

. a(z)
Jifhs = WBftha (1.57)
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with the force-free parameter «(z) given by

1 1
=—— 1.58
a(z) L cosh(z/L)’ (1.58)
which varies with z, meaning that the force-free Harris sheet field is a nonlinear force-free field.
As previously discussed, this means that « is constant along a given field line, but varies from

field line to field line.

1.4.2 Vlasov-Maxwell Equilibria

Vlasov-Maxwell equilibria can be found by solving the steady-state Vlasov equation,

Ofs qs Ofs _
on +E(E+va)- By =0, (1.59)

\4

together with the steady-state Maxwell equations,

V.E = 2, (1.60)
€0

VxE = 0, (1.61)

VxB = uj, (1.62)

V.-B = 0. (1.63)

Throughout the work in this thesis, it is assumed that each equilibrium quantity varies only with
the z-coordinate, so that there is spatial invariance with respect to the - and y-coordinates. Fur-
thermore, it is assumed that the magnetic field vanishes in the z-direction, and can be written as
B =V x A, where A = (A,, Ay, 0) is a vector potential whose z-component can be assumed to
vanish without loss of generality. This assumption ensures that Equation (1.63) is automatically

satisifed. The z- and y-components of B are then given by,

dA
B, = ——2%, (1.64)
dz
dA,
B, = 1.65
Yy dz ’ ( )
It is also assumed that the electric field E can be written as E = —V ¢, where ¢ is a scalar potential,
so that
d
B =% (1.66)
dz

which ensures that Equation (1.61) is satisfied. A further assumption is that the plasma consists

of two particle species, ions and electrons, with charges ¢; = e and ¢, = —e, respectively.
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As discussed in Section 1.3.1, quasineutrality can be assumed if L, the typical length scale of the
plasma, is much larger than the Debye length, Ap. Note, however, that this does not imply that
the electric field vanishes (Harrison and Neukirch, 2009a).

Due to the symmetries of the system. there are three constants of motion, namely the Hamiltonian

H, arising from the time independence of the system, given by

1
H, = ims(v +v + v )—i—qsqﬁ, (1.67)

the canonical momentum in the x-direction, arising from the spatial symmetry in the x-direction,

given by
Prs = Mgy + qsAg, (1.68)

and the canonical momentum in the y-direction, arising from the spatial symmetry in the y-

direction, given by
DPys = MsVy + quy~ (1.69)

The steady-state Vlasov equation (1.59) is satisfied by positive functions (distribution functions)

fs = fs(Hs, pas, Dys), Which depend only on the constants of motion.

The remaining two Maxwell equations to be solved are Gauss’ law (Equation (1.60)) and Ampere’s

law (Equation (1.62)), the components of which can be expressed as

d2
—eod—j; = o, (1.70)
1 d?4, ,
R (1.71)
1 d?A )
A = (1.72)

where, as was discussed in Section 1.3.1, the charge density ¢ and the z- and y-components of the

current density, j, and j,, can be expressed as moments of the distribution functions as follows,

U(Ax,Ay,@ = ZQS/ fs(H87pw57pys)d3U7 (1.73)
jz(AmaAya¢) = qu/ 'Umfs 37p:psapys)d3va (1.74)
jy(AxaAya¢) = ZQS/ nys 57p:v57pys)d3v- (1.75)

It can be shown (e.g. Harrison and Neukirch, 2009a) that the components of the charge and current
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densities satisfy the following relations

;j +88](Z _— (1.76)
do 9j,
a1t ok = O (1.77)
0jz  Ojy
04, o4, = " (1.78)

and also that, for a quasineutral plasma, the components of the current density can be expressed

as
. oP,,
Jo(Az, Ay, @) = oA (1.79)
. oP,.
Jy(Az, Ay, 0) = 94, (1.80)

(see also Grad, 1961; Bertotti, 1963; Lerche, 1967; Channell, 1976; Mynick et al., 1979; Attico
and Pegoraro, 1999). Additionally, the charge density o can be written as

_8Pzz
0¢ '
(e.g. Bertotti, 1963; Lerche, 1967; Mynick et al., 1979). In Equations (1.79)-(1.81), P, is the

zz-component of the pressure tensor, defined in terms of the distribution functions as

P, = st/vgfsd%. (1.82)
S

O'(Axa Aya ¢) =

(1.81)

Note that there is no drifting of particles in the z-direction, and so the above definition of P,,
is consistent with the general definition of the pressure tensor, given in Equation (1.9). Using
Equations (1.79) and (1.80), Ampere’s Law (Equations (1.71) and (1.72)) can then be written in

terms of the vector potential, A, and the pressure, P,,, which gives

d?A, OP..
&2 A, oP..
sz = — 0 aAy . (184)

The scalar potential ¢ can be determined from the quasineutrality condition n. = n;, which, to

lowest order, corresponds to the condition

8Pzz
_ 1.
30 0, (1.85)

(e.g. Harrison and Neukirch, 2009a), and so the equilibrium problem reduces to solving Equa-
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Particle Motion 1D VM Equilibrium

time: ¢ coordinate: z

position: x, y vector potential: A;, A,

potential: V' (z,y) pressure: P, (Ag, Ay)

energy: m(v; +v;)/2+ V(z,y) total pressure: (BZ + By)/2p0 + P-.
equations of motion: Ampere’s law:

>z _ OV d?Ay _ OP.,

az = " or a2~ HO9A,

d2y _ oV d2Ay — oP,,

a2~ oy a2 — Moga,

Table 1.2: The analogy between the one-dimensional Vlasov-Maxwell equilibrium problem and
the problem of solving the equations of motion of a particle in a two-dimensional conservative
potential.

tions (1.83) and (1.84) for the pressure P,., which can then be used to determine the distribution
function (by using the definition (1.82) of P,.).

Integrating Ampere’s Law gives the force balance condition

B2
7+PZZ:PT7 (186)

240
where Pr is a constant. This condition states that the sum of the plasma and magnetic pressures
across the sheet must be constant. Note that other components of the pressure tensor could be
calculated by taking different moments of the distribution function, but they are not important for

the force balance and so will not be considered.

Solving Equations (1.83) and (1.84) for the pressure P, is analogous to solving the equations of
motion of a particle in a two-dimensional conservative potential, as has been noticed by a number
of authors (e.g. Grad, 1961; Sestero, 1966; Lam, 1967; Parker, 1967; Lerche, 1967; Alpers, 1969;
Su and Sonnerup, 1971; Kan, 1972; Channell, 1976; Mynick et al., 1979; Lee and Kan, 1979b;
Greene, 1993; Attico and Pegoraro, 1999; Harrison and Neukirch, 2009a), with z taking the role
of time, A; and A, the coordinates of the particle and jio P, the potential. Table 1.2 summarises
this analogy, with the quantities and equations from the particle problem given on the left-hand

side, and the equilibrium quantities and equations given on the right-hand side.

In the particle problem, the shape of the potential as a function of position can give insight into
the nature of the particle trajectories. In analogy with this, the shape of the pressure P,, can give
information about the nature of the solutions of Equations (1.83) and (1.84). The force balance
condition (1.86) corresponds to the condition of the total energy being constant in the particle
problem. The particle analogy is particularly useful when considering force-free Vlasov-Maxwell

equilibria, which will be discussed in Section 2.1.
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1.4.2.1 Vlasov-Maxwell Equilibrium for the Harris Sheet

The Harris sheet model was discussed in Section 1.4.1.1 in the MHD context. It can also be rep-
resented in Vlasov theory, as described by Harris (1962). Listed again for reference, the magnetic

field is given by
Briarris = Bo (tanh(z/L),0,0), (1.87)

where By is a constant and L is a parameter which specifies the thickness of the sheet. The vector

potential is given by
AHarris = BOL(Oa - ln[COSh(Z/L)]7 0)? (1.88)

and solving Ampere’s law (1.62) gives the current density as

By 1
T— 0, 0. 1.89
JHarris ,U'0L < COShQ(Z/L) ) ( )

The zz-component of the pressure tensor, P.. qrris, 1S given, as a function of z, by

B? 1

—0 4+ P, 1.90
240 cosh?(z/L) b (1.50)

Pzz,Harm's =
where P, .. is a constant background pressure. This expression is the same as in the MHD context.
Using the fact that cosh(z/L) = exp(—A,/ByL) (from equation (1.88)) gives the pressure in
terms of A, and A, as

B2 24,

PZZ(ACIH Ay) = % exp m + Pb,zz' (191)

A solution of the steady-state Vlasov equation (1.59) for this magnetic field profile was obtained

by Harris (1962), and is given by

Nos
fs,Harm’s = T = 3 exp[*ﬁs(Hs - Uyspys)]a (1.92)
(V2mugn,s)
where u, is a constant average bulk flow velocity in the y-direction. Force balance across the
sheet is maintained by a pressure gradient - since the magnetic pressure varies with z so must the

plasma pressure in order to maintain force balance.

To illustrate that different distribution functions can give rise to the same magnetic field profile, it

should be noted that another distribution function for the Harris sheet field profile was found by
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Fu and Hau (2005), which is a kappa-type distribution function of the form

—(k+1)

1
1 2 —ug)? + 3 1.93
+ QKUch . [c1s + (cas — us)” + c34] ) ( )

no F(H-l- 1)
27wfh,s Ik — %)/4;3/2

fs,fu -

where I' is the gamma function (e.g. Abramowitz and Stegun, 1964), and ¢y, c2s and c35 are the

constants of motion, which are given by

2 2¢s q2 2 1/2
S
Cls = <Uz - EAyvy o ﬂ?;%Ay> ’ (1.94)
Cos = vyt 24, =P (1.95)
mg ms
c3s = vp = P2 (1.96)
ms

It will be seen in Sections 2.7 and 2.8 that different distribution functions can also be found for
the force-free Harris sheet, in addition to the known solution found by Harrison and Neukirch
(2009b).

1.5 Aims and Outline of Thesis

The aims of this thesis can be summarised as follows:

1. Investigate in detail the properties of the known nonlinear one-dimensional force-free Vlasov-
Maxwell equilibrium found by Harrison and Neukirch (2009b).

2. Find other one-dimensional force-free Vlasov-Maxwell equilibria.

3. Carry out a linear stability analysis of Harrison and Neukirch’s equilibrium distribution

function.

Aim 1 is motivated by the fact that the distribution function found by Harrison and Neukirch
(2009b) can be multi-peaked in both the v,- and v,-directions. This is of interest, since such a
distribution function may give rise to microinstabilities (e.g. Krall and Trivelpiece, 1973), in ad-
dition to macroscopic instabilities, such as the collisionless tearing mode (e.g. Schindler, 2007).
Conditions on the parameters of the distribution function are given, which show when the distri-
bution function can be single or multi-peaked. It should be noted, however, that an investigation

into the microinstabilities themselves is beyond the scope of this thesis.

The motivation for aim 2 is the fact that force-free collisionless plasma equilibria are important in

investigations of plasma activity processes. They can, for example, be used as initial conditions
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for particle-in-cell (PIC) simulations of collisionless reconnection. At present, in order to mimic
a force-free field, a constant guide field is added to the Harris sheet field (Harris, 1962). This
approach gives a current density which is partially field aligned, but increasing the strength of the
guide field does not change the strength of the current density, and so no free energy is added to
the system. When starting with a proper force-free equilibrium, the strength of the current density
and, hence, the available free energy, are coupled to the shear of the magnetic field. In addition,
the plasma density and pressure are constant, which is not true in the guide field case. Harrison
(2009) has carried out the first PIC simulations for the force-free Harris sheet, using the Harrison
and Neukirch (2009b) distribution function as initial conditions. Although these simulations were
preliminary, they hinted at possible significant differences to simulations using the Harris sheet
plus guide field as initial conditions. PIC simulations will not be considered in this thesis, but it is
important to note that finding further force-free distribution functions would give a bigger range
of possible initial conditions, and thus may lead to a deeper understanding of the collisionless

reconnection process in the future.

There are three separate parts which can all be categorised under aim 2. Firstly, a discussion will
be given of attempts to use the method of Harrison and Neukirch (2009b) to look for equilibria for
other nonlinear force-free field profiles. It will be shown, however, that even for seemingly simple
field profiles, this method is unsuccessful. A new method was required, therefore, which led,
secondly, to the discovery of a family of distribution functions for the force-free Harris sheet field
profile, which includes the known solution found by Harrison and Neukirch (2009b). Thirdly,
an attempt has been made to extend the theory of the one-dimensional equilibrium problem to
cylindrical coordinates, and to find a distribution function for a one-dimensional flux tube, by
considering the case where all quantities depend only upon the radial coordinate, r. This attempt,

however, did not lead to a force-free equilibrium.

As stated above, the Harrison and Neukirch equilibrium may give rise to macroscopic instabilities,
such as the collisionless tearing mode. This is the motivation for aim 3. A central difficulty in such
a stability analysis, however, is that the Vlasov equation must be integrated over the unperturbed
particle orbits, and so an expression for the orbits is required. This is, in general, not possible to
do exactly analytically and so, in order to make analytical progress, it will be necessary to use
an approximation for the force-free Harris sheet field profile, in addition to a number of other

approximations.

The work in this thesis is laid out as follows: in Chapter 2, the focus is one-dimensional force-
free Vlasov-Maxwell equilibria, with a detailed discussion of the properties of the Harrison and
Neukirch (2009b) equilibrium given, together with a discussion of finding other distribution func-
tions, for the force-free Harris sheet and other magnetic field profiles. In Chapter 3, the initial cal-
culations for the stability analysis of Harrison and Neukirch’s equilibrium are carried out. These

calculations will set the scene for a numerical solution of Ampere’s law, which is given in Chapter
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4. Finally, Chapter 5 contains a summary and a discussion of potential future work.



Chapter 2

One-Dimensional Force-Free Vlasov-Maxwell
Equilibria

Parts of the work in the present chapter have been adapted from Neukirch, Wilson, and Harrison
(2009) and Wilson and Neukirch (2011).

2.1 Introduction

Investigations of plasma instabilities and plasma waves frequently start with a consideration of
equilibrium solutions of the governing equations. In the MHD picture, as was discussed in Sec-
tion 1.4.1, equilibria can be found by solving the equations of magnetohydrostatics (MHS) (e.g.
Neukirch, 1998). When using kinetic theory, and assuming that the plasma is collisionless, the
required equilibria can be found by solving the steady-state Vlasov-Maxwell equations (e.g. Krall
and Trivelpiece, 1973). The general theory of one-dimensional Vlasov-Maxwell equilibria was

discussed in Section 1.4.2.

The work in the present chapter will focus on one-dimensional force-free Vlasov-Maxwell equi-
libria. Force-free fields, for which j x B = 0, such that the current density and magnetic field are
parallel to each other, are useful for modelling low-beta plasmas such as that of the solar corona.
Finding collisionless distribution functions for such field profiles is, however, a highly non-trivial
task. This is reflected in the fact that there are relatively few known examples. Of these known ex-
amples, only one is of the nonlinear force-free type (Harrison and Neukirch, 2009b), with the rest
being linear force-free (Sestero, 1967; Channell, 1976; Bobrova and Syrovatskif, 1979; Bobrova
et al., 2001).

Harrison and Neukirch (2009a) have discussed conditions for the existence of one-dimensional
force-free solutions of the Vlasov-Maxwell equations. Using j = (V x B)/ug, the force-free

condition for a one-dimensional model is given by

d [ B?
_ 2.1
P (2uo> 0, 2.1

25
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which states that the magnetic pressure must be constant. The force-balance condition (1.86) then
implies that the plasma pressure, P,,, must also be constant. As discussed in Section 1.4.2, the z-
and y- components of the current density can be written as partial derivatives of P,. with respect
to A, and A, (See Equations (1.79) and (1.80)). The force-balance condition would then appear
to imply that the current density must also vanish for a force-free equilibrium. This condition,
however, only implies that P, is constant as a function of z, and so it can still vary with respect

to the vector potential. The condition gives

dP.. 0P..dA, 0P.dA,
dz  0A, dz 04, dz =0, 2.2)

and so it is clear that this condition can be satisfied even if the partial derivatives are non zero.
This is an important property of one-dimensional force-free equilibria (Harrison and Neukirch,
2009a).

Returning to the particle analogy, which was discussed in Section 1.4.2, the condition (2.2) means
that the pressure P,, must have at least one contour which is also a particle trajectory in the A,-
Ay-plane, in order to allow a particle trajectory to be obtained that corresponds to a force-free
field. As stated by Harrison and Neukirch (2009a), this is a necessary condition for the existence
of a force-free Vlasov-Maxwell equilibrium. So, starting with a magnetic field profile, a first
step is to calculate the vector potential A, then to use Ampere’s law to find the pressure P,,. A
surface plot of P, in the A,-A, plane with the trajectory of A overplotted should then reveal
that the trajectory is a contour of the pressure. This will be illustrated further in Sections 2.2 and
2.4, where the previously known force-free solutions will be discussed (Sestero, 1967; Channell,
1976; Bobrova and Syrovatskﬁ, 1979; Bobrova et al., 2001; Harrison and Neukirch, 2009b).

It is also noted by Harrison and Neukirch (2009a) that a well known family of potentials, attractive
central potentials, allow trajectories which are contours of the potential. These potentials have
circular contours, and allow circular particle trajectories. The known linear force-free solutions
(Sestero, 1967; Channell, 1976; Bobrova and Syrovatskii, 1979; Bobrova et al., 2001) give rise to

such potentials, which will be discussed further in Section 2.2.

Once the pressure function P, is known, the solution to the Vlasov-Maxwell equations can be
completed by finding a distribution function from P,,. One way of doing this is to start with the
definition (1.82) of the pressure and solve an integral equation for the distribution function. An
illustration of this method has been given by Channell (1976), which will be discussed further in
Section 2.3. Channell’s method was used by Harrison and Neukirch (2009b) to find a distribution
function for the force-free Harris sheet. This was the first non-linear force-free Vlasov-Maxwell
equilibrium to be found, and has a number of interesting properties. In particular, the distribution
function can be multi-peaked in both the v,- and v, -directions, meaning that the equilibrium may

be unstable to microinstabilities. One of the main aims of the work in the present chapter is
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to present a detailed discussion of the properties of this equilbrium, and to give conditions on
the parameters which show when the distribution function can be single or multi-peaked. The
derivation of the distribution function will be given in Section 2.4, and the conditions to ensure

several maxima will be discussed in Section 2.5.

In Section 2.6, a discussion is given of attempts to use the method of Harrison and Neukirch
(2009b) to find Vlasov-Maxwell equilibria for other magnetic field profiles. It will be shown that
it is difficult to successfully use this method, even for seemingly simple magnetic field profiles.
It seems, therefore, that the force-free Harris sheet is one of the few field profiles for which the
method can be used successfully. Although these attempts were unsuccessful, another method was
developed which allows a family of distribution functions to be found for the force-free Harris
sheet, by using properties of the pressure P.,,. This method will be discussed in Sections 2.7 and
2.8.

It is also remarked by Channell (1976) that a straightforward extension of the one-dimensional
force-free equilibrium problem to cylindrical coordinates is not possible. This will be discussed
further in Section 2.9, and an example will be given of an attempt to find a linear force-free
distribution function for one-dimensional flux tubes, by considering the case where all quantities

depend only on the radial coordinate, 7.

2.2 A Linear Force-Free Vlasov-Maxwell Equilibrium

As discussed by Harrison and Neukirch (2009a), the previously known linear force-free solutions
(Sestero, 1967; Bobrova and Syrovatskﬁ, 1979; Bobrova et al., 2001) have a distribution function
of the form

no Bsa
fs = Tsexp —BsHs — o

2 2
2.3
Vth,s ms (s + Py) |- 3

where it should be noted that the scalar potential ¢ vanishes as a result of the quasineutrality

condition. The distribution function (2.3) gives rise to a pressure of the form
P.. = Pyexp[—r(A2+ AY)], (2.4)

where Py and r are constants (note that » must be negative so that the pressure P,, given by
Equation (2.4) represents an attractive central potential). Using Equations (1.79) and (1.80) gives
Ampere’s law (Equations (1.83) and (1.84)) as

d?A,
dz?

= 2ugPyrA, exp|—r(AZ + Az)], (2.5)
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&2 A,
dz?

= 2uoPyrAyexp[—r(A2 + AZ)], (2.6)
which has solutions of the form

A, = ksinaz, 2.7
Ay, = kcosaz, (2.8)

and so, using Equations (1.64) and (1.65), the magnetic field profile is given by

B, = kasinaz, (2.9)
B, = kacosaz. (2.10)

It is clear that B2 + Bg = k?a? = constant, and so the field is a linear force-free field. This can

also be seen by looking at the current density, which has the form

jo = —2PyrAgexp[-r(Al+ AY)], (2.11)
jy = —2PyrAyexp[—r(AL+ A, (2.12)

which can be written as j = aB, where

2
a=/(—2rR) exp < ;k ) : (2.13)

which is constant with respect to z, as is required for a linear force-free field. Note that the square
root in Equation (2.13) gives a real number, since » < 0. Figure 2.1 (from Harrison, 2009) shows
a surface plot of the pressure (2.4) in the A,-A,-plane, with the solutions (2.7) and (2.8) plotted
as a trajectory at the top. This figure reveals that the solution for A is clearly a contour of the

potential, which illustrates the fact that this must be true for a linear force-free solution.

Another example of a distribution function that gives rise to the linear force-free magnetic field
components (2.9) and (2.10) has been given by Channell (1976) and Attico and Pegoraro (1999)
as

fs(Hs, Ds, Pys) = exp(—BsHs) (Fos + Fls(pis +p:z2/5))7 (2.14)

where Fys and Fs are constants. This distribution function results from a P, of the form
1
P.. = Poo + 5 Pon (A7 + AY), (2.15)

where Py and Fp; are positive constants. Ampere’s law consists of the following two decoupled
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=
NS

Figure 2.1: Surface plot of P, over the A,-A,-plane for the linear force-free solution described
by Sestero (1967); Bobrova and Syrovatski{ (1979); Bobrova et al. (2001). The solutions (2.7) and
(2.8) are plotted as a trajectory at the top of the plot, showing that A is a contour of the pressure
(from Harrison, 2009).

second order ODEs,
d?A,
dz2 01 ( )
dsz
g2 P Ay, (2.17)

which can be solved to give the components of the vector potential as

A, = Ao Sin(\/ Pyz+ (Sx), (2.18)
Ay = AyO sin(\/ Pyiz + 5y) (2.19)

As noted by Harrison and Neukirch (2009a), choosing Azo = Ay = k, 0, = 0, 0, = 7/2 and
v Py1 = « gives the solutions (2.7) and (2.8).

It has also been shown by Harrison and Neukirch (2009a) that all distribution functions of the

form

fs = fs(Hs,p?), (2.20)

where p? = p2, + pzs, give rise to a P, which corresponds to a central potential. Therefore, all

distribution functions of this form which give rise to an attractive central potential will give rise to
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the linear force-free field components (2.9) and (2.10).

For nonlinear force-free solutions, the potential cannot be an attractive central potential, but must
still have a contour which is also a particle trajectory (Harrison and Neukirch, 2009b). This will

be discussed further in Section 2.4.

2.3 Channell’s Method for Finding Force-Free Vlasov-Maxwell Equi-

libria

For a known distribution function, the zz-component of the pressure tensor, P, ., can be calculated
directly through the definition (1.82). Ampere’s law in the form given by Equations (1.71) and
(1.72) can then be used to determine the magnetic field profile. If the aim is to find a distribution
function corresponding to a given magnetic field profile, however, then the problem must be solved
in the inverse direction. This is a natural way to solve the problem for force-free fields, since the

magnetic field is restricted by the condition j x B = 0.

Such a method for finding force-free Vlasov-Maxwell equilibria has been suggested by Channell

(1976). It is assumed, firstly, that the distribution functions have the form
fs = LQXP(_ﬂsHs)gs(pw&pys)v (2.21)
( V 2T U, 8)3
where g is an arbitrary function of the canonical momenta and 3; = 1/(kpT;), with kp equal
to the Boltzmann constant. The pressure, P.,, resulting from this arbitrary distribution function is
given, using the definition (1.82), by

P, = Z 2 exp(—0sqs®) Ns(Az, Ay), (2.22)

where N is given by

Nos ﬂs ms
Na(As, Ay) mm/ [ e |-Pz )

X gs (pm, Pys)dvgdvy. (2.23)

The quasineutrality condition means, to lowest order, that the charge density, 0 = —9dP,./0¢,

vanishes, which gives

o(As, Ay, §) = quexp —B5qs) Ns(Aq, Ay) = (2.24)
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Summing over particle species (ions and electrons) and solving for the quasineutral electric po-

tential, ¢4, then gives

1 N;
" 1 . 2.25
b= B B “< ) 225

It can be seen that setting N, = N; = N gives ¢4, = 0. This corresponds to strict charge
neutrality, since setting ¢ = 0 in Equation (2.22) means that N, gives the number density of
species s. In order to satisfy the condition of strict charge neutrality, certain conditions will have
to be imposed on the various parameters in the distribution function, which can be determined

once the full expression is known.

Substituting the quasineutral electric potential (2.25) into Equation (2.22) gives the quasineutral

pressure, P.. 4, as

/86 + /81
Bei

and Equation (2.23) can then be rewritten as

nQs / / exp
27Tm§ U

XGs (p:cs ) pys)dpzs dpys =

Pz gn(Az, Ay) = N(Ag, Ay), (2.26)

[(pa:s QSAx)z + (pys - QSAy)Q]

ﬁeﬂi
ﬂe + Bz

where the integration has been written over the canonical momenta instead of v, and v,. Equation

Pzz,qn (Axa Ay)a (227)

(2.27) is a Fredholm integral equation of the first type (e.g. Moiseiwitsch, 1977), which must be
solved for the function gs. This integral equation has the kernel

ﬁ [(p;ts - quaI)Q + (pys - QSAy)Q]) ) (228)

s

K<px57pys§ CIsAma qSAy) X exp <—

which depends only on the difference of its arguments, and so the double integral in Equation
(2.27) is of convolution type. Such an integral equation can be solved by using Fourier transforms,
as suggested by Channell (1976). This is useful, as it allows the double integral to be dealt with

without actually doing the integration directly.

Channell’s method works for the Force-Free Harris sheet model (Harrison and Neukirch, 2009a;
Neukirch, Wilson, and Harrison, 2009), but for other pressure profiles, resulting from seemingly
simple nonlinear force-free magnetic fields, it does not work (see Section 2.6 for a further discus-
sion of this point). In order for the method to work, the Fourier transform of P., must exist, and
the inverse Fourier transform of the resulting function must also exist, from which the function
gs would then be obtained. The second of these conditions can be difficult to satisfy, since the

Fourier transform introduces an exponential function with a positive quadratic argument (the in-
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verse of the exponential term in the double integral of Equation (2.27)). It seems, therefore, that
Channell’s Fourier transform method will only work for a few specially selected magnetic field
profiles. Channell does, however, discuss other examples for which the Fourier transform method

does not work.

In the next section, a derivation of the Harrison and Neukirch distribution function for the force-
free Harris sheet will be given (Harrison and Neukirch, 2009a; Neukirch, Wilson, and Harrison,
2009). Although Fourier transforms do work for this particular field profile, they will not be used
in the derivation, since they are of limited applicability, as will be demonstrated further in Section
2.6.

2.4 Force-Free Harris Sheet - Harrison and Neukirch Equilibrium

The force-free Harris sheet equilibrium is straightforward in MHD, as demonstrated in Section
1.4.1.2. In Vlasov theory, however, finding distribution functions from the magnetic field profile
is a non-trivial task. In the present section, a derivation will be given of the distribution function
found by Harrison and Neukirch (Harrison and Neukirch, 2009b; Neukirch, Wilson, and Harrison,
2009).

The magnetic field of the force-free Harris sheet is given by

B, s = Bo tanh(z/L), (2.29)
By
B _ 2
v.f fhs cosh(z/L)’ 2:30)

with B, ¢¢ps = 0. Using Equations (1.64) and (1.65) gives the non-vanishing components of the

vector potential as

Agfpns = 2BoLtan™'(e*/"), 2.31)
Ay rfns = —BoLlncosh(z/L). (2.32)

The non-vanishing components of the current density are given by

By sinh(z/L)

; - , 233
Jnf fhs poL cosh?(z/L) (235)
By 1
j = . 2.34
Tt Ihs oL cosh?(z/L) (239

As explained in Section 2.3, in order to calculate a distribution function, the pressure P,, must
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first be calculated from Ampere’s law, which can be written in the form

d?A, OP..
A, oP..,
P o (2.36)

To do this analytically for the force-free Harris sheet, Harrison and Neukirch (2009b) assumed

that the pressure is a sum of two individual functions, one of A, and one of A, given by

Pzz,ffhs(Axy Ay) = Pl(Ax) + PQ(Ay). (2.37)

Multiplying Equation (2.35) by dA, /dz, rearranging, and using the fact that

oP,, dp;

0A, — dA,’ (2.38)
gives

dA, d*A, dA, dP;

@ a2 Mg aa, =Y 2.39)
so that

LN | =0 (2.40)

dz 12 \ a2 Ho£1{Az)| =Y, .
which, finally, gives the condition

dA,\?
< - ) + 2u0P1(Az) = 210 P, (2.41)

where the quantity uoFp; has been chosen as the constant of integration. A similar condition for

the function P (A,) is given by

dA,\?
- ) 7 210 Pa(Ay) = 240 Poz, (2.42)
which can be obtained by multiplying Equation (2.36) by dA, /dz, and using the fact that

OP.; _ P
04,  dA,

(2.43)

The function P;(A,) can be calculated by firstly using the definition (2.31) of A, in Equation
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(2.41), which gives P; as

Pi(Ay) = Py — 20 = (2.44)
1 " 20 cosh®(2(40) /L) /

where it has been stated explicitly that z depends on A, (since A, depends on z), and so P, is a

function of A,, which can also be written as

B2 2
Pl = o o)+ exp =T DI 24
The definition (2.31) of A, can then be rearranged to give
exp (%) = tan (22§L> , (2.46)
which can be substituted into Equation (2.45) to give Py, explicitly in terms of A, as
Pi(Ay) = Py — B—g (1 — cos <2Ax>> , (2.47)
4o ByL

by using standard trigonometric identities.

The function P»(A,) can be calculated by firstly using the definition (2.32) of A, in Equation
(2.42), which gives

ZtAy)/L)) ’

where this time an expression for z in terms of A, is needed to give I as a function of A,. From
the definition (2.32) of A, cosh(z/L) = exp (—A,/BoL), which gives P>, explicitly in terms of

Py(Ay) = Py — -2 (1 " o (2.48)

Ay, as

B? 24,
PQ(Ay) = P()Q — E <1 — exXp <BQL>> (2.49)

which is clearly of the same form as P., pqrris, given by Equation (1.91) for the Harris sheet.

This is of course true, since By, f¢hs = By Harris = Bo tanh(z/L).

Finally, combining the functions P;(A;) and P»(A,) gives P, as

B2 [1 24, 24,
P..(Ag, A, P, 2.
( )= 2410 [ cos (B L) e p<BoL>] T (230
where
3B2
Py= Py + Pp— 2 2.51)

dpo’
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is a constant background pressure. Note that a solution of Equations (2.35) and (2.36) in the form
of (2.37) is unique up to a constant. Figure (2.2) shows a surface plot of P,. over the A,-A,-
plane, with the vector potential for the force-free Harris sheet shown as a trajectory at the top of
the plot. This trajectory is identical to a contour of P,, as is required for a force-free equilibrium
(Harrison and Neukirch, 2009a).

Figure 2.2: Surface plot of P,, over the A,-A,-plane for the force-free Harris sheet. The vector
potential of the force-free Harris sheet traces out a trajectory identical to a contour of P, ., which
is shown at the top of the plot.

Referring now to the method by Channell (1976) (see Section 2.3), the expression (2.50) for P.,
can now be substituted into the integral equation (2.27), to allow the unknown function g,, and
hence the distribution function, to be calculated. Since P,, was assumed to be of the form (2.37),

the function g; must also be a sum of two separate functions, as follows

Js (pz&pys) = gls(pzs) + g2s (pys)7 (2.52)

and so the integral equation (2.27) can be split into the following two equations for g;5(p.s) and

92s (pys
ﬁeﬁi

[ a2
" Bt i
\/; / [ (pys quy)Q] 925 (Dys ) dpys

(pa:s QSAm>2:| 91s (pxs)dpzs

Pi(Ag), (2.53)
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_ Bffiﬁ Pi(A,). (2.54)

It was stated in Section 1.4.2.1 that a distribution function for the Harris sheet model (Harris,
1962) is given by
fs,Harris = L exp[_ﬁs(Hs - Uyspys)]- (255)
(V2mvn )3
Since the function P> (A, ) for the force-free Harris sheet is identical to P, mqrris, given by Equa-
tion (1.91), the function go4(pys) in Equation (2.54) must be proportional to exp(Bstyspys), and
so the part of the force-free Harris sheet distribution function depending on py is identical to the

Harris sheet distribution function (2.55).

The function g15(pss) can be found from Equation (2.53) by using Fourier transforms, but it can
also be solved in a more straightforward way, by firstly rewriting Equation (2.53) as an integral

over v, instead of p,, to give

nos o ﬁsms 2> ﬁe/Bi
—_— exp | ——wv s(Pes)dvy = 2.56
vV 27”)7&/1,8 /—oo P ( 2 v )9 (p ) /Be + /81 ( )

and then by using the the integral (e.g. Gradshteyn and Ryzhik, 1966)

0o 2
/ exp(—ax?) cos[b(x + ¢)|dx = \/Zexp (—L) cos be. (2.57)

It is clear that a P;(A,) o cos(BsuzsqsAz) arises from a function

g1s o cO8(BstgsPrs) = cOS(Bstizs(Msve + ¢sAz)), (2.58)

where the parameter u,, must have the dimension of a velocity to ensure that the argument of
the cosine function is dimensionless. Note, also, that the functions P;(A;) and P»(A,) contain
constants, which will simply give rise to a constant part of g, and hence a Gaussian part of the

distribution function.

Putting everything together, the Harrison and Neukirch distribution function for the force-free

Harris sheet is given by

fs = (\/%Lzs):3 eXp(_ﬁsHs) [eXp(ﬁsuyspys) + as Cos(ﬂsuxspa:s) + bs] s (2.59)
th,s

where as, bs, Ugzs, Uys, nos and (s are constant parameters. Note that it is assumed that b, >
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las| > 0, to ensure that f; > 0. The assumption of strict charge neutrality (Channell, 1976) leads
to conditions on the parameters of the distribution function. These can be obtained by calculating
P, from the distribution function (2.59), which has the form given in Equation (2.22), with the
number density Ny(A,, Ay) given by

Ns(AxaAy) = TNps €Xp (ﬁs;nsuis)

X [as exp (—ﬁS;nS(UiS + U;;)) cos(BstzsqsAz)

+ exp(BsuysqsAy) + bs exp <_ﬁ52m3u§8> ] ) (2.60)

The strict neutrality assumption, N (A, Ay) = N;(A,, Ay), then gives

Qe €XP <ﬂe;ne u§e> = ng; exp <6Z;m u12ﬂ> = ny, (2.61)

e €Xp [— ﬁe;ne (u2, + uze)} = a;exp [— ﬁi;ni (u2; + u?ﬂ)] =a, (2.62)
be exp <—ﬁe;ne u§e> = b;exp <— ﬁz;m u§z> = b, (2.63)

ﬁe ‘uxe ‘ - ﬂz |um ’ 5 (264)

—Beuye = Biuy. (2.65)

The relation (2.64) has been obtained by noting that cos(/3suzsqs A, ) must be equal for ions and
electrons, and so the moduli of the arguments must be equal (since cosine is an even function). The
relation (2.65) has been obtained by noting that exp(/suysqsA,) must be equal for both species,
and so the arguments of the exponentials must be equal. The other three relations ((2.61)-(2.63))

have been obtained by equating the respective parts of N, for both species.

Using the relations (2.61)-(2.65) gives the general expression for P, ¢ ¢ps as

ﬁe + ﬁz
Pzz,ffhs(AxaAy) = 8.5; no

where only the electron parameters have been used.

la cos(efetzeAsz) + exp(—efeuyeAy) + b], (2.66)

The microscopic parameters (s, Uzs, Uys, s and b, of the distribution function can be related
to the macroscopic parameters By and L of the equilibrium by comparing Equation (2.66) with

Equation (2.50), which gives

Bg Be""ﬁi
_ 2.67
200 5.5 " (267)
E (2.68)

2
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6e+ﬁi

Pb = ﬁ ﬂ nob, (2.69)
2
m = eﬂe|uze| = eﬁi|umi‘a (2.70)
2
m = _eﬁeuye = eﬁiuyia (2.71)

where it is assumed that L > 0, but By is allowed to be positive or negative. Note that condition
(2.68) means that by > 1/2, to ensure that the distribution function is always positive. Using

Equations (2.70) and (2.71) gives the following relation between ;s and s,
|uas| = |uys. (2.72)

Note that, in the work throughout this thesis, it will be assumed that u,, = u,s. Equations (2.67)
and (2.71) can be used to derive an expression for the macroscopic length scale L, in terms of the
microscopic parameters. This is given by

. 1/2

N H0€2565in0(uyi - uye)2

which is symmetric in the electron and ion parameters. It is also possible, if required, to cal-
culate expressions for L using only electron or ion parameters. An expression for the number
density N (A, Ay), which is symmetric in electron and ion parameters, can be obtained by using
Equations (2.61)-(2.63), (2.67) and (2.71), and is given by

N(A;, Ay) =ng [acos <2Ax> + exp <2Ay> + b] , (2.74)
Ap Ag
where

B eﬁeﬁi|uyi - uye| .

An expression for P, . frps, Which is also symmetric in electron and ion parameters, is given by

substituting Equation (2.74) into Equation (2.26) to give

P, = noﬁ;ﬁﬂ [a cos (iﬁf) + exp (%iy) + b} . (2.76)

The density, ns, of species s, and the components of the bulk flow velocity (vy), can be calculated
from the distribution function (2.59) through the definitions (1.7) and (1.8), and are given by

ng = Ty (; + b> , 2.77)
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_ uys sinh(z/L)
(Vgs) = (T4 ) cosh(z/1)" (2.78)
Uys 1
<Uys> (% T b) COSh2<Z/L) ) (279)
where the identities
—1/_2/L _ - 2
cos[4tan™ " (e*/")] 1 2D /L) (2.80)
. “1/,2/Ly _ sinh(z/L)
sin[4 tan™ " (e*/ )] 2700sh2(z/L) , (2.81)

have been used (see Appendix A), together with Equation (2.61). The x- and y-components of the

current density can then be calculated by using Equation (1.11), and are given by

inh(z/L
jo = enoluy; — uye>m, (2.82)
. 1
jy = €eny (in — Uye)m. (283)

It is straightforward to show, by using the conditions (2.67) and (2.73), that these expressions for
the current density components are equivalent to the expressions (2.33) and (2.34), which were

obtained from the magnetic field.

The force-free parameter «(z), given by Equation (1.58), can also be expressed in terms of the

microscopic parameters, by using Equation (2.73), which gives,

= H0€2ﬁeﬂin0(u i — U 6)2 1/2
a(Z) = < 2(@ +yﬂz) Y >

‘ o 1/2 -1
X (cosh [(M0€2562ﬂ(zgo(fgg) uye)2> z]) . (2.84)

2.5 Properties of the Harrison and Neukirch Equilibrium

The distribution function (2.59) can be written explicitly in terms of the velocity components as

_ 1 nQs 2 Bsms , o 2 2
s = 3 (V2rvma)s T (ﬂsmsum 5 (Ve oy +vs)
X [C’?z) exp(Bsmstigs (Vy — Ugs)) + cos(Bsmstgsvy + T(2)) + bs] , (2.85)

C(z) = cosh?®(z/L), (2.86)
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T(z) = 4tan'(e*/h), (2.87)
by = 2bexp (—ﬁ?ug?c) (2.88)

Due to the cosine dependence on v, it is suspected that this distribution function will exhibit more
interesting properties than that of the Harris sheet (Harris, 1962), which is a drifting Maxwellian.
The cosine term arises from the introduction of the shear field component B,, which makes the
field force-free. Plots of the distribution function in the v,- and v,-directions show that there are
regions of parameter space in which the distribution function is multi-peaked. This will be dis-
cussed in more detail in Sections 2.5.1 and 2.5.2. The multi-peaked behaviour of the distribution
function is important to investigate, because it may give rise to microinstabilities, which may then
have an overall effect on the macroscopic stability of the plasma. In the present section, it will be
shown that conditions on the parameters exist, which show when the distribution function can be

single or multi-peaked.

2.5.1 The v,-Direction

Figure (2.3) shows the distribution function (2.59) plotted in the v,-direction, for the parameter
values uys = vy 5, bs = 2.85, L = 1 and vy, = v, = 0. In this case, the distribution function
has a single maximum regardless of the value of z/L. Heuristically, this can be explained by the
fact that, for the set of parameters used, the exponential parts of the distribution function must
dominate over the cosine part, which means that there are no oscillations. It can also be seen that
on going from z = 0 to z = 2, the peak of the distribution function has shifted slightly to the right,
and then on increasing z it returns to the centre of the sheet. This behaviour is due to the fact that
the x-component of the current density, given in Equation (1.54) and plotted in Figure 1.5, has a
maximum value at z/L = 1. For values of z/L around this value, there are more particles moving

with a higher drift speed, and so the maximum of the distribution function shifts to the right.

Figure (2.4) shows a case where there are two maxima in the v,-direction close to z = 0 (the centre
of the sheet), but a single maximum as z is increased. The parameter values used are uys = vy s,
bs = 1.43, L = 1 and v, = v, = 0. The behaviour at the centre of the sheet can be explained
by the fact that the cosine term is more prominent for this value of z, then as z is increased, the
exponential parts of the distribution function begin to dominate and so the oscillation is smoothed

out.

Figure (2.5) shows a case where there are several maxima in the v,-direction for a wider range of
values of z, for the parameter values w,s = 2v4, 5, by = 28.66, L = 1 and v, = v, = 0. The
multiple maxima in the v, -direction arise because, for these parameter values, the cosine part of

the distribution function dominates over the other parts, giving rise to large oscillations.
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Figure 2.3: Plots of the distribution function (2.59) in the v,-direction for wu,s = vy, s, bs = 2.85,
L =1 and vy = v, = 0 for various values of z. This shows a case where the distribution function
has a single maximum for all values of z.
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Figure 2.4: Plots of the distribution function (2.59) in the v,-direction for wu,, = vy, s, bs = 1.43,
L = 1and v, = v, = 0, for various values of z. This shows a case where the distribution function
has two maxima close to the centre of the sheet, but only one maximum as z is increased.
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Figure 2.5: Plots of the distribution function (2.59) in the v,-direction for u,s = 2vs, s, bs =
28.66, L = 1 and v, = v, = 0, for various values of z. This shows a case where there is more
than one maximum for a wider range of z values than in Figure (2.4).

It can be shown that a necessary and sufficient condition for having only one maximum in the

v-direction is

1 [ u? u?
bs > 3 st + 1] exp # , (2.89)
vth,s Uth,s

although it should be noted that violating this condition does not guarantee more than one max-

imum. A further explanation of this point, together with a proof of the condition (2.89), will be

given in the remainder of the present section.

The distribution function (2.59) can be written as a function of the canonical momenta in the z-,

y- and z-directions, which gives

Nos ﬁs 2 2 2 )
s\Pzxs) Pysy)Pzs; = —F/— L€ —a rs sAx + s SA + >s
fs(Pas, Pyss Ps, 2) Voron Xp< o (Pas = @5 A2)” + (Pys — 4sAy)” + %]

X [as cos(Bsuzsprs) + €xp(Bstiyspys) + bs). (2.90)

The dependence on p,, can be integrated out, since it will have no effect on the calculation. This

then gives the reduced distribution function

1 00
Fs(p:vs>py57z> = T7‘L3/ fs(p:557py37pzs)dpzs
s J—o0

M0s /gs
= 707713 eXp <_ [(pa:s - QSAx)2 + (pys — qSAy)2]>

2
27Tvth7s 2my
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X [as Cos(ﬁsursp:cs) + exp(ﬁsuyspys) + bs]’ (2.91)

which can be written in terms of normalised quantities as

Fs(pxsvpy& 5) = €exp <_2ﬂg[(p:cs - A:t:)2 + (ﬁys - Ay)2])
ys

X [as Cos(ﬁzs) + eXp(ﬁys) + bs]v (2.92)
where
_ 2m 9
Fy = (msvth7s) Fy, (2.93)
Nos
z
5 = = 2.94
z T (2.94)
Ty = Uys : (2.95)
Vth,s
Pzs = ﬁsuyspw& (296)
7ys = ﬂsuyspy& (297)
_ 24,
A, = QSﬁsuysA:p = m7 (2.98)
_ 2A
Ay = qsBsuysAy = ﬁ. (2.99)

Note that in Equation (2.91) a factor of 1/m? was added in front of the integral to keep the

S

dimensions correct.

A maximum or minimum of F in the p,s-direction (analogous to the v, -direction) occurs when

the partial derivative

oF, 1, 9 .
G = —ew (—g e = 407+ (= 47

s 1
X (as Sln(pccs) + T(p:cs - Aa:)
uZ

X [as cos(Pzs) + exp(Pys) + bs]) , (2.100)

equals zero, which gives

asazs sin(Pys)

as co8(Pys) + exp(Pys) + bs

Pps — Ap = (2.101)

Equation (2.101) can be written as

Dxs — Aa: = R(ﬁms)a (2.102)
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where R(p,s) is a bounded periodic function of s, given by

C sin Py

Pps) = ———— 205 2.1
with
C = u, (2.104)
D = [bs+ exp(pys)]/as. (2.105)

Note that C' > 0 and D > 1 since by > as. There will be multiple maxima of the distribution
function when there is more than one value of p,s which satisfies Equation (2.101). The function
A, (2) is given by A, (2) = 4tan~!e?, which takes the range of values 0 < A, < 27, and so
R(pys) must cross the p,s axis between p,s = 0 and p,s = 27, as can be seen from Equation
(2.102). The slope of R(p,s) is given by

dR D cos(pys) + 1

- _C , 2.106
dprs (cos(pas) + D)2 (2-106)

It can be seen from Equation (2.106) that the slope is positive if cos(p,s) < —1/D. This is always
true for some value of p,, in the interval 0 < p,, < 27 (note, however, that it is not true for all
of the values in this interval). The left hand side of Equation (2.101) is a linear function of p,
with a slope of one and so, if R(p,s) is to intersect the function p,s; — A, more than once, then
it must have a maximum slope which is greater than one. This is illustrated in Figure 2.6, which
shows plots of R(p,s) (the solid lines) against p,s, with the straight line p,; — 7 overplotted (the
dashed lines). In the top left panel, the maximum slope of R is greater than one, giving three
intersections, which corresponds to three solutions of Equation (2.101), and hence two maxima of
the distribution function (plus a minimum). In the top right panel, the maximum slope of R is less
than one, giving only one intersection, and hence this corresponds to a single maximum case. The
bottom left panel shows the case when the maximum slope of R is equal to one. This is where the

transition occurs between having one and two maxima.

The required condition, therefore, for the distribution function to have multiple maxima in the p,s

(and hence v,-) direction is

( de ) > 1. (2.107)
ADzs ) paw

The values of p,s which give a maximum or minimum slope of R(p,s) can be calculated by

solving the equation

&R
il (2.108)
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Figure 2.6: Plots of R(p,s) (solid line) and p,s (dashed line) against p,s for different parameter

values. In the top left panel, the maximum slope of R(p,s) is greater than one, in the top right
panel it is greater than one, and in the bottom left panel it is equal to one.
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The second derivative of R is given by

d*R ., .D?*—Dcos(pys) — 2
a2, ~ ) D o)

(2.109)

and so Equation (2.108) has a solution when either p,s = nm (sin(pgs) = 0, cos(pzs) = (—1)")
or when D? — D cos(p,s) — 2 = 0. For p,s = n, the slope is given by

dR
dﬁzs

(2.110)

_ o D(-1)"+1 | =C/(1+ D), forneven
Pas=nn ((=1)" + D)? C/(D—-1), fornodd
which shows that R(p,s) has a positive slope when n is an odd integer (this is the maximum slope
- even values of n give the minimum slope, which is negative). When cos(p,s) = (D? — 2)/D
(D? — D cos(pgs) — 2 = 0), the slope is given by

CD?

ST 2.111)

dR
dpes

cos(pzs)=(D%2-2)/D

which is always negative since C' > 0 and D > 1, and so there is no need to consider these
solutions, since they cannot give rise to a slope which is greater than one, and so cannot give rise
to multiple maxima of the distribution function. From Equation (2.110), therefore, the condition

(2.107) for having multiple maxima in the v,- direction becomes
C>D-1. (2.112)

Substituting in the definitions (2.104) and (2.105) of C and D into the above condition gives

=2
Uys >

bs + exp(pys)
as

1 (2.113)

> bi —1, 2.114)
Qs

where the second line follows since exp(pys) — 0 as pys — —oo. Finally, using Equations
(2.62) and (2.68) for as in the above inequality, and writing s in its dimensional form (see
Equation (2.95)) gives the condition for the distribution function to have only one maximum in

the v,-direction as

1 u? u?
bs > —exp [ 2 2 +1], (2.115)
2 vth,s Uth,s

where it is assumed, in line with the previous discussion, that u;. = uy.. Note that a violation

of the condition (2.115) does not necessarily mean that there will be multiple maxima, as this

depends also on the values of v, and z through the condition (2.113). It simply means that there
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will be at least one set of parameters for which the distribution function is multi-peaked.

The parameter b is present in the purely Gaussian part of the distribution function, and so it is
clear that, if bs is increased beyond a certain value, then the Gaussian part of the distribution
function will dominate over the cosine dependent part, and so the distribution function can have
only one maximum, as illustrated in Figure 2.3. As illustrated in Figure 2.4, a violation of this
condition does not guarantee that there will be more than one maximum for all z and v,, it only
means that there is at least one combination of parameter values for which the distribution function
is multi-peaked. Note that, as w,s/v, s — 0, bs — 1/2, which is consistent with the condition

bs > 1/2 mentioned previously in Section 2.4.

2.5.2 The v,-Direction

The distribution function (2.85) can be written as

Nos

2
— - X msu
(\/ﬂ’[}th“s)?’ p(/BS S .Z’S)

2 Bsms
@ exp (— 5 (vg + (vy — uys>2 + v? + uis)>

DN | =

fs:

X

, (2.116)

+exp (_ﬂs;ns (1)3: + 02 + Uf)) (cos(ﬁsmsumvz +T(2)) + l_)s)

where the assumption u,s = uys should again be noted. In the vy-direction, this consists partly
of a Maxwellian drifting with velocity wu,, (the Harris sheet part), and also of a part which is a
Maxwellian at rest (if regarded purely as a function of v,)). It is intuitively clear that an increase
in the drift velocity, u,,, will lead to the drifting part and the non-drifting part becoming further
and further apart, so that at some stage the distribution function will have two peaks in the v,-
direction. Changing the parameter bg, however, also has an impact on the number of maxima.
This is illustrated in Figures 2.7-2.9.

Figure 2.7 shows a case where there is a single maximum for all values of z, for the parameter
values uys = vy s, bs = 4.659 X 103, L = 1 and v, = v, = 0. Note that, at z = 0, there
is a slight wiggle in the distribution function, caused by the drifting Maxwellian part. This is,
however, dominated by the non-drifting Maxwellian part, and so does not have an effect on the

number of maxima, since it has not drifted very far from the centre of the sheet.

Figure 2.8 shows the point where a transition occurs between having a single maximum and having
two maxima, for the parameter values u,; = 3vy, s, bs = 4.227 X 103, L = 1land vy, = v, = 0.
Again, there is a wiggle at z = 0, which is more pronounced than before. This is because the

drifting Maxwellian part of the distribution has become more predominant than in Figure 2.7, as
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Figure 2.7: Plots of the distribution function (2.59) in the vy-direction for wuys = 3vs, 5, bs =
4.659 x 103, L = 1 and v, = v, = 0, for various values of z. This shows a case where the
distribution function has one maximum for all values of z.

it has moved further away from the non-drifting Maxwellian part.
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Figure 2.8: Plots of the distribution function (2.59) in the vy-direction for uys = 3vs, 5, bs =
4227 x 103, L = 1 and v, = v, = 0, for various values of z. This shows a case where the
transition between having one and two maxima occurs (at z = 0).

Figure 2.9 shows a case where there are two maxima at the centre of the sheet (2 = 0), but

just a single maximum as z is increased. The parameter values in this case are uys = vy s,
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by = 4.254 x 103, L = 1l and vy, = v, = 0. At z = 0, the drifting Maxwellian part has now
moved even further away from the non-drifting part, and so a second peak has developed.
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Figure 2.9: Plots of the distribution function (2.59) in the v,-direction for uy, = 3 s, bs =
4254 x 103, L = 1 and v, = v, = 0, for various values of z. This shows a case where the
distribution function has two maxima for z = 0, but only one maximum for the other values of z
shown.

Note that in each of the Figures 2.7-2.9, the interesting behaviour occurs only at z = 0. For
larger values of z, there are no wiggles and the distribution function has only one maximum. The
z-dependence comes from pys = msvy + gsAy(2), in the form of 1/ cosh?(z), which multiplies
the drifting Maxwellian part. This function has its maximum value at z = 0 and so the drifting
Maxwellian part will be more predominant for z = 0. As z increases, the function 1/ cosh?(z)

decreases and so the drifting Maxwellian part becomes increasingly less important.

It can be shown that the distribution function (2.59) will be multi-peaked in the v,-direction, for

some value of z, if the following two conditions are satisfied,

[uys| > 2v4, (2.117)

1 u 1 2 2
bs < 5 exp <v2y8 ) + 21)2h (uys - thh,s - |uys|\/m)
th,s

th,s

2
2uy,
J
2 _ [n2 — A2
Uys |uys | Uys 4Uth,s

The proofs of the above two conditions will be discussed in the remainder of the present section.

X exp (2.118)

They follow a very similar procedure to that discussed in the Section 2.5.1 for the v, -direction.
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A maximum or minimum of F, (given by Equation (2.92)) in the pys-direction (analogous to the

vy-direction) occurs when the partial derivative

OF, 1 _ T2 _ T \2
o = o (=gl = A+ (= 4,
_ L =
x| exp(pys) — aT(pys —4y)
ys
X [ag cos(Pzs) + exp(Pys) + bs]> (2.119)

vanishes, which gives

ﬂzs eXp(ﬁys)
as coS(Pas) + €xp(Dys) + bs

By — A — (2.120)

Note that the right hand side of this expression contains no singularities, since by > as > 0.

Equation (2.120) can be written as

Pys — Ay = S(Pys), (2.121)

where S(py) is a positive monotonically increasing function given by,

A
S(pys) = , 2.122
(Pys) 1+ Bexp(—pys) ( )
where.
A = >0, (2.123)
B = ascos(pgs) + bs > 0. (2.124)

Note also that the function S(pys) is bounded between 0 and A.

There will be more than one maximum of the distribution function when there is more than
one value of pys which satisfies Equation (2.121). The function A,(z) is given by A,(z) =
—21In cosh(Z), which takes the range of values —oo < A, < 0, and 50 S(pys) must cross the pys
axis for some negative value of p,s (or when p,, = 0). The slope of S(pys) is given by

ds AB exp(—pys)

_ 2.125
dpys (1 + Bexp(—pys))?’ ( )

which is of course always positive since S(pys) is a monotonically increasing function. The left-
hand side of Equation (2.121) is a linear function of p, s with a slope of one, and so if the function

S(pys) is to intersect this linear function of p,; more than once, then it must have a maximum slope
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which is greater than one. This is illustrated in Figure 2.10, which shows plots of S(p,) (solid
line) against p,s for different parameter values, together with a plot (dashed line) of the straight
line of slope one which passes through the point (In B, A/2), which is the point of maximum

slope of S(pys). The top left panel shows a case where the maximum slope of .S is less than
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Figure 2.10: Plots of S(pys) (solid line) against p, for different parameter values. Over plotted
(dashed line) is the straight line p,s — /_ly that passes through the point of maximum slope of
S(pys) (the point (In B, A/2)). In the top left panel, the maximum slope of S(pys) is less than
one, in the top right panel it is equal to one, and in the bottom left panel it is greater than one.

one, and there is one intersection, which corresponds to there being only one solution of Equation
(2.121) and, hence, only one maximum of the distribution function. The top right panel shows
the case where the maximum slope of S is equal to one. In this case, the straight line is tangent
to the curve at the point of maximum slope. This is where the transition occurs between having
one and two maxima of the distribution function. The bottom left panel shows a case where the
maximum slope of S is greater then one, for which there are three intersections, corresponding to
three solutions of Equation (2.121) and, hence, two maxima of the distribution function (plus a

minimum).

A necessary condition, therefore, for having multiple maxima in the p,s- (and hence v,-) direction
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is

< C{S ) > 1. (2.126)
dpys max

Values of p,s which give a maximum or minimum slope of .S can be found by solving the equation

d2
d% =0. (2.127)
pys

The second derivative of S is given by

d*S 1 — Bexp(—pys)

—— = —ABexp(—pys = ,
dps p(=Pye) (1+ Bexp(—pys))?

(2.128)

and so it is clear that Equation (2.127) has a solution when p,s = In B, from which the maximum
slope is given through Equation (2.125) as A/4. This is clearly the maximum value of the slope,
not the minimum, since the minimum slope is zero, which will occur in the limit p,; — oo (this

is also a solution of Equation (2.127)).

The necessary condition for the distribution function to have more than one maximum is then
given by (using the definition (2.123) of A)

A
s, (2.129)
4
=2
Uys
= — >1
4 >
2
’LLyS
= — > 1,
4vth,s
= Juys| > 20 (2.130)

Although this is a necessary condition for having more than one maximum of the distribution
function in the v,-direction, it is not a sufficient condition, since even if it is satisfied, there is still
the possibility that S(p,) only intersects the linear function p,, — f_ly once, which can happen
if the value of B is sufficiently large. This is because the maximum slope of S(p,s) occurs at
Dys = In B and, as previously discussed, the function p,s — fly is a straight line of gradient one
which must cross the p,s axis for pys < 0. Thus, if B is large enough, there will be only one
intersection of the two functions. This is illustrated in Figure (2.11). In this figure, the maximum
slope of S is greater than one, but the ’large’ value of B ensures that there is only one intersection,

which means that there will be only one maximum of the distribution function.

A second condition is therefore needed, which will guarantee that there are two intersections and,

hence, two maxima of the distribution function in the v,-direction, for some set of parameter
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ﬁys

Figure 2.11: Plot of S(pys) (solid line) and pys — fly (dashed line) against ps, for a case where
the maximum slope of S(pys) is greater than one, but also where the value of B is sufficiently
large so that only one intersection occurs. The straight line shown passes through the origin.

values. The transition between three intersections and only one intersection will occur when the
straight line p,s — fly passing through the origin ([ly = 0) just touches the curve S(pys) at the
point where it has slope one (equal to the slope of the straight line). There are two values of py
for which S(pys) has a slope of one. The larger root is the one to consider here, since this is where
the transition will occur between one and two intersections (this can be seen more clearly from

Figure (2.11)). The root can be calculated from Equation (2.125), and is given by

Dys1 =1In(2B) —In(A -2 — \/A(A —4)). (2.131)

A further requirement coming from this calculation is that A > 4 for pys to be real. This is
consistent with the necessary condition (2.129) for the distribution function to have more than one

maximum.

The value of B for which the transition between three intersections and one intersection occurs,

B4, can be determined by solving the equation

Pyst = S(Dys1), (2.132)
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which gives

B = %(A—2— A(A—4))exp< 24 > (2.133)

A— JA(A—4)

The second condition for there to be more than one intersection and, hence, more than one maxi-

mum of the distribution function in the v,-direction is, therefore,

B < B, (2.134)
= a5c08(Pys) + bs < By, (2.135)
= by —as < By, (2.136)

where in the last step the cosine term has been replaced by the minimum value it can take. Finally,

using the definitions (2.62) and (2.123) for as and A gives the condition as,

1 ug 1 2 2
bs < 5 €XP (vst ) + 202 (tyys — 20j5, 5 — ]uys\\/M)
,S

th,s

2
2uy,
2 _ [ 2 _ 4.2 '
U [ty s] (o 4Uth,s

It has been shown, therefore, that the two conditions for having multiple peaks in the v,-direction

X exp (2.137)

are

[uys| > v, (2.138)

b 1 U?/S 1 2 2 2 2 4 2
s < S exp 2 + 2 (uys — “Uth,s — |uy3| Uys — FVp s)
2 Vih,s 2Uth s 7

X exp (2.139)

QUZ s

ug?,s - ’UyS‘\/ u32/s - 4Ut2h,s

As previously stated, when this condition is satisfied together with the condition (2.130), then
there will be more than one maximum in the v,-direction for some value of z. The first condition
(2.138) states that the drift velocity must be greater than twice the thermal velocity. The second
condition (2.139) states that, if b, is increased beyond a certain limiting value, then the part of f; .,
which is at rest will dominate over the drifting part, and so a second maximum cannot develop,
even if condition (2.138) is satisfied. Note, however, that the upper limit on b, grows exponentially
with ugs / vfh’ s> and so the condition (2.139) is not very restrictive. In Figures (2.7) to (2.9), it can
be seen that the transition between two maxima and one maximum occurs at very large values
of bs, which illustrates this fact. As in the v,-direction, a violation of the conditions (2.138) and

(2.139) does not mean that the distribution function will always have more than one maximum -
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it only means that there is at least one set of parameter values which gives rise to more than one

maximum.

Further insight can be gained into the physical meaning of the conditions discussed above by
expressing the ratio u,s/vy, ¢ in terms of the current sheet thickness, L. This can be done by
using Equation (2.71), and gives,

2 2

ys TQ»S
— 495 2.140
Ut2h s L? ( )

u

where 1 ¢ = mguy, s/eBy is the thermal gyroradius of species s. Fixing all the parameters except
uys and L in the above expression, it can be seen that if the current sheet thickness is decreased
beyond a certain point, then there will eventually be multiple maxima in the distribution function,

firstly in the v,-direction by violating condition (2.89), and then also in the v,-direction.

2.6 Attempts to Find Vlasov-Maxwell Equilibria for other Force-
Free Magnetic Field Profiles

In the present section, examples will be given of attempts to use the method of Harrison and
Neukirch (2009b) to find equilibria for nonlinear force-free magnetic field profiles other than that

of the force-free Harris sheet. The method can be broken down into the following steps:

1. An x-component of the magnetic field is chosen arbitrarily (although it makes sense to

choose a function which is bounded).

2. The y-component of the magnetic field can then be calculated from the from the force free

constraint B2 + BZ = B2, where By is a positive constant.

3. The z- and y-components of the vector potential A can then be calculated as functions of z
(Az(z) and Ay (z)) by using Equations (1.64) and (1.65).

4. These expressions must then be inverted to give two expressions for z, one as a function of
Ay, the other as a function of A, (2(A;) and z(A,)).

5. The zz-component of the pressure tensor, P,., can then be calculated by using Ampere’s
law (in the form of Equations (2.41) and (2.42)).

6. Assume that the distribution functions have the form given in Equation (2.21), and use

the Fourier transform method suggested by Channell (1976) to find the unknown function
gs (pxsa pys)-
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This method is, in theory, a systematic way of finding distribution functions analytically for given

magnetic field profiles.

Consider, as a first example, the following magnetic field profile,

z
B, = Bof’ (2.141)

22

By — Zl:BO 1 - ﬁ,

(2.142)

where z < L. Note, however, that this is not a bounded magnetic field profile. The x- and

y-components of the vector potential arising from this magnetic field are given by

By 22 17
A, — 2(7; L - =5 +Lsin (L)> (2.143)
A, = —=20.2 .
y s (2.144)

Clearly, there is no obvious way to invert the expression for A,(z) to obtain z(A4,), and so for
this simple magnetic field profile, it is not possible to calculate a pressure P, analytically by
Channell’s method.

As a second example, consider the magnetic field profile given by

B

B, = _TO z, (2.145)
z

By = *By[1- 75, (2.146)

where 0 < z < L2. This gives the components of the vector potential as

4, = Bl <1fﬁ> : (2.147)
4, = 2B |
Y =2 (2.148)

Inverting Equations (2.147) and (2.148) to express them as functions of z gives

34, \*3
Ay) = L*|1- . 2.14
(42) (psz) |- (2,149
3LA,\ %3
A) = Y 2.1
) = () 2.150)
and P, is then given by
3,2 B % 2 2
P..(Az, Ay) = Po3 — ; (LO> <A§+A§). (2.151)
23 1o



2.6 Attempts to Find Vlasov-Maxwell Equilibria for other Force-Free Magnetic Field
Profiles 57

In this case, it is the final step of the method which causes problems, as the Fourier transform

cannot be carried out due to the fractional powers of A, and A, in Equation (2.151).

For the final example, consider the magnetic field profile

B()Z
B, = 0% 2.152
P T VAt a @152
B
B, = +——22_ (2.153)

V22 + a2’

where « is a constant. This gives the components of the vector potential as

A, = Boasinh™! (5) , (2.154)
a

A, = —BoVz2+d? (2.155)

Inverting Equations (2.154) and (2.155) to express them as functions of z gives

2(A;) = asinh <;‘Ta>, (2.156)
0
A 2

z(A)) = (;;) —a?, (2.157)

and P, is then given by

B2 A Boa\ 2
P..(A;, A,) = Pys — —% h2 L) — (== 1]. 2.1
(4, 4y) % 2u (Sec (Boa> <A ) * ) (158)

Y

Once again, it is the Fourier transform step which causes problems, due to the negative power of
A, in Equation (2.158).

The examples discussed in the present section further illustrate that, even for apparently simple
force-free magnetic field profiles, finding Vlasov-Maxwell equilibria analytically is a non-trivial
task. Channell (1976) has discussed another method for finding distribution functions, as an al-
ternative to the Fourier transform method. This method involves the use of Hermite polynomials,
and could possibly be used to find other Vlasov-Maxwell equilibria analytically. This is beyond

the scope of the work in this thesis, but would be interesting to investigate in future work.
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2.7 Finding a Family of Distribution Functions for the Force-Free
Harris Sheet

In the present section, a method will be discussed for calculating a family of distribution func-
tions for the force-free Harris sheet, which includes the previously known solution (Harrison and
Neukirch, 2009b). The method involves assuming a distribution function of the same form as that
found by Harrison and Neukirch (2009b), but with a different dependence on the particle energy
H,. The idea of finding new distribution functions for a given magnetic field profile by changing
the dependence on H; has been used before, but only for cases depending on the particle energy
and a single component of the canonical momentum. Fu and Hau (2005), for example, showed
that kappa type distribution functions can be used for the Harris sheet magnetic field profile (Har-
ris, 1962), as previously discussed in Section 1.4.2.1. More recently, Kocharovsky et al. (2010)
discussed distribution functions with an arbitrary dependence on the particle energy and a fixed
dependence on one component of the canonical momentum for the relativistic case. It must, how-
ever, be emphasized that, for finding force-free Vlasov-Maxwell equilibria, it is crucial that the
distribution functions depend on two components of the canonical momentum, and that the mag-
netic field has more than one non-zero component (Sestero, 1967; Channell, 1976; Bobrova and
Syrovatskﬂ, 1979; Bobrova et al., 2001; Harrison and Neukirch, 2009a,b; Neukirch et al., 2009).

Consider a distribution function of the general form

3
m msH
fsg = ?jfoh < ;2 S) [as cos(BstzsPas) + exp(Bstiyspys) + bs), (2.159)
S S
where h is an arbitrary function of (mH,)/q? and fy is a positive constant. Note that H, must
contain a multiplying factor in order to make the argument of the function & dimensionless. The
distribution function (2.159) is of the same form as the distribution function found by Harrison
and Neukirch (2009b), given by Equation (2.59), but it has a different dependence on the particle

energy.
It will be shown that, when calculating velocity moments of distribution functions of the form
3

H
fog= 2 F <m52 S,p“,pw) , (2.160)
qs ds ds (s

it is possible to make the resulting integrals independent of the particle species s whenever ¢ = 0,
that is, whenever strict charge neutrality is assumed. This has been shown before for distribution
functions depending only on energy and one component of the canonical momentum (Schmid-

Burgk, 1965), and can be used to show that distribution functions of the form (2.159) are solutions
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of the Vlasov-Maxwell equations for the force-free Harris sheet, provided certain conditions on the
parameters are satisfied. Note that the assumption of strict charge neutrality, although restrictive, is
made for calculational purposes. In reality, a plasma would likely be only quasineutral, satisfying

the condition

Ne —

M. (2.161)
Ne + N,

The density, n5 4, can be calculated from the distribution function (2.159) by using the definition

ns,g(AwaAya(b) = /fs,gdgv (2.162)

1
:7ﬁ/ﬁw%, (2.163)

where d%v = dvgdvydv, and d3p = dpzsdpysdp.s. This gives

gy = B[ (e

as COs ﬁsuxspxs + eXp(/Bszspys) +b ]dpxsdpysdpzs (2.164)

=2f0///( )

as Cos(ﬁsuxspxs) + eXp(ﬁszspys) +b ]dpzsdpxsdpySa (2.165)

with the second line coming from the fact that the integrand is even in p.;. Changing the p,-

integration to an integration over H by using the following

1

H, = om [(pzs - qSACC)2 + (pys - QSAy)2 -HDES] + QS¢7 (2.166)
dp.s —
dZ = ms[zms(Hs - QS¢) - (pa:s - qSAJ?)Q - (pys - quy)z] 1/27 (2167)
then gives

2m sHs
ns,g(AwaAya(b) = = fO/ / / dH dpxsdpysh <m>

Hpin 3

X [as cos(BstzsPus) + exp(Bstyspys) + bs]
x[2mS(HS - QS¢) - (p:rs - quSE)Q - (pys - QSAy)Q]_l/Q, (2168)

Hypin = m [(pxs - QSA1>2 + (pys - quy)2] +qs9. (2.169)
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Defining three new variables, F/, P and () as

meH.

B = Tl (2.170)
q2

p = Pos (2.171)
as

Q = %, (2.172)
S

and using these as integration variables, gives

2 o0 o0 o0
Ao Ay ) = 20 [ [ ) o cos(ButnaP) + exp(Bnua.Q) + b
< [2F — 272@ — (P = A2 — (Q— AN Y2dEdPAQ,  (2.173)
where
1 2 21, Ms®
Emin = 5[(13 = Ag)"+(Q — Ay + o (2.174)

The zz-component of the pressure tensor, P, . 4, can be written as
1
Peog(Ag, Ay, ¢) = Z oo /pgsfs,gd?’p, (2.175)
s S

and is given by, using the integration variables defined in Equations (2.170)-(2.172),

|qs|
ms

Pzz,g(Axv Ayv ¢) = 2f0 Z

X /_Z /_C: /Eoo h(E)[as COS(ﬁs“:pstP) "‘eXp(ﬁsuySQSQ) +bs]

min

Mg 1/2
T (P-A)?—(Q—A)?| dEAPIQ. (2.176)

X [QE —
ds

Note that, at this point, the dependence of ns 4, and P, , on ¢ is still stated explicitly. It will later

be assumed, however, that ¢ = 0. The charge density, 0,4, can be calculated from P, . , by using

the definition in Equation (1.81), or from n; 4 by using Equation (1.10), and is given by
7oA Ay ) = 2003012
s S

X /_Z /_‘: /°° h(E)[as cos(Bsuzsqs P) + exp(BstysqsQ) + bs)

Emin

2mg —1/2
qs —(P—A.)? = (Q - Ay)? dEdPAQ.  (2.177)

X {2E—
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It can be seen that the terms inside the integration in Equation (2.177) will all be independent
of s, that is they will not depend upon the particle species, if the following three conditions are
satisfied,

¢ = 0, (2.178)
eBeluzel = eBiluxi| = a, (2.179)
—eﬁeuye = eﬂiuyi =7 (2.180)

The above conditions are consistent with those discussed in Section 2.4. Due to the modulus signs
in Equation (2.179), the parameter « is always positive, and so u,e and u,; from the distribution
function (2.159) can be positive or negative, and can have the same or opposite sign from each

other. The neutrality condition o = 0 gives

> sign(ga)(asly + Ip + bols) = 0, (2.181)
where
I, = P
1 / / /Emmo ) cos(aP)
A2 = (Q - A,)%) " dEdPaQ, (2.182)
I, = / / / E)exp(7yQ) (2.183)
) (Q — A,)?]? dEdPdQ, (2.184)
L - / / /
x [2E A= (Q- A,)*) " aBapdq,

where Ep;n, o 18 the value of E,,,;, when ¢ = 0, given by

Erino = %[(P — A’ +(Q - Ay’ (2.185)
This then gives

(a; —ae)ly + (by — be)I3 =0, (2.186)
which will of course be satisified if

ae = a;=A,, (2.187)
be = bi=B,. (2.188)
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Note that the condition by > a, mentioned in Section 2.4 leads to the condition B, > A,
which must be satisfied to ensure that the distribution functions are positive. When the conditions
(2.178)-(2.180), (2.187) and (2.188) are satisifed, the pressure P, 4, given by Equation (2.176),

can be rewritten as

(me +mj)e

P..q(Az, Ay) =2fo oy [AgH cos(aA,) + Haexp(vAy) + BgHs), (2.189)
where

H = / ” / h /E T e 2E — §2 - 72" cos(aS)dEASAT, (2.190)
00 J —00 J Enmin,o

Hy = /OO /OO /EOO h(E) [2E—SQ—TQ]l/Qexp(fyT)dEdeT, (2.191)
—00 J —00 min,0

Hy = /OO /Oo /EOO h(E) [2E — §2 — T2]"* dEdSdT, (2.192)
—00 J =00 J Emin,o

with S = P — A, and T = @Q — A,. Note also that, after this change of variable,
L o 2
Erino = 5(5 + 7). (2.193)

It can be seen that the general pressure given by Equation (2.189) will be equal to the pressure

(2.66) if the following additional conditions are satisfied,

2(me + mi)e /66 + Bz

Hy, = 2.194
Mem; JoH: B.5; no, ( )
AH, 1
- = 2.1
H, 2’ (2.195)
B, Hs
= b 2.196
H, (2.196)

When these conditions are satisfied, in addition to conditions (2.178)-(2.180), (2.187) and (2.188),
Ampere’s law in the form given by Equations (1.83) and (1.84) is satisfied for the set of gen-
eral distribution functions (2.159) and, therefore, they form a family of equilibrium solutions of
the Vlasov-Maxwell equations for the force-free Harris sheet, in addition to the known distribu-
tion function (Harrison and Neukirch, 2009b). In Section 2.8, three explicit examples are given,
which show possible choices of the function h(msHs/q?) = h(E). The validity of the condi-
tions (2.194)-(2.196) will of course depend on the choice of the function h(FE), and this will be

discussed in each of the three examples.



2.8 Examples of New Distribution Functions for the Force-Free Harris Sheet 63

2.8 Examples of New Distribution Functions for the Force-Free Har-
ris Sheet

The following three examples in this section illustrate the use of the method discussed in Section
2.7, for various choices of the function h(msH;/q?) = h(E).

2.8.1 Delta Function

Consider a distribution function of the form (2.159), with the function h(msH,/q?) = h(E) given

by a delta function,
h(E) = (F — Ep), (2.197)

where £y > E,,in.0. This corresponds to a case where the distribution function is zero everywhere
except for one particular value of the energy (&2 = FEjy), and so all particles are assumed to have

the same energy. Carrying out the E-integration first gives P, 4 as

Ay cos(an)/ / (2Ey — 82 — THY2 cos(aS)dSdT

||
ms

Pzz,g(A;raAy) = 2f02

o0 o0
+exp(7Ay)/ / (2Ey — S% — T*)'/2 exp(yT)dSdT

oo o0
+B, / / (2Ey — 8% — T*)V/245dT| . (2.198)
—o0 J —00
Using cylindrical coordinates (r,0), with
S24+T? = 2Eyr?, (2.199)
S = +/2Eyrcosb, (2.200)
T = +/2Egrsinb, (2.201)

then gives

Pzz,g(AzaAy) = 2 8E8fow

ey

2 pl
x| Ag cos(ady) / / r(1 =722 cos(a'r cos 0)drdf (2.202)
o Jo

ot 2rB
+eXp(’yAy)/ / r(1 —r%)Y2 exp(y'r sin 0)drdf + 3 g1,
o Jo
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where
o =+/2Fya, (2.203)
v = +\/2Eyy. (2.204)

The remaining integrations can then be carried out by using the formulae in Appendix B, which

s
Ag\/2a>’3 Tz o) cos(ady)
v ' B

The Bessel functions .J3/5 in Equation (2.205), which are of fractional order, can be written in

gives P, ;4 as

(me +my)e

P,.4(As, Ay) = 4m\/8ESfo

el

(2.205)

terms of spherical Bessel functions j; (of integer order) through the identity

™

gn(2) = §Jn+1/2(z), (2.206)

which gives,

2
J3/2(2) = \/fjl(Z), (2.207)

where
ji(z) = Slg# - % (2.208)
This gives P, . 4 as
P..q4(Az, Ay) = 4nfy (m;l—;z;cl)e \/78/3?3 (”y’ cosh' — sinh 7’)
X | Ag COS(CVAQC>2::; (78,1(1110(:},1 ;,Oi/ Zi)j}?;’>
+exp(y4,) + % ( " J,@_ — 7/) ] . (2.209)

The conditions (2.194)-(2.196) for the pressure (2.209) to be equal to the pressure (2.50) are then
given by

e + i me + m;)e \/8E; .
Bﬂ ﬁﬁ ng = 47Tf0( — ) e % (4 coshy’ — sinh~'), (2.210)
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1 73 [ sina/ — o cosa’

- = A,— 2.211

2 Yar3 <*y’ cosh~y/ —sinhy’ )’ ( )
B 13

b = =9 R , (2.212)
3 \ v cosh~y' — sinh+/

and the condition B, > A, gives rise to the following condition on b:

1 Oé/3
b> — . 2.213
6 (sino/—a’cosa’> ( )

The right-hand side of condition (2.210) is always positive since the 4'-dependent function,
(7' coshy’' — sinh ') /+’3, is always positive, regardless of the value of v'. Note also that
ms, e, Egy, fo > 0. Condition (2.210) is, therefore, a valid condition since its left-hand side is
also always positive (s, n9 > 0). The constant A, in condition (2.211) is positive, and the +'-
dependent part is the same as in condition (2.210) which, as discussed, is always positive for any
value of +'. The o’-dependent part is given by

sina/ — o’ cosa j1(d)

NG = o 2.214)

which can be positive or negative due to the spherical Bessel function j; (o), shown in Figure
2.12. Condition (2.211) is, therefore, only valid in the regions where j1(c’) > 0. It can be seen
from Figure 2.12 that it is valid for small values of o/. Condition (2.212) is also a valid condition,
since both the left- and right-hand sides are positive (B, is positive and the 7'-dependent part
is positive). The fact that 4/ can be positive or negative means that the parameters uy. and w,;
from the distribution function (2.159) (with the function h(msH/q?) = h(E) given by Equation
(2.197)) can be positive or negative, but must have opposite signs from each other through the
definition (2.180) of v = +'/+/2E.

oso T T T T T T T T T T T T

0.25

Ji(a)

0.00]

—oosl oo ]

Figure 2.12: The spherical Bessel function j; (o)
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2.8.2 Step Function

Consider a distribution function of the form (2.159), with the function h(msH,/q?) = h(E) given
by a step function,

1, E<E
WE)=0O(E,—E)={ = ~ =%, (2.215)
0, Ehy<FE
The lower bound for the energy integration is E,,,;, 0, given by Equation (2.193). The F-integral

is the same for each part of P, 4, and is given by

00 Eo
/ O(Ey— E)2E — 82 - T*)V2dE = / (2E — S2 —THY2dE  (2.216)

Emin,O Emin,()

é(on — 52— T%)3/2, (2.217)

Using a cylindrical coordinate system (r, #) as in the first example (see Equations (2.199)-(2.201)),
the resulting integrals can then be evaluated in a similar way to the previous example (see Ap-
pendix B for details). Then, using Equation (2.206) as in the previous example, the resulting
Bessel functions (of order 5/2) can be expressed in terms of the spherical Bessel function jo,

where

3 1 3
Jo(z) = ( - > sin z — Jacosz. (2.218)

23z

The pressure is then given by

e \/32E
Pzz,g(Azy Ay) = 47Tf0 (me + ml)e 0 [(3 + ,7/2) sinh 7/ _ 37/ cosh 7/]

MM, 7’5
5 2y ¢i / ! !
v (3 —a’?)sina’ — 3a/ cos
X |Ag cos(adz) (3 4+ +2)sinhy/ — 3+ cosh v/
B 15
+exp(yAy) + =2 : 22

15 (3 4+ ~+'2) sinhy — 34/ cosh+/ |’

where o’ and +/ are given by Equations (2.203) and (2.204). The conditions (2.194)-(2.196) for
the pressure (2.219) to be equal to the pressure (2.50) are then given by

. ) 32F°
Bet B gy Mt ma)e v ~0 [(3+~%) sinh v/ — 39 cosh~] , (2.220)
BeBi memm; Y
1 AQL/E’ (3—a’2).sina’—3a’coso/ 7 (2.221)
2 a® (3 4+ ~/2) sinh — 34/ coshy/
B 15
b = 29 7 (2.222)

15 (3 + +2) sinh/ — 34/ cosh v/’
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and the condition B, > A, gives the following condition on b:

1 Oé/5

30 (3 — a2)sina’ — 3/ cosa’’

b > (2.223)
The right-hand side of condition (2.220) is always positive since the «’-dependent function, ((3 +
7?)sinhy" — 3+’ coshv') //°, is always positive, regardless of the value of 7. Note also that
ms, e, Fg, fo > 0. Condition (2.220) is, therefore, a valid condition since its left-hand side is
also always positive (3s,n9 > 0). The constant A, in condition (2.221) is positive, and the /-
dependent part is the same as in condition (2.220) which, as discussed, is always positive for any

value of 7/. The o/-dependent part is given by

(3 —a'?)sina’ — 3a/ cos o/ _ Jo(a)

o o (2.224)
which can be positive or negative due to the spherical Bessel function j3(«’), which has a similar
profile (qualitatively) to that of the spherical Bessel function j; («'), shown in Figure 2.12. Con-
dition (2.221) is, therefore, only valid in the regions where j3(a’) > 0. Condition (2.222) is also
a valid condition, since both the left- and right-hand sides are positive (B, is positive and the /-
dependent part is positive). The fact that 4" can be positive or negative means that the parameters
Uy, and u,,; from the distribution function (2.159) (with the function h(msH/q?) = h(E) given
by (2.215)) can be positive or negative, but must have opposite signs from each other through the
definition (2.180) of v = v/ /+/2Ey.

2.8.3 Powerof £y — F

Consider a distribution function of the form (2.159), with the function h(msH;/q?) = h(E) given
by

) (2.225)

Ey— E)X, E <E
h(E): ( 0 )7 < Lo
0, Ey < FE

where x > —1 and the lower bound for the energy integration is Fy,;y 0, given by Equation
(2.193). When calculating P, , using Equation (2.189), the E-integration is the same in each

triple integral, and is given by

Eo
/ (Eo — E)YX[2(E — Enmino))"/?dE, (2.226)

Emin,O

which can be written as

Yo
V2 /0 WX (o — ) 2dy, (2.227)
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where ¢ = Ey — E and 19 = Ey — Ep,in 0. The integral (2.227) can be evaluated by using the

formula
z
/ "z — ) ldt = I B, v), (2.228)
0

where B(u, v) is a beta function defined by

NI
B(u,v) = —2 ) 2.229
and Rp > 0, Rv > 0 (which gives xy > —1). The integral (2.226) is then given by
Eo
/ (Eo — E)X[2(E — Epiny)]"/?dE
Emin,()
I 1
_ VT TXHD op g2 ey (2.230)

42X T(x +5/2)

where Epnino = (1/2)(S? + T?). Using a cylindrical coordinate system as before (see Equations
(2.199)-(2.201)) gives P, 4 as
fo(me +my)e /7 T'(x+1)

_ x+5/2
e wﬂnx+5mﬁﬂ%)

27
Ay cos(aAy) / / 2)3/24X cos(a/r cos 0)drdd  (2.231)
+exp(v4, /%/ 2)3/24X exp(~'r sin 0)drd6 + "By
X+5/2|

where o/ and +' are given by Equations (2.203) and (2.204). As in the previous two examples,
the remaining integrations can be carried out by using the formulae in Appendix B. The pressure
P, . 4 is then given by

ZZg(Aq;7A) = (QW)B/QMF(X 1)(2E )X+5/2JXL2(17)

Mem; (i )x+5/2
i’y’)x+5/2 J +5/2( o)
XAy | — X2 cos(aAy) + exp(yA
(Z) P costad) +expl)
B.(i / X+5/2
o (i) _ (2.232)
X2 (x + 7/2) Iy 452(17)

The conditions (2.194)-(2.196) for the pressure (2.232) to be equal to (2.50) are then given by,

ﬁeﬁ:‘@ﬁl _ (271‘)3/2 fO(n:;E—{T;LTi)eF(X+ 1)(2E0)X+5/2
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Jy45/2(17)
1 -/ X+5/2 J O/
5 = 4 <W,> Doyl ,) : (2.234)
2 a Jx+5/2(W )
_ By(in/ )52 . (2.235)
22D (X +7/2) Ty 152(1)
Conditions (2.233) to (2.235) reduce to the two conditions
Jx+5/2(7/)
NI 0, (2.236)
Jx+5/2(0/)
T 0, (2.237)

on removing known positive quantities from the inequalities and using the fact that J,(iz) =

i¥J,(2). The condition B, > A, gives the following condition on b

(a/)x+5/2

b> .
PHT2D(x 4 7/2) Jyq5/2()

(2.238)

The condition (2.236) contains a root of 4/ meaning that, in general, 7' must be positive, and so
the conditions (2.236) and (2.237) are satisfied in the regions where .J, ,5/5(a’) and J, 4 5/2(7")
are positive (note again that o/ = /2Ega > 0 through the definition (2.179)). Note that, when
X 1s an integer, the identity (2.206) can be used to express the Bessel functions .J;, 1/ in terms
of spherical Bessel functions j,. This was done in the previous example (which corresponds to
x = 0). In that example, the conditions (2.233) to (2.235) were expressed in terms of sin o/,
cos ', sinh~/ and cosh~’ (from the spherical Bessel function j; given by (2.208)) and it was
observed that +' could be positive or negative without violating the conditions on the parameters

(the fractional part of the power of v/ cancelled out).

The method of Section 2.7, together with the examples given in the present section, have further
illustrated that different distribution functions can give rise to the same magnetic field profile.
As previously discussed, the force-free Harris sheet is the only magnetic field profile for which
nonlinear force-free Vlasov-Maxwell equilibria are known. If an equilibrium solution were dis-
covered for another field profile, however, then this method could potentially be used to extend

the known solution to a family of solutions.
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2.9 Looking for Force-Free Vlasov-Maxwell Equilibria Using Cylin-

drical Coordinates

An interesting extension to the force-free Vlasov-Maxwell equilibrium problem involves trying to
find equilibria using a cylindrical coordinate system (7,6, z). As mentioned by Channell (1976),
it is not obvious how to extend the general theory in order to find distribution functions for a given
magnetic field profile. It is, of course, possible to solve the problem in the opposite direction, by
starting with a certain form of distribution function, and investigating whether or not this gives rise
to a force-free equilibrium. An attempt to solve the problem in such a way will be discussed in
the present section. Before this, however, some preliminary details will be discussed, to illustrate

why the general theory cannot be extended in an obvious way.

Assuming that all quantities depend only upon the radial coordinate r, the three constants of
motion in the model are the Hamiltonian, arising from the time-independence of the system, given
by

1
H, = 5ms(u%f + v3 4+ v2) + g5, (2.239)

the canonical momentum in the - (azimuthal-) direction, arising from the assumed invariance in

this direction, given by
pos = 1(msvg + qsAp), (2.240)

and the canonical momentum in the z-direction, arising from the invariance in this direction, given
by

Pzs = MgV + qSAZ) (2.241)

where v, = 7, v9 = rfl and v, = 2 are the velocities in the r- - and z-directions, respectively.

It is shown in Appendix C that the following relations hold

00, jp

o tae = O (2.242)
6

882 +g{; = 0, (2.243)
0A. 04y (2.244)

(2.245)
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and also that the 6- and z-components of the current density can be written as

8Prr
) = 2.24
o= i (2:246)
8P7“r
T 2.24
Jz 9, (2.247)

and the charge density as

aPT‘T‘
oo

where P, is the rr-component of the pressure tensor (the component which is important for

. (2.248)

force-balance), given by

P =Y _m, / v2 fod®v. (2.249)

—0o0

Note that, alternatively, the current density components could be calculated directly from a known

distribution function through the following definitions,

jo = ) / vg fod®v, (2.250)
j. = qu/ v, fsd3v. (2.251)

It is assumed that the magnetic field vanishes in the r-direction, and that B = V x A, where now
A = (0, Ag, A,). The magnetic field can be written as

dA, 1d
B=VxA= <o, — ,TdT(T‘A9)> . (2.252)

The non-zero components of Ampere’s law, V x B = pgj, are then given by

d (1d
g = —— | —-——(A 2.2
wis =~ (S50, .25)
. 1d dA,
pojz = —oo- <7“ I > ; (2.254)

which can be written in terms of derivatives of P, as

oP,  1d (1d
= e (). (225
OP,, 1 d dA,

_ 1 d 22
0A, por dr (r dr > ’ (2.256)

A solution of these equations would result in a P,, with an explicit dependence on the radial
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coordinate, r. This is different from the Cartesian case, in which the pressure function, P, ., does
not depend explicitly on z (the coordinate on which all quantities depend). It should be noted that
such a dependence on r does not imply that the total time derivative, d P, /dr, is non-zero - it only

implies that 0P, /Or # 0, and so it may be possible to find a force-free equilibrium solution.

In the remainder of the present section, an example will be given of an attempt to find a force-free
equilibrium in cylindrical coordinates. Firstly, it is assumed that the distribution functions have

the form

fs = fsoexp(—BsHs) (as + bsopg, + bszp3s) (2.257)

where fy0, as and by are constants, and s = 1/(kpTy), with kg equal to the Boltzmann constant
and T the temperature of particle species s. A distribution function of this form was chosen since
itis known to give rise to a force-free equilibrium in Cartesian coordinates (Channell, 1976; Attico
and Pegoraro, 1999). The rr-component of the pressure tensor can be calculated by substituting

Equation (2.257) into the definition (2.249), which, after carrying out the integration, gives

Prr = Z @U?h,sfsoms eXp(_/BSqS¢)
s

x (as + bogr? (7; 4 (qSA9)2> tb., (7; 4 (quz)2>) . (2.258)

Using Equations (2.246) and (2.247) then gives the 6- and z-components of the current density as

jo = Dgr®Ag, (2.259)

J: = D;As, (2.260)
where

Dy = 2V873) v, ;msfua? exp(—PBsqsd)bso, (2.261)

D. = 2V8r3 iv?h,smsfsoqiexp(—ﬂsqsqb)bsz. (2.262)

Substituting Equations (2.259) and (2.260) into Ampere’s law (Equations (2.253) and (2.254))
gives the following two ordinary differential equations

1d/(1d
———(==(rA = Dpr’A 2.263
Mo dr (rdr(r 9)> 07" Ag, ( )
14 (rdAZ> _ D.A. (2.264)
ot dr dr

which can be solved for Ay and A, which will then give the magnetic field profile. Equation
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(2.263) can be rewritten as

1 d (dy\
e (du> — Dyt (2.265)

where ) = rAg and u = %73. This equation has the solution
VoD VoD
rAg = Asin (";973) + Becos ( ’“‘; W) , (2.266)

where A and B are constants. Then, using the fact that r Ay = 0 when r = 0 gives B = 0, so that

the azimuthal component of A is given by

Ay = Ao (V“;Der?) . (2.267)
T

This can then be substituted into Equation (2.252), which gives the z-component of the magnetic
field as

VioDg
BZ_A\/MODQCOS< “; 97«2>. (2.268)

Equation (2.264) can be expanded to give

d?A, dA,
PO S (r/uDa) A =0, (2269)

which, by letting R = /gD, r, can be written as

d?A, N 1dA,
dR?2 ' R dR

+ A, =0. (2.270)
Equation (2.270) is Bessel’s equation with solution

A, = Jo(R) = Jo(v/poD:r), (2.271)

where Jy is a Bessel function of the first kind (e.g. Abramowitz and Stegun, 1964). The 6-

component of the magnetic field can then be calculated from Equation (2.252), and is given by

By = \/1oD.J1(\/poDzr), (2.272)

by using the relation J)\(v/poD:r) = —v/po D2 J1 (v o D.r).

To summarise, the magnetic field profile arising from the distribution function (2.257) is given by

By = /poD:Ji(\/poDzr), (2.273)
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v oD,
B, = A\/uoDgcos (@97‘2), (2.274)

which gives rise to a current density

jo = ADgrsin <”‘§D€r2>, (2.275)
J. = D.Jo(v/poD.r). (2.276)

Figure 2.13 shows a plot of the magnetic field lines. By looking at the expressions (2.275) and
(2.276) for the current density components, it is clear that the magnetic field is not force-free, since
j # aB. Thus, the equilibrium given by the magnetic field profile (2.273), (2.274) and distribution
function (2.257) is not a force-free equilibrium, illustrating that the approach used here has not
been successful. It would be more desirable to have a theory which allows distribution functions

to be calculated from a given linear (or non-linear) force-free field.

Figure 2.13: Plot of the helical field lines for 110D, = 50, oDy = 25 and A = 1.

For completeness, the parallel current, quasineutral electric potential, and quasineutral pressure
function for this equilibrium are given below. The parallel current, jj, which is the component of

the current density parallel to the magnetic field, can be calculated by using the formula

_i-B

=g (2.277)

Using Equations (2.273)-(2.276) for the magnetic field and current density components gives the
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parallel current as

J =

D
ADg+/ po D7 sin ( Ho 97“2) J1(\/ o D)

2
D
+AD.+/ 119Dy cos <@r2) Jo(v/ uoDzT)]

9 D —-1/2
X [uoDz [Jl(\/,ugDzT‘)} + A219Dy cos? <‘§9r2>] . (2.278)

Finding an equilibrium involves solving Ampere’s law for the magnetic field, as well as Gauss’
law for the electric potential, and hence the electric field. Throughout this work it is assumed that

the plasma is quasineutral which, to lowest order, corresponds to the condition

8Prr -
36 = 0. (2.279)

Substituting Equation (2.258) for P, into the Equation (2.279), summing over ions and electrons,

g =

and solving for the quasineutral electric potential ¢, gives,

1

n=———=1In[f(7)], (2.280)
bon = sy M)
where,
Bi N’i(A97 A27 7’)
=——F—" 2.281

f("") Be Ne(AﬂvAz/’”)’ ( :
with the function NV, (for species s) defined by,

Nsg=v Sﬂgvfh,smsfso as + b39T2 <7ns + QEA3>

+bs (m + q§A§> . (2.282)

The quasineutral electric potential (2.280) can then be substituted back into the Equation (2.258)
for P, to give an expression for the quasineutral pressure, P 4, which, after some algebra, is

given by

. Be/(ﬁe+ﬁi) ﬁt/(ﬁe+ﬁz)
e (G
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2.10 Summary

The work in this chapter has focused on one-dimensional force-free Vlasov-Maxwell equilibria.
Properties of the previously known nonlinear force-free solution found by Harrison and Neukirch
(2009b) have been discussed in detail. In particular, conditions have been given on the parameters
of the distribution function, which show when it can be single or multi-peaked. This is of interest,
since a multi-peaked distribution function may give rise to microinstabilities. A study of the

microinstabilities themselves is, however, beyond the scope of this thesis.

A discussion has been given of attempts to find distribution functions for nonlinear force-free
magnetic field profiles, other than that of the force-free Harris sheet, by using the method of Har-
rison and Neukirch (2009b). These attempts were unsuccessful, however, which has highlighted

the fact that finding Vlasov-Maxwell equilibria analytically is not straightforward.

A method has been discussed which allows a family of distribution functions to be calculated
for the force-free Harris sheet. This family includes the Harrison and Neukirch (2009b) solution,
in addition to distribution functions with a different dependence on the particle energy. Three
examples of distrbution functions from the family have been given, in order to illustrate the use
of the general method. Although there are no other nonlinear force-free magnetic field profiles
for which Vlasov-Maxwell equilibria are known, if another solution was found, then this method

could potentially be used to extend that solution to a family of solutions.

An attempt has also been made to reformulate the force-free Vlasov-maxwell equilibrium problem
in cylindrical coordinates, by considering the case where all quantities depend only on the radial
coordinate, 7. It has been illustrated that, in general, this is not straightforward, in agreement with
Channell (1976). An example has been given, which involves assuming a distribution function of
a similar form to that previously discussed by Channell (1976) and Attico and Pegoraro (1999)
in Cartesian coordinates, which gives rise to a linear force-free magnetic field. It was found,
however, that in cylindrical coordinates, such a distribution function does not give rise to a linear

force-free magnetic field.

As stated above, the equilibrium distribution function found by Harrison and Neukirch (2009b)
may be unstable to microinstabilities. In addition, there is the possibility that macroscopic insta-
bilities may occur. In the next two chapters, therefore, a linear stability analysis will be carried

out, in order to investigate the occurrence of the collisionless tearing mode.



Chapter 3

Vlasov Stability

3.1 Introduction

A large part of the work in Chapter 2 focused on the Harrison and Neukirch (2009b) equilibrium
for the force-free Harris sheet. Conditions on the parameters of the distribution function were
given which show when it can be single or multi-peaked in two of the velocity space directions.
This may have implications for the stability of the equilibrium. As stated previously, an investi-
gation into occurrence of microinstabilities is beyond the scope of this thesis, but there is also the
possibility that the equilibrium is unstable to macroscopic instabilities, such as the collisionless
tearing mode (e.g. Schindler, 2007), which can give rise to collisionless reconnection. The main
aim of the present chapter, therefore, is to carry out the initial calculations required for a linear
stability analysis of Harrison and Neukirch’s equilibrium, in order to investigate the occurrence of

such an instability.

Many authors (Dobrowolny, 1968; Hoh, 1966; Yamanaka, 1978; Lapenta and Brackbill, 1997;
Daughton, 1998, 1999; Silin et al., 2002; Camporeale et al., 2006) have investigated the Vlasov
stability of the Harris sheet equilibrium (Harris, 1962). The first step in such a stability analysis is
to linearise the Vlasov-Maxwell equations, by considering small perturbations to the equilibrium.
This will be discussed in Section 3.2, and then a review of previous work on the stability of the

Harris sheet will be given in Section 3.3.

In Section 3.4, the initial calculations of the stability analysis for Harrison and Neukirch’s equilib-
rium are carried out. The analysis follows a similar procedure to that used by a number of authors
(e.g. Dobrowolny, 1968; Lapenta and Brackbill, 1997; Silin et al., 2002) for the Harris sheet. Af-
ter linearising the Vlasov-Maxwell equations, the linearised Vlasov equation must be integrated
to obtain the perturbed distribution function. The integration is carried out over the unperturbed
particle orbits, since these are the characteristic curves of the Vlasov equation (see Section 1.3.1).
The calculation of the particle orbits is a central difficulty in any Vlasov stability analysis and, in
general, cannot be carried out analytically without an approximation. It is necessary, therefore,
to use an approximation for the force-free Harris sheet field, in order to calculate approximate
particle orbits. These expressions are then used alongside the perturbed distribution function to

calculate the perturbed density and current density, by taking velocity moments of the distribution

77
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function and carrying out the time integrations. Note that the perturbed density expression is not
needed for the stability analysis, but it is calculated for completeness, and because its calculation
serves as a useful exercise to prepare for the longer calculation of the perturbed current density,
which is crucial to the stability analysis. The perturbed current density can be substituted into the
linearised Ampere’s law, which can be solved to give various dispersion plots for the instability.

An approximate numerical solution of Ampere’s law will be discussed in Chapter 4.

3.2 Linearised Vlasov-Maxwell Equations

The first step in the linear Vlasov stability analysis involves linearising the Vlasov-Maxwell equa-

tions

Ofs ofs gs L _

5 +V'8r+E(E+VXB)'8v = 0, (3.1)
VxB = puoj, (3.2)

OB
VxE = ~ 5 (3.3)
V-B = 0, (3.4)
V.-E = Z. (3.5)
€0

It is also assumed that typical speeds are much less than the speed of light, ¢, so that the dis-
placement current term in Ampere’s law can be neglected. The set of Equations (3.1)-(3.3) can be
linearised by writing each quantity as the sum of an equilibrium quantity, with subscript 0, plus a

small perturbed quantity, with subscript 1,

fs = Jfos+ fis, (3.6)
E = E (3.7)
B = By+Bj, (3.8)

= Jo+io (3.9)
o = og+oi1, (3.10)

where Ey = 0, and squares and products of the perturbed quantites are assumed to be much less
than one, such that they can be neglected. Starting with the Vlasov equation (3.1), using Equations
(3.6)-(3.8) gives

af[)s afls afOs afls & afOs
ot T ot TV or TV or o, Bt vx (Bot Byl 0
S 8 S
9518y v x (By 4+ By)] - 21 g, 3.11)

Mg ov
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and then multiplying out the brackets gives

0 fos Ofis 0 fos Ofis qs 0 fos
ot Tor TV e TV e T VBl T
ds 0 f1s qs 0 fos
+m78[VXBO]. v +m73[E1+VXBl]'aV

—l-& [E1 +vxBy]- Ohs = 0. (3.12)
my ov

Neglecting squares and products of perturbed quantities, and using the equilibrium Vlasov equa-
tion (1.59) to cancel terms, then gives
8f 1s . 8f 1s

gs 0 f1s gs 0 fos
5 +v o —i—m—s[vao]- Sy +HS[E1+VXB1]' oy

= 0. (3.13)

The total time derivative of f1(r, v,t) can be expressed, using the chain rule, as

dfls _ afls 8fls 6fls afls + 8fls d& 6fls % afls dv,

= = > .14
di ot Vo Ty T T ou at o, @t T ov, at O Y
o afls afls afls
= o +v or +a oy (3.15)
afls 8fls qs afls
e +v o —I—ms(vao) Sy (3.16)
where
dv
_ @ 1
a 7 (3.17)
= & (vx By), (3.18)
ms

is the acceleration of a particle due to the equilibrium magnetic field By (the equilibrium electric

field is assumed to vanish). This means that the linearised Vlasov equation can be written, in

general, as
dfls qs afOs
=——I|E By|- . 3.1
dt M [E1 +v By ov (3.19)

Linearising Equations (3.2)-(3.5) then gives the set of linearised Vlasov-Maxwell equations as

df1s _ ds 9 fos
i = o Bty By (3.20)
VxBi = iy, (3.21)
0B
VXEl = —W, (322)
V.B, = 0, (3.23)
vV.E = 2. (3.24)
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Assuming that By = V x Ay, so that Equation (3.23) is satisfied, gives the linearised form of

Ampere’s law (Equation (3.21)) as
V2A1 = —Hoj,

by using the vector identity
Vx(VxA)=V(V-A) - VA,

and the gauge condition V - A; = 0.

The linearised form of Faraday’s law (Equation (3.22)) can be written as

VXEl = *%(VXAl),

B 0A,
= ~VXx (m) )

and removing the curl operator gives the perturbed electric field as

0A4
i
1 ot v¢17

where ¢, is a scalar potential.

The linearised Vlasov-Maxwell equations then reduce to the following set of equations:

df1s gs [ OA4 dfos
= |2y Al -
dt ms | Ot Gr4vx (VXA -5
VAL = —puoiy,
Vi = -,
€0

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
(3.32)

where the perturbed current density, j;, is given in terms of the perturbed distribution function,

fis, as
1= qu /Vflsd3v7
S
and the perturbed charge density, o1, is given by

o1 :qu/flsdgv-

(3.33)

(3.34)
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3.3 Vlasov Stability - Harris Sheet

The Vlasov stability of the Harris sheet equilibrium (1.92) has been investigated by a number of
authors. This equilibrium can give rise to the collisionless tearing mode, for example, which, as
described by Schindler (2007), can be obtained for perturbations which are independent of the
y-coordinate (the direction of the equilibrium current density), and for a symmetric perturbed
vector potential, A;. A central difficulty in any Vlasov stability analysis is the calculation of the
particle orbits, which, in general, cannot be carried out analytically without an approximation.
Coppi et al. (1966) proposed an approximation in which the orbits are assumed to be straight
lines for the region inside the current sheet, where the field is inhomogeneous, and helical orbits
in the region outside the current sheet, where the field is approximately constant. Hoh (1966)
approximated the Harris sheet field by a linear function, which gives rise to elliptic functions in
the particle orbit expressions. Dobrowolny (1968) used the straight line approximation of Coppi
et al. (1966), and calculated a dispersion relation for the instability, which agrees with the one
calculated by Hoh (1966).

Yamanaka (1978) considered perturbations independent of the direction along the magnetic field,
with the particle orbits given in terms of elliptic functions (using a similar approach to Hoh, 1966).
A wave equation was solved, and a discussion given of the possible existence of a low frequency
wave propagating in the direction of the equilibrium current density, which was found to depend
critically on the thickness of the current sheet. Analytical and numerical estimates were given of
the growth rate of the plasma wave. Instability was found to occur for an electron-ion temperature

ratio of greater than 0.75.

The straight line orbit approximation used by Coppi et al. (1966) and Dobrowolny (1968) has
also been used by Lapenta and Brackbill (1997) in an investigation of the drift-kink instability,
which is described as ’a long wavelength, electromagnetic instability of a magnetic neutral sheet
with a wave vector aligned along the direction of current flow’, which may be important for
magnetic reconnection in the Earth’s magnetotail. As in the work by Dobrowolny (1968), two-
dimensional perturbations were considered, but were chosen to be independent of the magnetic
field direction, in order to pick out the required instability. It was found that the maximum growth
rate decreases with the ion-electron temperature ratio, T;/7,, and also with the drift velocity.
However, instability still occurs for high values of T; /7, and moderate drift velocities, conditions
which correspond to those in the magnetotail. The obtained growth rates agree to an extent with
previous simulation results, although at the realistic mass ratio m;/m. = 1836, a sausage mode
structure was found, which does not agree with the kink mode type structure found in simulations
for smaller mass ratios. The analysis by Lapenta and Brackbill (1997) is similar in some sense to
that of Yamanaka (1978), but the instability was found to occur for magnetotail conditions, which

was not found by Yamanaka (1978).
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A study of the drift-kink instability has also been carried out by Daughton (1998), in which it is
remarked that a number of the analytical approximations made by Lapenta and Brackbill (1997),
which are appropriate for the collisionless tearing mode, are not valid for the drift-kink instability,
due to the time scales involved. In this approach, therefore, the particle orbits were calculated
numerically, by taking advantage of their periodicity. Electrostatic effects were also considered,
which were not taken into account by Lapenta and Brackbill (1997). The resulting differential
equations were solved by using a second order central differencing scheme. The trend of de-
creasing growth rate with increasing ion-electron temperature ratio was also found in this work,
in agreement with Lapenta and Brackbill (1997). The simulations were only carried out for non-

physical mass ratios, however, due to numerical restrictions.

In another paper by Daughton (1999), the drift-kink instability has again been discussed, in addi-
tion to the collisionless tearing mode for the Harris sheet. The exact particle orbits were calculated
numerically using the same method as Daughton (1998), but in this case, a more efficient method
for solving the differential equations was used, which involves expressing the unknowns (A; and
¢) in terms of sums of Hermite functions (e.g. Morse and Feshbach, 1953). This method allows
results to be obtained for a physical mass ratio, unlike the central differencing method used in the
earlier paper (Daughton, 1998). For the collisionless tearing mode, it was found that the results
agree with previous analytical results, and the same conclusion applies to the drift-kink instability,
although this method shows a reduced growth rate with increasing mass ratio, contradicting what

was found in the earlier paper (Daughton, 1998).

Silin et al. (2002) considered general three-dimensional perturbations, and solved Ampere’s law
by assuming the perturbation wavelength to be large compared with the current sheet thickness,
such that the current density can be approximated by a delta function. This approach allows
Ampere’s law to be written as a set of algebraic equations instead of differential equaions, which
can be solved numerically for the eigenvalues w. Three different modes were then discussed,
depending on the choice of perturbation - the collisionless tearing mode, sausage modes, and
obliquely propagating modes. For the collisionless tearing mode, it was found that the growth rate

increases as the sheet thickness is increased.

Camporeale et al. (2006) have discussed a method for solving the Vlasov stability problem for the
Harris sheet equilibrium. In this method, the velocity dependence of the distribution functions are
given in terms of series of Hermite polynomials. While beyond the scope of the work in this thesis,
it would be interesting to investigate the use of this method for the force-free Harris sheet in future
work, as it would potentially allow for an investigation into the types of microinstabilities which
may occur from the multi-peaked distribution function (Harrison and Neukirch, 2009b; Neukirch,
Wilson, and Harrison, 2009).

In order to illustrate the type of calculation which will be used in the next section (and in Chapter
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4) to investigate the stability of the Harrison and Neukirch (2009b) equilibrium, the calculations
by Lapenta and Brackbill (1997) and Silin et al. (2002) will now be discussed in more detail. Al-
though this will not exactly match the calculation for the force-free Harris sheet (slightly different

approximations will be used), much of the procedure will be the same.

Following the analysis by Lapenta and Brackbill (1997), consider firstly the Harris sheet distribu-
tion function (1.92), which can be written in terms of velocity as

nos(2 Bsm
fs,Harris = 87()3 exp |:_ 82 - (Ug2c + (Uy - uys)2 + "Ug):| y (335)
(\/ 27‘(‘1},5}175)
where w5 is a constant drift velocity in the y-direction, and
_ . Bsms 2
nOs('z) =Nps€Xp | — 9 Uy s + ﬁsuySQSAy(z) > (3.36)

with A, (z) given by the y-component of Equation (1.88). Note that Lapenta and Brackbill (1997)
use x as the independent variable instead of z, but z will be used here since it has been used in the

calculations throughout this thesis. The gradient of fs with respect to the velocity, v, is given by

ast
ov

= ﬁsms (_V + uyséy) f087 (3.37)

where €, is a unit vector in the y-direction. This expression can then be substituted into the general

linearised Vlasov equation (3.30) to give

dfls
dt

15):\ R
= —qs0s [_Btl +vx (Vx Al)} [V uysey] fos, (3.38)

where it is assumed that A; = (0, Ay, A1) and ¢1 = 0. Equation (3.38) can then be integrated

to give

t 0A 0A
J1s = qsBs fos [uysAly - / <UZ,/ a;y + uysU?/J 8y1/y> dt/:| , (3.39)

where the integration is carried out over the unperturbed particle orbits. In Equation (3.39),
the primed quantities are quantities which depend on the unperturbed orbit. Considering two-

dimensional perturbations only, and assuming the following harmonic dependence,

Ary(y,z,t) = Ary(z)exp (—iwt + iky), (3.40)
fis(y, 2, t,¥) = fis(2,v) exp (—iwt +iky), (3.41)
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gives an expression for the z-dependent part of the perturbed distribution function as

fls(% V) = qsPsfos

uysAly

t —

+i(w — kuys) / v, A1y (2') exp [—iw(t’ —t) +ik(y —y)] dt'|. (3.42)
—0o0

At this point, it is assumed that flly (z') remains constant along the particle orbits, so that it can

be taken outside of the orbit integral. It is argued by Daughton (1998) that this is an invalid

assumption to make for the drift-kink instability, due to the time scales involved, though it is valid

for the collisionless tearing mode. This then gives fi as

fls(% V) = qsPsfos

uysAly

t
+i(w — kuys)Aly/ v, €Xp [—iw(t' —t) +ik(y —y)] dt’|. (3.43)

— 00

It should also be noted that, in Section 3.4, two-dimensional perturbations independent of y will
be considered (in a similar way to the analysis of Dobrowolny, 1968), which is different from that
just described, but this calculation has been included only to give an illustration of the analytical
method which will be used, with less attention being devoted to the physical meaning of the

results.

For the next stage of the analysis, an expression for the particle orbits is required. In order to make
analytical progress, Lapenta and Brackbill (1997) approximated the particle orbits by straight
lines, as suggested by Coppi et al. (1966) and used by Dobrowolny (1968), as well as, for example,
Silin et al. (2002). According to Dobrowolny (1968), the assumption of straight line orbits gives
good results if it is assumed that the time integral in Equation (3.43) vanishes when z > /5L,
where 7, is the gyroradius of particle species s (see also Coppi et al., 1966). Alternatively, the
exact orbits could be calculated numerically (e.g. Daughton, 1998, 1999), or by using elliptic
integrals (e.g. Hoh, 1966; Yamanaka, 1978).

Lapenta and Brackbill (1997) assume that
Y —y =yt 1), (3.44)

where the velocity in the y-direction, v, is assumed to be constant. Equation (3.44) is just the
equation of straight line motion at a constant velocity. The time integral in Equation (3.43) can be

evaluated by introducing the integration variable 7 = ' — ¢, which gives the final expression for
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the perturbed distribution function as

= w—kuys \ +
fls = QSﬁSfOS <uys - Uyy> Aly- (3.45)

w — kv,

The perturbed current density, j;, can be calculated from the perturbed distribution function (3.43)
through the definition

=>4 / v isd’v. (3.46)
S
The y-component, ji,, is given by

j o jly,adi + le if z S vV 7"3L7
ly = . .
Jly,adi if 2 > /1L,

where j1, 44 1S the adiabatic perturbed current density, which is the part of the perturbed current

(3.47)

density that does not depend on the time integral in Equation (3.43). Note that, in the geometry
considered here, the method used by Lapenta and Brackbill (1997) would involve assuming that

J1z vanishes, and then that j;, can be calculated by integrating the Lorentz gauge condition,

0j1y ~ Oj1z
oy 0z

o, (3.48)

once jiy is known. The adiabatic part of 71, is given by

2 Ayy
poL? cosh?(z/L)"

jly,adi = (349)

Inside the current sheet, the time integral in Equation (3.43) contributes to j1,, and this is reflected

in the term Jy,, given by

_ v2f08
iy = =AY q2Bs(w — kuys) / — 2 @By, (3.50)

w — kv,

The v,- and v,- integrations in Equation (3.50) are straightforward, and carrying these out gives

J1y as
Z Alyngs 25 (w — kuys>
V 27T’Uth s 5 kf

o) 2
X / Uiywexp [_5Sms (vy — uy3)2] dvy. (3.51)

,oovy—E 2

The remaining integral contains a singularity at v, = w/k, which can be dealt with by using the



3.3 Vlasov Stability - Harris Sheet 86

plasma dispersion function (see Appendix D). Using the substitution

_ Uy —Uys

Uy = —F=——, 3.52
Y ﬂvth,s ( .
and Equations (D.8) and (D.9) from Appendix D, gives Jy, as
A w — kuys
Jiy = *% > 7i0s(2)d25s (ky>
S
_ _ 202 _
" (w kuys +2uys> (¥ kuys | fuysZ w — ktys (3.53)
k \/ﬁkvthﬁ Uth,s ﬂkvth,s

The next stage in the calculation is to substitute the perturbed current density into Ampere’s law,

which gives the following second order ODE for /_lly,

(3.54)

dQAIy . k2A1 _ j1y7adi + le if 2 < /1L,
dz? Y jly,adi if 2 > /rsL,

where j1, 44; and Jy, are given by Equations (3.49) and (3.53), respectively. This ODE is an
eigenvalue problem in Aly, where w is the eigenvalue, which can be complex. Jy, depends on w
in a nonlinear fashion, and so this equation must be solved numerically. This can be done using
a shooting method (Press et al., 1992). Note that, for the force-free Harris sheet, the perturbed
current density will have both an z- and y- component, arising from the two components of the
equilibrium current density, given by Equation (1.54). This means that Ampere’s law will take the

form of two coupled second order ODE:s.

A useful approximation for evaluating the stability, which has already been described briefly, is
one which has been used by Silin et al. (2002). It is assumed that the perturbation wavelength
is large compared to the sheet thickness, such that the current density can be approximated by a
delta function. Ampere’s law takes the form of a second order ODE in A, which is similar to that
found by Lapenta and Brackbill (1997), and there is also another second order ODE to be solved,

for the perturbed electrostatic potential, ¢1, which is assumed to be non-zero.

Following the analysis by Silin et al. (2002), the long wavelength assumption means that Ampere’s
law can be written as

d? 2\ 7
where A represents either Ay, flly or ¢1, and U (z) represents the right-hand sides of Ampere’s

law, which it is not necessary to show. Integrating Equation (3.55) across a layer of thickness 2¢
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then gives
€ dZA 9 € €
wdz —k Adz = U(z)d(z)dz. (3.56)

Since A is continuous, the second integral on the left-hand side vanishes as ¢ — 0. The first
integral gives the jump in the first derivative across the layer, and the integral on the right-hand

side is just equal to the function U evaluated at z = 0. Equation (3.56) then becomes

dA dA
—| ——| =U(0). 3.57
dz |+ dzl- (0) ( )

Equation (3.55) has solutions of the form

Az) = —UQ(,?)e"”', (3.58)

and so Equation (3.57) can be written as

a4
+ dz

dA

= — —2kA(0), (3.59)

This method, therefore, allows Ampere’s law to be transformed into a set of algebraic equations,
which can then be solved numerically by using a root finding algorithm such as the Newton Raph-

son method (e.g. Press et al., 1992).

3.4 Vlasov Stability - Force-Free Harris Sheet

In the present section, a stability analysis of the (Harrison and Neukirch, 2009b) equilibrium for
the force-free Harris sheet will be discussed. The same general procedure as used by, for example,
Lapenta and Brackbill (1997) (discussed in Section 3.3) will be used. Note, however, that due
to the different nature of the equilibria, different approximations will need to be used, since the
straight-line orbit approximation is not valid for the force-free Harris sheet, due to the presence of

the shear field in the y-direction.

3.4.1 The Perturbed Distribution Function

The distribution function (2.59) found by Harrison and Neukirch (2009b) can be written in terms

of the velocity components as

nos Bsmg
=t

fs =
(Varums)”

(%2: + Uz + U?) + /6smsuis

N | =
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2 _
X {C’( ) exp [Bsmstizs(Vy — Ugs)] + cos(Bsmstzsvy + T(2)) + bs | , (3.60)
z
where
C(z) = cosh?®(z/L), (3.61)
T(z) = 4tan'(e*/"), (3.62)
be = 2bexp (— b ;” u§> , (3.63)

and, as before, it is assumed that u,s = uys.

The first stage in the stability analysis, as with the Harris sheet case, is to calculate the perturbed

distribution function from the linearised Vlasov equation (3.30). Throughout the calculations in

the present chapter, it will be assumed that the scalar potential ¢; vanishes.

For the force-free Harris sheet, the components of 0 fys/0v are given by

8fOs 1 Nnos 2
8’Ux = _ﬂsmsvxfOS - iﬁsmsuxsm €xp (ﬁsmsuxs)
m
« exp [_ ,352 (02 + UZ + Ug)} sin(Bsmsuzsvy + T),
af()s 1 E
= —Dpsmsv + = 0smstys—F——
8’Uy ﬁs s nys Cﬁs slgs (\/ﬂvth,s)“?’
m
X €Xp |:_ 682 : (U:% + Ug2/ + Ug) + ﬁsmsuxsvy] )
0
8'];08 —Bsmsv; fos,
2

which can be written in vector notation as

d7fo no Bsm
gvs = —BsmsVfos + ﬁsmsuassm exp [— 52 . (Ug + 7{5 + Ug) Vv,
where
1 . 1
V = b exp(fsmsus,) sin(Bsmstgsvy + 1), ol exp(Bsmstgsvy), 0.

The z- and y- components of the expression

oA
_aTl +vx(VxA),

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)
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from Equation (3.30), can be written as

0A1 B 0A1, 0A1y 0A1, 0A1,
8t‘i‘V><(V><A1):|x = ot + vy o Vy ay Vy 92
_ 8A1x +u aAlac +u 8Ala: +u 8A1x
N ot Y oy 0z Y Ox
0A1,  OAL
oy Ox t s ox '’
0 0A1
= —(m—i—VV) A1z+v'877 (3.70)
and
OA; 0A1,  0Ay,  0Ay,  0AwL
A, A = - — Uz — Ux T
B +vx (Vx 1)L T Vi T Ve +wv By
(04, 0Ay, . 0Ay, Ay,
= < ot + Vg Oz + v, 9 +Uy ay
041,  9AL
Fvy 2y + Vg By
B 5 A,
= _<8t_|_v.v> Aly_}_v.aiy, (3.71)

Using Equations (3.68), (3.70) and (3.71) in Equation (3.30) gives the linearised Vlasov equation

for the distribution function (3.60) as

df1s OA
i; = _qS/BS [ <V ’ 1) fOs

ot

1 ugsn m
S exp | <0 0] 42+ B
th,s
. 0 OA
X sin(Bsmstzsve + 1) |:— <6t +v- V> Ayp +v- 81‘1:|
1 UzsT0s Bsmis 2 2 2
O Vo O [ 2 () Pty
)8

0A

0

To find the perturbed distribution function, f1¢, Equation (3.72) must be integrated over the unper-
turbed particle orbits, since they are the characteristic curves of the Vlasov equation (see Section
1.3.1). They can be calculated from the equilibrium magnetic field profile, which is not straight-
forward to do analytically without an approximation. In Section 3.4.2, such an approximation will

be discussed, and approximate particle orbits will be calculated.

Integrating Equation (3.72) in such a way, without expressing the particle orbits explicitly yet,
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gives

! oA
fis = —qsPs [fOs/_ <V/' 8t’1> dt’

1 UgrsTOs 2 . Bsms

_§m exp(fBsmsus,) €Xp [ 5

t
x sin(Bsmstasts + T)/ [ (aat, +v v) A +V' - %Al}

(vﬁ + UZ + vf)]

UxrsT0s exp(ﬂsmsuacsvy) |: ﬂs s :|
+ — + +
(V27mvgp, )3 C (03 v Ve
t 0 0A1
X /oo [ <8t’ +v V> Ay + v ay’} dt’], (3.73)

where the primes refer to quantities which are time dependent (they depend on the unperturbed
particle orbits). Note that the exponential and sine terms (which contain velocities) depend only on
constants of motion (either the particle energy, H, the z-component of the canonical momentum,
Dzs, Or the y-component of the canonical momentum, p,s) and so can be taken outside of the time

integral. Then, using the fact that

0 , d
o 4V .V = - (3.74)
gives
toT 9 OA1 ] t O0A
/—oo - <8t/ * V/ v) Alz * V/ ' 6$’1 dt, - —Alx * /—oo V, ‘ 6141 dt/’ (375)
and
toT 1 t
/ _ (aat/ + V/ . V) Aly + V/ . 88211 dt/ = _Aly =+ / V/ . 682/1 dt/7 (376)

which then gives the perturbed distribution function as

¢ A
fis = —qsPs [fOs/ <V, ) aat/1> dt’

1 UgsT0s 2 ﬁsms 2 2 2
3 (Wamag, P mtes) 0 | =S 04 4 )
t OA
X sin(Bsmstgsvy + 1) /Oo v . 893’1 dt

UgzsTOs exp(ﬁsmsuxsvy) exp |: ﬁsms

+
(V2mug, 5)3 ¢ 2

t OA4
x/oov’- oy dt'

<@+@+@ﬂ
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4 % UgrsNOs Bsms

2
ex msus.)exp | —
(Varug, ) O P ) p[ 2
X Sin(Bsmstgsvy + 1) A1x

(v2 + UZ + vf)]

UgzsTOs exp(ﬁsmsuxsvy) ﬁsms

(V 27T'Uth,s)3 ¢ P |: 2

(v2 + U; + vg)} Ayl (3.77)

It will now be assumed that the perturbed quantities are two-dimensional, and depend only on
x and z. Then, since the equilibrium depends only on z, it can be assumed that the perturbed

quantities have a harmonic dependence on x and ¢, which gives A; and fi as

Ai(z,2,t) = Aq(2)exp(—iwt + ikz), (3.78)
frs(z, 2, t,v) = fis(z, V) exp(—iwt + ikx). (3.79)

The derivatives from Equation (3.77) are then given by

OA ,
(%,1 = —iwAq, (3.80)
0A4 .
5 = kAL (3.81)
OA;

_ 82
5 — O (3.82)

which gives the perturbed distribution function as
fisexp(—iwt + ikz) = —qsf3 —iw fos — k_Uzstos exp(Bsmsu’,)
S sMs S 2 (\/ﬂvth’s)?’ sltsyg

Bsm
2

X exp [— (v + U; + fug)] sin(Bsmstgsvy + T))

t
X / (V' - Ay) exp(—iwt’ + ika')dt’

1 UgzsNOs ﬂsms 2 2 2 2
I L (Vs vy + 02) + Bt

X sin(Bsmstigsvy + T) A1, exp(—iwt + ikx)
UgzsTOs Aly . .
——————~ exp(—iwt + ikx)
(v 27Wth,8)3 c
. Bsms
2

X exp [ (v2 + ”2 +02) + ﬁsmsumvy} ] )

(3.83)

The exponential factor in Equation (3.83) can be taken over to the right-hand side, and then the
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time integral in the equation becomes

t
/ (v - Ay) exp(—iw(t' —t) + ik(x' — x))dt’. (3.84)

— 00

At this stage, it is convenient to introduce a new integration variable, 7 = t' — ¢, which satisfies

the initial conditions

 —x
Yy —y asT — 0 (' —t). (3.85)

2 —z
The time integral (3.84) then becomes
0 —
/ (V' - Ay) exp(—iwT + ika'(7))dT, (3.86)
— 0o

where z'(7) = 2/ — x. Finally, this gives the z-dependent part of the perturbed distribution

function as

_ _ ik ugsn Bsm
o= (-t Y e [P
th,s
0
X Sin(Bsmstizsvy + T)) / (V' - Aq) exp(—iwT + ik (1))dr
—o0
+1Mexp _ﬁsms(vg+02+vz)+ﬂm o2
2( /727["Uth7s)3 9 x Y z sTsUy g
X sin(Bsmstgsve + T) A1z (3.87)
Uz 1 Bsm -

Once the form of the particle orbits are known, the time integral in Equation (3.87) can be eval-
uated, which will give the final expression for the perturbed distribution function. It should
be noted, however, that the perturbed distribution function does not reveal anything about the
macroinstability by itself - such information can only be achieved by taking velocity moments,
and therefore it will only be necessary to use the orbit expressions when calculating the perturbed

density and perturbed current density.
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3.4.2 Approximate Particle Orbits

In the present section, approximate particle orbits will be calculated for the force-free Harris sheet,
which can then be used in the perturbed distribution function (3.87) to calculate the perturbed
density and perturbed current density. In the previous work on the Vlasov stability of the Harris
sheet, a number of authors (e.g. Dobrowolny, 1968; Lapenta and Brackbill, 1997; Silin et al.,
2002) have used a straight line approximation for the particle orbits, since it is not possible to
obtain exact analytical expressions. Such an approximation is, however, not valid for the force-
free Harris sheet, due to the presence of the shear field in the y-direction. Hence, an alternative
approximation is required. Using the fact that, for increasing z in either direction, By frps — 0,
and for decreasing z in either direction, B, ffss — 0, a reasonable approximation for the force-
free Harris sheet field is a field of the form

0, Byo,0), if |z| < L (inside sheet)
Bapproa: = { ( Y ) | ’ (388)

(sign(z)By0,0,0), if |z| > L (outside sheet).

where By and By are constants. Figure 3.1 shows the z-component of Bypror and By frhs
plotted against Z = z/L, for B9 = 1, and Figure 3.2 shows the y-component of B,., and
By trns plotted against Z = z/L, for Byg = 1.

2.5

0.0

-0.5

4]
z/L

Figure 3.1: Plot of the z-component of Byppro. (dashed line) and B, frps (solid line) against
z/L = z, for By = By = 1.

Such an approximation is useful, as it allows the particle orbits to be calculated in a straightforward
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4]
z/L

Figure 3.2: Plot of the y-component of B0, (dashed line) and By ffps (solid line) against
Z/L =z, for By = ByO =1.

way (e.g. Boyd and Sanderson, 2003) for a constant magnetic field in one coordinate direction.

The equation of motion for a particle moving in the magnetic field B0, 1s given by (using 7 as

the time variable)

NV _ sy op) (3.89)

dr mg

For the region z < L inside the sheet, the components of Equation (3.89) are given by

%% = —Q0., (3.90)
dvy
e A 3.91
dr ’ (3-91)
dv,
7 = Slyste (3.92)

where s = ¢sByo/ms is the gyrofrequency of particle species s, resulting from the constant

magnetic field Byg.

Integrating Equation (3.91) gives

Uy =7 (3.93)
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where v, is the velocity parallel to the direction of the magnetic field, which is constant. Integrat-

ing Equation (3.93) then gives
Yy = o7 + Yo, (3.94)

where 3 is a constant.
Equations (3.90) and (3.92) can be dealt with by defining x = 2z + ¢z such that

d? . d
dT’; n mw% = 0. (3.95)

This is a first order linear ordinary differential equation in x = dx/dr, and the solution is
X = X(0) exp(—ifdysT). (3.96)

Assuming x(0) = v exp(—1if) gives

dx

o = v exp[—i(QysT + 0)]

= vy cos(QysT + 0) —ivy sin(QysT + 6), (3.97)
and using the definition x = z + iz gives

vy = —uvysin(QyeT +6),
v, = v cos(QysT +0). (3.98)

The particle orbits are, hence, given by

o = 2t cos(QysT + 0) + g,
Qys

Yy = o+

J o= A sin(Qys7 + 0) + 2, (3.99)
Qys

and the velocities by

v, = —wvysin(QysT +6),
/
Uy = Y
v, = vy cos(QysT +0). (3.100)

The values of the constants of integration, x(),y;, and z{ in Equations (3.99) can be found by
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applying the initial conditions given in Equation (3.85). This gives

V1

Ty = T— cosf,

0 st

Yo = Y

4 = z— “Lsine, (3.101)
Ys

which then gives the particle orbits as

/ AN vl

r = cos(QysT +0) — cosf + z,
st ys

y = o+,

Y= L sin(Qer +0) — ~= sinf + 2. (3.102)
st st

The following initial conditions on the velocities are assumed,

U;(O) = Vg,

U;(O) = Uy

v, (0) = v, (3.103)
so that v, = —v sinf,v, = Y| and v, = v, cos#. The velocities (3.100) can then be expressed
as

U; = —v,8inQysT + vy cos Qy,T,

v; = vy,

v; = ;€08 QysT + vy sin 7, (3.104)

and so 2/(7) in the time integral (3.86) is given, for the region inside the sheet, by

(7)) = UL cos(QysT +6) — UL cosd
st ys
B vl v
Qys Qs
Uz Vg . Uz
= €08 QysT + —— sin Qs — —
ys ys st ys st
- ;;—Z(cos Qe — 1) + ;2’”” sin Q7. (3.105)
yYs ys

For the region 2z > L outside the sheet, the components of the equation of motion (3.89) are

Qo _ . (3.106)
dr
d
kT ST (3.107)

dr
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dv,,
dr

— 0., (3.108)

where 2,5 = ¢sByo/ms is the gyrofrequency of particle species s, resulting from the constant
magnetic field B,g. Equation (3.106) can be integrated to give v, = 1B and Equations (3.107)
and (3.108) can be dealt with by this time defining x = y + iz such that

d’x

.~ dx
=+ ZQME =0. (3.109)

Using a similar procedure as for the inner region, the particle orbits for the outer region are given

:E/(T) = UgT,
I _
Vy = U = Vg,
v; = vy €08 QT + v, 8in Qs T,
/ .
v, = —Uysin QT + v, cos QysT. (3.110)

It can be seen that the function 2’(7) is considerably simpler for the outer region than for the inner
region, which means that the calculations of the perturbed density and current density outside the
sheet will be simpler than those for inside the sheet. This will be illustrated in Sections 3.4.3 and
345.

3.4.3 The Perturbed Density

Knowledge of the perturbed distribution function, fl s, calculated in Section 3.4.1, is useful, since
it can be used to calculate macroscopic perturbed quantities such as the perturbed density and
perturbed current density, by taking velocity moments. Although knowledge of the perturbed
density is not essential for the stability analysis, it is calculated in the present section for illustrative
purposes. In addition, the calculation serves as a good exercise to prepare for the longer calculation

of the perturbed current density, since some of the integrals will be needed also for this calculation.

The perturbed density, n1s, is defined in terms of the perturbed distribution function, fls, as
nys = / frsd®v, (3.111)

and can be calculated by using the appropriate values of v’ and () (given by Equations (3.104)
and (3.105) for the region inside the sheet, and Equations (3.110) for the region outside the sheet).

The adiabatic part of the perturbed density, n1, 4, is the part of the perturbed density which does
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not contain the time integral (3.86), and is given by

_/BSmS
2

Msa = _lqﬁ _ UasM0s
s,a 2 S s(mvth’s)g

X sin(Bsmgtysvy + T(z))d%

24 Mg
2y /exp [—6 m (v2 + vg + vz)} exp(ﬂsmsumvy)dgv]

exp(Bsmsu?,) Ay /exp [ (v2 + UZ + vg)}

C(z) 2
o qsBsuzsnos Bsmis 2 . = =
= e exp { =5, [sinh(z/L) A1z + A1y, (3.112)

where the identity

_, sinh(z/L)

sin(T'(z)) = C()ST(z/L)’

(3.113)
has been used (see Appendix A for the derivation), and the velocity integrals used are detailed in
Appendix E. The expression (3.112) is, of course, the same for inside and outside of the sheet,

since it does not depend upon the particle orbits.

3.4.3.1 Perturbed Density Inside the Sheet

To calculate the perturbed density for the region inside the sheet, 715 ;1,, the relevant equations for
the particle orbits (Equations (3.104) and (3.105)) can be substituted into the time integral (3.86),
which becomes

0
/ (—v2 A1y sin QusT + vy A1y cos Qs + vy Ary) exp[X (vg, vs, T)]dT, (3.114)
— 0o
where
_ ik tkvy .
X (Vg, vz, T) = —iwT + ——(cos QysT — 1)v, + —— sin Q7. (3.115)
Qys Qys

This gives the perturbed density inside the sheet as,

iw / fosd®v

0
X / (—vzf_hx sin Q7 + vy Aq, cOS QysT + vyf_lly) exp[X (vg, vy, T)|dT

Nisin = nls,a+Qs/85

— 00
ik UgzsNos

+————¢€x msu?
2 (\/ﬂvth,s)S p(ﬁs ° IS)

m
X /exp [— &2 & (vi + vz + vg)] sin(Bsmstgsvy + T)d3v
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0 - - -
X / (—v,sin QT A1y + vy cos QysT A1z + vy Ary)
(o)
X exp[X (vg, vy, 7)|dT |, (3.116)

where n14, 1s the adiabatic part of the perturbed density, given by Equation (3.112). The time

and velocity integrations in Equation (3.116) can be interchanged, for convenience, since v, vy

and v, do not depend on time (they are the initial values of v/, v’y and v}, as given by Equation

(3.103)). The expression for 11, i, then becomes

Nisin = nls,a""Qsﬁs
—00

0
—i—z’wAlr/ oS stTdT/Uxf()s exp(X (vg, v, 7))dP0

— 00

0
+iWA1y / dr / 'ny()s eXp(X (Uxa Vz, T))dg’l)
0

ik ugsnos 2\ 7 / .
—— X msus.)A sin Q,,7dT
2 (Voo P i S

X /vz exp [—ﬁsms (v2 +vp + vg)}

2
X sin(Bsmstzsvy + 1) exp(X (vy, vy, T))d3v
ik ugsnos 0

+———"ex msu’.)A / cos s TdT
92 (\/%’Uthﬁ)g p(ﬂs s xs) 1x - Ys

X /vf,j exp [— BS;nS (v2 + vi + vg)}

X Sin(Bsmstgsvs + T(2)) exp(X (vg, v, T))d3v,

where it should be noted that the integral

oo
/ exp [— 53;7% (U?E + vg + vg)] sin(Bsmstgsvy + T)dgv
—00

0
X / Uyﬁly eXp[X(ny Uz, T)]dT’

— 00

0
— iwfilx/ sin strdT/vzfos exp(X(vx,vZ,T))d?’v

(3.117)

(3.118)

in Equation (3.116) vanishes due to the v,-integration (the integrand is odd in v, and the integra-

tion is carried out from —oo to co). At this stage, it has been assumed that the perturbed vector

potential remains constant along particle orbits, and so can be taken outside of the integration.

This assumption will be used throughout the calculations in the remainder of the present chapter.
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The expression for 11 ;, can also be simplified further, by writing

1 k2 1 k2

_ m@(cos Qysm — 1)2 _ ngs sin? QysT = K(cos QysT — 1), 3.119)
and
1k 5 1 E o 2
_mg—gs(cos QysT — 1)% — S <st sin Q7 F 5smsum>
k
= —K,— 5s;ns Uis + K cos stT + Q—ysuzs sin Q7
= —K,— 55;715 U?cs + A cos(QysT £ ), (3.120)
where
1 K
Ks = 5o oz (3.121)
’ Bsms Q%S
k K
A = & : . 3.122
’ st Uas /8.s7ns7 ( )
1 k
as = tan”l |-z —o . 3.123
’ |: ﬁsmsuzs st:| ( )

The velocity integrations can be carried out by using some of the integrals listed in Appendix E.
The expression obtained is lengthy, but a number of terms cancel with each other. Equation (3.117)
contains six separate terms. After carrying out the velocity integrations, the first and second terms

both contain the time integrals

0
/ sin Q7 cos Q7 exp (—iwT 4+ K cos Q7) dT, (3.124)
0
/ sin Q7 cos Q1 exp(—iwT + Ag cos(Q1 — ))dT, (3.125)
and
0
/ sin Q7 cos Q71 exp(—iwT + Ag cos(Q7 + «))dr (3.126)

which drop out due to positive and negative factors outside the integrals. The integrals (3.125) and
(3.126) are also present within the fourth and fifth terms of Equation (3.117), but with different
factors in front of the integrals than in the first and second terms. These integrals also drop out.
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The expression for 11 ;, then becomes

q Bsm
Nisin = MNlsa T minOs exXp |: 82 SU?ES - K5:|
S
i _ 0
X CwﬁsmsumAly/ exp[—iwT + K, cos Qys7|dT
—o0

0
—Aj,— wh +b / sin Q7 exp[—iwT + K cos Qys7]dT
Qys C’ e
Alz . . .
—T[(w — ikugs) cos T + (iw + kugs) sin T

o0

k 0
X <Q / sin Q7 exp(—iwT + Ag cos(QysT — a))dT
s

—00

0
+BsMstys / c0os QysT exp(—iwT + Ag cos(QysT — as))d7'>

Aig
—Tl[(w + ikugs) cos T + (—iw + kugs) sin T

k 0
X (Q / sin Q7 exp(—iwT + Ag cos(QysT + ) )dT
ys

—00

0
—BsMglzs / €08 Qs T exp(—iwT + Ag cos(QysT + as))d7>] , (3.127)

—0o0
where it should be noted that some more velocity integrals vanish since they have an odd integrand.

The time integrations can be carried out by using some of the integrals from Appendix F, which

gives
s sMs M Upsw A > m (K
Ala: wk b
2 Qs C’
- I (K
szz—: |:(m+1)Q —w (m—l)st—w] ( )
A,
(@ = ihitgs) 00T + (i + kitys) sin 7]
k > 1 1
I, (A —ima _
<2Qy5 mz—:oo (As) exp(—smas;) |:(m + I)st —w (m — 1)st - w]

S . 1 1
X Z Iin(As) exp(—ima) [(m +1)Qys —w + (m —1)Qys — w} )
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Avp
+Tl[(w + ikugs) cos T + (—iw + kugs) sin T

E , 1 1
<2ﬂys > (A esplimes) | i~ o

m=—0oQ

1
_7ﬁsmsu:rs

1 1
xmzoo ) exp(ima) {(m—i—l)ﬁys—w—i_ (m—l)st—w]>]'
(3.128)

In Appendix G, it is shown that the second sum in Equation (3.128) can be written as

o0

1 1 Ky)
Z Ln(Ks) {(m—i- 1)Qys —w B (m — 1)y, —w} K, Z mst — G129

m=—0Q0

Using this result, together with the trigonometric expressions

[(w—ikugs) cos T + (iw + kugs) sin T exp(—imas)
+[(w + tkugs) cos T + (—iw + kuys) sin T] exp(ima)
= 2[w cos(T — may) + kugs sin(T — may)], (3.130)

and

[(w— ikugs) cos T + (iw + kugs) sin T exp(—imas)
—[(w + itkugs) cos T + (—iw + kugs) sin T exp(imavs)
= —2i[kuys cos(T — mas) — wsin(T — mag)], (3.131)

gives nis in, finally, as

Msin = Nisa + ¢sPsNos €XP (ﬁs;ns Uy — K3> uﬂlcyum i ”m
+A1xwzys <é + b) i m
iﬂf;;s le(s mioo(w cos(T — mas) + kugs sin(T — masg))
X [(m n 1)1st —w (m — 1)1st — w] I (As)
+ium[11$ i (kugs cos(T — may) — wsin(T — mag))

m=—0o0
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1 1

% (m + 1)st — W + (m — 1)st _ w:| Im(As) .

(3.132)

Note that the other Bessel function sum expressions cannot be simplified in a straightforward way,

since the sum index, m, appears in the sine and cosine terms.

3.4.3.2 Perturbed Density Outside the Sheet

For the region outside the current sheet, the particle orbits are given by Equation (3.110), which

gives the time integral (3.86) as

0
/ [vp A1z + (vy €08 QusT + v, 8in QusT) Ay ] exp[—iwT + ikv,T]dT. (3.133)
— o

The perturbed density outside the sheet, 7215 out, can then be calculated from the definition (3.111),
and is given by

Nisout = nls,a"i'QSﬂs [iw/f()sdgv

0
X / [Vp A1z + (vy €os QusT + v, sin QxST)Aly] exp(—iwT + ikv,T)dr

— 00
1k UzsNos 9
+———"—ex msl
2 (\/ﬁ’l}th“s)g p(IBS S xs)

X /exp [— ﬁs;ns (1}323 + vg + vg)] sin(Bsmstysvy + T)d3v (3.134)

0

X / [Vp A1z + (vy cos QgsT + v, sin QIST)/_hy] exp(—iwT + ikvyT)dT.
—00

As in the calculation of the perturbed density inside the sheet (Section 3.4.3.1), the time and

velocity integrations can be interchanged, since v,, vy and v, do not depend on time. This gives

0
Nis,out = Gss iw/_llx/ exp(—in)dT/vxfgs exp(z’kaT)d%

—0o0

0
—l—iwﬁly/ COS stTexp(—in)dT/vyfgs exp(ik:va)d%

—0o0
ik uzsnos 2\ 71 /0 .
+——————ex meus.)A exp(—iwT)dT
2 (\/%Uthﬂg)?’ p(/BS S zs) 1z e p( )

X /vx exp [— ﬂs;ns (vi + UZ + vg) + ik‘vﬂ] sin(Bsmstgsvy + T)d3v

+N1s,a, (3.135)
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where it should be noted that the velocity integrals

o0
/ 02 fos exp(ikv,T)dv, (3.136)
— 00
and
e ﬁsms 2 2 2 . . 3
vy exp | = (vz + v, + vz) + ikv,T | sin(Bsmsugsvy + T)d v, (3.137)
—o0

vanish as a result of the v.- and vy-integrations, respectively.

Carrying out the velocity integrations by using some of the integrals in Appendix E then gives
_ Bsms 2
Nis,out = Nls,a — qsB3snps xXp 9 Uys

kalm l 4 b
ﬂsms C
0 k‘27'2
X /_ooTexp (—in — 268m5> dr

iWlgs A 0 k272
—M/ c0os s T eXp (—in— dr

¢ —0o 28sms
A,
4ﬁ1 h [(w— ikugs) cos T + (iw + kugs) sin T
sTTs
0 2.2
—1 —k xs!T — d
x/oorexp< Wt UgsT 2ﬁsms) T
Almums . . .
1 [(w— ikugs) cos T 4 (iw + kugs) sin T
0 2,2
X / exp | —twT — kugsT — s dr
—00 2637715
Alazk . . .
+45 m [(w + zkums) cosT + (—zw + kum) sin T]
0 2,2
ket
—1 k xsT — d
x/_oorexp< WWT + KUgsT 25sms) T
Alxuxs . . .
) [(w+ ikugs) cosT + (—iw + kugs) sin T
0 12,2
x / exXp <_iWT + KugsT — 23 > dr|, (3.138)
—00 s s

where it should also be noted that some more velocity integrals vanish since they have an odd

integrand.

The time integrals can be carried out by using some of the integrals from Appendix F, which gives

the final expression for 115 out as

_ Bsms 2
Nisout = nls,a_QS/BSHOSeXp 9 Uy g
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w o+ 1 w
x| —=Ap (=+b) 2 | ———
2k (C > (ﬂyk\vth,s>

Aig — 1k
+ (w—ikugs) cosT + (iw + kugs)sinT
8k [ ] \[’klvths
Ay . ) i w + tktys
+ W+ ikugs) cosT + (—iw + kuys)sinT) Z' | ——=
e Jos T+ ( )sinT] ( % k,%’s)
—EM[(w—iku )cos T + (iw + kugs) sin T
4 \/§|l€|vth’5 s s
w — tkugs
7 | LM
(\/§|k|vth,s>
+EM[(w+iku )cosT + (—iw + kugs) sin T
4 \/i“ﬁ)”l)th’s s s
7 w + tkugs
\/§|k|vth,s
1 w fllyum w— Qs w4+ Qs
—— A +Z| —— , (3.139)
2 \/§|k|vth,s C (\/§|klvth,s> <\/§‘k|vth,s>] ]

where Z is the plasma dispersion function, the properties of which are discussed further in Ap-

pendix D.

3.4.4 The Adiabatic Part of the Perturbed Current Density

Knowledge of the perturbed current density, j, is essential for the stability analysis, since it can be
substituted into the linearised form of Ampere’s law (Equation (3.21)) to determine the perturbed
fields, in addition to a dispersion relation for the instability. The perturbed current density can be
obtained from the perturbed distribution function (3.87) by using the definition (3.33).

The adiabatic part of the perturbed current density, j; ,, is the part of j; that does not contain the

time integral (3.86). The z-component of j, , is given by

UgzsTOs =

j1x7a’ = _7Zq§/65 mvh ) eXp(,BSmSU?SS)Ala;
th,s

X /vx exp [— 532 (02 + vg + vg)] sin(Bsmstzsvy + T)d>v

ﬁsms 2 2 A
:7 . 2 1) Ay, 3.140
Zno Bsqsuz, exp ( 5 Uas cosh?(z/L) 1 ( )




3.4 Vlasov Stability - Force-Free Harris Sheet 106

where Equation (E.13) from Appendix E has been used, together with the identity

2
cos(4tant ey =1 - — 3.141
( ) cosh?(z/L) ( )
which is derived in Appendix A.
The y-component of j, , is given by
. UgrsTO A1 ﬁ mg
Jya = quﬁs \/Tjrsvths) =2 [ vy exp [— 82 (V2 + vp 4 02) + Bemistgsvy | d*v
m Ay
- Znosqsumﬁs exp <532 : i) Fy (3.142)

where Equation (E.5) from Appendix E has been used. Note that the adiabatic current density is
the same for the regions inside and outside of the sheet, since it does not depend upon the particle

orbits.

As described by Schindler (2007), the adiabatic current density can be written in terms of the
equilibrium current density, jg, as
Ao

j1,==— A 3.143
Jl,a 8A0 17 ( )

where Ay and A; are the equilibrium and perturbed vector potentials, respectively. It was stated

in Section 1.4.2 that the components of j, can be written in terms of the pressure function, P, as

0P,,
0z ; 3.144
Joz = Ha- ( )
0P,
Jo (3.145)
Y 0A y
Using Equations (3.144) and (3.145) then gives the adiabatic current density as
0P, 0?P,
j Ay, -5 A15,0) . 3.146
Jl,a <8A0$ 1 8A a4 241y > ( )

A simple consistency check can be carried out by checking that Equation (3.146) gives the same
expressions for ji, , and jq, 4 as the ones given above in Equations (3.140) and (3.142). Starting
with the force-free Harris sheet distribution function (2.59) and substituting into Equation (1.82)

gives P, in terms of the microscopic parameters of the equilibrium as

Puln dy) = 3 e ( )
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X [exp(ﬂsumquy) + %cos(,@sumqum) + b} i (3.147)

The second partial derivatives of P, with respect to A, and A, are then given by

82-Pzz 1 2 2 /Bsms 2 2

_ 1 St 2 V(2 1), 3.148
9A2 2;”05“ e eXp( 2 ><cosh2(z/L) > G148
aQPzz 2 2 ﬁsms 2 1

- S, q2 2 . 3.149
ox, T 2 o (H >cosh2<z/L> G189

It is clear, therefore, that the expressions (3.140) and (3.142) calculated for jq, , and j1, , are the

correct ones.

The adiabatic part of the perturbed current density can also be written in terms of the macroscopic

parameters of the equilibrium as

1 -
e = — 1— A,
T M0L2< coshQ(z/L)> t
2 1 -
Ay,
poL? cosh?(z/L) e

(3.150)

Jiya (3.151)
by starting with the macroscopic form of P.., given by Equation (2.50). To show that everything
is consistent, these expressions for j1, , and j14,, can be shown to be equivalent to the expressions
in terms of microscopic parameters. The expressions (3.140) and (3.142) were calculated directly
from the perturbed distribution function, and were shown to be equivalent to those obtained by
starting with the microscopic form of P,., given by Equation (3.147). As was shown in Section
2.4, howeyver, this expression can be simplified by using the assumption of strict charge neutrality
(as used by Channell, 1976). Listed again for reference, an expression for P, ., which is symmetric

in electron and ion parameters, is given by

P, — Bt B [1608(2AI)+6XP <2AAy>+b]7 (3.152)

=n, —
8.8 |2 A 0

where Ag and L are given by

2(5@ + ﬁz)

Ao efe ity — tyel|’ (3.153)
_ 2(56 + ﬁz) 1/2
b= |:/’L06253ﬁin0(uyi - uye)Q] ’ (3.154)

respectively.

Differentiating Equation (3.152) twice with respect to A, and using the fact that cos(24,/A4p) =
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1 —2/cosh?(z/L), gives

82Pz2 _ Be + /B’L 2 B #

0A2 B o BeBi fT% (1 COShQ(z/L)) (3.155)
_ _n0€2/86/6i(uyi — Uye)? < B 2)
N 2(8e + i) ! cosh?(z/L) (3.156)

1 2
T pol? <1 a coshz(z/L)> ’ G157

which shows that the macroscopic expression (3.150) for ji, 4 is equivalent to the microscopic

expressions given by Equation (3.140), in addition to the z-component of Equation (3.146).

Differentiating Equation (3.152) twice with respect to A,;, and using the fact that exp(2A4,/Ao) =
1/ cosh?(z/L), gives

82Pzz ﬂe + ﬂz 4
= 3.158
A2 "o BeBi Al cosh?(z/L) ( )
2 2

nope Beﬂi(uyi - uye)
= 3.159
Be + i G159

2 1

= 3.160
poL? cosh?(z/L)’ . )

which shows that the macroscopic expression (3.151) for ji4,, is equivalent to the microscopic

expressions given by Equation (3.142), in addition to the y-component of Equation (3.146).

3.4.5 The Perturbed Current Density Inside the Sheet
3.4.5.1 z-component of the Perturbed Current Density Inside the Sheet

The z-component of the perturbed current density inside the sheet is given by
Jrain = qu/vxflsd%, (3.161)
S

using the appropriate expressions for the particle orbits (Equations (3.104) and (3.105)). As in the
calculation of the density inside the sheet, the time integral in the perturbed distribution function
is given by Equation (3.114). Swapping the velocity and time integrations as before, and using the

fact that the velocity integral

(o)
/ Vg Uy €XP {— 55;”3 (vfc + ’ug + vz) + X (g, vy, T) | sin(Bsmstizpsvy + T)d3v, (3.162)

—0o0
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vanishes, gives

0
Jlain = — quﬁs iwAlw/ sin QySTdT/UxUZfOS exp(X (vg, v, T))d3v
S

—0o0

0
—iwf_llx/ COSQySTdT/U?Uf()s exp(X(vx,vZ,T))d?’v

—00

0
—iw[lly / dr / U;,;nyos exp(X (vg, vz, T))d3v
0

ik UgzsNOs 9\ T / ]
2 (Sorm, )3 A Qys7d
+ 5 (\/%Uth,s)‘g exp(Bsmsurg) A1y - sin Qys7dr

m .
X /Ux’Uz exp [—ﬁss(vi + UZ + vg)} sin(Bsmstgsve + T) exp(X (vg, v, 7))d>v

2
ik UgzsN0os (ﬁ 9 )A /0 0 J
——— ———— €X mgsu COS TAT
9 (\/ﬂvth’s)g P PsMsUyg 1x . Ys

X /vg exp [— ﬁs;ns (v + US + vg)} sin(Bsmstigsve + T) exp(X (vg, v2, 7))d>v
+j1z,a; (3163)

where j1; 4 is the z-component of the adiabatic part of the perturbed density, given in terms of
microscopic parameters by Equation (3.140), or in terms of macroscopic parameters by Equation
(3.150).

The velocity integrations can be carried out by using some of the integrals from Appendix E.
Equation (3.163) contains six separate terms. After carrying out the velocity integrations, it can

be seen that the first and second terms both contain the time integral
0
/ sin® Qs cos QT exp|—iwT + K cos Qys7]dT, (3.164)
— 0o

which drops out due to the respective factors outside of the integrals (noting the definition (3.121)

of K). Combining like terms and using Equations (3.119) and (3.120) then gives j14 i, as

2 A 2
. _ 2 : q Bsms o iwAi, k 1
Jzin = Tns nops €Xp < 9 Uyps — Ks> [ - ﬁsms 02 70(2) +b

s $ ys

0
X / sin? QysT exp(—iwT + K cos Qys7)dT.

i Ak
iﬁ;ns o [(w — ikugs) cos T + (iw + kugs) sin T
0 k
X / sin Qys7(cos Qs — 1) <Q sin Q7 + ﬁsmsux5>
—00 ys

X exp[—iwT + A cos(QysT — o) |dT
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A,k
iﬁylns o [(w+ ikugs) cos T + (—iw + kugs) sin T
0 k
X / sin Q57 (cos Qs — 1) <Q sin Qg7 — ﬁsmsuxs>
—00 ys

X exp[—iwT + A cos(QysT + o) |dT

_ 1 0
+iwA, < + b> / 08 QysT exp|—iwT + K cos Qy7]dT

C(z) o
Ay k s 0
_bé( 1?)/ ; / sin Q7 exp[—iwT + K cos Qye7]dT
2) Qys J_ oo
iAlm . . .
+ [(w— ikugs) cos T + (iw + kugs) sin T

4

0 1 k 2
x/_oo cos ysT |1 — o <st sinstT-i-ﬁsmsum)

X exp|—iwT + A cos(QysT — o) ]dT

AL
! 41 (w4 ikugs) cos T + (—iw + Kugs) sin T

X /_OO cos s |1 — . <st sinstT—ﬁSmsum>

X exp[—iwT + A, cos(QysT + as)]dT]

+

+i1z,a (3.165)

where it should be noted that some more velocity integrals vanish since they have an odd integrand.
Equation (3.165) contains eight different terms. There are some integrals which cancel between

these terms. The second and sixth terms, when expanded out, both contain the integral
0
/ sin® QT cos QT exp[—iwT + Ag cos(QysT — ag)]dr, (3.166)
—0oQ

which drops out between the two terms, which can be seen by using the definition (3.121) of K.

Additionally, the third and seventh terms in Equation (3.165) both contain the integral

0
/ sin? QysT cos QT exp|—iwT + Ay cos(QysT + a)]dT, (3.167)

— 00

which also drops out between the two terms. After these extra simplifications, ji, iy is given by

iwfilx l + b
Bsms \ C

0
X (Ks / sin? Q57 exp(—iwT + K cos Qys7)dT

—0o0

Bsmg )
Ugs
2

jlx,in = - ZqzﬂsnOS €Xp |: - Ks:|
s
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0
—/ cos QysT exp(—iwT + K cos str)d7'>

Augs wk [°
5;,20 (“;ys /_OO sin Q7 exp(—iwT + K cos Qys7)dT
iA, k

_4[32777% st ((w - Z‘kuacs) cosT + (iw + kum) sin T)

k 0
X ( -0 / sin? Q57 exp[—iwT + A cos(QysT — as)|dr
ys J—oo

0
+BsMstys / sin Q57 cos QT exp[—iwT + A cos(QysT — o) |dT

—0o0

—00

0
—BsMislys / sin Q7 exp[—iwT + A cos(QysT — as)]d7'>

B iA, k
4537713 st

((w + ikugs) cosT + (—iw + kugs) sinT)

k 0
X ( -9 / sin? Qs 7 exp[—iwT + A cos(QysT + as)]dT
ys J—oo

0
—BsmstUys / sin Q7 cos QT exp[—iwT + A cos(QysT + o) |dT

—00

0

+BsMstys / sin Q7 exp[—iwT + A cos(QysT + ozs)]d7'>

_ iA_lx
4/88m8

0
X ((1 — Bemgu?,) / cos Qs T exp|—iwT + A cos(QysT — ag)]dr

—0o0

((w — tkugs) cos T + (iw + kugs)sinT)

2kuys [ ) _
e €08 Qys7 sin QT exp[—iwT + A cos(QysT — o) |dT
ys —00
ilelm . . .
“18m ((w + ikugs) cosT + (—iw + kugs) sinT)

0
X ((1 — Bemsu2,) / c0os Qs T exp|—iwT + A cos(QysT + ag)]dT

— 00

2k 0
+f;::$ / 08 Qys7 sin Qs exp[—iwT + A cos(§ysT + as)kﬁ) ]

+jla:,a- (3168)

—0o0

The time integrations can then be carried out by using some of the integrals from Appendix F.

Equations (G.7), (G.10) and (G.28) from Appendix G can also be used to simplify some of the
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resulting sums over Bessel functions. In particular, the following time integrals

0
/ sin® Q7 exp[—iwT + K cos Q7]dT, (3.169)
o
and
0
/ c0os QysT exp|—iwT + K cos Qy7]dT, (3.170)
—o0o

in Equation (3.168) both give rise to the Bessel function sum

o0

Z M7 (3.171)

m&lys — w
m=—00 ys

which drops out (note, however, that the integral (3.169) contains additional terms which do not

cancel). After noting these simplifications, j14 4, is given by

wf_llyums Qys i mly, (Ky)
C k S mys — w

. . Bsm
JNzin = Jlza T ngﬁsnOS €xp ( 82 Sugzcs — K

02 = m2L,(K)
Ay b (= mhm ()
+wA; 2 <C+b> ZOO MmOy —w

A (K
4/85ms 2

> 1 1 2
I,(A _
% Z (4) [(m—i—Q)st—w—i_(m—Q)st—w mQyS—w]

m=—00

—00

X [wcos(T — mavs) + kugssin(T — may)]
ktgs ~ 1 1
+ s Im A _
Qys m;m (4) [(m +1)Qys —w  (m—1)Qys — w]

X[wsin(T — mag) — kugs cos(T — mag)]

[e.9]

1 1
+(Bemgsuz, —1) Y fm(A)[(m+1)9ys—w+(m—1>9ys—w]

m=—0oQ

X[wcos(T — mas) + kugs sin(T — ma)]

kg 1 1
20, _Z In(A) [(m—i—Q)st—w (= 2)Qy, —w]
X[wsin(T — mas) — kugs cos(T — mo@})] , (3.172)

where Equations (3.130) and (3.131) have also been used. Note that there is not an obvious way to
simplify the terms with a dependence on cos(7" — ma) and sin(7" — ma), and so the sums above

are left as they are.
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Finally, the expression for ji; i, can be written in the form
jl:p,in = Cl(zywak)[llx + 02(27“)7]{:)/111/7 (3173)

where the coefficients C(z,w, k) and Ca(z, w, k) are given by
) (e )
C ’ ’k = 35 sPsUgpsds © Ugs — 7 1
1(z,w, k) Znoﬂ q? Xp< 5 o2 (/L)
+ Z qSﬁSnOS exXp <652 Uzs — KS>

0, (1 o~ mP L (K
o | Z m=I (Ks)

k2 \C(2) S mQy —w

1
( - §K8(w cos T + kugssinT)

y i 1 N 1 2
—~ Lm+2)Qs—w  (m=2)Qys—w  my —w
X Iy (As) cos(mas)

1
—§Ks(w sinT — kugs cosT)

X Z + : - 2
— m—|—2Q —w (M=2)Qys—w My, —w

xIm(As) sin(mas)
ku$5 .
+ (wsinT — kugs cosT)
st
X Z - ! I, (Ag) cos(mas)
— m+1 —w (m—-1)Qys —w
k s .
o (weosT + kugssinT)
Qys
X i - ! — ! - I, (As) sin(ma)
S Lm D)y —w (= 1)Qys —w]

+(BsmsuZ, — 1)(wcos T + kg sin T)

o0 r 1 1 i
In(A
X m:Z_OO L(m+1)Qys —w + (m = 1), —w m(As) cos(maoy)

+(BsmsuZ, — 1)(wsinT — kuys cos T)

=T 1 1 T ,
X Z (m+ 1)y — + (m = 1), —w I, (As) sin(ma)

m=—oo -

n kg
20y

*(wsin T — kugs cos T)
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1
- Im As s
8 Z [m+2 —w (m—Q)st—w] (As) cos(max,)
_ Ftas (weosT + kugssinT)
ys
X Z — L I, (As) sin(ma)
— m+2 —w (Mm—2)Qys —w ’
(3.174)
ﬂs s wustys Nt mIm(Ks)
S S - Ks T N7 N1 - . .1
02(Z7w k quﬁ Nos €xXp ( 9 s C(Z)k mg:oo mst W (3 75)

The expression (3.173) is linear in Ay, and flly, but the coefficients C; and C5 depend on z, w
and k in a nonlinear fashion. This form of ji, ;, will be used in Chaper 4, where Ampere’s law is

solved numerically.

3.4.5.2 y-component of the Perturbed Current Density Inside the Sheet
The y-component of the perturbed current density inside the sheet is given by
Jiyin = Y s / vy fred®v, (3.176)
5
where again Equations (3.104) and (3.105) must be used for the particle orbits inside the sheet.

Swapping the velocity and time integrations, and using the fact that the velocity integrals (3.162)

and

o0
/ Uy €Xp {— ﬁs;ns (U?E + U; + vz) + X (vg, vz, T):| sin(Bsmstigsve + T)d%v,  (3.177)

—0o0

vanish, gives

0
iw/_llz/ sin stTdT/’Uy’UZfQS eXp(X(Ux,UZ,T))dBU

—00

jly,in = jly,a - Z qgﬂs
s

0
—iwfllw/ COSQySTdT/vanyS eXp(X(Uz,Uzﬁ))dS”

—00

0
—’L-W/_lly / dr / szOS eXp(X(Uafv Vz, T))dgv

zk: UgsN0s

(\/77)7&/1 s)

X / ;exp [ Bsms (v2 + U; + vz)] sin(Bsmstgsvy + 1) exp(X (vg, vz, T))d%] , (3.178)

0

exp(ﬁsmsuis)Aly/ dr

—0o0

2
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where j1, 4 is the y-component of the adiabatic part of the perturbed density, given in terms of

microscopic parameters by Equation (3.142), or in terms of macroscopic parameters by Equation
(3.151).

Carrying out the velocity integrations by using some of the integrals from Appendix E, simplifying

by using Equation (3.119), and combining like terms then gives

2
. : q Bsm
Jlyin = Jlya T § W’LS Nos €Xp |: 52 suis - K5:|
p s

A k[0
_ Alztles W / sin Q7 exp(—iwT + Ky cos Qye7)dT
C ) o

+iWA1y l ﬁsmsu?gs +1)+0b
C

0
X / exp(—iwT + Ky cos Qys7)dT
—00

iA1y : : .
+—((w — itkugys) cos T + (iw + kugs)sinT')

0
k
X / exp(—iwT + K, cos QysT — B2 sin Qys)dT
o Qys
A1y , , :
+T((w + ikugs) cos T + (—iw + kugs)sinT')

0
X / exp(—iwT + K cos Q7 + % sin Qy7)dT, (3.179)

0 ys

where it should be noted that some more velocity integrals vanish since they have an odd integrand.

The time integrals can be evaluated by using some of the integrals from Appendix F, which gives

Jlys as

2
, 3 q Bsm
Jlyin = 77’; nos €Xp < 82 suis - Ks>
s

Alxﬁsmsuaﬁs Wst o mIm(Ks)
C k Z

s

—~ mllys —w

- (1 2 ZOO In(Ky)
ol (C (ﬂsmsum - 1) " b) N mlys — w
1. « , In(A)
+§A1y mg_oo(w cos(T — mos) + kugs sin(T — mas))m

+J1y,a, (3.180)

where Equation (G.7) from Appendix G has been used to simplify one of the resulting sums over
Bessel functions, and Equations (3.120), (3.130) and (3.131) have also been used to simplify the
expression.
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Finally, the expression for j1, i, can be written as
J1y.in = C3(z,w, k) A1y + Ca(z,w, k) A1y, (3.181)

where the coefficients C3(z,w, k) and Cy(z, w, k) are given by

9 Bsmis o Uz swys > ml, (Ky)
= S 2Buno, 2 - K, ) s N TEmlBe) 382
C3(z,w, k) s qz Bsnos €Xp < 5 U K > () 2 Qe —w ( )

—00

2,2
o nOquuszS Bsms 2
C4(Z’W7k) - E C(Z) exp( D) ums)

S

2
q Bsm
+ E njsnosexp< 32 Sui—[@)
S

w (C}(ﬁsmsuﬁs +1)+ b> i In(Ks)

(2) mlys — w

X

m=—0o0
[e.o]

+% [wcosT(2) + kugssinT(2)] Z

m=—0o0

2. In(A)sin masl

I, (A) cosmag
mys — w

—‘,—%[u) sin T(Z) - kuajs CcOs T(Z)] Z

m=—0Q0

3.183
melys —w ( )
Note that the coefficient C3(z,w, k) is equal to the coefficient C(z,w, k) from ji, i, given by
Equation (3.175).

As with the expression (3.173) for the z-component of the perturbed current density inside the
sheet, the expression (3.181) is linear in Ay, and f_lly, but the coefficients C's and C) are nonlinear
in z, w and k. This expression will also be used in the numerical solution of Ampere’s law,

discussed in Chapter 4.

3.4.6 The Perturbed Current Density Outside the Sheet

3.4.6.1 zx-component of the Perturbed Current Density Outside the Sheet

For the region z > L outside the current sheet, the particle orbits are given by the expressions in
Equation (3.110). Swapping the velocity and time integrations, and using the fact that the velocity
integrals

(o)
VypUqy €Xp | 1hkv,T — Bsms v2 4+ 02 + 02| sin BsMgpsVy + T d3v, (3.184)
Yy 2 T Yy z
— o
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/ VpUs €XP [ik‘vgﬂ - ﬁs;ns (vi + Uz + vg) sin(Bsmstgsvy + T)d3v, (3.185)
and
/ V20, fos exp(ikv,T)d3v, (3.186)

vanish, gives
) 0
Jlzout = Jlza t Z qsﬁs/ exp(—iwT)dT
s —00

X iw/_llx/vzfos exp(ik:vxT)d?’v

—I—iw/Ly cos(QysT) /vmvnyS eXP(ikaT)d3U

Zk;lzllm UgsNOs exp(ﬂ m ug )
2 (V2mug)3 T

X /vg exp <ikvm7 — %(Uﬁ + vg + vi)) sin(Bsmstigsvy + T(2))d3v | .
(3.187)

The velocity integrals can be carried out by using some of the integrals listed in Appendix E,
which gives

2
. : q Bsm
JNzout = Jlza Tt g *nos exp( S2 s“is)
— M

- 1 0 2,2 2,2
wA, (C’ + b> /_OO <1 - ;s;s) exp (in — 2[;377—7%3) dr
_wkum/_lly

0 272
S /oo 7 cos(QysT) €xp (—iwr - 25377%) dr

ith ﬁ m
+ 4 xT eXp < 82 S’LLiS)

X[(w — tkugs) cos T + (iw + kugs) sin T
0 2 2
x/ [1 (kT + Bsmsugs) ] exp [—in (kT + Bsmsugs) } ir

—00 Bsms 2/65 mS

7;;11 ﬁ m
+ 4zexp< 82 Suis>

X[(w + ikugs) cos T + (—iw + kugs) sin T

X
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» /0 [1 _ (k?’]’ — ﬂsmsuzs)2:| exp [—iWT _ (k’i' — ﬁsm5u$5)2:| dT],

Bsms 23smg
(3.188)

where it should be noted that some more velocity integrals vanish since they have an odd integrand.

Carrying out the time integrals by using some of the integrals in Appendix F then gives

. Bsm
Jzout = jlwa + Z 7”05 €Xp < 82 Sua:s

wAiy (1 ) w 1, w
)|t (Z gy |z -2 )22 |
\/§|k‘vth,5 C (\/i‘kh)th,s) 2 \/iyk‘vth,s

_wfhyum
4]4:01)?,178
- Q w+ Q
Z/ xS + Z/ s
(f“d%ﬁhs) (\/§|k|vth,s>
P2 ikugs) cos T + (iw + Kugs) sinT]

4
. 2 o 1 _ . _ .
" i(Bsmsui, )Z w —ikugs | ugs (v 1k
\[‘klvth s \/§|klvth,s kvth,s ﬂ’k‘vthﬁ

i — ikugs
2\[|klvth5 \f‘kwths

Ay .
+l I [(w + ikttgs) co8 T + (—iw + ktgs) sin T
" (ﬁsms Uy — 1) w + 1kt n Uss (W + thkugs
\f|]€|’0th s \/§|k|vth,s kthh,s \/ﬂk‘vthﬁ
i 1 w ~+tku
_L 7" ) ), (3.189)
2 V/2|k|vin,s (\/§|k|vth,s> )]

where Z is the plasma dispersion function (see Appendix D). This expression can be further
simplified, through the use of Equation (D.3) from Appendix D, which can be differentiated to

give
Z(¢) + %Z”(C) = —¢Z'(¢), (3.190)

giving rise to the expressions

w 1 w w w
|l — |+ | ——— | =— A4 , (3.191)
<\/§|k|vth,s) 2 (ﬁ’M%ﬁh,s) \/§|k‘vth,s ﬁ‘mvth,s
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and

i(BsmsuZ, — 1) Z(v F 1kt um w F ikugs
$ A
\@‘kwm,s \/§|k|vth,s th s \/>|k‘|vth s
i 1 g (v F ikuys
2 \/§|k|vth,s \/§|k|vth,s
) Us, w F ikuys wE tkugs ., [ wF ikugs
= Z + Z . (3.192)
V2[k[ s, [?h <\/§|k|vth,s) V2lklvmn,s \ V2lklvun,s

This then gives

jlx,out — Dl(Z,w, k)lelm + D2(Z7 w, k)Aly) (3193)

where the coefficients D1 (z,w, k) and Dy(z,w, k) are given by

Rom 2
Di(z,w, k) = = Zq?ﬂsnosum exp <ﬁ 5 is) (C — 1)

Bsms o\ | W (1 / w
—ZQsﬂs”OSeXp< 9 ) [2]92 <C+b) z <\/§|k3|vths>
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Uth,s . . .
+ ’ w — tkugs) cosT + (—iw + kugs)sinT
ol Jeos T+ )sin ]
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X s 7 )+ =7 s , (3.194)
[Uth s (\f‘k‘vth s ﬂ‘klvth,s \/ilk"uth,s
D k _ ﬁs S
2(Z7w7 ) - 4k0 quﬁsnﬂsuxs exp 2 g:s

(3.195)

o |z w— Qs n W+ Qs
\/§|k‘\vth,5 ﬂ|k|vth,s

3.4.6.2 y-component of the Perturbed Current Density Outside Sheet

The relevant particle orbits are again given by the expressions in Equation (3.110). Swapping the

velocity and time integrations, and using the fact that the velocity integrals (3.184),

/ vy fos exp(ikv, T)d>v, (3.196)

— 00
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and

oo
/ Uy €XP {ikvﬂ - 58;”‘9 (vg + vi + vg)] sin(Bsmstgsvy + T)d3v, (3.197)
—o

vanish, gives the y-component of j; outside the sheet as
) 0
jly,out = jly,a + Z qsﬁs / GXp(—iCUT)dT
s —0o0
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iwfhx/vxvyfos exp(ikva)d?’v
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— X msts,) cos(QueT)A
2 (V2muy, )3 D (Bamatizs) cos({2eam) Ay
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(3.198)

After carrying out the velocity integrations, again by using some of the integrals from Appendix
E, the expression becomes
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Whttps A1y /0 o < ) k272 ) P
- Texp | —iwT — T
C — o0 P 28sm
- 1
+iwAiy [C (ﬁsmsuis + 1) + b}

0
X / cos(ysT) exp

—oo
iily (ﬁsms ui

k2 2
—lWwT — 25sms> dr

—+

X[(w — tkugs) cos T + (iw + kuys) sin T

(4
X /0 cos(§2zsT) exp (—sz (k7 + ﬂsmgu%S)Q) dr
(—

00 2ﬂsms
A S S
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00 Qﬂsms

where it should be noted that some more velocity integrals vanish since they have an odd integrand.
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The time integrals can then be evaluated by using some of the integrals from Appendix F, which

gives Jiy out S
jly,out = D3(Z7 W, k)A_le + D4(Z7 W, k)Alya
where the coefficients D3(z,w, k) and Dy4(z, w, k) are given

D3(2)w7k) = ch quﬁsnOsuazs exp <632 = 2

s s
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" _Z w— Qs — kg ny w+ Qs — tktgs
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where Z is the plasma dispersion function (see Appendix D).

3.5 Summary

)

)

)

(3.200)

(3.201)

(3.202)

The present chapter has focused on Vlasov stability. The initial steps have been carried out for

a linear stability analysis of the equilibrium found by Harrison and Neukirch (2009b) for the

force-free Harris sheet. After linearising the Vlasov-Maxwell equations, the perturbed distribution

function was calculated by integrating the linearised Vlasov equation over the unperturbed particle

orbits, since these are the characteristic curves of the Vlasov equation. All quantities were assumed

to be independent of the y-coordinate, and to have a harmonic dependence on the z-coordinate

and time.
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In the calculation of the perturbed distribution function, the explicit expressions for the particle
orbits were not given, although the expression contains a time integral depending upon them. The
reasons for not giving the explicit expressions initially were twofold. Firstly, when calculating the
perturbed density and current density later in the chapter, it was convenient to swap the order of
integration and carry out the velocity integration first, thus the explicit particle orbits were used
at this particular stage. The second reason was to keep things general since, in order to calculate
the expressions for the particle orbits, it was necessary to use an approximation for the force-free
Harris sheet field. The straight-line approximation, which has been used by various authors for
the Harris sheet (e.g. Dobrowolny, 1968; Lapenta and Brackbill, 1997; Silin et al., 2002), is not
appropriate for the force-free Harris sheet, due to the presence of the shear field By f 5. Another
approximation was required, therefore, and the force-free Harris sheet field was approximated
by two separate regions of constant magnetic field: an inner region, where the field is in the y-
direction only, and an outer region, where the field is in the z-direction only. Although not ideal,
this is a reasonable approximation to use, due to the fact that By, s = Bo/ cosh(z/L) tends to
zero as z gets larger, and B, ffhs = Bo tanh(z/L) heads to a constant value, and as z approaches
zero from the positive and negative directions, By r¢ns becomes more significant, reaching its
maximum value at z = 0, whereas B, 7, gets less significant, vanishing at z = 0. It was then

straightforward to calculate approximate particle orbits.

The perturbed distribution function was then used together with the approximate particle orbit
expressions to calculate the perturbed density and current density. The perturbed density is not
required for the stability investigation, but was calculated for completeness, and also because its
calculation served as a good exercise to prepare for the longer calculation of the perturbed current
density. For the region inside the current sheet, the perturbed density and perturbed current density
expressions contain infinite sums of Bessel functions, which also include the eigenvalue w (though
not in the arguments of the Bessel functions). In the region outside the sheet, the expressions
contain plasma dispersion functions, with the eigenvalue w appearing in the arguments of the

functions.

In Chapter 4, an approximate numerical solution of Ampere’s law is given, in which it is assumed
that the perturbation wavelength is large compared with the current sheet thickness, such that the
current density can be approximated by a delta function (as used by Silin et al., 2002). The current
density then only needs to be evaluated at z = 0 (so only the expressions for ji; in and jiy ., Will
be needed), and Ampere’s law can be reduced to a set of coupled algebraic equations, which can

be solved to give various dispersion plots for the collisionless tearing mode.



Chapter 4

Numerical Investigation of Stability

4.1 Introduction

In Chapter 3, the calculations of the perturbed distribution function and, hence, the perturbed
current density, were carried out for the Harrison and Neukirch (2009b) equilibrium for the force-
free Harris sheet. In the present chapter, an approximate solution of Ampere’s law is discussed,
in which it is assumed that the perturbation wavelength is large compared with the current sheet
thickness, such that the current density can be approximated by a delta function (as used by Silin
et al., 2002). This simplifying approximation allows Ampere’s law, in the form of two coupled
second order ODE:s, to be reduced to two coupled algebraic equations, which can be solved nu-
merically via the Newton-Raphson method, for example, to give various dispersion plots for the
instability. In Section 4.2, the full form of Ampere’s law is given, and the approximate form is
discussed in Section 4.3. In Section 4.4, the results of the numerical investigation are discussed,

and several dispersion plots for the instability are given.

In Section 4.5, analytical solutions of Ampere’s law in the outer region are discussed, which
can be obtained by neglecting the plasma dispersion functions in Equations (3.193) and (3.200),
and therefore assuming that the perturbed current density in the outer region consists only of the
adiabatic part, given by Equations (3.140) and (3.142). Such solutions could be used when solving

Ampere’s law without the delta function approximation.

4.2 Ampere’s Law

After calculating the perturbed current density components, the next stage in the stability analysis

is to solve Ampere’s Law,
V x B1 = poji, 4.1

123
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to obtain dispersion plots for the instability. It was shown in Section 3.2 that Ampere’s law can be

written as
V2A1 = —pojy (4.2)

which can be written (using Equation (3.78)) as the following pair of coupled second order ODEs:

d?Aq,

2 kA1, = —pojies(Are, A1y, 2), 4.3)
d*A - S

KAy = —pojig(Are, Ay, 2), (44)

where

— Ci(z,w, k) A1y + Co(z,w, k) A1, if z < L (inside sheet) “5)
N = Di(z,w, k) A1z + Do(z,w, k) A1, if 2 > L (outside sheet) ~ .
o Ca(z,w) A1y + Cu(z,w) Ayy if z < L (inside sheet) 6)
M= Dy(z,w, k) A1 + Da(z,w, k) A1, if 2 > L (outside sheet) ’ '

with the coefficients C1, Co, Cy4, D1, Ds, D3 and D, given by Equations (3.174), (3.175), (3.183),
(3.194), (3.195), (3.201) and (3.202), respectively. The coefficients depend on z, the eigenvalue w,
and wavenumber k. To solve Equations (4.3) and (4.4), a numerical method such as the shooting
method (e.g. Stoer and Bulirsch, 1980; Press et al., 1992) is required to find the eigenvalues. This
would involve writing Ampere’s law as a set of ten coupled first order ODEs, since two additional
ODEs would be required to determine the eigenvalues (Stoer and Bulirsch, 1980). The shooting
method approach is beyond the scope of this thesis, however, and, in the next section, an alternative

method for approximating Ampere’s law is discussed.

4.3 Approximating Ampere’s Law

An approximate solution of Ampere’s law can be obtained via a method which has previously been
used by Silin et al. (2002) for the Harris sheet (see Section 3.3). The method involves assuming
that the perturbation wavelength is large compared with the sheet thickness, such that the current
density can be approximated by a delta function, which is only non-zero at z = 0. As discussed

previously in Section 3.3, the components of Ampere’s law become

<j; k2) A=U(2)d(2), 4.7)

where A represents either Ay, or flly, and U (z) represents the right-hand side expressions from

Equations (4.3) and (4.4) for the inner region, multiplied by an additional factor of the length
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scale L, in order to keep the delta function dimensionless (the dimension of the delta function is
the inverse dimension of its argument z, which is 1/L). Ampere’s law at z = 0 can be then written

as the following normalised system of algebraic equations,

- 2]2'14123(0) = —52-2/1001 (Oa W, k)Alx(O) - 52“002 (07 W, k)Aly (0)7 (48)
—2kA1,(0) = —02u0C2(0,w, k) A1(0) — 62 110C4(0,w, k) A1, (0), (4.9)

8= —, (4.10)

where wy,; is the ion plasma frequency, given by

2.\ 1/2
Wi = (e ”) , (4.11)

€0Mm;

(n; is given by Equation (2.77)) and c is the speed of light, which appears in the normalisation
from the definition

1
€00 = - (4.12)
The ion skin depth is the distance over which electromagnetic radiation can penetrate the plasma.

Altogether, the normalisation is as follows: all frequencies are normalised to the ion gyrofre-
quency, €),;, velocities to the ion thermal velocity, vy, ;, and lengths to the ion skin depth, J;, such
that

v = O, 4.13)
mg

Qye = EQW, 4.14)

Ugs = Uthilgs, 4.15)
k

k= = 4.16

5 (4.16)

The coefficients of A, and flly in Equations (4.8) and (4.9) are then given by

62upC1(0,w, k) = Cig+iCyy, (4.17)
621pC2(0,w, k) = Chg +iCyy, (4.18)
621upCs(0,w, k) = Cyur +iCyy, (4.19)
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where

Cip =

Cir =

_9 K
Uy, 2e % | 1 1+b 1
— Sor: —~Sor:l — —K:lw.Sam: — ~Sar.

4T821 1+2b ng 72 [Wr 2R — 7Y 2],2] 3 z[wr 3R — 7Y 3[,7,]

1 - 1 o9-0 s 1
+§KiTeikuaxiS4R,i — ZTeik Uy S5R,i — ZTeikua;i lwrS6Rr,i — VS6r1,i]

1. 1., -
+Z(u92” — D[wrS7r,i — vS71,4] — ZTeikuxi(u?gi —1)SsRr,i — gTe%kZUQ SoR,i
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_gTeikU:{:i [wrS10R,: — VS101,4]

2 Keml 1 Tym; 140
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Lme, 979 9

_gKe[wrSZSRe 75’31 e] + 8K TezkuxeS4Re - ZiT kU S5Re

1m T, m
_iiTezkume[wrSGRe '756] e} 4 <T me 323@ - 1) [WTS7R,8 - 7S7I,e]
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2e K| 1 140 1
1425 |72 R [vSar,i + wrSari] — gKi[’YSsm + w;Sar,i]

_ 1 - 1 -
+ - KTkt Sar i — ZTékQQiiSM,i - ZTeikﬂxi [vS6R,i + wrSer,i]
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+= (a2 — D[vS7ri + wrS71] — ZTeikam’(ﬂii — 1)Ssri — Lrz k*u2;So1,q

4 8 el
1
_gTeikum' [YS10R,i + wrSio1,i]
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1m
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2eKe 1 my T} e
4 S S —~8 422
1+2bT,meT. k fr 1Re =7 H’e]’ ( )

2¢Ki 1 Ugi
Cor = UG e worSis
21 L T, & [YS1iR,i + wrSir]

2eKe 1 T, my e

+1+2bTeiTeme k

[VSIR,e + Wrsll,e]a (423)

U2 2¢ K

u .
Cin = 32+ [(ug +b+ 1) (wrSi1ri — YS117.)
el
1 1., -
_E(MTSHR’i — vS1214) + §Teikﬁm‘513R7i}
2¢Ke m, T, me _
T 2b# (Tlmeuie +b+ 1) (wrS11R,e — YS111,e)
(4 e (A
1 1 -
_i(w’rSl2R,€ — ’}/5121,6) + ETeikuxeS:[SFLQ 9 (424)
2€7Ki _9
Cy = % [(um + b4 1)(vS11r,i + wrSiir,i)
1 1. -
—5(75123,1' + w;S12r,i) + §TeikﬂxiS13Li}
2¢Ke T, m
e e (A
1 1, -
—5(7512R,e + wr5121,e) + §Teikurresl3l,e : (4.25)

where the terms Sip s, etc, are the real and imaginary parts of the various sums over Bessel
functions, which are given in Appendix G, T; /T is the ratio of ion and electron temperatures, and

the term T¢; is given by

1/2
T.; = b 1+2 . (4.26)
2 \1+T./T,

There are a number of important points to note at this stage. Firstly, assuming that the length scale
is of the order of the ion skin depth, J;, introduces a factor of 512 / 52 in the electron terms, where

dc is the electron skin depth, given by

bp = —, (4.27)

where w, is the electron plasma frequency, given by Equation (1.2). Since the plasma is quasineu-
tral (n; = n.), the ratio 67 /62 is given by the ion-electron mass ratio:
52 m;

S= (4.28)
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A second point to note is that the term 7; given by Equation (4.26) results from the factor

Vth,i

) (4.29)
Qy;0;
which appears frequently in the expressions. This expression can be simplified by using the for-
mula
2 2
Uys Tg,s
=42 (4.30)
Ut2h,s L?

from Section 2.5.2. In Equation (4.30), 7, s is the gyroradius of particle species s, given by

Tgs = ?Zh (4.31)

YSs

and L is the current sheet thickness, given by

] 1/2
L= 2B + 1) ) (4.32)

MOezﬁeﬂinO (uyi - Uye)2

Using Equation (4.15) and the assumption that u,s = u,s, Equation (4.30) can be rearranged to

give

_ Ui (4.33)

where it has also been assumed that #,; > 0.

The current sheet width L normalised to the ion skin depth is given by

L T N\ 1/2 .
Z_ (2 (1 + e) m) %, (4.34)
0; T; ) ng Ugs — Uge

and upon using the relation

Te
Uge = —fuxi, 4.35)

7

(obtained from Equation (2.71)), together with Equation (2.77), this becomes

L 1 [ 1+2p \'? 436
(Si_ﬂm' 1+Te/ﬂ ' )

The term vy, ; /§2y;0; can then be rewritten, using Equations (4.33) and (4.36), as

Vth,i (s
! — — 4.37
5 (4.37)

Qyi (51 Qyi L,
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1+20 \Y?
(1 =+ /T) , 438)

1
2
~ T.. (4.39)

The parameters K;, K., A;, A, a; and a., which appear within the sums in the coefficients

(4.20)-(4.25), can be written, under the current normalisation, as

K; = T2k (4.40)
Teme, o979
K., = ——T%k 4.41
& Emz el Y ( )
A = TukyJ@, 1 K (4.42)
m . T. m;
Ae = jTeik\/u%e_f’TZ?niKea (4.43)
L k
a; = tan —Tei— |, (4.44)
Ugs
T. k
Qe = tan~! <—Teie > (4.45)
T; Uge

Returning to the original problem, Equations (4.8) and (4.9) can be written as
MA; =0, (4.46)

where M is the following 2x2 matrix

(4.47)

v = [ FmeCi(0,w k) =2k 67u0Ca(0,w, k)
U 2uwCe(0,w,k)  82u0Ca(0,w,k) — 2k )

To ensure a non-trivial solution to the equations, the determinant of the matrix M must vanish.

Due to the fact that the coefficients C;-Cy are complex, this condition leads to the two equations

det(M)yeat = CirCip — C11Cur — 2k(Cip + Cyg) +4k* — Ca2p +C3, =0,  (4.48)
det(M)imag = C11Csr + CirCar — 2k(Ciy + Cur) — 2C25Cor = 0, (4.49)

Equations (4.48) and (4.49) can be solved numerically. This will be discussed in the next section.

4.4 Results

To solve the approximate form of Ampere’s law given by Equations (4.48) and (4.49), the multi-

dimensional Newton-Raphson method was used. A Fortran 90 code was taken from Press et al.
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(1992). The Bessel function sums in the coefficients (4.20)-(4.25) converge quickly due to the fact
that I, — 0 as m — o0, and so they are straightforward to calculate numerically. This has been
tested, and the majority of the sums converge after less than ten terms. In the Fortran code used,

however, the first fifty terms were included in the sums to make sure of convergence.

The set of parameters from Figure 2.3 in Section 2.5.1 will be considered, for which the distribu-

tion function (2.59) has a single maximum. In Figure 2.3,

Ugs| = vy s and by = 2.85, for either
ions or electrons (both ions and electrons cannot have the same values). Choosing %,; = 1 and
b; = 2.85 gives b = 2.85exp(—1/2) (using Equation (2.63)). In this case, b; and u,; satisfy the
appropriate conditions such that the ion distribution function has a single maximum in both the v,-
and v, -directions. Note that the electron parameters b, and u,. are related to b; and u,; through
Equations (2.63) and (4.35). This means, therefore, that fixing the ion parameters also fixes the
electron parameters for a given temperature ratio and mass ratio. Note, however, that it should
also be ensured that the electron distribution function has a single maximum in both directions.

For a realistic mass ratio, this will be the case unless the temperature ratio becomes unrealistic.

Ensuring a single maximum of both the ion and electron distribution functions in the velocity
directions is important for the stability analysis presented in this chapter, since it is beyond the
remit of the method to enter the parameter regime where the distribution functions become multi-
peaked. Investigating the stability of the equilibrium under these conditions would require an

investigation into the velocity space instabilities, which will not be considered in this thesis.

For the single maximum case described above, Figure 4.1 shows a surface plot of det(M );mag,
from Equation (4.49), plotted over the w,-y plane, for the ranges —0.4 < w, < 0.4, —04 <~ <
0.4, with a realistic mass ratio m; /m. ~ 1836, a temperature ratio 7; /T, = 0.5, and wavenumber
k=0.1. Figure 4.2 shows the surface plotted over the ranges 0 < w, < 0.4, 0 <~ < 0.4, for
the same parameter values as in Figure 4.1. Figure 4.2 reveals that Equation (4.49) is identically
satisfied when either w, = 0 or v = 0. On closer inspection of the coefficients in the equation,
it can be seen, as expected, that each product contains a factor of w,~y. The important equation
to consider, therefore, is Equation (4.48). A surface plot of det(M ),.q; is given in Figure 4.3, for
the same parameter values as used in Figure 4.2, but plotted over the ranges —0.4 < w, < 0.4,
—0.4 < v < 0.4. Itis clear from this figure that w, = 0 is not a solution of Equation (4.48),
and so  must vanish, giving no instability. A plot of the real frequency w, against k is given in
Figure 4.4, for the range 0.01 < k < 0.5, with the starting values for the Newton-Raphson method
taken as w, = v = 0.1. Note that it is not possible to put & = 0 into the numerical code, since
some of the coefficients (4.20)-(4.25) are singular at this point. Note also that, although the range
0.01 < k < 0.5 has been used, the results for the higher values in this range may not be accurate
since the long wavelength (small k) approximation has been used. Figure 4.4 shows an increase

of w, as k is increased.
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Figure 4.1: Surface plot of det(M )imag, plotted over the ranges —0.4 < wr <04, -04 <~y <
0.4, for y; = 1, b = 2.85 exp(—1/2), m;/me ~ 1836, T; /T, = 0.5 and &k = 0.1.
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Figure 4.2: Surface plot of det(M )imag, plotted over the ranges 0 < w, < 0.4, 0 < v < 0.4, for
=1,b=285exp(—1/2), m;/m, ~ 1836, T; /T, = 0.5 and k = 0.1.

Ui
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Figure 4.3: Surface plot of det(M ),¢q;, plotted over the ranges —0.4 < w, < 0.4, —0.4 < v <
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0.4, for ig; = 1, b = 2.85 exp(—1/2), m;/me ~ 1836, T;/T. = 0.5 and k = 0.1.

Figure 4.4: Plot of w, against k, for ti;

0.77
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and starting with the initial values w, = 0.1, v = 0.1.

0.5

=1,b=2.85exp(—1/2), m;/me ~ 1836, T;/T. = 0.5
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To find an instability, a parameter set must be chosen for which the surface det(M )., moves
up, so that the centre part is above the det(M ),.,; = 0 plane, such that w, = 0 is a solution of
Equation (4.48). Such a case can be obtained, for example, by choosing the temperature ratio
T;/Te. = 0.1. A plot of det(M),..q; for this case is shown in Figure 4.5, where all other parameters
have the same values as in Figure 4.3. It can now be seen that w,, = 0 is a solution, since the centre

4.0

def_reql

Figure 4.5: Surface plot of det(M ),¢q;, plotted over the ranges —0.4 < wr <04, -04 <y <
0.4, for y; = 1, b = 2.85exp(—1/2), m;/me ~ 1836, T; /T, = 0.1 and & = 0.1.

part of the surface has now moved up and crossed over the det(M),.q; = 0 plane. For w, = 0, the
surface crosses the det(M ), = 0 plane for two values of v, one positive and one negative. A
dispersion plot showing how the positive growth rate varies with & is shown in Figure 4.6. For this
figure, starting values of w, = v = 0.1 were chosen for the Newton-Raphson method, in order to
pick out the positive . The negative - solution can be obtained by starting with the initial values
wy = 0.1, v = —0.1. A dispersion plot for this case is shown in Figure 4.7. These growth rates
are just the negatives of the growth rates calculated for Figure 4.6, which reflects the fact that the

surface is symmetrical about the line v = 0. Negative growth rates correspond to damping.

It has been found that, for the single case considered, decreasing the ion-electron temperature
ratio from 0.5 to 0.1 gives instability. Figure 4.8 shows a plot of how the growth rate changes as
the temperature ratio is changed, for & = 0.1, and the same parameters as before, and starting

at w, = 0.1, v = 0.1. Figure 4.9 shows the region of non-zero v values. These figures can
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Figure 4.6: Plot of ~y against k, for @i,; = 1, b = 2.85exp(—1/2), m;/m. ~ 1836 and T;/T, =
0.1, starting with the initial values w, = 0.1, v = 0.1.
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Figure 4.7: Plot of ~y against k, for @i,; = 1, b = 2.85exp(—1/2), m;/m. ~ 1836 and T;/T, =
0.1, starting with the initial values w, = 0.1, v = —0.1.



4.4 Results

136

Qammea

Ti/Te

0.2 0.3 0.4 0.5

Figure 4.8: Plot of v against T; /T, for uy; = 1, b = 2.85exp(—1/2), m;/m. ~ 1836 and
k = 0.1, starting with the initial values w, = 0.1, v = 0.1.
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Figure 4.9: Plot of ~ against 7;/T. over a smaller range of values, for u,; = 1, b
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2.85 exp(—1/2), m;/m. ~ 1836 and k = 0.1, starting with the initial values w, = 0.1,y = 0.1.
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also be viewed as fixing the ion drift speed, #,;, and decreasing the electron drift speed, e,
through Equation (4.35). It can be seen that, beyond an ion-electron temperature ratio of 0.128,
the growth rate vanishes, meaning that the configuration is stable for temperature ratios above
this value, for the particular value of k£ chosen. Figure 4.10 shows the corresponding variation

of w, with temperature ratio. This figure reveals that w; is non-zero for temperature ratios above

o T T T T T

0.8 -

0.2

1 )
0.1 0.2 0.3 0.4 0.5
Ti/Te

Figure 4.10: Plot of w, against T;/Te, for t;; = 1, b = 2.85exp(—1/2), m;/me ~ 1836 and
k = 0.1, starting with the initial values w, = 0.1, v = 0.1.

approximately 0.13. This fits with the conclusion from Figure 4.9 that the growth rate is only
non-zero if T; /T, is less than 0.128 (since either v or w, must vanish). This conclusion of course

only applies to the case where k = 0.1.

Another parameter which can be varied is the ion-electron mass ratio, m;/me. In the cases dis-
cussed thus far, the mass ratio has always been chosen to be the realistic value of m;/m. =~ 1836.
Figure 4.11 shows how the growth rate varies with increasing mass ratio, for k = 0.1, T /T, =
0.1, and all the same parameter values as before. It can be seen that the value of v remains roughly
constant for all mass ratios beyond m;/m. = 100. This can be explained by looking again at the
coefficients (4.20)-(4.25). Firstly, some of the terms in the electron parts of these coefficients
contain the ratio m./m;, which, as m;/m, gets larger, will of course get smaller. Secondly, the
electron sums in the coefficients, given in Appendix G, will become negligible rather quickly,
since they all contain a factor of (m;/me)?* in their denominators, and no more than a factor of
(m;/me)? in their numerators. Thirdly, the arguments of the Bessel functions in the electron sums,

K. and A, both contain factors of m./m; and so will get smaller as the mass ratio is increased.
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Figure 4.11: Plot of ~ against m;/me, for 4, = 1, b = 2.85exp(—1/2), T;/T, = 0.1 and
k = 0.1, starting with the initial values w, = 0.1, v = 0.1.

A point will be reached where the electron terms are negligible compared with the ion terms, so
that increasing the mass ratio further has no noticeable effect on the values of the coefficients
(4.20)-(4.25).

The current sheet thickness, given by Equation (4.32), can be written, using Equation (4.35), as

S ECESN
M062ﬁeﬁin0 (1 + Te/Ti) Ugi '

(4.50)

It can be seen that decreasing the ion drift velocity u,; gives rise to a thicker current sheet. This
means that the maximum current density will be decreased, and so the configuration will be more
stable. This is illustrated in Figure 4.12, which shows a plot of +y against & for the case ,; = 0.96,
T;/T. = 0.1, and a realistic mass ratio as before. It can be seen that the maximum growth rate is
significantly smaller for @,;; = 0.96 than for u,; = 1 (see Figure 4.6). Note also that a decrease
of u,; for a given b; will still give a single maximum case, since the lower limit on b; given in
condition (2.115) will decrease, and so there is no danger of going into the regime of multi-peaked

distribution functions.

It is also clear from Equation (4.50) that increasing u,; will result in the current sheet becoming
progressively thinner. In Section 2.5, it was mentioned that, through Equation (2.140), decreasing
the current sheet thickness will eventually result in a multi-peaked distribution function, firstly

in the v,-direction, by violating the condition (2.89), and then in the v,-direction as the sheet
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Figure 4.12: Plot of v against k, for t,; = 0.96, b = 2.85exp(—1/2), T;/T. = 0.1 and m; /m, =~
1836, starting with the initial values w, = 0.1, v = 0.1.

thickness is decreased further. As previously stated, it is beyond the scope of this work to con-
sider the effect of multi-peaked distribution functions on the stability of the equilibrium, since an

investigation into such effects would require a different method.

4.5 Analytical Solutions in the Outer Region

As discussed previously, a full solution of Ampere’s law in the form of Equations (4.3) and (4.4)
would involve using a numerical method such as the shooting method (e.g. Press et al., 1992) to
find the eigenvalues. It is, however, possible to find analytical solutions in the outer region, by
assuming that the time integral (3.86) in this region is negligible, so that the perturbed current
density consists only of the adiabatic part, given by Equations (3.140) and (3.142) in terms of the
macroscopic parameters, or Equations (3.150) and (3.151) in terms of the microscopic parameters.

The perturbed current density in the outer region is, therefore, assumed to be given by

jlx,out = jlx,a:Dl,adi‘Alx; (451)
jly,out = jly,a:DQ,adiAIya (452)
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where, using the macroscopic parameters,

1

2
Diggi = ——(1-— 2 ), 453
had poL? < cosh2(z/L)> (4.35)
2 1
Dy adi = : 4.54
Zad poL? cosh?(z/L) (559
Ampere’s law then has the form
d2A1:v 2 7 . n -
d22 — kA1 = —poJ1es (Alma Alya Z, W, k)v (4.55)
d’A _ S
dz21y - kQAly = _#Ojlys(Alxa Alya Z,W, k:), (4.56)
where
) B C1(z,w, k) A1z + Ca(z,w, k) Ay, if z < L (inside sheet) 457)
Ja = D1 adiA1z if z > L (outside sheet) ~ '
— Ca(z,w, k) A1y + Ca(z,w, k) A1, if z < L (inside sheet) 458)
W7\ Dyeaidy, if 2 > L (outside sheet) ’ '

with the coefficients C'1, C> and Cy given by Equations (3.174), (3.175) and (3.183), respectively.

In the outer region, Ampére’s law now consists of two uncoupled second order ODEs, one for A1,
and one for Ay,. The equation for Ay, is given, after normalising both z and k to the current sheet
width L, by

d? Ay, 2 S\«
— k) A, =0 4.59
dz? * <cosh2 z 1 ’ (4.59)

where the dimension of flly cancels out between the two sides and so there is no need to normalise
as such. Equation (4.59) is the same as that described by Schindler (2007) in Section 10.4 on
the resistive tearing instability, where a Harris sheet field profile is used. This similarity of the
equations is to be expected, since the z-component of the force-free Harris sheet field and, hence,
the y-component of the vector potential, are the same as the respective components for the Harris
sheet. Equation (4.59) has the general solution,

flly = Klesz(tanhi + k) + ngffz(tanhé — k), (4.60)

where K7 and K> are arbitrary constants. This can be seen by substituting the function Aly =

eMU (%), where U is an arbitrary function of Z, into Equation (4.59), which gives

U"(z) +2\U'(2) + < + A% - k2> U(z) =0, (4.61)

cosh? z
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which, on using the substitution ; = tanh Z and assuming that A\ = +k, becomes

d?U dU
— —2(u—N)— +2U = 0. 4.62
a2 (n—2A) +2U0 =0 (4.62)

(1—p?) i

The solution to Equation (4.62) can be found by trying a solution of the form U (u) = ¢y + co,
which gives the solution as U(u) = c1( — A), where A = +k. This then gives two linearly

independent solutions of Equation (4.59) as
Ay, = ci(tanh z F k)e*?, (4.63)

and so the general solution (4.60) is given by adding up the two linearly independent solutions.
The condition that Aly — 0 as z — oo means, however, that the constant K> must vanish, which
then gives the solution of Equation (4.59) as

Ay, = Kye *(tanh z + k). (4.64)

The constant K; would be determined by the boundary condition at z = + L, obtained from the

inner solution (which would be found numerically).

Returning to Ampére’s law, the equation for Ay, outside of the sheet is given, again after normal-

isation, by
d* A1, 2 Y _
12 onZs (k*+1)) A1z =0. (4.65)

This equation can be solved in the same way as Equation (4.59), by letting & = \/k2 + 1. This

gives the general solution as
Ay = K3e VE D tanh 2 + k2 + 1) + KyeV D2 (tanh 2 — V&2 + 1), (4.66)

and, using the boundary condition A, — 0as z — oo, the constant K4, must vanish, which gives

the solution as
Ay = Kze VE D2 (tanh z + V2 + 1), (4.67)

where the constant K3 would be determined by the boundary condition at z = + I, again obtained

from the inner solution, which would be found numerically.
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4.6 Summary

In this chapter, an approximate numerical solution of Ampere’s law has been given for Harri-
son and Neukirch’s equilibrium for the force-free Harris sheet (Harrison and Neukirch, 2009b),
to investigate the occurrence of the collisionless tearing mode. The simplifying approximation
discussed by Silin et al. (2002) for the Harris sheet was used, in which it was assumed that the
perturbation wavalength is large compared with the current sheet thickness, such that the current
density can be approximated by a delta function. Ampere’s law was then reduced to a system of
two algebraic equations, which were solved numerically by using the multidimensional Newton-
Raphson method in Fortran 90 (Press et al., 1992). It was found that solutions exist only if either
wy- or 7y vanishes. A set of parameters were chosen such that both the ion and electron distribution
functions for the equilibrium have a single maximum. The single maximum case from Figure 2.3
was considered. Note that it is beyond the scope of the work in this thesis to consider parameter
regimes for which the distribution functions can become multi-peaked, since this would require
an investigation into the microinstabilities, using a numerical method such as that developed by
Camporeale et al. (2006).

An important parameter in the stability analysis is the ion-electron temperature ratio, 7;/T¢. It
was found that, for a temperature ratio 7; /7. = 0.5, the only solution to the problem is v = 0,
and so the configuration is stable. The real frequency, w,, was found to increase with increasing

wavenumber k.

For a temperature ratio of 7; /T, = 0.1, it was found that w, = 0, meaning that -y is non-zero. Two
solutions were found to exist, one with a positive growth rate, corresponding to instability, and
one with a negative growth rate, corresponding to damping. The solution found by the numerical
method depends on the chosen initial value of v. When looking for an instability, it of course
makes sense to start with a positive value, as starting with a negative value is more likely to
pick out the damped solution. A plot of « against k for this temperature ratio revealed that a
maximum is reached at a wavenumber of approximately & = 0.16, and then after this the growth
rate decreases as k is increased further. It should be noted that it was not possible to set k£ = 0 in

the numerical code, since there are k terms in the denominators of the coefficients.

A plot of the growth rate against the ion-electron temperature ratio for & = 0.1 revealed that,
beyond a certain temperature ratio (7;/7, ~ 0.13), no instability was found, as the only solution

is for v = 0 and w, non-zero.

Another parameter which occurs frequently is the ion-electron mass ratio, m;/m.. Of course, in
reality this parameter has a fixed value (=~ 1836), but in plasma physics research it is often taken
to have a much smaller value (for example in PIC simulations of collisionless reconnection). A

plot of the growth rate against mass ratio revealed that, for m;/m. beyond a value of around 100,
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there was only a very small change in the growth rate. This can be explained by the fact that,
beyond a certain value of m;/m., the electron terms become negligible in comparison to the ion

terms, due to factors of at least (m;/m.)? in the denominators.

Analytical solutions of Ampere’s law were obtained for the region outside the sheet, which would
be useful for solving the full problem without the delta function approximation, since a numerical
method would then only be required for the region inside the sheet. These analytical solutions were
found by making the simplifying assumption that the perturbed current density in the outer region
is given by the adiabatic part only, given by Equations (3.140) and (3.142), so that the plasma
dispersion functions in the coefficients (3.194), (3.195), (3.201) and (3.202) can be neglected.
The solution for Ay, was found to be the same as that obtained in studies of the resistive tearing
mode, starting with a Harris sheet equilibrium (Schindler, 2007). This is because the Harris sheet
and force-free Harris sheet fields have the same z-component. The solution for A1, was found to
have a similar form as the f_lly solution, but with & from the flly solution replaced by v/ k2 + 1.

To conclude, the single maximum case considered in Section 4.4 has given an illustration of the
fact that the Harrison and Neukirch (2009b) equilibrium is unstable to the collisionless tearing
mode under certain conditions, with the growth rate of the instability depending crucially upon
the ion-electron temperature ratio. It should be noted, however, that the delta function approxima-
tion is a hugely simplifying one, and so a definite conclusion cannot be given about the stability
of the equilibrium at this stage. Instead of using the approximation to solve Ampere’s law, a
shooting method (e.g. Press et al., 1992), for example, could be used to solve the ODEs, and the
results could then be compared with those from Section 4.4 in order to assess the validity of the

approximation.



4.6 Summary 144




Chapter 5

Summary and Further Work

The work in this thesis has focused primarily on equilibrium and stability properties of collision-
less current sheet models, in particular of the force-free Harris sheet model. In Chapter 2, the
focus was on one-dimensional force-free Vlasov-Maxwell equilibria. Conditions on the existence
of such equilibria have been given by Harrison and Neukirch (2009a). Of particular importance is
the fact that the Vlasov-Maxwell equilibrium problem corresponds to the problem of solving the
equations of motion of a particle moving in a two-dimensional conservative potential. A neces-
sary condition for having a force-free equilibrium solution is that the pressure must have at least
one contour that corresponds to a trajectory in the A;-A,-plane, where A, and A, are the z- and
y-components of the vector potential, respectively. Such a condition is satisfied for the force-free
Harris sheet equilibrium solution found by Harrison and Neukirch (2009b). The derivation of the
distribution function was given, which relies crucially on the assumption that the pressure P, is
a sum of two terms, one depending on A, and the other depending on A,. The density and bulk
flow velocity have been calculated by taking velocity moments of the distribution function. The
current density was then obtained in terms of the microscopic parameters. A number of condi-
tions have been given between the microscopic and macroscopic parameters of the equilibrium,
and these can be used to show the consistency between the current density expression obtained
from the distribution functions, and that obtained from the magnetic field profile through Ampere’s

law.

An important property of the distribution function found by Harrison and Neukirch (2009b) is that
it can be multi-peaked in both the v,- and v,-directions, which may give rise to microinstabilities.
Part of the distribution function has a cosine dependence on v,, and so multiple maxima can arise
if this term is significant enough. In the v,-direction, the distribution function contains a drifting
Maxwellian part, together with a part which is Maxwellian at rest. Multiple maxima can arise
in this direction for parameter values such that the drifting part moves far enough away from the
part which is at rest. Conditions on the parameters of the distribution function have been derived,

which show when it can be single or multi-peaked for some value of z.

Some examples were given of attempts to find equilibria for nonlinear force-free magnetic field
profiles other than that of the force-free Harris sheet. The method of Harrison and Neukirch

(2009b) was used, but it was found that, even for seemingly simple magnetic field profiles, it was
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not possible to find additional Vlasov-Maxwell equilibria by this method. The problem occurred
mainly in the final step of the method, which involves using the Fourier transform method by
Channell (1976) to solve an integral equation for the unknown part of the distribution function.
In future work, it would be interesting to further investigate the possibility of finding equilibrium
solutions, either analytically or numerically. Hermite functions could potentially be used, as sug-
gested by Channell (1976). It would also be interesting to investigate whether it is possible to find
equilibrium solutions for a P, of a different form, for example a multiplicative P,, of the form
P.. = Pi(A;)P>(A,), instead of the additive P, used by Harrison and Neukirch (2009b).

A family of distribution functions for the force-free Harris sheet has been found, which includes
the previously known distribution function found by Harrison and Neukirch (2009b), in addition to
distribution functions with a different dependence upon the particle energy. The method employed
to calculate this family uses the fact that Ampere’s law can be written in terms of derivatives of
the pressure function P,, with respect to the components of the vector potential. An obvious
consequence of this result is that two distribution functions giving rise to the same pressure func-
tion will automatically satisfy the Vlasov-Maxwell equations for the same magnetic field profile.
Conditions on the parameters of the new distribution functions, such that they give rise to the P,,
found by Harrison and Neukirch (2009b), have been stated explicitly. Three examples of distri-
bution functions from the new family have been given, in order to illustrate the use of the general
method. Although there are currently no known nonlinear force-free Vlasov-Maxwell equilibria
for magnetic field profiles other than the force-free Harris sheet, if such a solution were found
then the method could potentially be used to extend that solution to a family of solutions. This
would be interesting to investigate in future work, if another solution could be found for a different

magnetic field profile.

The final part of the work in Chapter 2 involved an attempt to extend the general theory of one-
dimensional force-free Vlasov-Maxwell equilibria to cylindrical coordinates, by considering the
case where all quantities depend only upon the radial coordinate, r. An example was given of
an attempt to find a linear force-free solution, by starting with a distribution function similar to
that used by Channell (1976) and Attico and Pegoraro (1999) in Cartesian coordinates, which is
known to give rise to a linear force-free equilibrium. It was found, however, that in cylindrical
coordinates, this form of distribution function does not give rise to a force-free field. Another aim
for future work, therefore, is to further investigate whether it is at all possible to find force-free

cylindrical equilibria.

In Chapters 3 and 4, a linear stability analysis of the equilibrium found by Harrison and Neukirch
(2009b) for the force-free Harris sheet was carried out, in order to investigate the occurrence of
the collisionless tearing mode. In Chapter 3, the initial calculations were given. After linearis-
ing the Vlasov-Maxwell equations, the perturbed distribution function was calculated, in which

the perturbed quantities were assumed to be independent of the y-coordinate, and to have a har-
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monic dependence on x and ¢. A central difficulty in the Vlasov approach is the integration over
unperturbed orbits, since an expression for the orbits themselves is required which, in general,
cannot be found analytically without an approximation. The straight line orbit approximation,
used by a number of authors for the Harris sheet (e.g. Dobrowolny, 1968; Lapenta and Brackbill,
1997; Silin et al., 2002) is not valid for the force-free Harris sheet, due to the y-component of
the magnetic field. Another approximation was required, therefore, and so the force-free Harris
sheet field was approximated by two separate regions of constant magnetic field: an inner region,
where the field is in the y-direction only, and an outer region, where the field is in the z-direction
only. Although not ideal, such an approximation is reasonable given the structure of the force-
free Harris sheet field profile, and allowed for a straightforward calculation of the particle orbits.
These expressions were then used with the perturbed distribution function expression to calculate
the perturbed density and perturbed current density, by taking velocity moments of the perturbed
distribution function, and integrating over both velocity space and time. As this stage, it was as-
sumed that the perturbed vector potential remains constant along the particle orbits. Note that the
perturbed density is not required for the stability analysis, but was calculated for completeness,
and also because its calculation served as a good exercise to prepare for the longer calculation of
the perturbed current density. For both the inner and outer regions, the perturbed current density
components depend linearly on the components of the perturbed vector potential, but it was found
that the coefficients of these terms depend upon z, the eigenvalue w, and also the wavenumber
k, in a nonlinear fashion. For the inner region, the coefficients include infinite sums over Bessel

functions and, for the outer region, they include plasma dispersion functions.

An approximate numerical solution of Ampere’s law was given in Chapter 4. The perturbation
wavelength was assumed to be large compared with the current sheet thickness, such that the
perturbed current density could then be approximated by a delta function. This method has been
used by Silin et al. (2002) for the Harris sheet, and allows Ampere’s law to be reduced to a pair
of algebraic equations. The approximate form of Ampere’s law was solved numerically using a
Fortran 90 code to implement the multi-dimensional Newton-Raphson method. It was found that

solutions to the problem exist only if either the growth rate or real frequency vanishes.

A crucial parameter in determining the stability of the configuration is the ion-electron temperature
ratio, T; /T,. For the case considered (the case from Figure 2.3 for which the distribution functions
have a single maximum), it was found that instability results for 7; /7, = 0.1. For a given value
of the wavenumber k, it was found that there will exist a threshold value of the temperature ratio,
beyond which no instability occurs, and the real frequency is non-zero (which is consistent with

the earlier statement that solutions to the problem exist only when either w, or -y vanishes).

The effect of the ion-electron mass ratio on the growth rate of the instability was also discussed,
and it was found that, beyond a mass ratio of approximately 100, the growth rate did not change

too much, due to the electron terms becoming negligible in comparison to the ion terms.
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Analytical solutions of Ampere’s law were obtained for the region outside the sheet, which would
be useful if the problem were to be solved without the delta function approximation, since a
numerical method would then only be required for the region inside the sheet. These analytical
solutions were found by making the simplifying assumption that the perturbed current density in
the outer region is given by the adiabatic part only, so that the plasma dispersion functions in the
coefficients can be neglected. The solution for f_hy was found to be the same as that obtained in
studies of the resistive tearing mode, starting with a Harris sheet equilibrium (Schindler, 2007).
This is because the Harris sheet and force-free Harris sheet fields have the same z-component.

The solution for A;, was found to have a similar form as the flly solution, but with & from the
Ay solution replaced by v/ k2 + 1.

The approximate solution of Ampere’s law has given an illustration of the fact that Harrison and
Neukirch’s equilibrium for the force-free Harris sheet (Harrison and Neukirch, 2009b) is unstable
to the collisionless tearing mode under certain conditions, with the growth rate of the instability
depending crucially upon the ion-electron temperature ratio. It should be noted, however, that
the long wavelength assumption is a hugely simplifying one, and so a definite conclusion cannot
be given about the stability of the equilibrium at this stage. An immediate aim for future work,
therefore, is to solve Ampere’s law numerically by, for example, using a shooting method (e.g.
Press et al., 1992). These results could then be compared with those of Section 4.4, in order
to assess the validity of the delta function approximation. The ODEs could be solved by using
the analytical solutions from Section 4.5 for the outer region, and obtaining a numerical solution
for the inner region, or by including the plasma dispersion functions in the perturbed current

expression for the outer region, and solving the problem numerically in both regions.

Another possibility for approximating the particle orbits is to firstly approximate B, frps by the

piecewise linear function

Byz, if |Z| < 1 (inside sheet)
Bx,approx = { ’ ‘ (51)

Bysign(z), if |z| > 1 (outside sheet)

as illustrated in Figure 5.1. Such an approximation on B, has been used before for the Harris
sheet (e.g. Hoh, 1966; Yamanaka, 1978) and gives rise to elliptic functions. For the field to remain

force-free, it must satisfy the condition B2 , .., + By 40r0r = B§» which would give
0, ifz< -1
Byapprox = BovV1—2%, if-1<2<0 , (5.2)
0, ifz>1

where Z = z/L, as illustrated in Figure 5.2. This is not a particularly good approximation to
By t¢ns- Although it is better than the approximation used in this thesis for the force-free Harris

sheet field, calculating the orbits for such a field would present considerable difficulty. A piecewise
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Figure 5.1: Plot of a possible approximation to B, frns (dashed line) and B, ¢rps (solid line)

against z/L = z, for By = 1.
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Figure 5.2: Plot of a possible approximation to B, rrps (dashed line)

against z/L = z, for By = 1.

and By rrps (solid line)
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linear function may be more appropriate for approximating B, ¢ rps, but this would violate the
force-free condition. Instead of looking for another analytical approximation, therefore, it would
make more sense to calculate the orbits numerically to achieve more accurate results in future

work.

An investigation into the occurrence of microinstabilites, which may arise from the multi-peaked
behaviour of the distribution function (2.59), is beyond the scope of this thesis, but would also be
interesting to investigate in future work. Such a stability analysis would have to be carried out in
three dimensions, using a numerical method such as that developed by Camporeale et al. (2006).
It may also be interesting to consider the effect that three-dimensional perturbations have on the

occurrence of macroinstabilities.

In the PhD thesis by Harrison (2009), 2.5D particle-in-cell simulations of collisionless reconnec-
tion were carried out for the force-free Harris sheet, using the Harrison and Neukirch (2009b)
equilibrium as initial conditions. This was done for mass ratios m;/m. = 1 and m;/m. = 9.
It would be interesting to investigate the effect of increasing the mass ratio, and to carry out 3D
PIC simulations. These simulations could also potentially be carried out using some of the other
force-free Harris sheet equilibria from Section 2.8 as initial conditions, to see what effect different

equilibria have on the collisionless reconnection process.



Appendix A

Some Useful Trigonometric Identities

In the calculations from Chapters 2 and 3 for the force-free Harris sheet, the terms
sin[4 tan~!(e*/)] and cos[4 tan—!(e*/)] appear on a number of occasions. These can be rewrit-

ten in terms of hyperbolic functions as

. e/l sinh(z/L)
sin[4 tan™ " (e*/ )] 27cosh2(z/L)7 (A.1)
—1/_2z/L — - 2
cos[4tan™ " (e*/*)] 1 7cosh2(z/L) , (A.2)

Equation (A.1) can be proved, firstly, by expressing the right hand side in terms of e*/~, which
gives
sinh z (e*/b — e=2/1)

B 2COSh2 z =4 (eZ/L + e—z/L)2’ (A.3)

which can be written in terms of /_117 ffhs» the z-component of the vector potential for the force-

free Harris sheet (normalised to ByL), as

sinh(z/L) A (tan(Ag/2) — 1/(tan(A,/2)))
2

Teosh®(2/L)  (tan(A,/2) + 1/ tan(4,/2))% (D
since

Ag pshs = 2tant (e%/1), (A.5)
which gives

e/l = tan (‘%) . (A.6)
Equation (A.4) can be written as

psinh(z/L) ) (sin(As/2)/ cos(As/2) — cos(Ar/2)/ sin(A/2)) A7)

cosh®(z/L)  (sin(A,/2)/ cos(A,/2) — cos(A,/2)/ sin(A,/2))”
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which, on multiplying through by cos?(A,/2) sin?(A,/2) and simplifying, becomes

_g sinh(z/L)

cost?(zD) = heos(Aa/2)sin(Az/2) [sin®(Ae/2) - cos*(4/2)] AS)

Using the trigonometric identities

sin(2X) = 2sin X cos X, (A.9)
cos2X = cos® X —sin® X, (A.10)
then gives
inh(z/L -
I CTL) T Y (A11)
cosh?(z/L)

Finally, substituting in the definition (A.5) of f_lx, fhhs gives Equation (A.1), as required.

Equation (A.2) can be obtained from Equation (A.1), since cos X = (1 — sin? X )1/ 2 which gives

cos?[4tan"1(e*/F)] = 1 —sin?[4tan~t(e*/D)] (A.12)
2
1 smh4(z/L) (A.13)
cosh®(z/L)
2
_ o glosizh) =1 (E/L) —1 (A.14)
cosh®(z/L)
4 4
= - cosh?(z/L) * cosh*(z/L) (A13)
9 2
B <1_ coshz(z/L)> ’ (A.16)

and taking the square root gives Equation (A.2), as required.



Appendix B

Evaluation of Integrals From Section 2.8

In each of the three examples in Section 2.8, after changing to a cylindrical coordinate system

(r,0), the f-integrations can be carried out by using the formulae

27
/ cos(acos@)dd = 2mJy(a), (B.1)
0

2
/ exp(asinf)dfd = 2rnly(a), (B.2)
0

where Jj is a Bessel function of the first kind, and [; is a modified Bessel function of the first
kind. Using the fact that the cosine function is symmetric, the result (B.1) can be proved by firstly

writing
2T s
/ cos(acos@)df = 2 / cos(acos 0)db, (B.3)
0 0
and then by using the formula (Abramowitz and Stegun, 1964)

1 s
Jo(a) = / cos(acos)db. (B.4)
T Jo
The result (B.2) can be proved by firstly writing
2m

2 ™
/ exp(asin@)d@z/ exp(asin@)d@—l—/ exp(asin #)db. (B.5)
0 0 s

which, upon using the substitution # = § — in the second integral on the right-hand side, together

with the identity sin(f + ) = — sin 0, gives

2T s s
/ exp(asinH)de/ exp(asinH)dQ—l—/ exp(—asin 0)df. (B.6)
0 0 0

Using the identity sin x = cos (7/2 — z), together with the substitution ¢ = 6 — /2 for the first
integral on the right-hand side, and the substitution ¢ = 6 — /2 for the second integral, gives
0

/27r exp(asinf)dfd = / (exp(acos ¢) + exp(—acos ¢)) do
0

—7/2
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w/2
+ / (exp(a cos @) + exp(—acos @)) do. (B.7)
0

Using the further substitutions ¢ = ¢ + « in the first integral on the right-hand side, and ) = ¢ in
the second integral, together with the identity cos(z — ) = — cos z, allows both integrals to be

combined to give

27 ™
/ exp(asinf)dfd = / (exp(acos®) 4+ exp(—acos))) dy
0 0

= 2/ cosh(a cos)di. (B.8)
0
Finally, using the formula
1 ™
Iy(a) = / cosh(a cos ) di, (B.9)
T Jo

(Abramowitz and Stegun, 1964) then gives the result (B.2), as required.

After evaluating the 6-integrals, the r-integrals in Section 2.8 then take the form
1
/ r(1 — ) o (ar)dr, (B.10)
0

1
/ r(1 —r?) o(ar)dr. (B.11)
0

Integrals of the form (B.10) can be evaluated firstly by using the substitution = sin ¢, and then
by using the formula

/2 2T (v + 1
/0 Ju(zsint) sin ! ¢ cos? T tdt = Z(IZ_T)J;LJWH(Z), (B.12)

which is valid for Ry, Rv > —1 (Abramowitz and Stegun, 1964). This gives

! 22I'(A+1
/0 r(1 —r) o (ar)dr = a(AJj)J)‘H(a)' (B.13)

Integrals of the form (B.11) can be evaluated by firstly using the identity
Iy(a) = Jo(ia), (B.14)

and then by using the same steps that were used to evaluate the integrals of the form (B.10). This
gives
2 T(A+1)

1
/0 T(l —_ r2)>\10(a,’l")d’l" == WJ)\—’J(Z'Q). (BlS)



Appendix C

Details of Results From Section 2.10 in

Cylindrical Coordinates

The relations (1.76)-(1.80), from Section 1.4.2, have the following corresponding form in cylin-

drical coordinates

§;+2{£ _ (8
;ZZJF% _— (C.2)
311—3;3; =0, ©3)
o= S €4

oP,,
o= A (C3)
a;j;’” = —o. (C.6)
(C.'7

where o is the charge density, ¢ is the electric potential, P, is the rr-component of the pressure
tensor, jg and j, are the 6- and z-components of the current density, and Ag and A, are the 6- and

z-components of the vector potential.

The calculation of the results (C.1)-(C.6) are similar to those in Cartesian coordinates (see Ap-
pendix A of Harrison and Neukirch, 2009a). Starting with the left-hand-side of Equation (C.1)

gives

do  Djp I A 9 [
o4, T 00 ;q”(aAe [ s gy [ ra) 9
. ° (Ofs Opg : Ofs OHg
) zs:q“/oo (oo * ot 56. ) .
© (9f 0,
_ 2
= S [ (G +05) 10

s
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_ % 2 > afs afs

_ zszm(mw/ (8p0+08H8)dv (€11
Z ds afs (C.12)

— (C.13)

where dv = drdfd?, and the last step comes from using integration by parts as follows,

o [ S
_ /Oo /OO ( i _/Z(o x fs)dé) did: (C.15)

= 0. (C.16)

The relation (C.2) can then be proved in exactly the same way by replacing Ay by A, and jy by
Jz-

The first term on the left-hand-side of the Equation (C.3), 0jy/0A., can be written in the following

way
gji - 2 _Zégﬁj gﬁidv (€.17)
= ;(qsrﬁ/ze'g;:dv (C.18)

- Z(qsr)z/_ (;saaz(efs) gl‘i)dv (C.19)

= —Z gs7) / 0 8f8 . (C.20)

In the third step above, the p. derivative has been expressed as follows

Ofs Ofs OH, Ofs Op. . Ofs Ofs
= = my ) 21
0z~ oH, ; Top. oz " <Z oH, © 8pz> 21
The term 05, /0 Ay on the left-hand-side of Equation (C.3) can be written as
ajz afs 8p9
= < 2 4q C22
o4, ~ 2 / “op0 94, " (22
o 8fs
= 5T dv C.23
S [ 25 €2)

S

oo as
= Yar? [ (Samen) il Yay 29

s
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of
2 s
= — o 0z dv C.25
ZS:(q r) / S (C.25)
dje
= C.26
DA, (C.26)
where, in the third step, the pg derivative has been expressed as
dfs Ofs O0Hs O0fs0 - 0fs  Ofs
fs _ OF .+fp.":msr2<9f+ f). (C.27)
00  OHs 00  Ope 00 OHs = Opy
This proves the result (C.3).
The relation (C.6) can be proved as follows
OP,, .9 Ofs OHg
_ 5 2
90 zs:mr/ ré?H 90 (C.28)
= Y magsr / 2905 4o (C.29)
- oo OHj;
e 1 0fs
= S mager / 2 < J ) v (C30)
- oo mgr OF
— qur/ fafsd (C.31)
° (e e}
N / Fudy (C.32)
= —o, (C.33)
where in the third step above, the derivative 0 f /07 can be written as
ofs _ Ofs OH,
= C.34
or  OHg Or '’ ( )
so that
S S i 1 S
af. _ 8f/81"': 8f (C.35)
OHs  0Hz/Or  mgr Or
In addition, in the fifth step above, integration by parts can be used as follows,
00 a §
/ 8{" dv = rfs / fsdv = / fsdv, (C.36)

oo .
where [r’fs} vanishes since f; — 0 as (7,6, 2) — %oc.
—00
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The right-hand-side of relation (C.4) can be expressed as
8P7“r . o -28f8 ap@
A, = Zs:msr / _5d Aedv (C.37)
= > g’ / 5 (C.38)
s —o0 apH
Then, using the fact that
afs afs 0H, afs apQ 2 <8fs 8fs>
- = =+ —— =myr- (60 + , C.39
00 OHs 900  Ope 00 OHs ~ Opy (€39
gives,
8P7“r o *° .28fs 2.2‘afs
oA, Zs:qs /OO (7‘ Y mer-r 93H3 dv (C.40)
[ .20fs 2. Of
_ 2 .2
= zg:qs /_OO <r Y, r“0r o > dv (C41
= =D e / T LY (C42)
- oo OF
= qsT 7 fs 0 fsdv (C.43)
= ZQSTQ 0 fsdv (C.44)
= Jjo, (C.45)

which proves the relation (C.4). Note that Equation (C.35) was used in the second step above, and

integration by parts was used in the fourth step. The result (C.5) can be obtained in a similar way,

by direct differentiation of P, with respectto A,.



Appendix D

The Plasma Dispersion Function

Whenever a distribution function with a Maxwellian part is present, the plasma dispersion function
(e.g. Fried and Conte, 1961) can be used, which is defined as

1 o 6—122
Z(¢) = \/77/_00 — Cdm, (D.1)

where ( is, in general, a complex variable, and so the integration is carried out in the complex

plane, which involves integrating around the pole at x = (. This function is related to the complex

error function through the representation

¢
Z@¢) = 2ie ¢ / e d

—00

= iyme Cerfe(—i() (D.2)

The plasma dispersion function satisfies the differential equation

Z'(¢) = —2[1+¢Z(Q)], (D.3)
since
1 o] —x2
Z'(¢) = = / ) ﬁdx. (D.4)

The second derivative of Z can then be obtained from Equation (D.3) as

7'¢) = —20Z(C) +¢Z'(Q) (D-5)
= —2[2(¢) - 21+ CZ(0))] (D-6)
= —2((1-20%)2(¢) - ). (D7)

The following integrals occur in Section 3.3 in the Vlasov stability calculation for the Harris sheet.

A S A O (D.8)

[ee] —x2
/ re " N
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00 1,26—$2 _ \/E ,
/OO Lol = ©). (D.9)

Equation (D.8) can be proved by firstly using integration by parts, and then by using the definition
(D.1), which gives

2 2

[me = ) e >
1d [ 2

= “3d 70011?—Cdx (D.11)

= _\fzf(g), (D.12)

Equation (D.9) can be proved by firstly considering the integral

—ax? a2
/oox26am d 00 ,—ax

dr =

oo T—C da o T —C

dz, (D.13)

and then by using the substitution Z = /ax, which gives

oo x26—ax2 d 00 6—5;2 B
d
= —Vro-[Z(Va()] (D-15)

_ _;\/Zng (vac) . (D.16)

Finally, taking the limit a — 1 gives,

0o ,.2,—x?
/ e = YTz 6, (D.17)
o T —C 2
The plasma dispersion function also appears through a number of integrals in the force-free Harris

sheet stability analysis of Section 3.4. These are detailed in Appendix F.



Appendix E

Velocity Integrals

E.1 Summary of Velocity Integrals

The following integrals are needed in the velocity integrations for the calculations of the perturbed

density and perturbed current density inside and outside the sheet.

—00

—00

—00

—0o0

/ zexp(—ax? + bx)dx

—00

— 00

—00

— 00

—0o0

/00 z exp(—az?) cos[b(x + \)|dz

/oo exp(—az?)dx
/OO 2% exp(—az?)dx
/ " exp(—a(z — b)?)dz

/ exp(—ax? + bx)da

/oo 2% exp(—ax? + br)dx
/00 exp(—ax? + ibx)dx
/00 z exp(—az? + ibx)dx
/OO 2% exp(—az? + ibx)dzx
/OO exp(—az?) cos[b(z + \)]dx

/OO exp(—az?) sin[b(z 4+ \)]dz

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)

(E.10)

(B.11)

(E.12)
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/OO z exp(—az?) sin[b(x + \)|dz

—00

/ exp(—az? + ibx) cos(cx + d)dx

—0o0

/ x exp(—ax? + ibx) cos(cx + d)dx

—00

/ 22 exp(—az? + ibzx) cos(cx + d)dzx

— 00

/ exp(—az? + ibz) sin(cz + d)dz

—0o0

/ z exp(—ax? + ibzx) sin(cx + d)dz

—00

(E.13)

1
2\/Z[cosd—|—isind]

o (-0

4a

1
+2\/Z[cosd—isind]
(b—c)?
X exp < 1 ,

Za\/j[cosd—l—isind](b+c)
X exp <—<b+6)2>

(E.14)

4a
E[cosd —isind|(b—¢)

44\ a
(b—¢)?
4aq ’

X exp <—
1 /x . (b+c)?
%\/;[cosd%—zsmd] (1_2a>

o (-0
)

4a
(E.16)

(E.15)

1
+£ g[cosd—isind] <1 -

< exp (_ (b ;a@?) |

1
2\/Z[sind— icosd]

om0

4a

1
+\/?[sind+icosd]
2V a

< exp <_ (b ;acf) |

(E.17)

41—@ g[sind —icosd|(b+c)
2
% exp <_<b+6>>
4a

+i g[sind—i-icosd](b— c)
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a2
o5, -
/OO z? exp(—ax? + ibx)sin(cx + d)dz = \/781Hd—lcosd ( (b—i—C) >
xexp< <b+c) >

\/751nd+zcosd ( (b o )

xexp< 4a) ) (E.19)

E.2 Evaluation of Velocity Integrals

The integral (E.1) is a standard integral. The integral (E.2) can be evaluated by taking —d/da of
Equation (E.1), which gives

/ 22 exp(—az?)dr = —CZZ/ exp(—ax?)dz

-4/

1
- - /T (E.20)
2a

The integral (E.3) can be evaluated by using the substitution w = x — b along with Equation (E.1),

which gives

/oo zexp(—a(z — b)})dr = /OO (w + b) exp(—aw?)dw

—00 — 00

= b/ exp(—an)dw—F/ w exp(—aw?)dw

—0oQ —0o0
= by/— (E.21)
since the second integral on the right-hand side of the second line vanishes.

The integral (E.4) can be evaluated firstly by completing the square in the argument of the ex-
ponential, and then by using the substitution w = z — b/2a, along with Equation (E.1), which

gives

0o B2 00 b 2
/ exp(—ax® +bx)dr = exp | — / exp| —a |z — — dx
NS da ) J_o 2a
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2
_ \/? exp <b> | (E22)
a 4a

The integral (E.5) can be evaluated by again completing the square in the argument of the expo-

nential, then by using Equation (E.3), which gives

00 b2 o0 b 2
[ reotat i = oo () [~ e (” () )dm
T b b2
- e (5) (529

The integral (E.6) can be evaluated by taking —d/da of Equation (E.4), which gives

/ 2% exp(—ax? + bx)dr = _dia / exp(—az?® 4 bx)dzx
__d \ﬁ exp (2
n da a P\ 44
1 = b? b?
= 35/ (1 + 2a> exp <4a> : (E.24)

The integral (E.7) is listed in Appendix C of Gary (2005), but could also be obtained from (E.4),
by letting b = £ib. Likewise, the integrals (E.8) and (E.9) can be evaluated by letting b = £ib in
Equations (E.5) and (E.6), respectively.

The integrals (E.10) and (E.11) are listed in Gradshteyn and Ryzhik (1966). The integral (E.12)
can then be evaluated by firstly taking d/db of Equation (E.11), which gives

% - exp(—az?) sinb(z + \)]dz = /OO (z 4+ \) exp(—az?) cos[b(z + \)]dz, (E.25)

—0o0

so that

/_OO z exp(—az?) cos[b(x + \)]dz = % _00 exp(—az?) sin[b(z + \)]dzx

-2 /OO z exp(—ax?) cos[b(z + \)]dz. (E.26)

—00

Using Equations (E.10) and (E.11) and cancelling terms then gives

/_Z zexp(—az?) cosb(z + \)]dz = \/Zjb (exp (—Z) sin bA)
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2
= ——,/—exp (—2@) sin bA. (E.27)

The integral (E.13) can be evaluated by firstly taking —d/db of Equation (E.10), which gives

d [~ exp(—az?) cos[b(z 4+ \)|dz = /OO (z + \) exp(—az?) sin[b(z + \)]dz,

- % —00 —00
(E.28)
so that
[e.e] d o
/ zexp(—az?)sinfb(xz + \)|dz = B exp(—az?) cos[b(z + \)]dzx
—)\/ exp(—az?) sin[b(z + \)]dz, (E.29)
Using Equations (E.10) and (E.11) and cancelling terms then gives
/OO zexp(—az?)sinfb(z + \)]dz = — md ex —ﬁ cos bA
P = WVaa \"P\
2
—)\\/?exp (—) sin bA
a
b b2
- 2Jr exp | —— | cosbA. (E.30)
2a '\ a 4a

The integral (E.14) can be evaluated firstly by using the identity cos x = cosh ¢z, which gives

cos(cx +d) = cosh[i(cx + d)]
= % (expli(cx + d)] + exp[—i(cz + d)]), (E.31)

which then gives

00 1 o
/ exp(—ax? + ibz) cos(cx + d)dz = 5 exp(id) / exp (—a:L‘2 +i(b+ c)z) dz
1 o0
+§ exp(—id) / exp (—az® +i(b— c)z) dx

1z . (b+c)?

= 2\/;[cosd+zsmd]exp (—4&>
1 |x . (b—c)?
—G—Q\/;[cosd—zsmd]exp<— 1 >,

(E.32)
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where Equation (E.7) has also been used.

The integral (E.15) can be evaluated by taking d/db of Equation (E.14) and multiplying by —i,

which gives

o d o0
/ z exp(—az? + ibx) cos(cx + d)dz = —i exp(—az? 4 ibx) cos(cx + d)dx

d |1 /m ..
= —zdbL\/;[cosd—l—zsmd}

<o (12

4a

+1\ﬁ[cosd — isind] exp (‘ s ;a6)2> ]

2V a
= Lﬂ[cosd—}—isind](b—kc)

o (-0

Jri g[cosd—isind](b— c)

Y
X exp < (b 4;) ) : (E.33)

The integral (E.16) can be evaluated by taking —d/da of Equation (E.14), which gives

/ 2% exp(—ax? + ibx) cos(cx + d)dx = _dia / exp(—az? + ibx) cos(cx + d)dx

d |1 |m -
= da[2\/;[cosd+zsmd]
2
Xexp(_(b—l—c) )
4a

_,_;\/Z[cosd — isind] exp (‘W) ]

1
= o g[cosd+isind]

<(1-© ;;V) exp (- jﬁ)
+41a\/§[cosd— i sin d]
(b—

" (1 B 2ac)2> exp <_(b ;;)2) |

(E.34)
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The integral (E.17) can be evaluated by using the identity sin x = —¢ sinh iz, which gives
sin(cx +d) = —isinh[i(cz + d)]
- —% lexpli(cz + d)] — exp[—i(cz + d)]] , (E.35)

which then gives

/ exp(—az? 4 ibx) sin(cx + d)dez = —% exp(id) / exp (—az® +i(b + c)x) da
—o0 —o0
+% exp(—id) / exp (—ax2 +i(b—c)z) dx
1 . (b+c)?
= 3 E[smd—zcosd]exp (— 1 )
1 jm . . (b—c)?
+2\/;[Slnd+zcosd] exp <— P > )
(E.36)

where Equation (E.7) has also been used.

The integral (E.18) can be evaluated by taking d/db of Equation (E.17) and multiplying by —i,
which gives

o0 d o0
/ z exp(—az? + ibx)sin(cx + d)dz = —i exp(—ax? + ibx) sin(cx + d)dzx

d (1 |7 . .
= —zdb<2\/;[smd—zcosd]

o (-0

4a

+;\/Z[Sind + i cos d] exp <_ - ;a0)2> )

(R )
= E[smd—zcosd](b%—c)

o (-059)

4a

v T, )
. E[smd—l—zcosd](b— c)

_ 2
X exp <— (b 4;) ) . (E.37)
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Finally, the integral (E.19) can be evaluated by taking —d/da of Equation (E.17), which gives

o0 d o
/ 22 exp(—az? + ibx)sin(cx + d)dz = ~Za exp(—ax? + ibz) sin(cz + d)dz

a1 |m . ,
= —da<2\/;[smd—zcosd}

X exp (—W>

4a

+;\/Z[sind + i cos d] exp (‘W) )

- i g[sind— i cos d]
(3
+41a\/j[sin
. <1 U )2> exp <<b Z@CV) |

(E.38)

—00

d + icosd]
c
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Time Integrals

F.1 Summary of Time Integrals

In Chapter 3, the calculation of the perturbed density and perturbed current density inside the

current sheet involve time integrals of the form

0 00 .
/ exp (—iwt + Acos(U £ a))dt = —i Z Im(AT);();p_(izma), (E.1)
0 . o9
/ cos(Qt) exp (—iwt + Acos(U + ) dt = —% Z I, (A) exp(+ima) (F.2)
1 n 1
X[(m-l—l)(l—w (m-1D)Q—w]’
0 oo
/ sin(Qt) exp (—iwt + Acos(Qt + «))dt = —% Z I, (A) exp(fima) (E.3)
) 1 1 ]
8 [(m—l—l)Q—w S m-1)Q-w]’
0
/ cos(2t) sin(Qt)
x exp (—iwt + Acos(Qt + «))dt = —i I, (As) exp(+ima)  (F4)
) 1 1 ]
8 (m+2)0—w (Mm—-2)Q—w]|’
0 . oo
/ sin?(Qt) exp (—iwt + Acos(QU £ a))dt = % > In(A) exp(+ima)
1 n 1
8 (m+2)Q—w (Mm—-2)Q—-w
2
prromm B (F5)

169



Appendix F. Time Integrals
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The calculations for the region outside the current sheet involve the following time integrals,

VY LAY
2|al 2|al

0
/ exp(—a?t® F ibt)dt

—00

0
/ texp(—a®t? T ibt)dt

—0o0

0
/ t? exp(—a*t? F ibt)dt

—0o0

0
/ exp(—a?t? F ibt) cos(ct)dt
— 00

1 b
— 7+
4a? < 2\@!) ’

1 b
7"+
8lal? ( 2Ia!> ’

i +h—
—— |z
4la[ ( 2|al

) (o))

(F.6)

FE7)

(E.8)

(F.9)

(F.10)

0
1 +b—c tb+c
242 ; / /
— Z Z .
/_ootexp( a“t” F ibt) cos(ct)dt 842 [ ( 2al )—i— ( 2al >]

where Z is the plasma dispersion function (see Appendix D).

F.2 Evaluation of Time Integrals

The integrals (F.1)-(F.5) for the region inside the sheet can all be carried out by using the formula

[e.9]

exp(z cosf) = Z I,(2) exp(im#),

m=—0oQ

(F.11)

(from Appendix C of Gary, 2005) where I,,, is a modified Bessel function of the first kind (e.g.
Abramowitz and Stegun, 1964). For illustration, the integral (F.1) is given by

0 0
/ exp (—iwt + Acos(U £ o)) dt = / exp(—iwt)

—00 —0o0
o0

X > In(A)exp(im(Qt £ o)) dt

m=—0oQ
o0

= Z I, (A) exp(F+ima)

m=—0oQ

0
></ exp[i(m — w)t]dt

oo

:_Z‘Z

m=—0Q

< [explitme - w)t)]:o

o0

I, (A) exp(L£ima)
ms) —w

I, (A) exp(Lima)
m) —w

, (F.12)
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where it is assumed that exp(i(m$2 —w)t) vanishes as t — —oo, which implies that the imaginary

part of the harmonic frequency w = w, + iy must be positive, since

exp(i(mQ —w)t) = expli(mQ —w, —iv)t]
= exp[(i[mQ — w,] + )t (F.13)

The integrals (F.3)-(F.5) can be evaluated in a similar way to the integral (F.1), by using the addi-

tional identities cos x = cosh(iz) and sinx = —isinhiz.
The integrals (F.6)-(F.8) are all obtained from equation (A.2) in Appendix A of Gary (2005), which
is

> 2,2, . i b
—a’t*+ibt)dt = ——2 | +— | . F.14
|| et wivna = 5o ( zra|> (=19

This integral can be rewritten to obtain the integral (F.6), by changing the integration variable from
t to —t, and then by swapping the limits of integration. The integral (F.7) can then be evaluated
by taking d/db of Equation (F.6) and multiplying by £, which gives

0 0
d
/ texp(—a’t® T ibt)dt = i exp(—a’t® F ibt)dt
d[1 b
= +— |—Z(+—
i 3" (*30)
1 b
= —Z'(+—). E15
1o <2yay> e

The integral (F.8) can be evaluated by taking d/db of Equation (F.7), then multiplying by =i,

which gives

0 0
/ t? exp(—a’t® Fibt)dt = :tii texp(—a®t? F ibt)dt
. ) ..
i d b
L A
4a2db< < 2\@]))
) b
= Z" [ +—). F.16
si? (=) (10

The integral (F.9) can be evaluated by using the identity cos z = cosh(ix), together with Equation
(F.6), which gives

0 1 o0
/ exp(—a®t? T ibt) cos(ct)dt = = / exp (—a2t2 +i(b+c)t)dt

—00 — 00

+- / exp (—a’t® £i(bF c)t) dt
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1 +b—c +b+c
- e Cr) 2 ()] @

The integral (F.10) can be evaluated by taking d/db of Equation (F.9), and by multiplying by =+,

which gives

0 0
/ texp(—a’t® F ibt) cos(ct)dt = ii% exp(—a*t? F ibt) cos(ct)dt

1 d +b——c +b+ ¢
- + - —|z|=—= z(=—"°%
4|a|db[ ( 2a] >+ ( 2/al )]
1 +b——c +b+c
= —|Z[|== 7 == . F.18
8a2[ <2|a| >+ <2|a| ﬂ =19

—00



Appendix G

Sums of Bessel Functions

In the stability calculation of Section 3.4, the following recurrence relations (from Abramowitz
and Stegun, 1964)

In1(2) + L1 (2) = 2I' (2), (G.1)
Ina () = Inia(2) = T h(2) G2)
I'(z) = Im,l(z)—%lm(z), (G.3)
Ly(z) = Inn(z) + = la(2), (G.4)

where I, is a modified Bessel function of the first kind, can be used to simplify various infinite

sums involving I,,,. Firstly, the sum

m;oo Im(A) |:(m + ]_)Qy —w N (m _ 1)Qy —ol (G.5)
can be simplified by writing
= 1
X WG,
00 1 B 2 L1 (A) = I (A)
mz_:oo Im(A) (m—-1)Q, —w mz_:oo nQy, — w ) (G.6)

upon letting n = m + 1 in the first sum and n = m — 1 in the second sum. Then, using the

recurrence relation (G.2) and using m instead of n gives

m;OOIm(A) [(m—i—l)ﬂy—w B (m_l)Qy_w] = Am;oomgy_w' (G.7)
The sum
mz_:oo fm(4) [(m D9, —w  (moD)e, - w] ) (G.8)
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can also be simplified, by writing

[e.9]

1

2 e, s
3 1 _ - In—l(A) + In+1(A)
4 m;o b =50, =% = m;o pro— (G.9)

again by letting n = m+1 in the first sum and n = m — 1 in the second sum. Using the recurrence

relation (G.1), and using m instead of n, then gives

[e.e] o0

1 1 15, (4)
I, (A =2 —m .10
Now, a simpler expression is required for the sums
0o 1 1
mz_:oolm(A) [(m+2)Qy—w B (m—Q)Qy_w] ’ (G.11)
and
oo 1 1 5
m_z_:oofm(A) {(m+2my—w im0, —w mQy—w] (G.12)
The sum (G.11) can be written as
i Ln(A)
= (m+2)Q, —w
- Im(A > 1
-2 (m_z)(g)_w = Y g Un2(4) — Ina(A)), (G.13)
m=—0o0 Y n=—o0o Y

by letting n = m + 2 in the first sum and n = m — 2 in the second sum. Setting m = n — 1 in the

recurrence relation (G.2) then gives,

Lnoo(2) — In(z) = 2<nz_1)1n1(z), (G.14)

and setting m = n + 1 in the relation (G.1) gives
L(2) 4+ Ingo(2) = 21} (2). (G.15)

Subtracting Equation (G.15) from Equation (G.14) then gives

2(n—1)

In-—o — Inyo =21 + In-1(z) — 215, 4(2). (G.16)
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Equation (G.3) can be used to give

n—+1

na1(2) = In(z) — L1 (2), (G.17)

(by setting m = n + 1) so that Equation (G.16) becomes

In—2(2) — Iny2(2) = 2771(17171(2) + In+1(2)) + %(InJrl(Z) —In-1(2)). (G.18)

Finally, using Equations (G.1) and (G.2) gives

In_o(2) — Inya(2) = 4: [1’( ) — i[n(z)} , (G.19)

and so the sum (G.11) can be expressed (using m instead of n) as

o)

1 1 4\ m
Z Im(A)[(m+2)Qy—w_(m—Q)Qy_W} T A Z m

m=—00 m=—00

« [I;H(A) - ilfm(A)] . (G20)

The sum (G.12) can be written as

> In(A) > In(A) 2 In(A)
2 (m+2)Qy—w+m:Z_OO(m—2)Q —w_2 2. mQ, — w

> In—Z(A) > In+2
= _— —_— 2 _—
n_oonQy—w—i_n:i nfly —w Z Q —w
> 1 . In(A)
= ——[I—2(A) + I42(A)] — 2 _ 21
= nQ, — w[ 2( ) + +2( )} m;()o mQy —w (G )

by letting n = m + 2 in the first sum and n = m — 2 in the second sum. This time, an expression

for I,,_o(z) + I, +2(z) is required. Firstly, setting m = n -+ 1 in the recurrence relation (G.2) gives

2(n+1)

In(z) - In+2(z) = In+1(z)a (G.22)

and setting m = n — 1 in the recurrence relation (G.1) gives
In—2(2) + In(2) = 2I;,_1(2). (G.23)

Subtracting Equation (G.22) from Equation (G.23) then gives

2(n+1)

Ln—o(2) + Lnya(2) = 21, _1(2) — Int1(2). (G.24)
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Equation (G.4) can be used to give

, n—1

n-1(2) = In(2) +

In—l (Z)a

(by setting m = n — 1) so that Equation (G.24) then becomes

2n

Faa(2) + T2 (2) = 200(2) 1 (2) = Tua(2)] = - [ () + D (2)]

Finally, using the recurrence relations (G.1) and (G.2) gives

7’L2
I, —2(2) + Inta(z) = 21,(2) + 2 [Zln(z) - Ifl(z)] ,

and so the sum (G.12) can be written (upon writing m instead of n) as

> I, (A) > In(A) . In(A)
2 o, et 2 o, e L 2w,

G.1 Bessel Sums For Fortran Code

(G.25)

(G.26)

(G.27)

(G.28)

The following infinite sums of Bessel functions appear in the expressions for the perturbed current

density inside the sheet. For the purpose of using these sums in a Fortran 90 code, it is convenient

to write the summation from m = 0 to m = oo instead of from m = —oo to co. The sums all

contain the normalised eigenvalue &, which is complex, and so the expressions must be split into

real and imaginary parts. In the expressions below, X; = 1 (for ions) and X, = m;/m, (for

electrons), with the latter expression arising from the normalisation in Chapter 4 (all frequencies

are normalised to the ion gyrofrequency). The sums can be written as follows:

)(XEm? — w + %)

— = 2X;
= Xem - W Z X2m2—w2+’y) + 4y2w?
= 2 (K
+4iXs’erZ m m( s)

(XZm? — Wl +72)% + 47%w?

m=0

= Sigrs +i511-

(G.29)
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oo
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