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Abstract. 
This chapter describes the conceptual foundations of cognitive science during its 
establishment as a science in the 20th century. It is organized around the core ideas of 
individual agency as its basic explanans and information-processing as its basic 
explanandum. The latter consists of a package of ideas that provide a mathematico-
engineering framework for the philosophical theory of materialism. 
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Part I. Introduction. 
 Cognitive science is the study of individual agency: its nature, scope, mechanisms, 
and patterns. It studies what agents are and how they function. This definition is modified 
from one provided by Bechtel, Abrahamson, and Graham (1998), where cognitive 
science is defined as “the multidisciplinary scientific study of cognition and its role in 
intelligent agency.” Several points motivate the modification. First (and least 
consequential), the multidisciplinarity of cognitive science is an accident of academic 
history, not a fact about its subject matter (a point also pressed in Gardner 1985). Second, 
the label “intelligent” is often used as a term of normative assessment, when cognitive 
science is concerned with behavior by entities (including possibly groups, as individual 
or collective agents) that are not considered intelligent, as well as unintelligent behavior 
of intelligent agents, for any intuitive definition of “intelligent”.1 
 Third and most importantly, the term “cognition” is omitted from the definiens to 
help emphasize a position of neutrality on a number of contemporary debates. Cognition 
can often reasonably be equated with mental activity, but the mind has traditionally been 
associated or contrasted with the brain. The modified definition recognizes that whether 
or how much cognition is brain-based is a matter of considerable dispute (e.g., Clark 
1997; Gallagher 2005; Adams and Aizawa 2008; Chemero 2011; Kiverstein and Miller 
2015). That said, for reasons of brevity of exposition I will often write in terms 
appropriate to the traditional brain-based framing of cognition. 
 In addition, the scope of cognition (and agency) is currently in flux. For example, 
if plants have cognition (Trewavas 2005; Calvo and Keijzer 2009), then brains and 
animal bodies are not required for cognition or agency. Other writers are more restrictive. 
For example, Von Eckardt 2003 sees the domain of cognitive science as the human 
                                                
1 For example, Newell and Simon’s (1976) physical symbol system hypothesis – that a 
physical symbol system has the necessary and sufficient means for intelligent action – 
covered humans and computers alike. They agreed that only systems of sufficient 
complexity and power could exhibit general intelligence, but intelligent action was not 
necessarily human action. 
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cognitive capacities. My working assumption is that human-style cognition is a special, if 
prototypical, case. Many people are most interested in human cognition. But what counts 
as cognitive will ultimately depend on the systems to which the basic conceptual 
framework of cognitive science can be fruitfully applied. 
 As conceptual history, the rise of cognitive science is the story of the articulation 
of the core concepts for explaining agency. This article explains five key innovations 
comprising the basic explanatory package of cognitive science. In traditional 
philosophical terms, they constitute the conceptual framework for explaining how the 
mind could be material. This package unifies the field despite the remaining conceptual 
and practical impediments of disciplinary boundaries, internal debates about how the 
package should be refined, and its incompleteness. It is assumed here that this package 
will be elaborated, not abandoned, in future work, just as the theory of evolution has 
continually unified biology despite tensions and controversies about its proper form. 
 The foundational ideas are associated with the main contributors and their main 
works; regrettably, discussion of the contributions of historical precursors and important 
contemporary figures is omitted for space reasons.2 These ideas include the information-
processing program (Alan Turing), neurons as information-processors (Warren 
McCulloch and Walter Pitts), feedback control of processing (Norbert Wiener), 
information as a measure of the structure of communication (Claude Shannon), and 
information-processing as a multiperspectival explanatory framework (David Marr). 
These ideas can be briefly described as follows, with details provided below.  
 Turing showed how recognizably rational behavior could be produced by an agent 
if very few distinct types of simple internal state transitions were sequenced in the right 
way. A human computer added columns of numbers, and so too could a simple Turing 
machine sequenced in the right way. McCulloch and Pitts showed how the basic internal 
machinery of the brain could be seen to realize these rational transitions. They mapped 
inferential steps involving propositions to transitions in states of neurons. Wiener 
described how the future behavior of such agents could depend on the impact of their 
prior responses on their environment. An agent can learn from experience when it can 
adaptively modify its behavior in response to experience that is itself a consequence of its 
prior behavior. Shannon showed how information could be understood and quantified in 
terms of the statistical or probabilistic structure inherent in communication. This structure 
is derived from conventional regularities that agents jointly create and can individually 
exploit to help achieve their goals. Marr showed that information-processing explanations 
shared an explanatory structure in which goals, processing steps, and physical operations 
would all be specified. This explanatory framework applied to non-rational as well as 
rational processes. 
 Of the five, Turing’s and Shannon’s contributions may be most fundamental: they 
articulated the core concepts of “processing” and “information” in “information-
processing”. In the case of Shannon, there are many other technical as well as colloquial 
concepts of information (Adriaans 2012). The claim made here is that Shannon’s concept 
is basic to cognitive science, and that its explanatory potential (unlike that of Turing’s 

                                                
2Besides Bechtel et al. op.cit., Boden 2006 is an authoritative and comprehensive 
discussion. Apray 1985: 120 provides a detailed chronology of key relevant works. 
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model) has barely begun to be elaborated. I discuss its relation to the philosophical notion 
of representation or content in Section II.4. 
 A potential sixth core element of the package is a theory of the goals of and 
constraints on information-processing capacities at the agent level. Proposals for the 
social root of intelligence (e.g., Jolly 1967; Humphreys 1976; Dunbar 1998; Sterelny 
2007) are attempts to make theoretical sense of agents’ goals, assessments, expectations, 
and responses within their social contexts. Developing and integrating a basic framework 
of agentic goals vis-à-vis other agents is one of the main challenges facing 21st century 
cognitive science. 
 The discussion below emphasizes the abstract nature of the core ideas. This 
feature has led, I believe, to some misunderstanding about the relation between cognitive 
science and the discipline-specific ways in which the ideas were initially appropriated, 
articulated, investigated, and deployed in explanation. For example, Turing’s model did 
not come with fine print stating the limits of its explanatory power. As we are discovering, 
much can be done in artificial intelligence to satisfy military, industrial, and commercial 
aims without addressing the symbol grounding problem – the problem of fixing the 
reference of symbols or concepts. Solving this problem may be crucial for explaining 
some aspects of agency, but Turing’s bare-bones model is not sufficient to solve it. That 
is why it is just a part of the basic explanatory package. 
 Similarly, the fact that post-behaviorist empirical psychology proceeded without 
looking at the brain is not the denial of an essential explanatory connection in cognitive 
science (nor, for that matter, in psychology). Scientific investigation involving the brain 
had to wait until the 1990’s. That was when the technology to measure ongoing neural 
activity with some degree of specificity during the performance of cognitive tasks 
became widely available. So when Searle (1980: 421) stated that “the whole idea of 
strong AI is that we don’t need to know how the brain works to know how the mind 
works …  [W]e can understand the mind without doing neurophysiology,” this may be 
true of strong AI and parts of psychology yet false of cognitive science. The cognitive 
science-biology boundary is not yet fixed. 
 Finally, while the core ideas are abstract, they are fundamentally mathematical 
rather than philosophical, quantitative rather than qualitative. The genius of those 
contributing to the package was their ability to build conceptual bridges between intuitive 
conceptions of mind and non-intuition-based explanations of them. Philosophers have 
contributed significantly to cognitive science from the start – as critics (e.g., Searle 1980, 
Dreyfus 1992), integrators (e.g., Fodor 1983), collaborators (e.g., Churchland and 
Sejnowski 1992), champions (e.g., P.M. Churchland 1990, P.S. Churchland 1986), and 
theoreticians (e.g., Fodor 1975, Dennett 1987; Chalmers 1995). They will continue to do 
so not just in one or more of these roles (e.g. Block 2007), but also as disseminators 
(Hohwy 2014), participants (Eliasmith 2013), and articulators of new social and moral 
concerns that arise as intuitions about human cognition and agency are challenged 
(Roskies 2010; Allen, Varner, and Zinser 2000). We think about the mind differently now 
than we did 100 years ago, due to both theoretical and empirical advances. Future 
philosophical participation in cognitive science will have to take this change into account. 
 
Part II. The Basic Explanatory Package  
 



 4 

We do resent the hiatus between our mental terminology and our physical terminology. It 
is being attacked in a very realistic fashion today. 
 McCulloch 1943 (from the Warren S. McCulloch Papers, cited in Piccinini 2004) 
 
 Cognitive science aims to explain agency in material terms – in particular, in 
mathematical terms that bridge logic (mind) and engineering (matter). Oddly, 
mathematics is omitted from the list of disciplines contributing to cognitive science even 
though many pioneers of cognitive science, including Turing, Pitts, Wiener, and Shannon, 
were mathematicians. In contrast, neuroscience, philosophy, psychology, linguistics, and 
computer science are usually listed as constitutive disciplines (e.g., Bechtel et al. op.cit.: 
69-70; Miller 2003: 143; Heckathorn 1989) even though (like mathematics) most areas of 
these disciplines have nothing to do with cognitive science. Anthropology is also 
included even though it quickly parted ways from cognitive science (Bender et al. 2010, 
2013). Sociology or “sociocultural studies” (Bechtel et al. op.cit.: 93) is mainly noted for 
its absence (Bainbridge 1994: 408), underlining the lag in integrating social aspects of 
cognition.  
 The omission of mathematics may be due to the fact that until Turing we lacked 
an empirically plausible model of how the mind could be material. Without such a model 
materialists could do little to counter the intuition, and philosophical position, that the 
mind is exempt from the mathematico-engineering, mechanical explanation of the rest of 
nature. Gottfried Leibniz (a mathematician) had the idea of a logical calculus in the 17th 
century, but he also denied that perception and consciousness could be implemented in a 
machine (Monadology 17). 3  With Turing’s breakthrough, we could retrospectively 
identify percursors – more mathematicians. In the 18th century, Charles Babbage invented 
(but did not fully build) an analytical engine for general computing that operated on the 
same principles as the Jacquard loom, which used sequences of punchcards to organize 
sequences of the machine’s weaving operations (Copeland 2008). George Boole (1854) 
found that mathematical operations performed on sets could also be logical operators that 
operated on propositions or sentential thought contents, suggesting that the resulting 
operations were laws of thought. Gottlob Frege (1879) added a logic that allowed for 
operations on parts of propositions, formalizing deductive inference.  
 The study of these ideas, blended in mathematical logic, unified the conceptual 
founders of cognitive science (Aspray 1985). The ideas themselves provided materialists 
with a clear engineering target: to build something that can do these logical operations. 
  

                                                
3 The influence of Leibniz’s logic on 19th century logicians is disputed (Peckhaus 2009), 
although Wiener (1961: 12) calls Leibniz the “patron saint” of cybernetics and Shannon 
(1948: 52) in turn credits Wiener as an important influence. What is indisputable is that 
the isolated idea of a logical calculus had no impact on the development of a materialist 
alternative to dualism prior to Turing, who relied directly on Boole, as did Shannon; 
meanwhile, Pitts was a student of Carnap, and Newell, Shaw, and Simon demonstrated 
the information-processing paradigm’s possibilities when their Logic Theorist program 
provided a more elegant proof of a theorem from Russell and Whitehead’s Principia 
Mathematica than the one in Principia (which led them to try, without success, to publish 
this result in a paper that listed Logic Theorist as a co-author).  
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II.1. 1936: Turing: Software 
 Turing (1936) provided the first explanatory link between these logical operations 
and a machine that could perform them. He showed that any well-defined logical or 
mathematical problem that had an effective solution – that could be solved in a finite 
number of steps – could be solved by following simple state transitions in a sequence. 
Although a Turing machine was not a physical device, each step could be imagined 
physically as a series of squares on a tape plus a read-write device. The device would 
scan a square (start the transition), erase or print a 1 or 0 on the square (perform a simple 
operation), and move to the next square (end the transition). These state transitions could 
be realized by a physical device with appropriate on/off switches as 1’s and 0’s and a way 
to distinguish and respond to them. 1’s and 0’s are numerically, not psychologically, 
interpreted states, but the way was open to interpret thoughts as complex symbols that 
could be similarly manipulated. Turing also showed that given enough space and time a 
single sequence of simple steps – a universal Turing machine – could encompass any 
other sequence by embedding them (or inserting them as needed) in the larger sequence. 
Like a mind, a universal Turing machine was versatile (“general-purpose”): it could solve 
“any problem that can be reduced to a programme of elementary instructions” (Williams 
and Kilburn 1948).  
 But can all mental operations be reduced to a series of elementary instructions? 
Descartes argued that animals lacked minds because they lacked language, the means by 
which humans can express an infinite variety of thoughts. (He did not consider 
prelinguistic infants, inter alia.) But whether universal Turing machines were as versatile 
as minds did not have to turn on intuitive measures of versatility. As Alan Newell, Cliff 
Shaw, and Herbert Simon – pioneers in developing computer programs with 
psychologically interpretable states and transitions4 – put it:  
 

[A] program incorporating such [elementary information] processes, with 
appropriate organization, can in fact solve problems. This aspect of problem 
solving has been thought to be “mysterious” and unexplained because it was not 
understood how sequences of simple processes could account for the successful 
solution of complex problems. The theory dissolves the mystery by showing that 
nothing more need be added to the constitution of a successful problem solver. 
(1958: 152) 
 

“Dissolves” may be overstating matters, but the demystifying of mind had begun. 
 Turing’s theory left open how an embodied universal Turing machine might be 
designed. The first programmable computers, which were built in the 1940’s (Williams 
and Kilburn op.cit.; von Neumann 1945; Godfrey and Hendry 1993), were designed to 
meet engineering goals. For example, optimizing operational efficiency by means of 
central program-storage unit (a Central Control) entailed minimizing the flexibility of the 
operations (von Neumann 1966: secs. 2.2, 2.3). But so what, if any needed flexibility 
could be left up to a human programmer? Similarly, ease of repair could be optimized by 

                                                
4 Newell, Shaw, and Simon (1958) developed the first list-processing language (IPL) for 
an information-processing system of psychologically interpretable transitions, rather than 
transitions in terms of 1’s and 0’s (Boden 1991: 10). 
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building a “fragile” machine that would stop operating at an error (von Neumann 1966: 
73), even if this meant they did not operate like brains, which isolated problems for 
working on them on the side.  
 Such engineering decisions should not be confused with limits on the explanatory 
potential of Turing’s model. Dreyfus (1992) argued that computing can’t explain human 
intelligence because the latter is context-sensitive and thus not rule-governed. Similarly, 
the fragility of von Neumann-style computers was treated as a bug by early champions of 
connectionism (e.g., Churchland 1990), a computing design based on neurophysiology 
(described below). Fragility, flexibility, and context-dependence are concepts in the same 
family as the intuitive idea of versatility. Turing’s model left open how any of these 
features might be realized in a universal Turing machine, and is consistent with a 
continuum of cognitive systems or agents of different degrees of versatility. 
 Nevertheless, the immediate assimilation of minds to computers by some 
psychologists and early AI researchers revealed exuberant hopes for how much mind 
could be explained with these first incarnations of Turing’s model. Due to arguments 
showing that no formal logical system could be used to prove all formulas that we 
recognize as being true, Turing was aware that a simple Turing machine could not do 
everything a human mind could do (Copeland and Shagrir 2013). But Turing (1950) also 
linked his processing story to human linguistic behavior by proposing the Turing Test, in 
which an interrogator tries to determine if her hidden interlocutor is a human or a 
computer. He predicted a computer would pass the Turing Test within 50 years; it 
remains unpassed. Simon reportedly predicted in 1957 that a computer would beat a 
human chess champion within 10 years; Big Blue beat Gary Kasparov in 1997. Searle’s 
(1980) Chinese-room thought experiment, which concludes that there is no understanding 
in a system that realizes an unelaborated Turing machine, provided a sharp rhetorical 
counter to these claims. 
 The early exuberance may also have reflected the fact that to experimental 
psychologists Turing’s model provided a viable non-introspectivist alternative research 
programme to behaviorism. In the early days of scientific psychology, introspectivist or 
structuralist psychologists (such as Wilhelm Wundt and Edward Titchener) used the 
reports of trained introspectors as evidence for the workings of the mind. When 
introspectors disagreed, there was no objective criterion for determining who might be 
right. Such unresolvable conflicts discredited structuralism as scientific psychology. 
Radical behaviorism went to the opposite extreme: the only allowable evidence was 
observable behavior or environmental contingencies, and only behavior needed to be 
explained. Behaviorism in this radical form never took hold in developmental, 
comparative, social, perceptual, or clinical psychology, and was not dominant outside the 
U.S. (Greenwood 1999; Miller 2003); even B.F. Skinner, its most well-known defender, 
was conflicted about it (Baars 2003). But where it was influential, its influence was 
profound: Neisser’s 1967 Cognitive Psychology, hailed as the ur-text of post-
behavioristic experimental psychology, had six chapters on vision, four on audition, and 
just one slim final chapter on higher cognition.5  

                                                
5 Radical behaviorism did leave two important legacies. First, the demand for observable 
behavioral evidence of psychological claims (“methodological” behaviorism) is now 
entrenched. Second, by focusing on behavior rather than consciousness, behaviorism 
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 As stored-program computing took off, experimental psychologists were facing a 
growing pile of anomalies that motivated looking inside the behaviorist’s black box. 
Miller (1956) showed that short-term memory capacity stayed constant at around 7 
‘chunks’ of information because items could be recoded into new ‘chunks’: for example, 
a 10-digit number is more easily remembered by being recoded into 3 chunks (e.g., 123-
456-7890). This showed that internal cognitive machinery was needed to explain memory. 
Chomsky (1959) argued that children’s linguistic output was governed by grammatical 
rules (or violated those rules in regular ways) that were underdetermined by the speech 
they heard as stimulus. This evidence of the ‘poverty of the stimulus’ (its inadequacy to 
explain the output) showed that internal operations were needed to explain language.  
 These and other results made the emerging cognitive science of information-
processing highly attractive: it seemed “complicated enough to do everything that 
cognitive theorists have been talking about” (Miller, Galanter, and Pribram 1960: 43). 
What they had been talking about, inter alia, were ways to explain phenomena that made 
behaviorism implausible. Thus, psychologists took away from Turing the lesson that “if 
they could describe exactly and unambiguously anything that a living organism did, then 
a computing machine could be built that could exhibit the same behavior with sufficient 
exactitude to confuse the observer” (Baddeley 1994: 46).  
 No wonder, then, that Turing’s model was immediately elaborated at a level 
appropriate to human-centered psychology: the symbols were interpreted as natural-
language-like concepts or mental representations, and the rules were the rules of 
deductive logic or heuristics (Fodor 1975; Newell and Simon 1976; Miller, Galanter, and 
Pribram op.cit.: 3). This ‘rules-and-representations’ research programme came to be 
known as classical computationalism. The stored-program computer of von Neumann’s 
design was the machine for which these first psychologically-interpreted internal state 
transitions were developed. They were specified in the form of software programs written 
in high-level programming languages. 
 The autonomy of psychology from biology (or neuroscience in particular) should 
also be understood in this context. Off-loading problems that are not of direct interest, 
particularly if the technology for investigating them is not yet available, is a rational 
scientific strategy. As Newell, Shaw, and Simon (op.cit.: 163) put it: “Discovering what 
neural mechanisms realize these information-processing functions in the human brain is a 
task for another level of theory construction.” The Turing-inspired research left open how 
much progress could be made without engaging with other levels of theory construction. 
 
II. 2. 1943: McCulloch and Pitts: Brainware 
 A materialist explanation of agency requires a theory of how physical agents 
could be cognitive systems. Assuming humans as the prototype of such an agent, 
McCulloch (a neurophysiologist) and Pitts (a mathematician) provided this theory. They 
proposed that neurons were biological logic gates. 
 A logic gate is a unit whose operations can be interpreted in terms of the truth 
table for the logical operations of ‘and’ and ‘or’, the operations in Boolean logic. An ‘and’ 
gate fires a pulse if and only if its two input channels both fire, mirroring the way a 

                                                                                                                                            
“helped to break down the distinction between the mental behavior of humans and the 
information processing of lower animals and machines” (Aspray (1985: 128). 
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conjunction – A and B – is true if and only if both A and B are true. An ‘or’ gate fires if 
at least one of its two input channels fires, mirroring the way a disjunction – A or B – is 
true if and only if at least one of the constituent sentences is true. A McCulloch-Pitts 
neuron is an abstract biological analogue of an electrical switch or relay, a basic 
component of a von Neumann computer (von Neumann 1945: 4.2, 4.3; Wiener 1948: Ch. 
5; Arbib 2000: 212). McCulloch-Pitts neurons were binary in operation, so their states 
could be associated with propositions: activation could be associated with truth values 
(on/1/true, off/0/false) and patterns of activation with inference. While such sparse 
coding (i.e., 1 activated neuron = 1 true proposition) is empirically wildly implausible, 
this interpretation is the simplest that directly links Turing’s model, with its simple state 
transitions, to the activity of the basic operating units of actual brains.6 This link 
presupposed the discovery by neuroscientist Santiago Ramon y Cajal that neurons do not 
form a continuous net but are discrete units that stand in electrochemical relations.  
 The McCulloch-Pitts theory inspired connectionist or neural network computing. 
Connectionist networks are virtual collections of McCulloch-Pitts neurons running on 
standard computers. They have simple units (nodes) with connections to other nodes. 
Input nodes are analogous to sensory neurons, output nodes to motor neurons, and 
“hidden” layers of nodes to neurons that mediate between input and output. Numerical 
weights on the connections regulate the amount of input (activation) passed or propagated 
from one node to another. When a node obtains sufficient net input from its incoming 
connections to reach or pass a firing threshold, it sends input (fires) to the nodes to which 
it is connected by its outgoing connections. The weights on the connections at one stage 
of processing determine the activation pattern at the next stage.7 
 Connection weights implicitly contain the record of past activation and so 
collectively embody what the network has learned from experience. The weights are 
adjusted automatically or by a human modeler using a learning rule. For example, a 
simple Hebbian learning rule (after psychologist Donald O. Hebb) increases the 
numerical value assigned to the connection between two nodes that co-activate. This 
makes them more likely to be co-activated in the future, mimicking the 
neurophysiological feature that synaptic connections are strengthened when two neurons 
are co-activated (called long-term potentiation, or, as the slogan goes, “neurons that fire 
together wire together”). 
 Connectionist-style modeling of cognitive capacities began in the 1940’s and 
1950’s but was overshadowed by programming research until the 1986 publication of 
Parallel Distributed Processing (Rumelhart, McClelland, and the PDP Research Group), 

                                                
6 Von Neumann suggested a further analogy: the Central Control and Memory of a 
standard stored-program computer were intended to “correspond to the associative 
neurons in the human nervous system” (von Neumann: 3, sec. 2.6; sec. 4.0, 4.2) – that is, 
the hidden layers of a connectionist network. 
7 This description of neural networks best fits feedforward networks, such as those in the 
PDP Research Group papers cited below. In these networks, activation passes from input 
to hidden to output layers, and the output is what the nodes in the output layer compute. 
Another important strand of connectionism stems from Hopfield (1982), who designed a 
recurrent network. In a recurrent network, every node provides input to every other node, 
and the network’s output is a stable activation pattern of the whole network. 
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which gathered papers on neural net research in perception, verb parsing, and other 
capacities. However, while early champions of connectionism approvingly contrasted 
their brain-like architecture with that of stored-program computing, McCulloch-Pitts 
neurons are no less abstract than the squares on a Turing machine tape. For example, 
there is no distinction between kinds of neurons and no means to represent the role of 
neuromodulators in realizing the context-dependence and variability of neural signaling 
(Dayan 2012; Izhikevich 2007). In fact connectionist networks are now used to model all 
kinds of networks (Baronchelli et al. 2013). Nodes and weighted connections (now also 
called edges) can represent, respectively, agents and the relative importance of interagent 
relations (Froese 2014); words and their frequency of association (Borge-Holthoefer and 
Arenas 2010); and ideas and the spread of innovation (Mason et al. 2008).  
 That said, there are important differences. In classical computing there is one 
series of computations,, represented by symbolic-program-governed operations on 
squares of tape. (More than one series can be run in parallel, but they are equivalent to a 
single series.) In a connectionist network, multiple computations – each represented by 
the equation-governed activation of each neural logic gate – go on simultaneously. In 
classical computationalism the problem is to write a program that will generate the 
desired output given the input; in connectionism the problem is to get the connection 
weights set so that the desired output is generated from the input. These differences yield 
interesting differences in terms of their explanatory power. Serial, stored-program 
computing is terrific for modeling logical operations, while parallel, weighted-connection 
computing is terrific for partitioning data into classes by frequency of association.  
 The relations between these types of computing and between each type and 
psychological processes are still debated. One way this debate has been framed is 
whether connectionist networks describe a cognitive level directly or whether they 
implement classical computation (Fodor and Pylyshyn 1988; Smolensky 1991; Marcus 
2001; Aizawa 2014). Currently, the activation patterns of the hidden layers in neural 
networks that are used to model brain activity have no clear psychological interpretation. 
Whether these patterns need to be so interpreted is also a matter of debate (Ramsey 2007; 
Bechtel 2001). 
 
II. 3. 1948: Wiener: Feedback Control 
 Turing’s model did not say how symbols or rules for manipulating them could be 
modified. Since many agents learn from experience, their agency cannot be explained by 
Turing machines that lack an internal learning mechanism. Wiener provided a model of 
feedback control, building on ideas from 19th century physicist James Clerk Maxwell.  
  Wiener (with his collaborator physiologist Arturo Rosenblueth) coined the term 
“cybernetics” (from the Greek for “steersman”, 1961: 11) for the study of “control and 
communication in the animal and the machine” – physical systems, living or not. A 
feedback loop is an agent-environment causal loop (or an epicycle in it) that allows for 
adjustment of the agent’s behavior (or a stage of it) in the light of what occurs in the 
environment as a result of its prior behavior. To use Wiener’s example (1961: 7), the 
muscle motions involved in picking up a pencil require some sort of information that will 
guide the appropriate motor commands at each moment in a way that depends on how 
much farther away the pencil is at any moment. The motion of your arm, hand, and 
fingers at any time depends on the way the environment now affects your eyes (the 
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source of the visual input of your arm position relative to the pencil) which depends on 
the motion you made a moment ago. 
 Cybernetics complicated the core explanatory package structurally and 
conceptually. In a simple Turing machine, the dependency between two states is set by a 
rule. Providing the initial input is like tapping the first domino in a series. In a simple 
feedforward neural network – in which connections propagate activation in one direction, 
from input to output – activation in nodes closer to output nodes cannot affect activation 
in nodes closer to input nodes. The updating of the network’s connection weights by the 
network modeler is analogous to thought-insertion. In both cases, internal feedback loops 
are needed to enable outputs at a later stage to be used as input in an earlier stage. Of 
course, a system may be able to get feedback but not be able to use it to alter its behavior. 
Where there is feedback control, there is also the capacity to change behavior by using 
feedback. Where in addition the change in behavior is adaptive, or responsive to 
environmental contingencies, there is also learning. 
 In this way cybernetics also introduced the concepts of goals, expectations, and 
assessments into the basic explanatory package: a system that has the capacity to generate 
and use feedback to control its behavior adaptively is a system with goals (or final states), 
expectations (intermediate states), and ways to assess its input in the light of these 
expectations and goals. The feedback control concept applies to “a learning system that 
wants something, that adapts its behavior in order to maximize a special signal from the 
environment” (Sutton and Barto 1998: Preface). Understanding such a system requires 
understanding the many ways in which it is coupled with its environment. 
 Like the other elements of the core explanatory package, the cybernetic model is 
abstract enough to apply to a wide range of systems. Like them, too, cybernetics was 
elaborated early on in psychological terms. Miller, Galanter, and Pribram (1960) adopted 
the model to describe “how actions are controlled by an organism’s internal 
representation of its universe.” Their motivation was clear: 
 
 The men who have pioneered in this area [of computing and programming] have 
 been remarkably innocent about psychology – the creatures whose behavior they 
 want to simulate often seem more like a mathematician’s dream than like living 
 animals. (op.cit.: 3) 
 
They theorized that stimulus and response were stages of the same complex feedback 
loop, which they called a TOTE unit (“Test-Operate-Test-Exit”). What an organism did 
was guided by the outcomes of TOTE units, which could be organized hierarchically 
(that is, feedback loops within feedback loops). Such complications were critical for the 
information-processing paradigm to even begin to explain human agency. 
 More recently, the cybernetic idea is reflected in the predictive error minimization 
or Bayesian brain model of whole-brain function (Friston 2010; Clark 2013; Hohwy 
2014), presaged by Rosenblueth, Wiener, and Bigelow (1943). A Bayesian model is one 
in which a system’s states (often interpreted as its beliefs or hypotheses) are updated 
using Bayes’ theorem. The theorem calculates the adjustments in the level of belief or 
credence one should have in a hypothesis in the light of new evidence and one’s prior 
credence in that hypothesis. On the predictive brain model, the brain (or a structure 
within it) compares a new input value to an expected value, calculates the difference or 
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error, if any, between the expected value and the actual input value, and makes an 
adjustment so that at the next stage its subsequent input is closer to its expectation. The 
system can adjust the hypothesis that generated the initial expected value to get a new 
expectation and then act much as it did, or it can adjust its subsequent behavior to get 
new input that will more closely match its expected value, or a bit of both.  
 When a feedback control loop is spatiotemporally tight, it is tempting to argue 
that a system does not require internal models or representations to explain its behavior. 
To borrow van Gelder’s (1995) illustrative example, the Watt governor for a steam 
engine continuously and mutually adjusts linear motion and centrifugal force because 
these forces are realized by mechanically coupled parts (a throttle valve, a spinning 
spindle with weighted arms). But not all feedback control loops are so tight or so closely 
linked to sensorimotor capacities (as with Weiner’s own example of reaching for a 
pencil). For example, reinforcement learning, when rewarded behavior becomes more 
frequent, falls squarely within the cybernetic model and yet requires non-behavioristic 
explanation (Rescorla 1988). As the predictive brain hypothesis is critically examined, 
the debate over the need for representational notions in neural networks (and, by 
implication, brains) is likely to expand to include the concepts of goals, expectations, and 
assessments that are integral to cybernetics. 
 
II. 4. 1948: Shannon: Information 
 So far the explanatory package has focused on the “processing” in “information-
processing”. But what is information? Shannon’s (1948) answer, building on Nyquist 
(1924) and Hartley (1928), is derived from his theory of communication. Communication 
is information transfer between agents. A core concept of information can be extracted 
from agents’ coordinated communicative actions, which can be quantified.  
 Warren Weaver, Shannon’s collaborator and communicator, distinguishes three 
basic problems in communication: the technical problem of accurate transfer of 
information from sender to receiver (was the message transmitted accurately?); the 
semantic problem of interpretation of meaning by the receiver as compared to the 
intended meaning of the sender (was the message understood in the intended way?); and 
the effectiveness problem of the success with which the meaning conveyed to the 
receiver leads to the receiver’s desired conduct (did the message lead the receiver to 
respond as the sender intended?). Answers to the latter two questions are constrained by 
answers to the first. As Shannon (1948: 1) notes, the semantic aspect of communication, 
and specifically the problem of reference, is irrelevant to “the engineering problem” of 
information transfer. It does not follow that his solution to the engineering problem is 
irrelevant to explaining reference or intentionality – that is, the ability of minds to 
represent aspects of items in the external world, in such a way that it is also possible for 
them to misrepresent). To the contrary, the theory describes the characteristics of a 
communication system that make reference possible. The link from reference to 
intentional contents – paradigmatically, thoughts about objects and their properties – will 
depend on how language and thought are related. For brevity, I assume here that at least 
some contentful mental states are partly, if not determinately, encoded in brain states 
(Dennett 1975), and that language expresses these contents, however imperfectly. 
 Shannon’s theory “is specifically adapted to handle one of the most significant but 
difficult aspects of meaning, namely the influence of context” (Weaver 1949): 
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  The concept of information applies not to the individual message, as the concept 
 of meaning would, but rather to the situation as a whole, the unit information 
 indicating that in this situation one has an amount of freedom of choice, in 
 selecting a message, which it is convenient to regard as a standard or unit amount. 
 
In philosophy, a linguistic context is typically an extra-linguistic setting in which an 
utterance occurs, described in qualitative terms – who is talking to whom, when, where, 
about what. Here, a linguistic context is the structure of the language to which the 
message belongs and which constrains the meanings that can be communicated. This 
linguistic context is quantified in the theory, and a quantitative concept of information 
can be extracted from it. As Weaver (op.cit.: 11) puts it, “information relates not so much 
to what you do say, but to what you could say.” Shannon’s theory, like the other elements 
of the core explanatory package, is apt for many kinds of agents and communication 
systems, such as neural signalling (Dayan and Abbott 2004; Dayan and Abbott 2001). 
But for brevity I focus on the primary case of human linguistic communication.  
 In human language, the basic constraints on the set of possible messages is given 
by the statistical structure of the language in which source and receiver participate. The 
statistical structure of a language is reflected in its written form, which encodes the 
spoken form that directly expresses thought. The first letter of a sentence is maximally 
uncertain; it is most informative (has the most information) in that it constrains all 
subsequent letter choices while the only constraint on it is that the language contains that 
letter.8 The frequencies of and relationships between letters can be quantified. The more 
the first choice constrains the second, the less information the second letter will contain: 
if the first letter is “Q” then given the features of English it is overwhelmingly likely that 
the next letter will be “U”. English is about 50% redundant (for strings of up to 8 letters): 
about half the letters or words we use are chosen by us, and about half are determined by 
the statistical structure of English. This is why we can figure out badly garbled or 
incomplete messages.9 
 In short, in communication the U is redundant; it contains no more information 
than was given by the choice of Q; its presence is far from random; it is highly probable 
given the selection of Q; its entropy is low; we experience no surprise upon seeing a U; 
once you see a Q you already know what comes next. These are all ways of expressing 
the same probabilistic relationship that is the basis of the unit of information. A unit of 
information is a measure of how much freedom a source has in selecting a message. 
Information transfer can be quantified in terms of the probabilities assigned to each 
message in a set of possible messages that a sender could select to send to the receiver. 
The larger the set of possible messages, the more source freedom; the more source 
freedom, the more receiver uncertainty regarding which message will be selected. Greater 

                                                
8 In languages with non-alphabetic scripts (e.g. Chinese), the set of conventions behind 
the statistical structure of communication (discussed below) are presumably divided up 
differently from the way they are in alphabetic languages. 
9  At http://karpathy.github.io/2015/05/21/rnn-effectiveness/ the text that the network 
modeler’s system generates illustrates the way that the statistical structure of English 
constrains letters to the extent that meaningful text emerges. 
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freedom of choice, greater uncertainty, and greater quantity of information go hand in 
hand (Weaver 1949).  
 What is not stated explicitly in Shannon’s theory is the fact that the statistical 
structure captured in letter frequencies encodes some (but not all) of the conventions that 
create a language, distinguishing utterances or inscriptions from noise. Meaningfulness 
involves further conventions, which have not yet been modeled quantitatively. The place 
to look for these might well be in anthropology (Bender et al. 2010) and other cultural 
and social sciences. In philosophy, we have qualitative theories that focus, in philosophy 
of mind, on agents’ interactions with enduring objects (Dretske 1988; Millikan 1985) and, 
in philosophy of language, agents’ interactions with each other (Grice 1957; Lewis 1969). 
The concept of information in standard informational theories of content (e.g. Dretske 
op.cit.) is in effect pure reference, divorced from and independent of communication. 
Shannon’s theory prompts thinking of reference as the upshot of additional constraints on 
communication, while leaving open how constrained a communication system must be, 
and which constraints it must have, in order for agents using that system to count as 
having representations (or intentionality) in the philosophical sense.10 
 In this vein, Weaver (op.cit.:14) speculatively adds into the communication 
process a step of statistical semantic decoding after the engineering receiver decodes the 
signal back into a message (e.g., the pulses of Morse code into English letters). This 
“semantic receiver” – currently just a black box – would match the statistical semantic 
characteristics of the message to the statistical semantic characteristics of the totality of 
receivers or the subset of them that the source wishes to affect. Within this black box, the 
causal relations of informational semantics would appear as statistical or probabilistic 
patterns of agent-world interaction. From this perspective, the man in Searle’s (op.cit.) 
Chinese room does not understand the symbols he manipulates because his rulebook only 
embodies, metaphorically, the engineering receiver.  
   
II. 5. 1982: Marr: Explanation 
 
 While many of the elements in the core explanatory package were discovered or 
derived from work that occurred during World War II, the post-war period involved the 
institutionalization of cognitive science and the development of these ideas within 
recognized institutional and disciplinary strictures. (Sept. 11, 1956 – the second day of a 
three-day Symposium on Information Theory at MIT – has been cited (Miller 2003: 142; 
Bechtel et al. op.cit.: 37) as an unofficial birthdate of cognitive science, but nothing hangs 
on this date.) Marr, a vision scientist, drew some general explanatory lessons from the 
emerging information-processing framework. Reacting to his contemporaries’ focus on 
the physiology of single neurons in visual processing, Marr held that a full explanation of 
vision would require understanding not just physical mechanisms but also their 
organization and contexts of operation. 
 Marr (1982: 24) proposed that explaining any information-processing system 
required answering three different sorts of questions about it. These could be described 

                                                
10 Note that Dretske’s (1981, 1983) appropriation of Shannon amounted to a causal 
theory of content of individual thoughts; as Dretske himself admits (1983: 82), he took 
very little from Shannon’s actual theory. 
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and conceptualized in terms of three explanatory levels or analyses (Bechtel and Shagrir 
2015; Shagrir 2010). The computational level involved explaining the why or goal of a 
particular kind of processing: What is the problem that the system need to solve? The 
algorithmic level involved explaining how this goal could be achieved in terms of the 
steps or state transitions leading to it: What sorts of representations and rules are used to 
solve the problem? The implementation level involved explaining how physical 
structures might realize these state transitions: What physical mechanisms instantiated 
these representations and their processing? Marr’s approach yielded a common 
explanatory currency for integrating cognitive science research across disciplines, from 
neurobiology to cognitive psychology. 
 Marr, with his collaborators Tomaso Poggio and Ellen Hildreth, illustrated this 
approach by reframing visual processing into the same classical computational terms that 
were being used to explain higher cognitive capacities. Information-processing was not 
just about playing chess, but also perceiving objects. Systems within human agents could 
also be understood in the same basic information-processing terms. For example, activity 
in a particular area of V1 was for edge detection (computational level). It achieved this 
goal using rules for calculating zero-crossings (algorithmic level); and neural and other 
biological and biochemical machinery in this area of V1 implemented these algorithms. 
V1 is the most common label for the tip of the occipital lobe, at the back of the brain, 
where visual information is initially processed after passing through the retinas and 
subcortical brain structures. Additional processing in other visual areas would eventually 
yield a 3D image of an object. 
 The three levels of analysis could apply to many complex systems. Answers to 
any one of questions would provide constraints on answers to the others. So explaining 
any one system would require referring to systems at other levels: 
 
 It is a feature of such [complex information-processing] tasks, arising from the 
 fact that the information processed in the machine is only loosely constrained by 
 the physical properties of the machine, that they must be understood at different, 
 though inter-related, levels. (1981: 258) 
 
In the case of vision, without answers at all three levels, describing the activity of 
neurons in response to specific stimuli, and even how these neurons are connected, would 
not yield an explanation of the phenomenon of vision. The need for multiple explanatory 
levels is hardly limited to cognition (O’Malley et al. 2013).  
 Other than in machine vision, Marr’s emphasis on finding algorithms by which 
visual-feature outputs are computed (as in edge detection) has been superceded by a 
greater focus on real-world perception and embodied cognition (e.g., O’Regan and Noe 
2001) and neural network computing methods (e.g., Olshausen and Field 1996). Debate 
over the necessity for symbolic representations in cognitive science has also sparked 
debate regarding the necessity for the algorithmic level in particular, given the classical 
computational terms in which Marr stated his theory. The relative independence of the 
levels, or the answers to the questions, has also been a matter of debate (although Marr 
and Poggio emphasized their interdependence). More recently, the contemporary search 
for canonical neural computations (Carandini 2012) pushes the explanatory framework 
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downwards, while Poggio (2012: 1021) pushes it outward by adding learning and 
development to the three original levels. 
 
Part III. Conclusion: What Lies Ahead?  
 
As long as the mind remains a black box, there will always be a donkey on which to pin 
dualist … intuitions. 
 Greene and Cohen 2004: 1781 
 
 The first century of cognitive science was largely a matter of formulating the 
basic explanatory package for materialism and exploring how much could be explained 
by these ideas. Different disciplinary specialization interpreted that framework in the 
ways most suited to their available technologies, training, and immediate explanatory 
goals. We do not yet have a comprehensive materialism, but there are advances going on 
in every direction. 
 One important example may be theories of consciousness (Dehaene et al. 1998, 
Oizumi et al. 2014, Tononi and Koch 2014), which had largely been left to philosophers 
(e.g., Chalmers op.cit., Block 1995) during “a century of taboo” in science (Baars 2003: 
fn. 1). This acceptance of consciousness as a scientific explanandum has been 
accompanied by efforts to accept reports of introspectively accessible conscious states as 
valid evidence (Jack and Roepstorff 2002, 2003). Clinical cases (e.g., detection of neural 
activity in vegetative-state patients), research in animal cognition, and advances in 
robotics are contributing to this final rejection of radical behaviorism and dualism.  
 New discoveries in neuroscience are also altering traditional ways of thinking 
about the mind. For example, the perception/cognition distinction is under siege given the 
discovery of the huge cortical allocation in higher primates to visual processing and new 
theories of vision in which the goal of vision is recognizing meaningful social stimuli 
(Nakayama 2010: 15). In memory research, our intuitive concept of memory as 
something stored in the brain, rather than constructed and elaborated in context, seems to 
get human memory wrong and computer memory right. Neuroimaging studies show 
overlap in brain areas involved in remembering past experiences and imagining or 
simulating possible future experiences. This suggests that remembering and imagining 
may be forms of a single process for preparing for the future, rather than distinct 
processes of recalling a stored representation and engaging in stimulus-independent 
thought (Schachter et al. 2012).  
 While the 21st century has already been dubbed the century of the brain (Flavell 
2000), it is also likely to be the century of the social (see also Bechtel et al. op.cit.: 90). 
The fact that early conceptual innovations regarding social cognition arose from field 
work with animals (e.g. Jolly op.cit.) may explain why they were not integrated earlier: 
the very idea of animal cognition was and to some degree remains a matter of debate 
(Shettleworth 2010). But enactivist and embodied cognitive research points in the 
opposite direction from that recommended in Fodor’s (1980) brief for methodological 
solipsism, a pragmatic recommendation for research modeled on Descartes’s solipsistic 
method for discovering the essence of mind. This push away from solipsism has been a 
thread within cognitive science for some time (e.g. Thelen and Smith 1994, Gibson 1979, 
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Brooks 1990, 1991). Social context is now being theorized in terms of multi-agent 
systems engaged in cooperation, communication, and learning.  
 It seems likely that the basic conceptual package for explaining agency will soon 
be fully elaborated in outline if not in its empirical details. Near the start of the last 
century, psychologist Karl Lashley summed up the materialist viewpoint as follows:  
 
 The vitalist cites particular phenomena … and denies the possibility of a
 mechanistic account of them. But he thereby commits what we might call the 
 egotistic fallacy. On analysis, his argument reduces every time to the form, “I am 
 not able to devise a machine that will do these things; therefore no one will ever 
 conceive of such a machine. (1923: 269)  
 
If one substitutes “dualism” for “vitalism”, a similar remark might be made regarding 
cognitive science at the start of the 21st century. Dualism will always remain conceivable, 
but an empirically testable theoretical framework for materialism is just a matter of time. 
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