A Completeness Theorem for a 3-Valued Semantics for a First-order Language

Christopher Gauker

July 20, 2015

This document presents a Gentzen-style deductive calculus and proves that it is complete with respect to a 3 -valued semantics for a language with quantifiers. The semantics resembles the strong Kleene semantics with respect to conjunction, disjunction and negation. The completeness proof for the sentential fragment fills in the details of a proof sketched in Arnon Avron (2003) "Classical Gentzen-type Methods in Propositional Many-valued Logics" in Beyond Two: Theory and Application of Multiple-Valued Logics, M. Fitting and E. Orlowska, eds., pp. 117-155. Physica Verlag. The extension to quantifiers is original but uses standard techniques.

Sentential Logic

Let $S L$ be a sentential language with connectives $\neg, \rightarrow, \wedge, \vee$ and standard syntax. Let GS3 be a Gentzen-style deductive calculus with the following rules:
(Basis) $\quad A \Rightarrow A$ i.e. $\frac{\emptyset}{A \Rightarrow A}$
(Weakening) $\frac{\Gamma \Rightarrow \Delta}{\Gamma^{\prime}, \Gamma \Rightarrow \Delta, \Delta^{\prime}}$
(Cut) $\quad \frac{\Gamma_{1} \Rightarrow \Delta_{1}, A \quad A, \Gamma_{2} \Rightarrow \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}$
$(\perp \Rightarrow) \quad \neg A, A \Rightarrow$ i.e. $\frac{\emptyset}{\neg A, A \Rightarrow \emptyset}$
$(\neg \neg \Rightarrow) \quad \frac{A, \Gamma \Rightarrow \Delta}{\neg \neg \mathrm{~A}, \Gamma \Rightarrow \Delta}$
$(\Rightarrow \neg \neg) \quad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \neg \neg A}$
$(\rightarrow \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta}$
$(\Rightarrow \rightarrow) \quad \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B}$
$(\neg \rightarrow \Rightarrow) \quad \frac{A, \neg B, \Gamma \Rightarrow \Delta}{\neg(A \rightarrow B), \Gamma \Rightarrow \Delta}$
$(\Rightarrow \neg \rightarrow) \quad \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, \neg B}{\Gamma \Rightarrow \Delta, \neg(A \rightarrow B)}$
$(\wedge \Rightarrow) \quad \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \wedge B \Rightarrow \Delta}$
$(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B}$
$(\neg \wedge \Rightarrow) \quad \frac{\Gamma, \neg A \Rightarrow \Delta \quad \Gamma, \neg B \Rightarrow \Delta}{\Gamma, \neg(A \wedge B) \Rightarrow \Delta}$
$(\Rightarrow \neg \wedge) \quad \frac{\Gamma \Rightarrow \Delta, \neg A, \neg B}{\Gamma \Rightarrow \Delta, \neg(A \wedge B)}$
$(\vee \Rightarrow) \quad \frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \vee B \Rightarrow \Delta}$
$(\Rightarrow \vee) \quad \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \vee B}$
$(\neg \vee \Rightarrow) \quad \frac{\Gamma, \neg A, \neg B \Rightarrow \Delta}{\Gamma, \neg(A \vee B) \Rightarrow \Delta}$
$(\Rightarrow \neg \vee) \quad \frac{\Gamma \Rightarrow, \Delta, \neg A \quad \Gamma \Rightarrow \Delta, \neg B}{\Gamma \Rightarrow \Delta, \neg(A \vee B)}$
NB: Arbitrary rearrangements of elements before " \Rightarrow " and arbitrary rearrangements of elements after " \Rightarrow " are allowed.

Definition. A valuation v is an assignment to atomic sentences of $S L$ of members of $\{Y, I, N\}$ ("yes", "indeterminate" and "no").

Definition. V extends a valuation v to every sentence of $S L$ iff for all sentences P of $S L$:

1. if P is atomic: $V(P)=v(P)$
2. if $P=\neg Q$, then: (a) $V(P)=Y$ if $V(Q)=N$,
(b) $V(P)=N$ if $V(Q)=Y$,
(c) $V(P)=I$ otherwise;
3. if $P=(Q \rightarrow R)$, then: (a) $V(P)=Y$ if $V(Q) \in\{I, N\}$ or $V(R)=Y$,
(b) $V(P)=N$ if $V(Q)=Y$ and $V(R)=N$,
(c) $V(P)=I$ if $V(Q)=Y$ and $V(R)=I ;$
4. if $P=(Q \wedge R)$, then:
(a) $V(P)=Y$ if $V(Q)=V(R)=Y$,
(b) $V(P)=N$ if $V(Q)=N$ or $V(R)=N$,
(c) $V(P)=I$ otherwise;
5. if $P=(Q \vee R)$, then:
(a) $V(P)=Y$ if $V(Q)=Y$ or $V(R)=Y$,
(b) $V(P)=N$ if $V(Q)=V(R)=N$,
(c) $V(P)=I$ otherwise;

In tables:

\neg		\rightarrow	Y	I	N	\wedge	Y	I	N	V	Y	I	N
Y	N	Y	Y	I	N	Y	Y	I	N	Y	Y	Y	Y
I	I	I	Y	Y	Y	I	I	I	N	I	Y	I	I
N	Y	N	Y	Y	Y	N	N	N	N	N	Y	I	N

NB: This set of connectives is not functionally complete. That is, not all truth functions on $\{\mathrm{Y}, \mathrm{I}, \mathrm{N}\}$ can be defined by means of them (Avron 2003, p. 219).

Definition. A model for a sequence $\Gamma \Rightarrow \Delta$ is a valuation v s.t. if V extends v, then for some $P \in \Gamma, V(P) \in\{I, N\}$ or for some $P \in \Delta, V(P)=Y$.
Definition. $\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is valid ${ }_{3}$ iff for every valuation v, if v is a model of each of $\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}$, then it is a model of $\Gamma \Rightarrow \Delta$.

Definition. $\Gamma \neq_{3} \Delta$ iff $\frac{\emptyset}{\Gamma \Rightarrow \Delta}$ is valid.
Definition. Where $S=\left\{\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}\right\}$, an S-cut is an application of (Cut) in which $A \in\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)$.

Definition. An S-proof of $\Gamma \Rightarrow \Delta$ from a set of sequences S is a proof in which every application of (Cut) is an S-cut.

Definition. Where $S=\left\{\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}\right\}, \Gamma^{*} \Rightarrow \Delta^{*}$ is S-saturated iff:

1. there is no S-proof of $\Gamma^{*} \Rightarrow \Delta^{*}$;
2. if $A \in\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)$ then $A \in \Gamma^{*} \cup \Delta^{*}$;
3. (a) if $\neg \neg A \in \Gamma^{*}$, then $A \in \Gamma^{*}$,
(b) if $\neg \neg A \in \Delta^{*}$, then $A \in \Delta^{*}$;
4. (a) if $A \rightarrow B \in \Gamma^{*}$, then $A \in \Delta^{*}$ or $B \in \Gamma^{*}$,
(b) if $A \rightarrow B \in \Delta^{*}$, then $A \in \Gamma^{*}$ and $B \in \Delta^{*}$,
(c) if $\neg(A \rightarrow B) \in \Gamma^{*}$, then $A \in \Gamma^{*}$ and $\neg B \in \Gamma^{*}$,
(d) if $\neg(A \rightarrow B) \in \Delta^{*}$, then $A \in \Delta^{*}$ or $\neg B \in \Delta^{*}$;
5. (a) if $A \wedge B \in \Gamma^{*}$, then $A \in \Gamma^{*}$ and $B \in \Gamma^{*}$,
(b) if $A \wedge B \in \Delta^{*}$, then $A \in \Delta^{*}$ or $B \in \Delta^{*}$,
(c) if $\neg(A \wedge B) \in \Gamma^{*}$, then $\neg A \in \Gamma^{*}$ or $\neg B \in \Gamma^{*}$,
(d) if $\neg(A \wedge B) \in \Delta^{*}$, then $\neg A \in \Delta^{*}$ and $\neg B \in \Delta^{*}$;
6. (a) if $A \vee B \in \Gamma^{*}$, then $A \in \Gamma^{*}$ or $B \in \Gamma^{*}$,
(b) if $A \vee B \in \Delta^{*}$, then $A \in \Delta^{*}$ and $B \in \Delta^{*}$,
(c) if $\neg(A \vee B) \in \Gamma^{*}$, then $\neg A \in \Gamma^{*}$ and $\neg B \in \Gamma^{*}$,
(d) if $\neg(A \vee B) \in \Delta^{*}$, then $\neg A \in \Delta^{*}$ or $\neg B \in \Delta^{*}$.

NB: If $\Gamma^{*} \Rightarrow \Delta^{*}$ is S-saturated, then membership in Γ^{*} behaves like Y and membership in Δ^{*} behaves like I or N.

Let $s_{1}, s_{2}, \ldots, s_{m}, \ldots$ be a list of all formulas that are either subformulas or negations of subformulas in $(\Gamma \cup \Delta) \cup\left(\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)\right)$.

Construct $\Gamma^{*} \Rightarrow \Delta^{*}$ thus:
Let $\Gamma^{0}=\Gamma, \Delta^{0}=\Delta$.
For all $i \geq 0$, let $\Gamma^{i+1}=\Gamma^{i} \cup\left\{s_{i+1}\right\}, \Delta^{i+1}=\Delta^{i}$, if there is no S-proof of $\Gamma^{i}, s_{i+1} \Rightarrow \Delta^{i}$.
For all $i \geq 0$, let $\Gamma^{i+1}=\Gamma^{i}, \Delta^{i+1}=\Delta^{i} \cup\left\{s_{i+1}\right\}$, if there is an S-proof of $\Gamma^{i}, s_{i+1} \Rightarrow \Delta^{i}$.
Let $\Gamma^{*}=\bigcup_{i=1}^{\infty} \Gamma^{i}$ and $\Delta^{*}=\bigcup_{i=1}^{\infty} \Delta^{i}$.

Observation 1: $A \in \Gamma^{*} \cup \Delta^{*}$ iff A is a subformula or a negation of a subformula of a formula in $(\Gamma \cup \Delta) \cup\left(\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)\right)$.

Lemma 1. Suppose there is no S-proof of $\Gamma \Rightarrow \Delta$. Then:
(i) For each $i \geq 0, \Gamma^{i+1} \Rightarrow \Delta^{i+1}$ has no S-proof.
(ii) There is no S-proof of $\Gamma^{*} \Rightarrow \Delta^{*}$.
(iii) Maximality: Let Γ_{0} and Δ_{0} be sets consisting of formulas that are either subformulas or negations of subformulas of formulas in $(\Gamma \cup \Delta) \cup\left(\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)\right)$. If $\Gamma_{0} \nsubseteq \Gamma^{*}$ or $\Delta_{0} \nsubseteq \Delta^{*}$, then $\Gamma_{0}, \Gamma^{*} \Rightarrow \Delta^{*}, \Delta_{0}$ has an S-proof.

Proof. (i) By induction:
Basis: By assumption, $\Gamma^{0} \Rightarrow \Delta^{0}$ has no S-proof.
Induction hypothesis: Suppose $\Gamma^{i} \Rightarrow \Delta^{i}$ has no S-proof.
Induction step: By the construction, either $\Gamma^{i+1}=\Gamma^{i} \cup\left\{s_{i+1}\right\}$ or $\Delta^{i+1}=$ $\Delta^{i} \cup\left\{s_{i+1}\right\}$. If $\Gamma^{i+1}=\Gamma^{i} \cup\left\{s_{i+1}\right\}$, then, by the construction, $\Gamma^{i+1} \Rightarrow \Delta^{i+1}$ has no S-proof. If $\Delta^{i+1}=\Delta^{i} \cup\left\{s_{i+1}\right\}$, then there is an S-proof of $\Gamma^{i}, s_{i+1} \Rightarrow \Delta^{i}$. Suppose $\Gamma^{i+1} \Rightarrow \Delta^{i+1}$, i.e. $\Gamma^{i} \Rightarrow \Delta^{i}, s_{i+1}$, has an S-proof. Then by (Cut), $\Gamma^{i} \Rightarrow \Delta^{i}$ has an S-proof, contrary to assumption.
(ii) Suppose there is an S-proof of $\Gamma^{*} \Rightarrow \Delta^{*}$. Since proofs are finite, there is an i such that $\Gamma_{i} \Rightarrow \Delta_{i}$ (in our construction) has an S-proof, contrary to (i).
(iii) Let Γ_{0} and Δ_{0} be as described. Case (a): $\Gamma_{0} \nsubseteq \Gamma^{*}$. There is $\Gamma_{0}^{\prime} \subseteq \Gamma_{0}$ such that $\Gamma_{0}^{\prime} \neq \emptyset$ and $\Gamma_{0}^{\prime} \cap \Gamma^{*}=\emptyset$. By the construction, $\Gamma_{0}^{\prime} \subseteq \Delta^{*}$. So by (Weakening), there is an S-proof of $\Gamma^{0}, \Gamma^{*} \Rightarrow \Delta^{*}, \Delta^{0}$. Case (b): $\Delta_{0} \nsubseteq \Delta^{*}$. Similarly.

Lemma 2. If $\Gamma \Rightarrow \Delta$ has no S-proof, then $\Gamma^{*} \Rightarrow \Delta^{*}$ (as in the construction) is S-saturated.

Proof. Suppose $\Gamma \Rightarrow \Delta$ has no S-proof.
Condition (1) in the definition of S-saturated: By Lemma 1 (ii).
Condition (2) in the definition of S-saturated: Suppose, for a reductio, that $A \in\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)$ but $A \notin \Gamma^{*} \cup \Delta^{*}$. By Lemma 1, maximality, $A, \Gamma^{*} \Rightarrow$ Δ^{*} and $\Gamma^{*} \Rightarrow \Delta^{*}, A$ have S-proofs. But $\frac{\Gamma^{*} \Rightarrow \Delta^{*}, A \quad A, \Gamma^{*} \Rightarrow \Delta^{*}}{\Gamma^{*} \Rightarrow \Delta^{*}}$ is an application of (Cut) to a member of $\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)$. So $\Gamma^{*} \Rightarrow \Delta^{*}$ has an S-proof, contrary to Lemma $1(i i)$.

Condition (3): (a) Suppose $\neg \neg A \in \Gamma^{*} \cdot \frac{A, \Gamma^{*} \Rightarrow \Delta^{*}}{\neg \neg \mathrm{~A}, \Gamma^{*} \Rightarrow \Delta^{*}}$ is an application of $(\neg \neg \Rightarrow)$. But $\neg \neg A, \Gamma^{*}=\Gamma^{*}$. So $\Gamma^{*} \Rightarrow \Delta^{*}$ has an S-proof if $A, \Gamma^{*} \Rightarrow \Delta^{*}$ has one. So $A, \Gamma^{*} \Rightarrow \Delta^{*}$ has no S-proof. So $A \notin \Delta^{*}$. So by the construction (and Observation 1), $A \in \Gamma^{*}$. (b) Suppose $\neg \neg A \in \Delta^{*}$. By ($\Rightarrow \neg \neg$), $\Gamma^{*} \Rightarrow \Delta^{*}$ has an S-proof if $\Gamma^{*} \Rightarrow \Delta^{*}, A$ has one. So $\Gamma^{*} \Rightarrow \Delta^{*}, A$ has none. So $A \notin \Gamma^{*}$. So $A \in \Delta^{*}$.

Condition (4): (a) Suppose $A \rightarrow B \in \Gamma^{*} . \frac{\Gamma^{*} \Rightarrow \Delta^{*}, A \quad B, \Gamma^{*} \Rightarrow \Delta^{*}}{A \rightarrow B, \Gamma^{*} \Rightarrow \Delta^{*}}$ is an applcation of $(\rightarrow \Rightarrow)$. But $A \rightarrow B, \Gamma^{*}=\Gamma^{*}$. Since $\Gamma^{*} \Rightarrow \Delta^{*}$ lacks an S-proof, either (i) $\Gamma^{*} \Rightarrow \Delta^{*}, A$ has no S-proof, or (ii) $B, \Gamma^{*} \Rightarrow \Delta^{*}$ has no S-proof. Suppose (i). $A \notin \Gamma^{*}$. So by the construction, $A \in \Delta^{*}$. Suppose (ii). $B \notin \Delta^{*}$. So $B \in \Gamma^{*}$. (b) Suppose $A \rightarrow B \in \Delta^{*}$. $\frac{A, \Gamma^{*} \Rightarrow \Delta^{*}, B}{\Gamma^{*} \Rightarrow \Delta^{*}, A \rightarrow B}$ is an application of $(\Rightarrow \rightarrow)$. But $\Delta^{*}, A \rightarrow B=\Delta^{*}$. Since $\Gamma^{*} \Rightarrow \Delta^{*}$ has no S-proof $\Gamma^{*}, A \Rightarrow \Delta^{*}, B$ has no S-proof. So $A \notin \Delta^{*}, B \notin \Gamma^{*}$, which means $A \in \Gamma^{*}$ and $B \in \Delta^{*}$. (c) Suppose $\neg(A \rightarrow B) \in \Gamma^{*} . \frac{A, \neg B, \Gamma^{*} \Rightarrow \Delta^{*}}{\neg(A \rightarrow B), \Gamma^{*} \Rightarrow \Delta^{*}}$ is an application of $(\neg \rightarrow \Rightarrow)$. But $\neg(A \rightarrow B), \Gamma^{*}=\Gamma^{*}$. So since $\Gamma^{*} \Rightarrow \Delta^{*}$ has no S-proof, $A, \neg B, \Gamma^{*} \Rightarrow \Delta^{*}$ has no S-proof. So $A \notin \Delta^{*}, \neg B \notin \Delta^{*}$, so $A \in \Gamma^{*}, \neg B \in \Gamma^{*}$. (d) Suppose $\neg(A \rightarrow B) \in \Delta^{*}$. $\frac{\Gamma^{*} \Rightarrow \Delta^{*}, A}{\Gamma^{*} \Rightarrow \Delta^{*}, \neg(A \rightarrow B)} \Gamma^{*} \Rightarrow \Delta^{*}, \neg B$ is an application of $(\Rightarrow \neg \rightarrow)$. But $\Delta^{*}, \neg(A \rightarrow B)=\Delta^{*}$. Since $\Gamma^{*} \Rightarrow \Delta^{*}$ has no S-proof, either (i) $\Gamma^{*} \Rightarrow \Delta^{*}, A$ has no S-proof, or (ii) $\Gamma^{*} \Rightarrow \Delta^{*}, \neg B$ has no S-proof. So either $A \notin \Gamma^{*}$ or $\neg B \notin \Gamma^{*}$. So either $A \in \Delta^{*}$ or $\neg B \in \Delta^{*}$.

Conditions (5) and (6): Similarly.
Lemma 3. If $\Gamma^{*} \Rightarrow \Delta^{*}$, constructed from $\Gamma \Rightarrow \Delta$, is S-saturated, then there is a valuation that is a model of every sequence in S, but not a model of $\Gamma \Rightarrow \Delta$.

Proof. Suppose $\Gamma^{*} \Rightarrow \Delta^{*}$ is S-saturated. Define valuation v as follows: For all atomic formulas P of $S L, v(P)=\left\{\begin{array}{l}Y \text { if } P \in \Gamma^{*} \\ \text { I if } P \notin \Gamma^{*} \text { and } \neg P \notin \Gamma^{*} . \\ N \text { if } \neg P \in \Gamma^{*}\end{array}\right.$.

First step: v is well-defined: If $P \in \Gamma$ and $\neg P \in \Gamma^{*}$, then by (Weakening) $\frac{P, \neg P \Rightarrow}{\Gamma^{*} \Rightarrow \Delta^{*}}$ will be an S-proof. Since $\Gamma^{*} \Rightarrow \Delta^{*}$ (by S-saturation) does not have an \vec{S}-proof, either $P \notin \Gamma^{*}$ or $\neg P \notin \Gamma^{*}$. So the definition of v does not yield both $v(P)=Y$ and $v(P)=N$.

Second step: Suppose V extends v. Prove for all formulas P of $S L$, if $P \in \Gamma^{*}$ then $V(P)=Y$ and if $P \in \Delta^{*}$ then $V(P) \in\{I, N\}$.

By induction:
Basis: The thesis holds for all literals (atomic sentences and negations of atomic sentences): First, consider atomic P. (i) Suppose $P \in \Gamma^{*} . v(P)=$ $V(P)=Y$. (ii) Suppose $P \in \Delta^{*}$. Since $\Gamma^{*} \Rightarrow \Delta^{*}$ has no S-proof, $P \notin \Gamma^{*}$. If $\neg P \notin \Gamma^{*}$, then $v(P)=V(P)=I \in\{I, N\}$. If $\neg P \in \Gamma^{*}$, then $v(P)=V(P)=$ $N \in\{I, N\}$. Next, consider $\neg P$, where P is atomic. (i) Suppose $\neg P \in \Gamma^{*}$. $v(P)=V(P)=N . V(\neg P)=Y$. (ii) Suppose $\neg P \in \Delta^{*}$. Since $\Gamma^{*} \Rightarrow \Delta^{*}$ has no S-proof, $\neg P \notin \Gamma^{*}$. If $P \notin \Gamma *$, then $v(P)=V(P)=I$ and $V(\neg P)=I \in\{I, N\}$. If $P \in \Gamma^{*}$, then $v(P)=V(P)=Y$ and $V(\neg P)=N \in\{I, N\}$.

Induction hypothesis: The thesis holds for $A, B, \neg A$ and $\neg B$.
Induction step: Show that it holds for $\neg \neg A,(A \rightarrow B), \neg(A \rightarrow B),(A \wedge$ $B), \neg(A \wedge B),(A \vee B)$ and $\neg(A \vee B)$.
$(\neg \neg)$: Suppose $\neg \neg A \in \Gamma^{*}$. By the definition of S-saturation, $A \in \Gamma^{*}$. By IH, $V(A)=Y . \quad V(\neg \neg A)=Y$. Suppose $\neg \neg A \in \Delta^{*}$. By the definition of S-saturation, $A \in \Delta^{*}$. By IH, $V(A) \in\{I, N\} . V(\neg \neg A) \in\{I, N\}$.
(\rightarrow) : Suppose $(A \rightarrow B) \in \Gamma^{*}$. By the definition of S-saturation, $A \in \Delta^{*}$ or $B \in \Gamma^{*}$. By IH, $V(A) \in\{I, N\}$, or $V(B)=Y . V(A \rightarrow B)=Y$. Suppose $(A \rightarrow B) \in \Delta^{*}$. By the definition of S-saturation, $A \in \Gamma^{*}$ and $B \in \Delta^{*}$. By IH , $V(A)=Y, V(B) \in\{I, N\} . V(A \rightarrow B) \in\{I, N\}$.
$(\neg \rightarrow)$ Suppose $\neg(A \rightarrow B) \in \Gamma^{*}$. By the definition of S-saturation, $A \in \Gamma^{*}$ and $\neg B \in \Gamma^{*}$. By IH, $V(A)=Y$ and $V(\neg B)=Y, V(\neg(A \rightarrow B))=Y$. Suppose $\neg(A \rightarrow B) \in \Delta^{*}$. By the definition of S-saturation, $A \in \Delta *$ or $\neg B \in \Delta^{*}$. By $I H, V(A) \in\{I, N\}$ or $V(\neg B) \in\{I, N\} . V(A) \in\{I, N\}$ or $V(B) \in\{Y, I\}$. $V(A \rightarrow B) \in\{Y, I\} . V(\neg(A \rightarrow B)) \in\{I, N\}$.

Cases $(\wedge),(\neg \wedge),(\vee),(\neg \vee)$ similarly.
Consequently, v is not a model of $\Gamma^{*} \Rightarrow \Delta^{*}$. So since (by Observation 1)
$\Gamma \subseteq \Gamma^{*}$ and $\Delta \subseteq \Delta^{*}, v$ is not a model of $\Gamma \Rightarrow \Delta$.
Third step: Show that v is a model of every sequence in S. Let $\Gamma_{i} \Rightarrow \Delta_{i}$ be an arbitrary member of S. Show that v is a model of $\Gamma_{i} \Rightarrow \Delta_{i}$. Suppose, for reductio, that $\Gamma_{i} \subseteq \Gamma^{*}$ and $\Delta_{i} \subseteq \Delta^{*}$. In that case, by (Weakening), $\Gamma^{*} \Rightarrow \Delta^{*}$ has an S-proof, $\frac{\Gamma_{i} \Rightarrow \Delta_{i}}{\Gamma^{*} \Rightarrow \Delta^{*}}$, contrary to Lemma 1(ii). So, either $\Gamma_{i} \nsubseteq \Gamma^{*}$ or $\Delta_{i} \nsubseteq \Delta^{*}$. But by condition (2) in the definition of S-saturation (or by Observation 1), $\Gamma_{i} \cup \Delta_{i} \subseteq \Gamma^{*} \cup \Delta^{*}$. So either (i) there is $A \in \Gamma_{i}$ such that $A \in \Delta^{*}$, or (ii) there is $A \in \Delta_{i}$ such that $A \in \Gamma^{*}$. In case (i) $V(A) \in\{I, N\}$. So v is a model of $\Gamma_{i} \Rightarrow \Delta_{i}$. In case (ii) $V(A)=Y$. So v is a model of $\Gamma_{i} \Rightarrow \Delta_{i}$.
Completeness Theorem for GS3: If $\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is valid $_{3}$, then, where $S=\left\{\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}\right\}$, there is an S-proof of $\Gamma \Rightarrow \Delta$ in GM3.

Proof. Suppose there is no S-proof of $\Gamma \Rightarrow \Delta$. Then, by Lemma $2, \Gamma \Rightarrow \Delta$ can be extended to S-saturated $\Gamma^{*} \Rightarrow \Delta^{*}$. By Lemma 3,

$$
\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta} \text { is not valid }{ }_{3}
$$

Corollary 1. If $\Gamma \not \models_{3} \Delta$ then there is a proof in GS3 of $\Gamma \Rightarrow \Delta$.

Extension of these results to $Q L$

Suppose that $S L$ is now a language like $S L$, defined above, except that the atomic formulas are composed, by the usual syntax, from countably many predicates of each adicity and denumerably many variables and denumerably many individual constants. Let $Q L$ be a language containing, for each (individual) variable v, a quantifier $\forall v . Q L$ has the standard syntax, allowing vacuous quantification, and $\exists v$ abbreviates $\neg \forall v \neg$. In any sequence, $\Gamma \Rightarrow \Delta$, the members of $\Gamma \cup \Delta$ are sentences, not open formulas. $P n / v$ denotes the result of substituting n for v wherever v occurs free in P. If v is not in P, then $P n / v=P$.

Let GQ3 be a Gentzen-style deductive calculus containing all of the rules of GS3 plus the following:
$(\forall \Rightarrow) \quad \frac{P n / v, \Gamma \Rightarrow \Delta}{\forall v P, \Gamma \Rightarrow \Delta}$
$(\Rightarrow \forall) \quad \frac{\Gamma \Rightarrow \Delta, P n / v}{\Gamma \Rightarrow \Delta, \forall v P}$ where n is not in P and not in any member of $\Gamma \cup \Delta$, i.e. n is new, or v is not in P,
$(\neg \forall \Rightarrow) \quad \frac{\neg P n / v, \Gamma \Rightarrow \Delta}{\neg \forall v P, \Gamma \Rightarrow \Delta}$ where n is not in P and not in any member of $\Gamma \cup \Delta$, i.e. n is new, or v is not in P,
$(\Rightarrow \neg \forall) \quad \frac{\Gamma \Rightarrow \Delta, \neg P n / v}{\Gamma \Rightarrow \Delta, \neg \forall v P}$
Define a 3-valued structure \mathfrak{M} as a triple $\left\langle U, \Sigma^{+}, \Sigma^{-}\right\rangle$where U, the universe, is a set of objects, and for each individual constant $n, \Sigma^{+}(n)=\Sigma^{-}(n)=\Sigma(n) \in U$. For each m-ary predicate $R, \Sigma^{+}(R) \subseteq U^{m}, \Sigma^{-}(R) \subseteq U^{m}$, and $\Sigma^{+}(R) \cap \Sigma^{-}(R)=$ \emptyset.

Let a structure and variable assignment \mathfrak{M}_{g} be a quadruple $\left\langle U, \Sigma^{+}, \Sigma^{-}, g\right\rangle$ with $U, \Sigma^{+}, \Sigma^{-}$as before and g a partial function over some of the variables of $Q L$ such that for each variable v in the range of $g: g(v) \in U$.
$g[v / o]$ is a variable assigment like g except that $g[v / o]$ assigns o to v instead of whatever g assigned to v, if v is in the range of g, and otherwise assigns o to v, if v is in the range of $g . g_{\emptyset}$ is the empty variable assignment with an empty range.

Associate with \mathfrak{M}_{g} the function h such that for each singular term t of $Q L$ that is either an individual constant of $Q L$ or a variable of $Q L$ in the range of $g, h(t)=\left\{\begin{array}{l}\Sigma(t) \text { if } t \text { is an individual constant }, \\ g(t) \text { if } t \text { is a variable. }\end{array}\right.$

A structure $\mathfrak{M}=\mathfrak{M}_{g_{\emptyset}}$.
Associate with each structure and variable assignment \mathfrak{M}_{g} a function of the same name from formulas of $Q L$ into $\{Y, I, N\}$, as follows:

```
\(\mathfrak{M}_{g}\left(R t_{1} t_{2} \ldots t_{m}\right)=Y\) iff \(\left\langle h\left(t_{1}\right), h\left(t_{2}\right), \ldots, h\left(t_{m}\right)\right\rangle \in \Sigma^{+}(R)\),
\(\mathfrak{M}_{g}\left(R t_{1} t_{2} \ldots t_{m}\right)=N\) iff \(\left\langle h\left(t_{1}\right), h\left(t_{2}\right), \ldots, h\left(t_{m}\right)\right\rangle \in \Sigma^{-}(R)\),
\(\mathfrak{M}_{g}\left(R t_{1} t_{2} \ldots t_{m}\right)=I\) otherwise,
\(\mathfrak{M}_{g}(\neg P)=Y\) iff \(\mathfrak{M}_{g}(P)=N\),
\(\mathfrak{M}_{g}(\neg P)=N\) iff \(\mathfrak{M}_{g}(P)=Y\),
\(\mathfrak{M}_{g}(\neg P)=I\) otherwise,
\(\mathfrak{M}_{g}(P \rightarrow Q)=Y\) iff \(\mathfrak{M}_{g}(P) \in\{I, N\}\) or \(\mathfrak{M}_{g}(Q)=Y\),
\(\mathfrak{M}_{g}(P \rightarrow Q)=N\) iff \(\mathfrak{M}_{g}(P)=Y\) and \(\mathfrak{M}_{g}(Q)=N\),
\(\mathfrak{M}_{g}(P \rightarrow Q)=I\) otherwise,
\(\mathfrak{M}_{g}(\forall v Q)=Y\) iff for all \(o \in U, \mathfrak{M}_{g[v / o]}(Q)=Y\),
\(\mathfrak{M}_{g}(\forall v Q)=N\) iff for some \(o \in U, \mathfrak{M}_{g[v / o]}(Q)=N\),
\(\mathfrak{M}_{g}(\forall v Q)=I\) otherwise.
```

Observation 2: If U is identical to the set of all individual constants of $Q L$ and for all singular constants n of $Q L, \Sigma(n)=n$, then $\mathfrak{M}(\forall v Q)=Y$ iff for all n of $Q L, \mathfrak{M}(Q n / v)=Y$, and $\mathfrak{M}(\forall v Q)=N$ iff for some n of $Q L, \mathfrak{M}(Q n / v)=N$.

Observation 3: If v is not in $Q, \mathfrak{M}_{g}(\forall v Q)=Y$ iff $\mathfrak{M}_{g}(Q)=Y$ and $\mathfrak{M}_{g}(\forall v Q)=$ N iff $\mathfrak{M}_{g}(Q)=N$.

Definition. A structure \mathfrak{M} is a model for $\Gamma \Rightarrow \Delta$ iff either there is $P \in \Gamma$ such that $\mathfrak{M}(P) \in\{I, N\}$ or there is $P \in \Delta$ such that $\mathfrak{M}(P)=Y$.

Definition. $\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is valid $_{Q 3}$ iff every structure that is a model for each of $\Gamma_{1} \Rightarrow \Delta_{1}, \Gamma_{2} \Rightarrow \Delta_{2}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}$ is a model for $\Gamma \Rightarrow \Delta$.

Let C be a denumerable set of individual constants not in $Q L . Q L^{+}$is $Q L$ supplemented by the individual constants in C. By standard techniques, we associate with each formula P of $Q L^{+}$having exactly one free variable, two members of C, c_{P}^{+}and c_{P}^{-}, called the witnesses for P, having the same birth date, such that for no formula Q of $Q L^{+}$whose witnesses have that same birth date or an earlier birth date does Q contain c_{P}^{+}or $c_{P}^{-} . c_{P}^{+}$is the positive witness for P and c_{P}^{-}is the negative witness for P.

Definition. The Henkin set \mathcal{H} for $Q L^{+}$is the set of sentences Q of $Q L^{+}$such that $Q \in \mathcal{H}$ iff

1. n is an individual constant of $Q L^{+}$and $Q=(\forall v P \rightarrow P n / v)$ or $Q=(\neg P n / v \rightarrow \neg \forall v P)$, or
2. v is not in P, and $Q=(P \rightarrow \forall v P)$ or $Q=(\neg \forall v P \rightarrow \neg P)$, or
3. c_{P}^{+}is the positive witness for P and $Q=\left(P c_{P}^{+} / v \rightarrow \forall v P\right)$, or
4. c_{P}^{-}is the negative witness for P and $Q=\left(\neg \forall v P \rightarrow \neg P c_{P}^{-} / v\right)$.

Lemma 4. (a) $\frac{(A \rightarrow B), \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A}$ is provable.
(b) $\frac{(A \rightarrow B), \Gamma \Rightarrow \Delta}{\Gamma, B \Rightarrow \Delta}$ is provable.

Proof. (a)

\[

\]

(b) Similarly.

Lemma 5. $\frac{\Gamma,(\forall v P \rightarrow P n / v) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$ is provable.

$$
\begin{aligned}
& \frac{\Gamma,(P n / v \rightarrow \forall v P) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \text { where } n \text { is new, or } v \text { is not in } P \text {, is provable. } \\
& \frac{\Gamma,(\neg \forall v P \rightarrow \neg P n / v) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \text { where } n \text { is new, or } v \text { is not in } P \text {, is provable. } \\
& \frac{\Gamma,(\neg P n / v \rightarrow \neg \forall v P) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \text { is provable. }
\end{aligned}
$$

Proof. By Lemma 4 and $(\forall \Rightarrow),(\Rightarrow \forall),(\neg \forall \Rightarrow)$ and $(\Rightarrow \neg \forall)$ respectively. For example:

$$
\frac{\frac{\Gamma,(\neg \forall v P \rightarrow \neg P n / v) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \forall v P(\text { Lemma 4) }} \quad \frac{\frac{\Gamma,(\neg \forall v P \rightarrow \neg P n / v) \Rightarrow \Delta}{\neg P n / v, \Gamma \Rightarrow \Delta(\text { Lemma } 4)}}{\neg \forall v P, \Gamma \Rightarrow \Delta(\neg \forall \Rightarrow)}}{\Gamma \Rightarrow \Delta(C u t)}
$$

The Elimination Theorem Suppose every sentence in
$(\Gamma \cup \Delta) \cup\left(\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)\right)$ is in QL. Suppose also that
$\frac{\Gamma_{1}, \mathcal{H} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n}, \mathcal{H} \Rightarrow \Delta_{n}}{\Gamma, \mathcal{H} \Rightarrow \Delta}$ is provable in $G Q 3$ for $Q L^{+}$. Then
$\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is provable in GQ3 for $Q L$.
Proof. Suppose the hypothesis. Since proofs are finite, there is a finite subset $\mathcal{J} \subseteq \mathcal{H}$ such that $\frac{\Gamma_{1}, \mathcal{J} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n}, \mathcal{J} \Rightarrow \Delta_{n}}{\Gamma, \mathcal{J} \Rightarrow \Delta}$ is provable. Show:
$\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is provable (in $G Q 3$ for $Q L$). By induction on the size of \mathcal{J} :

Basis: $\mathcal{J}=\emptyset$. Trivial.
Induction Hypothesis: Suppose the thesis holds when \mathcal{J} hast m members $(m \geq 0)$. Show that the thesis holds when \mathcal{J} has $m+1$ members.

Case 1: At least one member Q of \mathcal{J} is of the form $(\forall v P \rightarrow P n / v)$ or $(\neg P n / v \rightarrow \neg \forall v P)$ or $(P \rightarrow \forall v P)$ or $(\neg \forall v P \rightarrow P)$. There is a set \mathcal{J}^{\prime} such that $\mathcal{J}=\mathcal{J}^{\prime} \cup\{Q\}, Q \notin \mathcal{J}^{\prime}$. By the IH it suffices to show that if $\frac{\Gamma_{1}, \mathcal{J}^{\prime} \cup\{Q\} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n}, \mathcal{J}^{\prime} \cup\{Q\} \Rightarrow \Delta_{n}}{\Gamma, \mathcal{J}^{\prime} \cup\{Q\} \Rightarrow \Delta}$ is provable then
$\frac{\Gamma_{1}, \mathcal{J}^{\prime} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n}, \mathcal{J}^{\prime} \Rightarrow \Delta_{n}}{\Gamma, \mathcal{J}^{\prime} \Rightarrow \Delta}$ is provable, thus:

$$
\frac{\begin{array}{c}
\Gamma_{1}, \mathcal{J}^{\prime} \Rightarrow \Delta_{1} \\
\frac{\Gamma_{1}, \mathcal{J}^{\prime} \cup\{Q\} \Rightarrow \Delta_{1}(\text { Weakening })}{} \cdots \cdots \overline{\Gamma_{n}, \mathcal{J}^{\prime} \cup\{Q\} \Rightarrow \Delta_{n}(\text { Weakening })} \\
\Gamma, \mathcal{J}^{\prime} \cup\{Q\} \Rightarrow \Delta(\text { Supposition }) \\
\Gamma, \mathcal{J}^{\prime} \Rightarrow \Delta(\text { by Lemma } 5)
\end{array} .}{} .
$$

Case 2: All members of \mathcal{J} are sentences of the form $\left(P c_{P}^{+} / v \rightarrow \forall v P\right)$ or $\left(\neg \forall v P \rightarrow \neg P c_{P}^{-} / v\right)$. Of all the witnesses in the sentences in \mathcal{J} (positive or negative), let c_{P}^{*} be one that has latest birth date. (There might be two, one positive, one negative.) c_{P}^{*} does not occur in any member of $(\Gamma \cup \Delta) \cup$ $\left(\left(\bigcup_{i=1}^{n} \Gamma_{i}\right) \cup\left(\bigcup_{i=1}^{n} \Delta_{i}\right)\right)$ or in any other member of \mathcal{J}. Let Q be a sentence in \mathcal{J} containing c_{P}^{*}. So $Q=\left(P c_{P}^{*} / v \rightarrow \forall v P\right)$ or $Q=\left(\neg \forall v P \rightarrow \neg P c_{P}^{*} / v\right)$. As in Case 1, we can drop Q from the proof.

Definition. A valuation val for $Q L^{+}$is an assignment of the members of $\{Y, I, N\}$ to sentences of $Q L^{*}$ that are either quantified or atomic.

Definition. Val extends val to every sentence of $Q L^{+}$in accordance with tables given above for $S L$.

The Henkin Construction Theorem: Suppose val is a valuation for $Q L^{+}$ and Val extends val such that for all $Q \in \mathcal{H}, \operatorname{Val}(Q)=Y$. Then we can construct a structure $\mathfrak{M}_{V a l}$ for $Q L^{+}$such that for all sentences P of $Q L^{+}, \operatorname{Val}(P)=Y$ iff $\mathfrak{M}_{V a l}(P)=Y$, and $\operatorname{Val}(P)=N$ iff $\mathfrak{M}_{V a l}(P)=N$ (By implication: $\operatorname{Val}(P)=I$ iff $\left.\mathfrak{M}_{\text {Val }}(P)=I\right)$.

Proof. Define $\mathfrak{M}_{\text {Val }}$ thus:
U is identical to the set of individual constants of $Q L^{+}$.
For each individual constant n of $Q L^{+}: \Sigma(n)=n$.
For each m-place predicate R of $Q L^{+}(Q L)$:
$\Sigma^{+}(R)=\left\{\left\langle n_{1}, n_{2}, \ldots, n_{m}\right\rangle \mid v a l\left(R n_{1} n_{2} \ldots n_{m}\right)=Y\right\}$,
$\Sigma^{-}(R)=\left\{\left\langle n_{1}, n_{2}, \ldots, n_{m}\right\rangle \mid \operatorname{val}\left(R n_{1} n_{2} \ldots n_{m}\right)=N\right\}$.
By induction on the length of sentences:
Basis: Suppose P is atomic, i.e. $P=R n_{1} n_{2} \ldots n_{m}$.
Left-to-right: Suppose $\operatorname{Val}\left(R n_{1} n_{2} \ldots n_{m}\right)=Y$. By the construction of $\mathfrak{M}_{\text {Val }},\left\langle n_{1}, n_{2}, \ldots, n_{m}\right\rangle \in \Sigma^{+}(R)$. By the construction of $\mathfrak{M}_{\text {Val }},\left\langle\Sigma\left(n_{1}\right), \Sigma\left(n_{2}\right)\right.$, $\left.\ldots, \Sigma\left(n_{m}\right)\right\rangle \in \Sigma^{+}(R)$. So by the definition of \mathfrak{M}_{g} (as a function), $\mathfrak{M}_{\text {Val }}\left(R n_{1} n_{2} \ldots n_{m}\right)$ $=Y$. Suppose $\operatorname{Val}\left(R n_{1} n_{2} \ldots n_{m}\right)=N$. By the construction, $\left\langle n_{1}, n_{2}, \ldots, n_{m}\right\rangle \in$
$\Sigma^{-}(R)$. By the construction, $\left\langle\Sigma\left(n_{1}\right), \Sigma\left(n_{2}\right), \ldots, \Sigma\left(n_{m}\right)\right\rangle \in \Sigma^{+}(R)$. So $\mathfrak{M}_{\text {Val }}\left(R n_{1} n_{2} \ldots n_{m}\right)=N$.

Right-to-left: Suppose $\mathfrak{M}_{\text {Val }}\left(R n_{1} n_{2} \ldots n_{m}\right)=Y$. By the construction of $\mathfrak{M}_{\text {Val }},\left\langle\Sigma\left(n_{1}\right), \Sigma\left(n_{2}\right), \ldots, \Sigma\left(n_{m}\right)\right\rangle \in \Sigma^{+}(R)$. By the construction of $\mathfrak{M}_{V a l}$, $\left\langle n_{1}, n_{2}, \ldots, n_{m}\right\rangle \in \Sigma^{+}(R) . \operatorname{Val}\left(R n_{1} n_{2} \ldots n_{m}\right)=Y$. Suppose $\mathfrak{M}_{V a l}\left(R n_{1} n_{2} \ldots n_{m}\right)$ $=N$. Similarly.

Induction hypotheses: Suppose the thesis holds for all sentences having complexity k. Show that it holds for all sentences having complexity $k+1$.

Induction step:
(\neg) : Exercise.
(\rightarrow) : Suppose $P=(Q \rightarrow R)$.
Left-to-right: Suppose $\operatorname{Val}(Q \rightarrow R)=Y$. By the definition of Val, either $\operatorname{Val}(Q) \in\{I, N\}$ or $\operatorname{Val}(R)=Y$. By IH, either $\mathfrak{M}_{V a l}(Q) \in\{I, N\}$ or $\mathfrak{M}_{V a l}(R)=$ Y. By the definition of $\mathfrak{M}_{g}, \mathfrak{M}_{V a l}(Q \rightarrow R)=Y$. Suppose $\operatorname{Val}(Q \rightarrow R)=N$. By the definition on $\operatorname{Val}, \operatorname{Val}(Q)=Y$ and $\operatorname{Val}(R)=N$. By the definition of $\mathfrak{M}_{g}, \mathfrak{M}_{\text {Val }}(Q \rightarrow R)=N$.

Right-to-left: Exercise.
$(\wedge),(\vee)$: Exercise.
(\forall) : Left-to-right: Suppose $\operatorname{Val}(\forall v Q)=Y$. By the definition of \mathcal{H}, for all individual constants n in $Q L^{+}, \operatorname{Val}(\forall v Q \rightarrow Q n / v)=Y$. So by the definition of Val, for all individual constants n in $Q L^{+}, \operatorname{Val}(Q n / v)=Y$. By the IH , for all individual constants n in $Q L^{+}, \mathfrak{M}_{V a l}(Q n / v)=Y$. By Observation 2, $\mathfrak{M}_{\text {Val }}(\forall v Q)=Y$. Suppose $\operatorname{Val}(\forall v Q)=N . \operatorname{Val}(\neg \forall v Q)=Y$. Case 1: v is not in Q. Then by the construction of $\mathcal{H}, \operatorname{Val}(\neg \forall v Q \rightarrow \neg Q)=Y$. By the definition of $\operatorname{Val}, \operatorname{Val}(\neg Q)=Y$. By IH, $\mathfrak{M}_{V a l}(\neg Q)=Y$. By the definition of $\mathfrak{M}_{g}, \mathfrak{M}_{\text {Val }}(Q)=N$. By Observation 3, $\mathfrak{M}_{\text {Val }}(\forall v Q)=N$. Case 2: v is in Q. Then by the construction of $\mathcal{H}, \operatorname{Val}\left(\neg \forall v Q \rightarrow \neg Q c_{Q}^{-} / v\right)=Y$. By the definition of $\operatorname{Val}, \operatorname{Val}\left(\neg Q c_{Q}^{-} / v\right)=Y$. By the $\mathrm{IH}, \mathfrak{M}_{V a l}\left(\neg Q c_{Q}^{-} / v\right)=Y$. By the definition of $\mathfrak{M}_{g}, \mathfrak{M}_{\text {Val }}\left(Q c_{Q}^{-} / v\right)=N$. By the definition of $\mathfrak{M}_{g}, \mathfrak{M}_{\text {Val }}(\forall v Q)=N$.

Right-to-left: Suppose $\mathfrak{M}_{V a l}(\forall v Q)=Y$. Case 1: v is not in Q. By Observation $3, \mathfrak{M}_{\text {Val }}(Q)=Y$. By IH, $\operatorname{Val}(Q)=Y$. By the construction of $\mathcal{H}, \operatorname{Val}(Q \rightarrow$ $\forall v Q)=Y . \operatorname{Val}(\forall v Q)=Y$. Case 2: v is in Q. By Observation 2, for all individual constants n in $Q L^{+}, \mathfrak{M}_{\text {Val }}(Q n / v)=Y$. In particular, $\mathfrak{M}_{V a l}\left(Q c_{Q}^{+} / n\right)$ $=Y$. By IH, $\operatorname{Val}\left(Q c_{Q}^{+} / v\right)=Y$. By the construction of $\mathcal{H}, \operatorname{Val}\left(Q c_{Q}^{+} / n \rightarrow\right.$ $\forall v Q)=Y . \quad \operatorname{Val}(\forall v Q)=Y . \quad$ Suppose $\mathfrak{M}_{V a l}(\forall v Q)=N$. By Observation 2, there is an individual constant n of $Q L^{+}$such that $\mathfrak{M}_{\text {Val }}(Q n / v)=N$. By IH, $\operatorname{Val}(Q n / v)=N . \operatorname{Val}(\neg Q n / v)=Y$. By the construction of \mathcal{H},
$\operatorname{Val}(\neg Q n / v \rightarrow \neg \forall v P)=Y . \operatorname{Val}(\neg \forall v P)=Y . \operatorname{Val}(\forall v P)=N$.
Completeness Theorem for GQ3: If $\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is valid ${ }_{Q 3}$, then $\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is provable in GQ3.
Proof. Suppose that $\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is not provable in GQ3. By the Elimination Theorem, $\frac{\Gamma_{1}, \mathcal{H} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n}, \mathcal{H} \Rightarrow \Delta_{n}}{\Gamma, \mathcal{H} \Rightarrow \Delta}$ is also not provable in GQ3. So it is also not provable in GS3. By the Completeness Theorem for GS3, $\frac{\Gamma_{1}, \mathcal{H} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n}, \mathcal{H} \Rightarrow \Delta_{n}}{\Gamma, \mathcal{H} \Rightarrow \Delta}$ is not valid ${ }_{3}$. So there is a valuation val such that val is a model for each of $\Gamma_{1}, \mathcal{H} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n}, \mathcal{H} \Rightarrow \Delta_{n}$, but not a model for $\Gamma, \mathcal{H} \Rightarrow \Delta$. Since val is not a model for $\Gamma, \mathcal{H} \Rightarrow \Delta$, for all $Q \in \mathcal{H}, \operatorname{Val}(Q)=Y$. By the Henkin Construction Theorem, there is a structure $\mathfrak{M}_{\text {Val }}$, such that for all $Q \in \mathcal{H}, \mathfrak{M}_{\text {Val }}(Q)=Y$, but $\mathfrak{M}_{\text {Val }}$ is a model for each of $\Gamma_{1}, \Rightarrow \Delta_{1}, \ldots, \Gamma_{n}, \Rightarrow \Delta_{n}$, but not for $\Gamma \Rightarrow \Delta$. So $\frac{\Gamma_{1} \Rightarrow \Delta_{1}, \ldots, \Gamma_{n} \Rightarrow \Delta_{n}}{\Gamma \Rightarrow \Delta}$ is not valid ${ }_{Q 3}$.

