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Abstract

We introduce a ranking of multidimensional alternatives, including uncertain prospects as a particular 
case, when these objects can be given a matrix form. This ranking is separable in terms of rows and columns, 
and continuous and monotonic in the basic quantities. Owing to the theory of additive separability developed 
here, we derive very precise numerical representations over a large class of domains (i.e., typically not of 
the Cartesian product form). We apply these representations to (1) streams of commodity baskets through 
time, (2) uncertain social prospects, (3) uncertain individual prospects. Concerning (1), we propose a finite 
horizon variant of Koopmans’s (1960) [25] axiomatization of infinite discounted utility sums. The main 
results concern (2). We push the classic comparison between the ex ante and ex post social welfare criteria 
one step further by avoiding any expected utility assumptions, and as a consequence obtain what appears to 
be the strongest existing form of Harsanyi’s (1955) [21] Aggregation Theorem. Concerning (3), we derive 
a subjective probability for Anscombe and Aumann’s (1963) [1] finite case by merely assuming that there 
are two epistemically independent sources of uncertainty.
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1. Introduction and overview

Consider the intertemporal problem in consumer theory, i.e., to define a preference over in-
tertemporal consumption plans ranging over several goods. A convenient way to tackle this 
problem is to postulate two sets of more elementary preferences, the first set comprising of 
preferences defined on time sequences of consumption for each given good, and the second set 
comprising of preferences defined on goods baskets for each given time period. Then, a prefer-
ence over consumption plans can be defined by the condition that it varies ceteris paribus in the 
same direction as each elementary preference in either set.

Now suppose that a social observer wants to compare social prospects, which allocate either 
money or utility across both individuals and states of the world. This can be dealt with as be-
fore, by first supposing two sets of elementary preferences, and then requiring that the overall 
preference agree ceteris paribus with them. Here, one set is obtained by fixing the individual and 
letting the states vary, and the other, by fixing the state and letting the individuals vary. That is, the 
observer judges the social prospects both from all possible ex ante individual perspectives, and 
from all possible ex post social perspectives, with his final judgment taking each such judgment 
separately into account.

Changing the model again, suppose that an individual decision-maker has to compare state-
contingent prospects, where each state of nature encapsulates information from two epistemically 
independent1 sources of uncertainty. Then the same technique as before leads one to introduce 
two sets of conditional preferences over the consequences, and have the preference over prospects 
reflect any of these conditionals ceteris paribus.

Each time, the objects are structured in terms of two attributes, and an overall preference 
is obtained by assuming that it is separable in terms of the values taken by either attribute. 
Separability has become a familiar theme in economics at large, but we aim at exploring it further, 
both abstractly and in terms of applications. Our main interest lies with social preference under 
uncertainty, as we will show – following some unpublished work by the first author (Blackorby 
et al. [2]) – that advanced separability techniques deliver surprisingly powerful results in this 
area. However, the theory needed there proves to be so general as to cover many other cases at 
once, and it is a secondary goal of this paper to bring out this rich potential. Thus, we review the 
intertemporal consumer preference problem, and introduce the mixed uncertainty problem, using 
the same toolkit to gain insight on them. The three cases have to do with defining preferences of 
some kind, but we could have investigated some non-preferential rankings at little extra cost.2

Before proceeding, we briefly sketch the main technical ideas of the paper. In general, the 
alternatives take the form of matrices of real numbers, with the indices of rows and columns 
representing two independent attributes of these objects, such as commodities and moments in 
time, individuals and states of nature, or two independent sources of uncertainty.3

If there are more than two attributes, one could group them within the row indices or within 
the column indices, so as to apply the matrix form. For example, in an application to intertem-
poral social preferences with uncertainty, each column may represent both a particular state of 

1 This means that neither source of uncertainty provides any information about the other source.
2 An earlier version of the paper had one such example. It constructed an index of economic integration based on 

input-output matrices.
3 If the attributes exhibit some kind of logical or physical interdependency, then the matrix form is prima facie inad-

equate, but a redescription can sometimes make them independent. Multiattribute decision theory has considered this 
redescription strategy; see, e.g., Keeney [22].



148 P. Mongin, M. Pivato / Journal of Economic Theory 157 (2015) 146–171
nature and a particular moment in time. However, this move is sometimes ill-judged, because 
it locates part of the aggregation process at the definitional level instead of the axiomatic one, 
and it precludes some pertinent representations from being derived. A more relevant alternative 
would be to replace matrices by higher-dimensional arrays. Our techniques easily generalize to 
this setting, but this will not be pursued here.

We assume that objects are ranked as follows. Each row index is associated with a ranking 
of those rows which are feasible given that index, and likewise, each column index is associated 
with a ranking of the feasible columns for that index. The overall ranking of feasible matrices 
relates to these rankings monotonically, i.e., if two matrices differ only in one row, and one matrix 
has this row ranked above the corresponding row of the other, then the first matrix is higher than 
the second in the overall ranking, and similarly with columns instead of rows. These are the 
separability conditions illustrated above. We need another crucial condition, to the effect that 
two matrices differing in only one coordinate (i.e., row-column pair) are ranked as the numbers 
in that coordinate. This is a monotonicity assumption, saying in effect that the numbers measure 
something valuable.

These three axioms – called ROW PREFERENCES, COLUMN PREFERENCES and COORDI-
NATE MONOTONICITY – often become familiar once the application context is fixed. We also 
impose CONTINUITY on the overall ranking. Under domain assumptions to be spelled out be-
low, this axiom set delivers a representation theorem of a classic format: the overall ranking of 
matrices can be represented by a fully additively separable value function, i.e., a sum of value 
functions defined for each coordinate (Proposition 1 in Section 2). This functional form was 
axiomatized by Debreu [10] and Gorman [17], and it has since then pervaded microeconomic 
theory (see Blackorby, Primont, and Russell [4]) and multiattribute decision theory (see Fish-
burn [11], Keeney and Raiffa [24], Wakker [38]). However, it is not obtained here in the same 
way as in these works, and we dispense with the strong assumption, made both by Debreu and 
Gorman, that the set of alternatives is a full Cartesian product. To generalize this assumption, 
we rely on topological concepts that have been introduced first in mathematical decision the-
ory.4 Our aim here is to take account of those feasibility constraints which our applications will 
typically involve.

Another important connection is with the early microeconomic literature on consistent aggre-
gation; see Green [18], and van Daal and Merkies [34,35] for surveys; the pioneering result is 
due to Nataf [29]. Once translated into numerical representations, our four axioms are seen to 
entail consistent aggregation, which is known from this literature to entail additive separability. 
However, our theory goes farther by dispensing with two unpalatable assumptions of these ear-
lier works: first, the Cartesian product structure, and second, the differentiability of numerical 
representations. The latter assumption precludes one from stating a proper axiomatic basis since 
it has no counterpart at the preference level.

As it is reexpresses the analysis of the three opening examples, Proposition 1 shows that, for 
all its naturalness, this analysis is constraining and perhaps undesirable. Depending on how the 
additively separable form is assessed, it constitutes either a characterization theorem or an impos-
sibility theorem. The same ambivalence underlies the main results of the paper, to be described 
now.

4 See the technical references in Section 2. Our paper belongs to the “topological” branch of separability theory, rather 
than its “algebraic” branch.
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These results require the overall ranking to be invariant between rows (INVARIANT ROW 
PREFERENCES), or between columns (INVARIANT COLUMN PREFERENCES), or both at the 
same time. Adding relevant domain assumptions to these new preference axioms, Theorem 1
strengthens the additively separable representation of Proposition 1 into a weighted sum of value 
functions, where the value functions may differ only across rows, or only among columns. The 
case where both invariance properties hold is covered by a separate result, Corollary 1.

In terms of applications, Theorem 1 is first put to use on intertemporal preference. By adding 
relevant conditions in the style of Koopmans [25], Proposition 2 axiomatizes the classic dis-
counted utility model. While Koopmans’s original axioms only apply to infinite consumption 
streams, our variant is for finite ones.

Second and more importantly, we apply Theorem 1 to uncertain social preference. As is well-
known, when social alternatives are uncertain, social welfare criteria can have two forms, either 
ex ante or ex post, and the question arises whether they can be made compatible. This has been 
debated in welfare economics by Hammond [19], in moral philosophy by Broome [6], and in ax-
iomatic decision theory by Mongin [26]. The widespread answer is that the two criteria become 
compatible only if the individuals’ and the social observer’s ex ante preferences obey stringent re-
strictions. However, this conclusion depends on the prior assumption that the individuals and the 
social observer satisfy the axioms of expected utility theory, and little is known on the compati-
bility problem when this major assumption is relaxed. Because the decision-theoretic properties 
encapsulated in our axioms are so weak – merely statewise dominance and state-independence – 
Theorem 1 shows what happens in this case. Somewhat shockingly, the conclusion remains neg-
ative: the same stringent conditions are necessary to achieve compatibility between the ex ante
and ex post normative viewpoints.

A related connection is with Harsanyi’s [21] Aggregation Theorem, which states that a Pare-
tian and von Neumann–Morgenstern (VNM) aggregate of individual VNM utility functions is a 
weighted sum of these utility functions. Viewed in this light, Theorem 1 generalizes Harsanyi by 
showing that much weaker decision-theoretic assumptions suffice for his conclusion. In the end, 
an expected utility representation turns out to be indispensable, as our theorem deduces it at the 
same time as the weighted sum rule, so this is another ambivalent finding. On the one hand, we 
reinforce Harsanyi’s intriguing argument for utilitarianism, by starting from better assumptions, 
and on the other, we establish once and for all that his argument cannot live outside of the narrow 
framework of linear decision theory. From a comparison with the literature, this appears to be 
the strongest form of the Aggregation Theorem to date.

Lastly, we apply Corollary 1 to derive a subjective probability from preferences under mixed 
uncertainty. Given our finiteness assumptions, Anscombe and Aumann [1] provide the relevant 
benchmark. They have been criticized for resorting to VNM preferences over “objective” lotteries 
in their derivation, and our proposed alternative avoids this classic circularity objection entirely. 
This result is the only the beginning of an analysis of subjective probability that will be pursued 
elsewhere.

2. Basic framework and a preliminary result

We fix two finite sets of indices, I and J , with |I |, |J | ≥ 2, in order to represent the relevant 
attributes of the objects to be ranked. These are identified with bundles of quantities xi

j for all 
(i, j) ∈ I × J , and accordingly, we define an alternative X to be an element of the Cartesian 
product RI×J . We usually write X in matrix form, i.e., X = [xi

j ]i∈I
j∈J , but sometimes also as a 

vector of rows or as a vector of columns. Writing I = {1, . . . , n} and J = {1, . . . , m}, we put 
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X = (x1, x2, . . . , xn), where for each i ∈ I , xi := [xi
j ]j∈J ∈ RJ is the ith row vector of X. We 

also write X = (x1, . . . , xm), where for each j ∈ J , xj := [xi
j ]i∈I ∈ RI is the j th column vector.

We assume that feasibility constraints restrict the set of alternatives. For a number of reasons, 
it may be impossible to realize all and every distribution of quantities through time periods, indi-
viduals, and states of the world. E.g., future consumption of a durable depends on how much it is 
used now, social benefits to some individuals depend on much the others earn, crops depends on 
the state of weather. To cover many cases by a single hypothesis, we take the set of feasible alter-
natives to be an open, connected subset X ⊆ RI×J . This is in line with Segal [32], Chateauneuf 
and Wakker [9]; still in accord with them, more topological restrictions on X will be introduced 
later.

We introduce a preference relation � on X rather than the whole of RI×J , thus departing 
from the common procedure in microeconomics of divorcing preferences from constraints en-
tirely. The common procedure is appropriate when constraints only restrict the availability of 
objects to the individuals, and not also their existence, since otherwise preferences would some-
times compare impossible objects between themselves or with possible objects, and this seems 
to be nonsensical. Our applications involve borderline cases between availability and existence. 
Compare elementary consumer theory, in which alternatives are static commodity baskets and 
can be left unrestricted unproblematically, with its intertemporal extension, which replaces them 
by consumptions plans and should take account of inter-period complementarities. If the concep-
tual difference is often overlooked, this is, we submit, on grounds of mathematical expediency: 
universal domains take the form of Cartesian products, which are much easier to handle than 
restricted sets of alternatives such as the present X .

All of our axioms relate to � as a single primitive term. Throughout, we take it to be an order
(meaning a weak order, i.e., a transitive and complete binary relation) and to satisfy the following 
four axioms. Define the projected sets X i := {xi; X ∈ X }, for all i ∈ I , and Xj := {xj ; X ∈ X }, 
for all j ∈ J .

CONTINUITY: The preference order � is a continuous (i.e., its upper and lower contour sets are 
closed subsets of X ).

ROW PREFERENCES: For all i ∈ I , there is an order �i on X i such that, for all X, Y ∈ X , if 
xh = yh for all h ∈ I \ {i}, then X � Y if and only if xi �i yi .

COLUMN PREFERENCES: For all j ∈ J , there is an order �j on Xj such that, for all X, Y ∈X , 
if xk = yk for all k ∈ J \ {j}, then X � Y if and only if xj �j yj .

COORDINATE MONOTONICITY: For all i ∈ I and j ∈ J , and all X, Y ∈X with xh
k = yh

k for all 
(h, k) ∈ I × J \ {(i, j)}, X � Y if and only if xi

j ≥ yi
j .

The last axiom is a consequence of either of the following conditions:

ROW MONOTONICITY: For all i ∈ I and j ∈ J , and all x, y ∈ X i , with xk = yk for all k ∈
J \ {j}, x �i y if and only if xj ≥ yj .

COLUMN MONOTONICITY: For all j ∈ J and i ∈ I , and all x, y ∈ Xj , with xh = yh for all 
h ∈ I \ {i}, x �j y if and only if xi ≥ yi .

The following lemma states this precisely, and also identifies a convenient case in which an 
equivalence holds.
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Lemma 1. Let X ⊆RI×J be an open set, and let � be an order on X that has COLUMN PREF-
ERENCES and ROW PREFERENCES. If � satisfies either ROW MONOTONICITY or COLUMN 
MONOTONICITY, then � satisfies COORDINATE MONOTONICITY. Conversely, if X is convex, 
then COORDINATE MONOTONICITY is equivalent to each of ROW MONOTONICITY and COL-
UMN MONOTONICITY.

(The proofs of Lemma 1 and all other results are in Appendix A.)
COORDINATE MONOTONICITY, ROW MONOTONICITY and COLUMN MONOTONICITY say 

that the xi
j are amounts of some good: the more of it at (i, j), every other quantity being the 

same, the more satisfied the preference.
ROW PREFERENCES and COLUMN PREFERENCES call for comparison with the more famil-

iar condition of weak separability.5 Here is how it would occur in the present framework.

Weak Row Separability: For all i ∈ I , for all X, Y, X̃, Ỹ ∈ X such that xi = x̃i , yi = ỹi , and for 
all h ∈ I \ {i}, if xh = yh and x̃h = ỹh, then X � Y if and only if X̃ � Ỹ.

Weak Column Separability: For all j ∈ J , for all X, Y,X′, Y′ ∈ X such that xj = x′
j , yj = y′

j , 
and for all k ∈ J \ {j}, if xk = yk and x′

k = y′
k , then X � Y if and only if X′ � Y′.

To clarify the connection, note first that ROW PREFERENCES (RP) entails Weak Row Separability
(WRS) on any domain X . For the converse, suppose that WRS holds, and for each i ∈ I , define 
the following binary relation �i :

xi �i yi iff there are X,Y ∈X
such that xh = yh for all h ∈ I \ {i}, and X � Y.

If X =RI×J , then �i satisfies RP. However, on a domain X �RI×J , �i can fail the complete-
ness property of an ordering, and in this case, RP is strictly stronger than WRS. We need RP
precisely to balance the unusual generality of our domain assumption. Barring this fine logical 
point, it has the same significance as WRS. This holds similarly for COLUMN PREFERENCES

and Weak Column Separability.
We will now briefly review the axioms in the light of our three applications. In the intertem-

poral preference problem, take the sets I and J to represent time periods and goods, respectively. 
Thus, with the xi

j measuring physical quantities, ROW PREFERENCES gives rise to preferences 
over goods baskets at each given time, and COLUMN PREFERENCES, to preferences over con-
sumption streams for each given good.

In the uncertain social preference problem, the sets I and J will represent individuals and 
states of nature, respectively. We can take the xi

j to be physical quantities, as in the previous case, 
or to be utility values, which conceptually amounts to endorsing a welfarist form of normative 
economics.6 We consider the latter interpretation because it connects better with the theoretical 
issues highlighted in the introduction. Thus, what the social preference � ranks are ex ante
social allocations viewed in utility terms, and ROW PREFERENCES corresponds to the following 
Pareto conditions: (a) if all individuals are indifferent between two social prospects, then the 

5 In multiattribute decision theory, see Keeney and Raiffa [24, Chap. 3]. In individual decision theory, see Fishburn [11]
and Wakker [38].

6 In normative economics, welfarism is the claim that individual utility values capture all the information on alternatives 
that may be relevant to the social evaluation.
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social preference also is; (b) if one individual strictly prefers one prospect to the other, and 
all others are indifferent, then the social preference ranks the former prospect above the latter. 
Statement (a) is exactly the ex ante Pareto Indifference condition. Statement (b) is a weaker form 
of the ex ante Strict Pareto condition. To get the full force of it, i.e., to cover the case of more 
than one non-indifferent individual, one must apply (b) iteratively, and this requires a rich enough 
domain. Ours is intentionally small, and ROW PREFERENCES can only yield a local form of the 
ex ante Strict Pareto axiom.7 Thus, the ex ante Pareto principle holds in a somewhat weakened 
way.

COLUMN PREFERENCES means that the ex ante social preference � is increasing with respect 
to each of its ex ante preferences conditional on states. This is statewise dominance, a virtually 
universal property for decisions under uncertainty; it is satisfied not only by expected utility, but 
also by most current non-expected utility models (including rank-dependent utility). Since the 
xi
j are utility numbers, ROW MONOTONICITY means statewise dominance for each individual 

order �i vis-à-vis its own conditionals. COLUMN MONOTONICITY means that in every realized 
state, the ex post social preference order satisfies both Pareto Indifference and a local version of 
Strict Pareto. This is the ex post Pareto principle, again in a weaker form due to the domain.

In the mixed uncertainty problem, the sets I and J correspond to the two independent sources 
of uncertainty, while xi

j represents the utility payoff if the uncertainty resolves to the state of 
nature (i, j). ROW PREFERENCES and COLUMN PREFERENCES say that preferences exist con-
ditionally on each i and conditionally on each j , and that the preference � over prospects is 
increasing with respect to each of these conditionals – an eventwise dominance property, since 
i and j now count as properties of states, hence as events (they are identified with {i} × J and 
I × {j} respectively).

We now move to more technical assumptions, which are essential to the proofs. For all Y ∈X , 
and all i ∈ I and j ∈ J , the (i, j)-section of X through Y is the set {X ∈ X ; xi

j = yi
j }, an 

(I · J − 1)-dimensional subset of RI×J . We say X is sectionally connected if each (i, j)-section 
is connected. This condition is neither stronger nor weaker than connectedness; see the examples 
by Segal [32], Wakker [37], and Chateauneuf and Wakker [9], which also illustrate why this is 
an important restriction. The open set X ⊆RI×J is connected if and only if it is path-connected, 
which means that, given any two feasible alternatives X and Y, it is possible continuously to 
transform X into Y by moving along a continuous path of feasible alternatives. Sectional con-
nectedness resembles path-connectedness, except that it requires one to transform X into Y while 
holding constant the value of one coordinate. The set X is both path-connected and sectionally 
connected if it is convex and, a fortiori, if it is a box – i.e., X = ∏

i∈I

∏
j∈J Bi

j , where Bi
j is a 

real interval for all i ∈ I and j ∈ J . (However, an open box-shaped domain would not usefully 
restrict the universal domain X =RI×J .)

Finally, we say that X is �-indifference connected if, for all Y ∈ X , the indifference set 
{X ∈ X ; Y ≈ X} is a connected subset of X . The above writers have well-explained why this 
restriction matters. Here are two cases in which it holds.

(a) If X is an open box in RI×J , then X is �-indifference connected. (See Appendix A for 
proof.)

7 That is: for any X ∈ X , there is an open neighborhood YX ⊆ X with X ∈ YX such that, for any Y ∈ YX with xi �i yi

for all i ∈ I , and xi 	i yi for some i ∈ I , it is the case that X 	 Y. However, if X is convex, one can take YX = X for 
all X ∈ X .
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(b) Suppose X is a convex and comprehensive subset of RI×J+ . If � is quasiconcave, then X is 
�-indifference connected.8

For all i ∈ I and j ∈ J , let X i
j := {xi

j ; X ∈X } ⊆R. Now to our first result.

Proposition 1. Let X ⊆ RI×J be open. Let � be an order on X that has ROW PREFERENCES 
and COLUMN PREFERENCES, and satisfies CONTINUITY and COORDINATE MONOTONICITY. 
Then:

(a) For all X ∈ X , there is an open neighborhood Y ⊆ X with X ∈ Y , and for all i ∈ I and 
j ∈ J , there are continuous increasing functions ui

j : X i
j −→ R such that � is represented 

on Y by the additive function U : Y −→ R defined by

U(Y) :=
∑
i∈I

∑
j∈J

ui
j

(
yi
j

)
, for all Y ∈ Y .

Furthermore, in this representation, the ui
j are unique up to positive affine transformations 

with a common multiplier.9

(b) Suppose X is also connected, sectionally connected, and �-indifference connected. Then we 
can take Y =X in part (a).

(c) In this case, for all i ∈ I , the order �i is represented by the function Ui : X i −→ R defined 
by

Ui(x) :=
∑
j∈J

ui
j (xj ), for all x ∈X i .

(d) Likewise, for all j ∈ J , the order �j is represented by the function Uj : Xj −→ R defined 
by

Uj (x) :=
∑
i∈I

ui
j

(
xi

)
, for all x ∈Xj .

Part (a) relies on an indirect use of Debreu’s [10] theorem on additively separable representa-
tions. Instead of explicitly assuming that the preference order is totally separable, as in this classic 
result, we first establish total separability via the theory of overlapping separability developed in 
Gorman [17]. Then, Debreu’s theorem provides a local additively separable representation in a 
box around any alternative. Part (b) consists in gluing these local representations together, via 
the special connectedness conditions.

We leave it for the reader to check that consistent aggregation, in Green’s [18] or van Daal and 
Merkies’s [34] sense, holds of the numerical functions representing the orders defined here. Had 

8 The set X ⊆ RI×J is comprehensive if for all X ∈ X , and all X′ ∈ RI×J , if X′ ≤ X then X′ ∈ X . The order � is 
quasi-concave if all of its upper contour sets are convex.

9 That is, if the functions ̃ui
j

:X i
j

−→ R are such that � is represented on Y by the function Ũ defined by

Ũ (Y) :=
∑
i∈I

∑
j∈J

ũi
j

(
yi
j

)
, for all Y ∈Y,

then there exist a > 0 and bi ∈ R such that, for all i ∈ I and j ∈ J , ̃ui (yi ) = aui (yi ) + bi for all Y ∈ Y .

j j j j j j
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we taken these representations as primitives, and retained Nataf’s [29] strong Cartesian product 
and differentiability assumptions, we could have applied his theorem and obtained Proposi-
tion 1(b) at once.10

In general, the functions ui
j are all different, and to obtain a relationship between them is the 

object of the following section and its more advanced results. Our applications to uncertain social 
preference and mixed uncertainty require these later results, but Proposition 1 already offers a 
perspective on intertemporal preference, as we now discuss. In this case, ui

j is a utility function 

for consumption of good j at time i, Ui is a utility function over consumption bundles at time i, 
Uj is a utility function over streams of good j , and U is a utility function for consumption plans. 
There is a classical stock of arguments for rejecting additive separability with respect to goods, 
and being suspicious of it when it applies to time periods.

Jevons and Walras introduced the “equation of exchange” – today’s textbook equality be-
tween marginal utility ratios and marginal rates of substitution – in terms of separable, and even 
additively separable, utility functions for consumption goods, and they also stated their demand 
theory in this way. Edgeworth pointed out that this was unnecessary for the purpose, still a mild 
point, but later neo-classicals found more distressing objections. Implying as it does that the 
marginal rate of substitution of a for b only depends on the quantities of a and b, separability 
(more generally than additive separability) makes the law of demand automatic under diminish-
ing marginal utilities, thus wiping out the possibility of a prevailing income effect. Moreover, 
separability makes it impossible to classify consumer goods into complements and substitutes. 
These critical messages were taken aboard long ago by demand theory, and it comes to no sur-
prise that postwar theorist Gorman expressed doubts about the very assumptions that he was 
exploring mathematically.11

Additively separable representations have on the whole been more successful when they con-
cern time preferences. Ramsey may have been the first to employ such a functional form in his 
saving model, and it has persisted in the neoclassical literature on intertemporal choices of con-
sumption, investment or money balances. This can be explained by analytical convenience, but 
no doubt also by the fact that the objections from demand theory lose their force here. However, 
there are worrying specific objections, in particular that for some goods, the quantity of today’s 
consumption influences the utility of tomorrow’s consumption through habit formation.12

Given this controversial pedigree, Proposition 1 sounds like a mixed blessing. Some might 
use it to axiomatize old style neo-classical economics, but many others will rather argue by 
contrapositive, rejecting the strong functional forms in the conclusion, and hence, the choice of 
the axioms in this case. The ambivalence is also typical of the results in the next section.

3. The main theorem and its applications

Although too strong in one sense, the conclusion of Proposition 1 is too weak in another, 
because the additively separable representation does not impose any relation between the utility 
functions defined coordinatewise. This section makes it more informative by introducing both 

10 Though Nataf’s [29] theorem is correct, its proof is rather obscure. The curious reader may consult the clarifications 
and improvements adduced by van Daal and Merkies [35].
11 More obviously in Gorman [16] than in the other papers.
12 This by now classic objection is discussed in detail by Browning [7]. Other problems raised by temporal separability 
are discussed in the theoretical management literature (e.g., Keeney and Raiffa [24]), as well as in health economics (e.g., 
Gold et al. [15]).
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stronger axiomatic conditions and more structural assumptions. In the axiomatic group, we will 
strengthen either ROW PREFERENCES, or COLUMN PREFERENCES, or both, by requiring that 
there be a single preference order on rows, or a single preference order on columns, or both. 
Formally, define

XJ :=
⋃
j∈J

Xj and X I :=
⋃
i∈I

X i .

We will require at least one of the following two conditions.

INVARIANT ROW PREFERENCES: There is an order �I on X I such that, for all i ∈ I and any 
X, Y ∈X with xh = yh for all h ∈ I \ {i}, X � Y if and only if xi �I yi .

INVARIANT COLUMN PREFERENCES: There is an order �J on XJ such that, for all j ∈ J and 
any X, Y ∈X with xk = yk for all k ∈ J \ {j}, X � Y if and only if xj �J yj .

Since our framework treats rows and columns symmetrically and their meaning can be fixed at 
will, we conventionally select INVARIANT COLUMN PREFERENCES when only one invariance 
condition applies.

In the group of structural conditions, we will require that there be a single set of feasible rows, 
or a single set feasible columns, or both. Formally, the domain X should satisfy at least one of 
the following structural conditions:

Identical Row Spaces: There exists X I ⊆RJ such that X i =X I for all i ∈ I .
Identical Column Spaces: There exists XJ ⊆RI such that Xj =XJ for all j ∈ J .

Under the first condition, there is a common projection X ∗
j of all the X i , for each j ∈ J , with 

the property that X I ⊆ ∏
j∈J X ∗

j . Under the second condition, there is a common projection X i∗
of all the Xj , for each i ∈ I , with the property that XJ ⊆ ∏

i∈I X i∗. Here are two formal cases 
where the conditions hold.

Examples (a) If X is an open box in RI×J , then X satisfies both Identical Row Spaces and 
Identical Column Spaces.

(b) Suppose that, for all y ∈ XJ , there exists X ∈ X such that xj = y for all j ∈ J . Then X
satisfies Identical Column Spaces.

INVARIANT ROW PREFERENCES and INVARIANT COLUMN PREFERENCES are so formu-
lated that no logical implication holds between them and Identical Row Spaces and Identical 
Column Spaces. However, the two sets of restrictions are often acceptable or rejectable together. 
In the intertemporal preference problem, INVARIANT ROW PREFERENCES and Identical Row 
Spaces are very stringent, while INVARIANT COLUMN PREFERENCES and Identical Column 
Spaces may or may not hold depending on the case. The former says that one time ranks com-
modity baskets like another when they are available at both times; this excludes habit formation. 
The latter asserts that exactly the same baskets are available at each time; this excludes exogenous 
changes in the feasible set over time, such as those brought about by technological innovation 
or climate change, but emphatically, it does not exclude technical interdependencies between 
periods.13 Consumer theory often makes these assumptions.

13 This would rather be excluded by assuming X to be the Cartesian product 
∏

j∈J Xj .
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In the uncertain social preference problem, with xi
j representing utility, INVARIANT ROW 

PREFERENCES becomes the implausible claim that all individuals have the same preferences. But 
Identical Row Spaces is not so easy to discard. It says that the set of utility vectors is common to 
all individuals, which makes sense if some interpersonal utility comparisons have already taken 
place. Meanwhile, INVARIANT COLUMN PREFERENCES says that ex post social preferences are 
state-independent, while Identical Column Spaces says that the same social outcomes are feasible 
in each state. These two state-independence assumptions are made by Savage [31] and Anscombe 
and Aumann [1] when they derive a subjective probability from preferences under uncertainty, 
and they have prevailed in the theoretical discussion of ex ante versus ex post social welfare 
criteria that concerns us. Note that this axiom still allows the individuals to have state-dependent 
preferences; this is explained below.

Now to our main result. Given a finite set K and a vector p ∈ RK , we say that p is a strictly 
positive weight vector on K if pk > 0 for all k ∈ K , and 

∑
k∈K pk = 1. We reserve the expression 

of probability vector for those cases in which elements of K represent states of nature. The set 
of strictly positive weight vectors on K is denoted by �K .

Theorem 1. Suppose that X ⊆ RI×J is open, connected, sectionally connected, �-indifference 
connected, and satisfies Identical Column Spaces. Then � satisfies CONTINUITY, COORDINATE 
MONOTONICITY, ROW PREFERENCES and INVARIANT COLUMN PREFERENCES if and only 
if:

(a) For all i ∈ I , there is an increasing, continuous function ui : X i∗ −→ R, such that the order 
�J is represented by the function WJ :XJ −→ R defined by

WJ (x) :=
∑
i∈I

ui
(
xi

)
, for all x ∈XJ . (1)

(b) There is a strictly positive weight vector p ∈ �J , such that for all i ∈ I , the order �i is 
represented by the function Ui

p : X i −→R yielding the p-weighted value of ui . That is:

Ui
p(x) :=

∑
j∈J

pju
i(xj ), for all x ∈X i . (2)

(c) The order � is represented by the function W : X −→ R which computes the p-weighted 
value of the function WJ from part (a). That is:

W(X) :=
∑
j∈J

pjWJ (xj ) =
∑
j∈J

∑
i∈I

pju
i
(
xi
j

) =
∑
i∈I

Ui
p
(
xi

)
, for all X ∈X . (3)

(d) In this representation, the weight vector p is unique, and the functions ui are unique up to 
positive affine transformations with a common multiplier.

Application to intertemporal preferences Suppose J := {1, 2, . . . , t} indexes a set of t consec-
utive time periods. Then, Theorem 1 says that time j does not influence the shape of the utility 
functions ui defined for each commodity i, its role being channeled through the weights pj . To 
turn these weights into discount factors, more axioms are needed. Essentially, we adapt those of 
Koopmans [25], which were defined for infinite consumption streams, whereas we have a finite 
horizon t here.14

14 For a clarification and extension of Koopmans’s initial work, see Bleichrodt et al. [5].
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For any X ∈ X , let XL ∈ R|I |×(t−1) be the submatrix comprised of the leftmost (t − 1) rows 
of X, and let XR ∈ R|I |×(t−1) be the submatrix comprised of the rightmost (t − 1) rows of X. 
Let XL := {XL; X ∈ X } and XR := {XR; X ∈ X }; these are both open subsets of R|I |×(t−1). 
It follows from Theorem 1 that � defines orders �L and �R on XL and XR such that for all 
X, Y ∈X :

• If xt = yt , then X � Y iff XL �L YL.
• If x1 = y1, then X � Y iff XR �R YR .

We require that these auxiliary orders coincide. This is Koopmans’s stationarity condition, but 
adapted to a finite set of time periods.

STATIONARITY. �L is identical with �R on XL ∩XR .

We also impose a version of Koopmans’s impatience condition. It says that a commodity 
bundle becomes preferable if it consumed at an earlier date than the current one. For all j ∈
{1, 2, . . . , t − 1} and all X ∈ X , let σj (X) be the matrix resulting from interchanging columns j
and j + 1 in X.

IMPATIENCE FOR j . For all X ∈X , X � σj (X) ⇐⇒ xj �J xj+1.

For our purposes, this condition will have enough bite if there exists X ∈X such that σj (X) ∈ X
and the j and j + 1 columns of X are non-indifferent for �J ; in this case, we say that time j is 
activated. Given our domain assumption and earlier axioms, this is a light requirement.15 With 
this added material, we can now turn the weighted sum W(X) of Theorem 1 into a discounted 
sum.

Proposition 2. Suppose the hypotheses of Theorem 1 hold.

(a) Suppose that for all j ∈ {1, . . . , t − 1}, IMPATIENCE FOR j holds and time j is activated. 
Then, pj > pj+1 for all j ∈ {1, . . . , t − 1}.

(b) Suppose that for some j ∈ {1, . . . , t − 1}, IMPATIENCE FOR j holds and j is activated, and 
suppose also that STATIONARITY holds with XL ∩XR �= ∅. Then, there exists some δ ∈ (0, 1)

such that pj = δj−1 · p1 for all j ∈ J .

Application to uncertain social preferences The functions Ui
p and W of Theorem 1(b, c) rep-

resent the individuals’ and the social observer’s ex ante utility functions. If p is regarded as a 
probability vector, then these functions are shown to be of the expected utility type. This seems 
to be a strong conclusion, given the modicum of decision theory we assumed at the start. We 
required only two things: first, that both the individuals and social observer satisfy statewise 
dominance, and second, that the social observer has Paretian and state-independent preferences. 
Theorem 1(b) does not impose state-independent preferences on the individuals, because the xi

j

15 For example, it is satisfied if there is X ∈ X with xj = xj+1. (For some ε > 0, X contains X(ε) , which is X except 
that in its j -th column x(ε) , ε is added to each component of xj . From COLUMN MONOTONICITY, x(ε) 	J xj+1.)
j j
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are taken to be preexisting utility numbers which may very well come from some state-dependent 
utility functions, exogenous to our modeling.

Theorem 1(a, c) gives another description of the social observer’s preferences, this time in 
terms of social welfare functions. The ex post welfare function WJ and the ex ante welfare 
function W are sums of the corresponding individual utility functions, i.e., have the mathematical 
form of a weighted utilitarian rule. This strongly cardinal conclusion seems surprising in view 
of the purely ordinal form of the axioms, but the separability conditions have contributed their 
familiar role in the inference step.16 Whether the WJ and W representations bear more than a 
formal analogy with classical utilitarianism is a complex question that we do not discuss here.

Finally, Theorem 1(d) confers uniqueness to the functional representations, under the usual 
proviso that the mathematical pattern in which they appear must be respected.17 Without such 
uniqueness, the representations would have no significance; in particular, it would not be sensible 
to view p as being anybody’s probability.

With these interpretations at hand, Theorem 1 has a bearing on the classic problem in wel-
fare economics of comparing ex ante with ex post criteria. By definition, the ex ante social 
welfare criterion applies the ex ante Pareto principle to the individuals’ ex ante preferences, 
while assuming that these individual preferences conform to some specific decision theory (typi-
cally subjective expected utility theory). Meanwhile, the ex post social welfare criterion puts the 
decision-theoretic restrictions on the social preference order, while applying the ex post Pareto 
principle to the individuals’ ex post preferences. As Section 2 explained, the four components 
just listed correspond to ROW PREFERENCES, ROW MONOTONICITY, COLUMN MONOTONIC-
ITY and COLUMN PREFERENCES, respectively, so the assumptions of the theorem characterize 
a social welfare criterion that would be both ex ante and ex post.18 The conclusion shows that 
this hypothesized compatibility can be achieved only if

(1) the individuals and the observer are all expected utility maximizers, and
(2) they compute their expected utilities by using the same subjective probabilities.

Hammond’s [19] welfare economics paper is a good source for both the compatibility problem 
and the answer that conclusion (2) is necessary for its solution.19 When investigating consistent 
ways of aggregating Savage preferences, Mongin [26] implicitly raised the compatibility prob-
lem. His axiomatic treatment enlarges the set of possibilities somewhat. The ex ante and ex post
social criteria can be compatible when either weaker Pareto conditions than the full Pareto prin-
ciple apply, or the individuals’ utility functions are affinely dependent. These two possibilities 
are excluded by ROW PREFERENCES and the open domain assumption, respectively, so it comes 
as no surprise that only (2) survives in Theorem 1. The main news is conclusion (1). The above 
papers (and others as well) assumed that both the individuals and the social observer satisfied 
the axioms of subjective expected utility, whereas we now prove this as a component part of our 
representation. To appreciate the step forward, take probabilistically sophisticated individuals, 

16 The step from ordinality to cardinality through separability is well-documented in Fishburn [11] and Wakker [38].
17 Non-affine monotonic transforms of the ui would represent the �i equally well, but destroy the expected utility form 
of the representations in Theorem 1(b, c).
18 Observe that the ex ante and ex post Pareto principles are logically independent in our framework. This is not the 
case in the frameworks of the next paragraph, which embody subjective expected utility assumptions. There, the ex post
principle automatically follows from applying the ex ante principle to constant prospects.
19 Hammond acknowledges Starr’s [33] paper on allocation under uncertainty as being an earlier source.
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i.e., individuals who have well-defined subjective probabilities despite not satisfying subjective 
expected utility, but some generalization of it. They would satisfy our weak decision-theoretic 
conditions; thus, if the observer satisfied both the ex ante and ex post criteria, they would inex-
orably turn into subjective expected utility maximizers!

It is unclear whether conclusion (2) represents an impossibility theorem or only a severe, 
though implementable restriction. Among the interpreters, Broome [6] seems to take the latter 
view, whereas Mongin and d’Aspremont [28] favour the former. The answer depends on one’s 
underlying philosophy of probability, and on the further issue of when probabilities are com-
puted: is it at the completely ex ante stage, or rather at some interim stage? On one interpretation, 
probabilities are subjective in the sense promoted by Savage, and moreover, they are pure priors, 
i.e., embody no outside information at all; this would make their identity across individuals rather 
unlikely. On another interpretation, they are still subjective in the same sense, but are imperfect 
priors, thus in effect posteriors, because they embody some outside information; this would make 
their identity across individuals less unlikely. (Some will argue that a pure prior is a fiction and 
that this is the only appropriate alternative of the two.) Finally, probabilities could be objective 
in one of the senses that philosophers of probability have argued for.20 This last interpretation 
would make (2) unproblematic, but it does not fit in with the present frame of analysis, which, 
like Savage’s, take probabilities to reflect subjective preferences.

Several proposals have been made to escape from (2) when it is viewed as an impossibil-
ity. The pure ex ante solution and pure ex post solution each keep only one of the two social 
welfare criteria. Indeed, the ex post solution is the common way out in welfare economics.21

However, quite a few respondents have suggested that compatibility would result from weaken-
ing the decision-theoretic basis, and Theorem 1 has the clearest bearing when it comes to this 
group. It definitely wrecks the hopes set in replacing the sure-thing principle by one of its recent 
generalizations, but leaves open a less obvious possibility, which is to let the social observer have 
state-dependent preferences. That conciliation is forthcoming along this line has been confirmed 
(see Mongin [27] and Chambers and Hayashi [8]). We do not explore the solutions any further 
and defer to another paper explaining how our separability theory could contribute to them.22

Theorem 1 also relates to Harsanyi’s [21] Aggregation Theorem. According to this classic 
result, if the individuals have VNM preferences on a lottery set, and if the social observer sat-
isfies the Pareto principle and himself entertains VNM preferences on the lottery set, then his 
preferences can be represented by a positively weighted sum of the VNM representations of the 
individual preferences. Harsanyi boldly claimed utilitarian relevance for this piece of reasoning. 
Our framework does not contain lotteries, so in order to bridge the gap with Harsanyi, we should 
replace his theorem by one of the variants that were devised for state-contingent prospects in-
stead of lotteries.23 When this is done, Theorem 1 appears to be a stronger form of the classic 
result: expected utility theory now belongs to the conclusions, and the utilitarian-looking social 
welfare functions follow from much weaker assumptions than before.

20 An interesting recent option is objective Bayesianism (see Williamson [39]).
21 See the eloquent defence in Hammond [20].
22 Mongin and d’Aspremont [28] review the solutions proposed at the time. Among the more recent writers, Gilboa 
et al. [14] and Keeney and Nau [23] have taken up the challenge.
23 These variants make states of the world explicit and put identical subjective probabilities on the individuals and the 
observer. One of them, by Mongin [26], is stated for Savage probabilities, and the other, by Blackorby et al. [3], for 
probabilities on any finite set of states.
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Some previous works have tampered with expected utility assumptions in Harsanyi’s theorem, 
and they call for a comparison. The earliest, Blackorby et al. [2], takes a Cartesian product set of 
state-contingent prospects, expressed separability and monotonicity conditions similar to ROW 
PREFERENCES, COLUMN PREFERENCES, and COORDINATE MONOTONICITY, although stated 
in utility terms instead of preferences, and eventually derived an additively separable represen-
tation for social preference. At a closer look, this representation boils down to expected utility, 
so that this early result is subsumed by Theorem 1 as a particular case. Not so for the theorem 
by Gajdos et al. [13], which requires a framework in the style of Anscombe and Aumann [1]. 
The individual and social preferences there obey VNM independence and Savage’s sure-thing 
principle on only a restricted set of alternatives, and they can be state-dependent. Under an ap-
propriate Pareto condition, the conclusion (2) of a unique subjective probability emerges in more 
general form, and the social utility representation is expressed as a weighted sum of the individ-
ual ones. Both because of its lottery framework and residual expected utility assumptions, this 
result is closer to Harsanyi’s than ours. Similarly with Fleurbaey’s [12] theorem, which makes 
full-fledged expected utility assumptions on the individuals, its contribution being to weaken 
those made on the social observer. This theorem, unlike the two earlier ones, does not take a 
full domain of alternatives, but a convex set of utility values, a particular case of our domain 
assumptions.

Application to intertemporal social preferences With I representing the individuals and J
the time periods, Theorem 1 becomes a statement about intertemporal social welfare. ROW 
PREFERENCES corresponds to the Pareto principle as applied to the individuals’ intertemporal 
preferences, ROW MONOTONICITY to individual time-dominance, COLUMN MONOTONICITY

to the Pareto principle as applied in a given time period, and COLUMN PREFERENCES to social 
time-dominance. The conclusion about p can be strengthened by adding the conditions of Propo-
sition 2; it will then exactly mean that the individuals share the same discount factor. As before, 
this may be interpreted as either a sheer impossibility or only a severe restriction, and we lean 
towards the former view.

It remains to examine the case in which the four conditions introduced by this section jointly 
apply. If X has both Identical Column Spaces and Identical Row Spaces, there is a single open 
subset X ∗∗ such that X i

j =X ∗∗ for all (i, j) ∈ I × J .

Corollary 1. Suppose X ⊆ RI×J is open, connected, sectionally connected, �-indifference 
connected, and has Identical Row Spaces and Identical Column Spaces. Then � satisfies CON-
TINUITY, COORDINATE MONOTONICITY, INVARIANT ROW PREFERENCES and INVARIANT 
COLUMN PREFERENCES if and only if there is an increasing, continuous function u :X ∗∗ −→R

and strictly positive weight vectors q = (qi)i∈I ∈ �I and p = (pj )j∈J ∈ �J such that:

(a) The order �J is represented by the function WJ :XJ −→ R defined by

WJ (x) :=
∑
i∈I

qiu
(
xi

)
, for all x ∈ XJ .

(b) The order �I is represented by the function WI : X I −→ R defined by

WI(x) :=
∑
j∈J

pju(xj ), for all x ∈ X I .
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(c) The order � is represented by the function W :X −→R defined by

W(X) :=
∑
j∈J

∑
i∈I

qipju
(
xi
j

)
, for all X ∈ X .

(d) In this representation, the weight vectors q and p are unique, and the function u is unique 
up to a positive affine transformation.

Application to individual intertemporal choice under uncertainty With I representing a set 
of time periods and J a set of states of nature, an element of X becomes an intertemporal, 
state-dependent prospect. Elements of X I represent instantaneous prospects (which, by Iden-
tical Row Spaces, could be realized at any moment in time), while elements of XJ represent 
ex post consumption streams (which, by Identical Column Spaces, could be realized in any state 
of nature). INVARIANT ROW and COLUMN PREFERENCES mean, respectively, that preferences 
are state-independent over ex post consumption streams, and time-independent over instanta-
neous prospects. Adding the conditions of Proposition 2 to Corollary 1, we conclude that the 
individual’s preference is represented by the expected value of a discounted utility sum.

An axiomatization of subjective probability for mixed uncertainty A classic objection to 
Anscombe and Aumann [1] is that they miss their target – i.e., to provide non-probabilistic 
foundations of the use of the probability calculus – since they postulate well-understood VNM 
lotteries to start with. The equally classic rejoinder is that lotteries represent objective probability 
measures, whereas the endogenous derived probability measure is subjective, and that these are 
markedly different concepts. However, this is a somewhat dubious response, because nothing in 
the framework justifies taking lotteries, and especially all possible ones, as if they were objective 
probabilities in a serious sense, and even frequencies, as some have suggested. A reinterpretation 
of Corollary 1 suggests a way out of this controversy.

We now conceive of the Cartesian product set I × J as being the set of states of nature. 
That is, we suppose that each state of nature is realized after two uncertainties, here represented 
by I and J , are resolved. A matrix X ∈ RI×J becomes a prospect that assigns a real-valued 
pay-off (say a monetary prize) to each state (i, j) ∈ I ×J . The preference relation � on prospects 
can be restricted to a feasible subset X ⊆ RI×J , a generalization that standard expected utility 
theories do not offer. ROW PREFERENCES and COLUMN PREFERENCES now define preferences 
conditional the I - and J -attributes of a state, and they make an eventwise dominance claim in 
either case. COORDINATE MONOTONICITY adds a statewise dominance claim with respect to 
the full states.

The two specific axioms of this section, i.e., INVARIANT ROW PREFERENCES and INVARI-
ANT COLUMN PREFERENCES, play the decisive role. They express the fact that the two sources 
of uncertainty are epistemically independent of each other in the following sense: information 
about how one of them is resolved reveals nothing about how the other would be.24 A semi-
formal argument will explain this connection. Suppose that ξ > ξ ′, and that contrary to the 
desired property, event i ∈ I tends to make event j ∈ J more likely to occur than event k ∈ J , 
whereas event h ∈ I has the opposite tendency of making k more likely to occur than j . Now, 
consider X ∈ X such that xi

j = ξ , xh
j = ξ ′, xi

k = ξ ′, xh
k = ξ , and Y ∈ X such that yi

j = ξ ′, 

24 To parody Savage, suppose I am uncertain whether I will find fresh eggs on the market and whether I have a bowl 
in my cupboard, or I am uncertain whether there will be a swimming pool open and whether my tennis racket is good 
enough to play.
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yh
j = ξ , yi

k = ξ , xh
k = ξ ′, with X and Y sharing their values elsewhere. By the axioms of the 

previous paragraph, conditional preferences are well-defined and increasing, so that xi 	i yi and 
xh 	h yh, contradicting INVARIANT ROW PREFERENCES since xh = yi and yh = xi . Similarly, 
if j ∈ J makes i ∈ I more probable than h ∈ I , while k ∈ J has the opposite effect of making h
more probable than i, a contradiction results for INVARIANT COLUMN PREFERENCES. Thus, if 
the two invariance conditions hold, the assumed violations of independence will not occur. This 
suggests that the conditions do capture independence in the sought after sense.

We assume Identical Row Spaces and Identical Column Spaces, but this is only for technical 
simplicity.

Let us now consider the weight vectors p and q in the conclusions of Corollary 1. Given their 
role in WJ and WI , and their uniqueness property, they express meaningful probabilities for each 
uncertainty. Moreover, their multiplicative occurrence in the formula

W(X) =
∑
j∈J

∑
i∈I

qipju
(
xi
j

)
shows that the informal concept of independence has been turned into probabilistic indepen-
dence. Beside answering the problem of axiomatizing this numerical concept in decision-
theoretic terms, Corollary 1 connects with the initial controversy about Anscombe and Aumann. 
One may retain their basic insight, which is to derive the agent’s probabilities on subjectively 
uncertain states from preference comparisons that involve a second uncertain phenomenon. But 
unlike Anscombe and Aumann, we do not assume that the agent has vNM preferences with 
respect to this second phenomenon, or even assume that the second phenomenon admits “objec-
tive” probabilities at all. It is enough to require independence in the informal sense explained 
above.

4. Conclusion

The paper has developed a theory for ranking multiattribute alternatives that relies on the 
earlier Debreu–Gorman apparatus of separability, but extends it in several ways. Not only have 
we made this apparatus compatible with restricted feasible sets, but we have turned its generic 
additively separable representations into more expressive ones, which relate more closely to the 
aimed at applications. Those covered here are sufficient to illustrate the logical power of the 
theory, but others will be developed elsewhere for their own sake. Even in the field of normative 
economics, where the theory originates and has its currently major application, there seems to be 
more room for concrete work. We may put GDP time-series, income or wealth distributions, or 
systems of interpersonal utility comparison into suitable matrix forms, and then check whether 
or not our domain restrictions and axiomatic conditions meaningfully apply. Some of these cases 
might raise loss of dimensionality problems, and not all them will accommodate the special 
invariant preference and identical spaces axioms that enhanced our treatment, so the forthcoming 
applications are likely to range all the way down from the generic additive separability result à la 
Debreu–Gorman in Section 2 to the specific ones in Section 3. The theory as such deserves to be 
developed beyond the case of two attributes, and it would have to be generalized to the case in 
which the components of the matrices – or the higher-dimensional arrays – are not real numbers.
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Appendix A. Proofs

Proof of Lemma 1. Clearly, ROW MONOTONICITY or COLUMN MONOTONICITY imply CO-
ORDINATE MONOTONICITY. We show the nontrivial converse. Suppose X is convex, and satis-
fies COORDINATE MONOTONICITY; we will show that it satisfies COLUMN MONOTONICITY. 
Let j ∈ J and i ∈ I , and let x, y ∈ Xj . Suppose xh = yh for all h ∈ J \ {i}; we must show that 
x �j y if and only if xi ≥ yi .

Case 1. First suppose X is a box. Then we can find ̃X, ̃Y ∈X such that ̃xj = x and ̃yj = y, while 
ỹk = x̃k for all k ∈ J \ {j}. Thus, we have:

(x �j y) ⇐⇒ ( X̃ � Ỹ) ⇐⇒ (̃
xi
j ≥ ỹi

j

) ⇐⇒ (
xi ≥ yi

)
,

as desired, by applying first COLUMN PREFERENCES, then COORDINATE MONOTONICITY, and 
finally the definition of X̃ and Ỹ.

Case 2. Now let X be any open convex set. Then the coordinate projection Xj is also open and 
convex, so the line segment K between x and y is in Xj . For each z ∈K, we can find an open box 
Bz ⊆ Xj that contains z, and an open box B̃z ⊆ X that projects onto Bz. Apply the argument from 
Case 1 to B̃z to show that �j satisfies COLUMN MONOTONICITY when restricted to Bz. Since K
is compact, it can be covered with a finite collection of boxes like Bz, and �j satisfies COLUMN 
MONOTONICITY on each one. An inductive argument leads one to conclude that x �j y if and 
only if xi ≥ yi .

The proof of ROW MONOTONICITY is similar, only using ROW PREFERENCES instead of
COLUMN PREFERENCES. �
Proof of Example (a) just above Proposition 1. Without loss of generality, we can take X =
(0,1)I×J . Fix X ∈ X , letting Y := {Y ∈ X ; Y ≈ X}. Given Y1, Y2 ∈ Y , we must find a path in 
Y connecting Y1 to Y2.

Define 1 ∈RI×J by setting 1i
j := 1 for all i ∈ I and j ∈ J . By CONTINUITY and COORDI-

NATE MONOTONICITY, there exists r1 ∈ (0,1) such that r11 ∈ Y . Let Z1 ⊂ X be the open line 
segment from Y1 to 1. For all Z ∈ Z1, COORDINATE MONOTONICITY implies that Z � Y1. 
Again by CONTINUITY and COORDINATE MONOTONICITY, there exists rZ ∈ (0,1] such that 
rZZ ∈ Y . The set K1 := {rZZ; Z ∈Z1} is a continuous path in Y from Y1 to r11.

Likewise, a continuous path K2 can be found in Y from Y2 to r11. A path in Y from Y1 to 
Y2 results from joining it to K1. �
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The proof of Proposition 1 is based on the Debreu–Gorman theory of additive representations 
for separable preference orders, which requires some background. Let N be an indexing set (e.g., 
N = I × J ), let Y be an open subset of RN , and for all n ∈ N , let Yn be the projection of Y onto 
the n-th coordinate. A preference order � on Y has a fully additive representation if there exist 
functions un : Yn −→R, for all n ∈ N , such that if we define U : Y −→ R by

U(y) :=
∑
n∈N

un(yn),

then U represents �.
For any y ∈ Y , we say that � admits a fully additive representation near y if there is an 

open neighborhood Y ′ ⊆ Y around y, such that � admits a fully additive representation when 
restricted to Y ′. We will use the following result.

Lemma A1. Let Y be an open, connected, sectionally connected subset of RN , and let � be a 
continuous, indifference-connected preference order on Y , which is strictly increasing in every 
coordinate. If � admits a fully additive representation near every y ∈ Y , then � admits a fully 
additive representation on Y . Furthermore, this global additive representation is unique up to a 
positive affine transformation.

Proof. See Theorem 2.2 of Chateauneuf and Wakker [9]. �
Let J ⊆ N , and let K := N \ J . For any y ∈ Y , define yJ := [yj ]j∈J (an element of RJ ) and 

yK := [yk]k∈K (an element of RK ). We say that � is J -separable (or that J is a �-separable
subset of N ) if the following holds. For all x, y, x′, y′ ∈ Y , if

xK = yK, xJ = x′
J ,

x′
K = y′

K, and yJ = y′
J ,

then (x � y) ⇐⇒ (x′ � y′). We say that � is totally separable if every subset J ⊆ N is 
�-separable. A well-known result applies these concepts to the case where Y is an open box.

Lemma A2. If � is a continuous, totally separable preference order on an open box B ⊆ RN , 
and � is increasing in every coordinate, then � has a fully additive utility representation.

Proof. See Theorem 3 in Debreu [10]. �
Let J ⊆ N and K := N \ J . We say that J is strictly �-essential if, for any y ∈ Y , there exist 

x, x′ ∈ Y such that xK = x′
K = yK , but x 	 x′. (In words, it is possible to create a strict preference 

by only manipulating the J coordinates, while keeping the K coordinates fixed at any stipulated 
values.)

Lemma A3. Let � be a continuous preference order on an open box B ⊆RN . Let J, K ⊆ N be 
two �-separable subsets, such that J ∩ K �= ∅. Suppose that J , K , and J ∩ K are all strictly 
�-essential. Then:

(a) J ∪ K is �-separable.
(b) J ∩ K is �-separable.



P. Mongin, M. Pivato / Journal of Economic Theory 157 (2015) 146–171 165
Proof. See Theorem 1 by Gorman [17] for the original result, Theorem 4.7 of Blackorby et al. 
[4] for a restatement, and Theorem 11 and Proposition 16 of von Stengel [36] for the most general 
treatment. �

Now, for any i ∈ I , define J i := {(i, j); j ∈ J }. We can write RI×J =RJ1 ×RJ2 × · · ·×RJn . 
For any j ∈ J , define Ij := {(i, j); i ∈ I }. Similarly, we can write RI×J =RI1 ×RI2 ×· · ·×RIm .

Lemma A4. As in Lemma A3, let � be a continuous preference order on an open box B ⊆RI×J . 
For all i ∈ I and j ∈ J , suppose the sets Ij and J i are �-separable, and the set {(i, j)} is 
�-strictly essential. Then � is totally separable.

Proof. Clearly, the union of two strictly �-essential subsets of I × J is strictly essential. Since 
every singleton subset of I × J is strictly �-essential, it follows that every subset of I × J is 
strictly �-essential.

To show from the assumptions that � is totally separable, consider the cases of singleton 
and doubleton subsets of I × J . Singletons {(i, j)} are intersections of the �-separable sub-
sets J i and Ij , hence �-separable by Lemma A3(b). A slightly more roundabout application of 
Lemma A3 shows that doubletons are �-separable. Finally, prove that any subset J ⊆ I × J is 
�-separable, by induction on |J |, doubleton separability, and Lemma A3(a). (See also Corollary 
to Theorem 3.7 in Keeney and Raiffa [24].) �
Remark. To show that doubletons are separable in the proof of Lemma A4, we need |I | ≥ 2 and 
|J | ≥ 2. This is the key place in the proofs where this assumption is necessary.

Proof of Proposition 1(a). Given X ∈X , there is an open box B of RI×J such that X ∈ B ⊆X . 
We first show that if � is restricted to B, then it is J i-separable for all i ∈ I . Let Y, Z, Y, Z ∈ B, 
and suppose that (a) yh = zh for all h ∈ I \ {i}, (b) yi = yi , (c) yh = zh for all h ∈ I \ {i}, and
(d) zi = zi . Then

(Y � Z) ⇐⇒ (
yi �i zi

) ⇐⇒ (
yi �i zi

) ⇐⇒ (Y � Z),

showing that � is J i -separable. (The first equivalence is by (a) and ROW PREFERENCES, the 
second by (b) and (d), and the last one by (c) and ROW PREFERENCES.)

By a similar argument based on COLUMN PREFERENCES, if � is restricted to B, then it is 
Ij -separable for all j ∈ J .

It remains to show that � has a fully additive representation on B. By CONTINUITY, � is 
continuous on B. COORDINATE MONOTONICITY implies that every coordinate is strictly essen-
tial. We have just shown that Ji and Ij are separable for all i and j ; thus Lemma A4 implies 
that � is totally separable on B. Finally, Lemma A2 and COORDINATE MONOTONICITY yield 
an additive representation of � on B. This proves part (a) with Y = B. �
Proof of (b). This follows from part (a), along with COORDINATE MONOTONICITY, CONTINU-
ITY and Lemma A1.25 (Alternatively, we could have directly proved (b) by applying Theorem 1 
of Segal [32].) �
25 This is the one place in the proof that makes use of sectional connectedness and indifference connectedness.
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Proof of (d). Fix X ∈ X , and consider the section of X in the j th dimension through X, as 
defined by:

Sj (X) := {
Y ∈X ;yk = xk, for all k ∈ J \ {j}}.

Let Xj (X) := {yj ; Y ∈ Sj (X)} ⊆ Xj . COLUMN PREFERENCES implies that �, when restricted 
to Sj (X), is equivalent to �j on Xj (X). Thus, part (b) implies that the order �j on Xj (X) is 
represented by the function UX

j defined by

UX
j (y) :=

a constant︷ ︸︸ ︷∑
k∈J\{j}

∑
i∈I

ui
k

(
xi
k

)+
∑
i∈I

ui
j

(
yi

)
,

for all y ∈ Xj (X). Thus, the function Uj := ∑
i∈I ui

j (y
i) also represents �j on Xj (X). This 

holds for all X ∈X ; thus Uj represents �j on Xj = ⋃
X∈X Xj (X). �

Proof of (c). Similar to the proof of (d), only using ROW PREFERENCES instead of COLUMN 
PREFERENCES. �

To prove Theorem 1, we must solve a Pexider functional equation on a general domain. The 
solution is provided by the following result.

Lemma A5. Let N ≥ 1 be an integer, and let Y ⊆ RN be an open, connected set. For all n ∈
[1 . . .N], let Yn be the projection of Y onto the nth coordinate, and let Y0 := {∑N

n=1 yn; y ∈ Y}.26

For all n ∈ [0 . . .N], let fn : Yn −→ R be functions, at least one of which is continuous, and 
suppose they satisfy the Pexider equation:

f0

(
N∑

n=1

yn

)
=

n∑
n=1

fn(yn), for all y ∈ Y .

Then there exist (unique) constants a, b0, b1, b2, . . . , bN ∈ R such that b0 = ∑N
n=1 bn, and such 

that, for all n ∈ [0 . . .N], fn(y) = ay + bn for all y ∈ Yn.

Proof. See Theorem 1 and Corollary 2 in Radó and Baker [30]. �
Proof of Theorem 1. The “if” direction is obvious. We prove the “only if” direction. �
Proof of (a). This follows from adapting the representations in Proposition 1(d) to the fact that 
X now satisfies Identical Column Spaces and � now satisfies INVARIANT COLUMN PREFER-
ENCES. (Specifically, fix some j0 ∈ J , and for all i ∈ I , and all x ∈XJ , define ui(xi) := ui

j0
(xi), 

and put WJ = Uj0 , where Uj0 is defined by setting j = j0 in Proposition 1(d).) �
To prove parts (b)–(d), fix some j0 ∈ J . For all i ∈ I , let ui := ui

j0
.

Claim 1. For any j ∈ J , there exist constants aj > 0 and bi
j ∈R such that ui

j (x
i) = aju

i(xi) +bi
j

for all x ∈XJ and i ∈ I .

26 Thus, Y0, Y1, . . . , YN are all open intervals in R.
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Proof. By Identical Column Spaces, XJ is the same as Xj for any j ∈ J , so it is an open and 
connected set of RI by the usual properties of the projection map. Let j ∈ J , and let Uj0 and Uj

be as in Proposition 1(d). By INVARIANT COLUMN PREFERENCES, both Uj0 and Uj , represent 
�J on XJ . Thus, there are continuous, increasing transformations gj : R−→R such that Uj =
gj ◦ Uj0 , or∑

i∈I

ui
j

(
xi

) = gj

(∑
i∈I

ui
j0

(
xi

))
, for all x ∈XJ . (A1)

For simplicity, suppose I = {1, . . . , n}, so that XJ ⊆ Rn. The image set Z := {(u1
1(x

1), . . . ,
un

1(xn)); x ∈ XJ } is also open and connected in Rn, because the ui
j0

are continuous and increas-

ing, hence open.27 If we make the change of variables zi := ui
j0

(xi) for all i ∈ I , then (A1)
becomes the Pexider equation:∑

i∈I

ui
j ◦ (

ui
j0

)−1(
zi

) = gj

(∑
i∈I

zi

)
, for all z ∈Z.

Lemma A5 applied to Z yields constants aj and b1
j , . . . , b

n
j ∈ R such that ui

j ◦ (ui
1)

−1(zi) =
aj z

i + bi
j for all z ∈ Z and all i ∈ I , hence such that ui

j (x
i) = aju

i
j0

(xi) + bi
j for any x ∈ XJ . 

Finally, aj > 0 because ui
j and ui

j0
are both increasing. � Claim 1

Proof of (c). Let A := ∑
j∈J aj and pj := aj/A for all j ∈ J , so that p = (pj )j∈J is a strictly 

positive weight vector on J . Claim 1 implies that, for all i ∈ I and j ∈ J , and all X ∈X ,

ui
j

(
xi
j

) = Apju
i
(
xi
j

) + bi
j . (A2)

If we let U : X −→ R be as in Proposition 1(a, b), and define B := ∑
i∈I

∑
j∈J bi

j , then for all 
X ∈X ,

U(X) =
∑
i∈I

∑
j∈J

ui
j

(
xi
j

) = A ·
∑
i∈I

∑
j∈J

pju
i
(
xi
j

) +
∑
i∈I

∑
j∈J

bi
j

= A ·
∑
j∈J

pj

(∑
i∈I

ui
(
xi
j

)) + B = A · W(X) + B,

where W is defined as in Eq. (3). Thus, W is an increasing transform of U , so it represents �
on X . �
Proof of (b). Let Ui be as in Proposition 1(c). Then for all x ∈X i ,

Ui(x) =
∑
j∈J

ui
j (xj ) = A

∑
j∈J

pju
i(xj ) +

∑
j∈J

bi
j = AUi

p(x) + [a constant],

where the second equality is by (A2). Thus, Ui
p represents �i . �

27 Any function φ from an open subset of R to R that is continuous and increasing is also open. We will make repeated 
use of this property.
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Proof of (d). For all i ∈ I , let ũi : R −→ R be a continuous and increasing function, and let 
p̃ ∈ �J be a strictly positive weight vector. Suppose that �J is represented by the function 
W̃J :XJ −→ R defined by

W̃J (x) :=
∑
i∈I

ũi
(
xi

)
, for all x ∈ XJ ,

and that � is also represented by the function W̃ : X −→R defined by

W̃ (X) :=
∑
j∈J

∑
i∈I

p̃j ũ
i
(
xi
j

)
, for all X ∈X .

Now, 
∑

i∈I ũi(xi) = g(
∑

i∈I ui(xi)) for some increasing and continuous transformation g.28

Thus carrying the same functional equation argument as for Claim 1, we conclude that there are 
constants a > 0 and bi ∈R (for all i ∈ I ) such that

ũi
(
xi

) = aui
(
xi

) + bi, (A3)

for all i ∈ I and x ∈ XJ . Thus, the functions {ui}i∈I are unique up to a common affine transfor-
mation, as was to be proved.

Meanwhile, the uniqueness part of Proposition 1(a) yields constants A > 0 and bi
j ∈R, for all 

i ∈ I and j ∈ J , such that

p̃j ũ
i
(
xi
j

) = Apju
i
(
xi
j

) + bi
j , (A4)

for all X ∈ X , i ∈ I and j ∈ J . Fix some i0 ∈ I Let x ∈ X i0 . The set X i0 is open, and ui0 is 
continuous and increasing; thus, there exist some ε > 0 and some y ∈ X i0 such that ui0(xj ) −
ui0(yj ) = ε for all j ∈ J . But then, for all j ∈ J ,

aεp̃j = ap̃ju
i0(xj ) − ap̃ju

i0(yj ) = p̃j ũ
i0(xj ) − p̃j ũ

i0(yj )
(
by Eq. (A3)

)
= Apju

i0(xj ) − Apju
i0(yj ) = Aεpj ,

(
by Eq. (A4)

)
.

It follows that aεp̃ = Aεp, and thus A = a, since p and ̃p are weight vectors. Thus, p = p̃, which 
completes the proof of (d). �
Proof of Proposition 2. (a) Let W :X −→ R be the additive representation from Theorem 1(c). 
By hypothesis, for all j ∈ {1, . . . , t − 1}, there is some X ∈ X such that xj 	J xj+1 and 
X 	 σj (X), so that W(X) > W [σj (X)]. Canceling the common summands from both of this 
inequality yields

pjWJ (xj ) + pj+1WJ (xj+1) > pjWJ (xj+1) + pj+1WJ (xj ).

Rearranging this inequality, we obtain

(pj − pj+1) · [WJ (xj ) − WJ (xj+1)
]
> 0.

But xj 	J xj+1, so WJ (xj ) > WJ (xj+1). Thus, we must have pj > pj+1, as desired.

28 If f and h are continuous real-valued functions on some connected subset B ⊆ R, and g is an increasing real-valued 
function such that h = g ◦ f , then g is continuous on f (B). We will make repeated use of this fact.
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(b) Theorem 1 implies that �L on XL and �R on XR have the additive representations:

WL(X) =
t−1∑
j=1

∑
i∈I

pju
i
(
xi
j

)
and

WR(X) =
t∑

j=2

∑
i∈I

pju
i
(
xi
j

)
.

On XL ∩XR �= ∅, WL and WR represent the same order (by STATIONARITY). This intersection 
is open in R|I |×(t−1) (as XL and XR are open), and a standard uniqueness theorem for additive 
representations entails that WL and WR are identical up to a positive affine transformation. Thus, 
there is δ > 0 such that (p2, . . . , pt) = δ · (p1, . . . , pt−1). Now, repeating the argument of part (a) 
for the given j , we have that pj > pj+1, hence δ < 1. �
Proof of Corollary 1. Again, we prove the “only if” direction. Theorem 1(c) says that � is 
represented by the function W :X −→ R defined by Eq. (3). Now, by the variant of this theorem 
using INVARIANT ROW PREFERENCES and Identical Row Spaces, there is a weight vector q =
(qi)i∈I ∈ �I , and, for all j ∈ J , there is an increasing, continuous function vj : X ∗

j −→ R, such 

that �I is represented by the function WI : X −→ R defined by

WI(x) :=
∑
j∈J

vj (xj ), for all x ∈ X I , (A5)

while � is represented by the function W̃ : X −→ R defined by

W̃ (X) :=
∑
j∈J

∑
i∈I

qivj

(
xi
j

)
, for all X ∈ X . (A6)

Now fix x0 ∈ X ∗∗ . By Theorem 1(d) and its variant, we can subtract relevant constants from the 
functions {vj }j∈J and {ui}i∈I , to ensure that

vj (x0) = 0 for all j ∈ J, and ui(x0) = 0 for all i ∈ I. (A7)

Since � is represented by both W and W̃ , there is some continuous, increasing function 
f : R −→ R such that:

f

(∑
j∈J

∑
i∈I

pju
i
(
xi
j

)) =
∑
j∈J

∑
i∈I

qivj

(
xi
j

)
, for all X ∈X . (A8)

For all i ∈ I and j ∈ J , define gi
j (ζ ) := qivj ◦ (ui)−1(ζ/pj ) for all ζ ∈ R where this definition 

makes sense. Define Ξ := {[pju
i(xi

j )]i∈I
j∈J ; X ∈ X }, an open, connected subset of RI×J . Then 

substituting ξ i
j := pju

i(xi
j ) into both sides of Eq. (A8) yields

f

(∑
j∈J

∑
i∈I

ξ i
j

)
=

∑
j∈J

∑
i∈I

gi
j

(
ξ i
j

)
, for all ξ ∈ Ξ.

Now Lemma A5 implies that there exists a constant a > 0 such that f (ζ ) = aζ = gi
j (ζ ) for 

all i ∈ I and j ∈ J . (Eq. (A7) implies that the added constants of Lemma A5 are all 0.) By 
rescaling {vj }j∈J if necessary, we can assume that a = 1; hence gi (ζ ) = ζ . But gi (ζ ) = qivj ◦
j j
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(ui)−1(ζ/pj ), so this implies that pju
i = qivj , for all (i, j) ∈ I × J . Dividing these equations 

by qipj (which are nonzero), we obtain

ui/qi = vj /p
j , for all (i, j) ∈ I × J.

It follows that there is a single increasing continuous function u :X ∗∗ −→ R such that

(a) ui/qi = u for all i ∈ I and (b) vj /pj = u for all j ∈ J. (A9)

Substituting Eq. (A9)(a) into Eq. (1) yields part (a) of the result. Substituting (A9)(b) into (A5)
yields part (b), while substituting (A9)(b) into (A6) yields part (c). Part (d) is straightforward. �
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