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ABSTRACT

The desirability of what actually occurs is often influenced by what could have been.

Preferences based on such value dependencies between actual and counterfactual out-

comes generate a class of problems for orthodox decision theory, the best-known perhaps

being the so-called Allais paradox. In this article we solve these problems by extending

Richard Jeffrey’s decision theory to counterfactual prospects, using a multidimensional

possible-world semantics for conditionals, and showing that preferences that are sensi-

tive to counterfactual considerations can still be desirability-maximizing. We end the

article by investigating the conditions necessary and sufficient for a desirability function

to be a standard expected-utility function. It turns out that the additional conditions

imply highly implausible epistemic principles.
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The desirability of what actually occurs is often influenced by what could have

been. Suppose you have been offered two jobs, one very exciting but with a

substantial risk of unemployment, the other less exciting but more secure. If

you choose the more risky option and as a result become unemployed, you
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might find that the fact that you could have chosen the risk-free alternative

makes being unemployed even worse. In addition to experiencing the normal

pains of being out of job, you might then be filled with regret for not having

chosen the risk-free alternative. On other occasions something different

from regret explains the dependence of our assessments of what is the case

on what could have been. Suppose a patient has died because a hospital gave

the single kidney that it had available to another patient. Suppose also that

the two patients were in equal need of the kidney, had equal rights to treat-

ment, and so on Now if we were to learn that a fair lottery was used to

determine which patient was to receive the kidney, then most of us would

find that this makes the situation less undesirable than had the kidney

simply been given to one of them. For that at least means that the patient

who died for lack of a kidney had had a chance to acquire it. In other words,

had some random event turned out differently than it actually did, the dead

patient would have lived.

This desirabilistic dependency between what is and what could have been

creates well-known problems for the traditional theory of rational choice

under risk and uncertainty, as formulated by John von Neumann and

Oskar Morgenstern ([2007]) and Leonard Savage ([1972]). The first example

is just a simplified version of Maurice Allais’s ([1953]) infamous paradox,

whereas the latter is an instance of a decision theoretic problem identified

decades ago by Peter Diamond ([1967]). In this article we use a framework

based on a combination of Richard Jeffrey’s ([1990]) decision theory and a

multidimensional possible-world semantics for counterfactual conditionals

(Bradley [2012]) to explore the above dependency.

Section 1 explains the two paradoxes and why they cast doubt on a ration-

ality postulate, known as ‘separability’. Separability is assumed by a class of

mainstream decision theories—for which we will reserve the label ‘expected

utility theory’ (EU theory for short)—including those of von Neumann and

Morgenstern (where it is called ‘independence’) and Savage (where it is called

the ‘sure-thing’ principle). Separability is not presupposed by Richard

Jeffrey’s decision theory, however. His is a theory of desirability maximization

that is not an EU theory (in the vocabulary adopted in this article). This makes

his theory a good candidate for handling Allais’s and Diamond’s examples

but, as we explain in Section 2, the lack of counterfactual prospects in his

theory means that it too cannot easily represent the preferences revealed in

these examples. To overcome this problem, in Section 3 we introduce

counterfactuals into Jeffrey’s theory and then, in Section 4, show how this

makes it possible to represent such preferences as maximizing the value of a

Jeffrey desirability function, even though they cannot be represented as max-

imizing expected utility. In Section 5 we show that, contrary to what decision

theorists and philosophers have typically assumed, a second assumption of
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‘ethical actualism’, quite different from the aforementioned separability prop-

erty, is also involved in the clash between Allais’s and Diamond’s preferences

and EU theory. Indeed it turns out that ethical actualism and separability are

both necessary for expected-utility maximization and, given the other assump-

tions of Jeffrey’s theory, sufficient for it. Since ethical actualism and separ-

ability impose unreasonable constraints on agents’ attitudes, we conclude that

rationality does not require that agents maximize expected utility.

1 Two Paradoxes of Rational Choice

The Allais paradox has generated a great deal of discussion amongst philoso-

phers, psychologists, and behavioural economists. The paradox is generated

by offering people a pair of choices between different lotteries, each of which

consists in tickets being randomly drawn. First people are offered a choice

between a lottery that is certain to result in the decision-maker receiving

a particular prize, say £2400, and a lottery that could result in the decision-

maker receiving nothing, but could also result in the decision-maker receiving

either as much as or more than £2400. The situation can be represented as a

choice between the lotteries L1 and L2 below, where, for instance, L1 results in

the decision-maker receiving a prize of £2500 if one of tickets number 2 to 34 is

drawn:

Having made a choice between L1 and L2, people are asked to make a second

one, this time between lotteries L3 and L4:

Repeated (formal and informal) experiments have confirmed that people

tend to choose and strictly prefer L2 over L1 and L3 over L4. (See (Kahneman

and Tversky [1979]) for discussion of an early experiment of the Allais

paradox.) One common way to rationalize this preference, which we will

refer to as ‘Allais’s preference’, is that when choosing between L1 and L2,

the possibility of ending up with nothing when you could have received

£2400 for sure outweighs the possible extra gain of choosing the riskier alter-

native, since receiving nothing when you could have gotten £2400 for sure is

bound to cause considerable regret (see, for example, Loomes and Sugden

[1982] and Broome [1991]). When it comes to choosing between L3 and L4,
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however, the desire to avoid regret does not play as strong role, since decision-

makers reason that if they choose L3 and end up with nothing then they

would, in all likelihood, have received nothing even if they had chosen the

less risky option L4.

Intuitively rational as it seems, Allais’s preference is inconsistent with the

most common formal theory of rational choice: EU theory (assuming, that is,

that the probabilities of each ticket are the same in the two choice situations.)

According to EU theory, all rational preferences over prospects can be rep-

resented as maximizing the expectation of a utility function. Formally, let any

prospect or option f be a function from a set of states of the world, S ¼ fSig, to

a set of consequences, with f ðSiÞ being the consequence of exercising option

f when the state of the world is Si. The expected utility of a prospect f is then

defined by1:

EUðf Þ ¼
X

SieS

uðf ðSiÞÞ:PrðSiÞ;

where Pr is a probability measure on the states and u a utility measure on

consequences. In von Neumann and Morgenstern’s theory, the probabilities

on states are objective and the prospects are called lotteries; in Savage’s more

general framework, the probabilities are subjective and the prospects called

acts. But these differences will not matter to our discussion.

In the usual manner let % represents the agent’s ‘. . . is least as preferred

as . . .’ relation between alternatives and � and � the corresponding strict

preference and indifference relations between them. Then EU theory states

that for any rational agent:

f � g if and only if EUðf Þ > EUðgÞ: ð1Þ

When this holds for someone’s preferences, we say that the EU function

represents their preferences.

The problem that the Allais paradox poses to decision theory is that there is

no way to represent Allais’s preference over lotteries in terms of the maximiza-

tion of the value of a function with the EU form. To see this, let us assume that

in both choice situations the decision-maker considers the probability of each

ticket being drawn to be 1/100. Then if Allais’s evaluation of the alternatives is

in accordance with the EU equation, Allais’s preference implies:

uð£0Þ þ ð33uð£2500ÞÞ þ ð66uð£2400ÞÞ < 100uð£2400Þ; ð2Þ

and

uð£2400Þ þ 33u ð£2400Þ < u ð£0Þ þ 33u ð£2500Þ:

1 We will throughout this article use period for multiplication.
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But the latter implies:

uð£2400Þ þ 33u ð£2400Þ þ 66 uð£2400Þ ¼ 100u ð£2400Þ

< uð£0Þ þ 33u ð£2500Þ þ 66u ð£2400Þ;

in contradiction with the inequality in Equation 2. Hence, there is no

EU function that simultaneously satisfies EUðL1Þ < EUðL2Þ and

EUðL4Þ < EUðL3Þ. In other words, there is no way to represent a person

who (strictly) prefers L2 over L1 and L3 over L4 as maximizing utility as

measured by the EU function. Since all rational preference should, according

to EU theory, be representable as maximizing expected utility, this suggests

that either Allais’s preference is irrational or EU theory is incorrect. Hence the

‘paradox’: many people both want to say that Allais’s preference is rational

and both that EU theory is the correct theory of practical rationality.

Another way to see that Allais’s preference cannot be represented as max-

imizing the value of an EU function is to notice that the preference violates a

separability condition on preferences that is required for it to be possible to

represent preferences by an EU function. The condition requires that when

comparing two alternatives whose consequences depend on what state is

actual, rational agents only consider the state(s) of world where the two

alternatives differ. More formally:

In the choice problem under discussion, this means that you only need to

consider the tickets that give different outcomes depending on which alterna-

tive is chosen. Hence, you can ignore the fourth column—tickets 35–

100—both when choosing between L1 and L2 and when choosing between

L3 and L4, since these tickets give the same outcome no matter which alter-

native is chosen. When we ignore this column, however, alternative L1

becomes identical to L3, and L2 to L4. Hence, by simultaneously preferring

L2 over L1 and L3 over L4, the decision maker seems to have revealed an

inconsistency in her preferences.

The second example discussed in the introduction generates a paradox similar

to Allais’s if we assume that there is nothing irrational about strictly preferring a

lottery that gives the patients an equal chance of receiving the kidney over

giving the kidney to either patient without any such lottery being used. If we

call the patients Ann and Bob, and let ANN represent the outcome where Ann

receives the kidney and BOB the outcome where Bob receives the kidney. To

represent the aforementioned attitude—which we will refer to as ‘Diamond’s

preference’—as maximizing the value of an EU function, it has to be possible
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to simultaneously satisfy:

uðANNÞ < 0:5uðANNÞ þ 0:5uðBOBÞ;

uðBOBÞ < 0:5uðANNÞ þ 0:5uðBOBÞ:

But that is of course impossible: an average of the values u(ANN) and

uðBOBÞ can never be greater than both values u(ANN) and u(BOB).

Again, we can see the tension between Diamond’s preference and standard

theories of rational choice by noticing that it violates separability. An implica-

tion of separability is that, given the prospects displayed below, where

E represents the outcome of some random event (for example, a coin toss),

L � LA if and only if LB � LA and L � LB if and only if LA � LB. Hence,

Diamond’s preference in conjunction with separability implies a contradiction.

The fact that both Allais’s and Diamond’s preferences involve a violation of

separability and that their preferences seem intuitively rational (or at least not

irrational), casts doubt on separability as a rationality postulate. Moreover,

both the desire to avoid regret, as manifested in Allais’s preference, and the

concern for giving each patient a ‘fair chance’, which seems to be what underlies

Diamond’s preference, have something to do with counterfactuals. Regret, at

least in the situation under discussion, is a bad feeling associated with knowing

that one could have acted differently and that if one had things would have been

better. And to say that even if Bob did not receive a kidney, he nevertheless had

a chance seems to mean that there is a meaningful sense in which things could

have turned out differently—for instance, a coin could have come up differ-

ently—and if they had, Bob would have received the kidney. So both Allais and

Diamond violate the formal separability requirement of standard decision the-

ories since they judge that the value of what actually occurs at least partly

depends on what could have been, that is, on counterfactual possibilities.2

2 Lara Buchak ([2013]) has recently suggested a solution to the Allais paradox that relies on a

slightly different interpretation of Allais’s preference than the one we suggest here. Whereas we

interpret people that display this type of preference as being regret-averse, she interprets them as

being risk-averse. And she introduces a risk function that, in addition to a utility and probability

function, represents a person’s attitudes and argues that rational agents maximize risk-weighted

expected utility. A limitation of Buchak’s account, we think, is that her theory cannot rationalize

Diamond’s preference, since her risk-weighted expected-utility function is such that the expected

benefit of a lottery can never exceed the benefits of each of its prizes. If we are right in thinking

that Allais’s and Diamond’s preferences are two instances of a general type of prefer-

ence—namely, counterfactual-dependent preference—then it is an advantage of our theory

over Buchak’s that we can solve the two paradoxes in the same way—namely, by introducing

counterfactuals into the domain of Jeffrey’s decision theory.
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Perhaps for the reason discussed above, some economists and philosophers

have thought that separability as a requirement on preference is implied by an

evaluative assumption we call ‘ethical actualism’. Informally put, ethical actual-

ism is the assumption that only the actual world matters, so that the desirability

of combinations of what actually occurs and what could have occurred only

depends on the desirability of what actually occurs. In a well-known defence of

separability, Nobel Laureate Paul Samuelson argues that it would be irrational

to violate ethical actualism, and since he thinks that ethical actualism implies

separability, he takes this argument to show that it would be irrational to violate

separability. The separability postulate Samuelson was defending, which is

implied by what we above called separability, states that if some outcome ðAÞ1
is at least as good as ðBÞ1 and ðAÞ2 is at least as good as ðBÞ2, then an alternative

that results in ðAÞ1 if a fair coin comes up heads but ðAÞ2 if it comes up tails is at

least as good as an alternative that results in ðBÞ1 if the coin comes up heads but

ðBÞ2 if it comes up tails. Here is Samuelson’s informal justification of the axiom:

[. . .] either heads or tails must come up: if one comes up, the other

cannot; so there is no reason why the choice between ðAÞ1 and ðBÞ1
should be ‘contaminated’ by the choice between ðAÞ2 and ðBÞ2.

(Samuelson [1952], pp. 672–3)

In other words, the reason an evaluation or ordering of alternatives should

satisfy separability is that there should be no desirabilistic dependencies

between mutually incompatible outcomes; or, our preferences should satisfy

separability since our evaluation of outcomes should satisfy ethical actualism.

Some philosophers and decision theorists have cited Samuelson’s remark

favourably. John Broome, who takes it to at least provide a ‘prima facie pre-

sumption in favour of [separability]’, rhetorically asks: ‘How can something

that never happens possibly affect the value of something that does happen?’

(Broome [1991], p. 96). But however closely related ethical actualism and

separability might seem to be, the former does not (by itself) imply the

latter. In fact the two are based on different, though consistent, intuitions.

The former expresses the idea that only what actually happens matters, while

the latter expresses the idea that the desirability of what would be the case if

one set of conditions held true is independent of what would be the case if

some other set of conditions did. To see that these are different requirements

consider the set of prospects displayed in the matrix below.
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Now, as we have seen, separability requires that L1 � LA if and only if

LB � L2. On the other hand, ethical actualism requires that, conditional on

E being true, L1 � LA and LB � L2. Clearly, in the absence of further restric-

tions, it is possible for one of these to hold without the other. So even if

Samuelson and Broome are right about the intuitive appeal of ethical actual-

ism, this does not establish that separability is rationally required.

2 Jeffrey Desirability

Not all decision theories assume separability. In particular, the version of

decision theory developed by Richard Jeffrey ([1990]) makes do with much

weaker rationality conditions on preference. Indeed, although in an informal

sense it is true that Jeffrey’s theory prescribes choosing actions that have the

best expected consequences, the value function that rational agents maximize

on his theory is, strictly speaking, a desirability function but not an expected-

utility function (the difference is explained below). The question that we now

want to explore is whether we can represent Allais’s and Diamond’s prefer-

ences as maximizing Jeffrey desirability, even though they cannot be repre-

sented as expected-utility maximizing.3

In Jeffrey’s theory preferences are numerically represented by a desirability

function, Des, and a corresponding probability measure, Prob, both defined

on a Boolean algebra of propositions—that is, a set of propositions closed

under negation, conjunction, and disjunction—from which the impossible

proposition has been removed. If we take a proposition to be a set of possible

worlds, we can state his theory more formally as follows: Let W be the uni-

versal set of possible worlds and � the set of subsets of W (that is, the power

set of W). Then desirability and probability measures are defined over �,

elements of which (the propositions) we denote by non-italic uppercase letters

(A, B, C, and so on). We can thus think of each way in which proposition A

can be true as a world that is compatible with the truth of A. Assuming for

simplicity that there are at most countably many mutually exclusive worlds

compatible with A, then the Jeffery desirability of a proposition is given by:

DesðAÞ ¼
X

wi2W

DesðfwigÞ:Probðfwig jAÞ:

One way to think of a desirability measure is as an extension of the utility

measure on consequences that EU theory postulates (that is, on possible

worlds or maximally specific propositions) to the entire Boolean algebra of

3 The possibility of representing Allais’s preference as maximizing desirability would probably not

have impressed Jeffrey himself, who was satisfied with Savage’s view that Allais’s preference

reveals some sort of error of judgement (Savage [1972], pp. 102–3; Jeffrey [1990], p. 722).
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prospects formed from them.4 For given such a utility measure on conse-

quences/worlds, we can define the desirability of any prospect as the condi-

tional expectation of utility, given the truth of the prospect. Note that if for

each wi such that Probðfwig jAÞ > 0, we can find a proposition Si that is prob-

abilistically independent of A and such that wi is the consequence of A in Si,

then it will be the case that Probðfwig jAÞ ¼ ProbðSiÞ and the desirability of A

will be its unconditional expectation of utility relative to the probability dis-

tribution over the Si. But this is a special case and in general desirabilities may

not take this form.

Our interest in Jeffrey’s theory lies mainly in the possibility that Allais’s and

Diamond’s preferences are desirability-maximizing, but there is a second reason

for favouring it over the expected utility theories of Savage and others. To apply

Savage’s theory one must model the decision problem in a very specific way. In

particular, one must find states of the world that are probabilistically independ-

ent of the acts amongst which one may choose and consequences whose utilities

are independent of the states of the world in which they are realized. In effect,

this latter requirement means that consequences must be identified by propos-

itions that are maximally specific about everything that matters to the agent.

Real agents are rarely able to formulate decision problems in a manner that

meets these requirements. But if they do not, then there is no guarantee that by

maximizing expected utility relative to the coarse-grained specification of the

decision problem (that is, relative to the ‘small-world’ decision problem) then

they do so relative to a fully refined description of it (that is, relative to the

‘grand-world’ problem).5 In contrast, Jeffrey’s notion of desirability is partition-

invariant in the sense that if a proposition, A, can be expressed as the disjoint

disjunction of both fB1;B2;B3:::g and fC1;C2;C3:::g, then6

X

Bi2A

ProbðBi jAÞ:DesðBiÞ ¼
X

Ci2A

ProbðCi jAÞ:DesðCiÞ:

It follows that applying the rule of desirability maximization will always lead to

the same recommendation, irrespective of how the decision problem is framed,

while EU theory may recommend different courses of action, depending on how

the decision problem is formulated.

In Jeffrey’s theory acts are just propositions that can be made true at will,

and so the desirabilities of acts will partly depend on the conditional prob-

abilities of their consequences, given the performance of the acts. As a result,

separability can fail. For instance, consider two acts, A and B, with

4 Jeffrey’s theory does not however require that there be such maximally specific propositions or,

to put it differently, that the Boolean algebra of prospects contains atoms. We work with them

for expositional purposes.
5 See (Joyce [1999], Chapter 3.4) chapter 3.4 for a fuller discussion.
6 See (Joyce[1999] Theorem 4.1).
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consequences contingent on states S1 and S2, as displayed below:

Separability requires that A � B if and only if x � y. But if z is considered a

more desirable outcome than both x and y, and A makes S2 more likely

than does B, then A might be assigned a higher Jeffrey desirability than

B, even when x is not preferred to y. So Jeffrey’s theory does not require

separability.

Unfortunately, this does not completely solve our problem of making

Allais’s and Diamond’s preferences consistent with decision theory. For

although Jeffrey’s theory does not imply separability, the theory as it is usually

applied is also inconsistent with Allais’s and Diamond’s preferences. Let us

focus on the Diamond paradox to see the problem. LB now represents the set

of worlds where Bob gets the kidney no matter what, L:B the set of worlds

where Ann gets the kidney no matter what, and L the set of worlds where the

toss of a fair coin decides who gets the kidney. Then for Diamond’s preference

to be compatible with Jeffrey’s theory, it would seem that there has to be a

function, Des, such that:7

DesðANNÞ < DesðANNÞ:ProbðANN jLÞ þDesðBOBÞ:ProbðBOB jLÞ;

DesðBOBÞ < DesðANNÞ:ProbðANN jLÞ þDesðBOBÞ:ProbðBOB jLÞ:

But again, a probability mixture of the desirabilities of ANN and BOB can

never exceed the desirability of both ANN and BOB.

What this shows is that there is more at play than just the failure of separ-

ability in the explanation of Allais’s and Diamond’s preferences. For the

standard representation of the two problems, and our application of

Jeffrey’s theory to them, implicitly builds in the aforementioned assumption

of ethical actualism. Without this assumption (but still assuming that the

desirability of Ann or Bob getting the kidney is independent of the random

event E), Jeffrey’s theory just says:

DesðLÞ ¼ DesðANN ^ LÞ:ProbðANN jLÞ þDesðBOB ^ LÞ:ProbðBOB jLÞ

and nothing requires that DesðANN ^ LÞ ¼ DesðANNÞ or Des(BOB^L)

¼ DesðBOBÞ.

It seems then that the way to accommodate the Allais’s and Diamond’s

preferences within Jeffrey’s framework is just to specify the consequences of

7 We assume that both outcomes, ANN and BOB, are desirabilistically independent of the

random events E and :E (for example, coin comes up heads/tails) that determine the result

of the lottery.
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actions sufficiently broadly so as to make it intelligible that, for instance, Ann

getting the kidney in a fair lottery is a different consequence from her getting it

as a part of a process that made it certain she would receive it. More generally,

the notion of consequence should be broadened to take account of what could

have happened as well as what did happen. Just such a response to the two

paradox has been suggested by, for instance, John Broome ([1991]), who

argues that if regret and fairness matter to an agent then that should be

part of the description of the outcomes of lotteries,8 and by Paul Weirich

([1986]), who argues that the correct way to account for the risk attitudes

displayed in the Allais paradox is to allow that the risk involved in exercising

an option counts as one of its consequences.

Solutions of this kind will be unsatisfactory, however, if they involve intro-

ducing new primitive consequences in the representation of the decision pro-

blem without explaining their relationship to the available actions. In

particular, they must explain what it is about the form of the lottery L that

makes DesðANN ^ LÞ > DesðANNÞ. It is not, in our view, sufficient to say

that the first outcome is fair while the latter is not; what is needed is an

explanation of why the first outcome is fair. Moreover, to avoid trivializing

decision theory by making it allow that any possible choice can be rational, we

should require that exercises of this kind–where new propositions (or conse-

quences) are created to make seemingly problematic preferences compatible

with decision theory–adhere to some independently plausible principles as

Broome himself points out (see Broome [1999]; see also discussion of this in

Stefánsson [forthcoming]).

In the context of Jeffrey’s framework, avoiding these objections requires a

specification of the propositional structure of lotteries and acts, and the atti-

tudes that they support. We do so by widening the domain of Jeffrey’s theory

to include counterfactual propositions and showing that the properties

that generate Allais’s and Diamond’s paradoxes–respectively, regret and

fairness–then emerge as a relationship between factual and counterfactual

propositions. Our solution thus provides at least a partial explanation of

the preferences that generate these paradoxes, by highlighting the effects

counterfactuals have on the desirabilities of the prospects in question.9

Moreover, our solution does not trivialize decision theory, since the domain

8 Broome makes his suggestion for resolving the problem within Savage’s framework but, as he

notes, this leads to other problems, most notably to a tension with what he calls the rectangular

field assumption. As Jeffrey’s theory makes no such assumption, the solution looks more pro-

mising in his framework.
9 The explanation is only partial since a full explanation would, in the case of the Diamond

paradox, give a philosophical account of why counterfactuals can have moral value and, in

the case of the Allais paradox, give a psychological account of why people care about what could

have been. But such a discussion would go beyond the topic of this article.
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of Jeffrey’s original theory is extended in a principled way (to be explained in

the next section) and the resulting theory requires that people’s preferences

between all propositions satisfy the so-called Bolker-Jeffrey axioms (which we

introduce in Section 3.2).

This solution to the problems raised by Allais and Diamond is not ad hoc,

we think, since decision theory should, independently of these problems, allow

for the value dependencies one often finds between actual and counterfactual

outcomes. And this solution has the advantage over the refinement solution

suggested by Broome, that whereas he solves each of the two problems under

discussion by introducing different properties to the description of the out-

comes, our solution solves both problems at once by introducing counter-

factual conditionals to the domain of Jeffrey’s decision theory. Hence, while

the typical refinement solution to the problems raised by Allais and Diamond

treats the two preferences as having nothing in common except violation of

separability, our solution makes explicit that these are two instances of a

general type of preference that causes trouble for EU theory, namely,

counterfactual-dependent preference.

Before introducing counterfactual conditionals to Jeffrey’s theory, let us first

briefly explain why introducing indicative conditionals to Jeffrey’s theory

(as done, for example, in Bradley [1998], [2007]) will not solve the problem of

representing Allais’s and Diamond’s preferences. An indicative conditional is

generally considered to be what Jonathan Bennett calls ‘zero intolerant [. . .]

meaning that such a conditional is useless to someone who is really sure that

its antecedent is false’ (Bennett [2003], p. 45). In other words, if ‘ � ’ represents

the indicative conditional connective, then A � B is informative for someone

who thinks that A might be true (where ‘might’ is understood epistemically, not

merely logically or metaphysically). But A � B provides no information about a

world where one is certain that A is false. (Hence, its ‘uselessness’ to someone

who is certain that A is false.10) It is therefore plausible to assume, as Bradley

does, that Desð:A ^ ðA � BÞÞ ¼ Desð:AÞ, since if A is believed to be false,

then A � B makes no desirabilistic difference. Thus the conditionals that gen-

erate the paradoxes under discussion cannot be indicative conditionals, since the

problems they generate consist exactly in the fact that they have desirabilistic

impact when their antecedents are believed to be false.

What we need to do therefore is introduce counterfactual conditionals into

Jeffrey’s theory. Jeffrey himself recognized the need to do so and tried to solve

10 The fact that a conditional is zero-tolerant does not necessarily mean that its antecedent is false.

Hence, some want to call such conditionals subjunctive conditionals rather than counterfac-

tuals. That name is, however, not necessarily any better, since zero-tolerant conditionals are not

always expressed in the subjunctive mood. Hence, we will stick with the term ‘counterfactual’.
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the problem of providing an account of counterfactuals, but in his own view

did not succeed.

(If I had, you would have heard of it. There’s a counterfactual for you.)

In fact, the problem hasn’t been solved to this day. I expect it’s

unsolvable. (Jeffrey [1991], p. 161)

Jeffrey was unduly pessimistic. Since he made this remark there has been

considerable progress in the understanding of counterfactuals, progress that

we now build on.

3 Counterfactuals

Our problem is to find a way of representing counterfactual propositions

(counterfactuals for short) in a way that enables us to exploit the resources

of Jeffrey’s decision theory to model Allais’s and Diamond’s preferences. To

do so we extend standard possible world modelling of propositions in a nat-

ural way by introducing the notion of a possible counteractual world under a

supposition. A possible world is a way things might be or might have been. A

possible counteractual world under the supposition that some A is true, on the

other hand, is just a way things might be, or might have been, were A true.

If world wA could be the case under the supposition that A, then we will say

that wA is a possible counteractual A-world. If A is false, wA will be said to be

strictly counterfactual. (Any counteractual A-world is strictly counterfactual

relative to any possible world in which A is false for instance. But counter-

actual worlds are not always strictly counterfactual: if A is true then wA may

not only be a possible way things are under that supposition that A, but the

way things actually are.)

Our basic thesis is that possible counteractual worlds make counterfactual

claims true in the same way that possible actual worlds make factual claims

true. For instance, if wA is a counteractual A-world at which it is true that B,

then wA makes it true that if A were the case then B would be. Thus the

counteractual world in which Obama is born in Kenya and goes to school

in Nairobi makes it true that had Obama been born in Kenya, he would have

gone to school in Nairobi; the counteractual world in which he is born in

Kenya but goes to school in Mombasa makes it false.

To illustrate this thesis, consider a simple model based on the set

W ¼ and fw1;w2;w3;w4;w5g of just five possible worlds (which are the primi-

tives of the model) and the corresponding set � of its subsets, including the

events A ¼ fw1;w2;w3g, Ā ¼ fw4;w5g, B ¼ fw1;w2;w4g, and C ¼fw1;w3;w5g,

which are the sets of worlds at which it is true that A, :A, B, and

C (throughout, we use Ā to denote W � A), respectively. Relative to the set

of possible worlds W, a supposition induces a set of possible counteractual
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worlds. The supposition that A, for instance, induces the set of counteractual

A-worlds, WA ¼ fw1;w2;w3g, and the corresponding set of sets

of counteractual worlds, �A, containing conditional events

BA ¼ fwi 2WA : wi 2 Bg ¼ fw1;w2g, CA ¼ fw1;w3g and so on. The supposi-

tion that A is false induces a different set of counteractual worlds—namely,

W �A ¼ fw4;w5g—and a corresponding set of conditional events, � �A . The sup-

position that B induces yet another, and And so on. Note that we have

adopted the convention of denoting sets of worlds with non-italicized letters,

with A denoting the set of worlds at which it is true that A, and BA denoting

the set of A-worlds at which it is true that B. Also note that the same world can

represent a potentially actual world and a counteractual world under a sup-

position: w1, for instance, can represent the actual world (if A, B, and C are all

true), but also the world that would be actual if, say, A were true.

For simplicity, we restrict attention to a single supposition for the moment,

namely, the supposition that A. The set of elementary possibilities is then

given by a subset, fi, of the cross-product of W and WA, which can be pre-

sented in tabular form as follows:

Each ordered pair !ij ¼ hwi;wji appearing in the cells of the table repre-

sents an elementary possibility: that wi is the actual world and that wj is the

counteractual A-world. Sets of such possibilities will serve for us as proposi-

tions. Factual propositions are given by unions of rows of the table. The

proposition that A, for instance, is given by the first, second, and third rows

of the table, while that of B by the first, second, and fourth. Conditional

propositions, on the other hand, are given by unions of columns of the table.

The proposition ‘if A then B’, for instance, is given by the first and second

columns of the table, while the proposition ‘if A then C’ is given by the first

and third columns. Conjunctions, disjunctions, and negations of proposi-

tions (conditional or otherwise) are given by their intersection, union, and

complements.

The above table implicitly assumes that every element of W�WA is a

possible combination of facts and counterfacts, but this assumption is easy

to dispense with. To generate a space of elementary possibilities, fi, we make

use of a selection function on worlds that determines which counteractual
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worlds are ‘accessible’ from them. Formally, a selection function, f, is a map-

ping from W�� to � satisfying, for all w 2W and A �W,

(1) f ðw, A) � A;

(2) f ðw, A) ¼1, A ¼1;

(3) If w 2 A then w 2 f ðw, A).

The first condition simply states that counteractual worlds under the sup-

position that A must be worlds at which it is true that A, and the second that

the set of counteractual worlds is empty only if the supposition is contra-

dictory. The third condition requires that any world at which it is true that

A must be a possible counteractual A-world. This condition is termed ‘weak

centring’, in contrast to its stronger ‘cousin’ that is typically assumed in the

semantics of counterfactuals:

Centring: If w 2 A then f ðw, A) ¼ {w}.

Centring expresses a particular conception of the relation between factual and

counterfactual possibility, according to which what is actually true determines

what might have been true under any supposition consistent with the actual

truth. This is surely right for epistemic possibility: if an agent takes the actual

world to be w, and knows that A is true at w, then it should not be epistemi-

cally possible, according to her, that any world other than w is the case on the

supposition that A. Epistemic possibility would seem to be what is at issue

when we reason evidentially using indicative conditionals. On the other hand,

it is much more controversial whether centring governs causal possibility, and

hence whether it is appropriate to counterfactual reasoning. Both Lewis and

Stalnaker assume that it is, perhaps because they take counterfactual and

evidential reasoning to coincide when what is being supposed is in fact true.

But in the absence of a deterministic relationship between two events, it does

not seem obviously right to regard the fact of their co-occurrence to imply that

the occurrence of one causally necessitated the other. So it is not clear

that the assumption is appropriate for counterfactuals. In any case, we do

not need to settle the issue here and will for the sake of generality not assume

centring.11

We now have all the ingredients in place to state our account of counter-

factual possibility. As before, let W be a set of possible worlds, � be a Boolean

algebra of subsets of W, and S ¼ fSi
g � � be a set of n suppositions. The

elementary possibilities on this account are n-tuples of worlds hw;w1; :::;wni,

with w 2W and each wi 2 Si. Propositions are sets of such n-tuples of worlds.

11 However, the simple version of the multidimensional model that we will work with entails the

so-called conditional excluded middle (CEM)—according to which it is either the case that if A

were true then B would be true, or if A were true then B would be false—which together with

weak centring entails centring. A more general version of this model does not entail CEM.
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More formally, a suppositional algebra is a structure hW;�;S; f ;fi;�i with f

a selection function from the set of worlds W and set of suppositions S to sets

of worlds, which determines a set, fi, of elementary n-tuples of worlds by

fi :¼ f! ¼ hw;w1; :::;wni : w 2W;wi 2 f ðw;Si
Þg;

and � is a Boolean algebra of subsets of fi (the propositions).

For any Si 2 S, let �i be the power set of Si. We adopt the convention of

denoting subsets of �i by non-italicized capitals subscripted by i. Given X 2�

and Yi 2�i, let hX, Y1, . . . , Yni be the element of � that is the proposition that

X is the case, that Y1 is or would be the case, on the supposition that S1 is or

was, . . . , and that Yn is or would be, on the supposition that Sn. Each such

ordered n-tuple is thus a coarse-grained but complex proposition concerning

both what is and what could be. When there is no risk of ambiguity we drop

‘empty’ notation and write X for hX, S1, . . . , Sni, the proposition that X is the

case; Yi for hW, S1, . . . , Yi, . . . , Sni, the proposition that if Si is or were the

case, then Yi is or would be; (X, Yi) for hX, S1, . . . ,Yi, . . . ,Sni; and so on. It

follows that (X, YiÞ ¼ X \ Yi; hY1, . . . ,Yni ¼ \ ðYiÞ and so on. A special

convention is adopted for the propositions Si serving as suppositions: we

will write (Si)i for the proposition that if Si is or were the case, then Si is or

would be. Note that (Si)i ¼ fi, since for all w 2W, f ðw;Si
Þ 2 Si.

Propositions of the form hY1, . . . ,Yni, which specify what will or would be

the case under each supposition, are of particular interest to our discussion

in virtue of their serving as representations of the actions over which agents

have preferences. Consider, for instance, the case described by Diamond,

which was previously represented in tabular form:

In our framework, ANN, BOB, and E, as well as any Boolean compound of

them, would make up the set of factual propositions, with E and:E serving as

the suppositions of interest. The full set of propositions would then be given

by the cross product of the set of factual propositions and fE;:Eg, and any

Boolean compounds of them. This would contain such conditional proposi-

tions as ANNE —the proposition that Ann would get the kidney if E were the

case, and BOB �E —the proposition that Bob would get the kidney if E were not

the case. The lottery L would be identified by the complex proposition

ðANNE;BOB �E Þ: a proposition that is a conjunction of the conditional

propositions ANNE and BOB �E , that is, L ¼ ANNE \ BOB �E . A similar iden-

tification occurs for the degenerate lotteries LA ¼ ðANNE;ANN �E Þ and
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LB ¼ ðBOBE;BOB �E Þ. Our task now is to say what attitudes one can rationally

take to such propositions.

3.1 Probability and desirability of counterfactuals

Beliefs about counterfactual possibilities play an important role in our reason-

ing about what we should do, for they are the means by which we consider the

consequences of our actions. Our evaluative attitudes to counterfactual pos-

sibilities so too, for instance, the regret we anticipate if we forego opportunities

that would have led to desirable outcomes. These attitudes to the counterfacts

are at least partially independent of our attitudes to the facts. One might be

pretty sure that the match is to be played tomorrow, for instance, but quite

unsure as to whether it would be played were it to rain. Equally, one could be

quite sure that the match will not be played were it to rain, but quite unsure as

to whether it will rain or not. Similarly, our assessment of how desirable some-

thing is can differ from our assessment of how desirable it is on the supposition

of some condition or other. Even if one prefers to be served a cold beer over a

hot chocolate tonight, the preference could be reversed under the supposition

that the evening will be very cold.

An agent’s combined uncertainty about what is the case and what would be

the case under various possible suppositions will be captured here by a prob-

ability mass function, p, on the set fi of ordered n-tuples of worlds that con-

stitute the elementary possibilities in our model. The mass function p measures

the joint probabilities of actuality and counteractuality under the various

suppositions: pðhw;w1; :::;wniÞ is the probability that w is the actual world,

that w1 is/would be the counteractual world on the supposition that S1, . . . ,

and that wn is/would be the counteractual world on the supposition that Sn.

Similarly, we introduce a utility function, u, on n-tuples of worlds to measure

the agent’s evaluations of different combinations of factuality and couterfac-

tuality. For example, uðhw;w1; :::;wniÞ will measure the desirability that w is

the actual world, that w1 is/would be the counteractual world on the supposi-

tion that S1, . . . , and that wn is/would be the counteractual world on the

supposition that Sn. For convenience, we assume, as Jeffrey ([1990]) does,

that u is zero-normalized in the sense that12:
X

!2fi

uð!Þ:pð!Þ ¼ 0:

The mass function p and utility function u induce a corresponding pair of

measures, Prob and Des, on the set � of all propositions by means of the

12 Nothing of any substance depends on this zero-normalization, which is introduced for mathe-

matical convenience alone.
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following definitions. For all � 2 � (where � could be either factual or condi-

tional)13:

Probð�Þ :¼
X

!2�

pð!Þ;

Desð�Þ :¼
X

!2�

uð!Þ:pð!Þ

Probð�Þ
: ð3Þ

Within our multidimensional possible world model, Prob and Des respectively

encode the agent’s state of belief and desire regarding both the facts and the

counterfacts, with ProbðhX,Y1, . . . ,YniÞmeasuring the joint probability that X

is the case and that Yi is or would be the case if Si, and DesðhX,Y1, . . . ,YniÞ

measuring the joint desirability that X is the case and that Yi is or would be the

case if Si.

It is evident that Prob satisfies the standard axioms of probability. In virtue

of the zero-normalization of u, it follows immediately from Equation 3 that

Des is normalized with respect to the tautology, that is, that DesðfiÞ ¼ 0.

Finally, it follows from Equation 3 that Des respects Jeffrey’s axiom of

desirability.

Desirability: If � \ � ¼1, then

Desð� [ �Þ ¼
Desð�Þ:Probð�Þ þDesð�Þ:Probð�Þ

Probð� [ �Þ
:

To see this, let � and � be two disjoint propositions. Then,

Desð� [ �Þ ¼
X

!2���

uð!Þ:pð!Þ

Probð� [ �Þ

¼
X

!2�

uð!Þ:pð!Þ

Probð� [ �Þ
þ
X

!2�

uð!Þ:pð!Þ

Probð� [ �Þ

¼
Desð�Þ:Probð�Þ þDesð�Þ:Probð�Þ

Probð� [ �Þ
:

We conclude that our possible world model allows for an extension of Jeffrey’s

decision theory to counterfactual propositions.

3.2 Representations

We are now in a position to address the question of the conditions under

which an agent’s preferences can be represented by a pair of functions, Prob

13 As is evident from this definition, Des is not defined for propositions with zero probability. In

fact, the Jeffrey-Bolker theorem (reproduced in Section 3.2) assumes that agents don’t have

evaluative opinions of such propositions.
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and Des, as defined above. In other words, what conditions must her prefer-

ences satisfy if they are to be representable in terms of desirability maximiza-

tion? In fact, most of the work needed to answer this question has already been

achieved by showing how to construct a Boolean algebra of counterfactual

propositions (indeed, the difficulty in doing so was the main stumbling block

in previous attempts to extend Jeffrey’s theory). Given this, we can simply help

ourselves to the representation theorem for Jeffrey’s decision theory proved by

Ethan Bolker ([1966]) to establish the existence of such a representation.

Bolker imposes two main conditions on preferences in addition to the

standard requirement that they be continuous, complete, and transitive.

To state them in a form appropriate to our discussion, let % be a complete,

transitive, and continuous relation on a Boolean algebra of propositions

(construed as sets of n-tuples of worlds) and let & and � be the correspond-

ing indifference and strict preference relations on propositions. Then Bolker

postulates:

Averaging: If � \ � ¼1, then � % ð� [ �Þ% �, � % �:

Impartiality: Suppose �&� and � \ � ¼1, and that for some �&�; �

such that � \ � ¼ � \ � ¼1, it is the case that � [ �&� [ �. Then for all

such �, � [ �&� [ �.

The axiom of averaging is the main rationality constraint on preference

required for desirability maximization and was implicitly assumed in our

construction of a value function on counterfactual propositions. The essential

idea that motivates it is that no proposition can be better (worse) than its best

(worst) realization. The proposition that � [ � is consistent with it being the

case that � and with it being the case that �, but not both if � and � are

mutually exclusive. Suppose � is preferred to �. Then at worst it being the

case that � [ � means that � and, at best, that �. So the desirability one

attaches to � [ � should lie between that of � and �.

Impartiality, on the other hand, is a rationality constraint on the relation

between preference and belief. It says that we can test for the equiprobability

of any two co-ranked propositions, � and �, by taking a third proposition �,

that is inconsistent with both and checking to see whether � [ � and � [ � are

ranked together. For suppose that the probability of � was in fact greater than

that of �. Then it would be less likely that �, given that � [ �, than it would be

that �, given that � [ �. And so � [ � would be either a less or a more attrac-

tive proposition than � [ �, depending on whether � � �; � or �; � � �. But if

the probabilities of � and � are the same, then it should be the case for all �

inconsistent with both � and � that � [ �&� [ �.

Let us say that a pair of desirability and probability functions,

Des and Prob, jointly represent a preference relation % just in case,

Counterfactual Desirability 19



for all � and � in the domain of % ,

� % �, Desð�Þ � Desð�Þ:

In this case we say that the pair (Prob, Des) constitute a Jeffrey represen-

tation of the preference relation % . What Bolker proved was that, given

some technical conditions on the set of propositions (specifically, that they

constitute a complete, atomless Boolean algebra) and on the preference

relation % (specifically, that it generates a weak and continuous order on

the set of propositions), satisfaction of the axioms of averaging and impar-

tiality is necessary and sufficient for the preference relation to be desir-

ability-maximizing. Since the sets of n-tuples of worlds forms a Boolean

algebra of propositions, his theorem applies directly to our framework.

More formally:

Theorem 1

Let h�;�i be a complete, atomless Boolean algebra of sets of n-tuples of worlds

(propositions). Let % be a complete, transitive, and continuous relation on

�� f1g. Then there exists a pair of desirability and probability functions,

Des and Prob, respectively on �� f1g and �, that are a Jeffrey representation

of % if and only if % satisfies averaging and impartiality (Bolker [1966]).

4 Counterfactual-Dependent Preferences

Let us then return to the task of representing Allais’s and Diamond’s prefer-

ences. Recall that these preferences cannot be represented as maximizing the

value of an EU function because the EU equation implies that the value of an

outcome in state Si is desirabilistically independent of any outcome in state Sj

that is incompatible with Si;. This in turn implies that the value of what

actually occurs never depends on what merely could have been. (In the next

section we define EU functions for suppositional algebras.) But for people

with Allais’s preference, the desirability of receiving nothing is not indepen-

dent of whether or not one could have chosen a risk-free alternative. Similarly,

for people with preferences like Diamond’s, the desirability of either patient

not receiving the kidney is not independent of what would have occurred had

some random event turned out differently. So both Allais’s and Diamond’s

preferences, on this interpretation, are dependent on the truth of counter-

factuals. Moreover, the part that causes the violation of EU theory can in

both cases be formalized as a relationship between a proposition and a set of

worlds that are strictly counteractual.

To make the above claim more precise let’s look at Diamond’s preference

first and suppose that Diamond wants to use a coin toss to decide who receives

the kidney. Let H be the set of worlds where the coin comes up heads and T the
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set of worlds where the coin comes up tails (so T � �H). Let B be the set of

worlds where Bob receives the kidney and A the set of worlds where Ann

receives the kidney (so A � �B given the assumption that exactly one of them

receives the kidney). We have thus made two simplifying assumptions already.

First, it might seem more natural to let H (T) be the set of worlds where the

coin comes up heads (tails) if tossed. But nothing is lost, we believe, by this

simplification. Second, we have limited our attention to situations where either

Ann or Bob receives the kidney. But what is distinctive about Diamond’s

preference is what it has to say about situations where a number of individuals

have an equal claim on an indivisible good that some, but not all of them get,

receive. (Any kind of welfarism, for instance, condemns a situation where

none of the patients in need receive the kidney.) Hence, since we want to

focus on what is special about this preference, it is justifiable to limit our

attention to situations where one of Anna and Bob receives the kidney.

The part of Diamond’s preference that leads to violation of EU theory can

then be formulated thus:

ðH \ B;ATÞ � ðH \ B;BTÞ: ð4Þ

In other words, Diamond prefers the proposition that the coin comes up heads

and Bob receives the kidney but Ann would have gotten it had tails come up,

to the proposition that the coin comes up heads and Bob receives the kidney

and would also have gotten it had the coin come up tails.

Let us then turn to Allais’s preference and let R represent the set of worlds

where Allais chooses the risky option (which will be L1 or L3 depending on the

choice situation) and G the set of worlds where Allais is guaranteed to win some-

thing. Unlike when representing Diamond’s preference, we need a third (basic) set

of worlds to represent Allais’s preference, since the worlds where Allais is not

guaranteed to win anything are not necessarily the same as the worlds where

Allais wins nothing. But it is relative to a situation where Allais has won nothing

that the fact that he could have chosen a risk-free alternative makes a difference.

Let N denote the set of worlds where Allais wins nothing. Then the preference

that causes Allais to violate EU theory can be represented thus:

ðR \ �G \N; �G �R Þ � ðR \
�G \N;G �R Þ: ð5Þ

In other words, according to Allais, winning nothing after having made a risky

choice is made worse when it is true that had he chosen differently, then he would

definitely have won something.

4.1 Preference actualism and desirability maximization

We have seen that both Diamond’s and Allais’s preferences exhibit a non-

trivial sensitivity to counterfactual states of affairs that is manifested in the
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violation of a condition that we will call ‘preference actualism’ the require-

ment that preferences for propositions be independent of the strict counter-

facts. Formally:

Preference Actualism: For all sets of worlds A, B, C such that C \ �A ¼1:

ðC;B �A Þ � ðC;
�B �A Þ:

Preference actualism is of course just a version of the doctrine of ethical

actualism that was informally introduced earlier. As we mentioned then, and

will explain more precisely in Section 5, it is not sufficient that preferences are

separable for them to satisfy preference actualism. An agent may regard the

desirability of the counterfacts to be independent without thinking that the

counterfacts do not matter. In the Diamond example, such an agent might

have preferences LB � L � LA in accordance with separability but, contrary

to preference actualism, not be indifferent between L and LA, conditional

on E being the case, perhaps because she values the two relevant strict

counterfacts—that Bob or Ann would have got the kidney if E had not

been the case—differently but positively.

In the Appendix, we prove (as Theorem 15) that preferences that violate

preference actualism cannot be represented as maximizing expected utility

(as defined in the next section). Since a preference might violate preference

actualism without violating separability, this result does not simply follow

from the fact that separability is a necessary condition for expected-utility

maximization. The independence of these two assumptions has not been

recognized in the decision theoretic literature, perhaps because, together

with certain assumptions that are either implicitly or explicitly part of stan-

dard formulations of EU theory and which do seem to be satisfied in Allais’s

and Diamond’s examples (in particular, centring and an assumption about the

probabilistic independence of counterfacts under disjoint suppositions), pre-

ference actualism does imply separability. Indeed, given these assumptions,

Allais’s and Diamond’s violation of preference actualism can be seen as

explaining why they violate separability.

While expected-utility maximization requires adherence to ethical actualism, it

is perfectly possible for preferences to satisfy Bolker’s axioms but violate prefer-

ence actualism. To show this we work again with our simple model based on

the set W ¼ fw1;w2;w3;w4;w5g of five possible worlds and the corresponding

set � of its subsets, including the events A ¼ fw1;w2;w3g, Ā ¼ fw4;w5g, B

¼ fw1;w2;w4g, and �B ¼ fw3;w5g. For present purposes we only need to focus

on one supposition, namely, that A is false. Then the set of elementary

possibilities is given by W ¼ fw1;w2;w3;w4;w5g � fw4;w5g and, in particular,

(A\B, �B �A Þ ¼ fhw1;w5i; hw2;w5ig and (A\B, B �A Þ ¼ fhw1;w4i; hw2;w4ig.
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To induce the preferences required, we define a pair of probability

and utility mass functions, p and u, on this set of world pairs, by setting

pðhw4;w5iÞ ¼ pðhw5;w4iÞ ¼ 0 and assigning the values to remaining possibi-

lities displayed in the following table:

Let Prob and Des be pair of probability and desirability functions on+ðWÞ

constructed from p and u in the manner previously outlined by application of

the standard axioms of probability and desirability. It is easy to see that the

preferences induced by Des will violate preference actualism. In particular

they will be such that:

ðA \ B; �B �A Þ � ðA \ B;B �A Þ; ð6Þ

ðA \ �B;B �A Þ � ðA \ B; �B �A Þ: ð7Þ

But by construction they satisfy the standard preference axioms of Jeffrey’s

decision theory. So it follows that preferences violating preference actualism,

although not representable as expected-utility maximizing, may nonetheless

be desirability-maximizing.

4.2 Modelling Allais’s and Diamond’s preferences

Strictly speaking, Equation 4 does not quite represent Diamond’s preference

in full. Recall that Diamond’s preference consists in preferring a lottery (say a

coin toss) that results in either Bob or Ann receiving a kidney (alternative L) to

giving the kidney to Ann without using a fair lottery (alternative LA) and also

to giving the kidney to Bob without using a fair lottery (alternative LB). This is

how Diamond might evaluate the constant alternatives:

DesðLAÞ ¼ DesðH \A;ATÞ;

DesðLBÞ ¼ DesðH \ B;BTÞ:

Counterfactual Desirability 23



But since the lottery can turn out in more than one way, if he is to satisfy

Jeffrey’s equation, Diamond must evaluate its desirability as a weighted sum

of the ways in which it might turn out. For instance,

DesðLÞ ¼ 0:5DesðH \ B;ATÞ þ 0:5DesðT \A;BHÞ;

assuming that he believes the coin to have an equal chance of coming up heads

as tails when it is tossed.

There is thus a Jeffery desirability function representing Diamond’s prefer-

ence as long as there is a function Des that simultaneously satisfies:

DesðH \ B;BTÞ < 0:5DesðH \ B;ATÞ þ 0:5DesðT \A;BHÞ;

DesðH \A;ATÞ < 0:5DesðH \ B;ATÞ þ 0:5DesðT \A;BHÞ:

Since what motivates Diamond’s preference is his concern for fairness, he is

(let us suppose) indifferent between Bob and Ann actually receiving the

kidney. Moreover, the value generated by having used the lottery (or the

disvalue generated by not having used the lottery) is, according to

Diamond, independent of whether Ann or Bob actually receives the kidney.

Hence, for Diamond,

0:5DesðH \ B;ATÞ þ 0:5DesðT \A;BHÞ ¼ DesðH \ B;ATÞ

¼ DesðT \A;BHÞ

DesðH \ B;BTÞ ¼ DesðH \A;ATÞ:

Therefore, to be able to represent Diamond’s preference as maximizing Jeffery

desirability, all that is required is that there is a Jeffery desirability function

such that

DesðH \ B;BTÞ < DesðH \ B;ATÞ:

That is, all we need is that there be a Jeffrey function that can represent a

preference that violates preference actualism. In the last subsection we saw

that such a function exists.

The same can be said for Allais’s preference, namely, that it is only partly

captured by Equation 5. But again, it is not hard to show that in Allais’s case

all that needs to be established is that there is a desirability function such that

DesðR\ �G \N, G �R Þ < DesðR\ �G \N, �G �R Þ. And this follows from what we

established in the last subsection.

5 Ethical Actualism and Separability

We have argued that there are rational patterns of preference that are desir-

ability-maximizing but not expected-utility maximizing. In this last section we
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turn to the question of what additional assumptions are needed for an agent’s

preferences to be representable not just by a desirability function, but by a

desirability function that takes the form of an expected utility. Our ambitions

are three-fold: to establish the formal relationships between various salient

properties of value functions, to exhibit the conditions that are necessary for

expected-utility maximization, and to argue that these additional conditions

are too strong to apply generally and hence that rationality does not require

expected-utility maximization.

Let us begin by defining more carefully what it means for a desirability

function to be an expected utility. Recall that acts are modelled in our

framework by propositions of the form hY1, . . . ,Yni, where each Yi is the

consequence of choosing the action in question in the event that Si. An

expected-utility representation of a preference relation is characterized by a

particular form that the desirability of such propositions take, namely, their

desirabilities are probability weighted averages of the desirabilities of the Yi.

More exactly:

Expected Utility: A desirability function, Des, defined on a suppositional

algebra of propositions is an expected utility on this algebra if and only if

for any partition of suppositions S ¼ fSig,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðYi j S
i
Þ:ProbðSi

Þ:

Hereafter, EU theory should be understood as the claim that rational pre-

ferences can be represented by a desirability function that is an expected utility

as defined here. It should be noted, however, that this definition of an expected

utility is somewhat more general than the usual one, in that it allows that the

desirabilities of consequences be dependent on the states of the world in which

they are realized. In the event that state-independence holds, it follows that

DesðYi j S
i
Þ ¼ DesðYiÞ. Then if we let act f be the proposition hY1, . . . ,Yni and

f ðSi
Þ ¼ Yi, we obtain the familiar Savage formulation of expected utility:

Desðf Þ ¼
Pn

i¼1 Desðf ðSi
ÞÞ:ProbðSi

Þ.

Although state-dependence is natural in Jeffrey’s framework, only

some versions of EU theory allow for it (for example, Karni [1985]).

Accommodating state-dependence has the important and beneficial implica-

tion that the expected utilities of actions with coarse-grained consequences

can be computed, so that we can dispense with the usual requirement of

(for example, Savage’s) EU theory that consequences be maximally specific.

But another problematic requirement of the theory—that the states of the

world be probabilistically independent of the acts—cannot. For as we will

show in Section 5.3, such independence is implied by the EU theory
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formulated here. But first we tackle our main objective, namely, showing that

a preference relation that can be represented as maximizing desirability can

also be represented as maximizing expected utility just in case it satisfies both a

separability condition and a condition of ethical actualism.

5.1 Independence and additive separability

We have noted at various points that EU theory implies that the agent’s

preferences are separable or that they can be represented by an additively

separable utility function. Our next task is to make precise what this require-

ment amounts to in the framework in which we are working. Intuitively, two

sets of propositions are separable from the point of view of some agent if their

preferences for the members of one of the sets are independent of the truth or

falsity of the members of the other set. If we consider not the preferences but

the desirabilities that represent them, this translates into the requirement that

the desirability of any member of one set is independent of the truth of any

proposition in the other.

In this context, the sets of propositions that are relevant are the sets of

counterfactuals under disjoint suppositions. And the form of separability

that is required by EU theory can be rendered as the principle that the desir-

ability that any Yi would be the case if Si were true is independent of what

would be the case if any supposition inconsistent with Si were true. More

formally, given a set of disjoint suppositions fSig and a desirability Des, it

must be the case that for any Yi	 that

DesðYi	 j
\

i 6¼i	
YiÞ ¼ DesðW;Yi	 Þ:

Then it follows from the definition of conditional desirability14 that

DesðhY1; :::;YniÞ ¼ DesðY1 jY2; :::;YnÞ þDesðY2; :::;YnÞ

¼ DesðY1Þ þDesðY2 jY3; :::;YnÞ þDesðY3; :::;YnÞ

¼ DesðY1Þ þDesðY2Þ þ :::

¼
Xn

i¼1

DesðYiÞ:

When a numerical representation of preference takes this form then it is said

to be additive or additively separable. So we can conclude that a desirability

measure is additively separable over the Si if and only if the counterfacts under

any supposition are desirabilistically independent of those under any other

supposition disjoint to it.

14 See the Appendix for a statement of its definition.
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In the light of this we can state the separability condition required for

expected utility as follows:

Counterfact Separability: If fSi
g

n

i¼1 is a set of n disjoint suppositions, then

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðYiÞ:

Just how strong a condition this is can be brought out by noting that if a

desirability function is additively separable then the corresponding probability

function is multiplicative, that is, for any Yi å W,

Counterfact Independence: If fSi
g

n

i¼1 is a set of n disjoint suppositions, then:

ProbðhY1; :::;YniÞ ¼
Yn

i¼1

ProbðYiÞ:

The claim that counterfact separability implies counterfact independence is

proven in the Appendix as Theorem 9. But it can be intuitively explained by

the fact that the counterfacts cannot be desirabilistically independent of each

other unless knowing that one of the counterfacts holds is irrelevant to how

likely the other counterfacts are to be true. Note that this implication still

holds even if counterfact separability is restricted to just a particular class of

propositions, such as those that are maximally specific with regard to all that

the agent cares about.

Counterfact independence is not a plausible candidate for a general ration-

ality constraint on belief and it is easy enough to find counter-examples to the

claim that it is. Suppose I know that a prize is contained in one and only one of

two boxes. I am about to pick one of the boxes but before opening it I am told

that were I to open the other box I would win the prize. I can infer immediately

that if I open the box I intended then I will not win the prize. So the counter-

facts under the supposition that I open one box are not independent of those

under the supposition that I open the other, in violation of counterfact inde-

pendence The fact that EU theory requires counterfact independence (as we

shall shortly show) therefore suggests that EU theory is not a correct theory of

rationality.

Let’s conclude by introducing another independence condition on belief

that will turn out to be important in our discussion of EU theory, namely

the requirement that the facts be probabilistically independent from the strict

counterfacts. More precisely:

Fact-Counterfact Independence: If X \ Si
¼1, then:

ProbðX;YiÞ ¼ ProbðXÞ:ProbðYiÞ
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The two independence conditions are closely related, but not equivalent. In

the presence of centring, fact-counterfact independence does indeed imply

counterfact independence but the latter only implies the former in the presence

of a further condition:

Supposition Independence: ProbðSi,YiÞ ¼ ProbðSi
Þ:ProbðYiÞ:

Supposition independence says that the probability that Yi is or would be

the case on the supposition that Si is independent of whether Si is true or not. It

is much more compelling than the other two independence conditions and,

arguably, the characteristic property of evidential supposition. In this context,

however, its main significance lies in the following claim, which we prove in

the Appendix as Theorem 7.

Probability Equivalence Theorem: Assume centring. Then fact-counterfact

independence is equivalent to the conjunction of supposition independence

and counterfact independence

We will show in the section after the next that fact-counterfact independence

is also a consequence of EU theory. But the principle is implausibly strong as a

rationality constraint. Suppose again that I know that a prize is contained in one

and only one of two boxes. Then if I pick one of them and discover that there is

no prize in it, I can be sure that if I had picked the other box, then I would have

got the prize. So what is the case—namely, that the prize is not in the box I

picked—determines what would have been case had I picked the other one.

It seems clear then that counterfactual reasoning does not typically satisfy

fact-counterfact independence nor does rationality require that it be satisfied. In

fact, certain theories of rational decision-making assume that rational agents

violate it. In game theory with imperfect information, for instance, which con-

cerns rational strategic decision-making for agents who are uncertain about

what moves other players have already made, it is standardly assumed that a

rational strategy for figuring out whether a player, P, has made a particular

move, M, is to ask oneself what would happen if P did not make that move. If it

turns out that not making move M would lead to a bad outcome for P, then

that might reasonably lead one to increase one’s credence in the proposition

that P has made move M. Nonetheless, as we shall see, fact-counterfact

independence is implied by EU theory as we reconstruct it within a proposi-

tional framework (but not by Jeffrey’s weaker theory). We take it that a good

theory of practical rationality should, if possible, avoid such implausible epis-

temic implications. Moreover, it seems particularly problematic if a theory of

rational individual decision-making contradicts an assumption that is stan-

dardly made in the theory of rational strategic decision-making. Hence, this

result casts doubt on the claim that EU theory is our best theory of practical

rationality.
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5.2 Ethical actualism

An additive desirability function is not yet an expected utility. An expected

utility is an additive desirability that satisfies a version of a principle common

to many decision theories and that we have termed ethical actualism. The

basic intuition behind this principle is that only the actual world matters, so

that the desirability of combinations of facts and counterfacts should depend

only on the desirability of the facts. In this section, we consider several for-

mulations of this principle and clarify its relationship to separability.

One way of expressing ethical actualism more formally is as follows:

World Actualism: uðhw;w1; :::;wniÞ ¼ uðwÞ

World actualism says that the desirability that w is the actual world and that

the wi worlds would be the case if the Ai were depends only on the desirability

of w. In other words, once it has been established what world is the actual one,

then it should be a matter of indifference what the counteractual worlds are.

The applicability of world actualism rests on the possibility of giving a com-

plete description of everything that matters. If we were able to do so, then any

way in which the counterfacts mattered to us in the actual world could be

registered in the description we give of that world. It is not that the counter-

facts themselves must be written into the descriptions of worlds—this would

lead to contradiction when the counterfacts specified in the description of a

world differed from those in counteractual worlds—but that any way in which

these counterfacts bear on our evaluation of the facts must be specified.

For instance, suppose the desirability of dining at home is sensitive to how

good a meal one would have had if one had dined out at the local restaurant:

the fact that one would have had a better meal at the restaurant causes one to

regret eating at home and the fact that one would have had a worse

meal makes one appreciate the home-cooked meal all the more. Then these

facts—the regret or the appreciation one experiences in the light of the coun-

terfacts—must be built into the description of the actual world if World

Actualism is to obtain.

The problem with the condition of world actualism is thus that it might hold

for one specification of the possible worlds, but not for a model in which they

are specified more coarsely. So we should not think of it as condition that

applies to every model of counterfactual possibility, but rather as a methodo-

logical principle that requires contingencies to be sufficiently finely individu-

ated for world actualism to hold within the model. This principle is one that

many decision theorists seem to endorse. For instance, Broome ([1991])

recommends just such a strategy of fine individuation as a way of avoiding

Allais’s and Diamond’s putative counterexamples to the separability of

rational preference. In a nutshell, his claim is that if there is some property
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of the outcomes of a decision that makes it rational to value an outcome

differently depending on whether it has the property or not, then the outcomes

should be individuated in accordance with that property.

Contrary to what appears to be the common view, however, imposing

World Actualism on a model by appropriate individuation of prospects

does not suffice to ensure the additive separability of desirabilities. As we

have already seen, additive separability requires that counterfacts under

mutually exclusive suppositions be probabilistically independent. But world

actualism alone does not imply anything about the probabilistic relations

between the counterfacts. So the question of whether rationality requires

expected-utility maximization is not settled by the question of whether

world actualism is or is not a reasonable condition.

A much stronger and partition-independent version of ethical actualism—

the quantitative analogue of the condition we termed preference actualism—

takes us much closer to what is required for desirabilities to be expected

utilities. Let S be a set of suppositions and suppose that X \ Si
¼1.

Prospect Actualism: DesðX;YiÞ ¼ DesðXÞ

Prospect actualism says that the desirability that X is the case and that the Yi

would be on the contrary-to-fact supposition that Si depends only on the

desirability that X. Or to put it slightly differently, once it is given that X

then it does not matter what would be the case under any supposition incon-

sistent with the truth of X.

Although prospect actualism expresses a similar idea to World Actualism,

the relationship between them is quite complicated. Given centring, prospect

actualism implies world actualism; but the converse is not true. In fact,

prospect actualism only follows from world actualism in conjunction with

the assumption that the facts are stochastically independent of the strict

counterfacts, a condition we previously formalized as fact-counterfact inde-

pendence. (This claim is proven in the Appendix as Theorem 11.)

Prospect actualism substantially constrains how we may value outcomes.

Suppose, for instance, that you have to choose between two restaurants. You

go to restaurant A and are served a very poor meal. An acquaintance goes to

the other restaurant and reports that they were served a very good meal. Are

things worse overall than they would have been if it had been the case that you

would have been served a poor meal at the other restaurant as well? The issue

is not whether your judgement concerning the meal at restaurant A can

depend on what the meal at restaurant B would have been like—surely it

should not—but whether the prospect of having a poor meal at restaurant

A when you would have had a good one at restaurant B is a worse one than
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that of having the poor meal at restaurant A when you would also have had a

poor one at restaurant B.

In this case, the issue boils down to whether the badness associated with

the difference between what is the case and what might have been if some

other course of action had been pursued is built into the description of the

actual state of affairs. In other cases, the plausibility of prospect actualism

depends on the information contained in the description of the counterfac-

tual circumstances. Suppose, for instance, that the acquaintance in our

example reports that standards of food hygiene were very poor at the

other restaurant. You know they have the same owner, so you infer that

standards will also be poor at the restaurant you chose. This affects your

view about the desirability of your choice. In other words, the desirability of

the prospect of going to restaurant A is not independent of the supposition

that had you gone to restaurant B, you would have found food hygiene

standards to be very poor. So prospect actualism will be violated whenever

there are either probabilistic or desirabilistic dependencies between the facts

and the strict counterfacts.

Although prospect actualism is a very strong condition, it alone is not

sufficient to constrain desirabilities enough for them to be expected utilities.

But jointly with the assumption that the facts are probabilistically indepen-

dent of the counterfacts, prospect actualism does entail that desirabilities are

expected utilities. More formally, as we prove in the Appendix as Theorem 21:

First Sufficiency Theorem: Assume centring. If Des is a desirability

representation of a preference relation % that satisfies fact-counterfact

independence and prospect actualism, then Des is an expected-utility repre-

sentation of % .

5.3 Expected utility, separability, and ethical actualism

We are now in a position to make precise our earlier claim that separability

and ethical actualism are independent, necessary conditions for expected-

utility maximization. Let’s take each aspect in turn. First, as we prove in the

Appendix as Theorems 15 and 18, strong forms of both separability and

ethical actualism are required for expected-utility maximization. More

exactly:

Necessity Theorem: Assume centring. If Des is an expected-utility repre-

sentation of the preference relation % , then Des satisfies counterfact separ-

ability, prospect actualism, fact-counterfact independence, and counterfact

independence.
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The necessity theorem is surprisingly strong and forcefully demonstrates

just how much more demanding the requirement that agents maximize

expected utility is than the requirement that they maximize desirability. We

consider it highly implausible that failure to satisfy all four conditions entails

irrationality on the part of an agent. Hence we are doubtful that rationality

requires us to maximize expected utility.

Second, as we noted earlier on, ethical actualism and separability are

based on different, though consistent, intuitions. The former expresses the

idea that only what actually happens matters, while the latter expresses the

idea that the desirability of orthogonal counterfacts are independent of each

other’s truth. It is not difficult to see that the counterfacts can be separable

even if ethical actualism is false. To see this again, consider the set of pro-

spects displayed below and suppose you think that the counterfacts do

matter. Specifically, suppose that were E not the case then you would

prefer BOB rather than ANN, in violation of ethical actualism. So you

prefer L1 to LA (in virtue of the former dominating the latter) even when

you know that E. Nonetheless, you regard the outcomes under E and :E as

separable because your preference for BOB over ANN were it the case that

:E is not affected by whether BOB or ANN would be the case if E. Hence

LB � L2.

This example shows that satisfaction of ethical actualism is not necessary

for separability. On the other hand, it might seem that ethical actualism

should be sufficient for separability since if the counterfacts don’t matter,

then trivially they will be desirabilistically independent of one another (they

won’t matter whatever orthogonal counterfacts hold). But this intuition is

false. Even if ethical actualism is true, the counterfacts can matter because

they can be informative about what the facts are. If, for instance, I don’t know

which box contains the prize, then I will—regardless of whether I am an

actualist or not—care about whether it is true that if I were to open one of

them, then I would find the prize, since learning this counterfact enables me to

infer where the prize is.

What this example brings out is the possibility that the counterfacts

matter because of probabilistic dependencies between facts and counterfacts.
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So one might hypothesize that when the counterfacts are probabilistically

independent of the facts, then ethical actualism should imply separability.

It turns out that this is true. More precisely, provided centring holds, prospect

actualism and fact-counterfact independence jointly imply counterfact separ-

ability (we prove this in the Appendix as Theorem 13).

We have already observed that separability is not sufficient for ethical

actualism. But prospect actualism, the strong form of ethical actualism

required by EU theory, is a consequence of separability together with the

following, weaker form of ethical actualism:

Restricted Actualism: Desð �S
i
;YiÞ ¼ Desð �S

i
Þ

Restricted actualism says that it does not matter that Yi would be the

case under the supposition that Si, given that Si is false. Or to put it slightly

differently, given that Si is not the case, it is a matter of indifference what

would be the case if it were. Restricted actualism, like prospect actualism, is a

partition-independent condition on evaluative attitudes, but it is quite a bit

weaker than the latter. While prospect actualism clearly implies restricted

actualism the latter only implies prospect actualism when the counterfacts

are probabilistically and desirabilistically independent of each other.

More formally, as we prove in the Appendix as Theorem 14, given

centring, counterfact separability, and restricted actualism imply prospect

actualism.

In virtue of the first sufficiency theorem, we can now infer a second set of

sufficient conditions for a desirability function to be an expected utility,

by drawing on the probabilistic equivalence theorem and the fact that counter-

fact separability implies Counterfact Independence. For then it follows, as we

prove in the Appendix as Theorem 20:

Second Sufficiency Theorem: Assume centring. If Des is a Jeffrey represen-

tation of preference relation % that satisfies counterfact separability, sup-

position independence, and restricted actualism, then Des is an expected-

utility representation of % .

This second set of sufficient conditions is perhaps the more illuminating of

the two since the dual dependence of EU theory on separability and ethical

actualism is more transparent, as is the need for a distinct independence con-

dition relating suppositions to beliefs about counterfacts under these supposi-

tions. On the other hand, it somewhat obscures how demanding the

probabilistic independence conditions are on expected-utility maximization.

So, to finish, let us bring our various results together into a single statement

relating EU theory and the two pairs of conditions on desirability and
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probability that have been discussed. It follows from the necessity theorem

and the two sufficiency theorems that:

EU Equivalence Theorem: Let (Des, Prob) be a Jeffrey representation of a

preference relation on a centred suppositional algebra. Then the following

are equivalent:

(1) Des is an expected utility;

(2) Des satisfies prospect actualism and Prob satisfies fact-counterfact

independence;

(3) Des satisfies both counterfact separability and restricted actualism

and Prob satisfies supposition independence.

6 Concluding Remarks

We have seen that it is possible, when armed with an appropriate semantics, to

extend Richard Jeffrey’s decision theory to counterfactual propositions. By

doing so, one makes it possible to represent two preference patterns—those of

Allais and Diamond—that have discomforted decision theorists for decades,

and to rationalize them in terms of desirability maximization. We have also

seen that when we add the conditions necessary for an expected-utility repre-

sentation to this framework, we can no longer represent these intuitively

rational preferences. Furthermore, the added postulates imply restrictions

on the agent’s beliefs and desires that have little plausibility as rationality

constraints. On the face of it, this seriously undermines EU theory’s claim

to be the correct theory of practical rationality.

It might nonetheless be objected that this conclusion depends on the precise

characterization of EU theory given in this article, and in particular on our

partition-invariant formulation of it. This is only half-true. Restricting

expected-utility maximization to prospects hY1, . . . ,Yni such that the Yi are

maximally specific will not invalidate our results, only restrict their scope. But

this alternative characterization of EU theory still faces the following pro-

blem: It requires that maximally specific counterfacts under disjoint supposi-

tions be both desirabilistically and probabilistically independent of each other

and of the facts, which is not plausible as a requirement of rationality. It is true

that it has already been recognized that Savage’s EU theory does not apply

in circumstances in which the states of the world are not probabilistically

independent of the acts. But granting this restriction still falls far short of

recognizing that his theory does not apply whenever there are desirabilistic

dependencies between the facts and the counterfacts. And to restrict applica-

tion of expect utility theory to cases when there are no such dependencies

would render it inapplicable in the circumstances imagined by Allais and
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Diamond. Either way, the claim that it provides a general theory of practical

rationality cannot be sustained.

Appendix

A.1 Jeffrey representations

In this first section we present some useful results relating to Jeffrey represen-

tations of preferences on Boolean algebras. Let h�;�;W;1i be a complete,

atomless Boolean algebra of propositions with upper bound W and lower

bound 1, and let % be a preference relation on �. A pair of functions

(Des, Prob) is a ‘Jeffrey representation’ of % just in case Prob is a probability

function on � and Des a desirability function on �
0

¼ �� f1g such that for

all �; � 2 �
0

; Desð�Þ � Desð�Þ , �%�. Recall that a desirability function on

�
0

is a real-valued function such that for all �; � 2 �
0

:

V1 (Normality): DesðWÞ ¼ 0

V2 (Desirability): If � \ � ¼1, then

Desð� [ �Þ ¼
Desð�Þ:Probð�Þ þDesð�Þ:Probð�Þ

Probð� [ �Þ
:

Recall also the definitions of conditional probability and desirability.

Conditional Probability: If Probð�Þ 6¼ 0; then

Probð� j�Þ :¼
Probð� \ �Þ

Probð�Þ
:

Conditional Desirability: If Probð� \ �Þ 6¼ 0; then

Desð� j�Þ :¼ Desð� \ �Þ �Desð�Þ:

Lemma 2

Let (Des, Prob) be a Jeffrey representation of % . Then:

(1) Desð�Þ:Probð�Þ ¼ �Desð ��Þ:Probð ��Þ

(2)
Probð�Þ
Probð ��Þ ¼ �

Desð ��Þ
Desð�Þ

(3) If Desð� j�Þ ¼ Desð�Þ and Desð �� j�Þ ¼ Desð�Þ, then Probð� j�Þ ¼

Probð�Þ and Probð �� j�Þ ¼ Probð�Þ

Proof

Given that � [ �� ¼ >, it follows by the axioms of desirability and normality,

that

Desð>Þ ¼ Desð�Þ:Probð�Þ þDesð ��Þ:Probð ��Þ ¼ 0:
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Hence Desð�Þ:Probð�Þ ¼ �Desð ��Þ:Probð ��Þ. But if this is the case, then

, Desð�Þ:
Probð�Þ

Probð ��Þ
¼ �Desð ��Þ

,
Probð�Þ

Probð ��Þ
¼ �

Desð ��Þ

Desð�Þ
:

Assume that Desð� j�Þ ¼ Desð�Þ and Desð �� j�Þ ¼ Desð ��Þ. Then by application

of the above and from the fact that Desð
 j�Þ is a desirability function,

Probð� j�Þ

Probð �� j�Þ
¼ �

Desð �� j�Þ

Desð� j�Þ

¼ �
Desð ��Þ

Desð�Þ

¼
Probð�Þ

Probð ��Þ
:

Hence Probð� j�Þ ¼ Probð�Þ and Probð �� j�Þ ¼ Probð ��Þ. �

7.2 Suppositional algebras

Hereafter our results pertain to suppositional algebras of propositions,

where the latter are construed as sets of n-tuples of worlds. Let

S ¼ hW;�;S; f ; fi;�i be a suppositional algebra with W a set of possible

worlds, � a Boolean algebra of subsets of W, S ¼ fSi
g � � a set of n suppo-

sitions, f a selection function from W� S to �, fi the set of n-tuples of worlds

induced by f, and � a Boolean algebra of subsets of fi (the set of all proposi-

tions). If f satisfies centring then we say that S is a centred suppositional

algebra.

Lemma 3

Assume that S is a centred suppositional algebra. Let X � Si. Then (X,

Y1, . . . ,Yn) ¼(X \ Yi,
T

j 6¼iYjÞ.

Proof

(X, Y1,...,YnÞ ¼ fhw0;w1; :::;wni : w0 2X and wj 2 Yjg. Since X� Si, it follows

from centring that hw0;w1; :::;wni 2 (X, Y1,...,Yn), wi ¼ w0. So:

ðX;Y1; :::;YnÞ ¼ fhw0;w1; :::;wni : w0 2 X \Yi and for all j;wj 2 Yjg

¼ ðX \Yi;Y1; :::;Si; :::;YnÞ

¼ ðX \Yi;
T

j 6¼iYjÞ

�
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7.2.1 Probability conditions

In this section we prove a number of results concerning the relation between

three different conditions of probabilistic independence. Throughout, let

S ¼ fSig be a set of disjoint suppositions and Xi � Si. Then consider:

Supposition Independence: ProbðSi;XiÞ ¼ ProbðSi
Þ:ProbðXiÞ

Fact-Counterfact Independence: If X \ Sj ¼1, then

ProbðX;YjÞ ¼ ProbðXÞ:ProbðYjÞ:

Counterfact Independence: If fSi
g

n

i¼1 is a set of n disjoint suppositions, then

ProbðhY1; :::;YniÞ ¼
Yn

i¼1

ProbðYiÞ:

Theorem 4

Fact-counterfact independence implies supposition independence.

Proof

Suppose that X � Si. Then by fact-counterfact independence, since

X \ �S
i
¼1, it follows that

Probð �S
i
;XiÞ ¼ Probð �S

i
Þ:ProbðXiÞ

But then ProbðSi;XiÞ ¼ ProbðSi
Þ:ProbðXiÞ. �

Theorem 5

Let Xi ¼ X \ Si and assume centring. Then supposition independence implies

that ProbðXiÞ ¼ ProbðX jSiÞ.

Proof

Assume centring. Then,

ProbðXi j S
i
Þ ¼

ProbðSi;XiÞ

ProbðSi
Þ
¼

ProbðSi
\XÞ

ProbðSi
Þ
¼ ProbðX jSi

Þ:

But Supposition Independence implies that ProbðXi j S
i
Þ ¼ ProbðXiÞ. Hence P

robðXiÞ ¼ ProbðX j Si
Þ �

Theorem 6

Let S ¼ fS1; ::: ;Sng be a set of n disjoint suppositions and suppose that for all

Si,Sj 2 S; ProbðXi;YjÞ ¼ ProbðXiÞ:ProbðYjÞ. Then,

ProbðhY1; :::;YniÞ ¼
Yn

i¼1
ProbðYiÞ
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Proof

We prove the claim by induction on the number n of suppositions in

S. By assumption the claim is true for n¼ 2, that is, that ProbðY1;Y2Þ ¼

ProbðY1Þ:ProbðY2Þ. Assume true for n¼ k. Now,

ProbðY1; :::;Ykþ1Þ ¼ ProbðY1; :::;Yk jYkþ1Þ:ProbðYkþ1Þ

¼ ProbðYkþ1Þ:
Yk

i¼1
ProbðYi jYkþ1Þ

in virtue of the induction hypothesis for n¼ k and the fact that Probð
 jYkþ1Þ

is a probability on the space of propositions. But by assumption,

ProbðYi;Ykþ1Þ ¼ ProbðYiÞ:ProbðYi;Ykþ1Þ. So ProbðY1, . . . ,YnÞ ¼Ykþ1

i¼1
ProbðYiÞ. �

Theorem 7 (Probability Equivalence)

Assume centring. Then Counterfact Independence and supposition indepen-

dence are jointly equivalent to fact-counterfact independence.

Proof

Assume centring, Counterfact Independence and supposition independence.

Suppose that Sj
¼W� Si, Xi ¼ Si

\ X¼X and Yj ¼ Sj
\ Y¼Y. It follows by

centring and then Counterfact Independence that

ProbðX;YjÞ ¼ ProbðSi
\X;YjÞ

¼ ProbðSi;Xi;YjÞ

¼ ProbðXi;Yj j S
i
Þ:ProbðSi

Þ

¼ ProbðXi j S
i
Þ:ProbðYj j S

i
Þ:ProbðSi

Þ:

But by supposition independence,

ProbðYj j S
i
Þ ¼ ProbðYj j

�Sj
Þ ¼ ProbðYjÞ:

Hence,

ProbðX;YjÞ ¼ ProbðXi jS
i
Þ:ProbðYjÞ:ProbðSi

Þ

¼
ProbðSi;XiÞ

ProbðSi
Þ
:ProbðYjÞ:ProbðSi

Þ

¼ ProbðSi
\XÞ:ProbðYjÞ

in virtue of centring. So ProbðX;YjÞ ¼ ProbðSi
\XÞ:ProbðYjÞ¼

ProbðXÞ:ProbðYjÞ, in accordance with fact-counterfact independence.
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Now assume fact-counterfact independence. Supposition independence fol-

lows by Theorem 4. Now for all Si and Sj such that Si
\ S j
¼1,

ProbðSi
[ Sj;Xi;YjÞ ¼ ProbðSi;Xi;YjÞ þ ProbðSj;Xi;YjÞ:

But by Lemma 3, centring implies that

ProbðSi;Xi;YjÞ ¼ ProbðSi
\X;YjÞ;

ProbðSj;Xi;YjÞ ¼ ProbðSj
\Y;XiÞ:

And by fact-counterfact independence,

ProbðSi
\X;YjÞ ¼ ProbðSi

\XÞ:ProbðYjÞ;

ProbðSj
\Y;XiÞ ¼ ProbðSj

\YÞ:ProbðXiÞ;

ProbðSi
[ Sj;Xi;YjÞ ¼ ProbðSi

[ Sj
Þ:ProbðXi;YjÞ:

So,

ProbðXi;YjÞ ¼
ProbðSi

\XÞ:ProbðYjÞ þ ProbðSj
\YÞ:ProbðXiÞ

ProbðSi
[ Sj
Þ

:

But by Theorem 5, it follows from supposition independence that

ProbðYjÞ ¼ ProbðY j Sj
Þ;

ProbðXiÞ ¼ ProbðX j Si
Þ:

So,

ProbðXi;YjÞ ¼
ProbðX jSi

Þ:ProbðY jSj
Þ:ProbðSi

ÞþProbðY jSj
Þ:ProbðX jSi

Þ:ProbðSj
Þ

ProbðSi
[Sj
Þ

¼ProbðY jSj
Þ:ProbðX jSi

Þ

¼ProbðXiÞ:ProbðYjÞ:

But by Theorem 6, if ProbðXi,YjÞ ¼ProbðXiÞ:ProbðYjÞ for all such Xi and Yj,

then ProbðY1, . . . ,YnÞ ¼
Yn

i¼1
ProbðYiÞ, in accordance with fact-counterfact

independence. We conclude that, given centring, Counterfact Independence

and supposition independence are jointly equivalent to fact-counterfact inde-

pendence. �

Corollary 8

Let X \Yi ¼1. Assume centring, Then fact-counterfact independence

implies that

ProbðX;Y1; :::;YnÞ ¼ ProbðXÞ:
Yn

i¼1
ProbðYiÞ:
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Proof

By the definition of conditional probability and fact-counterfact indepen-

dence,

ProbðX;Yi; :::;YjÞ ¼ ProbðX;Y1 jY2:::;YnÞ:ProbðY2:::;YnÞ

¼ ProbðX jY2:::;YnÞ:ProbðY1 jY2:::;YnÞ:ProbðY2:::;YnÞ

¼ ProbðX;Y2:::;YnÞ:ProbðY1Þ

by Theorem 6. Hence, by repeating the argument,

ProbðX;Yi; :::;YjÞ ¼ ProbðX;Y2 jY3:::;YnÞ:ProbðY3:::;YnÞ

¼ ProbðX jY3:::;YnÞ:ProbðY2 jY3:::;YnÞ:ProbðY3:::;YnÞ

¼ ProbðX;Y3:::;YnÞ:ProbðY1Þ:ProbðY2Þ

:::

¼ ProbðXÞ:
Yn

i¼1
ProbðYiÞ

�

7.2.2 Desirability-probability results

In this section we prove a number of results concerning the relation between

three different conditions on desirabilities and the probabilistic independence

conditions studied in the last section. As before, throughout let S ¼ fSig be a

set of disjoint suppositions and Yi � Si. Then consider the following:

Restricted Actualism: Desð �S
i
;YiÞ ¼ Desð �S

i
Þ:

Prospect Actualism: If X \ Si
¼1, then

DesðX;YiÞ ¼ DesðXÞ:

Counterfact Separability: If \ Si
¼1, then

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðYiÞ:

Theorem 9

Counterfact Separability implies Counterfact Independence.

Proof

Let S ¼ fSi
g

n

i¼1 be a set of n disjoint suppositions, Si any other supposition,

and Yi any corresponding counterfactual proposition. We need to
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consider two cases separately. First let Yj be any proposition such that

DesðYjÞ 6¼ Desð �Y jÞ (by the non-triviality assumption, such as Yj exists).

Then by counterfact separability and the fact that (Yi,YjÞ ¼ hW,

(S1
Þ1; :::;Yi,Yj; :::; ðS

n
ÞnÞ:

DesðYi;YjÞ ¼ DesðYiÞ þDesðYjÞ þ
X

k6¼i;j

DesððSk
ÞkÞ;

DesðYi; �Y jÞ ¼ DesðYiÞ þDesð �Y jÞ þ
X

k6¼i;j

DesððSk
ÞkÞ:

But since (Sk)k¼fi, it follows by normality that DesððSk)kÞ ¼ 0. So DesðYi, YjÞ ¼

DesðYiÞ þDesðYjÞ and DesðYi; �Y jÞ ¼ DesðYiÞ þDesð �Y jÞ. But by the axiom of

desirability:

DesðYiÞ ¼ DesðYi;YjÞ:ProbðYj jYiÞ þDesðYi; �Y jÞ:Probð �Y j jYiÞ

¼ ½DesðYiÞ þDesðYjÞ�:ProbðYj jYiÞ þ ½DesðYiÞ þDesð �Y jÞ�:Probð �Y j jYiÞ

¼ DesðYiÞ þDesðYjÞ:ProbðYj jYiÞ þDesð �Y jÞ:Probð �Y j jYiÞ:

But this can hold only if

DesðYjÞ:ProbðYj jYiÞ þDesð �Y jÞ:Probð �Y j jYiÞ ¼ 0

¼ DesðYjÞ:ProbðYjÞ þDesð �Y jÞ:Probð �Y jÞ

by Lemma 2. By assumption DesðYjÞ 6¼ Desð �Y jÞ. So ProbðYj jYiÞ ¼ ProbðYjÞ

and hence ProbðYi;YjÞ ¼ ProbðYiÞ:ProbðYjÞ.

Now let Xj be any proposition such that DesðXjÞ ¼ Desð �X jÞ. Let Yj any

proposition such that DesðYjÞ 6¼ Desð �Y jÞ and Xj \Yj ¼1. Note that it fol-

lows from the axiom of desirability that DesðXj [YjÞ �6¼ Desð �X j \ �Y jÞ. Then

it follows from above that

ProbðYi;Xj [YjÞ ¼ ProbðYiÞ:ProbðXj [YjÞ;

ProbðYi;YjÞ ¼ ProbðYiÞ:ProbðYjÞ:

But,

ProbðYi;Xj [YjÞ ¼ ProbðYi;XjÞ þ ProbðYi;YjÞ

¼ ProbðYi;XjÞ þ ProbðYiÞ:ProbðYjÞ

ProbðYiÞ:ProbðXj [YjÞ ¼ ProbðYiÞ:ProbðXjÞ þ ProbðYiÞ:ProbðYjÞ:

It follows that ProbðYi;XjÞ ¼ ProbðYiÞ:ProbðXjÞ. Counterfact independence

then follows from Theorem 6. �

Theorem 10

Assume centring. Then restricted actualism and supposition independence

imply that DesðYiÞ ¼ ½DesðSi
\YÞ �DesðSi

Þ�:ProbðSi
Þ.
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Proof

By the axiom of desirability,

DesðYiÞ ¼ DesðSi;YiÞ:ProbðSi
jYiÞ þDesð �S

i
;YiÞ:Probð �S

i
jYiÞ

¼ DesðSi
\YÞ:ProbðSi

jYiÞ þDesð �S
i
Þ:Probð �S

i
jYiÞ

in virtue of centring and restricted actualism. And by supposition indepen-

dence, ProbðSi
jYiÞ ¼ ProbðSi

Þ ¼ Probð �S
i
jYiÞ. Hence

DesðYiÞ ¼ DesðSi
\YÞ:ProbðSi

Þ þDesð �S
i
Þ:Probð �S

i
Þ

¼ DesðSi
\YÞ:ProbðSi

Þ �DesðSi
Þ�:ProbðSi

Þ

by Lemma 2. Hence DesðYiÞ ¼ ½DesðSi
\YÞ �DesðSi

Þ�:ProbðSi
Þ. �

Theorem 11

Assume centring. Then world actualism and fact-counterfact independence imply

prospect actualism.

Proof

Let S ¼ fSi
g

n

i¼1 be a set of n disjoint suppositions and suppose that X� Si	 . By

centring, (X, Y1, . . . ,YnÞ ¼ ðX; ð
T

i 6¼i	YiÞ) and by construction,

DesðX;Y1; :::;YnÞ:ProbðX;Y1; :::;YnÞ

¼
X

!j2ðX;Y1;:::;YnÞ

uðhw0;w1; :::;wnijÞ:pðhw0;w1; :::;wnijÞ

¼
X

!j

uððw0ÞjÞ:pðhw0;w1; :::;wnijÞ

by world actualism. But by centring and fact-counterfact independence,

ProbðX, Y1, . . . , YnÞ ¼ ProbðX;
T

i 6¼i	YiÞ ¼ ProbðXÞ:Probð
T

i 6¼i	YiÞ and

pðhw0; w1; :::;wniÞ ¼ pðw0Þ:pð
T

i 6¼i	wiÞ. So,
X

!j

uððw0ÞjÞ:pðhw0;w1; :::;wnijÞ ¼
X

w02X

uðw0Þ:pðw0Þ½
X

hw1;:::wni2ðY1;:::;YnÞ

pð
T

i 6¼i	wiÞ�

¼
X

w02X
uðw0Þ:pðw0Þ:Probð

T
i 6¼i	YiÞ:

Hence,

DesðX;Y1; :::;YnÞ:ProbðXÞ ¼
X

w02X
uðw0Þ:pðw0Þ

¼ DesðXÞ:ProbðXÞ:

It follows that Des(X,Y1, . . . ,YnÞ ¼ Des(X) in accordance with prospect

actualism. �
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Theorem 12

Suppose that X \
�S

Si
2 S

�
¼1. Then prospect actualism implies that

Des(X,Y1, . . . ,YnÞ ¼ Des(X).

Proof

By repeated applications of the definition of conditional desirability and pro-

spect actualism,

DesðhX;Y1; :::;YniÞ ¼ DesðX;Y1 jY2; :::;YnÞ þDesðY2; :::;YnÞ

¼ DesðX jY2; :::;YnÞ þDesðY2; :::;YnÞ

¼ DesðX;Y2; :::;YnÞ

¼ DesðX;Y2 jY3; :::;YnÞ þDesðY3; :::;YnÞ

:::

¼ DesðX;YnÞ

¼ DesðXÞ

�

Theorem 13

Assume centring. Then fact-counterfact independence and prospect actualism

imply counterfact separability.

Proof

By the axiom of desirability and then Lemma 11, given centring,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðSi;Y1; :::;YnÞ:ProbðSi
j hY1; :::;YniÞ

¼
Xn

i¼1

DesðSi
\Yi;

\

j 6¼i

ðYjÞÞ:ProbðSi
j hY1; :::;YniÞ

¼
Xn

i¼1

DesðSi
\YiÞ:ProbðSi

j hY1; :::;YniÞ

in virtue of prospect actualism. Now by Corollary 8, given centring, fact-

counterfact independence implies that

ProbðSi
j hY1; :::;YniÞ ¼ ProbðSi

Þ:
It follows that

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðSi
\YiÞ:ProbðSi

Þ

¼
Xn

i¼1

DesðSi
\YiÞ:ProbðSi

Þ �
Xn

i¼1

DesðSi
Þ:ProbðSi

Þ

¼
Xn

i¼1

½DesðSi
\YiÞ �DesðSi

Þ�:ProbðSi
Þ;
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in virtue of the fact that by V1 and V2,
Xn

i¼1

DesðSi
Þ:ProbðSi

Þ ¼ 0. In particular,

DesðYiÞ ¼ DesðhS1; :::;Yi; :::; SniÞ

¼ ½DesðSi
\YiÞ �DesðSi

Þ�:ProbðSi
Þ þ

X

j 6¼i

½DesðSj
Þ �DesðSj

Þ�:ProbðSj
Þ

¼ ½DesðSi
\YiÞ �DesðSi

Þ�:ProbðSi
Þ:

Hence DesðhY1,...,YniÞ ¼
Xn

i¼1

DesðYiÞ. �

Theorem 14

Given centring, counterfact separability and restricted actualism imply pro-

spect actualism.

Proof

Let Xi ¼ X \ Si and suppose Sj
¼W � Si. Then by Lemma 3, given centring,

Des(Si, Xi;YjÞ ¼ Des(Si
\X; YjÞ. But by the definition of conditional desir-

ability and counterfact separability,

DesðSi;Xi;YjÞ ¼ DesðXi;Yj j S
i
Þ þDesðSi

Þ

¼ DesðXi j S
i
Þ þDesðYj j S

i
Þ þDesðSi

Þ

¼ DesðSi;XiÞ þDesðSi;YjÞ �DesðSi
Þ

¼ DesðSi
\XÞ þDesðSi

Þ �DesðSi
Þ

¼ DesðSi
\XÞ;

in virtue of restricted actualism and centring. Hence

DesðSi
\X;YjÞ ¼ DesðSi

\X) in accordance with prospect actualism. �

7.3 Characterization results for expected utility

Throughout we assume that (Prob;DesÞ is Jeffrey representation of

preferences defined on a centred suppositional algebra, �, of propositions.

Let S ¼ fSi
g be a set of disjoint suppositions and Yi � Si. Recall that a desir-

ability function, Des, defined on a centred suppositional algebra of proposi-

tions is an ‘expected utility’ on this algebra if and only if

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðYi j S
i
Þ:ProbðSi

Þ:

7.3.1 Necessity results

Theorem 15

Let Des be an expected utility. Then

(1) DesðYiÞ ¼ ½DesðSi
\YiÞ �DesðSi

Þ�:ProbðSi
Þ;

(2) DesðhY1, . . . ,YniÞ ¼
Pn

i¼1 DesðYiÞ:
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Proof

By definition, if Des is an expected utility, then

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðYi j S
i
Þ:ProbðSi

Þ:

So, in particular, since Yi ¼ hS1, . . . ,Yi . . . ,Sni ¼ hYi;
T

j 6¼iS
j
i, it follows that

DesðYiÞ ¼ DesðYi jS
i
Þ:ProbðSiÞ þ

X

j 6¼i

DesðSj
j Sj
Þ:ProbðSj

Þ

¼ DesðYi j S
i
Þ:ProbðSi

Þ;

since DesðSj
j Sj
Þ ¼ 0. But by the definition of conditional desirability,

DesðYi j S
i
Þ ¼ DesðSi

\YiÞ �DesðSi
Þ:

So DesðYiÞ ¼ ½DesðSi
\YiÞ �DesðSi

Þ�:ProbðSi
Þ. But then

Xn

i¼1

DesðYiÞ ¼
Xn

i¼1

DesðYi j S
i
Þ:ProbðSi

Þ ¼ DesðhY1; :::;YniÞ:

Hence,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðYiÞ:

Theorem 16

Let Des be an expected utility. Then Prob satisfies Supposition Independence.

Proof

Let Xi ¼ Si
\ X. By the axioms of normality and desirability,

ProbðXiÞ ¼
Desð �X iÞ

Desð �X iÞ �DesðXiÞ

¼
DesðSi

\ �XÞ:ProbðSi
Þ �DesðSi

Þ:ProbðSi
Þ

DesðSi
\ �XÞ:ProbðSi

Þ þDesðSi
\XÞ:ProbðSi

Þ
;

by Theorem 15(1) and in virtue of the fact that Des is an expected utility. But

then by application of the axiom of desirability to DesðSi
Þ:ProbðSi

Þ,

ProbðXiÞ ¼
DesðSi

\ �XÞ:ProbðSi
Þ �DesðSi

\XÞ:ProbðSi
\XÞ �DesðSi

\ �XÞ:ProbðSi
\ �XÞ

ProbðSi
Þ:½DesðSi

\ �XÞ þDesðSi
\XÞ�

¼
DesðSi

\ �XÞ:ProbðSi
\XÞ �DesðSi

\XÞ:ProbðSi
\XÞ

ProbðSi
Þ:½DesðSi

\ �XÞ þDesðSi
\XÞ�

¼
ProbðSi

\XÞ:½DesðSi
\ �XÞ þDesðSi

\XÞ�

ProbðSi
Þ:½DesðSi

\ �XÞ þDesðSi
\XÞ�
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¼
ProbðSi;XiÞ

ProbðSi
Þ
:

Hence ProbðSi;XiÞ ¼ ProbðXiÞ:ProbðSi
Þ in accordance with supposition inde-

pendence. �

Corollary 17

If Des is an expected utility then Des satisfies counterfact independence and

fact-counterfact independence.

Proof

By Theorem 15, Des satisfies counterfact separability and by Theorem 9,

counterfact separability implies Counterfact Independence. Similarly, by

Theorem 16, Des satisfies supposition independence and by Theorem 10,

Counterfact Independence and supposition independence are jointly equiva-

lent to fact-counterfact independence. �

Theorem 18

Let Des be an expected utility. Then Des satisfies restricted actualism.

Proof

By Theorem 16, Prob satisfies supposition independence. So ProbðSi
jYiÞ ¼

ProbðSi
Þ and by the axiom of desirability,

DesðYiÞ ¼ DesðSi;YiÞ:ProbðSi
jYiÞ þDesðSi;YiÞ:ProbðSi

jYiÞ

¼ DesðSi
\YiÞ:ProbðSi

Þ þDesðSi;YiÞ:ProbðSi
Þ

by Lemma 3, given centring. But by Theorem 15, DesðYiÞ ¼ ðDesðSi
\YiÞ

�DesðSi
ÞÞ:ProbðSi

Þ. Hence by Lemma 2, DesðYiÞ ¼ DesðSi
\YiÞ:ProbðSi

Þ

þDesðSi
Þ:ProbðSi

Þ. So, in accordance with restricted actualism,

Desð �S
i
;YiÞ ¼ Desð �S

i
Þ:

�

Corollary 19

Let Des be an expected utility. Then Des satisfies prospect actualism.

Proof

By Theorem 15, Des satisfies counterfact separability and by Theorem 18,

it satisfies restricted actualism. So, by Theorem 14, it satisfies prospect actualism.

7.3.2 Sufficiency results

Theorem 20

Assume that Des satisfies counterfact separability and restricted actualism

and that Prob satisfies supposition independence. Then Des is an expected utility.
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Proof

Let Yi¼Y \ Si. By counterfact separability,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðYiÞ:

But by Theorem 10, restricted actualism and supposition independence imply

that DesðYiÞ ¼ ½DesðSi
\YiÞ �DesðSi

Þ�:ProbðSi
Þ. Hence,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

½DesðSi
\YiÞ �DesðSi

Þ�:ProbðSi
Þ

¼
Xn

i¼1

DesðSi
\YiÞ:ProbðSi

Þ �
Xn

i¼1

DesðSi
Þ:ProbðSi

Þ

¼
Xn

i¼1

DesðSi
\YiÞ:ProbðSi

Þ;

in virtue of the fact that by V1 and V2,
Xn

i¼1

DesðSi
Þ:ProbðSi

Þ ¼ 0. But by the

definition of conditional desirability,

DesðYi jS
i
Þ ¼ DesðSi

\YiÞ �DesðSi
Þ:

So,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðY j Si
Þ:ProbðSi

Þ:

�

Theorem 21

Assume that Des satisfies prospect actualism and that Prob satisfies fact-coun-

terfact independence. Then Des is an expected utility.

Proof

Let Yi¼Y \ Si. By the axiom of desirability and then Lemma 11,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðSi;Y1; :::;YnÞ:ProbðSi
j hY1; :::;YniÞ

¼
Xn

i¼1

DesðSi
\Y;

\
j 6¼i
ðYjÞÞ:

ProbðSi
\Yi;

T
j 6¼iðYjÞÞ

ProbðYi;
T

j 6¼iðYjÞÞ
:

Now by Theorem 7, fact-counterfact independence implies counterfact

independence, which implies, by Theorem 6, that ProbðYi j
T

j 6¼iðYjÞÞ ¼

ProbðYiÞ. Similarly, by Corollary 8, fact-counterfact independence
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implies that ProbðSi
\Yi j

T
j 6¼iðYjÞÞ ¼ ProbðSi

\YiÞ. Hence,

ProbðSi
\Yi j

T
j 6¼iðYjÞÞ

ProbðYi j
T

j 6¼iðYjÞÞ
¼

ProbðSi
\YiÞ

ProbðYiÞ
¼ ProbðSi

jYiÞ:

Similarly by Theorem 12, prospect actualism implies that

DesðSi
\Y;

T
j 6¼i ðYjÞÞ ¼ DesðSi

\YÞ. So,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðSi
\YÞ:ProbðSi

jYiÞ:

But by Theorem 4, fact-counterfact independence implies that

ProbðSi
jYiÞ ¼ ProbðSi

Þ. Hence,

DesðhY1; :::;YniÞ ¼
Xn

i¼1

DesðSi
\YÞ:ProbðSi

Þ �
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