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ABSTRACT

In philosophical logic, a certain family of model constructions has
received particular attention. Prominent examples are the cumulative
hierarchy of well-founded sets, and Kripke’s least fixed point models
of grounded truth. I develop a general formal theory of groundedness
and explain how the well-founded sets, Cantor’s extended number-
sequence and Kripke’s concepts of semantic groundedness are all in-
stances of the general concept, and how the general framework illu-
minates these cases. Then, I develop a new approach to a grounded
theory of proper classes.

However, the general concept of groundedness does not account
for the philosophical significance of its paradigm instances. Instead, I
argue, the philosophical content of the cumulative hierarchy of sets is
best understood in terms of a primitive notion of ontological priority.

Then, I develop an analogous account of Kripke’s models. I show
that they exemplify the in-virtue-of relation much discussed in con-
temporary metaphysics, and thus are philosophically significant. I
defend my proposal against a challenge from Kripke’s “ghost of the
hierarchy”.
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INTRODUCTION
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Figure 1: The Cumulative Hierarchy of Sets

The subject of the present study are certain structures that have
received particular attention in mathematically informed philosophy.
Prominent among them are the cumulative hierarchy of well-founded
sets, and Kripke’s least fixed point models of grounded truth. For
present purposes, it suffices to sketch these well-known paradigms
in broad strokes. Details will be filled in later.

The well-founded sets are those which can be generated from noth-
ing, by iterated set formation. They are usually pictured as in fig-
ure 1. Kripke’s least fixed point contains all and only those truths
in a language with truth predicate that can be generated from true
sentences without truth predicate, by truth introduction and closure
under some monotone logic. We can also give a picture of these
grounded truths, see figure 2.

In the present study, I will seek to answer two broad questions.
Firstly, what is it that these cases have in common? I will develop
a general concept of groundedness that captures both paradigms and

~(TO=1T"vT3=1+1)
/\
~TO=1" =T3=14T

0#1 3#1+1

Figure 2: Grounded Truth



INTRODUCTION

illuminates their connection. Secondly, as philosophers, why are we
interested in them? I will argue that the philosophical significance of
groundedness needs to be explained, and will develop and defend
one such account.

The analogy between grounded truths and well-founded sets has
occasionally been noted, but is obscured by the way in which Kripke’s
model construction is usually presented. To overcome this difficulty
I develop a general theory of groundedness. Its primitive is the no-
tion of a generator, a way of generating something from some things,
broadly construed. Intuitively, it takes some things and produces
something, possibly among them, possibly not. Several things may
thus be produced from the same material, just as the same thing may
be generated from distinct pluralities. Formally, a generator behaves
like a many-to-one relation.

In a nutshell, I say that something is grounded in some things if
it is generated from them, or obtained by iterated generation. I show
how this general concept of groundedness illuminates the case of
grounded truth. For example, it clarifies that two distinct ways of
generating truths feed into semantic groundedness. Firstly, we gener-
ate truths of the form ‘It is true that ¢’ from the truth that ¢. Secondly,
we generate syntactically complex truths by closure under logic. It is
only this latter generation that varies across the range of Kripke fixed
point constructions. Thus, my presentation renders precise the com-
mon core of the various constructions: the Kripke truth generator.

Then, I focus on one case of potentially great philosophical rele-
vance: groundedness models for type-free theories of concept-exten-
sions. Unlike the well-foundedness of sets and Kripke’s models of
truth, this instance of groundedness has not yet been sufficiently de-
veloped. I present new methods for obtaining theories of grounded
classes, and test them against antecedently motivated desiderata. My
findings cast doubt on whether a theory of grounded classes can ac-
commodate both the extensionality of classes and allow for class def-
inition in terms of identity.

I then change the perspective from an interest into the logical prop-
erties of groundedness, to asking for its philosophical significance
(ch. 5). Thus, I move on to my second overall question. Here, I find
that much work is yet to be done. I argue that the general concept of
groundedness does not account for the philosophical significance of
its paradigm instances. This problem has to my knowledge not yet
been sufficiently appreciated in the literature on semantic grounded-
ness. One contribution of my thesis is to clearly formulate this chal-
lenge.

I engage critically with Forster’s [2008] case that the Church-Oswald
model of class theory is as legitimate as the cumulative hierarchy
of sets (§ 5.2). Forster’s highly original paper has unfortunately not
received much attention, and I inted to fill this gap. I carry out a

17
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Figure 3: Insignificant groundedness: The Sum generator

thorough investigation and conclude that his argument is inconclu-
sive. Then, I give other examples of groundedness that arguably lack
philosophical significance. For instance, any plurality of natural num-
bers may be viewed as generating their sum. Then, we may call 28
sum-grounded in 2,4 and 7: generate 13 from them together, 6 from 2
and 4, and 9 from 2 and 7, and then obtain 28 as the sum of 13, 6 and
9 (see figure 3). In fact, there is an inexhaustible stock of such trivial
groundedness.

From this discussion I conclude that we need to look elsewhere and
supplement the formal concept with philosophical content. In the sec-
ond half of my thesis, I will take first steps into this direction. Doing
so, I initiate a novel approach to groundedness and connect areas of
logical-philosophical research that, with few very recent exceptions,
have been separate so far.

My starting point will be a certain body of literature in the philoso-
phy of set theory (chapter 6). More precisely, in order to supplement
groundedness with philosophical content I concentrate on the well-
foundedness of sets, and engage with views as to its philosophical
significance. I focus on discussions as to how the iterative conception
of sets is to be explicated. Usually, the philosophical core of the iter-
ative conception is glossed by saying that elements are prior to their
set, or that a set is constituted from its elements. Authors disagree
about what to make of this priority. From key texts of the past four
decades I extract the following stance: the priority of elements over
their set cannot be that it is constructed from them, nor that the set
could not exist without them — unless we understand the latter in
terms of a sui generis modality. Instead, the relation between elements
and their set exemplifies a basic philosophical notion of constitution
(§ 6.3). This notion of constitution is characterized by examples and
structural principles such as non-circularity. To this extent we under-
stand constitution, even if we have not defined it. Moreover, the no-
tion thus characterized is philosophically significant. At least, this is



INTRODUCTION

an assumption central to my study. It is rendered plausible by the
wide interest among philosophers into constitution and closely re-
lated notions.

On this basis, I propose the following partial answer to the chal-
lenge from chapter 5: Even if groundedness in general is not guaran-
teed to be philosophically significant, its paradigm case of the well-
founded sets is, because the set generator exemplifies the philosoph-
ical notion of constitution, or ontological dependence. The relation
between a set and its elements is frequently given as an example of
ontological priority. In fact, proposed analyses of ontological depen-
dence are tested against the relation between a set and its elements. In
this precise sense, set generation does philosophical work: it guides
research into ontological priority.

I then return to the other paradigmatic case of groundedness, Krip-
kes’” least fixed point models of truth, and ask for a way of sup-
plementing it with philosophical content. At this point, my general
concept of groundedness pays off. Since both paradigms have been
brought into the same general form and we know how to account for
the well-founded sets, my general framework suggests an analogous
case for semantic groundedness. In the remainder of the thesis I de-
velop and defend the following view: Kripke’s models are philosoph-
ically significant because Kripke’s generator exemplifies the philo-
sophical notion of a truth holding in virtue of others, in the same
sense that the set generator tracks the idea that a set is constituted
from its elements. In a slogan, the in-virtue-of relation is for Kripke’s
least fixed point what constitution is for the cumulative hierarchy of
sets. To the best of my knowledge, the present study is the first to
take this approach to semantic groundedness.

I begin to develop this view by explaining the relevant notion of
truth in virtue of (ch. 7). My presentation follows its venerable history.
I lay out Bernard Bolzano’s theory of the in-virtue-of relation (§7.2).
Remarkably, he characterizes Abfolge in the same way as philosophers
of set theory have characterized the priority of elements over their
set. Bolzano does not attempt to define the in-virtue-of relation, and
expresses doubt that this can be done at all. However, he is confident
that the notion is grasped from example that he gives, as well as by
reflection on formal principles.

Then, I turn to recent work by Kit Fine who has revived much of
Bolzano’s approach, and has put the in-virtue-of relation to new use
in contemporary metaphysics. This work culminates in Fine’s [2012b]
and its pure logic of ground. I settle on it as the regimentation of the
philosophical notion of a truth holding in virtue of others.

Thus, I arrive at examples and formal principles that characterize
the in-virtue-of relation. They do so in much the same way as the
notion of constitution was characterized. In its terms, again, I was
able to account for the philosophical significance of set groundedness.

19
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I develop an analogous case for the significance of Kripke's least fixed
point constructions (ch. 7): I propose to view semantic groundedness
as exemplifying the in-virtue-of relation.

On the one hand, I provide evidence from the literature that re-
search into the in-virtue-of relation is guided by the thought that, say,
it is true that snow is white in virtue of snow being white, much like
research into ontological constitution is guided by the example of a
set being constituted from its elements. In this sense, Kripke’s truth
generator captures an idea that does philosophical work.

On the other hand, I show that the connection between semantic
groundedness and the in-virtue-of relation is robust, since the former
satisfies the formal principles by which the latter is characterized. I
do so in two steps, based on my analysis of semantic groundedness in
terms of a truth generator T, and a logic generator W. Firstly, I show
that Fine’s pure logic of ground together with axioms ‘It is true that ¢
because ¢’ and ‘It is not true that ¢ because —¢’, is complete with
respect to T-generation and its transitive closure. Secondly, I present
a set of rules that, according to Fine and other leading researchers,
characterize how the in-virtue-of relation interacts with logic. I add
these to the pure logic of ground, and show that the resulting system is
sound, and partly complete, with respect to T-W-generation and its
transitive closure.

The cumulative hierarchy provides a formal model of those prin-
ciples which have been assumed for constitution. I show that T-W-
groundedness models structural principles for in-virtue-of together
with axioms about in virtue of what something is true. In this pre-
cise sense, semantic groundedness stands to the in-virtue-of relation
as set groundedness stands to constitution. This is my account of the
philosophical significance of Kripke’s least fixed point models.

In the final chapter of my thesis I consider and answer an objec-
tion. If my case for the philosophical significance of semantic ground-
edness can only be made in a meta-language, the objection goes, I
cannot account for the groundedness of truth in our own language.
I explain that this challenge amounts a variant of Kripke’s own com-
plaint that “. .. the ghost of the hierarchy is still with us” (§ 9.2), and I
develop a novel response to it. Briefly put, I use the intensional logic
of well-ordered time to enable an axiomatic theory of truth to character-
ize the stages of Kripke’s construction, and thus the formal concept
of semantic groundedness.
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A GENERAL THEORY OF GROUNDEDNESS

2.1 INTRODUCTION

Groundedness has figured prominently in the literature on the seman-
tic paradoxes.’ In this chapter, I will develop a generalized concept
of groundedness. It does not only apply to sentences, propositions,
or to the truth-values of sentences or propositions. Whenever we are
given some things we may ask whether, how, and in what they are
grounded.

What does it mean, at this general level, for something to be grounded?
Recently, Thomas Forster has proposed a generalized iterative con-
ception of sets [2008].> My goal in this chapter is to develop his idea
into a general theory of groundedness. It not only subsumes existent
accounts, but also illuminates how they are connected.

Forster’s generalized iterative conception is closely linked to what
he calls “recursive datatypes” [2008, p. 99]. Outside of computer science
these are better known as inductive definitions, and have been exam-
ined thoroughly in the 1970s, most prominently by Yannis Moschovakis
[1974]. In particular, I will make use of tools from Peter Aczel’s 1977
handbook entry, a source that is regrettably little used in the philo-
sophical literature on groundedness. One goal of this chapter is to
make available insights of Aczel’s for the discussion of groundedness
in philosophical logic.

Mathematically, this chapter’s general theory of groundedness will
be included in the theory of inductive definitions. Philosophically,
there is more to groundedness. However, developing the philosoph-
ical side of the concept I postpone to later chapters, beginning in
chapter 5.

One intended application of the following is to the universe of sets
itself. In particular, I will show that they are all grounded (§ 2.7). Of
course, however, there is not set of all sets. Therefore, I will develop
my general concept of groundedness not by the standard set theoretic
means of mathematics. Instead, I will work within plural logic.3 For its
primitive of a thing being among some things I adopt Burgess’ notation
‘o’ 4

1 Herzberger [1970]; Kripke [1975]; Yablo [1982]; McCarthy [1988]; Maudlin [2004];
Leitgeb [2005]

2 Forster uses his generalized iterative conception to argue for the legitimacy of certain
non-standard set theories. As I will explain in chapter 5 below, I do not think his
argument is conclusive.

3 In this respect, too, I go beyond Forster’s proposal. However, I emphasize that my
choice of a plural logic framework is for merely practical reasons, and nothing hinges
on it. An other framework would do, too, as long as it allows for foundations of set
theory. One such alternative framework is higher-order logic on a Fregean interpre-
tation, another may be category theory.

4 Burgess motivates this choice as follows.

Much as the symbol used in set theory for ‘element’ is a stylized ep-
silon ‘e’, the symbol used here for ‘is among’ is a stylized alpha ‘oc’.
[Burgess, 2004, p. 197]



2.2 GENERATORS

For simplicity, I will use the singular locution “plurality” to refer
to some things.> I will also use “xx E yy” as short for ‘Vz(zocxx —
zocyy)'.® Further, I will assume that my plural metalanguage has a
plural term forming operator that I denote by the comma sign. Thus,
X, Y,z is a plural term, as is xx,y. Of course, the comma will also
keep its usual syntactic role; the ambiguity will always be resolved
in context. Finally, I will use three dots *..." (read: “and so on”) as a
natural way of denoting infinite pluralties: 0, 1, .. .. This general plural
meta language will prove particularly useful when spelling out the
groundedness of ordinals (§ 2.6) and sets (§ 2.7).

2.2 GENERATORS

Forster formulates his iterative conception in terms of constructor func-
tions. I will not adopt this terminology. In my study, issues from the
philosophy of mathematics will play an important role. In this con-
text, ‘constructor” is not a sufficiently neutral word. Therefore, I use
the term ‘generator” which I hope not to provoke those philosoph-
ical associations. It is certainly intended as a neutral label within a
general framework.”

The concept of a generator is the primitive of my theory of ground-
edness. For intuition, think of a generator as a recipe by which some-
thing is obtained from some things. Formally, a generator ] is a rela-
tion whose first argument place takes plural and whose second argu-
ment place takes singular terms.® Thus, generation statements are of
the form

yyx
where, however, yy may be one thing or indeed none.? Note that this

general concept of a generator allows for cases in which two distinct
things are generated from the same things.

Using ‘oc’, I deviate from the mainstream that uses ‘<’ to denote the relation of
something being among some others. My reason for deviating is that I will have
to use the symbol ‘<’ for another notion (definition 5). At any rate, doing so I am
not committed to any claim about plural logic as a suitable regimentation of natural
language plural locutions.

5 However, it is important to keep in mind that this term can always be paraphrased
away in plural terms.

6 As here, I will frequently be lax about the use-mention distinction. For example, I
will use simple quotation marks where Quine corners would be more accurate, but
less readable.

7 Kit Fine [1991] uses the label ‘constructor” for a framework that to my understanding
has also a broad range of applications. In fact, Fine’s first example of constructional
ontology is the cumulative hierarchy of sets, that is also one focus of the present
study.

However, unlike much material of later chapters (7,8), the present general theory of
groundedness does not build on work of Fine’s.

8 The Hebrew letter gimel ‘J’, pronounced much like the initial sound of ‘grounded-
ness’, is a variable for generators, as are subsequent letters of the Hebrew alphabet.

9 Thus, I allow for what one may call empty pluralities.

23
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Examples abound. The formation rules of a formal language describe
a generator: a disjunction ¢ v 1\ is generated from a formulae ¢ and
P, as is a conjunction ¢ A Pp. Other examples are the introduction
rules of a formal proof system. In propositional logic, a theorem ¢ v
is generated from theorems v.

Forster’s constructors are functions. I lift this restriction and work
with relations. Thus, I do not need what Forster calls “destructors”,
functions from something to those things from which it is generated.
Instead, I can take the generator’s inverse. Further, unlike Forster I
consider the ways in which we generate objects from pluralities. Let
me give an example. Consider the language of propositional logic
based on propositional letters p, q,r, with decorations. From these
atomic sentences we generate complex sentences using the following
formation rules:

¢ I
(=¢) (dvy) ?

¢ v ¢ W
(P Ad)  (d—)

(1)

P3 Py

Presently, what matters are the rules Py to P4 taken together. Together,
they describe one generator P. This generalizes Forster’s terminology,
who would speak of four constructors Pq to P4.

In case that the things at hand form a set, I will often use set-
theoretic resources to speak of them and how they are generated.
This will render the presentation more familiar. For example, as the
sentences of propositional logic form a set, I represent the generator
P as the union of the following relations.

Pr ={X,0: X={¢}, (= (—d)} (2

)
P2 ::{<Xr C> X = {d)ll'l)}lc = (d) A lb)} (3)
Py ={X,0): X={d, ¥}, = (b v)} 4)
Py ={X,0): X={d, ¥}, (= (dp > )} (5)

However, I do not intend to reduce the notion of a generator to that
of a relation understood set-theoretically, plurally or by some other
means. A generator J is a way of obtaining an x from some yy, a rule
how to move from yy to x. It is not a collection of pairs {yy,x).*
Rather, ] is the intension corresponding to such an extensional char-
acterization.

A generator J is all that is needed to formulate my general concept
of groundedness. I will give two ways of characterizing some y as I-
grounded in xx. They are equivalent, but formalize intuitively distinct
ideas. Hence, it will prove useful to have available both the one and
the other characterization of groundedness.

Officially, ‘(yy, x)" is short for the pairs (y, x) such that y is among yy. It is compati-
ble with my use of plural logic to understand these pairs in the standard set-theoretic
way due to Kuratowski.



2.3 UPWARDS: GENERATION

Figure 4: -Groundedness in gg

Given a generator J, we can ask two prima facie distinct questions.
Firstly, we can ask what may be generated from some things. Sec-
ondly, we can ask what something is generated from. Answering
the first question we characterize groundedness in terms of as what
can be generated. Indulging in spatial metaphor we may call this an
upwards characterization of groundedness. Formally, the first defini-
tion will identify y as grounded in xx if it is arrived at by iterated
J-generation, starting from xx.

Answers to the second question characterize groundedness by trac-
ing downwards what something is generated from. This characteriza-
tion of groundedness motivates an alternative definition according to
which y is called grounded in xx if tracing down what y is generated
from, we end with xx.

To the best of my knowledge, the first author to spell out these
two characterizations of groundedness in a philosophical context was
Stephen Yablo [1982]. Much of the following may be viewed as a
elaboration on Yablo’s general, formal theory of groundedness. I will
state and explain these connections as they arise.

2.3 UPWARDS: GENERATION

Assume we are given some gg. Then, let us call x J-grounded in gg
if x is among gg, if it stands in the relation J to (“is generated from”)
some yy = gg, or if x is generated from some zz each of which is
already grounded in gg. This idea is visualized well by drawing, as
in figure 4, a funnel-shaped diagram whose base represents xx, and
every point in its area represents something grounded in them.

To render precise this idea in the present, very general context,
I need to clarify what it means to iterate generation. Given a well-
ordering, we can define the stages of an iterated J-generation along the
well-ordering. Fortunately, for some things ww to well-order some
other things yy can be expressed in our present, plural setting as a
suitable plurality of pairs [Shapiro, 1991, p. 106]. For readability, if
ww is a well-ordering of yy, I will use expressions of the form ‘w + 1’

25
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for the ww-successor of w. In cases where yy form a set I will, for
simplicity, work with its order-type, the ordinal «.

Assume that ww are well-ordered. I wish to formalize the iteration
of J along ww, starting from gg. Let 0,,,, be the least. Then, encode
the first stage of our iteration of J as pairs (O, g) where g is among
gg. Given some w that is among ww, the w + 1th stage of our it-
eration of J is encoded by pairs (w,x), where x is among the wth
stage, or there are some xx among these and xxJx. Generalizing stan-
dard notation from the theory of inductive definitions, I will denote
the things at the wth stage, the x for which there is a pair (w, x), by
‘I¥"(gg)’. For w limit among ww, let I}’(gg) be all the I}"/(gg), for w’
ww-preceding w, taken together.

Definition 1 (Groundedness). Let J be a generator and let gg be some
things.

x is grounded in gg by J ("J-grounded in gg’, in symbols: gg <3 x)
iff there is some well-ordered ww and some w among ww and x is
among I1"(gg).

It will be useful to speak of this w as the J-gg-rank of x with respect
to a well-ordering ww.

Let us call x strictly IJ-grounded in gg (‘gg <3 X') iff gg <3 x but x
is not one of gg.

x is strictly J-grounded in gg if its rank is greater than 0,,,. Intu-
itively, it is strictly J grounded in gg if it takes at least one step to
generate x.

Note that, in addition to what is grounded, groundedness involves
three parties. Firstly, we can speak of something as grounded only
in the sense of being grounded in some specific way, which is cap-
tured by a generator J. Groundedness is J-groundedness. Secondly,
J-groundedness is relative to some things gg from which we start to
J-generate things, and arrive at what is J-grounded in them. Ground-
edness is J-groundedness in some gg.

Finally, note that for there to be anything grounded, it must be
among things well-ordered by ww. They are used to render precise
that J-groundedness in gg is being generated from gg by iterating 1.
Each of ww functions as one step in this iteration. Groundedness is
J-groundedness in some gg along some well-ordered ww.

However, what is grounded need not to be one of ww. We may take
seriously the label ‘generation” and view an object x grounded in gg
as having been created from them. Some cases of groundedness that
I will consider later invite such a reading (sections 2.6, 2.7). Others,
however, do not (p. 28 below, and chapter 3), and the ontological
reading is not part of my general framework.

A mundane example will show just how common groundedness is.
Recall the generator P of the previous section. The sentences of propo-
sitional logic are P-grounded in the propositional letters. For every
sentence ¢ of propositional logic there is a well-ordering such that
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/\
(pva) (-1
|

pq T

Figure 5: The Grounding Cone of Propositional Logic

¢ is generated from some propositional letters by P-generation along
the well-ordering (see figure 5). Thus, (p v (q A 1)) is P-grounded in
p,qand .

Note that x is trivially J-grounded in gg if it is one of them. If x is
one of gg then x is J-grounded in gg without being generated but, so
to speak, as part of the ground.

Such groundedness is to be distinguished from cases where x is
J-generated, but J allows us generate something from nothing."* The
most prominent case of having been generated from nothing is the
empty set (see §2.7 below). Another example is the generation of a
class from those things that are not its members, as discussed by
Forster [2008], that allows for the generation of the universal class
from nothing (see §5.2). Generally, in such cases of generation from
nothing it makes sense to speak of groundedness in nothing: y is
J-grounded in nothing iff it is generated from nothing, by iterated
application of J along some well-ordering. Goundedness in nothing,
is of course not ungroundedness. Ungroundedness is just not to be
grounded, and thus like groundedness a tertiary notion: for some-
thing to be ungrounded with respect to a generator J and gg is simply
for it not to be J-grounded in gg. gg may be nothing, in which case
something is J-ungrounded in nothing if it cannot be J-generated
from nothing, directly or indirectly. For example, (p v q) is not P-
grounded in nothing.

If we have two generators J and 71 they can be combined and give
rise to a more inclusive notion of J-7-groundedness. This is done as
follows. Let gg be some things and let J and 71 be generators. Now
we may obtain things from gg either by means of J or by means of 7:
but this is a new way of generating things, a combined generator J-71.
Think of J as the rule to infer y if xx are so and so, and of 7 as the
rule to infer y if xx are such and such. The combined generator 1-71
then is the rule which allows us to infer y from xx if they are so and
so or such and such. Thus, xxJ-TTy iff xxJy or xxTy.

For example, let a generator M be given by the following rules.

The difference between not being generated, and being generated from nothing is
noted in [Fine, 2012b, p. 47]. Fine relates it to a distinction relevant to the notion of
one truth holding in virtue of another to which I will return in chapter 7.
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¢ ¢

MiZe =0

The sentences of propositional modal logic then are P-M-grounded in
the propositional letters.

We can define, relative to J, an operator I'7 that takes some things
xx and outputs exactly those yy each of which is J-generated from
some zz among xx. Formally,

Definition 2.
yocly(xx) & J3zz £ xx(zzly)

This operator I'y allows for the following, useful re-characterization
of J-groundedness. Some x is J-grounded in gg, we may say, if start-
ing from gg, and iterating this operator I';, we eventually find x in
its output. This is equivalent to saying that x is J-grounded in gg iff
x is in the least plurality containing gg and closed under I3, in other
words the least fixed point of I that contains gg. This characterization
renders clear that the present concept of groundedness is closely re-
lated to the theory of inductive definitions, as in Moschovakis [1974]
(see also Barwise [1975]; Aczel [1977]). In fact, for domains that form
a set, to be J-grounded is to be in the inductive set I, the least fixed
point of T3.

Before in the next section I turn to the downwards characterization
of groundedness, let me give another example of groundedness. It
is closely connected to the mundane case of complex propositional
formulae (p. 24) and as such both simple and uncontroversial. At the
same time, however, it sets the stage for the next chapter.

The example is that of truth, more precisely Tarski’s inductive def-
inition of it. Consider, as above, firstly propositional logic. Let V be
a valuation function that assigns truth or falsity to the propositional
letters. As usual, we define the set {¢ : V = ¢} following Tarski’s
compositional clauses.

Consider those truths that are either atomic or the negation of an
atomic formula. That is, consider the true literals. Now, we can view
each truth in V as grounded in the literals true in V, by a generator V
given as follows.

I
@V —ve)

¢ b ©)
¢ @V

We have that for every formula ¢ of propositional logic, V = ¢ just
in case ¢ is V-grounded in the true literals.

Now let 9t be a model of some first-order language £. For sim-
plicity, I assume that £ has a constant for all and only the objects of
9's domain. An L-sentence is true in 9 if and only if it is grounded



12

13

14
15

2.4 DOWNWARDS: PRIORITY

in the L-literals true in 9N, by the generator W,* which is given by
the rules in 6 together with the following two rules for V, the only
quantifier in the language £.%3

Y(a) v (‘E)((b))) a,b,... are exactly the L-constants (7)
x (P (x
m a is some such constant (8)

In other words, the set of first-order formulae true in a model is the
least set containing the true literals and closed under the rules in 6
and 7. This means that we can view the complete theory of an £-
model 9 as the sentences W-grounded in the L-literals true in 1.
This is a well known fact, presented for example in [McGee, 1991, p.
110]. For future reference, let me make it explicit.™

Fact 1 (McGee 1990, example 5.5). Let £ be any first-order language, and
M any L-model; let L™ be the extension of £ by a constant for every object
in M’s domain. Now, for every complex L™ -sentence &, M = & iff § is
W-grounded in those L™ -literals true in 9.

2.4 DOWNWARDS: PRIORITY

I now turn to develop a formal definition that captures the down-
wards idea of groundedness. Let ] be a generator. We say that x is
immediately J-prior to y iff x is among some things from which y is
J-generated. For example, the propositional letters p, q are each im-
mediately P-prior to their disjunction (p v q). In general, immediate
priority is not ensured to be irreflexive: some generators allow y to
be generated from some xx such that y itself is among xx. For ex-
ample, from some natural numbers we may generate its least upper
bound, which may be among them. We may view 7 as least-upper-
bound-generated from 3,5 and 7, and as such prior to itself.'>

Mediate priority is best developed via the following concept of an
object’s priority tree with respect to a generator. If we have some well-
ordered things ww, we can encode ordered sequences (x,y,...) as
some pairs (W, x), (v,y), ..., where v succeeds w in the well-ordering.
In this case, I will speak of (x,y, .. .) as a sequence along ww. Thus, we
can also speak of one sequence extending, or being an initial segment
of another.

‘W’ for Tarski’s 1935 German “Wahrheit”. I reserve the letter “T” for truth in the sense
of Kripke (chapter 3).

Of course, the first rule reminds of the w-rule. Note, however, that the above is not in-
tended to describe a formal system, but is thought of better as a way of constructing
models.

A close kin of fact 1 will be proved as lemma 4 in section 3.5 below.

Of course, the generation of least upper bounds becomes more interesting once we
consider infinite sets of numbers, see §2.6 below.

29
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Some such sequences are a priority tree of an object x if they track
how x is generated, in the precise sense of the following definition.™®

Definition 3 (Priority Trees). Let J be a generator and x, gg be some
things. Let ww be some well-ordered things, and T some finite se-
quences along ww.

T are a ] priority tree of x along ww and ending in gg (a ‘J-gg-ww-
tree” of x) iff

1. x is the root of T: there is exactly one sequence of length one
among 7, and it is (x),

2. for every sequence among T, every initial segment of it is among
T,

3. there is no infinite sequence of things yo, Yy, ... such that for all
n, {Yo,...,Yn, is among 7T,

4. {Y,...,zy £ Tif and only if

a) it has proper extensions among 7 and z is J-generated from
all and only the u such that {y, ..., z,u) are among T, or

b) zocgg, or

¢) gg are nothing, and z is J-generated from nothing.

Some simple examples may help to parse the definition. (—q),{—q, q)
are a P-q-1, 2-priority tree of —q because the formula —q is P-generated
in one step from the propositional letter q. {(p v q)),{(p Vv q), q) are
not a P-p, -1, 2-priority tree because it lacks {(p v q),p). Nor does
(p v q)havein ((p v q)),{(p v q),9).{pva),p){pvaq)raPpq-
tree, this time because r is not among the things that (p v q) is P-
generated from.

I will frequently suppress mention of ww, gg, or even J, if they are
either irrelevant for the point at hand, or clear from context. Thus, it
will be convenient to say that —q has a P-tree, or even just to say that
it has a tree. Let us abstract slightly and speak of y having a J-priority
tree simpliciter if for some gg and ww, y has a J-gg-ww-priority tree.

To gain more intuitive access, we can characterize priority trees in
graph-theoretic terms. For this, however, we need to assume that each
object in our tree is represented by many distinct fokens. For example,
recall that the sentences of propositional logic are P-grounded in the
propositional letters (p. 24). Figure 6 shows a P-{p, q}-priority tree
of ((p Alg = —p)) — ﬁq>‘ This graph has two distinct vertices
which are both labelled “p’. In other words, these two vertices are
both representations of the atomic formula p that figures in both the
generation of —p and the generation of p A (q — —p). For simplicity,
however, I will frequently speak of priority trees graph-theoretically

16 Definition 3 transfers Aczel’s 1977 definition 1.4.4 into the present, plural setting.
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((p Alg——p)) — ﬁq)

p (q——p) ¢

/\

q —p

|
P

Figure 6: A P,p, q priority tree of ((p Alg— —'p)) - ﬁq)

without explicitly distinguishing between things and their tokens. I
can do so, because officially, a priority tree are just some sequences,
in which something may occur more than once.

Definition 4. Let the height of a priority tree T be the least upper
bound, relative to the well-ordered ww, of the heights of the se-
quences among 7; the height of each sequence itself is one greater
than all sequences that properly extend it. In particular, sequences
that have no proper extensions have height o.

For example, the height of the tree in figure 6 is four. 7

Why have I introduced this machinery? It allows us to re-define
groundedness in a way that captures its downwards characterization
from p. 25. Something, we may say, is J-grounded in gg if it has a
J-gg-ww-priority tree. Thus, something is called grounded in gg if
tracing down its generation bottoms out in them. We can show that
this definition of groundedness is equivalent to the upwards defini-
tion from the previous section.

Proposition 1 (Aczel 1977, prop. 1.4.5; Yablo 1982, prop. 12). Let J be
some generator and let gg be some things. Then x is IJ-grounded in gg just
in case for some well-ordered ww, x has a J-gg-ww-priority tree.

Proof. Irecast Aczel’s proof in the present plural setting. x is J-grounded
in gg just in case for some well-ordering ww and some w among ww,
x is among I¥"(gg). The proposition therefore follows directly from
the following lemma. O

Lemma 1. Let J be some generator and gg some things. Let w be any one of
some well-ordered ww. Then xocI¥y(gg) just in case x has a J-gg-ww-tree
of height < w.

17 Although intuitive, this concept of height is not without subtlety, cf. Hazen [1981].
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Proof. The claim is proved by an induction on the well-ordered ww.
For the purpose of this proof, I will write ‘v < W’ if v precedes w in
the ordering ww.

Firstly, the induction base. Let wg be the least of ww. In the left-to-
right direction, assume that x is among I3 (gg) = gg. Then by clause
3b of definition 3, (x) itself is a priority tree of x of height wy, as
required. In the right-to-left direction, let T be x’s J-gg-ww-priority
tree of height wo. Hence it must be (x) and by clause 3b again xocgg,
hence x is among 17°(gg).

Now for the induction step. Let w be some index among ww, and
assume that the claim holds for all v < w. In the left-to-right di-
rection, assume that x is J-grounded in gg by w-many steps of I-
generation. Consider those yy from which x is J-generated. Each of
them is J-grounded in gg by less than w-many steps. By our induc-
tion hypothesis, each y among yy has a J-gg-ww-tree of height less
than w. Consider all these sequence, their extensions to the left by x,
and (x). By definition 3, all these sequences are a J-gg-ww-tree of x
of at most height w.

For the right-to-left direction, assume that x has a J-gg-ww-tree T
of height v < w or w. Let 7% be the sequences (z, 1) for n > 0 and
some z such that (x, z, i ) is among T. We note that T# are a J, gg-tree
of z, of height less than w. By our induction hypothesis, therefore, z
is among I¥, v < w or v = w. Since by assumption, x is J-generated
from zz, we have that x is J-grounded in gg by at most w-many steps
of J-generation, as desired. O

Now recall the concept of a grounded object’s rank (defn. 1). If x
has J-gg-ww-rank w then x is not found at any lower stage. By the
right-to-left direction lemma 1, it therefore does not have a tree of
height v for any v ww-earlier than w. Consequently, the J-gg-rank of
an object with respect to some well-ordering ww is the height of the
shortest (least high) J-gg-ww-tree of it.

Now I return to the task of defining mediate priority, or dependence.
Recall that we say that x is immediately J-prior to y if x is among
the things from which y is J-generated. Intuitively, the corresponding
mediate notion of J-priority is that of y being involved in step by
step J-generation of x. This, however, makes sense only given some
well-ordering, along which J-generation is iterated. So we say that
y is mediately J-prior to x if y is involved in the J-generation of x
along some well-ordering ww. Generation from what? We also need
to specify the things gg that we start out from. J-dependence will
therefore be relative to both a well-ordering and some gg.

Given ww and gg, the following may appear as a good definition of
J-dependence. x depends on y if y occurs in some sequence of some
J-gg-ww-priority tree of x. However, this definition fails to capture
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0=0v —Vx(x # x)

Figure 7: A Detour W-tree

the intuitive notion of y being involved in the generation of x, because
it blurs significant differences in how things are generated.'®

Recall the Tarski truth generator W of the previous section. It al-
lows us to generate a disjunctive truth ¢ v { from one or the other
disjunct. However, when we start with some true literals, and step
by step generate all sentences W-grounded in them, the disjunct will
be generated from one of them first — namely that one which is it-
self generated earlier than the other disjunct. This fact about ground-
edness is not captured by the proposed definition. To see this, let t
be some term of our language, and consider the W-grounded truth
t =1t v =Vx(x # x). It is generated from the true literal t = t. How-
ever, it also has a W-priority tree where —Vx(x # x) is the single
node immediately below it (see figure 7). The proposed definition of
J-dependence blurs the difference between these two trees. According
to it, the disjunction would depend on the universal quantification
even though the latter is not involved in the generation of the former
from the true literals.

I prefer to work with a definition that tracks such fine details of gen-
eration. I would like J-gg-ww-dependence to be sensitive to the order
in which the things J-grounded in gg are generated from them. This
order, however, is readily available, in the J-gg-ww-rank of each thing
grounded. Thus, we arrive at the following definition of J-gg-ww-de-
pendence.

Definition 5. If x is J-generated from gg along some well-ordered
ww, and its rank is w, let us say that x J-gg-ww-depends on y (in
symbols: Yy <3.gg-ww X') iff there is a sequence (x,...,y) in some
J-gg-priority tree of x of height w.

Why is dependence of some thing on another not merely a matter
between them, but also involves some gg of which neither may be
one? The reason is this: x depends on y if the generation of x goes
through y. Generation, however, starts somewhere. It makes sense to
speak of x’s generation only as generation from some gg (possibly

18 I thank Jon Litland for urging me to render this clear.
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nothing). Moreover, what matters is iterated generation from gg, that
is generation along some well-ordering. Therefore, it makes sense to
speak of x’s dependence on y only as in terms of generation from
some gg along some well-ordered ww. Accordingly definition 5 ren-
ders dependence relative to some gg and some ww.

Intuitively, x J-gg-ww depends on y if y occurs in some J-gg-ww
priority tree as ww-high as how ww-long it takes to J-generate x from
gg. For example, the sentence —p v q P,p, g-1,2-depends on p. By
lemma 1, the J-gg-rank of an object with respect to some well-ordered
ww is the height of its smallest J-gg-ww-tree. Hence, y <3.gg-ww X iff
some J-gg-ww-tree of minimal height contains a sequence (x, ..., y).

Thus, a generator J induces a relation of strict grounding, or full
priority, and a relation of dependence, or partial priority. As I will ar-
gue in later chapters, these priority relations bear on the philosophical
significance of groundedness. For this, the following proposition is of
central importance.

Proposition 2. For all generators 1, any things gg and any well-ordered
things ww, the relation of mediate partial J-priority <3.qg-ww is a well-
ordering on the things J-grounded in gg.

Proof. Let 1 be a generator, gg be some things and ww some well-
ordered things. Everything J-gg-ww-grounded has a unique rank
among ww. Hence, for all J-gg-ww-grounded things, their ranks are
well-ordered. Thus, lemma 2 below ensures an isomorphism between
the well-ordering of ranks and the relation of dependence on the
grounded things. Hence, J-gg-ww-dependence is a well-ordering on
them. O

Lemma 2. For all generators 1, any things gg and any well-ordered things
Ww, if X <3.gg-ww Y then the J-gg-ww-rank of x is strictly smaller than
that of y.

Proof. Assume that in some J-gg-ww-tree T of y there is a sequence
{y,...,x), and the height of T is the J-gg-ww-rank of x. Now assume,
for contradiction, that the rank of x is not strictly smaller than that
of y. By lemma 1, x has no J-gg-ww-tree of height smaller than the
J-gg-ww-rank of y. Now, I construct from 7 a J-gg-ww-tree of height
smaller than the J-gg-ww-rank of y, showing that x’s rank must in
fact be strictly smaller than y’s.

So take all sequences among 7 that contain x, and from each of
them, chop off its initial segment up to the first occurrence of x. Call
the resulting collection of sequences T’. I claim that the result is a
J-gg-ww-tree of x strictly smaller than the J-gg-ww-rank of y.

Recall definition 3 and note firstly that among 7T there are sequences
whose last item is x. T, therefore, contains (x). It is the only sequence
of length one, because all sequences in T’ are ensured to begin with x.
Thus, x is the root of T’. Secondly, because the sequences in T satisfy
clauses 2 and 3 of definition 3, so do those in J”.
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Finally, the fact that 7 satisfies clause 3 equally carries over to its
subtree T’, since we only chopped off initial segments of sequences
among T. I conclude that T’ is a J-gg-ww-tree of x. However, it is a
proper subtree of T, hence shorter, so x after all has a J-gg-ww-tree of
height strictly smaller than the J-gg-ww-rank of y, as desired. O

So far, the concepts of groundedness and dependence have always
been relativized to some given well-ordered ww. However, this will
prove inconvenient in the long run. Fortunately, though, it is also
often unnecessary. Most well-orderings considered are of set sized
order type. In these cases, we can always resort to the ordinal num-
bers less than it, and let them witness the assumed well-ordered ww.
Therefore, in practice I will often be able to suppress mention of them.
If I do so, the relevant well-ordered things are a long enough initial
segment of the von Neumann ordinals."

2.5 VARIETIES OF GENERATION

In this section, I present general concepts and simple results about
them, thus building up a set of tools for my later, more specific in-
vestigations. The impatient reader may skip ahead to applications (§§
2.6ff.)

Given a generator J, it may be the case that J allows for the construc-
tion of one and the same object x from distinct pluralities yy and zz.
Below I will give reason to focus on cases in which this is ruled out. I
will consider generators J that are left-unique, in the following sense.*®

Definition 6 (Left- and right-uniqueness). Let us call a generator 1]
left-unique, iff for every x and all pluralities yy, zz

If yyIx and zzJx then yy are zz.
I call a generator 1 right-unique, iff for all pluralities xx and every vy, z,
If xxJy and xxJz then y is z.

The generator P from example 2.2 is left-unique, but not right-
unique. (p v q) is generated from precisely p and ¢, from which,
however, we may also generate (p A q).

One reason to be interested in left-unique generators is that for left-
unique ] and some gg, every object x has a unique (up to isomor-
phism) 1, gg-tree.**

Lemma 3. Let 1 be a left-unique generator, let x be some object and let
ww be well-ordered. For every gg, x has exactly one J-gg-ww-tree (up to
isormophism).

This convention of course does not apply to the groundedness of the ordinal num-
bers themselves, and the groundedness of pure sets, because in these cases, there is
no large enough ordinal.

Occasionally, such generators are called ‘deterministic’ [Aczel, 1977, p. 744].

This basic observation is implicit in Forster’s 2008 discussion.
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Proof. Let T and T’ be J-gg-ww-priority trees of x. I show that T = 7’
by induction on the height of T. Since it is finite, I can represent the
arbitrary ww by the natural numbers.

If T is the single sequence (x), then by clause (4b) of definition 3, x
must be among gg. Hence, for 7’ to be a J, gg-tree of x it must firstly
have x as its root, and its longest sequences must end in gg. 7/ must
therefore be the single sequence (x), and thus be identical to 7.

Now let T be of height n+ 1, and let 7 | n be T’s largest subtree
of height n (for intuition, 7 [ n is T without its leaves). Since 7 is a
J, gg-tree, we know that for every T | n-sequence of length n, its right-
most item (a ‘T | n-leaf’) is J-generated from some T-leafs. Similarly,
all 7' I n are J-generated from J’-leafs.

Now assume for contradiction that T # J’. By our induction hy-
pothesis we know that T | n = 7’ | n. So, T and 7’ must differ on
their leaves. Hence, some leaf of the subtree 7 [ n = 7’ | n must
be generated from some zz distinct from those gg that it is gener-
ated from in T’. This, however, contradicts our assumption that J is
left-unique. O

Lemma 3 ensures that the corresponding relation <j of being grounded

in (definition 1) is non-monotone in the sense that if xx <3 y then
there is no zz 3 xx such that zz <3 y.

Let me draw a few other simple distinctions among generators, and
make some basic observation that to the best of my knowledge have
not yet been made explicit.

Definition 7 (Closure). Let us call a generator 1 left-closed iff for every
x and all pluralities yy, zz

If yyIx and zzIx then yy, zzJx.
For example, P is left-closed.

Definition 8 (Cover). Let us call a generator 1 covered iff for every x
and all pluralities yy, zz

If yyIx and zzIx then for some uu such that xx,zz = uu,
uulx.

Note that uniqueness implies left-closure, which in turn implies
cover.

Is left-closure preserved when generators are combined? Not in
general. To see this, let J and 71 be two left-closed generators such
that xxJy, but not zzJy, and zz™y, but not xxTy. For xx, zzJ-Ty we
need that either xx,zzJy or xx,zz Ty, neither of which, however, is
ensured by the left-closure of the generators J and .

Such considerations motivate to look more closely at combinations
of generators.

Definition 9 (Interference). We say that generators J and 1 interfere
iff there is an x such that for some yy, zz,
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yyJx and zzx

Now, we can observe that the combination of two left-closed gener-
ators is left-closed if they do not interfere.
An analogous observation can be made about left-uniqueness.

Definition 10 (Divergence). We say that generators J and 7 diverge iff
for some xx there are distinct y and z such that

xxJy and xx7z

The combination of two left-unique generators is itself left-unique
if they do not diverge.

In the remainder of this chapter I present two prominent and philo-
sophically significant cases of groundedness.

2.6 CANTORIAN NUMBERS

In his Grundlagen, Cantor presents the ordinal numbers, his extended
number sequence, as those obtained by two principles of generation [1932,
pp- 195f]. Firstly, given a number we generate its successor. Secondly,
[Ewald, 1996, pp. 9o7f]

[...] if any definite succession of defined integers is put
forward of which no greatest exists, a new number is cre-
ated [...], which is thought of as the limit of those num-
bers; that is, it is defined as the next number greater than
all of them.

Two comments are in order. Firstly, both principles appear to presup-
pose a way in which the numbers are ordered. For example, to apply
the first principle, it seems, we need to know already which number
succeeds which. I follow Jané [2010, p. 197] and understand Cantor as
taking this ordering of numbers to be just the order in which they are
generated. Cantor’s principles do not presuppose the ordering of the
numbers, but provide it themselves. It is not as if the first principle
lets us, so to speak, pick from the given order of numbers the next
one. Instead, given a number x it lets us generate a new number vy,
and in virtue of having been generated this way, y is the successor of
X.

Analogously, it is strictly speaking not the case that the second prin-
ciple allows us to generate, for any definite sequence of numbers,
their least upper bound - rather, it allows us to generate a number,
and doing so to extend the ordering by a least upper bound. Ac-
cordingly, I understand the term ‘succession’ in the above quote, and
‘sequence’ as in ‘extended number sequence’, as referring to precisely
this Cantorian order of generation.

Secondly, how exactly to spell out Cantor’s notion of definite collec-
tions is subject to scholarly debate. Without attempting to do justice
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to its breadth, let me remark that ‘collection” may be understood on a
par with “plurality’, as convenient shorthand for essentially plural ter-
minology, such that it principle it can in all contexts be paraphrased
in purely plural terms (recall my fn. 5). What does it mean for a plu-
rality to be definite? In the present context, an answer to this question
must be informed by the Burali-Forti paradox. Notoriously, Cantor’s
second principle is incompatible with the assumption of a definite col-
lection of all ordinals. Assume they formed a definite collection. Then,
by the second principle there is an ordinal greater than all ordinals,
contradiction.

The Burali-Forti paradox thus poses constraints on how to spell
out Cantor’s notion of definiteness. Broadly speaking, there are two
routes. On the one hand, we may accept that any plurality is definite,
but reject the view that every condition defines a plurality (see chap-
ter 4 below, especially p. 64). On the other hand, we may hold that
for every condition, there are exactly those things which satisfy it, but
that not every plurality is definite, in particular that the plurality of
all ordinals fails to be such.

Each route has its advantages, but also comes at significant costs,
too. I do not need to take a stance on this issue, but may defer to
the relevant literature for a safe explication of definiteness [Dummett,
1978; Shapiro and Wright, 2006]. Taking my first and second comment
together, I understand Cantor’s second principle as follows: Given
any definite plurality of numbers, a new number is generated that is
not one of but greater than all of them.

Now, I capture the Cantorian generation of ordinal numbers by
generators in the sense of section 2. This will allow me to view the or-
dinal numbers as grounded. Naturally, the first principle is captured
by the generator which given a number, outputs its successor; the sec-
ond principle is captured by one which given some numbers, outputs
their least upper bound.

Definition 11 (Cantor’s Number Generators). Given any definite, pos-
sibly empty, plurality of numbers x«,

1. 3 is C1-generated from them iff xx are exactly one ordinal «,
and 3 is «’s successor.

2. (3 is C2-generated from them iff (3 is their least upper bound

In particular, the least number is C2-generated from nothing. I re-
peat, the restriction to definite pluralities in this definition is subject
to one’s chosen response to the Burali-Forti paradox. The restriction
comes out as vacuous if every plurality is definite, in which case we
must not assume every condition to define a plurality. Alternative
approaches, however, require a non-vacuous concept of definiteness,
which may then be, so to speak, plugged into the above definition.

At this point, it proves advantageous that I formulated ground-
edness without reference to ordinals, but in terms of arbitrary well-
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orderings understood plurally (definition 1 on p. 26). An ordinal itself
is grounded, by combination of C1 and Cz2, and along an ordering
whose type it is.

Proposition 3. Assume that some definite things ww are well-ordered, and
that the ordinal « is their order-type. Then o is C1-C2-grounded in nothing.

Proof. By induction on o. If it is o, it is C2-generated from nothing.
If it is a successor ordinal, it is C1-generated from its predecessor,
which is C1-C2-grounded in nothing by the induction hypothesis. A
limit ordinal is C2-generated from the ordinals smaller than it, hence
C1-C2-grounded in nothing, too. O

In the literature, J-groundedness is usually defined by the least
fixed point of the operator Iy (p. 28). I explained how this concept
is recovered within my framework. However, I deliberately chose a
different definition: groundedness is being at some stage of iterated
J-generation. The present case of Cantorian number groundedness
justifies this decision. It allows me to present the Cantorian notion of
the ordinal numbers as C1-C2-generated from nothing, without com-
mitting myself to a least plurality closed under ordinal generation,
that is, to a plurality of all ordinals.

2.7 THE WELL-FOUNDED SETS

I have developed Forster’s [2008] generalized iterative conception into
a theory of groundedness. His starting point and primary example is
the cumulative hierarchy of sets. Therefore, it is apposite to explain how
my general theory applies to the well-founded sets.

The cumulative hierarchy of sets plays an important role in the
philosophy of set theory. According to a widely held view, all and
only the sets there are, are those in the cumulative hierarchy. This
iterative conception of sets has a venerable history.*> Possibly the first
and arguably the most influential formulation is due to Godel [1947,
p- 180]. He characterizes the iterative conception of set as that view

[...] according to which a set is anything obtainable from
the integers (or some other well-defined objects) by iter-
ated application of the operation “set of” [...].

Godel’s set-of operation is captured well by a generator that turns
some things into their set. For example, the singleton {F} would thus
be generated from its single element, the empty set. However, some
care is needed when defining this generator. Not from any collection
of things we can generate their set, witness those sets which are not
elements of themselves. Just as in the previous section the Burali-
Forti paradox required a restriction of the Cantorian generators to

22 For a recent, opinionated overview see Ferreiros [1999, p. 441 - 456].
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definite pluralities of ordinals, Russell’s paradox now requires some
restriction of the Godelian set generator to those collections of things
whose sets can be formed consistently.

As before, however, I do not need to take a stance on how precisely
to identify these set forming pluralities. Maybe, every plurality forms
a set, and there simply are no things which satisfy Russell’s condition
of not being an element of itself. Or, there is such a plurality, but it
does not form a set. Using ‘definite” in the same parametrical manner
as in the previous section, my treatment of the paradox is put as
follows. Maybe every plurality is definite, or maybe Russell’s paradox
requires set formation be restricted to definite pluralities. Either way,
it is safe to define the Godelian set generator in the following manner.

Definition 12 (The set generator). Let xx be a definite, possibly empty,
plurality of things. y is S-generated from xx if y is the set of xx, that
is, xx are the elements of y.

In terms of S, we can paraphrase Godel’s statement of the iterative
conception as follows: A set is anything S-grounded in the integers
or some other urelemente. Nowadays, it is more common to focus on
the pure sets. This iterative conception of pure sets is equally well
expressed in my framework: A pure set is anything S-grounded in
nothing (also recall figure 1 on p. 16). From now on, I focus on the
pure sets and by ‘S-groundedness” always mean S-groundedness in
nothing.

The notion of S-groundedness is no stranger to set theory. Quite
the contrary, it is long and well known, if only under a different label.
A pure set is S-grounded if and only if it is well-founded. To see this,
recall definition 2 on p. 28 and note that S gives rise to an operator
I's which takes some things xx and outputs all sets formed from their
definite sub-pluralities.

yocls(xx) 1o 3zz € xx(y = {zz}) )

Thus, T is a plural power-set operation. A set x is S-grounded in
nothing if starting from nothing, and iterating the operator I's, we
eventually arrive at x.

Since some things form a set, so do its subsets (assuming both plu-
ralities are definite). Consequently, if xx form a set, I's(xx) form its
power-set.>> Now, S allows us to generate the empty set from noth-
ing. Hence, T's applied to nothing gives some things that form a set.
So, each stage of iterating I's form a set, namely some initial segment
V of the cumulative hierarchy. Hence, x is S-grounded in nothing if
and only there is some o such that x € V.

Note that here, my choice of a plural meta theory pays off. Forster states his gener-
alized iterative conception in standard set theoretic term, which blurs the important
difference between some things and the set which is S-generated from them.
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Figure 8: An S-priority tree (numerals abbreviate von Neumann ordinals)

Proposition 4. For all x, x is S-grounded in nothing if and only if x is a
pure, well-founded set.

Thus, to be S-grounded is to be a set of the cumulative hierarchy.
This should not surprise. After all, the formal concept of grounded-
ness from the previous sections builds on Forster’s generalization of
the cumulative hierarchy [2008].

By the general proposition 1, if x is S-grounded then it has an S-
priority tree. This S-priority tree of x gives its elements, their ele-
ments, and so on. Figure 8 shows the S-priority tree of {1, {2, {{2}, {1}}}}
(using numerals to denote the von Neumann ordinals). Infinite sets,
of course, will have trees with infinitely many nodes.

This observation allows us to connect the concepts of chapter 2
with standard terminology from set theory. Note that S is left-unique
(definition 6) — if yySx and zzSx then yy are zz. By lemma 3, there-
fore, every set has a unique S-priority tree. Now, this tree of x is
isomorphic to the transitive closure of x, ordered by set elementhood.
By proposition 4 we therefore know that S-dependence (def. 5) is
well-founded.

Thus, my general concept of groundedness from the previous sec-
tion provides a neat formalization of the iterative conception of sets.
In order to show that it is capable of more, I will in the next chapter
apply it to Kripke’s concept of semantic groundedness. Later in the
present thesis, however, I will return to S-groundedness when devel-
oping my account of the philosophical significance of groundedness
(chapter 6).
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2.8 CONCLUSION

In this first chapter of my thesis, I introduced my formal concept of
groundedness, proved central propositions about groundedness, and
applied my general theory to three prominent examples. The primi-
tive concept of my theory is that of a generator. In terms of it, I gave
two formal definition of groundedness, each intended to capture a
distinct intuition. Then, improving on an early result by Yablo [1982],
I showed them to be equivalent. Along the way, I presented the case
of groundedness based on the Tarskian truth generator W.

In section 2.5 I continued with certain, still fully general, categories
of generation and groundedness. In the remaining two sections, I
then applied my theory to firstly, the Cantorian view of the ordinals
as being generated according to two principles, and secondly to the
well-founded sets. Both cases proved to be simple and illuminating
instances of groundedness. In the next chapter, I will turn to a more
complicated but philosophically very interesting case of grounded-
ness: Kripke’s semantic groundedness.
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3.1 INTRODUCTION

Consider the language L, of first-order arithmetic extended by a
predicate symbol ‘T’. For simplicity, I assume ‘—’, “v’, 'V, ‘S” and
‘0’ to be all the primitives in terms of which the other connectives,
quantifiers and arithmetical symbols are defined. I fix, once and for
all, some reasonable method of associating every sentence ¢ with its
Godel code "¢'.* 1 will use capital Roman letters from the end of the
alphabet ("X’, Y’ etc.) as ranging over sets of L,-sentences, or sets of
sentence codes, depending on the context.

In his seminal 1975 article, Kripke showed how to expand the stan-
dard model of arithmetic 91 by interpretations X of ‘T” of particular
philosophical interest. The core of his construction is the Kripke jump
from truth in a model M(X) to a new interpretation Y of ‘T’, and thus
to a new model M(Y).> X is a Kripke truth predicate if it is a fixed
point of such a jump.

My interest is in a certain kind of Kripke truth predicates, those
known as predicates of grounded truth. The notion of grounded truth
is due to Hans Herzberger 1970, but in his 1975 paper, Kripke pro-
vides it with new and original content. He does so by telling a story
how an idealized speaker comes to know the concept of truth [Kripke,
1975, pp- 701ff]. This story has been retold many times since [Visser,
1983; McGee, 1991; Maudlin, 2004]. Nonetheless, I will present it once
more, because it renders vivid the close kinship of Kripke’s semantic
groundedness with the groundedness of numbers and sets; and this
aspect of the famous story has not been sufficiently recognized yet.

3.2 LEARNING THE TRUTH

Consider Alice. She speaks a peculiar fragment of English: English
except for the word ‘true’. Further, let us, as usual in philosophy,
idealize and assume Alice to have unlimited cognitive capacities and
to know for every proposition expressible in this language, whether
or not it is true.

Now we present to Alice English sentences with ‘true’. She does
not understand them, because she does not know the meaning of
this word. So we tell her to call a proposition ‘true’ just in case that
she can assert it, and ‘not true” whenever she is entitled to deny it.
She already knows that, for instance, snow is white. Recognizing that
she can assert this proposition, Alice applies the rule she has just
been given and infers that she can also say that ‘snow is white” is
true. Similarly, she proceeds with everything else that she already

To be precise, ‘"¢’ will denote the Godel number of ¢ or its Godel numeral, depend-
ing on the context.

As usual, “M(X)” denotes the expansion of the model 91 by a relation X on the domain
of M. This differs from the extension of a model in that the domain does not increase.
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knows. Due to her perfect knowledge of non-semantic facts and her
remarkable cognitive capacities, this means that for every proposition
expressible in English minus ‘true’, she has now come to understand
every sentence in which ‘true” applies to a term for this proposition.

Now, Alice again applies the rules that we have given her, this
time to these newly understood sentences. Step by step, she there-
fore learns to apply ‘true’ to more and more sentences, also to those
which contain ‘true’ themselves. Since Alice is an idealized subject,
it is appropriate to assume that she iterates this step along all nat-
ural numbers, and reaches a first limit stage. Here, she takes stock
of what she has learnt, and understands that she can apply her new
word ‘true’ to every true propositions that she can express so far.
Then, Alice continues to learn more sentences, step by step.

Let us focus on how the extension of ‘true” increases during this
process (see figure 9). First, ‘true” applies to nothing at all. Then, Alice
understands that it applies to every true sentences without ‘true’. At
the third stage of her learning process, she comes to know that ‘true’
also applies to every true sentence in which ‘true’ is applied to a
sentence not containing ‘true’ itself. At limit stages, the extension of
‘true’ is the union of all previous stages.

Kripke suggests that 1975, p. 701

[...] the "grounded" sentences can be characterized as those
which eventually get a truth value in this process’

In other words, sentence is grounded if and only if at some stage,
it enters the extension of ‘true’. Kripke then gives a general method
of constructing models that capture this notion of semantic ground-
edness. Kripke’s construction is well known, and there are several
excellent presentations of it [McGee, 1991; Horsten, 2011]. Nonethe-
less, certain aspects of it have not received sufficient attention. They
are interesting in their own right, but will also become relevant to
my treatment of semantic groundedness in later chapters. In partic-
ular, from the available presentations it is not obvious how Kripke’s
concept of semantic groundedness instantiates the previous chapter’s
general concept of groundedness. In the remainder of this chapter, I
will therefore recast Kripke’s construction and attempt to work out
these aspects.

3.3 KRIPKE'S CONSTRUCTION

Starting out from some base theory in the language £,, usually the set
of truths in the standard model of arithmetic 91, the Kripke jump is it-
erated and more and more sentences containing “T” enter its interpre-
tation. Kripke calls a sentence “grounded” if it or its negation enters
the interpretation at some stage of this construction. The least fixed
point extending the base theory collects all and only the grounded
sentences.
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Figure 9: How Alice learns Truth

For this set to be consistent, however, “truth in 91(X)” must not
mean classical satisfaction. Assume it did. For any sentence ¢ con-
taining ‘T’, the jump of our base theory would contain —=T"¢", even
if later on, ¢ enters the truth predicate and T'$' comes out as true.
For example, while 0 = 0 is a sentence of arithmetic, T'0 = 0" is not.
Therefore, =T'T'0 = 0"" would be found at the first stage. Likewise,
however, this first stage would contain the sentence T'0 = 0', since
0 = 0 is among our base theory. Jumping ahead just once, we would
obtain T'T'0 = 0", the very sentence whose negation we have just
found grounded. Consequently, a Kripke jump based on classical sat-
isfaction creates inconsistent truth predicates.

The reason is that classical satisfaction lets =T ¢’ come out true
whenever ¢ is not in the interpretation of “T’. Hence, Kripke’s con-
struction must not be carried out on the basis of classical satisfac-
tion, in particular not on the basis of the classical treatment of nega-
tion. Speaking loosely, an evaluation scheme is needed that renders a
negated sentence true not in the absence of information, but if the
available information suffices for it. More precisely, an evaluation
scheme m is needed such that M (X) =, —¢ only if M(Y) Em —P
holds for every interpretation Y of “T” extending X. Using a technical
term, satisfaction must be monotone [Blamey, 2002]. The crucial fea-
ture of a monotone evaluation schema m is that the fact that some
sentence code "¢’ is not in the extension of ‘T’ no longer suffices for
the negation —T'¢" to come out as true. We no longer have that —=T"¢"
is true in 9N(X) if ¢ is not among the sentences X.

Various monotone schemes m have been used for Kripke’s con-
struction. Thus, we have a Kripkean truth predicate based on Strong
and Weak Kleene logic, and constructions that use supervaluational
schemes. Note, however, that the need for monotone satisfaction does
not imply that our theory of grounded theory cannot be classical. All
we have found is that classical logic must not be used for the Kripke
jump, if our goal is a consistent truth predicate. The Kripke jump
must be formulated using non-classical logic. But, what we do with
our truth predicate thus obtained is a different matter. In particular,
we may well reason classically with it. Technically, this means we can
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take a Kripke truth predicate X and work within a classical model
M (X). This approach goes back to Kripke [1975, p. 715] and has been
discussed as “closing off” the non-classical model. I will consider its
advantages and disadvantages in the next chapter (p. 70).

Given a monotonic evaluation scheme m, the Kripke jump is stan-
dardly formalized by an operator J,, on sets X of (codes of) Li,-
sentences.

" € Im(X) iff N(X) Em ¢ (10)

For example, Jq is the standard Kripke jump based on the Strong
Kleene scheme g (see definition 14 below).

Kripke called a sentence grounded if its code is found in the least
fixed point of Jm. My goal is to show that this particular concept of
semantic groundedness is a special case of the general concept from
section 2. For this, I need to provide a generator on the L,-sentences.
They form a set Sent, which allows me to proceed in the usual set-
theoretic setting. In particular, I can represent a generator J by a set
of pairs (X, ¢), where X < Sent and ¢ €Sent.

Like the generalized power-set operation of section 2.7, the operator
dm is an example for operators I'7 from chapter 2 (p. 28). However,
what generator J does it correspond to? It is a generator that allows
us to infer T'¢" from a set of sentences X if M(X) Em ¢. Given X,
we generate all sentences T'¢" such that ¢ is in the Kripke jump of
X. Accordingly, I will speak of the jump generators and refer to them
by JM. For example, the Strong Kleene schema k= gives rise to the
jump generator JSK. In general, JM is given by the following rule.

X
T
In the previous section, I mentioned Yablo’s early work on grounded-
ness. Now, I note that a generator JM corresponds to Yablo’s notion
of jump-entailment, or sufficiency, for a Kripke jump g, [Yablo, 1982, p.
121]. Yablo in turn ascribes this concept to Herzberger [Yablo, 1982,
fn. 7].

Of course, a generator JM allows us also to draw priority trees, as
in section 3, and thus gives rise to a corresponding notion of depen-
dence. Figure 10 provides one example, based on the Strong Kleene
jump generator JSK.3 Note that its root, a negated disjunction of the
form —(T'¢" v T"P') depends not on what is negated, nor on either
disjunct, but directly on the sentences of which truth is predicated.

Presented in this manner, Kripke’s concept of semantic grounded-
ness appears to be as simple an instance of the general concept as
is the cumulative hierarchy of sets (§2.7 in the previous chapter). A
sentence is true in Kripke’s least fixed point models if and only if it
is JM-grounded in nothing.

As usual, I abbreviate by x a PA-representation of the function that maps a number
n to its numeral .
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Figure 10: Low resolution Kripke Groundedness: A JSK Priority Tree

I will refer to this as the low-resolution characterization of semantic
groundedness. My reason for this label is the following. If we look
more closely at Kripke’s fixed point construction, we find a richer
structure of interacting groundedness than the above, received char-
acterization suggests. Given some xx, their set is obtained directly.
Given some sentences X, however, its Kripke jump Jmn(X) is better
viewed as being obtained in two steps (see figure 11).

Firstly, we ascribe truth to all and only the sentence in X, thus mov-
ing from complex sentences ¢ € X to atomic sentences T'¢ ', and infer
—T'¢" if =¢ € X. Secondly, this collection of literals is closed under
logic.4 More precisely, the set of literals {T'¢' : ¢ € X} u {=TY" :
— € X} is closed under the consequence relation F,, which corre-
sponds to the monotone evaluation scheme m. Doing so, we obtain
precisely the sentences m-true in the model 91(X), in other words the
Kripke jump Jm(X). In sum, taking the Kripke jump Jm of a given set
X involves two steps: firstly, we ascribe truth, secondly, we close under
the monotone logic m. This fact is missed if we understand Kripke’s
concept of semantic groundedness in terms of generators JM, that al-
low us to move from the sentences X directly to the complete theory
of M(X). Therefore, generators JM provide a merely low-resolution
characterization of Kripkean semantic groundedness.

Fortunately, a finer high-resolution understanding of it is available.
In the next section, I will outline a general method of replacing a
single generator JM by two generators T and M that capture the two
distinct steps behind the Kripke jump.

3.4 SEPARATING TRUTH FROM LOGIC

The first step, moving from the set X to the set of literals {T'¢" : ¢ €
X} u{=T" : = € X}, corresponds to the generation of sentences
T'¢' from ¢ and —T'¢d" from —¢. This truth generator T is common
to each variant of Kripke’s construction, whichever monotone evalu-

As usual, I call a sentence ¢ a ‘literal” if it is atomic or the negation of an atomic
sentence.
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ation scheme m we choose. In this sense, T is the core of Kripke’s
construction.

Definition 13 (Truth Generator). Let the generator T be given by the
following rules, for L,-sentences ¢.

¢ —¢
Trd)'l _|Tr¢'l

T-Intro —T-Intro

Note that T allows us to generate two distinct sentences T'—¢'
and —T'¢" from any negation —¢. Further, by itself, T allows us to
generate more and more statements of the form “it is true that ..”
and “it is not true that ...”, from some given set of sentences, say the
truths of arithmetic. However, we will not arrive at any conjunction,
disjunction or quantification of such statements. For this, we need
to close the set {T'¢" : ¢ € X} u{=TY" : = € X} under logic.
What, however, does it mean to close a set of literals under logic? This
depends on our choice of a monotone evaluation scheme m. In the
next section, I will identify logic generators M such that M(X) =m ¢
iff ¢ is M-grounded in the literals m- true in 9%(X).

In combination, T and M provide us with the following high-resolution

characterization of Kripke’s concept of grounded truth.5

Proposition 5. Let m be either the Weak or Strong Kleene evaluation
scheme, and M be the corresponding logic generator. Then "¢ is in the least
fixed point of Kripke’s jump operator Jm if and only if ¢ is T-M-grounded
in the L4-literals true in N.

If m is a supervaluational schema and M the corresponding generator,
then "&" is in the least fixed point of Kripke’s jump operator Ju, if and only
if ¢ is T-M-grounded in the L,-sentences true in N.

The proposition follows from lemmata given in the next sections.
In the next sections, I will prove the lemmata sufficient to establish
the proposition (lemmata 5, 8 and 6 below).

My conclusion of the foregoing discussion is that within the general
framework of section 2 there are two ways of understanding Kripke’s
concept of semantic groundedness. On the one hand, there is the stan-
dard, low-resolution characterization. Given some grounded truths X,
more are generated by taking the Kripke jump of X. In particular,
T'¢' is generated not from ¢ alone but from all sentences that have
already entered the interpretation of “T’. On this characterization of
semantic groundedness, it becomes a rather simple instance of the
general theory of groundedness from section 2, JM-groundedness in
nothing (equation 11 above).

On the other hand, there is the high-resolution notion based on the
combination of a uniform truth generator T with one of the logic

There is a connection between this proposition and Kit Fine’s 2010 presentation of
Kripke’s theory. I assume that he had arrived at a similar result.
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Figure 11: Splitting Kripke’s jump into truth-generation T and closure under
some monotone logic generator M .

generators M. On this reading, Kripke’s move from a set X to its
Kripke jump falls into two steps. Firstly, the sentences X are ascribed
truth, and if —& € X then & is inferred not to be true. We obtain a set of
literals T'¢', —=T"&". It is only in a second step that this set of sentences
is closed under the logic determined by our chosen evaluation scheme
m. Figure 11 presents these two steps and how the Kripke jump Jm
of the low-resolution reading combines them into one.

Whether or not Kripke’s construction is characterized best with
such high resolution depends on one’s interests. For certain purposes,
its standard, low resolution presentation is still advantageous. For ex-
ample, in chapter 4 I will transfer Kripke’s approach to a new area. I
will develop and examine a model construction inspired by Kripke’s,
but using new methods and facing new challenges. For this, it proves
advantageous to use the received low resolution framework because
it is well understood and as such allows us to focus on difficulties
specific to the new application.

For other purposes, again, it is worthwhile making use of the addi-
tional detail provided by my high resolution approach. For one, in the
present section, the high resolution perspective has clarified what all
variants of Kripke’s construction have in common, their truth genera-
tor T, as well as how these variants differ, namely in their logic gener-
ator. For another, in chapter 8 I will develop a novel understanding of
Kripke’s construction. Here, too, high resolution will play a key role,
as only it reveals natural, general principles exemplified by Kripke’s
construction, such as that a true conjunction is generated from its
conjuncts.

I now turn to present logic generators that correspond to the non-
classical, monotone evaluation schemes m on the high-resolution pic-
ture.

3.5 STRONG KLEENE LOGIC

Recall the Strong Kleene evaluation scheme k=g, as defined, for exam-
ple, in [Halbach, 2011, 15.10].6

As it is common in the literature, I deploy a slight strengthening of Kleene’s original
truth tables due to Albert Visser [1983].
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Definition 14 (Strong Kleene). Let £ be a first order language with
‘=’/v’ and V" as its primitive logical symbols. Let 9t be an £-model
that assigns to every n-place L-relation symbol R™ an extension J*(R™)
as well as an anti-extension J~(R™). Let 3 assign to every L-variable
an object of M’s domain M.

We define M kg $[B] by induction on the positive complexity of
d.

M =gk R™xn
M =g ~R™Mxn

~ Bl iff B(x7) € JT(R™)
Bl iff B(xn) € ] (R™)
M =g ~— OB iff M =g ]
M =g ¢ v P[] iff M =g dIP] or M =g PIP]
M =g = (b v )R] Iff M Ege —~d and M =g —I[P]
M e Vxd(x)[B]
M =g —Vxd(x)[B]

B] iff for all me MO =g d(x)[B(x : m)]

)
x)
x)[B] iff there isan m e MMM =g —d(x)[B(x : m)]

(
(

In order to give the Strong Kleene Kripke jump Jgx, we can recover
the anti-extension of ‘T’ from its extension, in the following manner.
Given a set of sentence X, let ‘=X’ denote the set of all sentences ¢
such that —=¢ € X. If X comprises the sentences true under some inter-
pretation of ‘T’, then —X are the sentences false under it. =X allows
us to extract the anti-extension from the extension. Consequently, the
Strong Kleene jump Jgx need not to work on pairs of sets but is well
viewed as taking single sets of sentence codes X from which is ex-
tracted both positive and negative information.

"¢ € Ik (X) iff N(X, —X) o d (12)

If we wish, as Kripke does, ‘—Tx” to hold of everything that is not a
sentence, then we need to make one additional assumption. We let
the set of sentence codes —X contain not only all all codes ‘¢"' such
that —¢" € X but also all objects of the domain that do not encode
a sentence. In what follows, I will tacitly assume that this trick is
implemented.

Further, as indicated earlier I focus on the language of arithmetic
L, extended by a predicate symbol ‘T” to the language of truth Ly,.
Its intended model are the standard numbers 9t extended by some
set of numbers as extension for ‘“T’. Consequently, we are in the con-
venient position that the language of our interest has a constant for
every object of its intended domain. Thus, the quantifier clauses of
the previous definition can be recast substitutionally, which allows
us to drop the relativization to an assignment.

From the Strong Kleene jump (equation 12) we obtain the generator
JSK, and on its basis the low-resolution characterization of Kripkean
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groundedness, relative to the Strong Kleene evaluation scheme. Fig-
ure 10 above shows one corresponding priority tree.

My present interest, however, is in the alternative, high-resolution
understanding of semantic groundedness. It is groundedness through
the combination of the truth generator T (p. 49) with some generator
of monotone logic. In order to apply this schema to Kripke’s Strong
Kleene construction, I accordingly need to give a Strong Kleene logic
generator. This is easily done: I turn the clauses of definition 14 into
rules.

¢ P
Gve) bV 3)
—¢ - ¢
B R (4
P(a) v (‘i((b))) a,b,... are exactly the L-constants
x(P(x
(15)
m a is some such constant (16)

Recall, however, the Tarski generator W from section 2.3. The rules
(13) to (16) are just those by which W was given there. Therefore
we can let the Strong Kleene logic generator be just W and obtain a
result analogous to fact 1 on p. 29. Note, however, that the language
of arithmetic and truth £y, has a term for every number n, its numeral
1. Therefore, we can skip its extension by constants.

Lemma 4. Let A be the set of La-literals true in M. N(X, =X) Egx ¢ if and
only if ¢ is W-grounded in A.

Proof. Let me write ‘“T(X)’ for the set {T'C': e X} u {=T"'C': ={ e X},
and let A be the set of £,-literals true in M. I show that 9(X, =X) g
¢ if and only if ¢ is W-grounded in the sentences from A U T(X). For
readability, I will equivocate between this set and its elements and
call  W-grounded in A u T(X).

Naturally, the lemma is proved by an induction on the positive
complexity of ¢. At the base, let ¢ be a literal. If it does not contain
‘T” then we have that ¢ holds in the model 9(X, —X) iff it is among
the A, hence W-grounded in the A. So assume that ¢ is of the form
TP or =T". We observe that

N(X, =X) =g TV iff p e X iff TY' € {TC: e X}
N(X, =X) Eg—TWP" iff P e =X iff =TP' € {~T°C : (e X}

Either way, ¢ is W-grounded in A u T(X).
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At the induction step, let ¢ be the disjunction 1\ v x and assume
that the lemma holds for both 1 and .

N(X, =X) Esk B v X iff N(X, =X) Esk Y or N(X, =X) Eex X
iff \p or x W-grounded in A u T(X)
iff P v x W-grounded in A U T(X)

Now let ¢ be the negated disjunction —(1 v x).

N(X, =X) s = v x) iff NX, =X) =g = and N(X, =X) Eg —X

LH.
iff - and —x W-grounded in A u T(X)

iff =(1 v x) W-grounded in A u T(X)

Finally, let ¢ be a quantified sentence Vxi(x).

N(X, =X) Eg VxW(x) iff for every n e w, N(X, —X) =g P (1)

LH.
iff for every n e w,

P (1) W-grounded in A U T(X)
iff ¥x(x) W-grounded in A u T(X)

MN(X, =X) Eg —Vxp(x) iff for some n € w, N(X, =X) Eg (M)

LH.
iff for some n € w,

P(n) W-grounded in A u T(X)
iff —=Vx(x) W-grounded in A U T(X)

O

I now show, as announced in the previous section, that the sen-
tences of Kripke’s least Strong Kleene fixed point are precisely sen-
tences T-W grounded in A.

Lemma 5. For A the set of £ q-literals true in N and every sentence ¢ of
the extended language Lia, & is in the least fixed point of Kripke’s Strong
Kleene jump just in case ¢ is T-W-grounded in the £ o-literals true in M.

Proof. As before, let A the set of £q-literals true in 9. Halbach [2011,
15.14] shows that a set of sentence codes X is a Jq-fixed point if
and only if it contains the (codes of the) A and is closed under rules
corresponding to T-Intro, —T-Intro (see my definition 13) and those
from equations (13) to (16). In particular, the least Jg-fixed point is
the least such set. O

Lemma 5 justifies the high-resolution understanding of Kripke’s se-
mantic groundedness based on Strong Kleene logic. It allows us to
view the grounded sentences as generated from the arithmetical truths,
by the combined application of the general truth generator T and the
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/\
(T 4% =4+%" v (-TTO£T vT3#T1+17)) 01
/\
T =vxd+x=4+%x -TTO#1"vT3#1+17
- WXT4+x=4+%" —(TO#1"vT3#1+1"
/\
UXT4 +% =4 +x' “TO0#1 =T3#1+1
T44+n=4+n 0#1 3#1+1
d4n=4+n

—S(T=Vxd+%x =44+ v (=TTO#1"vT3#1+1") v0#1

Figure 12: High resolution Kripke Groundedness: An Exemplary T-W Prior-
ity Tree

Strong Kleene logic generator W. To see the advantages of this high-
resolution characterization of Strong Kleene groundedness, compare
the T-W-priority tree in figure 12 with its low-resolution analogue
10. Note in particular how the former elucidates immediate depen-
dencies such as that of =(T'0 # 1T"v T3 # 1+1") on =T0 # 1"
To this extent, the high-resolution understanding of semantic ground-
edness developed in the previous section, paired with the general
downwards perspective on groundedness from chapter 2, section 2.4,
improves on Yablo’s early characterization of dependence relations
Yablo [1982], which took, e.g., =(T'0 # 1" v T3 # 1+ 1") not to de-
pend on —=T'0 = 1" but directly on 0 # 1.

A variant of Kripke’s theory that has gained some attention only re-
cently is based on a Weak Kleene evaluation scheme [Feferman, 2008;
Fujimoto, 2010]. As on the Strong Kleene scheme considered in the
previous section, a relation symbol is assigned both an extension and
an anti-extension. A literal of the form —T")" is true not in the ab-
sence of \ from the extension of “T”" but only if 1 is present in its anti-
extension. The schemes differ in how complex sentences are treated.
On the Weak Kleene approach, a complex sentence is true only if ev-
ery constituent clause has a definite truth value. For example, the dis-
junction ¢ v 1 is true only if both disjuncts are true, ¢ is true and 1 is
false, or ¢ is false but \ is true. Accordingly, the Weak Kleene evalua-
tions scheme is defined like the Strong Kleene scheme (definition 14)
except that the clauses for negated disjunction —(¢ v 1) and negated
universal quantification —=Vx¢(x) are extended by further conditions.

Modulo these alternations, however, the Weak Kleene logic gener-
ator is obtained analogously to how above the W has been obtained
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from the definition of Strong Kleene satisfaction. Further, just analo-
gously to the proof of lemma 5, we can prove the following lemma.

Lemma 6. Let A be as before, and ¢ be any sentence of the extended lan-
guage L. Let K but the Weak Kleene logic generator. We have that ¢ is in
the least fixed point of Kripke’s Weak Kleene jump just in case ¢ is T-K-
grounded in the sentences in /.

36 SUPERVALUATION

I now turn to Kripkean theories of truth based on supervaluational
logic. As is well known, it differs from the Strong Kleene approach
in being not compositional. A disjunction may be super-true without
either disjunct being so. To give a notorious example, even though
of course Kripke’s least supervaluational fixed points contain neither
the liar sentence A not its negation, the disjunction A v —A is in these
fixed points.

This specific character of supervaluational Kripke groundedness
justifies a more detailed exposition. Firstly, I will develop the stan-
dard, low-resolution presentation of Kripke’s theory, although in a
more general format than usual. Then, I will develop a high-resolution
presentation in terms of the truth generator T and specifically super-
valuational logic generators. Since supervaluational logic is not com-
positional, however, these logic generators will be of a different form
than the generator W of the previous section.

I begin with the customary, low-resolution presentation of super-
valuational Kripke theories. Recall that this is the reading based on
Kripke’s jump operator Jm, which turns truth in a model into a new
model. The idea behind a supervaluational Kripke jump Jsy is the
following. Given a set of sentence codes X, we consider arbitrary ex-
tensions Y of X, each of which induces a classical model 91(Y), with
Y interpreting “T". Then we use plain classical semantics to determine
which sentences come out true in all of these models and add exactly
these sentence (codes) to the interpretation X from which we started.”

"¢ e Jov(X) VY (XS Y = N(Y) E ) (17)

Of course, the more extensions Y we consider, the less agreement
there is between the models 91(Y), and the less sentences enter the
truth predicate. Usually, therefore, an admissibility condition is im-
posed on the range of extensions considered. Which interpretation
Y is considered admissible, depends on the set X. Therefore, I will
focus on the relation of some set Y admissibly extending a set X, in

I write doubly lined arrows ‘=" to signal that equations (17) and following are state-
ments in my meta-language. The simple arrow ‘—’ is reserved for the object lan-
guage Lia.
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symbols: X @ Y. For example, Burgess [1986] considers a superval-
uational Kripke jump that requires not only Y to extend X, but also
it not to contain any sentence whose negation is already found in
X. Let "X’ denote the complement of X, and recall that =X is the set
{¢: = € X}. Then, we can define Burgess’ admissibility condition as
follows.

XEY:eXcYc =X (18)

4

Thus, Burgess restricts quantification to sets “sandwiched between’
the given set X and those sentences whose negation does not occur in
X. This choice of an admissibility condition gives rise to the following
Kripke jump.

"G € Jps(X) HE VY (X S Y S =X = N(Y) = ¢) (19)

In the literature, various admissibility conditions @ have been used.
To give just one other example, Cantini [1990] works with a Kripkean
theory based on the stronger admissibility condition of Y being a
consistent extension of X.

&' € Jos(X) iff VY(X S Y &Y consistent = N(Y) = ¢) (20)

Other, stronger admissibility conditions are conceivable, too. In the
following, I will reason schematically, for an arbitrary admissibility
condition &. In particular, I will not assume it to be definable but
treat an admissibility condition as a class of candidate interpretations
of “T’. Thus, Jps and Jcs are instances of the following general schema.

‘¢ € Jas(X) Hf VY (X €Y = N(Y) = d) (21)

Given an admissibility condition & the corresponding Kripke jump
Jas determines a way of generating sentences of the form T'¢" from
a given set of sentences X.

JAS TZfb —if ¢ € Jas(X) (22)

We find that the least J.s-fixed point comprises exactly the sen-
tences grounded in nothing through this generator. This is not very
surprising, as equation 22 does hardly more than rewriting the step
from one stage of Kripke’s construction to the next. Still, we have thus
given a low-resolution reading of Kripke’s supervaluational concept of
grounded truth.

I now turn to the high-resolution understanding of Kripke’s semantic
groundedness. According to it, the sentences of Kripke’s least fixed
point based on the monotone evaluation scheme m are grounded in
the base truths through the combination of the truth generator T with
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a logic generator M. This M is the generator through which a sentence
¢ is grounded in the literals T'C', =T"E’ (plus the base language lit-
erals true in the base model), if and only if ¢ is m-true under the
interpretation of ‘T’ by exactly those ¢, —¢. In the previous section, I
gave such a generator W for Strong Kleene logic. Now, my goal is to
identify a generator for supervaluation.

As noted above, supervaluational satisfaction schemes are not com-
positional. Consequently, the supervaluational generators AS will not

be given by neat rules such as . In order to generate a sen-

(¢ v )

tence ¢ from some other sentences X, we need to consider a range of
admissible models of the language.® These admissible models, how-
ever, are all classical.

Recall from section 2.3 that taking the (classically) complete the-
ory of a model 91(X) is to take the L,-sentences W-grounded in the
literals true in 9%(X) (fact 1). This allows us to understand a superval-
uational logic generator in terms of the W-generator from section 2.3.
I write “T*(X)” for the set {T'E' : &£ € X} U{T'E" : & ¢ X}. Note how
T*(X) differs from T(X) of lemma 4: for any sentence &, T7*(X) con-
tains T'E" or —T"E". Consequently, 7*(X) is ensured to contain either
T'E' or its negation, for every sentence & whether in X or not. This
corresponds to the guiding idea of the supervaluational approach, to
quantify over all classical extensions of a given model. After all, in a
classical model M(X), —=T'&" is true iff & ¢ X.

To define a supervaluational logic generator, I will make use of
the relation which one set of literals T(X) bears to another T*(Y) if
and only if Y admissibly extends X. This relation orders sets of literals
according to how one interpretation of ‘T’ admissibly extends another.
On this basis, the supervaluational generator AS is well viewed as a
function of W-groundedness in admissible extension.

Definition 15 (Supervaluational generators). Given an admissibility
condition @ and a set of L,-sentences X, let us say that ¢ is AS-
generated from these sentences if and only if there is a set of sentences
Y such that

1. X=TJ(Y) and
2. ¢ is strictly W-grounded in every T7*(Z) such that Y & Z.

Recall that something is said to be strictly J-grounded in some
things if it takes at least one step to generate it from them. The second
clause thus ensures that ¢, if AS-generated, is not itself of the form
T or =T

By the first clause, supervaluational generators allow us to generate
sentences only from literals of the form T\p" and —T"". For example,

8 This is closely related to the fact that supervaluational consequence is not com-
putably enumerable [Burgess, 1986; Fischer et al., 2014].
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BS is the generator corresponding to Burgess’ jump Jps (equation 19).
Based on fact 1, inspection of definition 15 leads to the following
observation. It corresponds to lemma 4 of the previous section.

Lemma 7. Let @ be any admissibility condition and AS the correspond-
ing generator according to definition 15. For any set X, ¢ is true in all
G-admissible extensions of M(X) if and only if ¢ is a base language sentence
true in M, or T-generated from X or AS-generated from T(X).

This fact allows us to finally show that Kripkean groundedness
given by a supervaluational fixed point construction based on & is
groundedness in true arithmetic through the corresponding generator
AS combined with the Kripke truth generator T.

Lemma 8. Let & be an admissibility condition, AS the corresponding gen-
erator, and & an L,-sentence. We have that ¢ is in the least fixed point of
the Kripke jump based on &, just in case ¢ is T-AS-grounded in the base
language sentences ¢ true in N.

Proof. Let @ and ¢ be as required, and let ‘©” denote the set of £,-
sentences ¢ true in 1.

Naturally, the left-to-right direction is shown by an induction on
the low-resolution JAS rank of ¢. Its base holds trivially, because
JAS-groundedness is groundedness in nothing. So let « + 1 be the
least ordinal such that ¢ € I]‘X?. Then ¢ € Has(I]"fAs). By lemma 7 we
have that (f) ¢ is T-generated from some sentence € Ijiq or (}) ¢ is
AS-generated from T*( I]ofxs) .

If (1), then by the induction hypothesis ¢ is T-generated from some
sentence 1 that we know to be T-AS-grounded in ©, hence ¢ is, too.
If (1), then similarly ¢ is AS-generated from sentences that we already
know to be T-AS-grounded in ©, hence ¢ is, too.

The right-to-left direction runs by an induction on the high-resolu-
tion T-AS rank, at whose base ¢ is ensured to be in the set G, hence
in the least J.s-fixed point Ijas. At the induction step, ¢ is either ()
T-generated or () AS-generated from sentences T-AS-grounded in ©.
Either way, by our induction hypothesis the sentences from which ¢
is generated are in the least fixed point of J,s, hence their Ijas-ranks
have a least upper bound (3. Consequently, they are all found in I]BAS.

If (1) then ¢ is T-generated from some sentences in I](Zs or AS-

generated from T*( I][ZS). By lemma 7, therefore, ¢ € Jas( I]E;\s) € Tjas,
as desired. O

3.7 CONCLUSION

In this chapter I applied my general theory of groundedness to its pa-
radigm instance, Kripke’s semantic groundedness. Having presented
its standard formulation, I argued for a new, more finely grained char-
acterization. The standard Kripke jump can be split into two steps,
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each of which corresponding to its own generator in the sense of
chapter 2 (see figure 11). In a first step, from a given set of sentences
X we generate the literals of the form T'¢’, for ¢ in X, respectively
—T'¢", for —¢ in X. This truth generator T is common to all variants
of Kripke’s construction. They differ in the second step which my
analysis has brought to light, the logic generator. I showed that the
resulting high-resolution characterization of semantic groundedness is
co-extensional with the received low-resolution definition.

In the next chapter, I will turn to an instance of my general theory
which unlike the case of sets or truth has not yet been sufficiently
developed: groundedness models for type-free theories of concept-
extensions, or classes.
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4.1 MOTIVATION

Let £ be some first-order language extended by a binary relation sym-
bol n’. The formula xny reads ‘x is a member of y’. Consider the
following schema of naive comprehension.

(C) For every L-formula ¢(x) with exactly the variable x” occur-
ring free in ¢,

FyVx(xmy « ¢(x))

By Russell’s paradox, (C) is inconsistent with classical first order logic.
For, consider the L-formula xpx. (C) requires there to be a class of
everything that is not a member of itself. Instantiating for just this
class, we find that it is a member of itself just in case it is not.

We regain consistency if we restrict the schema to formulae ¢ that
do not contain ‘n’. Doing so, however, we undermine many interest-
ing applications of class theory. For example, given a class x we would
like to have a class of the y that are in some member of x. Thus, we
would like to have the following instance of class comprehension.

JzVy (ynz o Fv(ynv A znx)) (23)

Can we restrict comprehension in a more sophisticated manner,
avoiding paradox while preserving its desirable instances? At this
juncture, it is useful to look for inspiration elsewhere. Consider the
case of extending a theory by a predicate symbol ‘T’ that obeys Tarski’s
schema.

(T)  For every sentence ¢,
Trd)'l > q)

Of course, if we allow ourselves to substitute any sentence for ¢ then
we face the paradoxes of truth, most prominently the Liar.

Tarski himself responded to the inconsistency of full schema (T) by
restricting the schema to sentences which do not contain the truth
predicate themselves. Adding this restricted schema to our base the-
ory does not lead to paradox. In fact, the resulting theory has nice
and natural models. However, this move also disallows many safe
and indeed attractive instances of the full schema (T). For example,
we would like to iterate applications of the truth predicate — but this
is no longer possible.

Analogously to the case of class comprehension, therefore, banning
the new relation symbol ensures consistency but comes at a cost. For-
tunately, there is an alternative: Kripke’s groundedness approach to
truth, as discussed in the previous chapter.

Can we make a similar move in our present situation? Can we ap-
ply Kripke’s method to single out the grounded instances of naive class
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4.2 DESIDERATA FOR A THEORY OF GROUNDED CLASSES

comprehension? Extant literature gives reason to be hopeful. Most
prominently, Penelope Maddy has carried out a Kripkean construc-
tion over set theory [Maddy, 1983, 2000]." The present chapter is in-
tended as a general and systematic investigation into the prospects
of grounded class theory. In the next section, I develop properties we
would like such a theory to have. However, it is not guaranteed that
these desiderata can all be satisfied; and maybe they need not all be.
What follows are prima facie desirable features.

4.2 DESIDERATA FOR A THEORY OF GROUNDED CLASSES

Firstly, whichever way we approach a theory of grounded classes,
we wish to answer Russell’s paradox while allowing the membership
relation to figure on the right-hand side of class comprehension. Thus,
one desideratum is immediate. We want our theory to get us as much
of comprehension as possible.

COMPREHENSION A class theory should contain many instances of
class comprehension.

At this point, let me emphasize that although they pose analogous
challenges, Tarski’s schema and naive class comprehension differ in
one respect. Whereas sentences are plugged into (T), the schema of
comprehension takes open formulae; and these are universally quan-
tified. As a result, one instance of (C) corresponds to many instances
of (T). Comprehension for the formula ¢(x) is grounded only if for
every closed term a, the sentence ¢(a) is grounded. In effect, as we
will see, identifying grounded fragments of (C) is significantly more
demanding than restricting the schema (T) to its grounded instances.

In order to motivate the second desideratum, allow me to ask: what
do we need class theory for in the first place? After all, we already
have a theory of sets, and it is both mathematically well developed
and philosophically motivated. One way to argue that we also need
a theory of classes is as follows?

There are two ways of collecting some things.3 On the one hand,
we collect some things by a sequence, possibly uncountable, of inde-
pendent decisions whether a given object belongs to them or not —
basically, by listing them. This combinatorial idea of collection under-
lies the theory of sets.

On the other hand, we collect some things by giving a condition
which exactly they satisfy. This is the definitional, or logical, idea of

For an alternative approach, see Cantini [1996]. Mathematically, the theories also
relate loosely to work by Feferman [1975a; 1975b] and Aczel [1980].

See [Maddy, 1983, §1] for the history of this line of thought.

Of course, from the Platonist viewpoint usually adopted, ‘collection” strictly speak-
ing is a metaphor. Much of the philosophy of set theory is devoted to explicating
this metaphor, see e.g. Parsons [1977].

63



64

GROUNDED CLASSES

collection. For example, we may use the condition of being an ordi-
nal number to collect, well, the ordinals. On pain of contradiction,
there is no set of all the ordinals. Hence, in order to fully capture the
definitional idea of collection, standard set theory needs to be sup-
plemented by a theory of classes [Linnebo, 2006].4 We would like to
motivate our theory of grounded classes in this manner.

IDEA A class theory should stand to the definitional idea of collection
as standard set theory stands to the combinatorial idea.

This desideratum is explicated naturally as follows. Defining con-
ditions are closed under the logical connectives. Thus, we would like
our classes to be closed under Boolean operations. For example, if
according to our theory x is not in the class of the ¢s, then x must
be in the class defined by the condition —¢, in order for our theory
to satisfy the desideratum. Further, there is a trivial condition (e.g.
x = x) as well as one that nothing satisfies (x # x). Hence, our theory
should have a universal and an empty class.

I turn to the next desideratum. By itself, the definitional idea leaves
open when two conditions define the same collection. We may con-
sider intensional identity criteria of different granularity.> My interest,
however, is in those definitional collections the naive theory of which
gave rise to Russell’s paradox; and this notion of class, or concept-
extension, is extensional. For example, the class of the ordinals is the
class of the hereditarily transitive sets, since everything is an ordi-
nal iff it is a hereditarily transitive set. Accordingly, our theory of
grounded classes ought to make them extensional.®

EXTENSIONALITY A class theory should imply that the class of the
¢s is the class of the s just in case: everything is a member of
the class of the ¢s just in case it is a member of the class of the

Ps.

Finally, class talk is not peculiar to philosophers. Mathematicians
speak of classes, too.” We would like our theory of classes to account
for the usage of the notion in mathematics, at least for some of it.

How do working mathematicians use the notion of class? I will con-
centrate on two observations. On the one hand, the notion of class is
used generally to speak of any collection which is not a set. In partic-
ular, different kinds of things are taken to form classes. Not merely
sets, but numbers, graphs and categories. Consequently, our theory

4 To be explicit, I do not argue that standard set theory ought to be replaced by a theory
of classes. Thus, the class theories developed below are not intended to play the role
that, e.g., Quine’s New Foundations is meant to fulfil.

5 Intensional theories of classes have been developed within the proof-theoretic pro-
gramme of explicit mathematics [Feferman, 1975b, 1979; Jager et al., 2001].

6 The set theoretic axiom of extensionality has been argued for on pragmatic, or exter-
nal, grounds (Fraenkel et al. [1973], Maddy (1988, p. 483)). It seems to me that these
arguments carry over to class theory.

7 See Parsons [1974] and Uzquiano [2003] for discussion of this point.
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of grounded classes should be equally applicable to various areas.
This intuitive thought must be rendered precise, however, as there
are different senses in which a theory may be thought to be generally
applicable. The relevant notion of applicability is this: we would like
to be able to extend any given theory by classes grounded in it. It is
in this specific sense of applicability that the following desideratum
is to be understood.

BASE A class theory should be applicable to a variety of base theo-
ries.

On the other hand, mathematicians reason classically. Hence, we
have the following desideratum.

CLASSICALITY A class theory should be closed under classical logic.

In this section, I have collected what we would, prima facie, a theory
of grounded classes to be like. Next, I will explore how to develop
such a theory.

It can be done in two ways. On the one hand, we may develop the
theory directly, giving axioms or characterizing its intended model.
Maddy followed this method [1983; 2000].% On the other hand, we
may take a theory of grounded truth and translate it into the lan-
guage of M’.2 The former, direct approach is arguably more natural.
However, examining the latter, derivative method will illuminate chal-
lenges specific to class theory. Therefore, I will begin by exploring
what can be done derivatively, and turn to the direct approach later
(84-5)-

My presentation will be largely self-contained. As to notation, I
will mostly follow Halbach [2011]. Deviation from or addition to his
symbolism will be made explicit.

4.3 DERIVING GROUNDED CLASSES FROM GROUNDED TRUTH

In this section I examine theories of grounded classes derived from
a given theory of grounded truth. The idea is this. We translate the
language of class theory into the language of truth theory, roughly
by translating an’¢’ as T'¢(a)".*® Then, we endorse as our theory of
grounded classes the set of sentences whose translations follow from
our favourite theory of grounded truth.

To see how this works in detail, let us focus on the most popular the-
ory of grounded truth, the theory of Kripke’s least fixed point model
based on Strong Kleene logic [Kripke, 1975]. Let £ be the language of

8 The key technical idea is found already in Brady [1971]. See Hinnion and Libert
[2003], 81, for a survey of this literature.
9 Work by Andrea Cantini can be viewed as being of this kind [1996, §§9-11].
10 Recall that "¢" stands for ¢’s Godel code or numeral, depending on the context.
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first-order arithmetic plus m"."* When dealing with paradox, caution
is needed that may otherwise seem unnecessarily circumstantial. This
concerns in particular the distinction of object- and meta-language. I
will use letters from the beginning of the Roman alphabet (“a’, b’
etc.), with decorations, as meta-linguistic variables for {-terms and
variables, and letters from the end of the Roman alphabet ("x’, ‘y” etc.),
decorations, as variables of the language L. Fix a specific L-variable
xo, and let Fml be the set of L-formulae with x¢ as their single free
variable.

In order to derive a class theory from Kripke’s theory of truth, we
translate an £-sentence 1 into the language of truth theory. To explain
just how this is done will require me to go into some detail. Readers
less formally inclined need not to follow me all the way; it suffices to
keep in mind the basic idea that we translate an'¢"' as T ($)*(a)’, for
(¢)* the translation of ¢.

Usually, we define a translation by induction on syntactic complex-
ity. The translation (-)*, however, cannot be obtained in this manner,
since in order to translate an atomic formula an'C v &' we must al-
ready have translated the complex formula C v &. Towards an alterna-
tive definition of our translation, I propose the following notion of a
formula’s n-rank. Formulae of the base language have n-rank o.

Also, formulae anb have n-rank o iff b is a variable, or a closed term
that is not a Godel numeral “¢". The n-rank of a formula ‘an "¢" is
one greater than the n-rank of ¢. Complex formulae containing m’
inherit their n-rank from their immediate constituents. For example,
the n-rank of ¢ v\ is the n-rank of ¢ or P, whichever is greater;
and the n-rank of Ix¢ is that of ¢. The fact that the code of an'¢’
is strictly greater than that of ¢, ensures the relation “... is of lower
n-rank than ...” to be well-founded on the £-formulae. Thus, we can
translate the language of class theory £ into the language of truth
theory.

A central role will be played by the syntactical operation Sb which
takes a term a and a formula ¢ €Fml, and outputs the substitu-
tion of a for xp in ¢."”* On the basis of our coding "...", Sb(a, d)
is represented by an arithmetical formula Sb®(x,y), such that first
order arithmetic ('PA’) proves Sb*("a’,"d') = "Sb(a, ). Recall that
I abbreviate by x a PA-representation of the function that maps a
number n to its numeral M (fn. 3 on p. 47). Quantification into the
context Sb* then is facilitated by quantification into this function,
as in Vxﬂyﬂz(Sb'(X,g)) = z. Occasionally, I will write "¢(a)’ for
Sb*("d’, "),

For simplicity, I will assume ‘A’, V" and ‘=’ to be defined in terms of the primitive
symbols ‘—’, “v” and ‘3"
I assume that bound variables in ¢ are renamed if necessary.
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Definition 16. Let £ be the language of first order arithmetic £, ex-
tended by m” and let ¢ be an L-formula. We define its translation
(¢)* by induction on the n-rank of ¢.

If it is o, then ¢ is a formula of the base language £, or of the
form anb and b is not "' for some formula V. If ¢ € L, then we set
(b)) = ¢. If ¢ is of the form anb, and b a variable, we set

. TSb*("a',b) if ais a closed term
(anb)* = _
TSb*(a,b)  if a is a variable

Finally, if b is a closed term but does not denote the code of some
formula, let (¢)* be Tb.

Now assume that the n-rank of ¢ is n+ 1, and that we have defined
(¢)* for formulae C of n-rank < n. At this point, inside of the induc-
tion on n-rank, we run an induction on the syntactic complexity of ¢.
If ¢ is atomig, it is of the form an"C’ for some formula ¢ of n-rank n.
We let

s TSb*("a',"(¢)*") if ais a closed term
(an'C)* =
TSb*(a,"(¢)*")  if ais a variable

Our induction hypothesis ensures (()* to be defined. Now we set:

(=) =—(¢)"

and proceed analogously for the other connectives and the quanti-
fiers.

Using this translation we can define a theory in the language £ as
follows (recall § 3.5).

Definition 17. HSK = {& : M(Lg, —1g) Esk (d)*}

I will speak of class theories using the following notation. The first
letter ‘H” indicates that we deal with a theory in a language contain-
ing n’."3 Then follows a code denoting the analogous truth theory. In
the present case, ‘SK’ denotes the theory of the least Strong Kleene
tixed point model.

In the following, I will examine HSK and test it against the desider-
ata of section 4.2. For this, I connect with notions due to Solomon
Feferman.

Let CI("¢") be a meta-linguistic abbreviation of the formula Yy(yn'¢' v
yn —¢")[Feferman, 1991, p. 28] The property expressed by ‘CI" will
play a central role in the following. Note that HSK contains CI("¢")

13 Recall that in the Greek alphabet, "H' is a capital 1’
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just in case for every term a, the sentence (¢(a)) " has a classical truth
value in the Strong Kleene model (Igy, —Isk) (recall definition 14). A
sentence is classical in the least fixed point, however, just in case it
satisfies Kripke’s formal definition of groundedness. Therefore, if we
seek a theory of grounded classes, then we ought to be interested into
the condition CI.

Moreover, if HSK contains CI("¢") then it contains Vx (xn RORERES
c[)(x)), and therefore the ¢-instance of comprehension. Due to this
fact, I will say that a formula ¢ defines a class if CI("¢") holds in our
theory, and will refer to CI as the property of grounded class-hood.

Failure of grounded class-hood is identified fairly easily. CI("$") €
HSK only if every for closed term a, the sentence (d)(a)) *is grounded.
Hence, the formula “xgnxo’ fails to define a class since its instance
“xonxo'Mn "xonxo'’ is translated as an ungrounded truth-teller. Simi-
larly, comprehension does not hold for the Russell formula x ix. This
is how HSK blocks the paradox from page 62.

It is good to know that the Russell formula does not define a class,
but we would also like to know which formulae do so. More precisely,
which formulae satisfy CI, that is Yy(yn'¢' v yn'—¢"), over HSK? We
can show that the theory contains all arithmetically definable classes,
classes defined in terms of these, and so on. To render this precise, I
introduce some terminology, again due to Feferman.'#

7

Definition 18. Let ¢ and 1y, ..., Ppn be L-formulae with exactly one
free variable. Call ¢ elementary in the 1; if (i) every atomic subformula
in ¢ that contains i’ is of the form an"p;' for some i < n; and (ii) in
¢ only atomic subformulae are negated.

A formula ¢ is elementary simpliciter if there are some 1; that ¢ is
elementary in.

For example, xn"\" is elementary in {, as is x g "' v VxIy(x =y +
1). The formula Fy(xny), however, is not elementary, since it contains
quantification into the range of n. This notion of elementarity allows
us to give a sufficient condition on formulae ¢ for HSK to prove
Cl("¢").

Proposition 6. For every ¢, Vo, ..., \bn €Fml such that ¢ elementary in
the s, if for every i <m, Cl(";') € HSK then

Cl("¢') e HSK

Proof. Recall that ‘CI("¢")” abbreviates the £L-formula Vy(ynké v ynk—o).

In the literature, ‘elementary’ usually applies to formulae of the base language. Fe-
ferman’s concept is more general: elementary formulae may contain 1". Indeed, they
are closed under iteration of . However, if ¢ is elementary in the 1; then we know
that in ¢, class talk is confined to atomic formula of the form an"p;'. Thus, ¢ can
be viewed as a base-linguistic function of atomic formulae an"\;': it is elementary in
the V; [Feferman, 1975b].
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Let ¢ be elementary in the 1, and let for every 1,

CI("W;") € HSK

We reason by induction on the syntactic complexity of ¢. If ¢ is
atomic then it is either arithmetical, in which case we are done, or
of the form an";’, for some 1. Since CI(";'), we have that for ev-
ery a, the sentence (\i)*(a) has a classical truth value in Kripke’s
fixed point model for the language of truth. Consequently, so has
T"(Pi)*(a)'. Hence, either T'T"(Pi)*(a)" € Ig or T =T (pi)*"" € Ig.
Hence, by the fixed point character of Iy and our definition of HSK,

aT]rXT]rll)i“ v anrxﬂrll)i11

as desired.

Now let ¢ = —C. We know that ( is an atomic formula. Again, if
( is arithmetical then we are done. So assume that ( is of the form
an‘y;’ Since CI("\;i') eHSK, we have that for every a, T'(\i)*(a)’ €
I« Hence, either ——T"({i)*(a)’ € Iy or =T (Pi)*(a)’ € Ig. Con-
sequently, either T"=—=T"(P1)*(a)" € Ig or T=T (Pi)*(a)" € Ig.
Hence, an'¢"' v an'—¢" eHSK, as desired.

Now, let ¢ = ¢ v &. Then, both ¢ and & must be elementary in the
Py, too, and our induction hypothesis ensures that CI("C') € HSK and
CI("&") € HSK. Consequently, for every term a of £, the sentences
(¢(a))* and (&(a))* have a classical truth value in the Strong Kleene
fixed point model. Consequently, the sentence (¢(a))* is ensured to
have a classical truth value, too. Hence, Vx(xn"¢" v xn"—¢") € HSK.

Finally, assume that ¢ = JFy((y, xo) and that ¢ is elementary in the
Pi. Then, so is ((a) for every a, and by our induction hypothesis,
Cl("C(a)") € HSK. Hence, for every term a, every sentence (((t,s))*
has a classical truth value in the fixed point model. Hence, every sen-
tence (Fy(C(y, a)))* = (d(a))* is classical, and T"(p)*(a)' v T (—d)*(a)’,
ie. Cl("¢") e HSK. O

Proposition 6 proves useful. The notion of elementarity is purely
syntactic. Thus, proposition 6 allows us to sidestep the non-classical
semantics of Kripke’s model construction and examine the class the-
ory HSK directly. For one, every formula of the base language is
classically equivalent to an elementary formula, and the base lan-
guage fragment of HSK is closed under classical logic. Thus, HSK
provides comprehension for arithmetical formulae. Consequently, it
also proves comprehension for formulae elementary in arithmetical
formulae. And so on. For another, there are elementary formulae ev-
ery instance of which is true by logic, such as the formula “x = x’. For
other elementary formulae, every instance is false by logic. Hence,
HSK has a universal and an empty class. Furthermore, every formula
of the form ‘a = X/, for any closed term aq, is trivially elementary and
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defines a class over HSK. Thus, the HSK classes are closed under the
singleton operation.

Further, the syntactic property of elementarity is closed under the
connectives. Consequently, the HSK classes are closed under the Boolean
operations. For every ¢ and {, HSK firstly contains CI("$") just in
case it contains CI("—¢"). Secondly, if HSK contains CI("¢") and CI(")")
then it contains CI("$ A') and CI("d v 1"). Recall that for every for-
mula ¢ such that CI("¢") € HSK, HSK contains the corresponding
instances of class comprehension. Together with the observations just
made, this implies that the classes of HSK are closed under comple-
ment, union and intersection. On this basis, HSK can be viewed as
capturing the definitional idea of collection, as we would like our
theory of grounded classes to do.

How does HSK perform with respect to the other desiderata? We
would like our class theory to be closed under classical logic. How
does HSK perform in this respect? Badly. Of course, the model 9%(I4)
is partial and the set of sentences true in it is not closed under classical
logic. Consequently, HSK is not either. Hence, the theory HSK does
not satisfy our desideratum of classicality.

Fortunately, another theory of grounded truth is closed under clas-
sical logic: Burgess’ theory KFB [Burgess [2009] and [Halbach, 2011,
§17]]. It axiomatizes the classical model 91(I ), which we obtain from
Kripke’s partial model 9t(Ig) by extending the anti-extension —Ig to
the complement of the extension Iy (the closed off fixed point model).
Further, KFB is a theory of grounded truth as it extends the well-
known theory KF by a schema to the effect that “Vx (T (x) — ¢ (x))’
is proved whenever ¢(x) satisfies the left-to-right direction of the
KF axioms. In this precise sense, KFB axiomatizes the least predicate
closed under the KF axioms. Since these correspond to the inductive
clauses of Kripke’s Strong Kleene fixed point construction, KFB is
well viewed as an axiomatization of the least such fixed point.

The theory KFB has various properties which we would expect of a
theory of grounded truth. For example, it proves the truth-teller sen-
tences to be neither true nor false [Burgess, 2009, §14]. However, some
features of KFB hardly square with semantic groundedness. Most
prominently, the theory proves the Liar sentence, although not its
truth.’> On this basis, it may be challenged how faithful KFB is to the
idea of semantic groundedness.

I do not wish to take a stance in this debate. However, if closing
off the least fixed point is incompatible with groundedness, then the
desideratum of classicality can hardly be met. In this chapter, I ex-
plore the prospects of grounded class theory, and will conclude that
they are limited. Thus, I should first make a good case on behalf of
the friend of grounded class theory. Therefore, I will examine what

KFB proves the theory KF+Cons [Halbach, 2011, §§17.2,17.3], which proves —T'A",
for PA - A & —=T"\" [ibid., p. 217].
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would be available to her if we assumed that closing off the least fixed
point is compatible with the idea of groundedness. In sum, because
I will argue that the prospects of grounded theories of classes are
limited, it is fair to make an assumption on behalf of my opponent
and concede the legitimacy of closing off. KFB axiomatizes the closed
off least fixed point, and I will use it to obtain a theory of grounded
classes.

Of course, I could also work with the complete theory of the closed
off model M(Ig). Unlike it, however, KFB is an axiomatic theory of
truth. For some authors, the axiomatic approach to truth has advan-
tages over the semantical approach. Although I do not claim that
much, I wish to show how to obtain class theories from axiomatic as
well as semantical theories of truth. HSK was based on a semantical
theory of truth. Therefore, it is the axiomatic theory KFB from which
I derive a theory of grounded classes HKFB, in the following manner.

Definition 19. HKFB := {¢ : KFB - ($)*}

HKEFB has all desirable properties of HSK and excels in various
other respects. To begin with, HKFB, unlike HSK, is closed under
classical logic. It satisfies the desideratum of classicality. What frag-
ment of naive comprehension does HKFB prove? As with HSK, the
definition of ‘Cl” implies that for every ¢,

HKFB - CI("¢") — ¥x(xn"d" < d(x)) (24)

Accordingly, the question again is: what formula does HKFB prove
to have the property CI? Above, I have found that in HSK, the set of
formulae which define a class over HSK is closed under the connec-
tives (proposition 6). The same holds for HKFB. Indeed, due to its
classicality the theory proves the object-linguistic conditional.

Proposition 7 (Cantini, 1996 9.7(ii)). If ¢ is elementary in the \p; then
HKFB + Cl("{1') A ... ACIH("y ") = Cl("d") (25)
Lemma 9 (Halbach 2011:815.2, §17).

KFB - Yy(—(Ty A T—y))
KFB - Yy(T'd (1) — d(y))

Proof of proposition 7. Note that because ¢ is elementary in 1; just in
case —¢ is elementary in 1, the second conjunct in the consequent
implies the first. Further, in view of lemma g it suffices to show

HKFB - CI("Po") A ... ACIH("Dn) = Yy(d(y) = yn'd’)

Observe that by classical logic (Boolean tautologies and quantifier
negation), ¢ is equivalent to a formula ¢’ such that every negated
subformula of ¢’ is a literal. That is, only atomic formula are negated
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in ¢’. This allows us to show the claim by induction on syntactic
complexity of ¢’.

So assume ¢’ to be atomic. If ¢’ is an arithmetical formula then
the claim follows directly from first two axioms of KFB, and if ¢’
translates as Txg, from axiom KFB12.

Now let ¢ be —x. We in fact know that x = xon";' for some i < n.

We need to show that

KFB = Vy(T$i(9)" v T' =i (y)") — vy(=T$i(9)" = T =T (y)")

We reason in KFB. Assume the antecedent and let y be any object. If
Ti(y)' then we are done. So assume T'—;(y)". The axiom KFB13

then allows us to conclude T"—=T";(y)"", as desired.
For the other connectives and the quantifiers, the claim follows
from the corresponding KFB axioms and the induction hypothesis.
O

Schema 25 is proved already by weaker theories, in particular the
L-theory HKF+Cons derived from the theory of truth KF+Cons.
Thus, proposition 7 is not optimal from a proof-theoretic point of
view. However, HKF+Cons cannot be viewed as a theory of grounded
classes since, unlike KFB, it is not intended as a axiomatization of
the least, but of all consistent Strong Kleene fixed points. From the
philosophical perspective taken in this chapter, therefore, the theory
HKEFB is of particular interest.

As a corollary to proposition 7, HKFB itself proves the same closure
of class-hood that we observed, meta-theoretically, for HSK (p. 70).
To this extent, HKFB captures the definitional idea of collection and
satisfies the corresponding desideratum (p. 64).

The theories considered so far, HSK and HKFB, extend first order
arithmetic by a theory of classes. However, we would like our the-
ory of grounded classes to be applicable to arbitrary base theories. To
some extent, this poses a problem to the present, derivative approach.
Grounded theories of truth are almost all developed over arithmetic.
This restriction is useful, but fortunately not essential. Occasionally;,
other bases are considered. Recently, Kentaro Fujimoto examined the
extension of ordinary set theory ZF by the truth axioms of KF [2012].
It can be strengthened to a theory of grounded truth ZF+KFB. Trans-
lating the language of set theory plus ‘n’ into the language of truth
over set theory, we obtain a theory of grounded classes on top of ZF.
We can show that its classes, too, are closed under elementary defini-
tion.'”

See Cantini [1996, p. 7], and footnote 15 above. Cantini provides further information
about a system mutually interpretable with HKF+Cons. For example, he shows that
it interprets Z} -AC [Cantini, 1996, p. 66].

Based on the class-hood of elementary formulae, and generalizing a proof due to
Feferman [1991], Fujimoto shows that his theory ZF+KF interprets iterations of NBG.
For details, I refer the reader to Fujimoto’s paper [2012].
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So far, the derivative theory HKFB has performed well with respect
to our desiderata. However, HKFB disappoints in one important re-
spect: it does not satisfy the desideratum of extensionality, as I will
show in the next section. I will have to go into some detail. The reader
who accepts, if only for the sake of the argument, that extensionality
poses a problem to the derivative approach, may well skip the fol-
lowing and continue with section 4.5 where I develop a new, direct
approach to an extensional theory of classes.

4.4 DERIVATIVE THEORIES AND EXTENSIONALITY

I will begin by pointing out that even if distinct formulae ¢, 1\ define
co-extensional classes, the theory HKFB is bound to contain "¢’ # "',
Having noted this simple fact I will look more closely at what exactly
is required for our theory of classes to satisfy the desideratum of
extensionality. Based on this analysis, I will examine two routes that
the friend of the derivative approach may take towards an extensional
theory.

Firstly, I will discuss whether extensionality is at least achieved for
the ‘="-free fragment of the language £. This approach, however, puts
undesirable limitations on our theory of classes.

Secondly, I pursue the thought that extensionality can be achieved
by revising how we translate the language of classes into the language
of truth. The idea is to translate "¢’ = " as the statement that every-
thing is a member of the class of the ¢s just in case it is a member of
the class of the 1{s. As simple as this thought is, it will require some
additional machinery to implement it. However, even if we make the
necessary assumptions, we will find the resulting theory of classes
not to satisfy the desideratum of extensionality. I conclude that in-
stead of further elaborating on the derivative approach, we ought to
develop a theory of grounded classes directly.

Consider any two equivalent arithmetical formulae, for example

=0 =2’ and 0 ='xo = 1+ 1. By proposition 7, HKFB contains

Cl("p") ACI("0") AVX(xn"p" < xn'0") (26)

Whichever reasonable way we choose to arithmetize syntax, p and o
are assigned distinct Godel numbers. By arithmetic alone, therefore,
HKEFB also contains

r_1 r_a

p #= 0 (27)

Thus, prima facie our theory says that there are co-extensional but
distinct classes.™8

This observation is a simple variant of known limitative results that apply to theories
with comprehension for elementary formulae, or formulae of a similar syntactic
property. See Gilmore [1974], Hinnion [1987], and (for a survey) Hinnion and Libert
[2003].
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In view of this basic fact, let us take a step back and ask what
is required for our theory of classes to satisfy the desideratum of
extensionality. Recall the desideratum: we would like our theory to
imply that the class of the ¢s is the class of the s just in case that
everything is a member of the one if and only if it is a member of the
other. On the present, derivative approach this means that we would
like our class theory to say that the class of the ¢s is the class of the s
iff the underlying theory of truth proves Vx(Tr(c[))* (x)' = T()* (x)1).
This schema induces an equivalence relation E on the formulae in
Fml. Thus, HKFB satisfies the desideratum of extensionality only if
two formulae that stand in this relation E, define one and the same
class. By Leibniz’ law, the class of the ¢s is identical to the class of the
Ps only if one is indiscernible from the other. In the language £, the
class of the ¢s is denoted by the term '¢'. Therefore, HKFB satisfies
extensionality only if for any two E-equivalent formulae ¢, 1, it finds
"¢ and "' indiscernible. The fact that HKFB contains both (26) and
(27) shows that this is not so.

Maybe we have been too demanding. What (27) shows is that "¢’
and "' are discernible qua codes. However, these distinct codes may
still stand for the same class. All that matters is the following. If ¢ and
P stand in the relation E, ‘¢' and "' must not be class-theoretically
discernible.

A natural way of rendering precise this thought is to consider the
L-fragment £~ without ‘=". Then, we ask whether it holds that for
every ¢ and 1\ of the original language £, if ¢ bears E to 1\ then "¢’
and "’ cannot be discerned within the fragment £~. More precisely,
do we have that for every £~ formula (, the theory HKFB contains
("d") < ¢(p")? No. Let p be as above, and let the number n be
its code. Since KFB proves T''p' = 1", our derived theory of classes
contains "p'n "xp = n'. However, KFB also proves —=T''¢’ =7, for o
as above. Therefore, HKFB contains ‘0" ) "xo = 1’; but ‘yn "xo =n"
is a formula of the ‘="-free fragment £~. Hence, 'p' and "o’ are not
even indiscernible with respect to this restricted language.

It may be objected that although ‘yn "xp = m'’ is an £~ -formula,
it contains the code of an equation. When asking for indiscernibility,
the thought goes, we ought to not only focus on ‘='-free formulae,
but also disallow codes of formulae with ‘=". However, the proposed
notion of what makes a formula class theoretic is excessively restrictive:
it gives up on classes defined by formulae of the base language. Our
theory of grounded classes over arithmetic would not be able to speak
of the arithmetical classes.

Fortunately, there is an alternative. The second route mentioned in
the beginning of this section preserves class-definition in terms of
‘=". Recall that its idea is to translate £L-formulae into the language of
truth in a smart way. In order to implement this idea, I need to modify
the setting of the derivate approach in two respects.
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Initially, it may be thought that we can translate "¢’ = "" in such
a way that our theory proves this base language sentence whenever
¢ and 1 stand in the relation E. However, this would lead to a theory
of classes that contradicts its own base theory. After all, for distinct
formulae ¢ and , "¢ # P’ is a theorem of rudimentary arithmetic.

In order to translate equations as statements of class-identity we
need to disentangle the role of '¢' as a number term and its role as
standing for the formula ¢. A natural way of doing so is to speak
of the class of the ¢s by a new term ¢, and no longer rely on its
Godel numeral "¢'. Formally, we extend the language £ by a variable-
binding, term-forming operator * to the language £". We define the
set of £"-formulae and £”-terms by simultaneous induction, such
that d¢ is a term just in case a is a variable and ¢ an £"-formula. a$
has precisely the free variables of ¢ but for a. I will refer to a term
4a¢ as an ‘abstraction-term’.

In the remainder of this chapter, I will work with this extended
language £”. In addition to making the syntax of class theory more
perspicuous, I have thus carried out the first of two changes that to-
gether will allow me to implement the smart way of translating class
talk into truth talk.

The second modification concerns how the new, smart translation is
defined. The notion of n-rank from the previous section is developed
into the concept of a formula’s n-degree. It is defined by an induction
on ¢’s syntactic complexity, such that a = b has n-degree o iff a
or b is not an abstraction term X¢, and the n-degree of X = R is
one greater than that ¢ or \, whichever greater. The n-degree of a
formula anb is defined just like its n-rank, and so is the n-degree
of a syntactically complex formula. Since the term ¢ cannot occur
in the formula ¢, the relation “... is of lower n-degree than ...” is
well-founded.

Having extended the language by abstraction terms, and using the
new concept of n-degree, we are now in a position to implement the
smart translation of our language of class theory into the language
of truth. Let ()T be defined by an induction on the n-degree of ¢.
We proceed analogously to how we defined (¢)*, except that now,
R(C = RE is translated as

Vx(T(Q)T ()" & T(E) (%)) (28)

Since the language of truth does not have abstraction terms, in other
contexts X is represented by the code of the translation of (. In par-
ticular, RCn R&, is translated as T"(&)T7 (). Shortly, we will find that
this is a problem.

For the new translation ()7, the schema (28) defines over KFB a new
equivalence relation E;. Let {HKFB be the theory of classes derived
from the theory of truth KFB, through the smart translation (-).

tHKFB = {¢ : KFB - ()"} (29)
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By definition, whenever ¢ and 1\ stand in the corresponding equiv-
alence relation Ei, THKFB contains X¢ = X just in case it contains
) = R(, for every (. Thus, being smart about translating formulae
R = R, we have come closer to our goal of an extensional theory of
classes derived from KFB.

Have we succeeded? HKFB would satisfy the desideratum of ex-
tensionality if whenever ¢ and 1 stand in the relation E;, we have
that for every formula ¢, fHKFB contains ((X¢) just in case {(X).
However, this is not the case. I will state the problem first, and then
explain how it is rooted in the definition of (-)'.

Let p, o be as above. Since KFB proves ‘v’x(p(x) > U(x)), we have
that tHKFB contains &p = %0. Now, let m be the Godel code of (p)f,
such that PA- "(p)!" = 7. We have that

KFB- T (p)" =" A =T (o) = (30)

Consequently, our derived theory of classes is bound to contain the
following.

Rp = R0 ARPNX(Xx =) A ROPR(x =) (31)

Thus, it is not the case that formulae that stand in the equivalence
relation E; are indiscernible over the derived theory of classes {HKFB.
Therefore, although being based on a smart translation, the theory
THKFB does not satisfy extensionality.

The reason is that if an abstraction term X¢ occurs on the left-hand
side of ‘1, it is translated as the Godel code of (¢)f. More precisely,
the formula *pnRC is translated as T7(Q)T(($)™)". However, this
treatment of atomic formulae with " undoes what we have gained
by being smart about ‘=". Since, all information is lost as to what other
formulae bear E; to ¢ when translating X$pn Kk as TN ("(d)). As
we have just seen, there are formulae involving " for which this
information matters.

Although the translation () is smarter than our original translation
function (-)*, it is not smart enough. In order to make the fact that
¢ and 1 stand in the relation E; ensure the indiscernibility of %¢
and %, not only ¢ = %, but also Xpnb, for any b, needs to be
translated in a manner that takes into account what other formulae
are co-extensional with ¢.

One way of implementing this smarter approach is by translating
Rpnb and XPpnb as the same formula of the language of truth, if ¢
and 1\ are co-extensional.’® We may for example represent a formula
¢ by the lexicographically least £L-formula 1\ that bears E; to ¢. That
is, let [¢p]+ be the lexicographically least formula 1 such that

KFB - vx (T ()T (x)" & T (W) (x)") (32)

19 I thank Sam Roberts for this suggestion.
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Thus, if distinct formulae ¢ and 1 stand in the relation E;, they are
both represented by the same formula [¢p];. Using this representation,
we can define a new translation (-)* just like ()T except that formulae
Rdn R are now translated as

T (W) ([l F (33)

Let {HKFB be the £-theory derived from KFB through this new, smarter
translation (-)*. We undertook this further revision of our theory of
classes in order to render %¢ and X\ indiscernible, whenever ¢ and
1\ are co-extensional. To some extent, this has been achieved. Let ¢
and 1 be distinct formulae that stand in the relation E;. Then, by
equation 32, [¢p]; = []s. Trivially, we therefore have that KFB proves
T (b)) © T(Q*([Wl4)*" for every . Consequently, HKFB?
contains Vz(X¢nz < kpnz), as desired. Thus, whenever ¢ and ¥
stand in the relation E;, 8¢ and &1 are indiscernible over HKFB*.

However, what we do not have is that X¢ and X\ are thus indis-
cernible if ¢ and \ stand in the relation E; of our new, smarter trans-
lation (-)*¥ itself. That is, we do not have Vz(pnz < fPpnz) for ev-
ery ¢ and 1 such that KFB- Vx(T"(¢)*(x)" & T ()*(x)"). The key
change when moving from (1) to ()¥ was that the new, smarter trans-
lation maps distinct formulae X$pnRx, Xpn %y to one and the same
formula Tr(x)ir([d)]T)i“ = Tr(x)ir([ll)]f)i“. For example, the formu-
lae Xpnk(x = M), Xonk(x = M) from above are both mapped to
T"([d)]T)j? =Tm'. More generally, we have that HKFB! - Yy (%pn y o
Romn y) such that [Rpnyly = [Ronyli; whereas, as we saw above,
HKFB' ﬁVy(fcpny YRS fcony) such that [Rpnyl; # [Ronyli. So
far so good.

Now let o be the Godel code of ([kpn y]T)i. By reasoning very simi-
lar to how we established (31), we have that

>

Il
=

HKFB' - g(%pny) = §(Rony) A §(Rpnynx(

X
AD(RoMY) HR(x (34)

o)

In sum, formulae that stand in the relation E; of the smart transla-
tion () are indiscernible over the theory derived though the smarter
translation (-)¥. However, this smarter translation itself induces an
equivalence relation E;. As we have just seen, there are E;-equivalent
formulae that are not indiscernible over HKFB*. Therefore, even the
further refinement of the derivative approach, based on the smarter
translation (-)¥, does not satisfy the desideratum of extensionality.
Therefore, {HKFB does not satisfy extensionality, either. What would
be needed is a translation t such that X¢n % is translated as

T (W) ([]e) ™ (35)

Unfortunately, it is not obvious that such a mapping can be defined.
In order for it to make sense to speak of [$p]¢, t must already be
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defined not only for ¢, but for every other formula, too, including
R kY itself.

Independently of technical details, there is a philosophical reason
not to pursue this route further. The more elaborate our translation,
the less reason we have to think that the philosophical significance of
our truth theory carries over to our derived theory of classes.*® After
all, syntactic translations do not generally preserve philosophical con-
tent. Moreover, the resources we invest in setting up a sophisticated
translation we may as well use to develop a theory of classes directly.
I will do so in the next section.

4.5 GROUNDED MEMBERSHIP AND GROUNDED IDENTITY

I will now develop a theory of grounded classes without the detour
through truth theory characteristic of the derivative approach. My ap-
proach is semantical. I will define a model for the language with n’
and abstraction terms ‘X¢’. The basic idea is as follows. I will extend
a given base model by a relation of class membership and a rela-
tion of class identity. These relations are defined inductively using
jump operators that turn satisfaction in the given model into a new
model. Together, these operators reach a least fixed point. In effect,
I define grounded membership and grounded identity analogously to
how Kripke defines a predicate of grounded truth (§ 3.3). Since doing
so I enter a new area of groundedness, I will present my construction
at low resolution, to render my proposal more accessible for readers
familiar with the received characterization of semantic groundedness
(see p. 50).

The model construction will combine elements of Penelope Maddy’s
theory [1983; 2000] as well as unpublished work by Hannes Leitgeb,
and Leon Horsten and Oystein Linnebo. However, I will go beyond
this extant work.

Maddy approaches a theory of grounded classes directly, and se-
mantically. On the basis of set theory, she constructs a model for class
theory using a monotone operator similar to my membership jump
H below. Leitgeb, in an unpublished note from 2004, proceeds simi-
larly. In the work of both authors, class identity is defined in terms
of grounded membership. The class of the ¢s is the class of the s
if Vx (xmjcl) « xngll)) holds in the least fixed point model. Effectively,
class identity is dealt with as in the theory THKFB of the previous
section (p. 75). Consequently, Maddy’s theory likewise fails to satisfy
the desideratum of extensionality, as noted by herself [2000, p. 305].
The following is intended as one way of doing better.

In order to satisfy the desideratum of arbitrary bases, I will out-
line the construction for any first order base language £, and any
L q-structure M. For simplicity, I will assume that the base language

20 Ireturn to the philosophical content of theories of grounded truth in chapter 8.
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contains a constant for every object of the base domain.** Given the
base model M, I proceed as follows.

Firstly, I extend the base domain M by the set Abs of the closed ab-
straction terms. In the extended model, a closed term *¢ will denote
itself. These terms will be the large pool of objects from which we
will abstract the classes of our theory. It is useful to think of the terms
as proto-classes, or class-candidates. For some terms X¢, the model
below will validate CI(X¢) — the guiding question will be how many
candidates are thus elected.

Secondly, I add to the base model 9t a membership relation H and
a relation of class identity I. In the extended model 9t(I, H), the new
relation symbol ‘" will be interpreted by H.?3 Accordingly, H relates
objects of the full domain MUAbs to proto-classes. I extends plain
identity on the base domain M by a relation between proto-classes:
I € IDMmUADs x Abs. Intuitively, I extends identity in the base model
by class identity. Accordingly, in the extended model (I, H), ‘=" will
be interpreted by the relation I, such that, for example,

M(LH) = 1 =% & &b, k) el (36)

My goal is a specific model 9t(I, H), a model for a theory of grounded
classes. I will define a grounded membership relation H and a grounded
identity relation I, analogous to how Kripke defined a predicate of
grounded truth.

My construction is based on two operators J and J. Each takes one
identity and one membership relation, but they differ in their output.
J, on the one hand, outputs an identity relation. I will speak of it as
the “identity jump’. 7, on the other hand, is a ‘membership jump’: it
gives a membership relation.

There are various ways in which such jumps may be defined. I
choose the supervaluational method, for two reasons. Firstly, doing so
I explore an area not considered by Maddy [1983]. Secondly, I will
eventually formulate a challenge to the friend of grounded classes.
Therefore, I should first make a good case on her behalf. I will argue
that the present, direct approach is unsatisfactory because it makes
many natural candidates for class comprehension fail. More precisely,
for many formulae ¢ that intuitively ought to define a class, the
model does not validate either ank¢ or ank—¢ for every closed term
a. Therefore, it is apposite to choose a semantics that maximizes the
amount of sentences with classical truth value. Supervaluation fits
this bill.

Recall the supervaluational variant of Kripke’s least fixed point con-
struction (§ 3.6 above). I the present, class-theoretic context, too, the

This is not the case if we work with the language of set theory. Here, we can either,
as Fujimoto does, extend the language of set theory by new constants or work not
with formulae, but with pairs of a formula and parameters. See Fujimoto [2012].
Recall that ‘CI(k¢})” abbreviates the L-formula Vy(ynkd v ynk—d).

Recall that “H’ here is the capital Greek letter eta.
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basic idea is to consider a range of candidate interpretations of ‘=’
and n’, determine which object o satisfies which formula ¢ in all
these models and add {o,%¢) to the membership relation.** Analo-
gously, we add (X¢, %) to the identity relation if ¢ and  are co-
extensional in all models (], K), for J,K extending I, H. Since my
interest is in relations ] that are candidates for class identity, I will
restrict my attention to equivalence relations that are coherent in the
sense that if (o, p) € ] then for every formula ¢ (X (x,0),%X(x,P)) € J.
Further, since my goal is a relation of class membership that respects
class identity, I focus on pairs J,K such that K respects J: for every
o,p, if {o,p) € ] then for every q, {o,q) € K if and only if (p,q) € K,
and {(q,0) € K if and only if {q,p) € K. Below, this will allow me to
show that grounded membership respects grounded identity, which
in turn ensures the resulting theory to satisfy the desideratum of ex-
tensionality.

The more extensions we consider, the less pairs (o, %¢p) will there
be such that o satisfies ¢ in all of them (cf p. 55). Thus, the more
extensions are considered, the less new information is added to the
given relations of identity and membership. Hence, the more exten-
sions are taken into account, the weaker our resulting theory will be.
Therefore, usually further conditions are imposed on the range of
extensions. The more restrictive such an admissibility condition, the
more terms k¢ will be such that for every o either (o, k) or (o, R—¢)
is added. Thus, which condition is chosen partly determines how
many instances of class comprehension are satisfied.

Exploring the prospects of grounded class theory, I wish to test the
best possible case for such a theory. For my model construction, I
therefore choose the strongest admissibility condition available from
the literature. In the variant of Kripke’s jump operator due to Andrea
Cantini, an extension is admissible if and only if it is consistent (re-
call equation (20) from p. 56) [Cantini, 1990, p. 250]. Its least fixed
point exceeds all other supervaluational theories in the literature.?
Accordingly, I will use jumps that quantify over consistent extensions
only.26. In sum, a pair J,K is an admissible extension of I, H (in sym-
bols: I, H & J,K), if and only I € ], H € K, I is a coherent equivalence
relation, K respects |, and they are both consistent.

I will now define the identity jump J and the membership jump
H. Firstly, the intuitive idea underlying the identity jump J is the
following. J takes an identity relation I and a membership relation H

I use letters from the middle of the Roman alphabet (‘n’, ‘o’ etc.) as variables for
objects of the extended domain MUADs.

For example, Cantini’s theory contains the sentences —T'A" v T'—=A’, for liar sen-
tences A.

A membership relation H is consistent just in case there is no ¢ such that for any o,
both {o,%¢) and {o,%—¢) are in H. An identity relation I is consistent if there is no
¢ such that for any o, both (X, 0y € I and (X—¢, 0y € I
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and identifies all pairs (X, k1) such that ¢ and \ are co-extensional
in all admissible extensions of the model D1(I, H).?7

Definition 20 (Identity Jump).

I(LH) = {<>zq>,fap> : V]VK(I,H & J,K = M(J,K) = ¥x(b(x) o q)(x)))}

I now turn to the membership jump . Its definition is based on
the following idea. Given an identity relation I and a membership
relation H, 3{ outputs just the pairs (o, k$) such that o satisfies the
formulae ¢ in all models compatible with the identity and member-
ship facts encoded in I and H. This intuitive idea is implemented by
the supervaluational method which I have used already to obtain the
identity jump J. In order to identify the right pairs (o, X$) we consider
all admissible extensions of the pair I, H.28

Definition 21 (Membership Jump).
H(LH) = {{o,%d) : YKVJ(LH & ], K = M(], K) F ¢(3))}

I record some useful facts as to how J and H interact. Firstly, for any
identity relation I and membership relation H, J(I, H) is an identity
relation and H(I, H) is a membership relation. Secondly, if I and H
are consistent, then so are J(I,H) and (I, H). Finally, J(I,H) is an
equivalence relation. Note, however, that neither is J((I, H) ensured
to respect J(I, H), nor J(I, H) to be coherent.

Identity jump J and membership jump H together induce an oper-
ator on the pairs I, H. This operator is monotone with respect to the
ordering of one pair of relations being extended pointwise by another.
Therefore, it has a least fixed point IH.

I will denote the identity relation of the fixed point pair IH,, by
‘I’, and the membership relation by “H,,’. Note, however, that the
interplay of the operators J and X is essential. It can be shown that
I, which is obtained starting from the empty identity and the empty
membership relation, is distinct from the least fixed point of J, for the
empty membership relation.

We can show the following key fact.

Lemma 10. IH, is an admissible extension of itself.

Proof. Firstly, of course, I, and Hy extend themselves. Secondly, we
have already observed that I, = J(IHs) is an equivalence relation (p.
81). Thirdly, we need to show that Ho, respects I, i.e.

27 In an unpublished manuscript, Leon Horsten and Oystein Linnebo use a similar
jump to construct a model of Frege’s Basic Law V. However, they keep the underlying
second order logic predicative, as in Heck [1996]. In effect, their work corresponds
to using J with a fixed membership relation H that captures satisfaction of base
language formulae in the base model.

28 Recall that o has a name in our language £, that I will denote by ‘0’
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A. for every o,p € MUADs, if (o,p) € I then
1. for all g € MuUADs, {(q,0) € Hy iff {q,p) € Hw.
2. for all g e MUADs, {0, q) € Hy iff {p, q) € Heo.

Finally, we need to show the coherence of I, that is,

B. for every o,p € MuUADs, if (o,p) € Iy then for all formulae
((z,x) with exactly the free variables displayed, (2((z,0),2((z,P)) €

I

For simplicity, I focus on the case discussed in the main text, the fixed
point over the natural numbers M.

(A1) If o or p is a base domain object, that we know not to be in
the range of Hy, the claim is vacuously true. So let o be X¢ and p
be % for some ¢, . By the definition of 3 we know that they have
exactly one free variable x.

Assume that (&¢, %) € 1, such that

VIVK (THao € J, K = ML, K) 1= V2((2) < ¥(2)) ) (37)

Let q be any object. If {(q,%$) € Hy then ¢(q) holds at every admis-
sible extension. By (37) and logic, we have 91(], K) &= {(q) for every
admissible extension ], K. Hence {q, %) € Hy, as desired. And anal-
ogously vice versa.

(A2) The claim is vacuously true unless q is a closed abstraction
term (. Since IH is a fixed point, it suffices to show that

VIVK(IHqo € J,K = N(J,K) &= ¢(0)) <= VJVK(IHy € ], K = N(],K) = ()

I show the left-to-right direction, the other is just analogous, swap-
ping ‘p” and ‘o’. So assume the antecedent, and let ], K be any admis-
sible extension of IH. I show that (], K) = ¢(p) by induction on
the positive complexity of ¢ [Halbach, 2011, definition 15.9].>°

Firstly, ¢ of the form z =T or z # T, for some r, are taken care of by
the transitivity of ] together with our assumption that {o,1) € Ioc < J.
Secondly, let ¢ be of the form {&(y,z) = 7 or &(y,z) # 7. Since
we assume that J&(y,0) = T holds in every admissible extension of
N(IHy), the coherence of ] ensures that (4&(y,p),r) € | respectively
G&(y,p), 1) ¢ ], and N(],K) E G&(y,p) =T, as desired.

Thirdly, let ¢ be of the form zna or anz, respectively their nega-
tions. Then, N(]J, K) = {(p) follows from our assumption that (], K) =
((0) and the fact that K respects ], which contains (o, p).

Finally, if ((0) is an n-literal such that 0 occurs within an abstraction
term b(x), we observe that the coherence of ] ensures that (b(0),b(p)) €

29 Careful examination shows that the attempt to prove the claim by induction on
regular syntactic complexity breaks down at the induction step, at the clause for
negations.
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J.3° Then, M(], K) = ¢(0) implies (], K) & ¢(p) by the fact that K re-
spects J.

At the induction step, we exploit the induction hypothesis. For ex-
ample, let ((z) be of the form Hx(é(x, z)). Then for some object of the
domain q, (], K) = &(q,0). Now, &(q, z) is of lower complexity than
((z). Hence, our induction hypothesis ensures that 91(J,K) = &(q,P).
Consequently, 9M(J, K) = 3x(&(x,P)), as desired.

(B) Again, by the fixed point character of IH,, it suffices to show
that
VIVK (THao € J, K = (], K) 1= V2(¢(2,0) © ¢(2,)))

So let J,K be such that IH,, & J,K, and let q be any object of the
domain. We show (], K) & ¢(q,0) < ((q,p) by induction on the
complexity of (. Recall that by the definition of the identity jump ¢
is ensured to have exactly two free variables. I confine myself to the
left-to-right direction as again, the other direction is just analogous.
We reason much like in the case of (Az2). If {(q,0) is of the form G =
0 or X&(x, q) = o for some &, the claim follows from the transitivity
of J. If it is of the form {J¢(y, 0) = q we recall that ] is coherent and
contains (o, p). Finally, for atomic formulae containing 1 we note that
K respects the coherent J, as before. The induction step is taken care
of by the induction hypothesis and logic. For example, if ((q, 0) is of
the form 3Ix&(x, q, 0) we reason as we did at the end of the argument
for (A2). O

I now examine what theory of classes this model construction pro-
vides. For a fair comparison with the theories of the previous sections,
I focus on first-order arithmetic as our base theory. Thus, we extend
the standard model of arithmetic 91 by the least fixed point pair of
relations IH, obtained on the basis of arithmetic. The complete the-
ory of this model I call ‘HC’, since the construction is based on the
admissibility condition of consistency.

Definition 22.
HC = {¢ : M(IH,) &= ¢}

I examine HC against the desiderata from section 4.2. Firstly, 91(IH)
is a classical model. Hence, HC meets the desideratum of classical-
ity. So did the derivative theory HKFB considered above. Unlike in
HKEFB, however, every classically tautological formula defines a class
over HC. In this precise sense, HC may be viewed as being more
classical than HKFB. Of course, this additional degree of classicality
is paid for. For example, it is not the case that xn{j¢ or xn{jp when-
ever xnNy(¢ v ). This fact is due to the choice of supervaluational

30 Our definition of the identity jump operator J ensures ( to have exactly one free

variable, which in this case implies that b(x), too, has just the free variable displayed.
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operators, and corresponds to the failure of compositionality in su-
pervaluational truth theory. However, in the present class-theoretic
context I consider it less problematic. We are interested not in single
sentences of the form xnk(¢ v 1), but in formulae ¢ v P of which we
know that they define classes. And in this respect, a supervaluational
class theory is not inferior to a closed-off Strong Kleene theory such
as HKFB — neither proves downwards closure of classes under the
connectives, e.g. Cl( (b v 11))) — Cl(%d) v ClL(x).

Secondly, class theories should stand to the definitional idea of col-
lection as standard set theory stands to the combinatorial idea. How
does the theory HC do with respect to this desideratum? A natu-
ral sharpening of the definitional idea was that classes make up a
Boolean algebra. Brief reflection on the fixed point character of the
model 91(IH4,) and its classicality shows that the theory HC is closed
under complement, union, intersection and iteration of membership.

Proposition 8.

MN(IHe) = VxVy (Cl(x) A Cl(y) — 3z(Cl(z) A Yw(wnz < rrx) )

(
/\Hz(Cl z) AVYw(wnz < rnx VWHU))
A 3z(Cl(z) A YW(wnz & T X A wny))

A Cl(i(znx)))

It is easy to see that every base language formula ¢ defines a class.3'
More precisely, for every £ -formula ¢ with a single free variable we
have that

N(IHe) = Cl(R) (38)

Thus, HC is a theory of classes based on first-order arithmetic and
closed under natural operations. This makes HC a good candidate
for a formal theory of definitional collections.

Thirdly, the desideratum of extensionality was met by none of the
derivative theories. HC performs considerably better in this respect.
On the one hand, since I, is a fixed point of the identity jump J,
two terms %¢ and X stand in the relation I, just in case they are
co-extensional in M(IH,).

Proposition 9. For all o,p €Abs,
N(IH) E 0 =p < Vz(zno < znp)

Proof. The left-to-right direction of the claim follows directly from
the fact that H, respects I, (lemma 10). For the right-to-left direc-
tion, assume that for every q, (q,%$) € Hy iff {q, %) € Hy. Hence,

For o €Abs, M(IHy) = —¢(0) such that {o,8—¢) € Hy; and for every o € w,
N k= $(0) v =$(0) such that (o, k) or {o,k—¢) enters the membership relation at
the very first stage.
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V]VK(IH @ J,K=N(],K) = ¢(q)) iff VJVK(IHs € ], K = N(],K) =
By logic, V]VK(IH € K = (M(,K) £ &(q) < N, K) =

(@)
) Since this holds for every q, VJVK (IH @ J,K = NJ,K) E
(

Vz(d(z) & P(z ))) Hence, (X, k) € I, as desired.
]

On the other hand, every two class terms that stand in the rela-
tion I, are also ensured to be indiscernible in the model D(IH,).3* 1
abbreviate a list of variables xg, ..., Xn as ‘Xn .

Proposition 10. For every o,p € MUADs, if {o,p) € Iy then we have
that for every £"-formula &(Xn11),

N(Hoo) £ VXr ($(0, Xn) « &(P, Xn))

Proof. Let {o,p) € . A basic theorem of model theory says that if
two objects are indiscernible in a first-order model 91 in terms of the
primitive relation symbols of the 9t signature, then they are indis-
cernible in M with respect to every formula ¢ of this language [Ket-
land, 2011, lemma 3.5]. It is proved by induction on the complexity of
d.

The following is a modification of that standard proof, for the non-
standard language £" with its abstraction terms. It has two primitive
relation symbols, ‘=" and “n’. Therefore, we have to show that every
two o and p that stand in the relation I, are indiscernible in terms of
="and ‘n’. Since 0 and P, however, may occur within open abstrac-
tion terms, six cases need to be distinguished.

L N(IHy) = Vxn (a(x2)n0 < a(xn)np), for every a(xn).
II. N(IH) E Vxm (on a(X3) < pna(xy)), for every a(xz).

(I) and (II) follow directly from the fact that Hy, respects I, (lemma
10). From the coherence of I, we know that it contains (b(90, qo, ..., qn),
b(p,qo,...,qn)) for every term b with n + 1 free variables and every
sequence of objects qo, . .., qn with their canonical £"-terms qo, ..., qn.
From the fact that H,, respects I, it follows that

1. N(IHs) E Vxa(alxn)nb(o,xn) < a(Xn)nb(p,xn)), for every
a(xn) and b(Xni1).

IV. N(IHs) E Vxn (b(o,xn)na(Xn) < b(p,xn)na(xy)), for every
a(Xn) and b(X 7).

Proposition 10 strengthens an early result by Ross Brady, who shows, modulo nota-
tion, that the schema Yy(yn&$ < ynkip) over his theory defines a congruent relation
of co-extensionality. Unlike the language £ of the theory HC, however, Brady’s lan-
guage does not have identity Brady [1971].
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Since I, is an equivalence relation, in particular transitive, we have
that

V. N(IHs) E Vin (alXn

~—

=0 a(Xn) = T)), for all terms a(Xn ).
Finally,

VL. N(IHs) &= Vxq (a(Xm) = b(0,x%n) < a(Xz) = b(p,xxn)), for all
terms a(Xn) and b(xn 7).
is true because firstly I, is coherent, such that for every sequence of
objects qo,...,qn we have that (b(0,q0,...,qn), b(P,q0,...,qn)) €
I; secondly, the transitivity of I, ensures that for every r,

(60,7, -, Gn), ™) € Lo iff (BB, T, - .., ), ™ € Lo

, as desired.
Based on (I) to (VI), we show by an ordinary induction on the syn-
tactic complexity of ¢ that

N(Hs) k= V%n (00, %3) < (P, Xn))
thus completing the proof. O

Result 10 is highly desirable, and distinguishes HC from all other
theories considered in this chapter (see §4.4 above).

So far, the theory HC of the fixed point model 91(IH.,) has per-
formed well. I now turn to the desideratum of comprehension. How
much of the comprehension schema does HC contain? As it has been
the case with the derivative theories of the previous sections, HC con-
tains comprehension for a formula ¢ just in case it contains CI(X¢).
Above, we have seen that every base language formula ¢ defines a
class. However, the goal of a grounded theory of classes is to recover
as much comprehension as possible for formulae that contain 1.

The derivative theory HKFB proved class-hood, and thus compre-
hension, for every elementary formula. Unfortunately, this positive re-
sult does not carry over to the present, direct approach. Over the class
theory HC, elementarity no longer suffices for class-hood.

To see this, consider any formula ¢ elementary in the 1;, and as-
sume that HC proves these \{; to define classes. In the old setting,
this sufficed for ¢, too, to define a class, even if ¢ contains an atomic
formula of the form "C' = a, for some ¢ not among the ;. It only mat-
tered which terms occur in the range of 1. Formulae such as "¢’ = x¢’
did not incur presuppositions about (. However, the very point of
the present model construction was a more sophisticated treatment
of identity statements. As a consequence, however, elementarity as in
definition 18 no longer suffices for a formula to define a class. In the
following proposition, we also assume it not to contain class identity
statements.
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Proposition 11. Let ¢ be elementary in the \p;, i < n, and assume that it
does not contain any subformula of the form a = b for a or b an abstraction
term or variable. We have:

M(IHao) = ClRpo) A ... A Cl(Rihn) — Yy (ynzd < dly))

Proof. Recall definition 18 of elementarity (68). Let the 1; be arbi-
trary, and ¢ elementary in them. Further assume that ‘=" occurs in ¢
only flanked by terms of the base language. Assume that 91(IH) =
Cl(Wo) A .. .Cl(y).

Let o be an arbitrary object from wuAbs. I need to show that
(0,%P) € Hyo & N(IHs) = $(0)

Note that the left-to-right direction follows from the fact that the
pair IH, is an admissible extension of itself (lemma 10). So it suffices
to show that if M(IH) = ¢(0) then {o,%P) € Hwo.

We reason by induction on the positive complexity of ¢. So assume
firstly that ¢ ="a = b’ and 9(IH) = $(0). By our assumption about
¢ and without loss of generality, a is the variable x and b is a base
language term denoting in 91 a natural number n. Hence, if 91(IH) =
¢(0) then o = n, and every admissible ] contains (o, n). Consequently,
{0,%¢) € Hy, as desired.

Secondly, let ¢ be an atomic formula with the relation symbol T’
Since it is assumed to be elementary in the 1{;, we know that ¢ is of
the form xn ;. We assume 9(IH,) = on Q. Hence, (o, i) €
H, such that for every admissible extension |, K of IHy, 91(],K) &=
xn Uy, as desired.

Still at the base of our induction on positive complexity, we now
turn to negations ¢. By the elementarity of ¢, however, this implies
that it is either (i) of the form “x )y {n;’, for some i < n, or (ii) of the
form ‘x # a’ (without loss of generality).

If (ii) then 91(IHy) E ¢(0) only if 0 and a are both terms of
the base language and we reason as just as with atomic equationhe
before. So assume (i) that ¢ is of the form “x y{;’, and assume
that 91(IHs) = ¢(0). Let (], K) be any admissible extension of IH.
I need to show that 91(],K) = o w{i. Since N(IHy) = Cl({npy),
NIHw) E Vx(xn g v xn§—pi). But we assume that DM(IH) =
¢(0), i.e. N(IHw) = 01 §—bi, hence (0, ;) € Hy. Therefore,
(0,8 € K, too. Since it is consistent, however, , (o, §—1;i) ¢ K,
hence M(J, K) = x G, as desired.

Having thus completed the base case of our induction, we pro-
ceed to the case of disjunctions ¢. Assume that 91(IH.) = $(0), i.e.
MN(IHs) = ¢(0) or N(IH,) E &(0), for some (,&. Assume, without
loss of generality, that 91(IH,) = ((0). Note that ¢, too, is elementary
in the {;. Hence, by our induction hypothesis, (0,%() € Hy. There-
fore, for every admissible extension (], K) of IHy, 9(],K) = ¢(0). By
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logic, for every such (], K), 0(J, K) = ¢(0) v £(0). Hence, (o, %) € Hu,
as desired.

Finally, assume that ¢ =3y (C(x,y))’ and that there is some p such
that 91(IH«) & ¢(o,P). Then, by our induction hypothesis, (o, ((x,P)) €
Ho. By reasoning just analogous to before, we conclude that (o, X¢) €
Heo. O

A formula x = ¢, however, is not ensured to define a class when-
ever ¢ does. In fact, the situation is even worse. HC itself tells us that
x = X does not define a class whenever ¢ does.

Proposition 12. For every formula ¢(Xn1)

N(Hao) = V57 (CLRG (x, TR)) = ~CL(H(y = R(x, T2))) )

Thus, the natural way of defining the singleton of a given class fails.
We would both like our class theory to recover a significant fragment
of naive class comprehension and its classes to be extensional. The
direct approach of the present section has solved the problem of ex-
tensionality, but its theory HC violates the desideratum of compre-
hension badly.

Lemma 11. Let s be the L"-term X (xnx). We have that neither (s, %(xnx)) €
Hoo nor (s, X(xx)) € Hoo. Hence, xnx does not define a class.

Proof of proposition 12. Let ¢ be any formula and qo,...,qn any se-
quence of objects from the domain, with their canonical £”-names
qo, .-, qn such that

N(Hs) E CL(RP(x, G0, -, Gn)) (39)

and let 1\ be the formula x = x A s s, for s as in lemma 11. I show that
G, 9(y =%d(x,Go, - .-, qn))) ¢ Hoo and (R, §(y # (%, qo, ..., qn))) ¢
Hoo, hence M(IHo) = —CI(G(y = %¢)). I suppress the parameters
qo, .- .,qn for the rest of the proof.

To show the first conjunct assume, for contradiction, that (X, §(y =
R$)) € Hoo. Then Xp = R must be true in every admissible extension
of M(IHw). In particular, the pair (X, *$p) must be in the fixed point
identity relation I, (cf lemma 10). By its fixed point character, we
have

VJVK<IHOO & J,K = N(J,K) = Vx(x =x A sns © ¢(x))) (40)

Now let o be any object in the domain of 9(IH,); that is, let o be a
number or an abstraction term. Since M(IHy) = Yy(ynkd v ynk—d),
we can assume that either (o,%¢) € Hy or (o,X—¢) € Hy. Firstly,
assume that (0,8¢) € Hu. Hence VJVK(IHy & J,K = (], K) &=
$(0)). Then by (40) and logic, VJVK(IHs & J,K = 9(J,K) k& sns)
Hence, (s, s) must be in H,, contrary to lemma 11.
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Secondly, assume that (0, *—¢) € Hy, such that VJVK(IHy & ], K =
N(J,K) & =¢(0)). Then by (40) and logic, VJVK(IH & J, K = 9(],K)
— sms). This requires, again contrary to lemma 11, that (s, k(x7x)) €
Hoo-

To show the second conjunct assume, for contradiction, that (X, §(y #
Xd)) € Hoo. By the fixed point character of the pair IHy, VJVK(IHs &

], K= (X, %) ¢ ]) This is the case only if either (i) (X, x—d) € I
or (if) (X, %) € Ioo.

Assume (i), such that
VIVK(IHOO & J,K = N(J,K) = Vx(x =x A sns © ﬁcl)(x))> (41)

Let o be any object of the domain. As before, since (IH,) &= CI(R),
we have that either {o,%¢$) € Hy or (0,%—¢) € Hy. Firstly, assume
the former. Then

VIVK(IH & J,K = RN(],K) = (o)) (42)

Lemma 11 ensures that there is a pair (], Ko) 2 IHy such that (s, s) €
Ko. By (41), M(Jo,Ko) = 0 =0 A sns « —d(0) and by (42) and logic,
N(Jo, Ko) = — sns which contradicts our assumption that Ky contains
(s, s).

Secondly, assume that {0, X—~¢) € Hs. Now choose (J1,K71) 2 [Hy
such that K; does not contain (s,s) (IHy itself is such a pair). By
(41), (J1,K7) Ex =x A sns <> = (0). By our assumption and logic
MN(J1,K1) = sns contrary to our choice of K.

Now assume (ii), such that

VIVK (IHoo € J,K = 91(J, K) = Vx(=(x = x a sns) © d(x)) ) (43)

We reason just conversely. For any o we firstly assume (o, X$) € Hy,
and choose a Jo containing ¢s, s). (43) implies that 91(Jo, Ko) k= — s1s,
contradiction. Secondly, we assume (o0,%8—¢) € Hs, choose J; not
containing (s, s), which contradicts our assumption and (43).

It remains to show lemma 11. Assume otherwise, then either (})
K(xmx), %(xnx)) € Hoo or (F) X(xnx), X (xpx)) € Heo. If (1) then there’s
a least ordinal «+ 1 such that (X(xnx), &(xnx)) € Hy1. That is, for all
], K admissibly extending H, the sentence X(xnx)nX(xnx) is true in
the model 91(J, K). In particular, it must be true in M(IHy 1), hence
(&(xnx), k(xnx)) is found already in H, contradiction.

If (1), then there’s a least ordinal « + 1 such that (X(xnx), %(xpx)) €
Hu+1. So, for every admissible extension J, K of Hy, (X(xnx), X(xnx))
is not in J. This, however, can only be if (X(xnx), X(x;1x)) € H, since
otherwise the equivalent closure of Hy U {(X(x1x), %(xnx))} is an ad-
missible, in particular consistent, extension, contrary to what we have
just said. If this is so, however, a + 1 is not the least ordinal containing
(&k(xmx), %(xprx)), contradiction. d
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4.6 CONCLUSION

In this chapter, I examined the prospects of class theory inspired by
theories of grounded truth. I asked how to restrict the schema of
class comprehension to grounded formulae, just as Kripke restricted
Tarski’s T-schema to grounded sentences.

Having laid out desiderata, I first explored the derivative approach.
I translated “x is in the class of the ¢s” as “¢(x) is true” (p. 66).
Through this translation, a theory of grounded truth induces a cor-
responding theory of grounded classes. The desiderata of section 4.2
suggested to start from the theory of truth KFB. The resulting class
theory HKFB is closed under classical logic, allows for arithmetical
as well as set-theoretical base theories, and proves comprehension for
every elementary formula (p. 71). However, HKFB does not satisfy the
desideratum of extensionality (§ 4.4).

In section 4.5 I turned to developing a theory of grounded classes
directly. I described the extension of an arbitrary base model by a rela-
tion of grounded class membership and a relation of grounded class
identity. The resulting model provides a theory HC whose classes
are extensional in the strict sense that firstly, HC identifies ¢ and
K just in case Vy(yn kP <> ynkp). Secondly, classes that HC identi-
fies are indiscernible in the theory. However, these positive results are
blighted by a severe deficiency: according to the theory HC, whenever
¢ defines a class, x = (¢ does not.

Prima facie, we would like classes to be extensional, and their the-
ory to provide natural ways of defining classes. My findings cast
doubt on whether both can be achieved by the groundedness ap-
proach to class theory.



WHAT IS THE PHILOSOPHICAL SIGNIFICANCE OF
GROUNDEDNESS?
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5.1 INTRODUCTION

In chapter 2 I presented a general, formal concept of groundedness.
Then, I discussed applications of this general concept: the iterative
conception of sets (§2.7), grounded truth (§3) as well as approaches
to a grounded theory of classes (chapter 4). Now, I take a step back
and ask for the philosophical significance of this formal concept of
groundedness.

This question is not easy to answer. I will argue that many instances
of the general concept lack philosophical content. For others, it is at
least controversial whether they have such. I will give examples in
sections 5.2 to 5.4 below. Together, I take them to be evidence that
the general, formal concept of groundedness from chapter 2 is in
need of philosophical supplementation. In the next chapter, I will
then present one way of accounting for the significance of one specific
case of groundedness.

What is philosophical significance, and philosophical content? I do
not use these expressions in any deeper sense than for what philoso-
phers tend to agree on as worth their attention. This certainly is not
a precise notion. However, I believe that every trained practitioner
of our discipline has sufficient grasp of it. Presumably, our access is
through examples. So let me give some. The biological concept of
evolution has gained philosophical significance, witness for example
Sober [1984], while the same cannot be said of, say, metabolism.

Or, Frege’s theorem, that in second-order logic, Peano Arithmetic
can be derived from Hume’s Principle (see, e.g., Heck [1993]), is
philosophically significant while Gonthier’s 2005 result, that the four
colour theorem can be proved in the type theory proof assistent Cogq
[Gonthier [2008]], is not. As a further example, more closely to the
present topic, the semantic paradoxes, Epimenides, Curry and others,
are philosophically significant while 21-year-old Frederic having had
only five birthdays, arguably is not [Quine, 1976, p. 1].

Returning to groundedness, I ask: is it philosophically significant?

5.2 FORSTER’S ITERATIVE CONCEPTION OF CHURCH-OSWALD CLASSES

I motivated my concept of groundedness as further generalization of
Forster’s 2008 take on the iterative conception . However, the philo-
sophical significance of his main example is controversial. It is the
Church-Oswald construction of models for theories with a universal
class [Forster, 2008, §§2,5]. Their classes can be viewed as grounded
in the sense of my formal definition, but it is not obvious whether this
case of groundedness is philosophically significant. I briefly rehearse
the simplest Church-Oswald construction in the usual, set-theoretic
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setting before I explain how it exemplifies groundedness.” Then, I will
argue that the philosophical significance of this instance of grounded-
ness is contentious.

Take any model (M, E) of Zermelo-Fraenkel set theory ZF and at-
tach labels, say o and 1, to the objects of its domain. For example,
this is implemented by taking pairs (x,0), (x, 1) for x € M. Choose a
bijection c that maps every object in M to exactly one such pair, not
necessarily containing this set itself. That is, c(x) is a pair {y,0) or
(y, 1) for some y € M. We assume that the rank of c(x) is greater than
that of x.

The function c allows us to define a relation F on M. Together with
the domain M of the original model, this new relation gives rise to a
model (M, F) of a theory of classes with a universal class.

Definition 23. For x,ye M

c(y)=(z0)and x ez

xFy e 3z< or
cly)=<{z,1)and x ¢ z

Let £ be a basic language of class theory (recall the previous chap-
ter), the language of first-order logic extended by the relation symbol
M. (M, F) is an L-structure. F functions as a relation of class member-
ship, and the object of the domain M function as classes. In particular,
the object u € M such that c(u) = (¥, 1) functions as a universal class:
every x € M bears F to u. It can be shown that the model (M, F) vali-
dates extensionality with respect to the membership relation F.

In his 2008 article, Forster provides an alternative characterization
of these classes (§2). It bases on two generators.? The first one is well
known. It is simply the set-generator S from section 2.7 (definition
12). The other is rather unusual: it allows us to generate from some
things xx the class of everything that is not among xx. This generator
is defined as follows.

Definition 24 (Forster’s Complement Class Generator). y is € gener-
ated from yy iff has as its members all and only the z which are not
one of xx.

The classes of the model (M, F) can be viewed as generated from
their elements (in the sense of the relation F), by S, or from those
objects that are not their elements, by 2. To see this, recall that for
every y € M, there is a z € M such that either c(y) = (z,0) or c(y) =
(z,1). In the first case, the model says that x is an element of y, for
every x, if and only if x € z. That is, the theory of (M, F) takes x to be

1 My exposition follows closely Forster’s [Forster, 2008, §5], but see also Oswald

[1976].
2 Ingeniously, Forster speaks of ‘wands’.
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an element of y if and only if x is among those things that we, in the
meta-theory, know to be an element of z. In other words, y is the class
of the things in z; z collects the objects zz from which y is generated
by S.

In the second case when c(y) = (z, 1), the model says that x is an el-
ement of y if and only if x ¢ z. In other words, the object theory takes
x to be an element of y if and only if x is not among the things that
the meta-theory knows to be in z. This time, therefore, z represents
the objects zz from which y is generated by 2. Note that unlike a stan-
dard set, a Forster class may be not grounded in its members, but in
those things which are precisely not its members, if & generated from
them.

Consequently, the sets of the model (M, F) represent objects of a
new kind, classes that are generated in a way quite unlike the stan-
dard generator of sets. I will use the label ‘Forster class’ to refer to
these objects stipulated by Forster’s new interpretation of the Church-
Oswald models.

Forster argues that the @-S-grounded classes are as legitimate as
the standard, S-grounded sets. The fact that he considers it necessary
to add philosophical argument to his characterization of the Forster
classes as @-S-grounded, already suggests that the philosophical con-
tent of this characterization is not obvious. In the remainder of this
section I will discuss whether Forster succeeds in establishing that
2-S-groundedness is as legitimate as S-groundedness. I start with a
series of indirect arguments that Forster gives, as they will help clari-
fying what is at stake.

Forster discusses three worries one may have about the 2-S-ground-
edness characterization of the Forster classes [Forster, 2008, §4]. These
worries are not of mathematical nature. It is not questioned that there
are Church-Oswald models, nor that the classes of these models are -
S-grounded. Instead, is doubted that Forster’s two-generator picture
is as philosophically significant as the standard, one-generator picture
of the cumulative hierarchy [Forster, 2008, “Horn 1” on p. 108]. Thus,
the objections Forster considers are worries about the philosophical
significance of 2-S-groundedness.

Forster phrases these objections as arguments that the 2-S-grounded
objects are not sets. I do not think that this is the most felicitous
way of putting it. After all, it is trivial that among the 2-S-grounded
things there are objects that are not sets (in the standard sense). As
we have observed above, there is an object u € M which our simple
Church-Oswald model (M, F) treats as a universal class, and there is
no universal set. Unless, of course, by ‘set” we no longer mean the S-
grounded objects of the standard cumulative hierarchy, but allow for
a more liberal use of this expression; in particular, unless we start call-
ing the Forster classes ‘sets’. However, this is not what is disagreed
on. Forster does not engage in a merely verbal dispute. Therefore, I
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understand the objections considered by Forster, as arguments that
whereas S-groundedness provides a philosophical case for sets, 2-S-
groundedness does not do the same thing for Forster classes. Does he
succeed in fending off these objections?

The first argument goes as follows [Forster, 2008, §4.1]. S-grounded
sets are constituted from their elements, but 2-S-grounded classes are
not. Therefore, S-groundedness is significant, while the @-S-ground-
edness is not.

Forster responds to this argument in two steps. Firstly, he argues
that to say that sets are constituted from their elements is just to
say that sets are extensional. Secondly, he points out that the Forster

classes are extensional, too. Therefore, S-grounded sets and 2-S-grounded

classes do not differ after all in the relevant sense.

I do not think that Forster’s response is conclusive. There is a rele-
vant sense in which sets are constituted from their elements, a sense
which is not exhausted by the extensionality of sets. In his seminal
1971 article, Boolos explicitly contrasts two characteristics of sets: on
the one hand, their extensionality, on the other hand, the fact that
‘[...] the elements of a set are “prior” to it’ (p. 216). To say that a set is
constituted from its elements may mean that it has both of the char-
acteristics mentioned by Boolos, only that its elements are prior to
it, or finally just that it is extensional. Forster’s response addresses
this latter sense in which a set is constituted from its elements, but
not the others. The argument that 2-S-groundedness is insignificant,
however, can equally be formulated based on the other two senses.
In particular, it is plausible to say that the standard set generator S
tracks the priority of some things to their set, while Forster’s com-
plement generator @ does not. Further, it can well be argued that the
philosophical significance of S-groundedness stems from the fact that
a set is S-grounded in precisely the things that are prior to it [Potter,
2004, 8§3.3]. The next chapter (§ 6.2) will pick up this line of thought
and develop it further.

The second argument Forster considers is based on the following
observation. Given some things zz, the condition of not being among
zz only defines a plurality if the universe is already given as a definite
collection. Otherwise, it is not definite which members a Forster class
has.3

However, it is contentious to assume that the universe is a definite
plurality.4 In fact, it conflicts with our assumption about the set gen-
erator S. To see how, let uu be all the things there are and use S to
generate from uu the set of all things {uu}, contradiction. Therefore,
prima facie what members an e-generated class has is not a definite
matter. In this sense, a Forster class is an intension, not an extension.

3 Note that I specify slightly Forster’s own exposition, in that I explicate his temporal
metaphor of “the end of time” in terms of whether or not the universe is definite.
Concerning the relevant concept of definiteness, recall p. 38.

4 See the extensive literature on absolute generality, e.g. in Rayo and Uzquiano [2006].
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Standard, S-grounded sets are extensions. The elements of a given set
are just those things from which it is generated, and therefore always
ensured to be definite — otherwise, the set could simply not have been
generated. Therefore, whereas S-groundedness ensures having a def-
inite range of elements, 2-S-groundedness does not. Hence, the argu-
ment goes, the philosophical significance of S-grounded sets does not
carry over to the 2-S-grounded Forster classes.

In Forster’s discussion of this objection [§4.2] I discern two distinct,
indeed possibly conflicting, responses. On the one hand, Forster ac-
cepts that the fact that unlike standard sets, a Forster class gener-
ated through @ has definite members only if the universe is definite,
marks ‘[...] an important difference” between S-groundedness and 2-
S-groundedness [Forster, 2008, p. 105]. It is not a mathematical dif-
ference, since the relevant notion of definiteness is of philosophical
nature. Hence, Forster acknowledges at least one aspect in which his
generalized iterative conception does not ensure philosophical signif-
icance.

On the other hand, Forster argues that the objection overshoots.
It does not only cast doubt on the legitimacy of 2-S-groundedness,
but on the legitimacy of inductive, or in Forster’s terms, recursive
constructions quite generally. Thus, the objection contradicts what
Forster labels Conway’s principle, that ‘objects may be created from
earlier objects in any reasonably constructive fashion” [Forster, 2008,
p- 991°

Why should Forster’s opponent be moved by Conway’s principle?
It depends on what we take it to mean. If the principle says that
every inductive definition ensures philosophical significance, then for
Forster to uphold it, is not to provide an argument for, but simply to
repeat his conviction that the 2-S-groundedness of Forster classes is
as significant as standard S-groundedness.

A more charitable reading of Conway’s principle is as giving ex-
pression to a feature of mathematical reasoning, namely that some
collection of things having been defined inductively licences refer-
ence to them. On this reading, Forster’s response becomes that disal-
lowing Forster classes contradicts mathematical practice. This would
certainly be unacceptable.

However, the objection is not that 2-S-groundedness does not li-
cence mathematical reasoning with Forster classes. Their mathemat-
ical significance is already accounted for by the standard Church-
Oswald model construction (definition 23). Instead, the objection is
that Forster classes do not have the same philosophical significance as
standard sets. Therefore, the objection does not contradict Conway’s
principle as suggested by Forster.

In sum, Forster’s reference to Conway’s principle either merely re-
states his view that 2-S-groundedness is philosophically as good as

5 Forster cites Conway [2001].
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standard S-groundedness, or it reminds us of the fact that in mathe-
matical reasoning, inductive definition licences reference. The former
is not an argument, while the latter does not conflict with denying
its philosophical significance. Therefore, Forster’s argument that the
objection from definiteness overshoots, is not conclusive.

The third objection that Forster considers is a slippery slope argu-
ment. It goes as follows. If we accept that Forster’s conception of
classes, based on the set generator S as well as the complement gen-
erator ¢, is as significant as the received iterative conception of sets,
based on S alone, then any other generator has equal claim to pro-
duce legitimate objects.

One philosopher’s modus tollens is the other’s modus ponens. Forster

is ready to accept that for any generator 1, J-groundedness is philo-
sophically significant. More importantly, however, he points out that
even if we did not accept every generator, the threat of regress [Forster,
2008, p. 106]

[...] is not by itself an argument for drawing the line so
close to home that [...][2-S-groundedness] is excluded.

I agree. By a similar thought, however, the fact that we cannot as
suggested argue against -S-groundedness is no reason to agree with
Forster. The burden of proof is on him to show that his conception
of Forster classes is philosophically as good as the standard iterative
conception of sets. After all, it is the received view that standard set
theory Z, possibly ZF, receives good motivation from the iterative con-
ception, and that in this respect it is superior to alternative theories,
such as that of the Church-Oswald models. Forster claims that the
Church-Oswald theory is just as well motivated. However, unless he
provides positive reason for this, methodology requires us to adhere
to the received view.

So far, I have only presented Forster’s indirect arguments, by which
he responds to objections likely to be put forward against his uncon-
ventional view. In fact, however, Forster also provides a positive argu-
ment. Indeed, the first two sections of his paper are well viewed as
arguing that his two-generator iterative conception of Forster classes
provides them with as good philosophical motivation as does the one-
generator iterative conception, i.e. S-groundedness, for standard set
theory.

Forster’s argument rests on the following assumption [Forster, 2008,

p- 98].

(Q)  The appeal of the cumulative hierarchy lies precisely in its neat
response to Quine’s challenge.

By ‘the cumulative hierarchy” Forster refers to what I call S-ground-
edness. The “appeal” that Forster ascribes to it is its appeal to philoso-
phers, hence, at least partly, its philosophical significance.
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By ‘Quine’s challenge’, Forster means Quine’s famous insight that a
theorist can use first-order logic with identity to reason about things
of a certain kind, only if she has an identity criterion for them. The cu-
mulative hierarchy, or rather the view that every set is found at some
stage of it (i.e. is S-grounded), satisfies this necessary condition and
responds to Quine’s challenge, because it provides an identity crite-
rion for sets. Finally, this response is ‘neat’ in the precise sense that
the identity criterion provided comes with a ’[. .. ] recursive algorithm
for deciding identity” [Forster, 2008, p. 98].

In sum, Forster’s assumption (Q) is well paraphrased as follows.

(Q’) The philosophical significance of S-groundedness is that it gives
a recursive identity criterion for sets.

Forster points out that 2-S-groundedness, too, provides a recursive
identity criterion for Forster classes. Based on the assumption (Q’),
he concludes that 2-S-groundedness is philosophically as significant
as S-groundedness. I do not accept this conclusion, because I reject
Forster’s premise (Q’). In the remainder of this section, I will argue
that (Q’) is false, and conclude that Forster’s positive argument for
the significance of 2-S-groundedness does not go through.

At least on one reading, (Q’) presupposes that any recursive iden-
tity criterion renders its domain philosophically significant. This, how-
ever, is not true. I give a case in which we have an algorithm to estab-
lish identity and distinctness facts in some given domain, but which
lacks philosophical significance. Imagine a rather exclusive interna-
tional spy ring. It consists of two individuals, Mary and Harry. As
all spies they have their cover identities. Mary goes under the names
‘Alina” and “Varvara’, while Harry is known both as “Valentin” and as
‘Nikita”. Now, under each of these covers, Mary and Harry infiltrate
the enemy’s secret service. It, too, assigns them cover idenities, not
knowing that it is dealing with double agents. For example, the ser-
vice assigns its agent Varvara, who really is Mary, one cover identity
under the name ‘Sarah’, and another under the name ‘Laura’. As a
result, each of our spies is endowed with two layers of cover identites,
as depicted in figure 13.

We may imagine Laura, Sarah and the others again to be assigned
double agent missions, and thus be given further, more remote cover
names. But I can make my point without them. There is an algorithm
for Mary’s and Harry’s superiors to identify who of their newly hired
agents is in fact which a triple-agent of their own. This procedure is
given by the following recursion. Mary is Mary, and Harry is Harry;
and to answer whether x is y, uncover x’s identity u and y’s identity
v, and ask if u =v.

For example, it may be asked if Janet and Sarah are the same triple
agent. Well, following our algorithm, we firstly ask if Alina is Varvara.
In order to answer this question, we again apply the step of our recur-
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Figure 13: Mary’s and Harry’s cover-identities

sion, and find that Alina and Varvara both are Mary. By the recursion
base, however, Mary is Mary, and we conclude that Janet is Sarah.

Thus, we have a recursive identity criterion for this group of in-
ternational triple agents. However, they are not philosophically sig-
nificant. I conclude that a recursive identity criterion by itself does
not account for philosophical significance, contrary to Forster’s (Q’).
Consequently, the significance of S-groundedness still requires expla-
nation.

It may be objected that this last step of my argument fails be-
cause (Q’) does not imply that recursivity of identity is sufficient
for philosophical significance. I assumed that (Q’) implies that much,
but there may be a more charitable reading of it which does not
have such strong implications, but accounts for the significance of S-
groundedness nonetheless. Therefore, the objection goes, I have failed
to fend off Forster’s case.

In response to this challenge, I admit that I have not addressed
every reading of (Q’). Doing so would require spelling out what pre-
cisely it means for the significance of S-groundedness to be that S-
groundedness ‘gives a recursive identity criterion’. All I have shown
is that it cannot mean that the latter suffices for significance. However,
no clear alternative reading is readily available, in terms of which
Forster’s case for the significance of groundedness can be recovered.
Even if I have not given a deductive argument, therefore, I have at
least cast doubt on (Q’), and shifted the burden on Forster to explain
just how the significance of S-groundedness consists in it giving a
recursive identity criterion. Forster’s positive argument for the sig-
nificance of 2-S-groundedness is that it provides us with a recursive
identity criterion for Forster classes. Thus, I have also given reason to
doubt the philosophical significance of Forster’s 2-S-groundedness,
and of the formal concept of groundedness in general.
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5.3 FRIEDMAN AND SHEARD’'S MODELS OF TRUTH

In the previous section I have argued that the philosophical signif-
icance of 2-S-groundedness is controversial. Thus, I have found rea-
son to be skeptical about the philosophical significance of the general,
formal concept of groundedness from chapter 2 In this section, I will
give another case of groundedness whose philosophical significance
is not obvious. In fact, I now turn to a case that, unlike Forster’s con-
ception of classes, was never intended as philosophically significant.

Recall, from chapter 3, Kripke’s notion of grounded truth. It comes
in several variants, each based on a distinct monotone evaluation
scheme. The Strong Kleene variant (§3.5) has received the most at-
tention, but semantic groundedness based on Weak Kleene, or on a
supervaluational scheme have also been discussed.

I would like to emphasize that these cases of groundedness are
philosophically significant. They have been discussed in philosophi-
cal journals and books, and not merely so in the wake of Kripke’s sem-
inal paper, but repeatedly over the past four decades. Today, Kripke’s
theory of truth, or family of theories to be precise, has become the
standard type-free theory of truth, to the extent that such consen-
sus is found among philosophers. In particular, it is considered to
have advantages over its revision-theoretic contenders. The appeal
that Kripke’s theory has to the majority of philosophers is at least
partly due to that it is motivated from his notion of groundedness,
which is an instance of the general formal concept from chapter 2.
Therefore, semantic groundedness, in its Strong or Weak Kleene vari-
ant, or in one of its supervaluational variants, is philosophically sig-
nificant.

However, semantic groundedness has further variants of which this
cannot be said. They are found in another seminal piece of formal the-
ory of truth, Friedman and Sheard [1987]. Friedman and Sheard pro-
vide an impressive array of results as to which axioms and rules, each
of which embodies some aspect of naive truth, are mutually consis-
tent. For this purpose, they construct models very similar to Kripke’s.
However, these models themselves are not intended to capture an as-
pect of truth. They are merely technical devices to show that certain
axioms are consistent. Nevertheless, their truth is grounded much
like Kripke’s (see p. 44).

For example, Friedman and Sheard construct a model 91(Th.,) whose
truth predicate Th,, is the union of a sequence of sets Thy,, where Thy
is true first-order arithmetic, and Th;, ;1 is the set of sentences ¢ such
that [Friedman and Sheard, 1987, §3, G]

AU{TY P e Thp} u{TVxP(x) : YXTW(%)" € Thn) Ew ¢ (44)

Here, =, is consequence in w-logic: classical logic, in the language
of arithmetic, enhanced by the following rule.
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The sentences in Thy, now, can be shown to be grounded in the
truths of arithmetic N, in a manner very similar to how the sentences
of Kripke’s fixed point are grounded in them. More precisely, there is
a generator J, not unlike the generators underlying Kripkean ground-
edness, such that ) €Th iff ¢ is IJ-grounded in N.

On the high-resolution characterization of semantic groundedness
that I have found advantageous (see §3.4 above), the sentences in the
least fixed point of, say, the Strong Kleene Kripke jump, are viewed
as grounded in the truths of arithmetic, through the combination of
the Kripke truth generator T (p. 49) and the Tarski logic generator
W (p. 28). Similarly, the sentences of Friedman and Sheard’s theory
Thy, can be viewed as generated from the truths of arithmetic by two
generators.

The definition of Thy, 1 above (equation 44) has two key compo-
nents. On the one hand, the relation =, of consequence in w-logic;
on the other hand, the step from VxT"(x)" to T'Vx(x)", and the step
from P to T'. Accordingly, we can view Th, too, as grounded
through the combination of a logic- and a truth-generator.

The Friedman Sheard truth generator (‘F’), on the one hand, is
given by two rules. The first rule is T-Intro, in terms of which we
have also characterized Kripke’s truth generator T (p. 49). The sec-
ond rule allows us to infer that it is true that for everything it is the
case that ¢, from the assumption that for everything it is true that ¢.

vxT "o (x)"
TVxd(x)"

Note that F, just like Kripke’s truth generator T, is deterministic in
the sense of definition 6.

The construction above is simpler than what Friedman and Sheard do strictly
speaking. At every stage, they do not only add every w-logic consequence of
N U {TY" : P € Thn}, but also every instance of the schemata T-Rep and U-Inf.
However, for their purpose, i.e. to prove the consistency of the axiom system given
above, the simpler construction discussed suffices.

Also, I suppress the fact that the base theory of Th is not just first-order arithmetic
PA, but also includes basic truth-theoretic principles [Friedman and Sheard, 1987,
p- 4]. Such details do not matter for the general point I intend to make, that the
construction exemplifies the general concept of groundedness from chapter 2.
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The logic generator, on the other hand, is simply W; recall that
it allows us to generate universal quantifications from an infinity of
sentences (p. 29).

Proposition 13. The sentences in The, are F-W-grounded in the truths of
first-order arithmetic N.

If € Thy then ¢ F-W-grounded in N

Proof. Since Tho, = [J Thy, it is natural to reason by induction on
n<w

n. Thp = N, hence ¢ €Thy is trivially F-W-grounded in N.

For ¢ €Th; 1, we know that ¢ € N, or ¢ is of the form Tp" and
Y €Thy,, or ¢ =TVx(x)" and VxTP(x)" €Thy, or, finally, ¢ follows
from some I' CTh,, in w-logic. We reason by cases. Firstly, ¢ € N iff
¢ is trivially F-W-grounded in N. Secondly, ¢ =T"p" for \ €Thy,
iff P, F$, which in turn by our induction hypothesis holds just in
case ¢ is F-W-grounded in Thy,. Analogously for ¢ ="T"¥Vx(x)" and
VxT"P(x)" €Thy. Finally, ¢ is an w-consequence of some I' €Th,, just
in case ¢ is W-grounded in Th,,, hence F-W-grounded in Th,. ]

So, the truth predicate of Friedman and Sheard’s model 9%(Th, ) sat-
isfies the general concept of groundedness. Formally, Th, is as much
a predicate of grounded truth as is the least fixed point of Kripke’s
Strong Kleene jump (section 3.5). However, its groundedness is not
philosophically significant. It is not intended to be so. As to their pa-
per, Friedman and Sheard are explicit that its approach is primarily
logical, and that they do not intend to make a philosophical point
[Friedman and Sheard, 1987, p. 2].

We are not solving a problem in philosophy, but rather a
problem in logic with a philosophical motivation.

As to the model constructions in section 3 of the paper, their sole
purpose is to prove consistent certain collections of axioms and rules
governing ‘“T’. No further role is mentioned nor any aspect of these
constructions is discussed.

Moreover, even if we went beyond how Friedman and Sheard use
their models, and sought to take them seriously as philosophers, this
would still not render significant the groundedness of the sentences
in The. Firstly, when I presented the model 9(Thy) above (44), 1
defined the set of sentences Thy, in a manner that renders it easy
to see their groundedness, starting from N and step by step adding
sentences with ‘T’. Friedman and Sheard, however, define it explic-
itly as the least set containing those axioms and closed under those
rules whose consistency they want to prove. Only in passing they re-
mark that Th,, can also be defined as I did above. Therefore, even if
Friedman and Sheard’s construction of the model 91(Thy ) had philo-
sophical significance, it would not obviously carry over to its ground-
edness.
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Secondly, 9(Thy,) is merely one of a list of models each of which
validates a specific axiomatic system. We have as little reason to be-
lieve in the philosophical significance of 91(Thy,) as in the relevance
of any of the others. However, many of these other models do not
exhibit groundedness. For example, Friedman and Sheard use, un-
der the heading of “converging” truth, revision-theoretic tools to con-
struct a model that validates the inference from ¢ to T'¢" and vice
versa [Friedman and Sheard, 1987, §3.D].7 Its truth predicate Th/
cannot be read as a predicate of grounded truth in the same way as
I have found Th,, to be grounded. Therefore, even if we had reason
to believe in the philosophical significance of Th,,, it would not auto-
matically be reason to take its groundedness to be significant.

I conclude that Friedman and Sheard’s model 91("Th,,') is a case
of groundedness that is not intended to be philosophically signifi-
cant, that there is no reason to assume it is, and that the attempt of
arguing for its significance faces difficulties. Thus, I have given ad-
ditional evidence that the general, formal concept of groundedness
from chapter 2 is in need of philosophical supplementation.

5.4 HOW TO GROUND ANYTHING

In the previous two sections I have presented cases of groundedness
each of which resembles a paradigmatic, and philosophically signif-
icant, instance of the general concept (sets respectively truth) but
whose philosophical significance is at least contentious. I now turn
to present cases that satisfy the general theory, but do not even re-
semble anything philosophically significant. I show how to, speaking
informally, cook up groundedness, and thus produce many cases of
groundedness that clearly lack philosophical content.

Firstly, consider the following way in which the natural numbers
are grounded. Take some numbers, say 4, 17 and 205, and compute
their sum, 4 + 17 4+ 205 = 226. Thus, we have given a way of generat-
ing a natural number from some others, and a way of viewing 226 as
grounded in 4, 17 and 205 (recall also figure 3 on p. 18). Of course, this
case of groundedness is not interesting. This is not to say that sums
are uninteresting. They may well be for pupils in primary school who
have a particular leaning towards basic arithmetic. However, no point
is made by calling 226 grounded in 4, 17 and 205.

Contrast the vacuity of sum groundedness with the case of the or-
dinals, that are grounded by Cantor’s number generator (section 2.6).
The generation of transfinite ordinals from the finite ones plays an
important role in Cantor’s case for the actual infinite, put forward in
his 1883 Grundlagen. In particular, he writes that his principles of gen-
eration contribute to providing the new numbers with ‘the same [...]

7 More precisely, Friedman and Sheard show the consistency of what has become
known as the theory FS, see also [Halbach, 2011, §14.3].
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objective reality as the earlier ones [i.e. the natural numbers]” [Cantor,
1883, p. 911]. Cantor’s principles are captured by the generators Cx
and Cz (definition 11 on p. 38). On this reading, Cantor thus ascribes
metaphysical significance to the generators C1 and Cz. The genera-
tion of sums, in contrast, is not philosophically significant.

It may be thought that the sum generator is deficient because it
is not deterministic (recall definition 6). Of course, 226 is the sum of
many distinct collections of numbers. However, being deterministic is
neither sufficient nor necessary for a generator to be philosophically
significant. For one, the logic generators of Kripkean groundedness
are not deterministic. For another, the truth generator F of the pre-
vious section is deterministic, but arguably not philosophically rele-
vant.

At any rate, it is easy to cook up deterministic generators. My
second example of a clearly insignificant case of groundedness is
one such. Consider arbitrary, countably many xx. Enumerate them:
X0,%1,.... Now every xocxx is grounded in xo through the generator
E such that yEz iff there is an n such that y = x,, and z = x, 1. Thus,
z is generated from y if y precedes z in the enumeration. Since it,
however, is completely arbitrary, so is E-groundedness of z in y. Note
that E is deterministic: it is exactly x, from which we generate x4 1.

However, it is absurd to assume that this case of groundedness has
philosophical significance. For one, we may begin to enumerate xx
at any arbitrary y among them. That is, for every y of xx we may
choose an enumeration such that xo = y. Therefore, for every yocxx
there is a generator J such that every xocxx is J-grounded in y. Every
one of xx is somehow grounded in each of them. Even if there were
philosophical reasons to single out a specific yocxx as the ground,
these reasons could not lie in the general notion of groundedness but
would have to be external to it.

For another, the observation may be strengthened. Any two objects
whatsoever are some things xx, and indeed countably many. There-
fore, for any two objects x and y whatsoever, there is a generator by
which x is grounded in y (counting from y to x), as well as a generator
to ground y in x (counting from x to y).

Thus, I have given a recipe how to ground anything, in anything.
This shows that the general formal concept of groundedness from
chapter 2 is excessively weak: everything is grounded somehow in
anything. However, not everything is philosophically significant, for-
tunately so, as otherwise philosophical inquiry would be even more
difficult than it already is. Hence, it cannot by itself be philosophically
significant if some things satisfy the general concept.

Nonetheless, the cases of groundedness I discussed in the previous
chapters, such as the iterative conception of set, or Kripke’s theories
of truth, have philosophical content. It is not accounted for by the
general theory of chapter 2. Therefore, the theory needs to be sup-



5.5 CONCLUSION

plemented by an account as to why certain cases of groundedness
have philosophical content. In the next chapter, I will outline such an
account.

5.5 CONCLUSION

In this chapter I asked for the philosophical significance of ground-
edness and argued that this question does not have a simple answer.
I considered Thomas Forster’s recent case for the philosophical sig-
nificance of Church-Oswald model construction, and showed that
none of his arguments is conclusive. Then, I gave further example of
groundedness whose philosophical significance is questionable, and
ended by pointing out a simple way of viewing anything as grounded
in anything. I conclude that the concept of groundedness by itself,
and in general, does not ensure the grounded also to be philosophi-
cally significant. Yet, many case of groundedness have found continu-
ing interest by philosophers, among them Kripke’s concept of seman-
tic groundedness (chapter 3), and the groundedness of sets (§ 2.7). In
the remainder of this thesis, I will develop an account of why this is
so, the first step towards which is taken in the next chapter.
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6.1 INTRODUCTION

In this chapter I will take first steps towards an account of the philo-
sophical significance of groundedness. For this, I return to the pa-
radigm cases presented in previous chapters. This time, I will look
more closely at their philosophical content, in order to answer the
question: what renders them philosophically significant? For the time
being, I focus on the iterative conception of sets (section 2.7 above).
Not only is it a pleasingly simple instance of groundedness, it also
is arguably most extensively discussed among philosophers.* In par-
ticular, its philosophical content has been debated (Parsons [1977];
Potter [2004]; Incurvati [2012]). It is reasonable to hope that these dis-
cussions shed some light on how to account for the significance of
the general concept, as indeed they will.

6.2 THE PHILOSOPHICAL CONTENT OF THE ITERATIVE CONCEP-
TION OF SETS

I continue working within the formal framework of chapter 2. In par-
ticular, as the iterative conception of set I understand the view that
sets are obtained by iterated application of the set generator S, where
xxSy iff xx are the elements of y (see §2.7). Recall that to be grounded
in nothing is not to be ungrounded, but to be generated, directly or
indirectly, from nothing (p. 27). The pure sets are S-grounded in noth-
ing: the first set generated is the empty set. As usual, I focus on pure
sets and from now on always mean pure sets when I use “set’.

I have already touched on the philosophical content of this view.
Above, I contrasted S-groundedness with Forster’s 2S-groundedness.
In particular, I observed the following difference (p. 95). Firstly, the
standard set generator S is well glossed by saying that a set is con-
stituted from its elements. Thus, we connect S-groundedness with an
informal notion of constitution. S generates sets from precisely those
things that constitute it. Secondly, contrary to what Forster claims,
this notion of constitution is not exhausted by the extensionality of
sets.

Admittedly, this informal gloss on S-groundedness is as imprecise
as the notion of constitution involved. Nonetheless, it is usually taken
as the starting point when philosophers ask for the content of the

Of course, Kripke’s theory of truth is also widely appreciated. However, the philo-
sophical content of semantical groundedness is seldom discussed at another than
the intuitive level already found in Kripke.

It is subject to ongoing debate just how much of axiomatic set theory ZFC is nat-
urally motivated from the iterative conception. Some authors have argued that the
conception has difficulties accounting for Infinity and Replacement (Boolos [1998]),
others disagree (Shoenfield [1977]).
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iterative conception of sets.3 The challenge is to explicate the relevant
notion of constitution.

An early, influential discussion of different attempts at an explica-
tion is found in Parsons [1977]. Firstly, he examines an intuitionist un-
derstanding [§2]. According to it, a set is literally constructed from its
elements. Constructed by whom? Orthodox intuitionism holds that a
set is constructed by [Parsons, 1977, p. 339, my emphasis]

[...] an idealized finite mind which is located at some
point in time [...]

However, this approach is quickly seen to fail since it cannot account
for infinite sets.

Michael Potter, in a recent discussion [2004, §3.2] which summa-
rizes nicely much of Parsons’ 1977 contribution, suggests the follow-
ing response on behalf of the intuitionist. Countably infinite sets may
be viewed as constructed by an idealized finite subject, if we let her
carry out supertasks, that is [Potter, 2004, p- 37]

[...] tasks which can be performed an infinite number of
times in a finite period by the device of speeding up pro-
gressively [...]

A countable set thus can be viewed as constructed from them in a
finite amount of time, by an idealized subject who has added the first
element after one second, the second element after 11/2 seconds, the
third one after 11/4 seconds and so on through all the elements of the
set. After two seconds, the thought goes, she will have completed this
supertask and constructed the set.

However, it has been debated whether an intuitionist may allow
for constructions carried out as supertasks (Weyl [1949]). There is
reason to believe that doing so would conflict with the intuitionist’s
rejection of the actual infinite. Moreover, as Potter remarks (ibid.),
even if the concept of supertasks were available to account for the
construction of countable sets, it could not help us to understand how
uncountable sets are constructed from their elements. Therefore, a set
is constituted from its elements not in the sense that it is constructed
from them.

Having concluded that the constitution of a set from its elements
cannot be understood as its construction from them, Parsons devel-
ops an alternative account. He proposes to understand constitution
in modal terms. A set is constituted from its elements in the sense
that it could not exist without them. Helping ourselves to possibilist
quantification we may regiment this thought further: for every set,
necessarily, it exists only if each of its elements exists. However, the

Thus, Parsons writes that ‘[...] one can state [...] what is essential to the ‘iterative’
conception: sets form a well-founded hierarchy in which the elements of a set pre-
cede the set itself’ [1977, p. 336]. See also [Wang, 1977, p. 310], [Shoenfield, 1977, p.
321] and [Potter, 2004, p. 36].
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modal operator, ‘o” as a symbol, can be used in various ways. There-
fore, a modal account of how a set is constituted from its elements, is
only useful if the modality at work is explicated. In his 1977 article,
Parsons does not specify further his claim, that a set could not have
existed without its elements. He does so, however, in his 1983.

On the one hand, Parsons provides an argument that the modal-
ity of “a set could not exist without there being its elements” is not
metaphysical modality. Metaphysically, all pure sets exist necessarily.
In order to account for a set being constituted from its elements, how-
ever, it is essential that a set is contingent on its elements,[Parsons,

1983, p- 327]

[...] since when the elements are given the set is initially
given only in potentia.

On the other hand, Parsons outlines a positive account how else
to understand the modality, if not as metaphysical [Parsons, 1983, p.
316].

In saying that a multiplicity of objects can constitute a set,
I mean that they can do so without changing anything at
“lower” levels, that is, without changing the structure of
the individuals or of the sets that might have entered into
the constitution of the objects making up the multiplicity
in question. It is this strong possibility that the modal op-
erator [...] is meant to express.

It is helpful to draw an analogy with a modality that we know better.#
While it is physically necessary that I do not leap Senate House, the
laws of physics do not have to change for me to jump on this table. It
is in this sense that I can jump on this table while I cannot leap Senate
House. Analogously, some things xx do not have to change for their
set y to be formed. In this sense, xx can constitute their set.

Parsons suggests one way of modelling this modality in terms of
possible worlds. We may analyse the physical necessity that I do not
leap Senate House by saying that I do not do so at every world where
the laws of physics hold. Analogously, we may paraphrase “necessar-
ily, there is the set y” as “at every stage higher up in the cumulative
hierarchy there is y”. On this basis, Parsons glosses necessity as being
‘[...] true “from there on” [...]" [Parsons, 1983, p. 317].

However, we cannot understand the modality of set constitution
in terms of the cumulative hierarchy, if our goal is to explain why
S-groundedness is philosophically significant. Since, the sets of the
cumulative hierarchy just are all and only the S-grounded pure sets.
Thus, explicating the modality as suggested by these remarks of Par-
sons would render our attempt at explanation circular. The philosoph-
ical content of S-groundedness is that a set could not exist without

4 Note, however, that what follows is a charitable reconstruction of Parsons’ remarks.
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its elements, but all we have in order to understand this ‘could’, is
S-groundedness itself.

Fortunately, Parsons has more to say about how the modality of set
constitution is to be understood. Later in his 1983 article [p. 328f.], he
proposes to understand the constitution of a set from its elements as
a modality distinct from, but related to metaphysical modality in that
both specify, albeit in different ways, a general mathematical modal-
ity.

This notion of mathematical modality is not developed in detail,
and may be found insufficiently clear. For the purpose of explicating
the modality of set constitution, however, it suffices to note that in this
general sense of possibility, mathematical entities are fully contingent.
They do not all necessitate one another, as they do in the more specific
case of metaphysical modality. Thus, Parsons’ notion of mathematical
modality allows us to speak of it being possible that some, but not all,
sets exist.

The modality of set constitution is then viewed as a specification
of this general mathematical modality. From a world w with some
sets xx, all and only those worlds are accessible at which each of xx
has just the elements that it has at w. In other words, v accesses w
if and only if w end-extends v, with respect to the relation of set
elementhood €. That is, if x is an element of y at v then x € y, too, at
w. On this modality, elementhood becomes rigid in the precise sense
that if x € y then necessarily so, and if x ¢ y then necessarily so, too
[Parsons, 1983, p. 209].

We have thus been provided with an explication of the notion of
modality in terms of which Parsons proposes to understand the con-
stitution of a set from its elements. Moreover, this explanation does
not refer directly to S-groundedness. Has Parsons thus succeeded
and explained the philosophical content of the iterative conception of
sets? I do not think so. Above, I have found that Parsons’ first account
of the modality of set constitution made us attempt to explain the sig-
nificance of S-groundedness in terms of S-groundedness. I think that
the revised explication of the previous section also leads us into a
circle, as follows.

Our starting point was that S-groundedness is philosophically sig-
nificant because the generator S captures the constitution of a set
from its elements (cf. p. 95). This constitution Parsons now invites us
to understand modally: a set could not exist without its element. The
relevant modality, however, is explicated in terms of one world access-
ing another just in case the latter end-extends the former. A set x is
constituted from its elements yy, the proposal goes, in the sense that
in every situation such that sets have at least the elements which they
actually have, if x exists so do yy. The significance of S-groundedness
is that S captures this modal relation.
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Why, however, do end-extensions matter, and not those situations
in which some set does not have all elements which it actually has?
Note that this distinction is drawn in terms of the elementhood rela-
tion. Relevant are those situations that respect which elements a set
actually has. That is, from what a set is actually S-generated. The dis-
tinction between which possible situations matter and which do not,
thus hinges on actual S-generation. Therefore, to explicate the modal-
ity to which Parsons reduces the notion of constitution, we need to
resort to S-grounding; and to accept his case for the significance of
S-groundedness we need to accept that actual S-generation matters
philosophically. Similarly to before, we end up trying to account for
the significance of S-groundedness in terms of S-grounding.

Maybe my reading of Parsons’ 1983 article is tendentious. His re-
marks there may not be intended as explicating the modality which
is at work in his modal account of set constitution. Here is an alter-
native, less demanding reading. Having earlier paraphrased the pri-
ority of elements over their set modally (a set could not exist without
its elements existing), Parsons seeks to give his reader a better sense
of how the modal vocabulary is to be understood. For this, he con-
nects it with the well-understood concept of end-extension. Crucially,
though, the modality of set constitution is not to be defined in these
terms. Therefore, my circularity charge from above does not apply.

However, if this less demanding reading is appropriate and Par-
sons does not intend to explicate the modality, then we are left with
an account of set constitution in terms of a primitive sui generis set
modality. In this case, the question arises what advantage is gained
over an iterative conception based on a primitive notion of constitu-
tion, as e.g. considered in Potter [2004].

In sum, Parsons accounts for set constitution in modal terms, but
either the relevant modality is as much a primitive as set constitution
itself is for other authors, or Parsons proposes an explication which
relies on the concept of S-grounding, such that the resulting concep-
tion does not account for the significance of S-groundedness.>

63 TAKING CONSTITUTION SERIOUSLY

The formal concept of well-founded, that is S-grounded, sets has re-
ceived much attention from philosophers. Often, it is motivated from
the thought that a set is constituted from its elements or, to quote
Boolos once more, (1971, p. 216)

[...] the elements of a set are “prior” to it.

In the previous section, I have discussed Parsons’ approach of expli-
cating this intuitive idea of constitution in modal terms. Which notion

5 I will return to the connection between groundedness and modal logic in chapter 9.
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of modality is right for this task? I have found that only a primitive
notion of sui generis set-theoretic modality appears promising.

In view of this, however, we may as well return to our point of
departure, and take the notion of constitution as the primitive of the
iterative conception of set. We need not to abandon the modal ap-
proach. We may still express constitution in modal terms.® However,
we no longer attempt to reduce constitution to some modality.

This does not mean we must give up hope to understand the pri-
ority of elements over their set. There are other ways of conveying
a philosophical notion than its reduction. Examples can help us to
realize our pre-theoretic grasp of it. This intuitive understanding we
can then explicate by formal principles.

Consider the following English sentences.

(1)  Truth and reason constitute that intellectual gold that defies
destruction.

(2)  Switzerland is constituted from its 26 cantons.

(3)  The meaning of ‘+" is constituted from how this symbol is
used.

These sentences are grammatical and express statements. In fact, (1)
is given as an example in the 1913 Webster dictionary entry for “con-
stitute”. Speakers of English make claims like (2).7 (3) and claims of
similar form are made frequently in philosophical contexts. Philoso-
phers accept or reject them, based on philosophical considerations.
Hence, “constitute” has meaning, with a specifically philosophical as-
pect to it. At any rate, we understand it — at least to the extent of a
pre-theoretic grasp.

In addition, we can characterize the formal properties of constitu-
tion. For this purpose I choose a plural meta-language. In this frame-
work we can formalize constitution as a relation that takes at its first
place singular as well as plural terms. An object thus can be consti-
tuted from a single or from several objects.

Firstly, constitution is unique on its left as well as on its right hand
side. If yy constitute x, and zz constitute x, then yy are zz. Similarly,
if yy constitute x, and yy constitute y, then x = y. Uniqueness on
the left has two desirable consequences. On the one hand, it renders
constitution non-monotone: if yy constitute x then no zz properly
extending yy can be said to constitute it. Intuitively, all constituents
matter, and all that matters are the constituents.

On the other hand, uniqueness on the left renders constitution im-
mediate: if yy constitute x then they do so directly, and not via some

6 In particular, the modal set theories examined very recently in Studd [2013] and
Linnebo [2013] can be viewed as expressing the order of sets by constitution, see
chapter 9.

7 A google search of the phrase “constituted from” provides plenty similar examples
(31200 hits on October 7th, 2013).

113



114

CONSTITUTION AND THE ITERATIVE CONCEPTION OF SETS

other constituents of it. Of course, my choice of such a notion is
guided by what I propose to apply it to. The generator S captures
the direct step from some things to their set.

Uniqueness on the right is a strong assumption. However, it makes
great sense for the constitution of a set from its elements. After all,
sets are extensional and no two sets have the same elements, thus are
constituted from the same things.

If yy constitute x we say that a z among them partially constitutes y.
Partial constitution is still immediate, but we may consider its transi-
tive closure, partial mediate constitution. Note that if we understand S
as full constitution then a statement x € y in the language of set the-
ory expresses the partial constitution of y by x. Thus, partial mediate
constitution corresponds to one set standing in the transitive closure
of another.

Secondly, constitution is non-circular. There is no sequence of ob-
jects xo, ..., xn such that for every i less than n, x;4.1 partially consti-
tutes xi, and xp = xn,. In particular, no x partially constitutes itself.

Having described the intuitive notion of constitution by formal
principles, I can render precise one way in which S-groundedness
is connected to the philosophical notion of constitution. The relation
between an S-grounded set and the sets from which it is S-generated,
satisfies the formal principles of constitution. This is not at all a deep
insight. To be S-grounded is to be a well-founded set of the cumula-
tive hierarchy (proposition 4 on p. 41). Since partial S-generation is
elementhood, non-circularity of course holds of the S-grounded sets.
And, T already pointed out that by the extensionality of a set, the re-
lation that its elements bear to it, satisfies uniqueness. Thus, the set
generator S provides a simple model for constitution as characterized
by the principles above.

On this basis, the connection between S-groundedness and constitu-
tion is well viewed as that between a philosophical idea and a formal
model of it. Such a connection provides the model with philosophi-
cal significance, as examination of it may elucidate the philosophical
idea. This is a common enough situation. Consider possible worlds
semantics and its relation to the metaphysics of modality. These are
distinct enterprises. Nonetheless, study of worlds semantics has had
tremendous impact on metaphysics (Lewis [1986]; Kripke [1980]). It
is philosophically significant. Similarly, S-groundedness provides a
formal representation of the idea that a set is constituted from its
elements, and as such it has significance.

Of course, a small set of principles as I gave for constitution, cannot
pin down one concept. Even if combined with examples such as (1)
to (3), they allow for different understandings of “constitute” and its
inflections. At best, therefore, I have characterized a family of notions
each of which is an equally good candidate for the philosophical con-
tent of S-groundedness.
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In fact, what I have said so far is prima facie compatible with various
philosophical notions traded under the labels of ontological priority,
dependence or fundamentality. For example, consider the relation of
essential dependence that x bears to y if x is essentially such that it
exists only if y exists [Fine, 1995b, p. 273]. Constitution may be un-
derstood as the relation that is born to some thing by what it immedi-
ately essentially depends on. This reading appears compelling — after
all, Kit Fine famously motivates his account of essential dependence
from the example that a singleton depends on its element. This case
of dependence is widely accepted (for a survey of the area consult
Correia [2008]). Hence, viewing the philosophical significance of the
set generator S in terms of essential dependence would connect the
formal concept of well-foundedness with an established idea from
metaphysics.

Fine’s recent work on essential dependence was to some extent an-
ticipated by Husserl’s use of and reflection on a notion of foundation
2001 (see the discussion in Fine [1995a]; Correia [2004]). On a salient
interpretation, Husserl distinguishes moments (roughly, tropes) from
pieces (roughly, parts) as follows. A moment depends on the datum
which has it, while a piece does not stand in the same relation of
dependence to the whole. Now, the relevant notion of dependence
is foundation. A moment is founded on its datum while a piece is
not founded on any whole that it is a piece of. Although details are
subject to controversy, it is safe to say that foundation is irreflexive:
nothing is founded on itself. Now, Husserl has a notion of immedi-
ate as well as mediate foundation as its transitive closure [Husserl,
2001, §16]. Therefore, foundation must be subject to a principle of
non-circularity, as I gave it above for constitution.

In Husserl’s system, foundation plays the role of a general order of
things which is not mereological. Foundation is that relation of onto-
logical priority which is not the priority of parts to their whole. While
the subset relation has often been likened to mereological parthood,
it is widely agreed that the relation between a set and its elements
cannot be understood as that between a whole and its parts [Lewis,
1991, §1.3]. Thus, if we seek a metaphysical notion to explicate the
priority of elements over their set, Husserl’s foundation appears a
natural candidate.

To give one more candidate notion of constitution, let me return
from Husserl to the contemporary debate and briefly rehearse Jonathan
Schaffer’s recent case for what he calls the neo-Aristotelian approach
to metaphysics [2009]. It is based on a primitive relation that Schaffer
calls “grounding” [Schaffer, 2009, §3.2]. Unfortunately, Schaffer’s use
of this term interferes with the terminology of chapter 2, as well as
with that of a certain tradition in metaphysics to which I will turn in
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the next chapter. However, Schaffer also speaks of priority in nature,
and I follow him.®

Schaffer goes about conveying his notion of priority in nature in
much the same way in which I characterized constitution. He gives
examples, and formal principles. Formally, Schaffer’s priority is ir-
reflexive, transitive and asymmetric. It is a relation of partial priority,
in that there are cases of two distinct things both being prior to the
same object. Thus, priority in nature satisfies the principles of partial,
mediate constitution I gave above. Schaffer’s examples also make his
notion a suitable candidate for constitution. In fact, it is the priority
of the element to its singleton set that serves Schaffer as one of his
paradigms of priority in nature [Schaffer, 2009, p. 375].

In Fine, Husserl as well as in Schaffer I have found philosophical
notions that may play the role of constitution in an account of the
philosophical significance of S-groundedness. On further investiga-
tion, they may condense into one and the same idea, or fragment fur-
ther into more specific notions. At any rate, what this short excursion
into the literature shows is that under the label of constitution I have
not characterized a definite concept, but rather a family of cognate
notions.

However, in their vicinity we also find philosophical notions that
do not satisfy my characterization of constitution. One such non-
example is the relation of definitional priority that Fine compares
with essential dependence [Fine, 1995b, §2]. Recall the notion of real
definition as opposed to nominal definition. Roughly, one thing is
definitionally prior to some other if the real definition of the one
involves the other. Now, however details are spelt out, it appears pos-
sible that the same plurality of things is involved in the real defini-
tion of distinct things. Thus, definitional priority is not unique on
the right-hand side and therefore does not satisfy how I described
constitution.

Nonetheless, it cannot be denied that the characterization of consti-
tution given above may fit several cognate notions rather than one dis-
tinguished philosophical concept. However, for my present purpose it
suffices that S models some notion of constitution. In chapter 5 I have
found that the general formal concept of groundedness from chapter
2 does not account for the attraction certain cases of groundedness
have to philosophers. It needs to be supplemented by an account of
the philosophical content of these cases. In the present chapter, I fo-
cused on the groundedness of sets, and made the following proposal.
The philosophical content of the generator S is that it tracks a notion
of ontological constitution, as described by the examples and princi-
ples above. If, as it seems, there are many such notions then the philo-
sophical content of S-groundedness may be understood in multiple

See Sider 2011, p. 192 on the difference between Schaffer’s priority in nature and
grounding as an in-virtue-of relation as in chapter 7.
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ways. Each of these ways, however, would be ways in which it has
philosophical significance. To show this, however, is what my goal
has been. The philosophical content of the groundedness of sets may
be diverse and plentiful, but such riches would be no embarrassment.

6.4 CONCLUSION

In this chapter, I presented an understanding of the iterative concep-
tion of set as combining the view of sets as S-grounded in the sense
of chapter 2, with the view that this set-of generator S captures the on-
tological immediate, full constitution of a set from its elements. This
latter notion of ontological priority is philosophical.

Hence, for one specific, albeit prominent, case of groundedness I
have identified one account of its philosophically significance. Doing
so, I have partially answered the challenge from chapter 5. However,
more needs to be done. In particular, an account is needed of the
philosophical significance of semantic groundedness (chapter 3).
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7.1 INTRODUCTION

This chapter introduces a philosophical notion in terms of which I
will then, in the next chapter, propose an account of why semantic
groundedness is significant. I will explain the idea of one truth hold-
ing in virtue of others.

Recent years have seen an increased interest in this notion, and a
certain consensus has emerged to speak of ground or grounding [Fine,
2001; Schaffer, 2009; Fine, 2012b]. Thus, authors have found it help-
ful to use the same label, or a label of the same semantic field, for
the in-virtue-of relation as Kripke chose for his model construction.
Following Kripke, I have used ‘groundedness’ for the class of model
constructions that are the subject of the present investigation. On the
one hand, I am intrigued by this terminological coincidence, and feel
tempted to believe that it provides at least motivation for connect-
ing the two areas. On the other hand, I do not want to fall for this
temptation. Doing so would provoke the objection that I equivocate.
Therefore, I will deviate from the current literature to the extent that
I will not use the term ‘ground’ for the in-virtue-of relation.

The idea of one truth holding in virtue of another has a venerable
tradition. It can be traced back to Aristotle’s notion of why-proofs, in
contrast with mere that-proofs [Aristotle, 2006, 1051b]. The first exten-
sive discussion of the in-virtue-of relation, however, is to my knowl-
edge found in Bernard Bolzano’s Wissenschaftslehre of 1837 (hence-
forth referred to by “WL). I will therefore begin with a concise expo-
sition of Bolzano’s theory.

7.2 BOLZANO

For Bolzano, the in-virtue-of relation, ‘Abfolge” in the German of his
writings, is what holds truths together, and brings them into order.
Accordingly, I first look at Bolzano’s understanding of propositions
(‘Satze’).

In contemporary mainstream philosophy, a proposition is what is
said by an indicative sentence. For example, the sentence “Snow is
white” expresses the proposition that snow is white. It is safe to un-
derstand Bolzano as working with a close kin of this notion. Impor-
tantly, for Bolzano a proposition is not located in space nor time. In
this precise sense, he takes propositions to be abstract entities.

As to notation, I will use capital Roman letters from the beginning of the alphabet as
variables for propositions. Small letters from the beginning of the alphabet, mostly ‘b’
and ‘c’, will range over Bolzanian ideas. The expression ‘A(c/b)’, finally, will denote
the proposition that differs from A only in that everywhere where A involves b,
A(c/b) involves c.
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Further, he takes a proposition to contain ideas, which themselves
are composed of simple ideas.? In fact, a proposition is well viewed
as itself being composed of simple ideas, in the precise sense that A is
B just in case that A is composed of the same simple ideas as B, in
the same manner. Nonetheless, it is important to keep in mind that
for Bolzano, the concept of a proposition is fundamental, and that the
notion of an idea is understood in terms of it, as a component.

True propositions are ordered by the relation of one truth holding
in virtue of others. For a long time, scholars have found this part of
Bolzano’s oeuvre ‘obscure’” [Berg, 1962, p. 151]. Bolzano motivates his
theory of Abfolge from examples of the following kind [WL §198].3

(1)  Itis warmer in Palermo than it is in New York.

(2)  The thermometer stands higher in Palermo than it does in New
York.

Both propositions are true but (2) is true in virtue of the truth of
(1) and not vice versa. The asymmetry between the truth of (1) and
the truth of (2) cannot be captured by Bolzanian derivability (roughly,
logical consequence extended by material implication): (1) can be de-
rived from (2). Therefore, a stronger concept is needed: (1) is true in
virtue of the truth of (2).

If the truth that A holds in virtue of it being true that B, then it is
the case that B because it is the case that A. The in-virtue-of relation is
a notion of objective explanation. However, it must not be conflated
with epistemic notions, such as justification. For one, in-virtue-of con-
cerns how propositions, that do not have spatio-temporal location, are
ordered independently of any subject. For another, justification fails
to respect the asymmetry between the truths (1) and (2). If you know
that the thermometer stands higher in Palermo than it does in New
York, then you are justified in believing that it is warmer in Palermo
than it is in New York.

Bolzano discusses whether the in-virtue-of relation can be defined
in terms of derivability, and possibly other notions [WL §200]; his
conclusion is that this cannot be done. Therefore, the in-virtue-of re-
lation is officially a primitive concept and Bolzano characterizes it by
a system of principles. Note that Bolzano thus characterizes the in-
virtue-of relation in much the same manner as constitution has been
characterized in the previous chapter (§ 6.3), by examples and prin-
ciples. Bolzano’s in-virtue-of relation thus presents itself as a similar
kind of philosophical notion as constitution. This similarity provides

2 What does Bolzano mean by ‘idea’ (“Vorstellung’)? For present purposes, it suffices
to focus on three components of Bolzano’s theory. Firstly, an idea, too, is abstract,
Secondly, it may have an extension of spatio-temporal objects that fall under it. Fi-
nally, as indicated above, complex ideas are individuated by their composition from
simple ideas.

3 Further examples are found in [WL §§ 162.1, 201]
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first support for my analogy between how set groundedness receives
philosophical significance from the notion of constitution, and an un-
derstanding of semantic groundedness based on the in-virtue-of rela-
tion.

I now turn to present the principles which Bolzano puts forward
for his in-virtue-of relation. Abfolge holds between single or collec-
tions of propositions. His relevant use of “collection” is well viewed
as anticipating how logicians today have come to use the term “plu-
rality’, as convenient but inessential shorthand for plural reference to
some things.# However, Bolzano assumes a collection always to be
non-empty.> Accordingly, I will for the rest of this section equally
disregard the empty plurality.

I will use Greek capital letters (‘T”, “A’,...) as variables ranging over
pluralities of propositions, and the symbol ‘<’ for Bolzano’s in-virtue-
of relation such that ‘T' < A’ reads: it is true that A in virtue of the
truths T".

The first principle set forth by Bolzano is that only true propositions
stand in the in-virtue-of relation [WL §203].

FACTIVITY If Ag,Aq, ... < Bg,Bq, ..., then Ag,Aq,...,Bg, B ...
We therefore know that

(3)  Francesca is male.

does not hold in virtue of

(4)  Every sister is male.

If the truth that A holds in virtue of the truth that B, then the latter is
why it is the case that A; the fact that B explains the fact that A. The
sense of explanation at work here is objective and exhaustive. This
allows us to draw two conclusions about the formal properties of
Abfolge. Firstly, what a proposition holds in virtue of does not involve
this proposition itself, neither directly or indirectly [WL §§204, 218].°

NON-CIRCULARITY There is no chain Ay, ..., Ay, such that for every
i<mn, Ajis among some I' such that I' < Aj 1, and Ay = An.

Finally, the truths which A holds in virtue of are unique [WL §206].
UNIQUENESS If '<w« A and E <« A then I'=E.

On the one hand, this implies that if A holds in virtue of T, then it
is not grounded in I' together with arbitrary other truths. Thus, it is
ensured that every truth among I' matters for the truth A. In other

However, Bolzano uses ‘collection’ also in other ways [Simons, 1997]

In one passage Bolzano may also be read as suggesting that the relata of the in-
virtue-of relation are always finite pluralities of propositions [WL §199].

This formulation of non-circularity uses the concept of a in-virtue-of chain due to
Rumberg [2013].
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words, Abfolge is non-monotone. On the other hand, the principle
of uniqueness means that the truths that a proposition is grounded
in, are its complete grounds. This captures our pre-theoretic idea of
grounding as a relation of exhaustive explanation.

Note, however, that Bolzano’s formal principles do not include unique-
ness on the right-hand side. That is, it is not assumed that if ' <« A
and ' < B then A = B.

These principles describe the relation of Abfolge formally. For exam-
ple, from (Uniqueness) we know that if the truth

(5) Michael is a son of Vito.

holds in virtue of the truth that

(6)  Vito is Michael’s male parent.

then it is not the case that (5) holds in virtue of the truth that
(7)  Sonny, Fredo and Michael are Vito’s sons.

We would like to know more. Does (5) in fact hold in virtue of (6)?
More generally, what cases of Abfolge are there? Bolzano gives exam-
ples, but not many general principles. However, there is one promi-
nent exception, which will become central in the next chapter [WL
§205.1, my translation].

Let A be any truth: then the truth “that the proposition
A is true,” is a proper consequence of it; and this conse-
quence does certainly not need grounding in any other
truth than A alone, which therefore constitutes its full
ground.

Thus, for every truth A, it is true that A in virtue of it being the case
that A, A < T(A). By the same principle we have that it is true that
A is true in virtue of the proposition that A is true itself. In symbols:
T(A) < T(T(A)).

For Bolzano, truth is an idea. Since propositions are identified by
how they are built up from which ideas, the proposition that A there-
fore is not identical to the proposition that A is true. Hence, uniqueness
ensures it not to be the case that A < T(T(A)).

Generally, Abfolge is a notion of complete, immediate objective expla-
nation. From it, partial such explanation is defined easily [WL §198]:
A holds partially in virtue of the truth B if there are some A such that
B is one of A, and A < A.

Bolzano does not stop at the relation between a truth and what it
holds in virtue of immediately. He analyzes the order that it imposes
on true propositions [WL §216].

If someone starting from a given truth M asks for its
ground, and if finding this in [...] the truths [A,B,C...]
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Figure 14: Ascension from M to its auxiliary truths

he continues to ask for the [... ] grounds, which [. .. ] these
have, and keeps doing so as long as grounds can be given:
then I call this ascension from consequence to grounds.

If, ascending from M to what it holds in virtue of, we arrive at some
truth A, then M is said to depend on A.

The next section brings us back to contemporary philosophy. It is a
focused survey on recent work by Kit Fine, in which he re-examines
Bolzano’s notion of one truth holding in virtue of others, provides
a rigorous formal system to reason about it and puts it to new use
in contemporary metaphysics, thus showing its philosophical signifi-
cance.

7.3 FINE

In his 2012 article The Pure Logic of Ground, Kit Fine revives many
of Bolzano’s ideas and develops them in a modern framework. In
particular, he presents a formal system to reason about the in-virtue-
of relation, or rather four such relations, each capturing one specific
aspect of the pre-theoretic notion.

Firstly, Fine distinguishes between a weak and a strict sense of ‘in
virtue of’. On the one hand, to say that C holds weakly in virtue
of A, B, is to say that for it to be the case that C is for it to be the
case that A, B, ... [Fine, 2012a, p. 3]: In particular, any truth holds
weakly in virtue of itself. In allowing for this reflexive in-virtue-of
relation, Fine goes beyond Bolzano who did not leave space for it in
his theory (see p. 122 above). Strict in-virtue-of, on the other hand, is
irreflexive. Adopting a useful metaphor of Fine’s, the strict in-virtue-
of relation moves us “... down in the explanatory hierarchy’, while
weak in-virtue-of has moves merely ‘sideways’ [Fine, 2012a].

Secondly, like Bolzano Fine distinguishes between full and partial in-
virtue-of. While Bolzano, however, derives partial mediate in-virtue-
of from his basic notion of immediate full in-virtue-of (see above),
Fine introduces both as primitives and draws the distinction intu-
itively, as follows. A holds fully in virtue of I' if I' are sufficient for A.
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Strict | Weak
Full <
Partial <

/N

/N

Table 1: Fine’s concepts of ground.

Partial grounds I, on the other hand, merely help ground A: there
are other A such that I' and A together suffice for A.

Fine presents his pure logic of ground as a system to derive se-
quents of the form “A in virtue of A”. Since I intend to use Fine’s
system to enrich a given theory, say of truth, by the resources to
speak of the in-virtue-of relation, I will transfer it to in a language
L4 which extends some first-order language £ by the four sentential
operators of table 1. Since in earlier chapters, I use lower-case letters
from the middle of the Greek alphabet as schematic variables for £-
sentences. Further, as in the previous section, I use upper-case letters
from the Roman alphabet for propositions (abusing the use-mention
distinction occasionally). Thus, within L4 the in-virtue-of relation is
expressed in a way analogous to how in English it may be expressed
by the connective “because”. This approach allows us to make do
without additional resources to speak of the fact that A, or the propo-
sition that A in a first-order setting.

Since we would like to express that some fact holds in virtue of
multiple facts together, two of the four sentential operators are of vari-
able arity. That is, ¢o < P and ¢o, 1 < P as well as do,..., Pn < VP,
for any n, are sentences of the language.

This may not even be enough. We may want to to say that it is true
that ¢ in virtue of infinitely many truths. For this, we would need
to formulate the pure logic of ground in a language with formulae
of infinite length. In general, it is desirable not even to impose any
ordinal bound on the arity of ‘<’, in which case we would need to
allow for formulae of absolutely infinite length.

However, such non-standard infinitary languages are not well un-
derstood. Therefore, I will restrict my attention to a finitary language
of ground. As a consequence, in the next chapter I will only be able to
capture the sentential fragment of Kripke’s logic generators. A quan-
tified truth of the form Vx¢, namely, would have to be grounded in
infinitely many truths ¢(a), ¢(b) and the fact that a, b, ... are all and
only the things which exist.

I believe that this limitation does not undermine my case for the
philosophical significance of semantic groundedness. For one, my
present goal is merely to outline one such account. Future research
will clarify the behaviour of infinitary systems of ground. Then, their
modelling by semantic groundedness can be extrapolated from my
work on the finitary fragment. For another, the dimension in which
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my present case will be limited is orthogonal to the connection be-
tween semantic groundedness and the in-virtue-of relation. And it is
the latter that renders plausible my analogy to S-groundedness and
answers the challenge from chapter 5. At any rate, to the best of my
knowledge the details of Fine’s system in an infinitary language have
not yet been spelt out, and I will not attempt to answer this substan-
tial open question here.

Now let the pure logic of ground be an £ 4-theory, defined as follows.

Definition 25 (Pure Logic of Ground). Let £ 4 extend some first-order
language £ by the connectives of table 1. The pure logic of ground
(‘PLG’) in L4 then is the least set of £4-sentences containing the ax-
ioms of Identity and Non-Circularity (see below), and closed under
the following rules.

Firstly, we have subsumption rules. They allow for the inference of
weak in-virtue-of claims from strict such, and of partial in-virtue-of
statements from full in-virtue-of.

) (1)0,(1)],...<'ll) d)<
bo, b1,... <Y ¢ <
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Secondly, three rules ensure the transitivity of partial ground.
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Thirdly, ‘<’ obeys the following rule of Cut, the analogue of transitiv-
ity for a many-one operator.

< CO/'--/Cn<¢O EO/---/£n<1b1 ¢O/q}]/"'<¢
Cut(=
u(g) CO/---/Cn/E»O/---r‘(—yn/---<(b

Fourthly, a rule is added that allows us to infer strict full in-virtue-of
from a number of partial full in-virtue-of statements, and with the
statement that those partial grounds together are weak full grounds.
So, while the subsumption rules from above allowed us to move from
full in-virtue-of to weak and partial in-virtue-of, the following rule
allows us to regain the strict relation. Hence the label ‘reverse sub-
sumption’, or ‘RS’ for short.

RS bo, d1,... <Y ¢ <Y ¢ <Y
d)01¢1/"-<q)

Finally, we are given axioms. Here, I deviate slightly from Fine’s own
presentation of his system. Recall that he formulates it as a sequent
calculus, while in the language L4, ‘<’ and the other symbols are
sentential operators. Thus, while Fine’s formalism does not allow for
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negated ground statements, mine does. Accordingly, while his non-

circularity axiom is of the form # , I can use negation and will

do so.

Identity <d ¢ eSent,  § eSent, Non-Circularity

(b <o)
This completes the definition of PLG.

As in previous chapters I considered theories, e.g. the theory of
classes HSK (p. 67), that are not closed under classical logic, it may
be worth pointing out that the theory PLG is thoroughly classical.

It has simple models. Let ¢y, . . ., $n, be an enumeration of £-sentences,
and let ¢; < ¢; iff iless than j. Let ¢; < ¢; iff i less than or equal to j,
by < ¢ iff b < dj and Py < ¢j iff d;y < 5. Then, the subsumption
rules, reverse subsumption and identity are satisfied by definition.
Cut holds by the transitivity of less than or equal to, as does the tran-
sitivity rule for <. The other transitivity rules hold by the transitivity
of < and the definition of <. Finally, Non-Circularity holds because
< is well-founded.

This observation is easily generalized. PLG holds in a model if <
denotes an order of £ sentences isomorphic to the less-than relation
on an initial segment of the natural numbers, in terms of which the
other relations are defined as above.

Having presented his recent technical contribution, I now turn to
Fine’s earlier and very influential case for the philosophical signifi-
cance of the in-virtue-of relation [Fine, 2001]. He proposes to discuss
positions of realism in terms of the in-virtue-of relation. One promi-
nent anti-realist position is the view that mathematical statements re-
duce to logic (“logicism”). Fine argues that by focusing on in-virtue-
of claims, a better understanding is gained of the dispute between
logicist and Platonist.

Fine points out that the anti-realist must account for the felicity of
ordinary existence claims, since otherwise her position collapses into
skepticism. Hence, the anti-realist needs to distinguish between two
conceptions of reality. According to the ordinary conception, there are,
say, prime numbers between 2 and 6. However, the logicist holds, this
is not really the case. On the proper metaphysical conception, namely,
there are no numbers. This metaphysical reality can be understood in
two ways.

If realism about a proposition A is understood in the factual sense,
the realist holds that A is true or false in virtue of how the world is
like. Conversely, anti-realism is the view that there is no fact of the
matter whether A.7 Examples are expressivism in meta-ethics, formal-
ism about mathematics and instrumentalism about science. In short,

For readability, in this section I often suppress the use-mention distinction. Thus, I
use the capital Roman letters both as variables ranging over propositions, and as
schematic letters standing for indicative sentences.
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if reality is understood the fundamental way, anti-realism about A
says that A fails to “perspicuously represent the facts’ [p. 3].

The alternative understanding of metaphysical reality is to think of
it as the basis to which can be reduced what is said to be real in a
merely ordinary manner [p. 8]. Thus, the realist about some propo-
sition holds it to be irreducible, while the anti-realist holds that it
can be reduced to different propositions. Logicism is anti-realism in
this sense. Another example is naturalism about ethics, according to
which ethical truths reduce to facts about the physical domain.

Fine now argues in considerable detail that neither factual nor re-
ductivist anti-realism is a stable position. For the present purpose, I
do not have to follow his discussion too closely. Suffice it to report
Fine’s final argument why any attempt to formulate non-skeptical
anti-realism in terms of factuality or reduction is bound to fail [p. 11].
Anti-realism intends to be compatible with ordinary discourse. For ex-
ample, naturalism about ethics must be compatible with the fact that
outside of philosophical contexts, it is taken for granted that there
are moral values. However, that this particular belief happens to be
the ordinary view must not bear on how the anti-realist position is
formulated. Consequently, anti-realism must also not be at odds with
any other view that has happened not to be the ordinary opinion.
Hence, non-skeptical anti-realism must be compatible with arbitrary
ordinary-discourse positions. For a fair assessment of the dispute be-
tween realist and anti-realist, their positions must not be formulated
in any way that incurs conflict with ordinary discourse nor with what
may have happened to be the received opinion.

It is to this methodological problem that Fine proposes the in-virtue-
of relation as a solution. Fine argues that the anti-realist about some
truth disagrees with the realist about in virtue of what this proposi-
tions holds. Since the in-virtue-of relation is a specifically metaphys-
ical notion, it thus provides way of adjudicating between realist and
anti-realist positions, that is independent of ordinary discoure.

In a nutshell, Fine’s argument goes as following. Consider the dis-
pute between a moral realist and an expressivist. Both agree that, for
example, rape is wrong. Whence the disagreement? Assume further
that Jones says that rape is wrong. Again, both realist and expressivist
agree that she does. However, while the realist holds that Jones says
so in virtue of the fact that "wrong" refers to wrongness, the expres-
sivist rejects this in-virtue-of claim. For him, Jones says that rape is
wrong in virtue of some other truths, for example that "wrong" func-
tions like "boo!". Thus, while moral realist and expressivist can agree
that rape is wrong, thus both staying in line with ordinary discourse,
the in-virtue-of relation enables them to pin down the subject matter
of their dispute.

Fine considers how such disagreement about in-virtue-of cases is
settled [§ 7]. For one, Fine submits that our intuitions about what
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holds in virtue of what are by and large reliable, and thus provide
already some guidance. For another, evidence for or against a state-
ment of the form ‘B because A’ can be found in the candidate ground
A itself. The reason is that grounds are explanations, in fact expla-
nations of superior character. A is a good candidate ground to the
extent that it is the best explanation of the fact that B.

Accordingly, in-virtue-of claims should be assessed by the same
standards as explanations more generally: ‘... simplicity, breadth,
coherence, or non-circularity’. Fine points out that arguably, these
standards vary across contexts. Explanatoriness, therefore, must be
assessed in context. Accordingly, questions of in-virtue-of cannot be
properly answered in isolation but only in context.

A critical discussion of Fine’s case for the in-virtue-of relation as a
general tool in realism vs. anti-realism debates goes beyond the scope
of the present study. Its primary subject is the concept of grounded-
ness from philosophical logic. For my purposes, it suffices to have
exposited his application of the notion, and to have it thus shown
philosophically significant. Just as in the case of the iterative concep-
tion of sets the significance of philosophical notions of constitution
allowed me to respond to the challenge from chapter 5, I now turn to
develop an analogous defence of semantic groundedness as in chap-
ter 3.

7.4 CONCLUSION

In this chapter I introduced the philosophical notion of one truth
holding in virtue of others. In doing so I have achieved two ends. On
the one hand, I explained the notion and provided tools to talk about
it. On the other hand, I showed that it has philosophical significance.

The in-virtue-of relation has a venerable history, and presented
it in chronological order. My concise summary of Bolzano’s theory
gave its key properties. For example, I noted that the in-virtue-of re-
lation is stricter than logical consequence (p. 121). I also presented
methodological considerations that guide research to the present day,
in particular the role of examples. Then, I turned to recent work by
Kit Fine. I focused on two influential papers, and firstly presented
his 2012a Pure Logic of Ground. Then, I turned to Fine’s 2001 case
for the in-virtue-of relation as a powerful tool to carry out realism-
antirealism debates in multiple areas. Fine’s investigations show that
the in-virtue-of relation is philosophically significant. Thus, the present
chapter has provided me with the tool to defend semantic grounded-
ness against the challenge from chapter 5. In the next chapter, I will
establish a robust connection between the in-virtue-of relation and
Kripke’s concept of semantic groundedness, in particular making use
of Fine’s 2012 regimentation.
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8.1 INTRODUCTION

Having in the previous chapter introduced the in-virtue-of relation, I
will now make use of it to account for the philosophical significance
of semantic groundedness (chapter 3). My proposal will be analogous
to how in chapter 6 I accounted for the significance of set grounded-
ness in terms of a philosophical notion of constitution (§ 6.3). There,
I developed a view according to which the set generator S expresses
the thought that a set is constituted from its elements. The relevant
notion of constitution is not reduced along constructivist lines, or in
modal terms, but taken as a primitive and characterized by means of
examples and formal principles. In much the same way, the previous
chapter characterized the in-virtue-of relation. In the present chapter,
I will argue that semantic groundedness exemplifies this philosophi-
cal notion.

My proposal is simple. Recall the high-resolution characterization of
semantic groundedness (pp. 50ff.). I analyzed Kripke’s jump in terms
of two generators: the truth generator T, and a logic generator, such
as W. They are given by certain rules. Now, I argue that these rules
express certain principles about what holds in virtue of what. A sen-
tence is semantically grounded with respect to Strong Kleene logic, if
and only if it is T-W-grounded in true arithmetic. Let a sentence ¢
be T-W-generated from 1, ¢, & My proposal, at its core, is that this
formal relation is philosophically significant to the extent that it is
the case that ¢ in virtue of it being the case that {, ¢ and &. In a
slogan, the in-virtue-of relation is for semantic groundedness what
constitution is for set groundedness.

This iterative conception of truth is a simple but fruitful philosophi-
cal account of semantic groundedness. Moreover, I will support it by
technical results. I will show that the way in-virtue-of orders the truths
in Kripke’s least fixed point mirrors the structure of T-W priority rela-
tions. Two very recent pieces of literature give reason to expect such a
connection. In his [2010], Kit Fine uses Kripke’s fixed point construc-
tions to show that certain principles of the in-virtue-of relation can
be consistently combined with principles about what facts, proposi-
tions or truths there are. Fabrice Correia shows that the semantically
grounded sentences stand in a relation to the true literals of the base
language, which behaves formally much like the reflexive closure of
the in-virtue-of relation [2013, p. 5, theorem 7.11]. My work in this
chapter is of course inspired by Fine’s and Correia’s work." At the
end of this chapter, I will explain the respects in which I go beyond
what they have done.

I want to propose an account of the philosophical content of seman-
tic groundedness analogous to how I accounted for the significance
of S-groundedness in chapter 6. However, semantic groundedness is

1 Although I learnt of Correia’s insights not as early as would have been desirable.
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more complicated than S-groundedness. The latter we saw to coin-
cide with the concept of being a well-founded set (§2.7). Semantic
groundedness is less mundane. It involves two generators, and both
the truth generator T as well as the logic generator will require in-
terpretation in terms of the in-virtue-of relation. It is reasonable to
discuss T and W separately; I begin with the truth generator, as mat-
ters here are comparably simple.

8.2 TRUTH

The truth generator T is given by two rules.

¢ —¢
To. —T¢

In a nutshell, I will make the following case. Groundedness by the
truth generator T is philosophically significant because it is true that
A in virtue of it being the case that A.> Thus, the truth generator T
gains philosophical significance from its connection to the philosoph-
ical notion discussed in the previous chapter.

I will develop my case in two steps. Firstly, I will attempt to render
plausible that it is true that ¢ in virtue of it being the case that ¢,
and that it is not true that \ because —). To simplify matters, I will
focus on the first claim, and refer to it as the true because claim.3 1
will show that it does philosophical work. In particular, it has been
used by philosophers in order to understand better the in-virtue-of
relation. On this basis, I propose to read the generator T as expressing
this true because claim, thus providing the former with philosophical
content. Having made this rather intuitive point, I will in a second
step support it by a technical result. I will show that Fine’s PLG of
the previous chapter enriched by true because. is sound and complete
with respect to the T-priority relations.

My first step, however, is to argue for the true because claim. To be-
gin with, it seems just right to say, for example, that it is true that
snow is white because snow is white. Recall from the previous chap-
ter how Fine suggests to settle a question whether some fact holds in
virtue of another (p. 128). Thus, the true because claim receives plausi-
bility from arguments that to say that snow is white is to explain why
it is true that snow is white, and to do so better than by any other
explanation.

As in the previous chapter, I use upper-case letters from the Roman alphabet for
propositions, abusing the use-mention distinction occasionally. Lower-case letters
from the Greek alphabet, such as ‘¢’" and ‘|’ are used as variables for object language
sentences, as in the statement of the T rules above.

The present chapter is the first step towards an account of semantic groundedness
in terms of the in-virtue-of relation. Accordingly, my goal is not completeness but a
convincing outline. Among those details which will be worked out elsewhere is an
examination of the thought that it is not true that ¢ because —¢ analogous to how
in the main text I examine the true because claim.
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Now, if we are asked, why is it true that snow is white? then to
say, because snow is white, is to answer the question. This assumes
that to say that it is true that snow is white is not to say merely
that snow is white. Accordingly, the question under consideration
may well not be a common one; instead, ‘why is it true that snow
is white?” may usually be asked with the meaning of ‘why is snow
white’? Nonetheless, in philosophical contexts it is also asked with its
strict meaning, not asking why snow is white, but why it is true that
snow is white. And this question is answered by saying that snow is
white.

However, this fact by itself does not provide evidence for the true
because claim. We also need that no better answer can be given. How
do we compare explanations? Again, it is worthwhile recalling Kit
Fine’s [2001] considerations (p. 128 above). One criterion is simplicity,
and our candidate answer does certainly well in this respect. Since,
any explanation of the truth that snow is white must involve that
snow is white. In this respect, to say that snow is white is to give the
simplest explanation.

Surely, more needs to be said to establish the true because claim.
The explanation has to be assessed against other criteria than sim-
plicity. However, what properties make an explanation stand out, de-
pends on the domain of discourse of the proposition whose truth is
explained (see, again, Fine [2001, pp. 22ff]). Fortunately, though, my
goal is merely to render plausible that it is true that A in virtue of it
being the case that A. To render plausible a claim is less demanding
than to establish it; I do not aim to establish the true because claim. My
case for it is not intended to be conclusive. Therefore, I do not need
to, and will not, give more argument that the best explanation why it
is true that A is that A.

Instead, I point out that the true because claim has an excellent
pedigree. Aristotle famously writes, in book ©cto of his Metaphysics
(1051°,8f, translated by Makin 2006)*

[...] it is not because of our truly thinking you to be pale
that you are pale, but it is rather because you are that we
who say this speak the truth.

It may be contested that Aristotle here uses “because” in a sense suffi-
ciently close to the in-virtue-of relation. Bolzano, however, is explicit
that A is true in virtue of the truth that A. I gave the key passage al-
ready on p. 123 above, but let me indulge in it once more (WL §205.1,
my translation).

Let A be any truth: then the truth “that the proposition
A is true,” is a proper consequence of it; and this conse-
quence does certainly not need grounding in any other

4 See also Categories, Ch. 12, as cited in [Batchelor, 2010, p. 66].
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truth than A alone, which therefore constitutes its full
ground.

The true because claim figures also in contemporary philosophy. In
particular, it has been endorsed in the recent literature on the in-
virtue-of relation itself. For example, Benjamin Schnieder [2011] de-
ploys the following principle, which he labels simply “Truth’: for ev-
ery truth ‘A’, it is true that A because A. Schnieder is explicit that
here, ‘because” expresses the in-virtue-of relation of my interest, such
that Schnieder’s principle Truth is what above I called the true because
claim.

In fact, Schnieder not merely endorses, but uses the true because
claim to find out things about the in-virtue-of relation. In particular,
it plays a key role in his argument that the in-virtue-of relation is
more finely grained than intensional operators. Assuming the princi-
ple Truth, Schnieder points out that necessarily, A if and only if it is
true that A. However, one cannot be substituted for the other salva
veritate: since the relevant meaning of ‘because’ is asymmetric, the
principle Truth implies that it is not because A that it is true that A
(also recall the first conjunct of Aristotle’s verdict above).

Note that I have just cited a philosopher who not only endorses
the true because claim, which I propose as the philosophical content
of the generator T, but also makes use of it in his investigation into
the in-virtue-of relation. Elsewhere [2012, §4.4], Correia and, again,
Schnieder use the true because claim to present a problem for truth-
maker theorists who claim that it is true that snow is white because
the fact that snow is white exists. Prima facie, this verdict conflicts
with with the true because claim, or its instance: it is true that snow
is white because snow is white. The natural way of reconciling this
verdict ("TM’) with true because, Correia and Schnieder submit, is by
inferring TM from the in-virtue-of statement together with the ver-
dict TM*, equally suggested by truth-maker theories: snow is white
because the fact that snow is white exists.> Thus, if she accepts the
true because claim, the truth-maker theorist is under pressure to like-
wise accept TM*. However, TM* conflicts directly with the compelling
thought that the fact that snow is white exists because snow is white.
Unlike TM and TM*, this thought is plausible independently of truth
maker theory. Consequently, the true because claim enables a challenge
to the truth maker theorist.

That it plays this important role for philosophical work is not a
recent phenomenon. Already Bolzano made such use of it. Let me
give two examples. Firstly, in the section from which I quoted above
he intends to show that some truths have exactly one ground (WL
§205.1). Witness every truth of the form ‘It is true that ¢’, that each
holds in virtue of precisely the truth that ¢.

5 TM follows from the true because claim and TM* by the transitivity of in-virtue-of.
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Secondly, in WL §214 Bolzano argues that for every A another one
holds in virtue of it; again, witness the truth that it is true that A. This
thought, from which I propose to understand Kripke’s truth genera-
tor T, therefore does work in Bolzano’s investigation.

Together with my previous findings from contemporary literature,
this aspect of Bolzano’s work suggests one way of defending the
philosophical significance of T-groundedness. Read the generator T
as expressing the philosophical idea that it is true that A in virtue of
it being the case that A. Being endowed with this reading in terms of
a philosophical notion, T-groundedness differs from vacuous cases
of grounding, such as that of the sum-generator (§ 5.4). Thus, my
proposal answers the challenge of chapter 5.

T-groundedness is significant because T allows us to generate sen-
tences according to the true because claim. This is a simple thought,
but not simplistic. In the remainder of this section, I will present a
technical result, that a formal theory based on Fine’s Pure Logic of
Ground and the true because claim, is sound and complete with respect
to the structure of T priority relations.

Recall that given a generator 1, we say that x is J grounded in some
gg (‘gg <3 x’) if x has a J-priority tree whose leaves are gg (definition
1 and proposition 1). If we require x to be generated by at least one
step, we speak of it as strictly J-grounded in gg (‘gg <3 x’). Further,
we say thaty J, gg-depends on x ("x <344 Y’) if y has a J-priority tree,
whose height coincides with the rank of y, and one of whose leaves
is x (definition 5). Finally, I write x <344 Y if X <3499 Yy or x =Y.

The T priority relations satisfy the formal principles of in-virtue-
of relation, in particular Fine’s Pure Logic of Grounding (‘PLG’). The
reason is that a T-priority tree is a rather simple structure. It is a se-
quence of L,-sentences Yy, ..., Pn such that Piy7 =Ty or i =
—=T'¢" and P = —;. Thus, <t is a strict well-ordering isomorphic to
the less-than relation on a finite initial segment of the natural num-
bers.

This simple observation already suggests a close connection be-
tween T generation and the in-virtue-of relation. However, to estab-
lish such a connection to Kripke’s concept of semantic groundedness,
I need to be more specific. T-dependence <t s is relative to some
truths £ from which other truths are T-generated. My interest is in
specific such grounds. Recall that Kripke’s semantic groundedness,
based on Strong Kleene logic, is T-W groundedness in those literals
A of the language of arithmetic which are true in the standard num-
bers (lemma 5 on p. 53). Consequently, it is T-dependence relative to
A that I will focus on.

However, because a T-priority tree is just a sequence P, Tp", TT)", ...
T-dependence <t A in fact coincides with the relation <t on the T-W-
grounded sentences of L,. Therefore it, too, is a strict well-ordering
isomorphic to the less-than relation on a finite initial segment of the
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natural numbers. Hence, each T, A-priority tree is a PLG model of
precisely the simple kind described in section 7.3 (p. 127). Conse-
quently, the relations <t, <1, <T A and <t A satisfy the principles of
PLG. More precisely,

Lemma 12. Let It.w be the set of Lia-sentences T-W-grounded in A, and
let T = (Itw, <1, <1, <T.A, <TA) be the structure of grounded sentences
with the T priority relations. Let Lga be the language of truth extended by
the grounding operators, as in definition 25, and let PLG be the least set
of sentences in this language closed under Fine’s rules of the pure logic of
ground there defined. Then

T EPLG

For example, T satisfies the transitivity rule T(é) because the Lgta-
sentence ¢ < 1P holds in it only if either ¢ and \ are the same Ly,
sentence in Itw, or ¢ occurs as a vertex in one of \’s T-priority
tree whose height is 1’s T-A rank. Either way, the T tree witnessing
¢ <1, VP is, respectively can be extended to a witness of ¢ <t A VP,
hence T = ¢ < .

The formal concept of T-generation provides a simple but precise
model of grounding as characterized by Fine’s pure logic. Thus, it
stands to this philosophical notion much like the set generator S
stands to the notion of constitution from section 6.3. Such a connec-
tion already provides the formal concept with some philosophical
significance (p. 114).

We can do better. What I propose to take as the philosophical con-
tent of T-groundedness is neatly expressed in the language Lgt,, by
sentences of the form.

¢ <T¢’ (45)

—p < T’ (46)

Let us add as axioms to the Lgt,-theory PLG every statement of the
form (45), for ¢ € Irw, and each instance of (46) for —¢ € Irw. |
will refer to these sentences as the truth axioms. The resulting theory
GT, of the grounds of truth, closes these axioms, and the PLG axioms

of identity and non-circularity, under the PLG rules (definition 25). It
contains statements such as

0=0<TTO0=0" (47)
and

443#5<T-T44+3="5 (48)
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Proposition 14. GT is sound and complete with respect to the structure T
of lemma 12. For all L,-sentences $,),

¢ <riff 'db<'eGT (49)
¢ <A Viff ¢ < eGT (50)
b <rviff'd <y eGT (51)
¢ <AV iff ¢ <P eGT (52)

Proof. We prove soundness as in the argument for lemma 12, noting
that the T-axioms are true in ¥ by design and do not have false PLG-
theorems.

For completeness, cases (51) and (52) are either trivial or follow
from the first respectively second case by subsumption. To show (49)
and (50), recall firstly that a T-priority tree of ¢ is just a sequence of
Lia-sentences Py, ..., Py such that ¥y 7 = TP or Y1 = -T'¢"
and P = —; (a “T-sequence from  to ¢”).

(49) Assume ¢ <t . Then there is a T-sequence from ) to ¢. We
reason by induction on its length. If it is 2 then ¢ is T-generated from
Y. In this case, ¢ < 1 is an axiom of GT. If the T-sequence is of
length n + 1 then for some ¢, $T( and there is a T-sequence of length
n+ 1 from ( to . By our induction hypothesis, GT therefore contains
¢ < . Since ¢TC ensures that we also have ¢ <  in GT, its derived
rule Cut(<) gives the desired ¢ < 1.

(50) Analogously, using the subsumption rule S(=). O

Thus, the formal connection between T-groundedness and the no-
tion of grounding as regimented by the theory GT is that between a
model and its complete theory. Fine’s PLG is the most advanced reg-
imentation of the in-virtue-of relation available. Thus, proposition 14
is a strong technical base for my proposal: to understand the philo-
sophical content of the truth generator T in terms of the in-virtue-of
relation.

8.3 LOGIC

In the previous section I made a case for understanding the Kripkean
truth generator T in terms of the in-virtue-of relation from chapter 7.
However, semantic groundedness is not a matter of the truth genera-
tor T alone, but arises from its interplay with the derivation of com-
plex truths from true literals. I now turn to this second component of
my high-resolution analysis of semantic groundedness, the logic gen-
erators (§ 3.4). In this section, I argue that certain logic generators
are also well understood in terms of the in-virtue-of relation. I will
identify their intimate connection to formal principles that govern the
interaction of in-virtue-of and logic.

However, here the situation is more complicated than in the previ-
ous section. For one, the formal concept of semantic groundedness
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comes in many varieties, say Weak Kleene logic as well as Cantini
supervaluation. For another, there is only little work on how the in-
virtue-of relation interacts with logic, and even less of it arrives at
definite verdicts.

I address the former complication by focusing on the Strong Kleene
variant of semantic groundedness. There are at least two reasons to
do so. Firstly, most authors, including Kripke, were interested pri-
marily in the Strong Kleene variant. Secondly, my analysis of chapter
3 showed that sentences in the Strong Kleene least fixed point are
grounded by the truth generator T in combination with the Tarski
generator W. W, again, generates the complete classical theory of
a model from the literals true in it (fact 1 on p. 29). To this extent,
W-groundedness is groundedness by classical logic. Therefore, it is
appropriate to focus on the logic generator W.

The second complication mentioned above, the absence of definite
principles as to how the in-virtue-of relation interacts with logic, I
will address by extracting, from the literature, what consensus there
is. Before I do so, however, let me make one disclaimer. What follows
touches on deep and rich matters at the core of metaphysics, philos-
ophy of language and philosophy of logic. Of course, I will not do
justice to all aspects relevant to it. My agenda is very specific, and I
will focus on material that directly bears on my project. I can do so
because I my goal is not a comprehensive study of how the in-virtue-
of relation interacts with logic, but an outline of one way of enriching
semantic groundedness by such considerations.

I focus on two recent pieces which discuss the formal interaction of
the in-virtue-of relation and logic, Fine [2010] and Schnieder [2011]
The latter I cited already in the previous section. Now, I turn to how
Schnieder motivates his formal system for the in-virtue-of operator
‘because’. He assumes that if a sentence is ‘governed by a classical
truth-functional connective’ then it ‘has its truth value because of the
truth values of the embedded sentences’ [Schnieder, 2011, p. 448, his
emphasis]. This thought, which he labels the ‘core intuition’, thus
provides a sufficient condition for a complex truth to hold in virtue
of simpler ones. For example, it allows us to say that it is not the case
that snow is not white in virtue of snow being white.

Two comments are in order. For one, Schnieder’s principle only
applies to truths whose main connective is truth functional. Further, it
only concerns classical truths. For another, as Schnieder himself points
out [2011, p. 449], the core intuition needs not to be stated in the
formal mode. We need not speak of ¢ A ’s truth value, but may say
simply that ¢ A\ because ¢, ).

Can I use Schnieder’s core intuition to argue for the philosophi-
cal significance of the logic generator W? Unfortunately not. It over-
shoots and implies in-virtue-of claims that we would not want to
make, and that at any rate are not reflected by the generator. To see
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this, firstly note that taken at face value, Schnieder’s statement of the
core intuition quoted above says that false constituent clauses matter
just as much as truths. After all, he writes that a sentence ‘[...] has
its truth value because of the truth values of the embedded sentences’
[Schnieder, 2011, p. 448, my emphasis]. For example, the disjunction
‘Snow is white or grass is blue’ is true just as much in virtue of the
falsity of ‘Grass is blue’ as in virtue of the truth of ‘Snow is white’.®
Now, ask how the falsity of embedded sentences ought to be put in
the material mode. The natural way is in terms of negation. Thus,
Schnieder’s principle implies that snow is white or grass is blue be-
cause snow is white, as well as because grass is not blue. This, I claim,
is not intuitive. We can argue against it along the lines of my case
above for the true because claim (p. 134). The disjunction is fully ex-
plained by saying that snow is white, and adding that grass is not
blue does not improve on this explanation.

At any rate, such consequences of Schnieder’s principle stand in
the way of how I propose to account for semantic groundedness. The
logic generator of semantic groundedness W does not allow us to
generate a disjunction from one disjunct together with the negation
of the other, whereas Schnieder’s core intuition suggest it to hold in
virtue of both.”

In order to account for W as in the previous section I accounted for
T, I need principles about logic and the in-virtue-of relation that are
less inclusive than the core intuition.

The difficulty with Schnieder’s core intuition is naturally answered
by saying that not all sentences embedded in some sentence matter
for the truth of it. Which do? At this juncture it is useful to turn to
a discussion in Fine [2010, p. 105]. Fine argues that certain principles
about logic and the in-virtue-of relation are well motivated from two
theses.

These are, firstly, that every truth expressed by a syntactically com-
plex sentence, holds in virtue of some truths, its grounds. Secondly,
‘the classical truth-conditions should provide us with a guide to ground’
[ibid.]. How do we understand this best? By ‘classical truth-condi-
tions” I take Fine to mean the standard biconditionals such as: ‘Snow
is white or grass is blue’ is true iff ‘Snow is white” is true or ‘Grass is
blue’ is true. They explain the truth of a complex sentence in terms of
the truth of its subclauses. If a subclause fails to be true, its falsity mat-
ters only to the extent that we need to, so to speak, look elsewhere for
truth. Thus, of the two values, truth is privileged. This distinguishes

My point can also be made as follows: the core intuition suggests a Weak Kleene
truth table for disjunction, whereas Fine’s theses below suggest a Strong Kleene table.
It may help to think in these terms.

7 However, Schnieder’s core intuition may well be used to account for the signifi-

cance of the Weak Kleene generator (§3.5), and its corresponding variant of semantic
groundedness.
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Fine’s approach from Schnieder’s core intuition, which suggested that
false and true subclauses matter equally.

As a consequence, Fine’s theses avoid the undesirable implications
of the core intuition. For example, given the truth that snow is white
or grass is blue, the first thesis requires merely some ground, while
the core intuition requires that the disjunction is true because snow is
white as well as grass is not blue. By the second thesis, it suffices to
note that classically, a disjunction is true if one of its disjuncts is. Now,
snow is white, and by Fine’s theses we are entitled to say that snow
is white or grass is blue in virtue of snow being white. Generally, a
disjunction is true in virtue of its true disjuncts, and if merely one of
them is true then it, and only it, is in virtue of what the disjunction
holds. This thought is formalized well as the following schemata for
a language £ 4 with in-virtue-of operator ‘<’.

d < (bv) if ¢istrue
d<(pvad) if ¢istrue

Only truths stand in the in-virtue-of relation. This prevents the prin-
ciple from being stated in purely syntactic terms, but requires its re-
striction to true £ 4-sentences, a semantic condition. Of course, in or-
der to further investigate the principle, this condition must be spelt
out relative to an £ 4-model. Below, I will do just that for a model of
particular interest to my study.

Turning to conjunctions, classically a conjunction is true if and only
if so are both conjuncts. By the first thesis, however, this biconditional
is given a ‘direction” [Fine, 2010, p. 106], and read as saying that a
conjunction holds in virtue of its conjuncts.®

bb < (b AW) if ¢ is true (54)

As to negation, its classical truth conditions say that a negation is
true if and only if what is negated is false. This poses a problem
if we wish to apply Fine’s first thesis (see also [Fine, 2012b, p. 62]).
Again, only truths stand in the in-virtue-of relation. Therefore, the
right-hand side cannot be read as giving that in virtue of which the
negation is true — after all, what is negated is said to be false.

Fortunately, however, the classical truth conditions of negation can
be split into such principles whose right- as well as left-hand side
ascribe truth, and thus can be read according to Fine’s second thesis.
I move directly to the formal £4-schemata which these principles
motivate.

(53)

b < —= if ¢ is true (55)
=}, < (b vY) if ¢, mp are true 55
—-p < —(p AY) if =, ) are true

(56)

- < =(PpAd) if ~d, " are true

8 Recall that the operator ‘<’ is of variable arity (§ 25).
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Together with the schemata from equations (53) and (54), these prin-
ciples give an £g4-variant of what Fine has called the impure logic
of ground [Fine, 2012b, p. 58]. As such, they complement nicely the
structural principles of Fine’s pure logic (§7.3).

Interestingly, the rules that Schnieder (2011, p. 449) proposes for
his operator ‘because’, and which he motivates from the core intu-
ition, are well viewed as variants of (53) to (56). For example, he

¢

——¢ because ¢
schema from (55). Thus, Schnieder’s formal system can be motivated

from Fine’s two theses. This suggests to read Schnieder’s statement of
the core intuition more charitably than I have done, and understand it
as expressing a thought closely related to what I have extracted from
Fine’s two theses. At any rate, principles (53) to (56) are in line with
what comes close to a consensus about how the in-virtue-of relation
interacts with propositional logic.?

I postpone to look at schemata for quantified logic (p. 150 below),
and instead now argue that the principles formalized in (53) to (56)
have philosophical significance. Then, I will propose to view the logic
generator W as exemplifying these natural principles, and thus being
endowed with philosophical content itself. As in the previous section,
I will support my proposal by a technical result.

What is expressed in (53) to (56) is philosophically significant for
the same reason that the true because claim of the previous section is.
It does philosophical work. Consider the principle that a disjunction
holds in virtue of any true disjunct (the ‘disjunction principle’). It is
used by Kit Fine [2001] in the passage cited above on p. 128, where he
presents ways of settling disagreement as to what holds in virtue of
what. He points out that we have an intuitive access to such questions,
and gives the disjunction principle as one piece of such knowledge.

Other authors make philosophical use of the disjunction principle,
too. Shamik Dasgupta, in his unpublished yet widely noted [2013],
uses the disjunction principle to establish certain key features of the
in-virtue-of relation. For example, he argues against the view that if
A in virtue of it being the case that B then necessarily, if A then B.™
His argument is from the disjunction principle, assuming that the fact
that C v D necessitates neither that C nor that D.

Authors do not in the same manner use the principles concerning
negation (equations 55 and 55). For some, this is due to their view
that for it to be the case that =—A just is for it to be the case that A
(Bolzano WL §209, Correia [2011]). Generally, I suspect, the absence

proposes a rule , which corresponds to the first

Similar schemata or rules are endorsed in [Batchelor, 2010, p. 69] and [Rosen, 2010, p.
117]. Very recently [2013] Fabrice Correia has identified rules for a relation of logical
in-virtue-of that can also be brought into this form, as I will explain below.
However, he does endorse, as many authors do, that in such cases, the fact that
B necessitates that A: necessarily, if B then A. Leuenberger [2014] challenges this
received opinion.
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of negation examples in the literature is due to that they are less
easily parsed than, e.g., the disjunction principles. However, I do not
take this to question the philosophical significance of the negation
principles; in particular as they are well motivated from the same
considerations as the others.

I now turn to the principle that a conjunction holds in virtue of
its conjuncts (the ‘conjunction principle’). At two occasions, Bolzano
uses it as evidence in support of his theory of Abfolge. In WL §199,
he argues that even if a truth follows from its grounds by some gen-
eral principle of valid inference, this general principle is not itself
one of the grounds. His example is that Socrates is Athenian and
philosopher in virtue of Socrates being Athenian and Socrates being
philosopher, but not in virtue of a conjunction being derivable from
its conjuncts.*

Yet another case is found in WL §222, where Bolzano discusses a
candidate sufficient condition for one truth holding in virtue of some
others. Reconstructing his argument goes beyond the scope of the
present study (but see Rumberg and Roski [2012]); my interest is in
that his example of a clear case of Abfolge, indeed his only example at
this point, is that of a conjunction holding in virtue of its conjuncts.

In contemporary literature, we find similar applications of this con-
junction principle. For example, Roderick Batchelor [2010] uses it to
point out that the in-virtue-of relation is stricter than mere logical
implication: while the fact that A and B implies that A, by the con-
junction principle and irreflexivity, the latter does not hold in virtue
of the former.

My proposal is this. Just as the set generator S is well read as
expressing the thought that a set is constituted from its elements,
and just as the truth generator T expresses the true because claim, the
logic generator W expresses the principles expressed in (53) to (56).
This distinguishes T-W-groundedness from philosophically vacuous
instances of the general concept, and answers the challenge of chapter
5.

As in the previous section, this simple thought will be buttressed
by a technical result. I will take (53) to (56) as axiom schemata, and
show that their theory is sound and complete with respect to the pri-
ority relations of semantic groundedness. For this, I firstly transfer
the principles above into schemata for the formal language Lgt.. In
fact, I only need to translate those principles which concern negation
and disjunction, since I assume these to be the only sentential connec-
tions in Lgta, and conjunction to be defined in terms of them. As in

For accuracy, it must be kept in mind that Bolzano did not have the concept of a truth-
functional connective, nor thought that the logical form of a proposition should be
given in something like a modern formal language. However, what he says about
those truths concerning Socrates is an instance of what we nowadays express by a
schema like (54).
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the previous section (p. 137), I formalize the restriction to truths as
restriction to sentences in the least fixed point.

b <——=d if € Itw (57)
—, = < (v ) if ~, P € Irw 7
b < (P AY) if —d, € Irw -

—~p<=(bAad) if -, pelrw

Transferring the disjunction principle (53) into the setting of seman-
tic groundedness is slightly more involved. Recall the concept of I-gg-
rank relative to some generator J and things gg (p. 26). In particular,
every Li-sentence T-W-grounded in the true base language literals
A has a unique T-W-A rank corresponding to, intuitively, how long
it takes to generate it from the A. For my results below to go through,
I have to require that a disjunction holds in virtue of one of its true
disjuncts only if this disjunct is of lower T-W-A rank.

b < (dvy) if e lrw and ¢ has lower T-W-A rank than ¢ v
d<(vaod) if delrwand ¢ has lower T-W-A rank than ¢ v
(59)

Let the theory GTPL of the Grounds of Truth and Propositional Logic,
be the least set of Lgta-sentences containing every instance of schemata
57 and 59 (the ‘logic axioms’), the axioms of Fine’s Pure Logic of
Ground PLG (p. 124), as well as the truth axioms from page 137:

$ < Trd)1 if b e Itw
—$p < —=T'¢’ if ¢ € Itw

and closed under the PLG rules.*?

In the previous section, I observed that the theory GT is both sound
and complete with respect to the relations of T-priority. Can we make
an analogous observation for GTPL? This theory concerns the grounds
of truth and propositional logic. Recall how truths of propositional
logic are generated from true literals by the generator V (§ 2.3). For
the time being, I will consider its combination with Kripke’s truth
generator T, and connect it to GTPL, analogously to how in the pre-
vious section the pure logic of ground was connected to the truth
generator T.

My starting point is to observe that the logic axioms in (53) to (55)
correspond precisely to rules in terms of which V was given (p. 28).
To see this, it helps to consider how the logic axioms relate to the
rules of logical grounding proposed very recently by Correia (2013).

Note that because the axiom schemata involve complicated semantic conditions,
GTPL is not computably enumerable and thus a theory only in a relaxed sense.
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Take any of the axioms from (57) to (59) and rewrite it in rule form.

b
(Vv o)

Thus, you arrive at the basic rules of Correia’s system [2013, p. 4].

¢ P
—(d v ) (b v)
(b v ) ——

For example, rewrite the schema ¢ < (\p v ¢) as the rule:

Now, it suffices to recall equation 6 (p. 28) and note that Correia’s basic
rules characterize the generator of propositional truths V. Thus, from
the logic axioms given above we arrive at the rules of the generator

V.
We can also proceed in the other direction. Start with a V rule, say
¢

ORVAY
that ¢ is V-prior to (¢ v ), in symbols:

, and note that it determines a principle of V-priority such as

¢ <v (pv) (61)

Here, replace ‘<y’ by ‘<’, and you obtain the second of the princi-
ples in (53). Similarly for the other V rules. Each captures a schema
of V-generation isomorphic to one of Fine’s principles, much like T-
generation lines up with the truth axioms of the previous section.
Thus, Fine’s principles about the grounds of logically complex truths
relate to Tarski truth generation V just like these truth axioms relate
to Kripke truth generation T.

Does this observation suffice for the soundness of GTPL with re-
spect to the T-V priority relations? The theory GTPL closes the logic
axioms under the rules of the pure logic of ground. Does T-V prior-
ity satisfy these rules? An observation by Fine himself, transferred to
the present context, shows that they do not [Fine, 2012b, p. 58].73 In
particular, they violate the following rule of amalgamation.

CO/---/Cn<¢ EvO/"'/Evm<cb
CO/---/Cn/aO/---/£m<¢

Amalgamation is derived within PLG (def. 25) by a subtle combina-
tion of Cut and Reverse Subsumption [Fine, 2012a, p. 7]. The relation
of strict V-grounding, however, does not satisfy this rule, therefore
fails to model the pure logic of grounding in the same way as T does.

Here is how to produce counterexamples to amalgamation. (¢ v
P) is V-grounded in ¢, and V-grounded in . Now, in order for
amalgamation to be satisfied, we need ¢, <v (¢ v ). However,
V does not allow us to generate the disjunction from both disjuncts.
Therefore, it is not the case that ¢, <v (¢ v ). The theory GTPL is
closed under the pure logic of ground, in particular therefore under

(62)

13 I thank Jon Litland for friendly guidance through this territory.
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amalgamation. Hence, the structure of the V-priority relations does
not satisfy GTPL.

Recall, from section 2.5, the concept of left-closed generators (def. 7).
Let us now call a generator J amalgamating if for any xx, zz,y, we have
that xx <3y and zz <3y only if xx, zz <3 y. Generalizing the observa-
tion of the previous paragraph, we find that J is amalgamating only
if it is left-closed. V is not left-closed: ¢V (¢ v ) and YV (¢ v V) but
not ¢, V(¢ v ). Consequently, <y does not satisfy the principles
of the pure logic of ground.

Having noted that principles much like my logic axioms do not
ensure amalgamation, Fine considers their extension by the princi-
ple that a disjunction with two true disjuncts holds in virtue of both
[2012b, p. 29]. GTPL closes the logic axioms under the pure logic
of ground. Therefore, every instance of (62) can be derived from the
original axioms by the PLG amalgamation rule. Nonetheless, Fine’s
remark proves useful for my project as it suggests one way of obtain-
ing a model for GTPL from the V priority relations.

Following our recipe, the principle (62) correspond to the following
candidate supplementation of the V rules.

K 6
v D) (©3)

Combined with the V-rules it gives a logic generator V* that is easily
seen to be left-closed in the sense of definition 7 (p. 36). At this point,
we can make use of the following lemma, and infer from it that <+
satisfies amalgamation.

Lemma 13. Every left-closed generator is amalgamating.

Proof. Let 1 be any left-closed generator. Based on proposition 1, I
show that xx <3 y and zz <3 y only if xx,zz <3 y, by nested in-
duction on the height of J-zz-priority trees. For simplicity, I assume
that the relevant well-ordering ww is set-sized, and will work with
its standard ordinal representation.

For the rest of this proof, I will suppress mention of J where context
fixes matters. I will write h(xx,y) for the height of the shortest xx-
priority tree of y. Without loss of generality, assume that h(xx,y) is
less than or equalt to h(zz,y). We reason by induction on h(zz,y).

At the base, we know that zzJy and xxJy. Since ] is left-closed,
zz,xxJy, hence xx, zz < y. For the induction step, let h(zz,y) = o+ 1
and assume that for all uu, if h(uu,y) less than or equal to « then, if
xx <y and uu < y then xx, uu < y. Let xx < y and zz < y. Note that
for some uu the shortest zz-tree 7 of y has a subtree that is a uu-tree
of y of height less than or equal to . By our induction hypothesis we
therefore know that y has a J-xx, uu-tree 7* .

Now consider those sequences (y, ..., u) among T* such that u is
one of uu. Each has a proper extension (y, ..., u,z) among 7. I claim
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that these sequences together with 7* are a J, xx, zz-tree TT of y, and
therefore xx, zz <3y, as desired.

To prove my claim, by definition 3, it suffices to note that, firstly,
y is the root of ' because it is of 7%, and no length one sequence
has been added. Secondly, each sequence (y, ..., as,u) has an initial
segment among T’ because (y, ..., 1) and each of its initial segments
is among T*. Finally, for every sequence {z,u,...,y), uis J-generated
partly from z. because each of these sequences is among 7%, in which
y has a J-zz-tree. O

Recall what it means for two generators to interfere (def. 9 on p. 36)
and note that T and V* do not interfere. Hence, their combination
is left-closed (p. 37) and therefore amalgamating. More generally, the
combination of Kripke’s truth generator T and the left-closure V' of
V provides priority relations that satisfy the rules of the pure logic of
ground.

On this basis, I can now show that GTPL is sound and complete
with respect to the T-V™* priority relations. Towards this, I firstly note
that a if a sentence is T-V*-generated, then it is so from finitely many
sentences. Generally,

Lemma 14. For every Li,-sentence ¢, if  is T-V* grounded in some sen-
tences then these are finitely many.

Proof. Assume that ¢ is T-V'-grounded in some sentences 1,...,
and that this is witnessed by a T-V™ -, .. .-priority tree T. In order
to show that 1\, ... can be enumerated 1y, ..., P, for some natural
number n, we reason by induction on the height of J. At its base, ¢
is generated from ... either by T or V*. Either way, ¢ is generated
from at most two sentences.

For the induction step, assume that ¢ is T-V*-generated from some
sentences, which by our induction hypothesis we know to be (o, . ..,(m
for some m, and that each ¢; is generated from some sentences among
P, .... As in the base case, we show that each (; is generated from
at most two sentences. Hence, \,... are at most 2 x m many sen-
tences. ]

The fact that tracing back T-V* generation does not confront us
with an infinity of sentences, renders it possible for the finite theory
GTPL to prove all facts about T-V*-priority, just like the theory GT
of the previous section was not merely sound, but also complete with
respect to T-priority.

Proposition 15. The theory GTPL is sound and complete with respect to
the structure R = (IT_V+, <T.V*/s <T_V+ <T—V+,/\/ <T—V+,/\)‘
For all L,-sentences &,

¢ <pyr A Wiff ‘& <9’ e GTPL (64)
b <py+ A W iff ‘& <V € GTPL (65)

147



148

AN ITERATIVE CONCEPTION OF TRUTH

For all L,-sentences ¢y, ..., &n, P for some natural number n

G, b <pyt W iff ‘o,...,dn < W' € GTPL (66)
d)OI--'/d)n <T—V+11)ijff/d)01'--ld)n<¢,€ GTPL (67)

Proof. In a nutshell, the proposition holds because the axioms of GTPL
capture the generators T and V, and PLG derives statements that ex-
press, in R, mediate and partial T-V*-generation.

For soundness (right-to-left), we again need to show firstly that the
GTPL axioms are true in R, and secondly, that the PLG rules preserve
truth in YR. The PLG axioms of identity and non-circularity, and the
truth axioms ¢ < T'¢" and —¢p < =T $" hold for the same reason as
they hold in the structure ¥ (lemma 14).

The logic axioms hold in i because, by the recipe given above (p.

145), they correspond to the rules of V*. For example, ¢ < ——¢
——b
holds because ——¢ has a simple T-V* tree from ¢: |
¢
To see that the PLG transitivity rules preserve truth in 9, it suf-

fices to recall how the T-V* priority relations are defined. The sub-
sumption rules S(Z) and S(i) hold by the definition of <t.y+ re-
spectively <t.y+ . Similarly, the soundness of S(%) follows once we
have shown that S(=) preserves truth in 9, i.e. that if GTPL con-
tains (,... < ¢ then (,... <py+ A ¢. This is shown by induction on
the height of ¢’s T-VT tree which witnesses the antecedent. Firstly,
though, note that by the condition on GTPL's axiom schemata, ¢ is
T-V*-grounded in A, hence (proposition 1) it has some T-V'-A pri-
ority tree whose height equals ¢’s rank. What needs to be shown is
that this tree T goes through ¢, .. ..

At the base of the induction on the height of that tree which wit-
nesses the antecedent, ¢ is T-V'-generated from ¢, . ... Now, the only
subtle cases are those of a disjunction ¢, in all others we know that
T goes through (,... (for example, if ¢ is T-generated from ¢, it can
only be generated thus). Dealing with disjunctions, however, it pays
off that GTPL has axioms ¢ < ({ v &) and ¢ < (& v () for all and
only those ¢ whose T-W-A rank is less than that of the disjunction
(schemata 53). We therefore know that ¢’s rank is higher than that
of the disjunct which it is generated from. This in turn ensures that
if generated step-by-step and starting from A, ¢ is generated from C.
Hence, the tree T witnessing ¢’s groundedness in A, goes through (.

For the induction step, assume that in T, ¢ is T-V'-generated from
some 1, ... which in turn are T-V'-generated from ¢,.... By the in-
duction hypothesis, there is a T-V*-A priority tree T’ whose height
equals 1’s rank, and one of whose leaves is (. Extend this tree 7’ by
generating ¢ from its root ; the result witnesses ¢ <y _y+ A ®, as
desired.

Finally, to show that the cut rule satsfies truth in 3, it is key to
note that we now work with the amalgamating generator V*. For re-
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verse subsumption, we make again use of the irreflexivity of <py+_ A
together with the definition of <p.y+.

For completeness (left-to-right), as in the proof of proposition 14,
cases (67) and (65) are either trivial or follow from the other cases by
subsumption. Let us look at (64) and (66) separately. Firstly, to show
(64) assume that ¢ <py+ o . Hence, some T-V*, A-priority tree T
of 1\ contains a sequence {1, ..., d). We reason by induction on the
length of this sequence.

At its base, we know that ¢ is among some sentences from which
P is T-V*-generated. Then, ¢,... < is either an axiom of truth, or
of logic. Either way, by the subsumption rule S(=) the theory GTPL
contains ¢ < . For example, if \ is of the form —(C A &) we know
that GTPL contains —(, —§ < . Since { is T-V*-generated partly
from ¢, we also know ¢ to be either —( or —&. Then, however, the
PLG rule S(=) allows us to infer ¢ < 1, as desired.

For the induction step, let ¢ <t _y+ A 1 be witnessed by (i, ..., x, $),
and assume that x < { eGTPL. By the same argument as in the base
case, we show that ¢ < x eGTPL. Then, by subsumption S(é) and
the transitivity rule T(f) we derive ¢ < 1.

Secondly, for (66) assume that ¢o, ..., $n <t.y+ P. Then has a T-

V*t-do,..., On-priority tree T. We show that GTPL contains ¢y, . ..,pn <

P by induction on T’s height (p. 31). At its base we reason as in the
case of (64), except that now we do not even need the subsumption
rule but have ¢y, ..., dn <P directly as an axioms of truth or logic.
For the induction step, assume that Cop,...,(m <ty+ Y and ()
each ¢; is T-V*-generated from some cbj P d)j, k <1< n, as well
as that () every ¢i, i < n, is among some sentences from which
some (; is thus generated. By our induction hypothesis, we know that
GTPL contains Cp, ..., (m < . Then, by subsumption 5(2), (é) Cut
and reverse subsumption we derive cl)%, s, (b?, e, OO < )
(compare also [Fine, 2012a, p. 6]). By (}), each d){ is some ¢y, i less
than or equal to n; by (}), each ¢;, i less than or equal to n is some
{;, j less than or equal to m. Consequently, the theory GTPL contains
the Lgia-sentence ¢o, ..., dn <1, as desired. O

I now turn to how the in-virtue of relation interacts with the quanti-
fiers. Since I assume ‘3" in the language L, to be defined in terms of
‘Y, it suffices to give principles for universal quantification. I follow
the same strategy as above (p. 140) and read the classical truth con-
ditions of a universal quantification as giving in virtue of what it is
true, thus endowing it with a direction, to use Fine’s figure of speech.

However, this strategy encounters some complication which we did
not meet in the propositional case [Fine, 2012b, p. 60f]. A sentence of
the form —Vx¢(x) is true if and only if something does not satisfy
¢ (x). Thus, a truth of this form holds in virtue of a single witness
truth —=¢(0), for some object o of the domain. So far so good. A uni-
versal quantification Vx¢(x), however, is true if and only if every ob-
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ject satisfies ¢. Following our strategy, we therefore would like to say
that a universal quantification holds in virtue of all these truths.

To accommodate this thought, Fine offers two distinct axioms (ibid.).
One is formulated in terms of a primitive relation “... are all and only
the objects that exist”. Then, Vx$(x) is grounded in ¢(0),...,d(p)
and the fact that o,...,p are all and only the objects that exist. The
other, simpler rule requires a non-free background logic, and that
the language provides a name for every object of the domain. These
assumptions are reasonable for my purpose, as I want to apply the
principles to the language Ly, of semantic groundedness. Here, every
object of the intended domain has a name, since for every standard
number n its numeral 1 is an L,-term.

The idea then is that from L, -truths ¢(0), d(1),..., we can infer
that the truth Vx¢ holds in virtue of them. This thought is natural
enough, but it cannot be implemented in the present setting. In Lga,
the in-virtue-of relation is expressed by a sentential operator. Thus,
implementation requires us to acknowledge Lgta-sentences of infinite
length, since Vx¢ holds in virtue of infinitely many truths; but of
course Lgt, is an ordinary finite language.

My present goal is to account for the philosophical significance of
semantic groundedness and I use the in-virtue-of relation for this.
However, I do not aim this account to be spelt out in full detail. In
particular, as noted at the end of the previous chapter (p. 125), I do
not attempt to formulate Fine’s pure logic of ground in its intended
infinitary setting. Now I have found that an infinitary language is
needed in order to formalize adequately how, according to Fine, the
in-virtue-of relation interacts with the universal quantifier. Accord-
ingly, I will work with only a fragment of Fine’s impure logic, given
by the following axioms. I write ¢(a) to indicate a sentence that con-
tains the term a, and ¢(x) to indicate a formula with a single free
variable x.

d(a) < Vxd(x) if d(a), Vxd(x) are true

. . (68)
—¢(a) < ~Vxd(x) if =¢(a) is true

Let GTL be the least set of Lgia-sentences containing the PLG ax-
ioms, the truth axioms, the axioms governing the interaction of the
in-virtue-of relation with propositional logic, as well as

dla) <Vxo(x)  if p(a), Vxd(x) € It-w (69)

if =¢(a) € It.w and has

~éla) < 2Vxolx] lower T-W-A rank than —Vx¢(x) (70)

After having above shown the theory GTPL to be sound and complete
with respect to the structure R of T-V* priority relations, I now turn
to ask if GTL can be shown sound and complete with respect to T-W
priority.
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Firstly, let us ask for soundness. Of course, since V needed to be
supplemented by the generator given in equation 63, so does W. How-
ever, more is needed. In the present, quantified setting, the problem
concerning the amalgamation rule derived in PLG shows up in a sec-
ond guise.

Consider the following two instances of principle (70): 1 # 1+1 <
—Vx(x =x+1)and 2 # 2+ 1 < =Vx(x = x+ 1). By amalgamation,
GTL contains T # 1+4+1,2 # 2+ 1 < =Vx(x = x+ 1). The Tarski truth
generator W, however, does not allow us to generate the right-hand
side from both sentences on the left-hand side. Therefore, it is not the
casethat 1 #14+1,2#241 <w - ¥Vx(x =x+1).

This analogous problem has a just analogous solution. We supple-
ment W by the following way of generating negated universal quan-
tifications [Fine, 2012b, p. 59].

—¢(n) —¢(m)

n,..., m are some numbers (71)

—¥xd

Let W' be the combination of W with the generators given in (63)
and (71). I will show that the T-W™ priority relations satisfy the the-
ory GTL. In fact, we can show that the connection between the prin-
ciples that govern the in-virtue-of relation, and T-W™ groundedness,
is even stronger. However, unlike in the case of GT and GTPL, GTL
does not fully capture T-W™ priority. Propositions 14 and 15 are com-
pleteness results. For example, GT contains ¢ < 1 exactly if 1\ is
T-grounded in ¢. Can we similarly prove completeness of GTL with
respect to T-W™ priority?

Unfortunately not. A true universal quantification, such as Vx, x = x
is W-grounded in infinitely many truths. Since our language of the
in-virtue-of relation, however, is finite, the corresponding statement
that Vxx = x is true in virtue of 0 =0, 1 =1, ..., cannot be expressed,
much less proved.'* GTL has axioms merely of what a universal quan-
tification holds partially in virtue of, for instance 0 = 0 < Vxx = x.
Accordingly, the best we can hope for is that GTL contains such state-
ments ¢ < P for every corresponding case of T-W™' dependence
¢ <1.w+ A- And this can be proved.

Proposition 16. The theory GTL is sound with respect to the structure
6 = (Inw+, <rw+, <r.w+ A ), and partly complete.

G, <rw+ W if'g,... <P e GTL (72)
G,...<rw+ Vord,...arep if 'do,..., dn <P € GTL (73)
¢ <rwraW iff ‘& <Vv’e GTL (74)

¢ <rwravord =19 iff ‘¢ <y'e GIL (75)

Importantly, lines 72 and 73 are not biconditionals, but only state
the soundness of GTL with respect to T-W* grounding.

14 Also, no analogue of lemma 14 above is available.
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Proof. Soundness is proved analogously to above. We note that the
axioms (69) and (70) are true in &, because Vx¢(x) is partly W+-
generated from ¢ (1), and —Vx(x) is fully W-generated from —¢ ().

Completeness, too, is largely proved analogously to the proof of
proposition 15. To show that ‘¢ < ’e GTL if {p T-W'-depends on
¢, we reason by induction on the length of the witness sequence
P, ..., d). At its base, P is T-W'-generated from sentences ¢, .. ..
Either 1 is a universal quantification or not. If not, then ¢,... <
is a GTL axiom, and we obtain ¢ < 1 by the PLG subsumption rule.
If 1 is a universal quantification, and ¢ is one of the infintely many
sentences from which it is generated, then ¢ < 1 is a GTL axiom,
and we are done.

For the induction step, let ¢ <t.y+.o P be witnessed by a sequence
4, ..., x, ¢), and assume that “x < \’e GTL. By reasoning just analo-
gously to the base, we derive ¢ < x, and infer ¢ < P by the transitiv-
ity of <. O

Proposition 16 shows that the structure of T-W*-priority relations
among the grounded truths mirrors their order by a relation of the
kind as the theory GTL describes. Thus, proposition 16 provides math-
ematical support for my proposal that the generators T and W+ have
a natural reading in those principles which philosophers have argued
to govern how the in-virtue-of relation interacts with logic. Moreover,
I have above presented cases in which these very principles are used
by philosophers in their arguments. Thus, proposition 16 supports
the connection between the formal concept of semantic grounded-
ness, modulo its supplementation by the rules of (62) and (71), and
philosophical work.

8.4 RELATED WORK

How does what I undertook in the previous sections relate to the
recent work by Fabrice Correia and Kit Fine mentioned in the intro-
duction [Fine, 2010; Correia, 2013]?

Firstly, I approach the technical material from the opposite direc-
tion. My starting point is the formal concept of semantic grounded-
ness, and the need to account for its philosophical significance. Fine
and Correia are both primarily interested in the in-virtue-of relation,
and use Kripke’s model constructions to test and clarify candidate
principles governing this notion. Speaking figuratively, in Fine’s and
Correia’s work rigour flows from the formal concept of grounded-
ness to the philosophical notions of grounding. My goal however, is
to have philosophical illumination flowing the other direction.

However, I believe that this difference between our projects is not
due to disagreement on the subject matter, but merely a difference in
perspective. The projects are compatible, and may indeed stimulate
one another.
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Secondly, unlike Correia [2013] I show that certain in-virtue-of prin-
ciples are satisfied by the high resolution characterization of semantic
groundedness. Correia works with what I called the low resolution
characterization, that is its standard presentation in terms of a single
jump operator (§3.3). Early in the present study (§3.4), I showed that
such a Kripke jump is well analyzed by the combination of the truth
generator T and a logic generator, e.g. W. On this high resolution we
see that Kripke’s semantic groundedness is given by rules that, as
we saw in the previous sections, correspond to in-virtue-of principles.
Correia endorses similar principles, but his low resolution approach
to semantic groundedness does not provide him with corresponding
rules. As a consequence, Correia is forced to say that literals true for
interpreting “T” by the jump of some set X hold in virtue of those
literals true for interpreting “T” by X [Correia, 2013, lemma 7.9]. For
example, Correia must say that T'0 # 1' holds partly in virtue of
3 # 1+ 1, because the latter is true for the empty interpretation of ‘T’
and the Kripke jump of the empty set contains 0 # 1. This, however,
conflicts with our antecedent grasp of the in-virtue-of relation. Work-
ing with the high resolution characterization I avoided such unintuitive
commitments.

Thirdly, unlike Correia, I provide a model for the stricter, non-
circular in-virtue-of relation as characterized by Fine’s pure logic. The
key to this result is my definition of T-W-A-dependence (def. 5 on
page 33). In a nutshell, an £, sentence ¢ depends on a sentence 1 if
and only if there is what I call a T-W priority tree and, importantly,
this tree is as high as how long it takes to T-W generate ¢ from A.
Only this latter condition rules out detours as depicted in figure 7 (p.
33). Thus, it ensures dependence to be irreflexive, a fact that has been
crucial to the results of the previous sections.

Correia does not extract an irreflexive concept of dependence from
Kripke’s semantic groundedness. Consequently, the in-virtue-of re-
lation which he interprets in Kripke’s construction fails to be non-
circular. Correia acknowledges this fact but takes it as evidence against
the non-circularity of the in-virtue-of relation [Correia, 2013, p. 26].
I disagree, but postpone further discussion to another occasion, as
presently my goal is just to explain how my approach differs from
Correia’s. Suffice it to say that I believe that without a condition such
as I impose on T-W priority trees, Kripke’s construction does not pro-
vide a model of the in-virtue-of relation. I find support for this view
in the work of Kit Fine (2010). He also works with an irreflexive no-
tion of semantic dependence, and arrives at it by similar means. Let
me explain briefly.

Like Correia, Fine models principles of the in-virtue-of relation and
truth in Kripke’s least fixed point construction, but unlike Correia,
not using its standard low resolution characterization. Instead, Fine
works with what he calls its ‘proof-theoretic” presentation. The sen-
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tences of the least fixed point are derived from the arithmetical truths
by rules [Fine, 2010, pp. 110f]. For present purposes, these rules can
be identified with those by which I gave the Tarski generator W (p.
28) and the Kripke generator T (p. 49). Thus, Fine works with a high
resolution account of Kripke’s construction similar to that of chapter 3
above.

On this basis, Fine models the notion of non-circular, mediate par-
tial in-virtue-of in terms of efficient derivations [Fine, 2010, pp. 112].
As far as I can see, the relevant notion of efficiency is best rendered
precise by the condition which I impose on T-W priority trees: a
derivation tree of ¢ is efficient only if it is as high as how long it
takes to T-W generate ¢ from A, ie. only if its height equals ¢’s
rank.” To this extent, the previous sections may well be viewed as
elaborating on Fine’s work.

Fourthly, I went beyond both Correia’s and Fine’s soundness results
in that I also showed completeness. In section 8.2 I observed that the
pure logic of ground together with the axiom schemata ¢ < T'¢’
and —¢ < =T'¢’, is complete with respect to the T priority relations.
Then, in section 8.3, I showed that if we also add analogous principles
for propositional logic, the resulting theory is complete for T-V prior-
ity. Due to my focus on a finite language for the in-virtue-of relation,
this completeness result does not fully carry over to quantified logic.
Nonetheless, proposition 16 is stronger than what is noted by Correia
or Fine.

Moreover, my completeness results are desirable not merely be-
cause they strengthen Fine’s and Correia’s findings. They also sup-
port my philosophical project and constitute a close formal connec-
tion between the in-virtue-of relation and Kripke’s concept of seman-
tic groundedness, closer than mere soundness.

Finally, unlike both Correia and Fine, I argued that in-virtue-of and
groundedness are connected also through some informal principles
which on the one hand underly the rules of the generators T and W,
and on the other hand govern the interaction of truth respectively
logic with the in-virtue-of relation. Thus, I supplemented the merely
formal connection of soundness and completeness by what may be
called an intensional connection between the in-virtue-of relation and
semantic groundedness. It has not been identified by Fine, nor by
Correia. In sum, the material of the previous sections reveals that
the philosophical notion of one truth holding in virtue of others, and
Kripke’s formal work on truth, are more closely connected than what
has yet been observed.

My specific interest mentioned above is therefore well met; I gave
formal and philosophical evidence that semantic groundedness can
be accounted for in terms of the in-virtue-of relation. More precisely, I
made a case that the philosophical significance of semantic grounded-

15 My reading of Fine’s is supported by his remarks in end note 13 [2010].
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ness can be accounted for from the thought that it is true that snow is
white in virtue of snow being white, paired with its analogues about
in virtue of what a logically complex truth holds. Kripke’s fixed point
construction is significant because it tracks these principles, just as the
cumulative hierarchy of sets receives significance from the thought
that a set is constituted from its elements.

8.5 CONCLUSION

In this chapter, I made a simple proposal. Both truth and logic genera-
tor exemplify natural principles of the in-virtue-of relation. In section
8.2 I argued that the truth generator T is well read as expressing the
true because claim. If using T we generate one truth from another, then
this is read as saying that the former holds in virtue of the latter. Sec-
tion 8.3 presented a case that the generator W analogously captures
principles as to how the in-virtue-of relation interacts with logic. For
example, the thought that it is not the case that snow is not white
because snow is white gives philosophical content to W-generation of
the former from the latter.

I do not claim this insight to be very original. Rather, I suspect such
considerations to underlie what many people find attractive about
Kripke’s construction. My contribution is to have rendered it explicit.
In addition, however, I supported this simple, natural reading of
Kripke’s construction by a series of technical results. They show that
the structure of T-W priority relations among the grounded truths
mirrors their order by the in-virtue-of relation, according to the natu-
ral principles about truth and logic.

To this extent, semantic groundedness receives philosophical signif-
icance much like, according to the iterative conception of chapter 6,
set groundedness receives significance from the philosophical notion
of constitution. In sum, to repeat my slogan from the introduction,
the in-virtue-of relation is for semantic groundedness what constitu-
tion is for set groundedness. I have proposed an iterative conception of
truth.
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9.1 INTRODUCTION

I propose using philosophical concepts of priority, in particular con-
stitution (chapter 6) and the in-virtue-of relation (chapter 7), to sup-
plement the formal concept of groundedness. More precisely, I use
these philosophical notions to account for the philosophical signifi-
cance of its paradigm instances: the well-foundedness of sets (§2.7)
and Kripke’s semantic groundedness (§3). However, this philosophi-
cal view of groundedness faces a challenge. In the present chapter, I
will present the objection, clarify it and develop a response.

9.2 THE GHOST OF THE HIERARCHY

The challenge is closely linked to Kripke’s 1975 remark that [Kripke
1975:714]

[...] the induction defining the minimal fixed point is car-
ried out in a set-theoretic meta-language, not in the object
language itself. [...] The ghost of the Tarski hierarchy is
still with us.

Accordingly, I will speak of the ghost challenge. It goes as follows. If
we have to ascend to a meta-language in order to speak of ground-
edness (in particular, of its philosophical content), then the notion of
grounded truth is not available to us in our own language.

This challenge must be distinguished from the problem known in
the trade as revenge (see, e.g., Beall [2007]). The revenge objection to
Kripke’s theory of truth is to observe that it cannot express the fact
that in the least fixed point model, the liar sentence is not true, or
not determinately true. To begin with, there is textual evidence that
Kripke saw revenge and ghost challenge as separate problems. This
is the context of the quote given above (my emphasis).

[...] the present approach certainly does not claim to give
a universal language, and I doubt that such a goal can be
achieved. Firstly, the induction defining the minimal fixed
point is carried out in a set-theoretic meta-language, not
in the object language itself. Secondly, there are assertions
we can make about the object language which we cannot
make in the object language. For example, Liar sentences
are not true in the object language, in the sense that the
inductive process never makes them true; but we are pre-
cluded from saying this in the object language by our in-
terpretation of negation and the truth predicate.

Kripke gives two reasons to be skeptical whether a universal lan-
guage can be achieved. The second is that in the object language,
we cannot say that the liar sentence is not true — this, however, we
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know to be the case by looking at our model from the outside. This
is the problem of revenge. The first reason given by Kripke, how-
ever, is that the process by which we have arrived at the model, and
which captures the idea given informally by Kripke’s story (see §3.2
above), cannot be carried out in the object theory. The idea, now, is the
philosophical content of semantic groundedness, and the problem of
expressing it in our own language is what I call the ghost challenge.

In addition to textual evidence, we can also argue directly that my
ghost challenge is distinct from the revenge problem. Assume for the
sake of the argument that we accept the revenge challenge. We ac-
cept that if we look at our theory from the outside, there are facts
pertaining to truth which we cannot express using the truth predi-
cate of our theory. Then, the challenge from groundedness being a
meta-theoretic notion is still pressing. For, assume that it is true that
in order to speak of semantic groundedness we have to ascend to a
meta-theory, and that we cannot speak of the groundedness of truth
in our own language. If so, groundedness would be of little relevance
for logical-philosophical research into truth. Since, this project is ulti-
mately not about truth in specific models of a certain object language,
and by our assumption groundedness only applies to object language
truth.

Of course I do not claim that any such “sandbox” investigation
lacks relevance. It certainly is valuable, indeed indispensable. How-
ever, its results feed into philosophical research only to the extent
that from our sandbox findings we can extrapolate to truth in our lan-
guage. This step requires that the concepts at work can be transferred
from the object language to our own language. The ghost challenge
is that this cannot be done for groundedness.

In sum, while the revenge problem is about how much we can do
with the grounded truth predicate, the ghost challenge is about whether
the groundedness approach can be carried out in our own language
in the first place. In response to it, the next section motivates a new
way of expressing groundedness, one that is not meta-theoretic.

9.3 SIDESTEPPING THE GHOST

Recall that Kripke does not just give a definition. He also tells a story
of how a speaker learns to use the truth predicate (§3.2). It is cen-
tral to Kripke’s picture that this learning process is presented as a
process over time. This suggests a simple response to the ghost chal-
lenge. Although the formal definition of grounded truth is essentially
meta-linguistic, we can at least express the intuitive component of
semantic groundedness contained in Kripke’s story: that the speaker
understands T'¢" only if she has understood ¢ earlier. Let us add
tense operators to our language, and formalize this intuitive thought:
T'¢" — earlier, . Regimenting the temporal metaphor of Kripke’s
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story also provides a way of expressing the philosophical account of
grounded truth that I proposed in chapter 3. The order in which the
speaker comes to understand sentences containing truth is the order
of grounding. Below, I will develop a tensed theory of truth and show
that it proves every instance of the schema T'¢' — earlier ¢ (corollary
5). To this extent, it formalizes the intuitive component of semantic
groundedness.

Moreover, there is a strong case for this tensed schema that in the
previous chapter I have labelled the true because claim (p. 134), and
thus an argument that such a tensed theory of truth expresses the
philosophical content of semantic groundedness developed in the pre-
vious chapter. After all, this account was developed in close analogy
to the iterative conception of sets and the role of constitution in it.
Now, in the philosophical literature on the iterative conception, con-
stitution is frequently expressed in temporal terms.

At this point, the reader may sense a worry along the following
lines. Truth is absolute. It does not make sense to speak of something
becoming true. This worry results from taking the temporal vocabu-
lary more literally than I intend it to be understood. Again, an anal-
ogy with the iterative conception of sets helps. As explained on p. 109,
this vocabulary cannot be taken at face value. Nonetheless, it helps
the philosopher to grasp the idea that the elements are prior to their
set.” In much the same way, I propose to use tense to express the
philosophical content of semantic groundedness. Tense is not used to
express matter-of-fact temporal relations, but the priority of ¢ over
T'¢". Thus, my proposed reading of the tense operators not only sug-
gests a response to the ghost challenge but in fact enables us to make
philosophical use of the temporal metaphor in the first place.

As I draw the analogy to the iterative conception of sets, I ought
to acknowledge that a more common characterization of it is not
in modal terms, but either using Boolos-Shoenfield theory of stages
[Boolos, 1971] or the Scott-Potter theory of levels [Potter, 2004]. Can
we not, it may be asked, respond to the ghost challenge along anal-
ogous, extensional lines? I believe we cannot. A theory of stages, or
levels, does not answer the ghost challenge in a satisfactory manner.
However, I will return to the stage-theoretic contender in my discus-
sion below (§9.7).

So far, I have outlined how I will express the intuitive component of
semantic groundedness. In fact, however, the tensed approach taken
below also provides a new characterization of Kripke’s formal con-
cept of groundedness. According to Kripke, the truth of a sentence
is grounded if and only if it is in the least fixed point of his Strong
Kleene jump operator. This least fixed point is approximated by a
transfinite sequence of stages, which corresponds to the learning pro-
cess mentioned earlier. Arguably, therefore, it is the stages that carry

1 Of course, the latinism ‘prior” is itself temporal vocabulary.
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the weight of Kripke’s formal concept. As Albert Visser remarks in
his insightful Handbook entry (1983, p. 180),

[...] philosophically speaking the fixed point is not the
terminus ad quem but the stages construction is the basic
thing.

Below (9.6), I will show that all well-ordered models of my tensed
theory of truth are isomorphic to the stages of Kripke’s fixed point
construction. In this precise sense, the theory captures also the formal
concept of semantic groundedness.

In sum, I respond to the ghost challenge as follows: There is a way
of expressing groundedness other than ascending to the meta-theory.
We can use fense instead. English already has the vocabulary for this,
and so would the language of our universal theory. But even if this
was not the case, and we had to extend our language by temporal
operators, this would still not mean to ascend to a meta-theory. Let
me use the following metaphor. Whereas adding meta-theory is a
vertical extension of our theory, my proposal is that of a horizontal
enrichment. We do not need to let the ghost chase us up the hierarchy,
we can sidestep it.

9.4 A LOGIC FOR GROUNDEDNESS

I now turn to implementing the proposal. I will formulate a tensed
theory of grounded truth. However, what follows is merely one way
of carrying out my idea, and I do not think that my philosophical
proposal stands or falls by its success.

As in chapter 3, let L1, be the language of first order arithmetic ex-
tended by a unary relation symbol ‘T’. Recall that the language does
not contain a primitive symbol ‘-’ and that we define the material
conditional in terms of negation and disjunction.

I wish to enrich this familiar machinery by resources to express the
groundedness of truth without ascending to a meta-theory. My goal
is to enable a theory of grounded truth to express the priority of ¢
over T'¢". I want it to be able to state that for T'¢" to be true at some
point, ¢ must have been true earlier. If so, I submit, we have found a
way of expressing in the object language the true because claim, that,
say, it is true that snow in virtue of snow being white.

In order to achieve this, I will modalize the first-order setting of truth.
More precisely, I will add the resources of tense logic. Tense logic is
formulated using two primitive modal operators, one operator look-
ing forwards in time and reading “it will always be the case that ...”,
another operator looking backwards in time and reading “it has always
been the case that ...”.

Traditionally, the forwards looking operator is denoted ‘G’. How-
ever, since I use boldface capital letters already for the various gener-
ators of the formal concept of groundedness (chapter 2), my notation
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will deviate from the traditional presentation of tense logic. Semanti-
cally, the operator “it will always be the case that ...” works precisely
like the box operator in other modal logics. Therefore, it makes sense
to use the standard symbol ‘o’ for it.

Its counterpart is the backwards-looking operator “it has always
been the case that ...”. Semantically, it works like the box operator,
except that it works on the converse of accessibility. I will extend Ly,
by two operator symbols = and o (for intuition: the language has a
dark past but a bright future) to the language Liam (‘m’ for modalized).
As usual, we define ¢ as — = —~¢, and o¢ analogously. Occasionally, I
will use ® ¢ (read: “it is always the case that” ¢) as a meta-linguistic
abbreviation for sp A d A od, and @ (read: ‘it is sometimes the case
that” ¢) as short for ¢ v ¢ v odp [Garson, 1984, p. 292]. Although it
comprises two modal operators o and =, the language Lim is inter-
preted in ordinary models (W, R, D, d) of first-order modal logic. od,
on the one hand, holds at some point w from W iff it holds at every
point R-accessible from w, that is, at every point v such that wRv. s ¢,
on the other hand, holds at w iff it holds at every point conversely
accessible, that is, at every point v such that vRw. In effect, o “looks
forwards” and = “looks backwards”.

This already allows us to express the first component of my intu-
itive gloss on groundedness. The truth of T'$" presupposes the truth
of ¢, that is: T"$" only if ¢ earlier, that is: T'p’ — . I will assume
that time is well-ordered. Formally, I will restrict attention to mod-
els (W, R, D, d) such that R well-orders W. Quantified modal logic is
hard, both technically and philosophically. Fortunately, I do not have
to deal with its subtleties. All I want to say is that truth changes over
time. What our first-order quantifiers range over remains the same,
and so does what our terms denote. Therefore, I can let the quanti-
fiers be governed by standard, non-free first-order logic, and assume
all terms to be rigid designators [Garson, 1984]. The result is a basic
first-order logic of well-ordered time: woq. I recall some basic defini-
tions.

Definition 26 (Validity and Consequence in Quantified Modal Logic).
Let § be any frame (W, R) and 9 be any model of first-order modal
logic based on §, we say that a sentence ¢ is valid in 9 iff for every
we W, M E= ¢wl. We call ¢ valid in § (in symbols: ‘¢ ¢’) iff for
every model 91, ¢ is valid in 9. Finally, let f be a class of frames (e.g.
the well-ordered frames) we say that ¢ is a consequence over | of some
set of sentences L (in symbols:  =¢ ¢) iff for every model 9t based
on § = (W, R) and every w € W, if M & Z[w] then M = d[w].

Thus, I will write X =y ¢ if for every wog-model (W, R, D, d) and
every we W, if (W,R,D,d) = X then (W,R,D, d) & ¢. Note that woq
validates the Barcan formulae for both operators.

The first-order logic of well-ordered time is a powerful tool. For
two structures S and S’. I write S ~ S’ for the statement that there is
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an isomorphism between S and S/, and 9 for the standard model of
arithmetic.

Theorem 1 (Scott, Garson). Let Lam be the language of first-order arith-
metic plus tense operators ‘o’ and “w’. Extend Lam by a unary predicate
symbol ‘N’ to the language Lamn. There are Lamn sentences L such that the
following holds.

Let (W, R, D, d) a constant-domain model of the first-order logic of well-
ordered time woq. Then we have that for every point w e W,

(W,R,D,d) EX[w]= (D,d) N
That is, every point that satisfies L is in fact a standard model of arithmetic.

Proof. See Garson (1984), sections 3.2.2 and 3.2.3.
(Sketch) Let & comprise the following

N1 Vx e (Nx A m—=Nx A o—Nx)

- “Every object of the domain has the property N at exactly
one time”

N2 ® vxvy((Nx A Ny) - x =)
- “No two things have the property N at the same time”

Thus, every model of N1 and N2 will have an injective function from
the (possibly non-standard) domain of 9 into the well-ordered set
W.

Note that for every model 9t = (W, R, D, d) such that P1AP2 is true
at some w € W, we have that M = ¢ (N A oNm)[v], v e W, just in
case N7 is true at an R-earlier point than Nn. Thus, N1 and N2 have
allowed us to define, by ¢ (Nx A oNy), a restriction RN of the well-
ordered relation R to those points that some object of the domain
is mapped to. Let us write xRy as a meta-linguistic abbreviation of
@ (Nx A oNy).

X contains another axiom.

N3 VxWy (y = S(x) & xRy A Vz((z #y A xRz) - yﬁz))

- "y is the successor of x just in case y is the least z RN-
greater than x”

Finally, add to X the axioms of Robinson arithmetic, in particular:
Qo Wx(S(x)x # 0)
Q1 ‘v’x(x =0vIy(x = 5(9)))

Let 9 be any model, w € W and assume that (W,R,D,d) = Z[w].
As said before, the fact that (W, R, D, d) satisfies N1 and N2 implies
that the objects of the domain D are mapped injectively to points
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b et b mod
Ko of(dp - ¢) = (9p »od) =a(d - ¢) - (ap — =dp) Ka
4c op > ood oSS ¥ ol 4m

.30 oh AP > o(d AP) volod A) volp Al)
3¢ s Ap o oD A))veleh AY) v e(dAp)

Table 2: Axioms for linear time

in W. These are well-ordered by R, and xRy expresses precisely this
restriction RN of R. N3 ensures that 7t is mapped to the RN-successor
of what is mapped to S(m).

Thus, Qo ensures that ‘0’ denotes the RN-least point wo in W,
and Q1 that RN is an w-sequence. Hence, the domain at w is (iso-
morphic to) the standard numbers. However, since we have to do
with constant-domain models of tense logic, we in fact know that
(D,d) ~ M.

O

Corollary 1. The logic Fwoq is not axiomatizable.

Proof. (Idea, for details see Garson (1984:294).) Analogously to how
we infer the incompleteness of second-order logic from Godel’s in-
completeness theorem and the fact that second-order arithmetic is
categorical.

The key observation is that for the set of sentences X from proposi-
tion 1 and any sentence ¢ of first-order arithmetic,

Fuwg & — ¢ iff M= ¢ (76)
for the standard model of arithmetic 1. O

Hence, there is no proof procedure complete with respect to the
first-order logic of well-ordered time woq. This stands in contrast with
many other first-order logics of time, that have such complete axiom-
atizations. For example, the logic of linear time is complete. In the
following, I will therefore develop an axiomatic theory of grounded
truth on the basis of linear time. As we will see, it will allow us to
approximate syntactically what we have just found to be beyond the
reach of axiomatization, the logic of well-ordered time.

Unlike wogq, this logic of linear time Ig is axiomatizable. There are
complete proof procedures for Ig, for example systems of labelled
tableaux [Priest, 2008, 14.7.12]. However, as I will largely reason about
rather than within /g, it will prove useful to work with a Hilbert-style
axiomatic proof system. Its axioms for linear time are presented in
table 2. Thus, let £ 14 ¢ if there is a proof of ¢ from X in a Hilbert-
style axiomatization of the first-order logic of linear time Ig.

Since, of course, every well-ordering is a linear order but not vice
versa, the logic of well-ordered time woq is strictly stronger than Ig.
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In particular, complete proof systems for /g are sound with respect to
the logic of well-ordered time woqg.

9.5 A MODAL LOGIC OF GROUNDED TRUTH

I now formulate a theory of truth MGT in the logic of linear time
lg. My goal is to capture the notion of grounded truth over first-order
arithmetic. Accordingly, MGT is based on first-order arithmetic. More
precisely, it includes first order Peano Arithmetic (‘PA’), whose induc-
tion schema we generalize to the extended language L,m.? Further,
our modal logic is intended to express the step-by-step construction
of a type-free truth predicate over arithmetic. The base theory, how-
ever, is not subject to this development. It holds at every stage of
the construction, hence necessarily in our chosen modal logic. Conse-
quently, [ puta * ® ’ (“always”) in front of every PA axiom. Let ‘APA’

denote the resulting Liam theory. As a result, MGT proves & ¢ for
every PA theorem ¢ in the language of arithmetic.

Lemma 15. Let ¢ be any £ y-sentence.
PA-¢ = APAq " ¢

Now, I add axioms that govern how ‘T’ interacts with the modal
vocabulary.

(Ground) < (Vx—Tx)

APA and Ground couched in a first-order logic of linear time provide
a general framework for theory of grounded truth. By itself, however,
it leaves open whether anything at all becomes true at some point.
What needs to be added now are axioms of truth-introduction.

My goal in the present chapter is specific. I aim for a theory that
expresses semantic groundedness, in particular JSK-groundedness.3
Thus, I do not want it just to say that more and more sentences be-
come true, but that this happens according to the Strong Kleene jump.
Hence, I need axioms that say how truth is introduced according this
evaluation scheme. However, the logic of tense I have chosen as my
framework is based on classical first-order logic. And it is generally
desirable to remain within the classical setting. In sum, we need ax-
ioms that express truth introduction according to the Strong Kleene
jump operator, and do so in classical logic.

Fortunately, such axioms are available, in the system KF (for Kripke-
Feferman). They express, in the object language of arithmetic plus

Arithmetic is a convenient base. However, this choice of a base theory is not essential
to what follows.

As in chapter 4, I work with the received low resolution characterization of semantic
groundedness (§ 3.3) to render my proposal more accessible. In this connection,
recall my remarks on p. 50.
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‘T’, that T is closed under the semantic clauses of a partial model
M(XT,X") [Halbach, 2011, p. 204]. As a consequence, KF character-
izes precisely the fixed points of the Strong Kleene jump 7 [ibid., the-
orem 15.15]. And, KF is a classical theory. So, I will use the KF truth
axioms to characterize, in the object-language, how in the course of
Kripke’s model construction, more and more sentences become true.

For this, however, the KF axioms need to be modified in an impor-
tant way. The reason is that, as they stand, they describe an arbitrary
fixed point and not the step-by-step construction. For example, one KF
axiom is that a sentence ¢ is true if and only if it is true that ¢ is true.
What we would like to say, however is that if ¢ is true then it will be
true that it is true that ¢ is true, and it is true that ¢ is true only if ¢
has been true earlier.

Precisely for this purpose, however, we have availed ourselves of
tense logic. So, I will reformulate the KF axioms using its operators.

TKF1 ® ¥xVy ((Tx=y > ex =y) A (x =y — o Tx=y A o0 Tx=y))

TKF2 ® vxVy ((Tx#y — ex #y) A (x #y — o Tx#y A o Tx#y))

TKF1s ® Vx<(TTx—+0(TX/\-ﬁTXD A(TX—+<>TTX/\DTTX)>

TKF13 ® Vx((Tij — (oT—x v =Sent,(x)) ) A ((T—x v —Sent,(x)) —

oT=Tx A aT=T))

Each axiom has the form of a universally quantified conjunction, the
first of which concerns the past while the second concerns the future.
The reader may wonder why the second conjunct, unlike the first,
contains not just a diamond but also a box. The reason is that the
underlying tense logic /g does not prove the schema of seriality o —
od.

Note the first conjunct of TKF12. It says that if it is true that it is
true that ¢, not only at some point in the past it was the case that it
is true that ¢, but in fact there was an earliest such point.

What about the connectives and quantifiers? In Kripke’s construc-
tion, at every stage, truth is closed under Strong Kleene logic. This
closure is expressed by the remaining KF axioms which govern the
interaction of ‘T” with the quantifiers and connectives other than ‘—’.
Hence, I add these axioms as they are, merely putting an ‘always’

( ® 7)in front.
TKF3 = Vx (Sent,(x) = (T-—x & Tx))

TKF4 ® VxVy (Sent,, (xAy) = (Txay « Tx A Ty))

4 'Senty,” arithmetizes the syntactic property of being an L,-sentence. Note that this
property is definable in arithmetic by a formula all of whose quantifiers are bounded.
Hence, PAFSenti, ("¢") iff ¢ is an L,-sentence.
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TKF5 & Vxvy (Senty, (xay) — (T (xay) o Tox v T-y))

TKF6 ® VxVy (Sent,(xvy) — (Txyy < Tx v Ty))

TKFy ® VxWy (Sent, (xvy) — (T— (xvy) & T-x A T-y))

TKF8 = Vyvx (Sent,, (Yyx) — (TYyx < Vz(ClTm(z) — Tx(z/y)))

TKFg = VyVx (Senty, (Yyx) — (T-Yyx < 3z(CITm(z) A Tx(z/y)))
TKF10 = VyVx (Sent,(Jyx) — (TIyx < Iz(ClTm(z) A Tx(z/y)))
TKF11 =& Vyvx (Sent,(Fyx) — (T—Iyx « Vz(ClTm(z) — T—-x(z/y)))

The result is my modal logic of grounded truth MGT: always arithmetic,
the axiom of ground, and KF turned into axioms of step-by-step truth
introduction.

Note that I understand KF as not including the consistency of truth

Vx(Sent,, (x) = = (Tx A T7x))

Often, this formula is added to the KF axioms, since it ensures a
number of pleasing results. I do not have to do so though, since in
the present, tensed context, consistency can be shown to follow. See
proposition 18 below.

Note further that the first conjuncts of axioms TKF1, -2, -12 and -13
allow us, if we have established a certain atomic sentence, to intro-
duce respectively iterate the truth predicate later. For example, TKF1
allows us to infer, from x =y, that at some point later in time, Tx=y.
More generally, we can show that whenever a sentence is ascribed
truth at some point, then it will remain true thereafter.

Lemma 16.
MGT g ® Vx(Sentta(x) — (Tx - DTX))

Proof. (sketch) Induction on positive complexity (see p. 82) within
MGT. Since the PA induction has been extended to the language
with truth predicate, firstly the positive complexity of an Ly, for-
mula ¢ is represented in PA by a functional term PC*® such that
PA PC*("¢') = 7 iff the positive complexity of ¢ is n. Secondly,
PA proves the following induction principle.>

Vx(Se_ntta(x) A Vy(Sent,, (y) A PC*(y) < PC*(x) A (Ty — oTy))
— (Tx —» DTX))

— Vx(Sent,, (x) > (Tx — =Tx))
(77)

5 See also [Halbach, 1996, pp. 40f].
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The base cases are then taken care of by the axioms TKF1,-2,-12 and
-13; the induction step by the compositionality axioms TKF4-11 and
the induction hypothesis. O

Corollary 2.
MGT t-q ® Vx(Sentta(x) — (=Tx — -ﬁTx))

As I will show in the next section, the theory MGT has natural
models. They provide a strong case for it as a theory of grounded
truth. However, already from a proof-theoretic point of view, MGT
has several desirable properties, as we will see in the remainder of
this section.

The axioms TKF1 through TKF13 are well viewed as a modalization
of KF. It is natural to ask how the system MGT relates to the standard,
non-modal theory KF. To answer this question, we translate the lan-
guage of truth Ly, into the language Liam.

Definition 27. We define a mapping (-)* from the £¢-formulae into
the Liam-formulae. Let a,b L, be terms and ¢, be £, formulae.

(a=b)*=a=b
(Ta)* =@ Ta
(=) = —(d)”

(P v) =(d)" v ()

(Vxd)* = Vx(d)*

For sets of L,-sentences I' I write “(I')*’ for the set of translations of
each sentence in TI'.
I will prove the following proposition.

Proposition 17. MGT interprets KF: if KF |- ¢ then MGT g ()"

In order to do so, two lemmata are needed. The first one says that
the translation (-)* preserves provability.

Lemma 17. For every set of Li-formulae T and every Li,-formula ¢, if
there is a proof of & from T in first order logic then there is a proof of ($)*
from (T)* in 1q.

F=¢ = (N Fiq (&)

Proof. By an induction on the length of proof 1, exploiting the fact
that our mapping (¢)* translates connectives and quantifiers homo-
phonically.

If 1l =1, then ¢ €T or ¢ is an axiom of first order logic. If ¢ € T,
then we also have: (¢)* € (I')*, hence (I')* yo (¢)*. If ¢ is a logical
axiom, then so is its translation (¢$)*, since our function (-)* translates
the connectives and quantifiers homophonically.
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Consider a proof of length n + 1, and assume that for < n-long
proofs in first order logic of { from A, (A)* t; (b)*. Then ' = A v
{\} and ¢ is obtained from 1\ by one application of Generalization
(Gen), or T = Au {,p — ¢} and ¢ is obtained from 1 by one
application of Modus Ponens (MP).

(MP): (MN* = (A u{(V)*", (b — ¢)*} and (M)* =y ()" since Ig
extends classical first order logic and in particular is closed under
Modus Ponens.

(Gen): (IN* = (A)* u{(W)*}, and (I")* k4, ($)* since the translation
function leaves quantifiers untouched and /g comprises ordinary first
order logic. O

The second lemma needed for proving proposition 17 says that
translations of KF axioms are MGT theorems.

Lemma 18. Let ¢ be a KF axiom. We have that
MGT g ()

Proof. By completeness, it suffices to show that if ¢ is a KF axiom
then
MGT kq ($)

That is, for every linearly ordered, constant domain model 9 =
(W,R,D,d) and every point w € W, if M = MGTw] then M =
() wl.

(KF1) We wish to show that MGT=,; (VxVy(Tx=y < x = y))* =
VxVy( @ Tx=y < x =y). («) Assume x = y. By TKF1, first conjunct,
we have that ¢, Tx=y. Hence, by definition, ¢ Tx=y, as desired.

(—) Assume ¢ Tx=y. There is a point such that Tx=y. Conse-
quently, x = y at some preceding point. But then, by RT, & x =y
holds at that point, which makes x = y hold at every point, includ-
ing, by the linearity of R, the one we started out from, as desired.

Analogously, we show that MGTE;, (KF2)*.

(KF12) We wish to show that MGTj, Vx( @ TTx © @ Tx). (—) As-
sume ¢ TTx. Hence, at some point, TTx. By TKF12, «Tx and by defi-
nition, ¢ Tx. («-) Assume ¢ Tx and go to the point o where Tx. By
TKF12, therefore, TTx holds at at some later point (3, and we conclude
that « witnesses ¢ TTx.

(KF13) Our goal is to show that MGT, Vx(@ T-Tx < ¢ T—(x) v
—Sent,,(x)). (—) As before, we go to a point « that witnesses ¢ T—Tx,
where we use TKF13 to infer «T—x. Moving on to this statement’s
witness 3 < «, we find that here, T—x holds. We conclude that ¢ T—x
holds at our starting point, as desired. (<) If —Sent,,(x)) or ¢ T—x,
we proceed as before, applying TKF13’s first conjunct, and conclude
@ T-Tx.

(KF3-11) The compositionality axioms are all treated similarly, strip-
ping off ¢ and at that point, applying the relevant MGT axiom to ob-
tain a witness for the desired claim. For example, to show the right-to-
left direction of MGTl, (KF3)* we go to the witness v of ¢ Tx. There,
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we make use of the fact that T-—x < Tx holds at this point, too, to
conclude that the point witnesses the desired claim ¢ T—-—x. O]

Having lemmata 17 and 18 at hand, I can now prove that MGT
interprets KEF.

Proof of proposition 17. From lemma 18 we know that MGT proves the
translations of all KF axioms. Since lemma 17 ensures that derivation
in KF is preserved, too, the claim is verified by a simple induction on
the length of proof. O

Proposition 17 is a pleasing and useful result. Much is known about
the interpretability strength of KF [Halbach, 2011, §15.3]. Proposition
17 allows us to exploit these facts and relate MGT to Tarski’s the-
ory of truth and ramified analysis. Let ‘RT.," denote the theory of
Tarskian truth over arithmetic iterated up to the ordinal «, and let
‘RA - denote the theory of predicative second-order arithmetic, iter-
ated up to the ordinal «. Recall that € is the limit of the sequence
W, w®, W’ L.

Corollary 3. MGT interprets RA.¢, and RT -,.

In the precise sense of proposition 17, nothing is lost by couching
KF in the logic of linear time. In fact, much is gained. MGT is strictly
stronger than KF. KF, on the one hand, does not prove the consistency
of truth, more precisely KFi£ Vx(Sent,,(x) — —(Tx A T—-x)). To see
this, recall firstly that by Feferman’s classic result, for every Strong
Kleene fixed point S, 91(S) is a model of KF, and secondly that there
are fixed points that contain both the liar sentence and its negation.

MGT, on the other hand, proves =& Vx(Sent, (x) — —(Tx A T—x)).
To see this, we first need to introduce some terminology.

Definition 28 (T-complexity). Equations x = y have T-complexity o.
The T-complexity of T"J" is one greater than the T-complexity of .
—¢ and IxP inherit the T-rank of ¢. The T-complexity of ¢ A1 and
¢ v P is the T-complexity of ¢ or P, whichever greater.

The modal logic of grounded truth proves that truth is always con-
sistent, in the precise sense of the following proposition.

Proposition 18. For every L,-sentence ¢,
MGT tq ® Vx(Sent, (x) = —=(Tx A Tx)

Proof. For simplicity, I present the proof of the following schema
which, however, is emulated within MGT similarly to how lemma
16 was proved.

(TP AT 97 (78)
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Let ¢ be any Li,-sentence. By completeness, it suffices to show that
MGT Ej, ® —(T"$" AT =d"). So let M be any Ig model (W, R, D, d),
let w be a point in W and assume that 9 = MGT. We show that
ME 8 (TP AT —=¢") W] and do so by an induction on the T-
complexity of ¢ as just defined. At its base, assuming that ¢ is arith-
metical, we run an induction on the syntactic complexity. So let ¢ be
an atomic formula of arithmetic, i.e. an equation a = b (we are now
at the base of the inner of two nested inductions). Assume, for contra-
diction, that T'a =b"' A T"a # b" holds at w. Then, by TKF1 and TKF2,
ox =Y A ¢x # Y. Hence, at some point uRv, x =y and at some point
u'Rv, x # y. But by lemma 15, ® x = y A ® x # y, contradiction.
Hence —(T'a=b"' AT'a # b") at v, as desired.

For complex arithmetical sentences ¢, the claim that ® —=(T'¢" A
T-"¢") follows from the axioms TKF3-11 and the induction hypoth-
esis. For example, T"—" A T"=—)" becomes T" =" A T by TKF3,
which directly contradicts our induction hypothesis.

Now assume ¢ to be of T-complexity n + 1, and assume that for
all sentences \ of lower complexity, M = —(TP" A T"—")[w]. Again,
we conduct an induction on the syntactic complexity of ¢. If ¢ is
atomic, we know that ¢ = T'' for some sentence \ of T-complexity
n. Assume, for contradiction, that T'T"p"" A T=T")" holds at w. By
the right-hand conjuncts of TKF12 and TKF13, we know that «T " A
+T"—" is true at w. Hence, for some v and u both R-earlier than w,
T is true at v and T'—)" is true at u. Since R is a linear ordering,
we can assume without loss of generality that uRv. By lemma 16 we
have that T"—" must hold at all points R-later than u, in particular
atv. Hence, M = TP A T"—'[v]. Again, since vVRw lemma 16 allows
us to infer that this conjunction T"p* A T'—" holds at at the point w,
contrary to our induction hypothesis.

The induction step, at which we assume ¢ to be complex, is taken
care of, as before, by the axioms TKF3-11 and the induction hypoth-
esis that for every constituent \ of ¢, M = —(TP' A T'—p")[w]. For
example, let ¢ be Ix, and assume, for contradiction, that M =
=(TIx" A T"=IxP")[w]. The axioms TKF1io0 and TKF11 allow us
to infer that 3y (CITm(y) A TV (y/x)") A Vy(ClTm(y) —» T —(y/x)")
must hold at w. Let yp witness the first conjunct, and specialize
the second conjunct to it. We get that at w, it must be that I =
TW(yo/x)" A T"—b(yo/x)'[w]. This, however, contradicts our induc-
tion hypothesis.

This completes the proof that for every /g-model 9t and every point
we W, if M =MGT[w] then (W,R,D,d) = ® Vx(Sent,,(x) - —(Tx A
Tox))wl. O

Emulating the corresponding proof for KF+Cons [Halbach, 2011,
p- 212] we infer from proposition 18 that according to MGT, only
sentences are true.
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Corollary 4. MGT 13 ® Vx(Tx — Sent,,(x))

Theorem 18 is the first piece of evidence that the tense logic setting
pays off for the theorist of grounded truth. In addition, it allows her
to show that for ¢ to be true, it must have been the case that ¢ earlier.

Corollary 5. For every Li,-sentence ¢,
MGT g ® (T'd" — o)

Proof. By completeness, it suffices to show for every Ig model I =
(W,R, D, d) and every point w e W,

JTEMGTW] =JkE & (T¢" — o)W

So let ¢ be any Li,-sentence, w some point in W and assume that
J & MGT[w]. Further, let v be w or any point to the left or right
of w (that is, let v € W). In order to show that J = T'd' — «d[v],
we reason by induction on the positive complexity of ¢. If ¢ atomic
then the claim follows directly from TKF1,-2, -12 and TKF13. The
interesting case is that of showing J = T'=Ta' — ¢—=Ta[v]. So assume
that J & T'—=Ta'[v]. Then, since we assume TKF13 to hold at v, we
know that for some uRv, (W,R,D,d) & T—alul. At this point, it is
theorem 18 and the fact that J = —(Ta A T—a)[u] that allows us to
proceed and conclude that —Ta holds at u, hence «—Ta holds at v.
At the induction step, where we assume J = T'p" — P [v] to hold
for every 1\ of lower complexity than ¢, the claim follows from a
combination of TKF3-11 and the induction hypothesis. For example,
assuming J = T'=( A ¢)'[v], we infer from J = (TKFs5)[v] that T"—}’
or T'—(" holds at some uRv. Either way, however, our induction hy-
pothesis and logic then licences the inference (at u) of —(\ A ¢), as
desired. O

Corollary 6. For every Li,-sentence ¢,
MGT g ® (T'$" — ¢)

Proof. For every ¢, assuming T'¢" we get ¢¢ from corollary 5. Then,
we show ¢ on the basis of lemma 16 or lemma 15, for sentences
containing ‘T’ or not, respectively. O

Corollary 7. Let T be a truth-teller, such that PAF- t < T't". Then
MGT g & =T'T

Proof. By completeness of Ig, it suffices to show that for every Ig-
model M = (W,R,D, d) and every point w € W, if MM = MGT[w]
then M E ® =T 't'[w].

So let M be an Ig-model, w € W and assume that if D = MGT[w].
For contradiction, assume that 9t = ¢ T't'[w]. Then at w or at some
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point v to the left or right of w (we know R to be linear), 9t = T"t'[v].
Since M E TKF12(w], and v = w or to the left or right of w, M
oTT'1'[v]. Hence at some u to the right of v, TT't". Since M = TKF12
[w] and we know u to be to the left or right of, if not identical to
w, M = o(Tt" A w—=T'1")[u]. Consequently, at some t left of u, T't'
as well as »—T'1". By corollary 5, for some further s left of t (hence
somewhere to the left or right of, or identical with w), 9t & t[s]. But
because PA holds at s and by our assumption about this sentence T,
M = T'1'[s]. However, because =—T"t" holds at t to the right of s, we
also know that 9t = —T"t'[s], contradiction. O

Corollary 7 indicates that we are on the right track towards a theory
of grounded truth.

It remains an interesting question how MGT relates to Burgess’

theory KFB. As explained in section 4.3 (p. 70), KFB is intended as
an axiomatization of the least fixed point, and likewise proves truth
to be consistent and a truth-teller not to be true. One thing is clear,
though. We want MGT to do better than KFB. As recently observed
by Volker Halbach, KFB holds in other fixed points than the least one
[Fischer et al., 2014]. Thus, KFB is not capable of singling out exactly
the grounded truths.

The results of this section provide some evidence that MGT, unlike
KF, is a theory of grounded truth. The main challenge, however, is
to show that our theory can express enough of the original, semantic
notion of groundedness. In the next section, I will make first steps
into this direction.

96 MGT AND THE STAGES OF KRIPKE'S CONSTRUCTION

I now turn MGT’s semantics. My goal in this section is to argue that
MGT is a theory of grounded truth in a very robust sense. The main
result of this section is proposition 19. It shows that MGT has a nat-
ural model: the stages of Kripke’s construction (see §3.3).° Moreover,
MGT characterizes this particular model exactly.

How can this be? After all, the Kripke stages are well-ordered. As
we saw in section 9.4 (corollary 1), the logic of well-ordered time is
not axiomatizable. In particular, MGT is based on a logic of linearly
ordered time. Therefore, the theory MGT cannot distinguish between
a Kripke-like but ill-founded sequence of models of truth, and my
goal, the real order of Kripke stages.

As much as this is true, however, it is also orthogonal to the ques-
tion whether MGT characterizes the Kripke construction. Let me give
an analogy. KF is generally considered an adequate axiomatization
of the Strong Kleene fixed points. However, it is based on a merely

For simplicity, I will in this section work with the standard, low-resolution presenta-
tion of Kripke’s construction (§3.3).
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first-order theory of arithmetic, whereas a Kripke fixed point is an
expansion of the standard model. And of course, first-order Peano
Arithmetic cannot single out the standard model. Nonetheless KF is
considered adequate. The reason is that assuming arithmetic to be stan-
dard, we can show that KF singles out the fixed points [Halbach, 2011,
theorem 15.15]. Formally, for all sets X of L,-sentences,

N(X) = KF & X = Ju(X) (79)

My goal is to show that MGT characterizes the stages of Kripke’s
construction just as well. Assuming time to be well-ordered, we can show
that MGT characterizes the stages. More precisely, I will show that
well-ordered models of MGT are isomorphic to the stages of Kripke’s
construction.

It may be thought that now I make too many assumption for the
result to have much significance. Since, clearly, I still have to assume
the number to be standard, as in the non-modal case. Thus, the theory
characterizes groundedness only within the doubly narrow range of
well-ordered, standard models.

However, things are not as they seem. Recall proposition 1 (p. 163).
There is a set of principles N1-N3 in the language of tensed first-
order arithmetic, such that any well-ordered model 2t validates first-
order arithmetic plus N1-N3 only if 9t interprets the arithmetical
vocabulary in the standard model 91. I will show that MGT proves,
in linear time, such a set of principles (lemma 21). Hence, every well-
ordered model of MGT respects the theory of standard numbers. Con-
sequently, the analogy between the adequacy of KF of my result 19 is
robust. In fact, just as for KF we only assume standardness, I now only
have to assume time to be well-ordered. Making this assumption, we
will get the standard numbers for free.

To show that MGT proves principles that characterize the natural
numbers, some preparation is needed. Firstly, observe that the syntac-
tic relation “the formula ¢ is the result of applying x iterations of ‘T’
to " is represented in PA by an L,-formula that I will denote T*"¢",
such that PAl- "¢ = T*"" iff, roughly,

d) — UTT. . .Trll)-lﬂ
—
X-many

Using the % function from chapter 4 (p. 47) we thus enable the theory
to quantify into the argument place x.

Lemma 19.
MGT 1 ® YuvyVzVx(x =y +z — (TT*u — TTYu))

Proof. We reason within MGT by (first-order) induction on z. The base
case where x =y is a truth of logic. The induction step follows from
the first conjunct of axiom TKF12 and lemma 16, using the induction
hypothesis. O
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Secondly, let us define a special infinite sequence of L,-formulae.
Definition 29. 8(x) = TT*0=0"' A =TT**170 = 0"

For example, 0(0) is the sentence T'0 = 0" A =TT'0 = 0".7 The open
formula 6(x) of the language of tensed truth L, will play the role
of the predicate ‘N’ in terms of which we formulated the principles
N1-N3 of proposition 1. In order to show this, however, one further
lemma is needed.

Lemma 20. For every lq-model M = (W, R, D, d) and every point w e W,
if M =EMGTIw] then there is a point at which nothing is true but at every
point accessible from it, something is true; more precisely, there isav e W
such that d(v)('T") = & and for every w € W such that vRu, d(u)('T’) #
.

Furthermore, this point v is the least point in the linear order R: there is
no point w which sees v.

Proof. Let 9 be any linearly ordered constant-domain model, and
w any point in it. Assume that 9t EMGT[w]. Then 9t validates the
axiom of Ground: M = @ Vx—-Tx[w], i.e. M E oVx—Tx v Vx—Tx v
oVx—Tx[w]. In each of these cases, there is some v such that M E
Vx—=Tx[V].

Now, by first order logic and because 9t validates MGT, in particu-
lar TKF1, M= ® (0=0)A ® (0=0—aT'0=0)"w].

By the linearity of R we know that wRv, VRw or v = w. In any case,
MEO=0A0=0—> oT0=0". Hence, M = oT0 = 0'[v] and at
every point u accessible from v, 9t = T'0 = 0'[u], hence d(u)(‘T’) #
&.

It remains to show that there is no point u which sees v. For con-
tradiction, assume that there is such a point u. Then, for the same
reason as before, M = oT'0 = 0'[u]. But since uRv, this means that
M = T°0 = 0'[v], contradiction. O

Finally, we are now in a position to show that MGT proves princi-
ples of the kind which we know to require a standard interpretation
of the natural numbers (principles N1 to N3 on p. 163).

Lemma 21. Let 0(x) be the formula as defined in 29. We have that in the
logic of linear time, MGT proves the following principles.

0.1 ¥x @ (G(X) An=0(x) A D—|6(x))
0.2 © VxVy((G(x) AB(Y)) — x :y)

03 ® Vxvy (x —y+T1 o o (0y) AcB()) AVz(x £z ¢ (0(y) A
00(2)) = ¢ (0(x) A 00(z))) )

7 Note that we cannot define 0(x) as T¥'0 =0 A =T**170 = 0" since T*"0 = 0 is not
a sentence, but a term.
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Proof. (0.1) In order not to assume standard numbers from the out-
side we reason within MGT, by induction on x. For this, we need to
show that

MGT g @ (8(0) A m=6(0) A 5—6(0))
A Vx(Vy(x <y—

(¢ (6(y) A==0(y) Ao—0(y)) — @ (8(X) A #=0(X) A uﬁe(i))))

For the first conjunct, by the completeness of Ig it suffices to show
that for every Ig model 9, and every point w, if M EMGT[w] then
there is some v to the left or right of w such that

METO0=0"A-TT0=0"A==0(0) A o=06(0)[V] (80)

So let w be any point in W and assume 9t =EMGT[w]. From lemma
20, we know that there is an R-least point wy such that M = —T0 =
0" A 0 = Owo]. By the second conjunct and axiom TKF1, there is a
point v, woRv, such that M = T0 = 0'[v]. By the second conjunct
of axiom TKF12, then, we know that there is a point u, vRu, such
that M = TT0 = 0'[ul. Now we make use of the first conjunct of
TKF12, and infer that there must be a point 1/, u'Ru, at which T'0 =
0" Aw=T0 = 0" is true. Let this be our witness. Firstly, by the first
conjunct and axiom TKF12 we have that 9 &= oTT0 = 0'[u/], hence
5-0(0). Secondly, by the second conjunct we know that at no point
to the left of u’ T'0 = 0" will be true, hence M = »—0(0)[u']. Finally
assume, for contradiction, that 9t ¥ —TT'0 = 0'[u/]. Then TT0 = 0"
must be true at this point, hence «T0 = 0'. But we already know that
»—T'0 = 0" is true at u/, contradiction. Therefore Mt = 6(0)[u’], as
desired.

At the induction step, it again suffices to show that for every Ig
model M and point w, for every o € D, if

M= MGT /\Vy(y <X — ( @ (B(y) Am=0(y) A Dﬁe(y)))[x : o] [w]

then
M= @ (0(x) Am=0(x) A o—=0(x))[x : o] [W]

So let p be any object from the domain D, and assume 9 E x =
y+ 1[x : olly : plw], such that for some point v to the left of right
of w, TTY'0 = 0" is true at v for o assigned to x and p assigned to
y.2 Twice making use of the second conjunct of axiom TKF12, we
have that for some u seen by v, M = TTTY+F10 = 0'[x : o[y : pl[ul.
Then, by the axiom’s first conjunct we know that at some u’, u'Ru,
it is true that TTY*170 = 0" A w=TTY+10 = 0. Recall that M = x =
y+ 1[x : olly : p]. Analogously to before, we therefore let this u’ be
our witness.

8 I will suppress the variable assignment where possible.
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On the one hand, by the second conjunct we know thatatu’, s=TT*'0 =

07, hence s—0(x). From the first conjunct and axiom TKF12 we know

that M = oTTT*0 =0"[x : olly : pl[u'], hence o—0(x) is true at u’, too.

Recall that 8(x) is the formula TT¥0 =0" A =TT**1'"0 =0".

On the other hand, assume for contradiction that 9t = TT*t170 =
0'[x : olfy : pl[u]. Then at u/, it must be true that «TT*'0 = 0' A
n—=TT*0 = 0", contradiction.

(6.2) follows from lemma 19 since, if by contraposition and without
loss of generality we assume that x < y then 0(y) entails TT**'"0 =
0', hence —0(x).

(6.3.) By completeness it suffices to show that for every /g model
M = (W,R,D,d) and every point w € W, if M =EMGT[w] then for

every ve Wand every o,pe D, M =x=y+ 1[x:olly: pl iff
i. for some u, M = O(y) A 00(x)[x : olly : pllul

ii. M = Vz(x #z A @(0(y) Aob(z)) > ¢ (8(x) A0b(2)))[x : olly :
plv]

For the left-to-right direction, assume M = x = y+ 1[x : o][y : pIM].

For (i) note that by (6.1), there are u and u’ such that

0" A=TT*0=0"[x:o0lly:plul (81)
5

METTY0 =
—~ N A _|TTX+1 F6 — 61 [X . O] [y : p] [u/] (82)

METT*0 =
To show that uRu’, by the linearity of R it suffices to note that u and
u’ cannot be identical, and that since by lemma 16, 9 = oTT*[x :
olly : pl[u'l assuming u'Ru leads equally to contradiction.

For (ii), let r € D such that M = z # x[x : olly : pllz : r][v] and
assume that for some u,u’, uRu’, (81) and

METTZ0=0" A =TT*H1"0=0"[x: 0lly : pllz: ][] (83)
By (6.1) we know that there is a u” such that

METTX0=0"A -TT*"1'0=0"

A= (TTX0=0" A =TT 10 =0’
Ae=(TTX0=0"A -TT*10 =0

) (84)
)x:olly : pllz: rIu”]

By lemma 19 we can infer from this that uRu”. It remains to show
that u”Ru’. On the one hand, we note that if u’ =u” and M = z >
x[x : olly : pllz : TI[u"] then, since TT?0 = 0" is true at u”, lemma 19
implies that TT*T10 = 0" must also be true there, thus contradicting
(84). For M = z < x[x : o[y : pllz : r][u”] the dual argument leads to a
contradiction. On the other hand, it likewise cannot be the case that
u/Ru” since if M = x < z[x : ol[y : pllz : r][u”] then lemma 19 requires
TT*0 = 0" to be true at u’. By (84), however, 9 = —TT*0 = 0'[u],
contradiction. Again, by the dual argument we also rule out the case
in which M & z < x[x: olly : pllz : T][u"].

177



178

A MODAL LOGIC OF GROUNDEDNESS

For the right-to-left direction, we firstly note that by lemma 16, any
o, satisfy 8(x) A ¢0(y) at v only if they satisfy =TTV there, too. Now,
assume (i) and (ii) and, for contradiction, that o and p satisfy x # y+1
at v. From (i) we get that M ¢ (8(x) A ©0(y))[x : o[y : pliv]. I claim
that o and p satisfy ¢ (6(x) A oB(y+1)) atv.

Now, assume that o and p satisfy < (G(X) AOB(y + 1)) at v and
M E= x > y+1[x: olly : plv]l. By our first observation above we
then have that at v, o and p satisfy —~TTY+t10 = 0". However, since
they satisfy TT*0 = 0" and x > y + 1 at v, lemma 19 requires that
M = TTY [x : o]y : pl[v] after all, contradiction.

If o and p satisfy x < y+ 1 at v then by our observation above
and the assumption that 9t = ¢ (e(x) A oB(y + 1))[x 2 olly @ plvl
ME -TT*0=0"[x:olly:pll, contradicting, once more, lemma 19
according to which at u, o and p satisfy TTY"0=0" A (TTY0=0" —
TT*0=0").

It remains to show my claim that o and p satisfy ¢ (G(X) AoB(y+
1)) atv, i.e. that for some point u, M = 6(y) A o0(y+1)[x : olly : pllul.
By 6.1 we know that there is a u such that 9 = TTY 0 = 0"[x :
ol[y : pllul. Making twice use of the second conjunct of axiom TKF12,
we know that there is a u/, uRu’ such that o, p satisfy TTTY+HT0 =
0" at u’. By the axiom’s first conjunct we then know that for some
u” R-between u and u/, M = TTYH0 = 0" A ==TTYH10 = 0'[x :
olly : pl[u”]. By the reasoning as used in the proof of 6.1 we show
that in fact, p satisfies 0(y + 1) at this u”, which thus witnesses the
truth of ¢0(y + 1) at u, such that we can conclude that o, p satisfy
¢ (0(x) AoB(y+1)) at u. O

Lemma 22. For every woq-model 9t = (W, R, D, d), if
Ywe W (W,R,D,d) E MGT[w]
then O interprets the arithmetical vocabulary standardly.

Proof. From theorem 1 and the previous lemma, which shows that
MGT provides us with precisely such a set of principles that charac-
terizes, over a well-ordered frame and together with Robinson arith-
metic, the natural numbers. O

Recall Kripke’s construction of an £, model, based on Strong Kleene
logic.

For the purpose of axiomatizing Kripke’s theory of truth, it is com-
mon to work with the closed off fixed point model 9N(I} ). However,
we may also consider closing off each stage of Kripke’s construc-
tion. Thus, we arrive at a well-ordering of (classical) models ‘)T(I:k’“),
which gives naturally rise to a model for the modal logic /4.9

9 Recall that Kripke’s construction closes off at the least non-constructive ordinal w1CK.
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Definition 30. Recall that the least non-constructive ordinal w§X is

the set of all constructive ordinals. Let dx map each constructive ordi-

nal < wﬁ:K to a model of the language Liam such that firstly, at every

point, the arithmetical vocabulary is interpreted in the standard way

on the set of natural numbers w, and secondly, dy ()(‘T’) = 91(1;[(’“).
Let KS be the model (wﬁ:K, <, w, di).

Recall that I write S ~ S’ if the structure S is isomorphic to S’. The
main result of this chapter is that all natural models of MGT, in the
precise sense of the following proposition, are isomorphic to Kripke’s
stages.

Proposition 19. For every woq-model 9t = (W, R, D, d),

Yw e W = MGTw] if and only if (W,R,D, d) ~ KS

Proof. (=) By lemma 22 we know that 9 interprets the arithmetical
vocabulary standardly, such that we can, for simplicity, identify every
point of W with a model 91(X).

Having noted this, we reason by induction on the well-ordering R.
We show that the R-least model is () = N( I;{(’O). Then, assuming
that some point w is the stage ‘JT(I;;(’“), we show that the R-next point
v is the successor stage 9?(1;’““ ). Finally, we show that the R-limit
of an initial segment of the points, which we know are the models
N (1Y) for y < B, is the union model N( |J LY.

<
So, let wg be the R-least model 91(X) in \X/ gince M E=(Ground)[wy],

W or some point R-earlier than wy must be a model 9(F). But there
is no such point — after all, wy is the R-least point. Therefore, it must
be that wy = ().

Now, assume that w = ‘II(I;L’“). We need to show that w’s R-
successor v is ‘)1(151’““ ). We know that v = 91(X). It remains to show,
therefore, that X = {"¢" : ‘J?(I;L’“, 1.%) Ee &}

(©) Let "¢ € X, we want to show that ‘II(I;Lk’“, Is_k’“) Eq ¢. We know
that v = T"¢" and reason by induction on the positive complexity of ¢.
If § = a = b’ then v £ ea = b, since we assume axiom TKF1 to
hold at v. Hence, at some point uRv, a = b. Note that since a = b
does not involve a partial predicate, if a = b holds in some classi-
cal model 91(X™) then it also holds in the partial model D(X*, X ™).
Therefore, if u = ‘II(I;L’“) we are already done. If not, we make use
of lemma 15 and conclude that a = b must hold at every point; in
particular, therefore, M(I %) = a = b. Hence M(I % I /%) Ex a =D,
as desired.

For ¢ =a # b’ we reason just analogously, using TKF2 instead of
TKF1.

If & ='Tb’ such that 9 = T'Tb'[v] then we know by the second
conjunct of TKF12 that 91 = ¢Tb[v]. Hence, for some uRv, u = Tb.
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fu=w= ‘ﬁ(I:k’“) then we are done. If uRw, then lemma 2 allows
us to infer that w = Tb after all, and in fact ‘ﬁ(I;{( «, Ly ) =g Th, as
desired.

If § ="—=Tb’ then we use the second conjunct of TKF13. This time,
we get that 9 = ¢T—-b v —Sent,, (s)[v]. Assume that b denotes a sen-
tence code "' in v. Then we know, as before, that ‘)T(I;i’“) Eg T
If b does not denote a sentence code, then we know that its denotation
is in the anti-extension I;k’“, indeed has been so from the first point
onwards, and we conclude that 97( ISJL <, I;( ) Egk — T, as desired.

Now, consider ¢ = A (" such that v = N(X) = TP A . Since
M =TKF4[v], we know that v = T"p' A T'C". Hence, "}',"C' € X. By
our induction hypothesis, we know that 9( I;i «, Iy ) Eg WAL as
desired. For ¢ =—( A ()" we proceed analogously, exploiting the
fact that TKF5 holds in the model.

Disjunction and the quantifiers are taken care of analogously. Recall
that — is defined in terms of — and v.

(2) Let ‘)T(I;i %, 17%) Esc &, we want to show that "¢’ € X, that is,
NME TV Since partial truth in a model is contained by classical
truth in it, we have that ‘ﬁ(l;;’“) = ¢. We reason by induction on the
positive complexity of ¢. If ¢ ="a = b’ then ‘ﬁ(I:k’“) E oT'a =0,
since we assume TKF1 to hold at v = ‘.TI(I:k’“). We assume v to be
the R-successor of w = ‘ﬁ(I:k’“), hence M = T'a = b'[w], as desired.
Analogously for negated equations and sentences of the form Tb or
—Tb.

If & =" A ¢’ we know from our induction hypothesis that T'p" A
TC" is true in ‘)T(I;l;’“ﬂ ). From the fact that ‘ﬁ(l:k’“ﬂ) ETKF4 we
further know that ‘)"((I;L’“H) = T A (', as desired. Analogously
for negated conjunctions and the other connectives and quantifiers.
Consequently, X = {"¢" : 9( I;i“, I%) Fa ¢}, and v = ‘)T(I*k"xﬂ ), as
desired.

Finally, assume that wo, ..., v are the points 9 (IJ/* ) for o < B. We

show that the R-limit of the pomts is the model 9( |J I"Y). We know
Y<B
that v = 9M(X) and show that X = [ I;i’y. The reasoning is similar
Y<B
to before and I confine myself to an outline. We reason by induction

on the positive complexity of ¢. For (S), we observe that for atomic
sentences, the axioms TKF1, -2, -12 and -13 ensure that if "¢’ € X

then it is true at some preceding point, hence in their union |J I;;”".
Y<pB
The same can be inferred for complex sentences, from the induction

hypothesis and the compositionality axioms TKF3-11.

(<) Let w be any MN(I'*). Of course, KS= PA[w]. The truth of
the axiom (Ground) is witnessed by the point 91(F). To see that the
modal axioms TKF1, -2 and -12 are sound, firstly note that generally,
N(IL*) = T'¢" only if for some B < «, ‘ﬁ(l:k’ﬁ) = ¢. This validates
the right-hand conjuncts.
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I now turn to the left-hand conjuncts of axioms TKF1, -2 and -12.
Let « be any stage. If atomic sentences a = b and Ta hold in the classi-
cal model ‘ﬁ(I;i’o‘), then so they do in the partial model ‘ﬂ(I:k’“, 1%
Hence ‘.R(I;;’“H) E T'a = b' A T'Tc'. Further, since the sequence
(I1)%)e increases, T'a = b' A T'Tc" will hold at every later stage
‘ﬁ(I;i’B), B > «. This, however, is what the first conjuncts of TKF1
and TKF12 say, which are thereby shown to hold at every point in the
model KS. TKF2 is taken care of analogously, noting that for arith-
metical sentence of the form a # b, classical and partial truth at a
stage coincide.

TKF13 requires a subtler treatment, since it concerns negated truth,
whose behaviour on classical models differs from that on partial ones.
Note, however, that the complication is not due to my modal setting,
but pertains to the fact that we axiomatize Kripkean truth classically,
and hence applies already to KF itself. As a result, the considerations
which show the soundness of KF in any Strong Kleene fixed point
can guide our investigation into the soundness of MGT. Generally,
in order to see the soundness of TKF13, recall that —¢ is in some
extension I;i’“ just in case ¢ is in the corresponding anti-extension
Is_k’“, such that T"—¢" again is in the successor extension I;[(’“H ; and
that for every term a not standing for a sentence code, —Ta is in the
extension of ‘T’ right from the beginning.

In order to show that the compositionality axioms TKF3-11 hold
in the model M(I}/*) it suffices to note that the truths in a Strong
Kleene model are closed under double-negation, conjunction, disjunc-
tion and quantification; and further, that a negated conjunction (dis-
junction) is classically true just in case both of (one of) the negated
conjuncts (disjuncts) are.™

This completes the proof of proposition 19. O

Recall that I} is the extension of the Strong Kleene fixed point —
the set of grounded truths. Recall further that we write L =y ¢ if ¢
is a consequence of L over the well-ordered frames.

Corollary 8. For every Li,-sentence ¢,
"¢ e IL iff MGT Eywoq © T’

Proof. We show that "¢ € I} just in case: for every wog-model M =
(W,R,D, d), and for every point w € W if M = MGT[w] then I =
S Td'w].

(<) Assume that for every wog-model 9 = (W, R, D, d) and every
pointwe W, M = ¢ T'd'w] if M = MGT[w]. We know, from the
right-to-left direction of proposition 19, that the stages of Kripke’s
construction model MGT: for every a < w§X, KSE= MGTlal. By our

To see this, it is instructive to consult Halbach’s lemma 15.6 and surrounding re-
marks [2011, p. 205].
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assumption, therefore, for some point 3, KS= ¢ T'¢'[3]. Hence, ¢ €
dk(B) = ‘)T(I;;(’B ), for some 3. Consequently, "¢" € I:k, as desired.

(=) Now assume "¢ € I;i, such that "¢" € I;L"X, for some «. From
the left-to-right direction of proposition 19 we know that for every
wog-model (W, R,D,d) MGT is true at every point in W only if the
model is KS. Hence, trivially, in every model that models MGT there
is a point, namely 9(I1'*), such that T'¢" holds at this point. Hence,
for every wog-model and every point, if MGT holds there, so does
¢ T'¢", and we conclude that MGTkyo; © T'd', as desired. O

9.7 DISCUSSION

Objection: You do not allow the tense operators to occur within the scope of
“T’. Your modal logic is a meta-theory in disquise. Therefore, you have failed
to respond to the ghost challenge.

The language of truth £, was extended by modal operators ‘o” and
‘n’. In this language, I have argued, we can express grounded truth-in-
Lia. My opponent now asks for grounded truth of sentences contain-
ing the new modal operators themselves, that is, she asks for truth
in the extended language. I admit that this is an interesting question.
However, it was not my goal in this chapter; and it is not answered
easily. The reason is that we do not even have a concept of seman-
tic groundedness for the extended language. Presumably, Kripke’s
construction would have to be enriched by a jump operator work-
ing on the modal vocabulary. Perhaps recent work on a grounded
approach to modal predicates may provide a way of doing this [Hal-
bach and Welch, 2009; Stern, 2012]. Certainly, however, exploring this
route goes beyond the scope of the present study.

We need to distinguish between two projects. My present goal is
to allow an extensional theory of truth grounded in arithmetic to
express groundedness. Another goal is to develop a grounded theory
of truth in the modalized language L. This I did not attempt to
do but hope to achieve elsewhere. Here, I focused on and carried
out the first step of that larger project, to take the received and well
understood concept of semantic groundedness for the language of
truth, and show how it is expressed by a tensed theory of truth.

Objection: As you have reminded us yourself (corollary 1), the logic of
well-ordered time is not axiomatizable. Therefore, your theory MGT is based
on the logic of linear time only. This means that the theory itself cannot
distinguish between the intended well-founded models and non-intended be-
cause ill-founded structures. Only well-founded models, however, you have
shown to be isomorphic to the Kripke stages. Hence, your key result, propo-
sition 19, is not available to us in our own language. Therefore, the ghost
challenge still stands.

Again, we must distinguish two projects. On the one hand, one may
attempt to give a formal system by which to compute whether or not a
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given sentence is grounded. However, in view of the fact that the set
of grounded sentences is not computable, this is a hopeless project. I
certainly did not attempt to do this.

On the other hand, we may confine ourselves to providing a means
to express groundedness without semantic ascent. This has been the
goal of the present chapter.

Let me elaborate on the sense in which MGT expresses grounded-
ness. By way of analogy, consider how propositional tense logic ex-
presses certain first-order concepts. For example, the propositional
fragment of my logic Ig expresses linearity in the precise sense that
its axioms are valid in a frame if and only if it is a linear order (re-
call definition 26). This does not mean that within the propositional
logic of linear time one can define what it is for a relation to be lin-
ear. Nonetheless, there is a good sense in which the logic characterizes
linear frames. In fact, the power of statements in propositional modal
logic to characterize a class of frames is one important reason why
modal logic is interesting for logicians outside of philosophy. For ex-
ample, three slogans introduce to the representative textbook Black-
burn et al. [2002], the first two of which are the following [2002, pp.
viii f., my emphases].

Modal languages are simple yet expressive languages for
talking about relational structures.

Modal languages provide an internal, local perspective on
relational structures.

It is in this spirit that I use the logic of linear time. The challenge I re-
spond to is that semantic groundedness cannot be expressed within
the language of truth. I distinguished this challenge from the plain
fact that groundedness cannot be defined in its own language (p. 158).
The latter follows from Tarski’s theorem of the undefinability of truth.
Modal logic, however, is widely used to express concepts in a setting
where they cannot be defined, primarily first-order concepts in propo-
sitional modal logic.

Now, semantic groundedness is not a first-order concept. Its defi-
nition as the minimal closure of Kripke’s Strong Kleene jump essen-
tially involves second-order resources. However, the relation between
my modalized first-order theory of truth and this second-order con-
cept is analogous to the relation which a propositional modal logic
bears to the class of frames that it characterizes.

Objection: As you mentioned in the introduction (p. 160), instead of
tense we may use an analogue of Boolos” stage theory to express ground-
edness. In fact, prima facie this approach is a strong competitor to yours.
Stage theory is purely extensional, and also better understood than your
tensed theory of truth.

The standard, meta-theoretic definition of semantic groundedness
is in terms of Kripke’s least fixed point. However, as observed earlier,
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it is equivalent to defining groundedness in terms of the stages. To be
in the fixed point is to be at some stage. Consequently, if we added
the expressive means to say that sentence ¢ is at some stage, then it
would be merely a change of notation to have a predicate of being in
the least fixed point. Thus, adding to our theory of grounded truth
an extensional theory of stages appears suspiciously close to adding
a theory of its models. To this extent, a stage theoretic approach is a
less attractive response to the ghost challenge of section 9.2.

9.8 CONCLUSION

The project of motivating a theory of type-free truth from the notion
of groundedness faces the challenge that groundedness is a meta-
theoretic notion. I offered a response to this challenge. We can ex-
press the idea of groundedness in our own language using inten-
sional means, more precisely: tense.

I presented one way of implementing this response and formu-
lated a theory of truth based on the logic of linearly-ordered time
and showed that it theory relates naturally to Kripke’s semantic con-
struction. I take this to be evidence for my proposal.
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In my thesis, I have examined the concept of groundedness, as the
term is used in philosophical logic. In doing so, I pursued two main
objectives. Firstly, I intended to clarify and develop the concept. Sec-
ondly, my goal was to spell out its philosophical significance. Accord-
ingly, my thesis divides into two parts. In its first three chapters I
presented a general formal theory of groundedness, and applied it to
paradigmatic cases from the literature, as well as put it to new use (ch.
4). The remaining five chapters motivated, developed and defended
a novel account of the philosophical significance of groundedness.

I briefly summarize what has been done. Based on the primitive
concept of a generator, my general theory of groundedness captures
both groundedness as what can be generated (§2.3), and grounded-
ness as having been generated (§2.4). These prima facie distinct intu-
itions were put into a common framework already by Yablo [1982];
my theory, however, not only allowed for a simplified proof of his
main theorem, but also for a more finely grained concept of depen-
dence. Further, I examined different types of generators and how their
properties bear on the resulting cases of groundedness. Finally, I ap-
plied my general theory to two simple paradigms, Cantor’s ordinal
numbers (§ 2.6), and the pure well-founded sets (§ 6).

In chapter 3 I turned to a more complicated but philosophically
very interesting case of groundedness: Kripke’s semantic grounded-
ness. I argued that the standard Kripke jump can be split into two
steps, each of which corresponding to its own generator. In a first step,
we generate literals of the form T'¢' and —T'¢". This truth generator
T is common to all variants of Kripke’s construction. They differ in
the second type of generator of my high-resolution characterization,
that correspond to closure of those literals under a specific monotone
logic.

I then turned to study a case of groundedness of great interest to
philosophers of mathematics, a groundedness approach to type-free
class theories (chapter 4). Having laid out desiderata, I first explored
the derivative approach. I translated “x is in the class of the ¢s”
as “¢(x) is true” (section IV). Through this translation, a theory of
grounded truth induces a corresponding theory of grounded classes.

However, the resulting theories all proved not to give an exten-
sional theory of classes. Therefore, I turned to developing a theory
of grounded classes directly (§4.5). Building on work by Penelope
Maddy and others, I proposed a new model construction that treats
class identity as seriously as it does membership, and thus succeeds
in characterizing a fully extensional notion of class (proposition 9).
However, I also showed its theory to suffer from an impoverished
schema of class comprehension (proposition 12).

Then, I moved on to the second part of my thesis, and asked for the
philosophical significance of groundedness. In chapter 5 I argued that
this question requires attention. Cases of groundedness, prominently
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the well-founded sets and Kripke’s least fixed point construction, are
widely considered to be significant, but no systematic account of their
philosophical content had yet been put forward. By giving examples,
I showed that the formal concept by itself does not ensure philosophi-
cal significance but that it requires philosophical supplementation. In
the remainder of the thesis, I took first steps towards filling this need.

My starting point was a certain philosophical perspective on the
well-founded sets that can be traced back to Godel [1947] and has
been discussed extensively since. According to this iterative concep-
tion, the cumulative hierarchy is the correct picture of the universe of
sets. There are several competing ways of spelling out this thought,
but they agree that at its core, the iterative conception takes a set to
be constituted from its elements. I considered different attempts at
analysing the relevant notion of constitution but concluded that it is
best taken as a primitive relation of ontological priority. This primi-
tive was characterized by means of examples and formal principles. I
then observed that these principles are satisfied by the relation of set
generation. Thus, I argued, set groundedness exemplifies the philo-
sophical notion of ontological priority, or family of cognate notions,
and to this extent, at least, is philosophically significant.

In the remainder of the thesis, I then returned to semantic ground-
edness, and asked for an analogous account of its significance. Chap-
ter 7 identified a notion of priority, not of some things over others,
but of some truths over a truth which holds in virtue of them. In
the subsequent chapter, I then showed that Kripkean groundedness
exemplifies this in-virtue-of relation just like set groundedness ex-
emplifies the relation of some things consituting another. In the last
chapter of my thesis, I defended this proposal against the challenge of
Kripke’s ‘ghost of the hierarchy’, that it is essentially meta-theoretic
and therefore not available for the groundedness of truth in our own
language.

I thus believe that my thesis has achieved both of its two main objec-
tives. On the one hand, I have clarified the concept of groundedness.
I have provided a new, systematic map of the various cases and illu-
minated what they have in common. On the other hand, I have taken
tirst steps towards a philosophical account of groundedness. Having
argued that the formal concepts needs philosophical supplementa-
tion, I developed a strategy to fill this need. Groundedness by some
generator is philosophically significant at least to the extent that this
generator tracks some philosophical notion of priority. In particular, I
developed a novel account of semantic groundedness, inspired by the
philosophy of set theory: an iterative conception of truth which uses the
in-virtue-of relation of contemporary metaphysics just like the itera-
tive conception of sets bases on a notion of ontological constitution.

I close by outlining routes of future research. The main next step
will be to test my proposal further. This can be done in various philo-
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sophically fruitful ways. For one, I intend to develop an analogous
account of the concept of grounded classes, or concept-extensions,
thus supplementing the logical study of chapter 4 with a philosoph-
ical one. A case can be made that concept-extensions should not be
thought of as constituted from their members, at least not in the same
sense as a set is constituted from its elements. It can further be argued
that what matters instead is whether something falls under the defin-
ing concept, and if so, in virtue of what this is the case. This line
of thought suggests a connection to my proposal from chapter 8 and
would allow me to test it for fruitfulness and applicability. The goal is
an iterative conception of classes, analogous to the iterative conception
of sets and my iterative conception of truth.

For another, I would like to understand better why groundedness,
as in the case of sets and truth, is widely considered a satisfactory
response to paradox. I am confident that my philosophical account of
these cases provides a starting point towards an answer. In particular,
I plan to connect with a general analysis of paradox along the lines of
Russell [1908]; Priest [1994]. On this basis, paradox may be viewed as
a consequence of enforcing circular priority relations. Thus, assum-
ing that some set is an element of itself amounts by the account of
chapter 6 to the assumption that something partly constitutes itself.
Or, assuming the truth or falsity of a liar sentence amounts by the
account of chapter 8 to the claim that some truths holds in virtue of
itself. I hope that this priority-driven perspective on paradox allows
for a novel argument that the groundedness approach is superior to
its hierarchical competitors, such as type theory respectively Tarski’s
stratified theory of truth.

In addition to these tests of my philosophical proposal, I also plan
to develop the technical contributions of the present thesis. For one,
other applications of my general concept of groundedness ought to
be examined. I am confident that certain interesting theories from the
philosphical literature would be illuminated if put into my general
framework [Fine, 2005; Linnebo, 2006]. Also, entirely novel applica-
tions seem possible, such as to a theory of intensionality informed
by the Russell-Myhill paradox. For another, I hope to soon generalize
the modal machinery of chapter 9 and be able to present for every
instance of the general concept a corresponding modal theory.
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