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Abstract 

This article addresses the question of the coherence of enactivism as 
a research perspective by making a case study of enactivism in mathematics 
education research. Main theoretical directions in mathematics education are 
reviewed and the history of adoption of concepts from enactivism is 
described. It is concluded that enactivism offers a ‘grand theory’ that can be 
brought to bear on most of the phenomena of interest in mathematics 
education research, and so it provides a sufficient theoretical framework. It 
has particular strength in describing interactions between cognitive systems, 
including human beings, human conversations and larger human social 
systems. Some apparent incoherencies of enactivism in mathematics 
education and in other fields come from the adoption of parts of enactivism 
that are then grafted onto incompatible theories. However, another significant 
source of incoherence is the inadequacy of Maturana’s definition of a social 
system and the lack of a generally agreed upon alternative. 

Keywords: enactivism; biology of cognition; mathematics education; theories 
of learning; autopoiesis; cognitive systems; social systems. 

Introduction 

Is enactivism a coherent and promising research perspective? Is it a conce-
ption, or maybe a framework for research? What is its future? In this article 
I will address these questions by making a case study of enactivism in my 
field, which is mathematics education research. I will review the main 
theoretical directions in mathematics education and the history of adoption of 
concepts from enactivism. I will consider whether enactivism provides 
a sufficient theoretical framework for research in mathematics education and 
whether enactivism is coherent in general.  
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What is Enactivism? 

Enactivism exists in the eyes of observers, and so any discussion of it must 
begin with a description of the authors’ observations. For me enactivism is 
fundamentally a theory about autopoietic systems and the biology of 
cognition. My first encounter with it was Tree of Knowledge (Maturana 
& Varela 1987) and I read backwards and forwards from there. Maturana’s 
writing has been more significant to me than Varela’s, especially ‘Everything 
said is said by an observer’ (Maturana 1987) and ‘Reality: The search for 
objectivity or the quest for a compelling argument’ (Maturana 1988). Hence, 
when I write about enactivism I am thinking of the ideas of Maturana and 
Varela up to and including Tree of Knowledge, plus material from The 
Embodied Mind (Varela, Thompson & Rosch 1991) and later writing as far as it 
overlaps with Varela’s prior work with Maturana. There are clearly many 
connections between enactivism and the work of Bateson, McCullogh, von 
Foerster and Lakoff, for example, but I do not see their work as defining 
enactivism itself.  

I realise this reading of enactivism will only overlap and not coincide with 
that of many readers. After all, the words ‘enaction’ and ‘enactive’ were used 
first by Varela, Thompson and Rosch (1991) and Maturana never uses them, so 
my emphasis on Maturana’s ideas may seem odd. And I am also paying little 
attention to Varela’s later elaborations of enaction and the connections he 
makes to the phenomenology of Merleau-Ponty and Buddhist mindful-
ness/awareness practice. On the other hand, the description of ena-ction in 
The Embodied Mind depends on a number of concepts, such as embodiment, 
perceptually guided action, recurrent sensorimotor patterns, structure deter-
minism and operational closure, that were developed during Varela’s work 
with Maturana in the early 1970s, and first described in many joint and 
individual publications, most notably Autopoiesis and Cognition (Maturana 
and Varela 1980a) and Tree of Knowledge. And most importantly, the key isight 
of enactivism, it seems to me, is the founding of cognition in biology, and that 
insight is best reflected in the collaborative work of Maturana and Varela and 
Maturana’s work since then.  

 

Theoretical frameworks in mathematics education 

Enactivism was introduced into mathematics education at a time when the 
main theoretical debate concerned how to describe the social interactions 
between individuals.  

Two general theoretical positions on the relationship between social processes 
and psychological development can be identified in the current literature. These 
positions frequently appear to be in direct opposition in that one gives priority 
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to social and cultural processes, and the other to the individual autonomous 
learner. (Cobb & Bauersfeld 1995: 3) 

Psychological theories, giving priority to the individual autonomous learner, 
entered mathematics education at its very beginning as an academic field. 
Sociocultural theories came much later, and their introduction created 
significant tension.  

Mathematicians had taught mathematics and written mathematics textbooks 
for millennia before mathematics education emerged as an academic 
discipline. A possible marker of its origin is the first issue of the journal 
L’Enseignement Mathématique in 1899, which included both an article on 
mathematics teaching by the famous mathematician Henri Poincaré, as well 
an article on “scientific pedagogy” by Alfred Binet, the director of the 
Laboratory of Experimental Psychology at the Sorbonne (Kilpatrick 1992: 7). 
This bringing together of mathematics and psychology established the 
theoretical basis for the field of mathematics education.  

After its birth as an academic field at the beginning of the twentieth century, 
the further development of mathematics education was disrupted by the 
interruption of international collaborations caused by the two world wars. 
After the post war recovery, the field was revitalised by the introduction of the 
genetic epistemology of the psychologist Jean Piaget (1896-1980, a student of 
Binet). This became the dominant theoretical framework for the rest of the 
century. The founding fathers of mathematics education from this time, Zoltan 
Dienes (1916-2014), Ephraim Fischbein (1920-1998), Caleb Gattegno (1911-
1988) and Richard Skemp (1919-1995) all trained as both mathematics and 
psychologists, except Gattegno who collaborated directly with Piaget. The 
importance of psychology in mathematics education is also marked by the 
founding in 1976 of the International Group for the Psychology of 
Mathematics Education, whose annual conference became the main research 
conference in the field.  

Even at this time, however, there was a recognition that mathematics 
education must also consider the contexts in which learning takes place. 
Heinrich Bauersfeld recalls: 

From the very beginning [of PME] I was unhappy with the exclusive 
concentration on Psychology only, which meant focusing on the individual and 
neglecting the social dimensions of the complex teaching-learning processes. 
Research on the complex problems of learning/teaching-processes and of 
teaching teachers to teach mathematics will not arrive at helpful constructive 
information as long as such vast domains as language, human interaction (not 
the usual psychological interaction of variables!) and rich case studies are 
neglected and/or treated by inadequate research methods. (Nicol et al. 2008).  

By the 1980s “Researchers were taking the social and cultural dimensions of 
mathematics education more seriously (Kilpatrick 1992: 30). This meant that 
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the theories of psychology had to be supplemented both by teachers’ 
experiences and by theories from other disciplines. “Practitioners were 
increasingly becoming members of the interdisciplinary groups needed to 
help research link the complexity of practice to theoretical constructs. The 
techniques and concepts used by anthropologists, sociologists, linguists and 
philosophers proved helpful in that task” (Kilpatrick 1992: 31).  

However, as I will discuss below, sociocultural theories did not fit easily into 
a field dominated by psychological perspectives, and as indicated in the Cobb 
and Bauersfeld quotation above, the two approaches often seemed to be 
opposed. Researchers in both camps critiqued the perceived failings of 
theories used by the others. This was the context in which concepts from 
enactivism first entered mathematics education. 

 

Enactivist ideas in mathematics education 

In mathematics education the growing influence of enactivist ideas can be 
traced historically through references to the work of Maturana and Varela. 
Enactivist ideas have been introduced into mathematics education four times. 
The first references come from radical constructivists who sought to 
incorporate the concept of consensual domains in order to address criticisms 
that radical constructivism did not address learning in social situations. Tom 
Kieren’s work then introduced the full range of enactivist concepts, and he 
was the first to use the work ‘enactivist’ to describe his research. At about the 
same time, the concept of embodied cognition began to be used by a number 
of other researchers with interests in bodily metaphors and gestures in 
mathematics. Finally, the concept of autopoiesis, as reframed by Niklas 
Luhmann, has been used by Heinz Steinbring to describe interactions in 
mathematics classrooms.  

 

Radical constructivism and consensual domains 

The first influence of enactivism (prior to the coining of the term) came from 
an attempt to integrate social elements into the radical constructivism of Ernst 
von Glasersfeld. In the late 1980s, Paul Cobb (a graduate student of von 
Glasersfeld’s collaborator Les Steffe) began to refer to Maturana’s concept of 
consensual domain (1980b, 1978a) in order to describe a world view or belief 
system shared by many individuals (see e.g., Cobb 1985, 1986). Von Glasersfeld 
(1989) himself also refers to Maturana (1980a) to account for the possibility of 
communication between individuals, which arises “in the course of protracted 
interaction, through mutual orientation and adaptation” (Glasersfeld 1989: 
132). This led to Maturana’s work being seen as a part or a type of radical 
constructivism. For example, Konold & Johnson refer to “the radical construc-
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tivism of Maturana and von Glasersfeld” (1991: 10) and Krainer includes 
Maturana on a list of those putting forth “constructivist positions” along with 
Piaget and von Glasersfeld (1993: 69). 

Critics often claimed that radical constructivism was unable to explain social 
phenomena (Ernest 2010: 41), and Maturana’s concepts of consensual domain, 
domain of interpretation, isomorphic structures and mutual adaptation 
continue to be used by radical constructivists to address this criticism 
(e.g.,Thompson 2008). However, though von Glasersfeld and Maturana were 
friends, they disagreed on some fundamental points, such as structure 
determinism and the system’s environment (Glasersfeld 1991, Kenny 2007). 
The radical constructivists, thought they were the first to apply Maturana’s 
ideas in mathematics education, cannot be said to be using enactivism, as they 
pick and choose concepts, seeking those that give radical constructivism 
a language to describe social phenomena.  

 

Tom Kieren 

Tom Kieren has been described as “one of a very few pioneers of enactivism 
within the mathematics education community” (Kieren & Simmt 2009: 28). In 
the mid 1980s he picked up Autopoiesis and Cognition (Maturana & Varela 
1980) and was strongly influenced by what he read. He also encountered 
enactivist concepts through a paper Maturana delivered with Karl Tomm at 
a conference of the Department of Psychiatry at the University of Calgary, on 
“Languaging and the emotion flow” in 1986 and through Tree of Knowledge 
(Maturana & Varela 1987). Kieren was already well acquainted with radical 
constructivism, but found something new and exciting in Maturana’s ideas. In 
1988 he discussed this work with his colleague Susan Pirie and this led to the 
first publication in mathematics education that makes extensive use of 
Maturana’s ideas, Pirie and Kieren (1989). They use the concepts of recursion 
in knowing, knowing as effective action as seen by an observer, autopoiesis, 
consensual coordination of action, and the aphorism “everything said is said 
by an observer” as the basis for a theory of mathematical understanding that 
has come to be known as the Pirie-Kieren model.  

In 1994 Kieren published a reaction to two papers by radical constructivists in 
the Journal of Research in Childhood Education. In it he uses the word 
“enactivist” for the first time in the mathematics education literature; the 
word was coined in The Embodied Mind (Varela, Thompson & Rosch 1991). 
Kieren (1994) describes enactivism as a position on cognition that includes the 
concepts of structure determinism, structural coupling, bringing forth 
a world, observer dependence, satisficing, and co-emergence. 

In the 1990s Kieren supervised a number of graduate students who went on to 
use enactivist ideas in their work. These include Judy Barnes, Brent Davis, 
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Lynn Gordon Calvert, Elaine Simmt, and myself. Almost all include in their 
doctoral dissertations extensive descriptions of enactivist ideas (Barnes 1994; 
Davis 1994; Gordon Calvert 1999; Reid 1995; Simmt 2000).  

Of these graduate students, Davis has published the most extensively and has 
done much to spread enactivist ideas to the mathematics education 
community. His doctoral dissertation (1994) was the basis for his first book 
(1996), in which enactivist ideas are presented in detail. He places special 
emphasis on enactivism’s denial of the mind/body split, and the enti-
ty/environment split (1996: 77). He also refers to autopoiesis, co-emergence, 
embodied cognition, double embodiment, knowing as being and doing, and 
structure-determinism. Davis also published several related journal articles 
(Davis 1995, 1997; Davis, Sumara & Kieren 1996) in which he provides 
descriptions of enactivism as an interpretive framework. For mathematics 
education researchers such as Begg (1999, 2002, 2013) and Samson and 
Schafer (2010, 2011, 2012), Davis is a primary reference for enactivist theory. 
However, Davis himself later came to regard enactivism as a variety of 
complexity science, and changed his focus to applications of complexity 
science in general to educational research (see, e.g., Davis 2004, Davis 
& Sumara 2006).  

Three other doctoral students, Elaine Simmt, Lynn Gordon Calvert, and 
myself, along with Kieren constituted the Enactivist Research Group at the 
University of Alberta. Together we presented enactivism informed 
interpretations of shared data from four perspectives (Gordon Calvert, Kieren, 
Reid & Simmt 1995; Kieren, Gordon Calvert, Reid & Simmt 1995; Kieren, 
Simmt, Gordon Calvert, & Reid 1996). Key concepts used in those presentations 
were coemergence, structural determinism, autopoiesis, and double 
embodiment, and enactivism provided not only the interpretative frame but 
also the methodology.  

Both Simmt and Gordon Calvert became professors at the University of 
Alberta, and doctoral work with an enactivist framework continues to be done 
there. The research of Joyce Mgombelo, Immaculate Namukasa, Jerome Proulx 
and Martina Metz at the University of Alberta has continued the enactivist 
tradition begun by Tom Kieren.  

 

The Bristol School 

After completing my dissertation (Reid 1995) I continued to make use of 
a wide range of enactivist ideas, especially Maturana’s (1988) concept of an 
emotional orientation, in my research on the development of students’ 
reasoning towards mathematical proof (see, e.g., Blackmore, Cluett, & Reid 
1996, Reid 1996, 1999, 2002ab; Reid & Drodge 2000). Enactivism continues to 
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provide the methodological underpinnings of my research into teachers’ 
pedagogies (see http://www.acadiau.ca/~dreid/OT/).  

In 1995 I met Laurinda Brown in a PME discussion group organised by Rafael 
Núñez and Laurie Edwards (see below). Brown had been using the work of 
Gregory Bateson (1972, 1979) extensively but had not discovered Maturana 
and Varela. I had not yet read Bateson’s work. After exchanging reading lists, 
we began a long collaboration. With our colleagues Vicki Zack and Alf Coles 
we made use of enactivism as a theoretical framework, and also incorporated 
Bateson’s work and later the work of Antonio Damasio (1994). His somatic 
marker hypothesis provided us with a neurological explanation for 
phenomena described by Maturana and Bateson (see, e.g., Brown & Reid 2002, 
2003, 2004, 2006; Brown, Reid & Coles 2003; Reid & Brown 1999; Reid, Brown, 
& Coles 2001).  

Brown introduced a number of graduate students to enactivist ideas, and two 
in particular picked them up and used them extensively. Maria Lozano 
completed her dissertation in 2004. She examined algebraic learning in the 
transition from arithmetic to algebra, using enactivism as both her 
methodology and theoretical framework (Lozano 2004). Alf Coles collaborated 
with Brown over many years, on research and publications (e.g., Brown and 
Coles 1997, 2000, 2008, 2010) that “adopted an enactivist epistemology and 
methodology” (Coles 2011: 18). In his doctoral dissertation (Coles 2011) he 
examined the patterns of communication in classrooms and teacher meetings 
from an explicitly enactivist perspective.  

 

Embodied mathematics 

The year 1995 can be seen as the birth year of another important theoretical 
framework in mathematics education, closely related but not identical to 
enactivism. In that year Stephen Campbell and A. J. Dawson published a paper 
on ‘Learning as Embodied Action’ (Campbell & Dawson 1995) which draws 
strongly on The Embodied Mind (Varela, Thompson & Rosch 1991). Rafael 
Núñez and Laurie Edwards in the same year presented a paper (Edwards & 
Núñez 1995) and organised a discussion group at PME on non-objectivist 
cognitive science (Núñez & Edwards 1995), drawing heavily on The Embodied 
Mind as well as the work of Lakoff (1987) and Johnson (1987) on body based 
metaphors in cognition. Since then embodied mathematics has emerged as 
a significant theoretical frame in mathematics education. It posits that all 
human cognition is embodied, that is “every subjective sensation, memory, 
thought, and emotion—anything at all that any human being can ever 
experience—is in principle enacted in some objective, observable, way as 
embodied behaviour.” (Campbell 2010: 313). Three threads can be discerned 
within the theoretical framework of embodied mathematics.  
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One thread, which Campbell (2010) calls ‘mathematics educational 
neuroscience’, seeks to investigate mathematics learning using neuroscientific 
tools such as eye-tracking and brain scans. In this thread the ideas of Varela 
serve chiefly as a starting point to justify examining cognition in terms of 
observable bodily changes.  

A second thread builds chiefly on the work of Lakoff. A basic text is Where 
mathematics comes from: How the embodied mind brings mathematics into 
being (Lakoff & Núñez 2000) in which they argue that mathematical concepts, 
even quite abstract concepts, are always based on bodily experiences, through 
metaphors. Researchers (e.g., Ferrara 2003; Oehrtman 2003) study the 
metaphors involved in students’ understandings of mathematical concepts 
such as functions, limits, and sets. No reference is made to the work of Varela, 
except indirectly through references to publications of Edwards and Núñez.  

A third thread focusses on the use of gestures in mathematics education. This 
thread can be represented by a special issue of the journal Educational Studies 
in Mathematics, (Radford, Edwards & Arzarello 2009) in which embodied 
mathematics is used in combination with semiotics to research the role of 
gestures in mathematical thinking and communication. In this work Varela’s 
ideas play a limited role, acting mainly as a reference for the concept of 
embodied cognition.  

As noted above, the theoretical framework of embodied mathematics is 
related to enactivism, but distinct from it. The Embodied Mind (Varela, 
Thompson & Rosch 1991) is a key reference for this school of research, but 
other work by Varela is rarely cited, and work by Maturana is almost never 
cited by researchers in the area.  

 

Autopoietic social systems 

The enactivist idea of autopoiesis found its way into mathematics education 
through one other channel, the sociological work of Nicholas Luhmann, which 
was applied to mathematics education by Heinz Steinbring. Luhmann (1986, 
1995, 1997) considers social communication to be an example of an 
autopoietic system. In order to do so he generalises Maturana’s concept of 
autopoiesis to apply to non-living systems that also have the properties of 
being self-organising and operationally closed. Within this broader conception 
of autopoietic systems he identifies three types: living systems, psychic 
systems and social systems. The elements of psychic and social systems 
are   not   physical but based on meaning, in consciousness and commu-
nication respectively. 
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The relationship between psychic conscious mental and social communication 
systems is an important theme in Luhmann’s work, and in its application to 
mathematics education.  

Communication systems and mental systems (or consciousness) form two clearly 
separated autopoietic domains.... These two kinds of systems are, however, 
closely connected to each other in a particular tight relation and mutually form 
a  ‘portion of a necessary environment’: Without the participation of 
consciousness systems there is no communication, and without the participation 
in communication, there is no development of the consciousness. (Baraldi et al. 
1997: 86, translated by Steinbring 2005:320) 

Steinbring uses Luhmann’s concept autopoietic social systems composed of 
communications to analyse episodes in mathematics teaching (see, e.g., 
1999, 2005). This approach has had only a limited influence in mathema-
tics education. 

 

Summing up 

Enactivism has become recognised as a theoretical framework used in 
mathematics education, and it is interesting to see how it has been summa-
rised by overviews of theories in the field.  

Mason and Johnston-Wilder include enactivism in the Fundamental Constructs 
in Mathematics Education (2004). Key concepts cited are ‘action is knowledge 
and knowledge is action” and ‘everything said is said by an observer.’ The 
enactivist idea of ‘bringing forth a world’ is seen as “entirely compatible with 
von Glasersfeld’s radical constructivism” (Mason & Johnston-Wilder 2004: 71), 
and radical constructivists such as Cobb, Yackel and Wood are described as 
having “taken up the enactivist view” (Mason & Johnston-Wilder 2004: 72). 
The work of Campbell and Dawson (1995) is cited a particular example of the 
enactivist approach, with the idea of stressing and ignoring being presented as 
central. Much of Mason and Johnston-Wilder’s summary seems to have been 
based on Campbell and Dawson’s article, which appeared in a book edited by 
Mason. The body of work inspired by Tom Kieren is represented by a brief 
quotation from Davis, Sumara and Kieren (1996) which is seen as exemplary 
of “radical enactivism” (Mason & Johnston-Wilder 2004: 73), in which learning 
and action are identified.  

In the recent collection Theories of Mathematics Education (Sriraman 
& English 2010) Paul Ernest contrasts four “philosophies of learning”: ‘simple’ 
constructivism, radical constructivism, enactivism and social constructivism. 
Ernest (2010) cites The Embodied Mind (Varela, Thompson & Rosch 1991) as 
the original influence that brought enactivism into mathematics education 
and he lists autopoiesis and cognition-as-enaction as key concepts. He cites 
Lakoff and Johnson’s work, as transmitted by Lakoff and Núñez, as a “source 
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of enactivism” (Ernest 2010: 42). Ernest sees enactivism as “not so very 
different from Piaget’s epistemology and learning theory and the radical 
constructivism to which it gave birth” (2010: 42). What Ernest sees are distinct 
in enactivism is the role of metaphor contributed by Lakoff. This suggests that 
it is the embodied mathematics research that has been Ernest’s main source of 
information about enactivism. Another clue to this is his comment “What both 
enactivism and radical constructivism appear to share is the subordination of 
the social or the interpersonal dimension” (2010: 43).  

 

Mathematics: Mind or Society? 

Recall that when enactivist ideas were first introduced into mathematics 
education a fundamental tension existed between psychological theories or 
sociocultural theories. This tension was addressed in mathematics education 
in a number of ways.  

As noted above, radical constructivists borrowed Maturana’s concept of con-
sensual domain in order to be able to address social aspects of learning. The 
concept of consensual domain was only referred to, however, and the full 
implications of incorporating the concept into radical constructivism were 
never, as far as I know, worked out. Given the fundamental ontological 
differences between radical constructivism and enactivism, it may not be 
possible to truly integrate the concept of consensual domain into radical 
constructivism. Adopting the concept of consensual domains without adopting 
the ontological basis for their existence would give rise to an incoherence in 
radical constructivism. This can only be resolved by either adopting 
Maturana’s position on reality (effectively changing radical constructivism 
into enactivism) or by dropping the concept of consensual domains, leaving 
radical constructivism again open to the critique that it does not address 
learning in social contexts.  

Cobb and Bauersfeld (1995) take a different approach, of employing both 
a radical constructivist framework as well the interactionist perspective 
developed by Bauersfeld (1980).  

We arrived at the conclusion that psychological and sociological perspectives 
each tell half of a good story. What was needed was a combined approach that 
takes individual students’ mathematical interpretations seriously while 
simultaneously seeing their activity as necessarily socially situated. (Cobb 
& Bauersfeld 1995 p. ix) 

They “seek to transcend the apparent opposition between collectivism and 
individualism by coordinating sociological analyses of the microculture 
established by the classroom community with cognitive analyses of individual 
students’ constructive activities” (Cobb & Bauersfeld 1995: 7). However, they 
are explicit that “this coordination does not … produce a seamless theoretical 
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framework” (Cobb & Bauersfeld 1995: 8). It is a coordination of approaches, 
not a single combined approach.  

Instead, the resulting orientation is analogous to Heisenberg’s uncertainty 
principle. When the focus is on the individual, the social fades into the 
background, and vice versa. Further the emphasis given to one perspective or 
the other depends on the issues and purposes at hand. Thus … there is no simple 
unification of the perspectives. (Cobb & Bauersfeld 1995: 8) 

Another approach begins with a sociocultural perspective and attempts to 
integrate psychological elements. The main example of this approach is social 
constructivism, which built on the work of the Belorussian psychologist 
Vygotsky. Partly out of a genuine interest in how thinking is related to 
language and society, and partly because the political and intellectual context 
of the Soviet Union in the 1930s demanded a Marxist element in any theory, 
Vygotsky developed a theory that pays explicit attention to how social and 
cultural patterns of interaction shape thinking. Beginning in the 1970s 
Vygotsky’s ideas were adopted in mathematics education as an alternative, 
called social constructivism, to Piagetian constructivism.  

Social constructivism, however, was critiqued as downplaying psychological 
processes in learning. This lead to efforts to create a more robust theory by 
adding psychological elements from Piagetian constructivism into the 
sociocultural theories of Vygotsky. As an example, Confrey (1992) relates how 
Wertsch (1985) “proposes that Piaget should be added into the Vygotskian 
program” (Confrey 1992: 13) both in the description of “natural” development 
and in the process of construction of scientific concepts. This, Confrey notes, 
results “in major changes and contradictions in Vygotsky’s program” (1992: 
13). This she sees as a general problem with any effort to integrate radical 
constructivist and sociocultural approaches by simple modifications of each 
theory.  

These shifts of attention to include social interaction and cultural influence [in 
radical constructivism] imply deep reconceptualization of theory and methodology. 
An integrated theory will need to seek to reshape both theories to allow for both 
intra-cognitive and inter-cognitive activity. (Confrey 1992: 28) 

Instead, Confrey proposes that an alternative theory is needed, and she lists 
a number of possible characteristics of such a theory. In the published version 
of her text, she does not go further than presenting her list. Intriguingly, 
however, Lerman (1996) in summarising her paper, claims she “argues for 
a new approach that incorporates Maturana and Varela’s (1986) theory of 
autopoiesis” (Lerman 1996:141). It may be that she argued this when the paper 
was presented but not in the printed version.  

Later, enactivist researchers in mathematics education elaborated the ways in 
which enactivism in fact offers a new approach that addresses both the 
individual and the social.  
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In sum, then, cognition does not occur in minds and brains, but in the possibility 
for (shared) action. Enactivism thus embraces the insights of constructivism, but 
does not privilege the individual as the truth-determining authority. Similarly, 
enactivists are able to appreciate the social constructivist’s concern for the 
transcendent (i.e., beyond the individual) nature of knowledge, but do not frame 
collective knowledge in opposition to subjective knowing. Truth and collective 
knowledge, for the enactivist, exist and consist in the possibility for joint or shared 
action—and that, necessarily, is larger than the solitary cognizing agent. 
Enactivism thus offers a way of bringing these discourses into conversation; for 
example, constructivism’s subject and social constructivism’s collective are 
regarded as self-similar forms. (Davis 1996:192-193) 

While the debates between those taking psychological approaches and those 
taking sociocultural approaches have largely died down, this is not due to the 
adoption of enactivism as an alternative theory, as (perhaps) proposed by 
Confrey. Rather, most mathematics educators have adopted something like the 
eclectic approach of Cobb and Bauersfeld, using elements of sociocultural and 
constructivist theories without being too concerned about contradictions 
and coherence.  

It might be asked why enactivism has not been more widely adopted, if it does 
offer a way to address both the individual and the social in mathematics 
education. The difficult writing style of Maturana may be a factor, as might be 
the range of alternative conceptions of enactivism offered by others (e.g., Di 
Paolo, Rohde and De Jaegher 2010). No one has yet managed to capture the full 
complexity of enactivism as a biological theory of cognition in language that is 
more accessible than Maturana’s. The confusion around autopoiesis and social 
systems (explored below) may also be a factor. Many researchers in mathe-
matics education would like to be able to use a common frame to describe 
cognition in living systems and social systems, and this has resulted in 
a number of approaches being taken that build on enactivist ideas while not 
treating enactivism as the full framework desired. Examples include 
Steinbring’s adoption of Luhmann’s version of autopoiesis, and Davis’ 
embracing of complexity theory, which is more obviously applicable to 
complex dynamic systems of any order.  

 

Is enactivism in mathematics education sufficient? 

Within mathematics education the critiques of enactivism, and theoretical 
frameworks in general, have more often been about their sufficiency to 
address the phenomena of interest to mathematics educators than about their 
internal consistency. However, the two issues are related. As Confrey’s 
comments above indicate there is a concern that any theory that is sufficient 
to address both individual learning and social interactions will be incoherent. 
In this section I will focus on the question of whether enactivism is sufficient 
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within mathematics education, and this discussion will set the stage for 
a consideration of whether enactivism is coherent.  

First it will be necessary to consider the nature of theories in mathematics 
education from two perspectives. Theories in mathematics education are 
examples of what Bernstein (2000) calls “horizontal knowledge structures” 
and they occur both as “grand” theories and as local theories. This establishes 
the context for the acceptance of enactivism as a theory and its limits when 
applied to mathematics education. I will then address critiques from within 
mathematics education concerning the sufficiency of enactivism in describing 
social systems.  

 

The knowledge structure of mathematics education 

As Lerman (2000) points out, education has what Bernstein (2000) calls 
a “horizontal knowledge structure.” This means that new theories in 
education tend to establish new research domains with their own language. 
They don’t replace other domains, as occurs in vertical knowledge structures 
like physics, where heliocentrism replaced geocentrism rather than 
establishing a new research domain alongside it. In mathematics education 
a new theory like embodied mathematics is not expected to replace other 
theories, taking over their research domains and transforming them, but 
rather to establish a new research domain. While proponents of any 
particular theory would like to think that their theory has the potential to 
replace others, due to the horizontality of the knowledge structure this does 
not normally occur. 

Furthermore, education in general has a weak grammar; its theories are not 
able to produce unambiguous descriptions of phenomena. Objects of study in 
education, such as cognition, learning. knowledge, and emotion, cannot be 
defined in the way objects of study in physics can be. They are instead 
described within the frame of reference of a theory. In order to learn what 
“cognition” means in radical constructivism or embodied cognition “one 
needs to learn the language of radical constructivism or embodied cognition” 
(Lerman 2000: 101).  

Lerman claims that theories in mathematics education are incommensurable, 
in principle.  

Where a constructivist might interpret a classroom transcript in terms of the 
possible knowledge construction of the individual participants, viewing the 
researcher’s account as itself a construction (Steffe and Thompson 2000), 
someone using socio-cultural theory might draw on notions of a zone of 
proximal development. Constructivists might find that describing learning as an 
induction into mathematics, as taking on board concepts that are on the 
intersubjective plane, incoherent in terms of the theory they are using (and 
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a similar description of the reverse can of course be given). In this sense, these 
parallel discourses are incommensurable. (Lerman 2010: 102) 

 

Grand and local theories 

In mathematics education empirical research always takes place with two 
kinds of theories in play, grand theories and local or intermediate theories, 
frameworks and models (Ruthven, Laborde, Leach & Tiberghien 2009).  

“Grand theories” [are] theories general in scope and correspondingly abstract in 
form; notably theories of human development and learning, of the epistemology 
of the discipline, or of the process of instruction. (Ruthven, Laborde, Leach 
& Tiberghien 2009: 330) 

Grand theories apply not only within mathematics education but to a much 
wider domain, and within mathematics education a grand theory is expected 
to address all phenomena of interest. Radical constructivism, sociocultural 
theory and enactivism are examples of grand theories (Simon 2013). They are 
expected to be useful in describing any phenomenon of interest in 
mathematics teaching and learning, either directly, or in some cases by 
providing a reasoned argument that the phenomenon in question does not 
exist. Transmission of knowledge is an example of a phenomenon that radical 
constructivism and enactivism would address by questioning and reframing 
rather than addressing directly.  

Local theories, on the other hand, are applicable only within mathematics 
education, and usually only within a small domain of mathematics education. 
For example, a theory describing how the principles of arithmetic might be 
abstracted to become theorems of algebra would be a local theory.  

If enactivism is a grand theory then it must address all phenomena of interest 
to mathematics educators. This includes individual learning, accounting for 
known phenomena such as the importance of physical materials in learning 
mathematics, the transition to abstract thinking, and the role of language. It 
also includes social interactions, including phenomena related to teacher 
student interactions, student student interactions, and interactions mediated 
by objects and symbols. Finally it includes the behaviours of social systems.  

 

Apparent insufficiencies of enactivism for mathematics education 

Enactivism has been critiqued as not dealing with social interactions, which 
are undoubtedly important phenomena in mathematics education. For 
example, Ernest (2010) comments:  
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What both enactivism and radical constructivism appear to share is the 
subordination of the social or the interpersonal dimension, and indeed the 
existence of other persons to constructions and perceived regularities in the 
experienced environment. The knowers’ own body might be a given, albeit 
emergent, but other persons’ bodies and overall beings are not. Ironically, 
language, which is the primary seat of metaphor, is the quintessential social 
construction. But language, like other persons, seems to be removed and exterior 
to the primary sources of knowledge of the enactive self in these perspectives. 
(Ernest 2010: 43) 

Ernest, however, seems to be referring not to enactivism, but to embodied 
mathematics. The claim that language and other persons are not central to 
enactivism is clearly wrong. In fact, recall that the first mathematics educators 
to use concepts from enactivism, radical constructivists, were interested 
precisely in ways to refer to social phenomena. This seems to have been 
forgotten. Perhaps this is a consequence of the way enactivist ideas have been 
adopted in mathematics education, usually as isolated concepts, grafted onto 
other theoretical frames. Radical constructivists have adopted the concept of 
a  consensual domain, and the concept of embodied cognition has been 
employed by researchers interested in gesture, but neither group has actually 
adopted enactivism as a theoretical frame. This does not mean that enactivism 
itself is insufficient, however, only that the way it has been employed by 
radical constructivist and embodied mathematics researchers is insufficient.  

 

Social systems 

Ernest’s critique above does point out that it is essential to address social 
aspects of learning in mathematics education. This must be done at two levels, 
the interpersonal and the social. The interpersonal level includes the social 
interactions and language use of teacher and students. The social level 
concerns the behaviour and function of social systems, such as schools, 
nations and cultures. While enactivism undeniably addresses the social 
interactions and language use of living systems, it could be critiqued as being 
unable to address the functioning of non-living social systems. Before 
responding to this critique it is worth recalling two approaches related to 
enactivism that have directly addressed social systems. Steinbring’s use of 
Luhmann’s sociological theory was described above. Here I will describe 
Davis’s use of complexity theory.  

Davis and colleagues (Davis & Sumara 1997, 2006; Davis & Simmt 2003) use 
complexity theory to extend enactivism to social systems, as well as other 
complex systems.  

Enactivism understands the individual to be part of—that is, embedded in and 
a subsystem to—a series of increasingly complex systems with integrities of their 
own, including classroom groupings, schools, communities, cultures, humanity 
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and the biosphere. The notion of “embodied knowledge” extends to bodies much 
larger than our own. (Davis 1996:193) 

This approach extends the types of systems it can address, at the cost of 
treating them all as complex systems. Complex systems have many important 
properties, but far fewer than the living systems that enactivism focusses on. 
This limits the body of concepts that can be brought into the analysis of 
phenomena in mathematics education. It also risks extending concepts 
applicable to autopoietic systems, like embodiment, to complex systems in 
general, as is done in the quote above. There is no reason to believe that this 
can be done without diluting or destroying the concepts. “Using a concept 
outside its proper context of application means committing a double fault: the 
concept will work properly neither in the original nor the new domain” 
(Maturana & Poerksen 2007: 70)  

Enactivism has as its main focus living systems, and so it is much more 
restricted than complexity theory. However, there is no need to begin with the 
common properties of all complex systems in an effort to address social 
phenomena. Maturana himself showed how enactivism ideas can be extended 
to social systems, and more importantly which ideas can be extended to social 
systems. Maturana rejected the idea of extending ideas such as autopoiesis, 
that had been developed in relation to living systems, to social systems without 
first establishing what the characteristics of social systems are. Hence he 
begins a paper presented to a symposium on “the theory of autopoietic 
systems as a new foundation of the social sciences” (Maturana 1980b) by 
describing what he sees as the organisation of a social system:  

I propose that a collection of interacting living systems that, in the realization of 
their autopoiesis through the actual operation of their properties as autopoietic 
unities, constitute a system that as a network of interactions and relations 
operates with respect to them as a medium in which they realize their 
autopoiesis while integrating it, is indistinguishable, from a natural social 
systems and is, in fact, one such system. (Maturana 1980b:12)  

This definition of social organisation has not been adopted by mathematics 
educators and is only referred to briefly by a few radical constructivists. It is 
also problematic (see below) but it cannot be said that enactivism lacks a way 
to describe social systems.  

Enactivism provides a grand theory that is sufficient to address both the 
individual and the social in mathematics education. It does so without 
juxtaposing incompatible frameworks or limiting itself to over general 
descriptions. But it will not become the dominant grand theory in 
mathematics education, simply because of the way theories become dominant 
in domains with horizontal knowledge structures. And there remain aspects 
of mathematics education that enactivism does not address, most notably the 
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nature and growth of mathematics itself. Other theories must be used to 
address this aspect.  

With the ability to address a wide range of phenomena with a single 
framework comes the risk of incoherence, and in the next section I will turn to 
the question of coherence, using my case study of mathematics education 
research to focus the discussion around the nature of autopoietic systems and 
social systems. 

 

Is Enactivism Coherent in General? 

My case study of enactivism in mathematics education suggests that a possible 
source of incoherencies is the description of systems using inappropriate 
terminology. There is a need to be able to describe social systems in particular, 
and because social systems are like living systems in some ways, there have 
been efforts to apply Maturana’s and Varela’s concepts to them. However, 
unless care is taken to establish the nature of social systems first, there is 
a  danger of misapplying enactivist concepts. Maturana and Varela describe 
features of living systems, without usually indicating which of the features 
arise only because the systems are living, and which might apply also to non-
living systems. To clarify my discussion of these points I will begin by 
reviewing the properties of autopoietic systems, which are often given in an 
abbreviated form that makes it too easy to over generalise the concept. I will 
then propose a nesting of types of systems and locate living systems, cognitive 
systems and social systems in it. Through a discussion of the properties of 
these types of systems, I will locate possible sources of incoherence in 
enactivism and address them. 

 

Autopoietic systems 

It is helpful to be precise about how exactly Maturana and Varela characterise 
autopoietic systems. Autopoietic systems have a number of properties, all of 
which must be present for them to be autopoietic. These are the following.  

A. Autopoietic systems are self-producing. They create their own 
components. “The relations that characterize autopoiesis are relations 
of productions of components” (Varela 1979: 54). 

B. Autopoietic systems are embodied. They create a boundary between 
themselves and everything else. “It is a defining feature of an 
autopoietic system that it should specify its own boundaries” (Varela 
1979: 54). 

C. Autopoietic systems are self-organising. The processes or inter-
actions between components are organised into a recursive network 
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that (re)generates itself. “Autopoietic systems ... have their own 
organization as the critical fundamental variable that they actively 
maintain constant.” (Maturana 1975: 318) 

D. Autopoietic systems are composite unities. They are distinguished 
both as entities and also as networks of interacting components. 

E. Autopoietic systems are interactionally open. “Every system will 
maintain endless interactions with the environment which will 
impinge and perturb it. If this were not so, we could not even 
distinguish it.” (Varela & Goguen 1978: 294, original empha-
sis removed).  

F. Autopoietic systems are mechanistic. Their “organization is 
specifiable only in terms of relations between processes generated by 
the interactions of components, and not by spatial relations between 
these components.” (Varela, Maturana & Uribe 1974: 188). Mechanistic 
systems are structure determined. “A structure determined system is 
a system such that all that takes place in it, or happens to it at any 
instant, is determined by its structure at that instant” (Maturana 
2002:15).  

Properties A and B distinguish autopoietic systems from other autonomous 
systems, and hence are especially important. However, they are not by 
themselves sufficient, and focussing on those two properties would mean 
ignoring important properties that autopoietic systems have in common with 
other self-organising systems.  

Properties C and D together define organisational closure, the distinguishing 
property of autonomous systems.  

An organizationally closed unity is defined as a composite unity by a network of 
interactions of components that (i) through their interactions recursively 
regenerate the network of interactions that produced them, and (ii) realize the 
network as a unity in the space in which the components exist by constituting 
and specifying the unity’s boundaries as a cleavage from the background (Varela 
1981:15) 

The distinction between properties A and B, and properties C and D is not 
always understood, and this results in the misapplication of the label 
‘autopoietic’ to autonomous systems that are not autopoietic. “The distinction 
between autopoiesis as proper to the unitary character of living organisms in 
the physical space, and autonomy as a general phenomenon applicable in 
other spaces of interactions, has been consistently confused and left 
unclarified” (Varela 1981:14). Autonomous systems have properties C and D 
but not properties A and B.  
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Property A (self-production) and property C (self-organisation) both concern 
the generative capacity of the network of interactions in the system. Self-
production concerns the production of the system’s components. Self-
organisation concerns the creation and maintenance of the network of 
interactions between those components. Neither implies the other. 
Autocatalytic systems create their own components, and so they are self-
producing, but they do not maintain the organisation that allows them to do 
so, so they are not self-organising (Maturana & Varela 1980: 94). Varela (1979) 
describes the immune system as an example of an autonomous system, i.e., 
a system with properties C and D, but its components are produced outside the 
system so it is not autopoietic.  

Property B (embodiment) and property D (unity) both concern the boundary 
between the system and its medium. However embodiment refers to the 
production by the system of its boundary which is made of components of the 
system, while unity refers to the way the system is perceived by an observer, 
as being both a unity as well as a network of interacting components. The 
immune system is seen as a system, as a unity, as well as being seen as 
composed of components that interact. But it does not produce a boundary in 
the space of its components, which are cells. “The immune system defines 
a boundary not in a topological sense, but rather in a space of molecular 
configurations, by specifying what shapes can enter into the ongoing 
interactions of the system at every point in time” (Varela 1981:18).  

The boundary between the system and its medium is also related to property E 
(interactional openness). A boundary both marks the extent of a system, as 
well as providing the means by which it interacts with its medium. The 
importance of interactions between the system and its medium through its 
boundary is indicated by this recent definition of autopoiesis: “A system is 
autopoietic if: (a) it has a semi-permeable boundary, (b) the boundary is 
produced from within the system, and (c) it encompasses reactions that 
regenerate the components of the system.” (Varela 2000, in Bourgine & Stewart 
2004: 329). A system that did not interact with its medium would be 
unobservable, and in addition, would not last long as it would have no way to 
import energy to offset entropy.  

Property F (mechanistic) places autopoietic systems among dynamic systems, 
which are defined by recursive properties rather than by geometric 
characteristics, which can also give rise to emergent properties (as is the case 
in crystals). This property is also a reminder that autopoiesis is a non-vitalist 
description of life. Being alive comes from recursive properties of the system 
rather than the presence of a vital spark or substance.  

 

 



The coherence of enactivism and mathematics education research 

 

156 
 

Nesting of types of systems 

Of the properties of autopoietic systems listed above, property E must be the 
most general. If a unity is not open to interactions with an observer, it cannot 
be observed. All the other properties can only apply to observable unities. This 
is because properties are not properties of the unity but properties of the 
observer’s interactions with it.  

The basic cognitive operation that we perform as observers is the operation of 
distinction. By means of this operation we specify a unity as an entity distinct 
from a background, characterize both unity and background with the properties 
with which this operation endows them, and specify their separability. 
(Maturana & Varela 1980: xix) 

Property D distinguishes composite unities from simple unities.  

 A unity thus specified [by an operation of distinction] is a simple unity that 
defines through its properties the space in which it exists and the phenomenal 
domain which it may generate in its interactions with other unities. If we 
recursively apply the operation of distinction to a unity, so that we distinguish 
components in it; we respecify it as a composite unity that exists in the space that 
its components define because it is through the specified properties of its 
components that we observers distinguish it. Yet we can always treat a composite 
unity as a simple unity that does not exist in the space of its components, but 
which exists in a space that it defines through the properties that characterize it 
as a simple unity. (Maturana & Varela 1980: xix) 

Some unities can only be observed as simple unities. Which unities are simple 
depends on the observer of course. In my case, given a sphere of clear crystal 
I observe it as a simple unity. Other observers say that the crystal ball has 
components, atoms in a particular configuration, but I do not observe those 
components, so it is a simple unity for me. Composite unities can be observed 
in two ways, either as a simple unity or as a set of components. Varela (1979) 
calls these two ways of observing the ‘behavioural view’ and the ‘recursive 
view’ respectively. Maturana and Varela use the word ‘system’ to refer only to 
composite unities observed recursively, which is a narrower usage than is 
common is systems theory generally, and which can lead to seeming 
incoherencies.  

Property B can apply to both simple unities and composite unities. I observe 
the crystal ball as having a topological boundary between it and not-it. I can 
also observe through a microscope the topological boundary between a cell 
and its medium. Because the cell is a component entity, I can observe its 
boundary in two ways, either as an edge between it and not-it, or as 
a component of the cell itself.  

Within composite unities we can distinguish between static unities and 
dynamic or mechanistic unities. A static unity is distinguished by the spatial 
relations between its components. As an observer I distinguish a table as 
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a simple unity by the interactions I can have with it, and as a composite unity 
by the way its parts are put together. A dynamic or mechanistic unity is 
distinguished by the “relations between processes generated by the 
interactions of components” (Varela, Maturana & Uribe 1974: 188). The spacial 
relations between the components of a mechanistic unity are not fixed, but its 
components interact in ways that define its organisation.  

Finally, I discussed above autonomous systems and self-producing systems. 
These are overlapping subtypes of mechanistic systems. Autopoietic systems 
are located in the intersection of autonomous systems, self-producing systems 
and embodied unities (See Figure 1). 

 

Figure 1: Nested types of systems 

 

 

Having identified the key properties of autopoietic systems and having shown 
how they are nested, I will now turn to some specific systems of interest: living 
systems, cognitive systems and social systems, and discuss where they fit into 
the nesting of properties. 

 

Living systems 

A question that has been discussed a great length is whether or not the 
categories ‘living system’ and ‘autopoietic system’ are identical. Maturana and 
Varela initially coined the term ‘autopoiesis’ in order to characterise living 
systems, and claimed “autopoiesis is necessary and sufficient to characterize 
the organization of living systems” (1980:82). This suggests that all autopoietic 
systems are living systems and all living systems are autopoietic. However, as 
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soon as the word was defined, it began to be applied to systems that are not 
usually thought of as living, including social systems. Maturana and Varela 
may have contributed to this confusion themselves by describing a computer 
model as autopoietic (Varela, Maturana & Uribe 1974, Varela 1979).  

If autopoiesis is not sufficient to characterise living systems, what else is 
required? Maturana clarifies “An autopoietic system that exists in physical 
space is a living system (or, more correctly, the physical space is the space that 
the components of living systems specify and in which they exist)” (1978a: 36). 
Computer models do not exist in physical space, and so are not alive. What 
exactly is physical space? “The physical space is defined by components that 
can be determined by operations that characterize them in terms of pro-
perties such as masses, forces, accelerations, distances, fields, etc.” (Maturana 
& Varela 1980: 112).  

Another characterisation is that living systems are autopoietic systems whose 
components are molecules. In fact, this requirement of having molecular 
components came before the word ‘autopoiesis’ was coined.  

At the beginning of the year 1964 I began to say that living systems were 
constituted as unities or discrete entities as circular closed dynamics of 
molecular productions open to the flow of molecules through them in which 
everything could change except their closed circular dynamics of molecular 
productions. (Maturana 2002: 8)  

Maturana goes on to say “I also claim that autopoiesis occurs only in the 
molecular domain” (Maturana 2002: 8). At one point he did think it “possible 
that autopoietic systems could exist in domains different from the molecular 
one” (Maturana 2002: 14) however, he later came to see the molecular domain 
as having unique properties necessary for autopoiesis.  

Molecules through their interactions give rise to molecules and dynamic systems 
of molecular productions, in diffuse and localized processes that constitute 
discrete entities. I think that due to this peculiarity of the molecular domain this 
is the only domain in which autopoietic systems can take place as discrete 
singular systems that operate through thermal agitation and dynamic 
architecture. (Maturana 2002: 8)  

This seems to be a claim that could be empirically tested. In the cybernetic 
tradition, whether or not a system is autopoietic ought to be a matter of the 
system’s organisation, independent of the nature of its components. “The 
actual nature of the components, and the particular properties that these may 
possess other than those participating in the interactions and transformations 
which constitute the system, are irrelevant and can be any” (Maturana 
& Varela 1980: 77). This leaves open the possibility that there might be non-
living, non-molecular autopoietic systems. Of course, Maturana has every 
right to narrow the meaning of ‘autopoiesis’ to apply only to living, molecular 
systems, making autopoiesis a matter not only of organisation but also of the 
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type of components involved. This would only mean that another word would 
be required to describe systems that have the same organisation as living, 
molecular systems, but are made of non-molecular components. While 
I sympathise with Maturana’s fears that the concept of autopoiesis could 
become useless if it becomes ill defined or over-applied, there seems to me to 
be some value in describing living systems as molecular autopoietic systems, 
leaving open the possibility that autopoietic systems could be created from 
other components. I would agree with Varela: 

The relations that characterize autopoiesis are relations of productions of 
components. ... Given this notion of production of components, it follows that the 
cases of autopoiesis we can actually exhibit, such as living systems or the 
example described in Varela et al. (1974), have as a criteria of distinction 
a topological boundary, and the processes that define them occur in a physical-
like space, actual or simulated in a computer. (Varela 1981:15) 

Computer models can be autopoietic in a “physical-like space.” While Varela’s 
original model has been critiqued (on the basis that it included a component, 
a catalyst, that it cannot produce, Bourgine & Stewart 2004) efforts continue to 
produce computer models that have all the properties of an autopoietic 
system, within the space they define. In other words, I would argue that living 
systems are located entirely in the intersection of autonomous systems, self-
producing systems and embodied unities (see Figure 2) but that they do not fill 
it. There could be autopoietic systems that are non-living.  

 

Cognitive systems 

Enactivism is a theory of cognition, in which cognition is seen as a property of 
all living systems, which are defined as autopoietic systems.  

A cognitive system is a system whose organization defines a domain of 
interactions in which it can act with relevance to the maintenance of itself, and 
the process of cognition is the actual (inductive) acting or behaving in the 
domain. Living systems are cognitive systems, and living as a process is a process 
of cognition. This statement is valid for all organisms, with and without 
a nervous system. (Maturana 1980a: 13).  

Succinctly, cognition is “effective behavior in a medium” (Maturana 1978b: 
37). What types of systems can behave effectively in a medium? Living systems 
certainly can, and it is the embedding of learning and cognition in a general 
study of life that makes enactivism distinctive. But living systems are not the 
only systems that define a domain of interactions in which they can act with 
relevance to the maintenance of themselves. All that is required is that the 
system engage in maintaining itself, and that true of autonomous systems in 
general. “The mechanisms of identity of an autonomous system correlate with 
the establishment of cognitive interactions with its environment” (Varela 1979: 
211). Varela gives as two examples the nervous system and the immune 
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system, but he also discusses cognitive social systems, including transient 
interactions like conversations. 

Every autonomous structure will exhibit a cognitive domain and behave as 
a separate, distinct aggregate. Such autonomous units can be constituted by any 
processes capable of engaging in organizational closure. whether molecular 
interactions, managerial manipulations, or conversational participation.... I am 
saying, then, that whenever we engage in social interactions that we label as 
dialogue or conversation, these constitute autonomous aggregates, which exhibit 
all the properties of other autonomous units. (Varela 1979: 269)  

This broadening of the meaning of cognition is useful in educational research, 
where a focus on organisms with nervous systems, especially people, can 
obscure fundamental issues such as the role of structural coupling in learning. 
Research on learning and cognition is not restricted to human learning and 
cognition, or even the cognition of living systems. Cognitive systems are 
located in and coincide with autonomous systems (see Figure 2). 

 

Figure 2: Cognitive and living systems 

 

 
Social systems 

If there is an area where enactivism is incoherent, it may well be in the 
treatment of social systems. This is perhaps not surprising, as Maturana and 
Varela specialised in the study of living systems, and their comments on social 
systems did not rest on the same level of expertise. In addition, if one assumes 
that the components of social systems are living systems, as they did, and 
therefore that the components of human social systems are human beings, 
then one is limited in the type of observations that are possible.  
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Nothing prevents the observer himself from being part of the process of 
specifying the system, not only by describing it, but by being one link in the 
network of processes that defines the system. This situation is peculiar in that 
the describer cannot step outside of the unity to consider its boundaries and 
environment simultaneously, but it is associated with the unity’s functioning 
always as a determining component. Such situations, to which most of the 
autonomous social systems belong, are characterized by a dynamics in which the 
very description of the system makes the system different. At each stage, the 
observer relates to the system through an understanding which modifies his 
relationship to the system. This is, properly speaking, the hermeneutic circle of 
interpretation-action, on which all human activity is based. (Varela 1981: 16) 

Human beings observing human social systems are limited in two ways. First, 
they cannot take a behavioural view on the system, seeing it a simple unity, 
stepping “outside of the unity to consider its boundaries and environment”. 
Human observers of human social systems are always components of the 
system or its environment and can only observe it with a recursive view, 
focussed on its components and the interactions between them. Second, 
describing a social system is a way of interacting with its components, in a way 
that describing a cell is not: “The very description of the system makes the 
system different.” Given these challenges it is not surprising that Maturana 
and Varela had some difficulties describing social systems.  

However, there are some points about which they are clear and consistent. 
First, that integrating social systems into enactivism must begin by 
understanding social phenomena independently of enactivist concepts and 
terminology. Second, that the components of social systems are living systems. 
And third, that social systems are not autopoietic.  

Maturana begins his 1980 essay ‘Man and society’ by asking “What is a social 
system?” (1980b: 11) and giving as the criterion for judging an answer to this 
question comparison to “the same phenomena that a natural social system 
appears to generate in its operation” (1980b: 11). In other words, before 
proposing an answer to the question “What is a social system?” it is necessary 
to observe social phenomena. Maturana saw this as a fundamental problem in 
Luhmann’s use of the concept of autopoiesis.  

I suggest that we start with the question of the characteristics of social 
phenomena. The concept of society historically precedes the idea of the 
autopoiesis of living systems. Society was the primary subject of debate; 
autopoiesis and social systems came much later. It follows, therefore, that we 
should first deal with all the relevant phenomena appearing in the analyses of 
society and only afterwards ask ourselves whether they may be elucidated more 
precisely in terms of the concept of autopoiesis. (Maturana & Poerksen 2007: 70)  

Another disagreement Maturana had with Luhmann concerned the 
components of social systems. Luhmann proposed that the components of 
a social system are communications and that human beings form a part of the 
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medium in which the social system exists. Maturana rejected this position: 
“When we speak about social systems in our everyday life, however, we 
naturally have in mind all the individuals with their peculiar properties” 
(Maturana & Poerksen 2007: 71). “A social system can only be integrated by 
living systems” (Maturana 1980: 13). Maturana’s clearest definition of a social 
system starts with living systems: 

[A social system is] a collection of interacting living systems that, in the 
realization of their autopoiesis through the actual operation of their properties 
as autopoietic unities, constitute a system that as a network of interactions and 
relations operates with respect to them as a medium in which they realize their 
autopoiesis while integrating it. (Maturana 1980b: 11-12) 

Although Maturana and Varela could not agree completely on how to treat 
social systems (Maturana & Varela 1980: xxiv), Varela also assumes that the 
components of human social systems are human beings, as indicated in his 
remark about autonomous social systems quoted above (Varela 1981: 16).  

Both Maturana and Varela are clear that they do not see social systems as 
autopoietic. Social systems can be autonomous (i.e., they have properties C-F) 
but social systems do not have boundaries and do not produce their 
components.  

There have been proposals suggesting that certain human systems, such as an 
institution, should be understood as autopoietic (Beer 1975; Zeleny and Pierre 
1976). From what I have said I believe that these proposals are category 
mistakes: they confuse autopoiesis with autonomy. (Varela 1981: 15) 

However, Maturana occasionally makes comments that makes this point 
less  clear.  

Just imagine for a moment a social system that is, in actual fact, functioning 
autopoietically. It would be an autopoietic system of the third order, itself 
composed of autopoietic systems of the second order. This would entail that 
every single process taking place within this system would necessarily be 
subservient to the maintenance of the autopoiesis of the whole. Consequently, 
the individuals with all their peculiarities and diverse forms of self-presentation 
would vanish. They would have to subordinate themselves to the maintenance of 
autopoiesis. Their fate is of no further relevance. They must conform in order to 
preserve the identity of the system. This kind of negation of the individual is 
among the characteristics of totalitarian systems. Stalin, therefore, forced party 
members who did not share his outlook to give up their positions so as not to 
endanger the cohesion and the unity of the party. In a democratic form of 
communal life, however, individuals are of central relevance and, in fact, 
indispensable. Their properties create the unique character of a social system. 
(Maturana & Poerksen 2007: 72)  

For Maturana, a social system is “a medium in which [living systems] realize 
their autopoiesis” (Maturana 1980b: 12), which means he must reject any 
system that interferes with the autopoiesis of the living systems in it. But as he 
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notes, totalitarian systems do precisely this. By Maturana’s definition, 
totalitarian systems are not social systems. “A social system that forbids and 
even principally excludes complaint and protest is not a social system. It is 
a system of tyranny.” (Maturana & Poerksen 2007: 72). Given that Maturana 
developed his definition of a social system while in exile from Pinochet’s Chile, 
he may have had reasons to characterise social systems in the way he did. 
However, it is not only totalitarian systems that are excluded by Matu-
rana’s definition.  

A person who works for a given society and who cannot stop working for it 
without risking the loss of his autopoiesis because he has no other means of 
survival outside this work-relation, is under social abuse. Example: In 
a capitalistic economic system a worker is not a member of the productive 
society through which he earns his living and, therefore, only works for it. If, 
under these circumstances, there is no employment with respect to his abilities, 
and if he has no other independent means of survival, he is under social abuse. 
Such a person cannot enter into a work-agreement on terms generated by the 
fundamental equality that permits cooperation, and must surrender his 
autonomy as a human being in order to survive. (Maturana 1980b: 18) 

Armies, police departments, fire departments and other organisations that 
subsume their members’ autopoiesis to the goals of the organisation are also 
excluded by Maturana’s definition of a social system. However, Maturana 
states that “In general any organism, and in particular any human being, can 
be simultaneously a member of many social systems, such as a family, a club, 
an army, a political party, a religion or a nation, and can operate in one or 
other without necessarily being in internal contradiction” (Maturana & Varela 
1980: xxviii). It is not at all clear that armies, religions and nations are systems 
that support the autopoiesis of their component human beings. And armies, 
religions and nations routinely restrict complaint and protest. Perhaps 
Maturana did not mean to include all religions and nations as social systems, 
but it is hard to imagine any army that would fit his definition of a social 
system.  

A further aspect of Maturana’s definition of a social system is the role of love 
in constituting a human social system.  

What determines the constitution of a social system are the recurrent 
interactions of the same autopoietic systems. In other words, any biological 
stabilization of the structures of the interacting organisms that results in the 
recurrence of their interactions, may generate a social system. Among human 
beings the basic stabilizing factor in the constitution of a social system is the 
phenomenon of love, the seeing of the other as a partner in some or all the 
dimensions of living. (Maturana & Varela 1980: xxvi) 

It may be that Maturana has in mind an ideal human society, rather than any 
actual human society.  
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A human society in which to see all human beings as equivalent to oneself, and 
to love them, is operationally legitimate without demanding from them a larger 
surrender of individuality and autonomy than the measure that one is willing to 
accept for oneself while integrating it as an observer, is a product of human art, 
that is, an artificial society that admits change and accepts every human being as 
not dispensable. (Maturana & Varela 1980: xxix) 

If we accept Maturana’s definition of social system, then we require another 
word for those composite unities that most people consider to be social 
systems: families, clubs, armies, political parties, religions, nations, etc. Either 
that or we need another definition of ‘social system’ in enactivist terms. 
Because Maturana’s definition of a social system is problematic, and was 
never accepted by Varela, enactivism lacks a coherent definition of ‘social 
system’ derived from primary sources. This has left the field open to many 
proposals of alternative definitions, from Beer (1980) to Zeleny (Zeleny & 
Hufford 1991). This host of alternatives makes it impossible to place social 
systems definitively in the nesting of types of systems depicted in Figure 1. 
Social systems may or may not be autopoietic, but there seems to be a general 
agreement that they are at least autonomous, and so have many interesting 
properties.  

 

Conclusion 

To conclude I will reiterate a few of the main points I have made above. First, 
in mathematics education research enactivism offers a ‘grand theory’ that can 
be brought to bear on most of the phenomena of interest to mathematics 
educators. It has particular strength in describing interactions between 
cognitive systems, including human beings, human conversations and larger 
human social systems. Much remains to be done in exploring the potential of 
enactivism for social cognition. Second, some apparent incoherencies of 
enactivism come from the adoption, in mathematics education but also in 
other fields, of parts of enactivism which are then grafted onto incompatible 
theories. This opens up enactivism to critiques from both within mathematics 
education and outside the field. Most strongly, in my opinion, theories of 
cognition that claims to be enactivist, but rely only on the philosophical 
arguments introduced in The Embodied Mind rather than the biological 
arguments presented in Autopoiesis and Cognition, leave enactivism open to 
philosophical critiques. This is one reason for my insistence on referring 
primarily to Maturana’s work in defining enactivist concepts. Third, and 
finally, a source of incoherence is the lack of a generally agreed upon 
definition of a social system. There is no reason why a suitable definition 
cannot be found, and I suspect replacing Maturana’s ‘love’ with something like 
a shared emotional orientation (Maturana 1988) would be sufficient, but this 
remains to be done.  
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