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Abstract: Semantic Information conveyed by daily language has been researched for many years; 
yet, we still need a practical formula to measure information of a simple sentence or prediction, 
such as “There will be heavy rain tomorrow”. For practical purpose, this paper introduces a new 
formula, Semantic Information Formula (SIF), which is based on L. A. Zadeh’s fuzzy set theory 
and P. Z. Wang’s random set falling shadow theory. It carries forward C. E. Shannon and K. 
Popper’s thought. The fuzzy set’s probability defined by Zadeh is treated as the logical 
probability sought by Popper, and the membership grade is treated as the truth-value of a 
proposition and also as the posterior logical probability. The classical relative information 
formula (Information=log(Posterior probability / Prior probability) is revised into SIF by 
replacing the posterior probability with the membership grade and the prior probability with the 
fuzzy set’s probability. The SIF can be explained as “Information=Testing severity – Relative 
square deviation” and hence can be used as Popper's information criterion to test scientific 
theories or propositions. The information measure defined by the SIF also means the spared 
codeword length as the classical information measure. This paper introduces the set-Bayes’ 
formula which establishes the relationship between statistical probability and logical probability, 
derives  Fuzzy Information Criterion (FIC) for the optimization of semantic channel, and 
discusses applications of SIF and FIC in areas such as linguistic communication, prediction, 
estimation, test, GPS, translation, and fuzzy reasoning. Particularly, through a detailed example 
of reasoning, it is proved that we can improve semantic channel with proper fuzziness to increase 
average semantic information to reach its upper limit: Shannon mutual information.  
 
Highlights:  
Fuzzy set membership grade is used to express semantic meaning and to extend Bayes’ formula.  
Revising classical information formula (information=log(posterior_probability / 

prior_probability) to obtain the semantic information formula. 
Generalized Kullback-Leibler formula and generalized mutual information formula have some 

interesting properties. 
Semantic channel (such as that for weather forecast) can be improved to match Shannon’s 

channel to convey most information. 
Semantic information formula and fuzzy information criterion can be used to optimize 

predictions, estimates, GPS, translation, and fuzzy reasoning. 
Key words: Shannon, Popper, semantic information, logical probability, factual test, semantic 

channel 

1 Introduction 
After Shannon [29] published his famous article titled The Mathematical Theory of 

Communication in 1948, Weaver proposed to research Semantic Information (IS) [34]. 
Compared to Shannon’s information, semantic information has two features: one is that IS 
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involves meaning of messages which can be right or wrong or deviant; another is that 
uncertainty is not only from probability but also from fuzziness of conceptual extension.  

To measure semantic information, Bar-Hillel and Carnap [4] proposed using logical 
probability (LP) to measure the information carried by a proposition. The amount of information 
is Inf(i)= logmp(i). where i is a propostion and mp is a logical probability. The paper also 
provides the relative information formula: Inf(j/i)=Inf(i, j)-Inf(i) where j is another proposition. 
These formulas are very meaningful. The later one is also used in the author’s information 
formula for reasoning. Yet, there are too many restrictions in their methods. For example, 1) the 
sentences selected must be either true or false without fuzziness; 2) the sentences are always 
correctly used without wrong statements, lies or deviations;  3)the probability of objective event 
is not considered and hence the logical probability is only the relative volume of  logical space 
(for example, three predicates can divide the logical space into 23=8 lattices and hence the 
minimum of the logical probability of a proposition is 1/8). In addition, with their formula Inf(i)= 
logmp(i), an inconsistent proposition can imply more information than a correct one, which is 
called Bar-hillel and Carnap Paradox (BCP) by Floridi [10]. Because of these restrictions and the 
paradox, it is hard to apply their formulas.  

Popper as early as 1935 in his book “The logic of Scientific Discovery” [24] proposed to use 
testability, falsifiability, or information as criterion to demarcate and evaluate scientific theories, 
and affirmed that the testability or information of a proposition was “in inverse ratio to its logical 
probability” ([24], 96, 269). Later, in his book “Conjectures and Refutations”[25], he made more 
clear statement: “It characterizes as preferable the theory which tell us more; that is to say, the 
theory which contains the greater amount of experimental information or content; which is 
logically stronger; which has greater explanatory and predictive power; and which can 
therefore be more severely tested by comparing predicted facts with observations. In short, we 
prefer an interesting, daring, and highly informative theory to a trivial one.” ([25], 294) 

Different from Barhillel and Carnap, Popper stressed factual tests for semantic information 
([25], 309). Why does Popper use the information criterion? Let’s consider an example of 
weather forecast. One person always predicts tomorrow’s weather as the same as today or 
predicts in very fuzzy wording; while another person often makes daring or unexpected 
predictions. If judged by ordinary error criterion, the first person has a higher chance of success 
while the second person has a lower chance.  Such type of criterion promotes conservative and 
fuzzy predictions. like the saying “Mistake-free is a virtue”, a criterion used to evaluate human 
performance.  However, this criterion is detrimental to emerging talents. From the perspective of 
information value, predictions that the ordinary error criterion promotes also have less value. 
Therefore, Popper proposes that if propositions are easy to be falsified logically, they are in fact 
able to withstand tests, the more information there is and the more valuable the proposition is; a 
tautology such as “The sun will or will not rise” contains no information, therefore is not 
scientifically meaningful. Popper in his book also made a meaningful attempt to establish a 
function to denote the severity of tests to test propositions or hypotheses ([25], 526). Yet, his 
formula is still not practical. 

In recent decades, many scholars have been researching on IS measure, as summarized by [9], 
and on the philosophy of information, as summarized by [8, 21], following Barhillel, Carnap, 
and Popper. The most influential one is Floridi [8,9,10,11]. For IS measure, they took into 
account the true-values of propositions and the deviations [9,10] between facts and propositions 
as the author did. Yet, the difference is that the author uses fuzzy propositions with the truth-
values ϵ [0, 1] which has implied the deviation already. Floridi and the others still use clear-cut 
propositions with truth-values ϵ {0, 1} [9, 10, 11] so that it is not easy to define deviation 
between facts and statements. Floridi’s categorization of IS is meaningful, but the formula he 
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proposed [10, 11] is still not practical as discussed by others [1, 9, 21]. There are also other 
studies on generalized information or complexity related to IS more or less [12, 26, 1]. 

The author’s research on information theory began from trying to prove that human 
mechanism of color vision with higher discrimination [14, 15] can receive more information 
from colors. Later the research is extended to semantic information and general information, 
such as information from sensations, daily language, weather forecasts, predictions of various 
indexes, and various meters, not only for measuring information, but also for optimizing  
communications [16-20]. Different from other researchers of classical information theory,  the 
author uses both statistical probability and logical probability; different from other researchers of 
semantic information, the author uses both prior and posterior logical probabilities, and considers 
the fuzziness of language.  

This paper intends to, first, introduce a method to revise the classical relative information 
formula to get the Semantic Information Formula (SIF); second, demonstrate how the SIF is 
compatible with Popper’s theory [25] and Shannon’s theory [29]; and then, introduce the SIF’s 
applications including  new developments on the optimization of semantic channel, and the 
information measure for reasoning.   

2 Research background and methods 

2.1 Classical relative information formula 

Let ,...},{ 21 xxA   and ,...},{ 21 yyB   denote two sets, X denote an element of A and Y 
denote an element of B. According to the classical information theory, the relative information 
formula [27]  is: 
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where P(xi) is the prior probability of xi  and P(xi|yj) is the condition probability or posterior 
probability of xi after yj occurs.  Based on Shannon’s coding theory, log(1/ P(xi)) and log(1/ 

P(xi|yj)) indicate the prior and posterior averagely optimal codeword lengths of xi respectively, so 
information );( ji yxI means spared average codeword length. 

Because of Bayes’ formula P(yj/xi)=P(xi|yj)P(yj)/P(xi), there is 
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  (2) 
This formula is the core of Shannon’s mutual information formula. Averaging );( ji yxI , we can 

get Shannon’s mutual information I(X; Y). Yet, Shannon never used this formula. The reason 
may be that the use of this formula may bring negative information. However, Shannon’s 
formulas of entropy and mutual information only measure mean information, which is always 
positive.  The SIF comes from Eq. (1) because the author thinks that negative information is 
possible and meaningful to semantic information. This is because if we believe liars, the 
information will be negative; coding based on nonsense or lies will increase the average 
codeword length.  

2.2  Distinguishing three types of LP to avoid BCP  

To avoid Barhillel-Carnap Paradox (BCP), we need to distinguish three types of logical 
probability. Let us use X ϵ ,...},{ 21 xxA   to denote an age. There are three types of LP :  
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1) Logical probability related to prior factual statistics 
For example, the prior logical probability for “A thief (X) is about 80 years old” refers to the 

probability in which this statement is judged true for all possible thieves.  This should be a very 
small number, say, 0.05. We had better say that it is the LP of a predicate or the prior LP of a 
proposition. It is this LP that can express Popper’s severity of tests. 

2) Logical probability related to posterior fact 
 It refers to the truth-value of a proposition, determined by language usage. Take the 

proposition “The thief  (xi ) is about 80 years old” for example.  If xi=80, then the truth-value of 
the proposition is 1; If xi =70, then the truth-value is about 0.5-0.7; and as the deviation increases, 
the truth-value decreases. Later we also call it conditional LP or posterior LP. 

Note that “logical probability of a proposition” is an unclear expression which has affected 
the research of semantic information for a long time. Strictly speaking, it means the truth-value 
of a proposition; but in many cases, such as in Barhillel and Carnap’s studies [4] and Popper’s 
studies [25],  it actually indicates the LP of Predicate yj= yj(X), or the prior LP of a proposition.  

3) Logical probabilities of tautological and contradictory propositions 
Each of them has the same prior and posterior logical probability, 1 or 0, regardless of 

changes in facts, and hence carries no information.  
It is clear that as long as we distinguish three types of logical probability, it is easy to avoid 

BCP. In addition, we also need to distinguish statistical probability and logical probability of a 
sentence. For example, the probability in which a sentence is selected is statistical probability. 
The statistical probability is normalized which means that the sum of probabilities of all selected 
sentences is 1, while logical probabilities of all selected sentences or the truth function of a 
predicate are not normalized and have the maximum value 1.  

2.3 Fuzzy sets, proposition’s truth-value and logical probability 

In order to explain LP and conditional LP used in the SIF, we need the notions of fuzzy sets 
and random sets.  Zadeh in 1965 [36] proposed the notion of fuzzy sets, using )( iA xm

j
 to denote 

the membership grade of  xi in  fuzzy subset Aj   of A. Now we use  yj  to denote a sentence or 
predicate and let Aj  include all xi  that makes proposition yj (xi) true, and use ,...},{ 21 yyB   to 
denote  the set of selected sentences. Note the difference between propositions and facts:  

Proposition:  yj(xi) which is equivalent to “xi Aj” For example, “it will rain tomorrow” is a 
proposition,  and probably wrong since actually it might be clear tomorrow. 

Fact: xi Aj  which is equivalent to the judgment: “xi Aj ” is true. 
According to the above definitions, the truth-value of Proposition yj(xi) is membership grade 

)( iA xm
j

.  We also understand it as the conditional LP of Predicate yj, which is the LP of  “X Aj” 

for a given condition X=xi. So, we can write )()|()|( iAijij xmxXAXTxAT
j

 . 

The LP of Predicate yj happens to be the fuzzy set probability T(Aj)  defined by Zadeh [37] 
and  is obtained from averaging conditional LP: 
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(3) 
We can also say that T(Aj) is the prior LP of yj, and T(Aj|xi) is the posterior LP of  yj. Assuming 
AJ={A1, A2, …}, then AjϵAJ, j=1,2,…, and the different subsets in AJ may be joint.  

How do we obtain the membership grade function of a fuzzy set？ Wang [31] defines it as 
the falling shadow of a random set (see Fig.1). By this definition we can obtain the membership 
grade function of a fuzzy set through the statistics of a random set. 
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Fig. 1 A membership grade function from a random set falling shadow  

For a given predicate yj, let many people divide a subset sjk, k=1,2,…n, of A, which make yj 
true. When n->∞, the probability of xi in the random set Sj is 
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(4) 
where )|( ijk xsT is the feature function of set sjkϵ{0, 1}. We can also treat xj as Idea (proposed by 

Ancient Greek philosopher Plato) of Aj, and hence membership grade )( iA xm
j

is similarity 

degree or confusion probability of xiϵ Aj with the Idea xj of Aj. The SIF uses not only objective 
messages’ occurring probability as the classical information formulas but also subjective 
confusion probability. 

2.4  The set-Bayes’ formula for probability prediction on semantic meaning 

In order to obtain the SIF, we bring the feature function of a set or membership grade 
function of a fuzzy set into Bayes’ formula, which is a crucial step. Given the probability 
distribution of X,  P(xi), i=1, 2, …, and knowledge AX  , which is a subset of A,  we can use 
the feature function T(A’ |xi)ϵ {0, 1} to replace conditional probability P(yj|xi) to obtain backward 
conditional probability:  
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(5) 
We call this formula as the set-Bayes’ formula, illustrated in Fig. 2.  

 
Fig. 2 The illustration of set-Bayes’ formula for a set A’ 

If A’ becomes a fuzzy set Aj, we have backward conditional probability function ([16], Sec.  
3.1) as shown in Fig. 3 and Eq. (6): 
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Fig. 3 The illustration of set-Bayes’ formula for a fuzzy set Aj 

 This formula is meaningful in that it establishes the relationship between statistical probability P 
and logical probability T, specifying that probability predictions depend not only on the semantic 
meaning T(Aj|X), but also on the context P(X). 

3. The SIF and its support for Popper’s theory 

3.1 Revising the classical relative information formula 

We replace yj in Eq. (1) with yj is true, then Eq. (1) becomes: 
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(7) 
According to Eq. (6) and (7), we obtain the semantic information formula (8) illustrated in Fig. 4: 
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Fig. 4 The illustration of the semantic information formula 

Floridi [11] classifies semantic information into factual information and instructional 
information; factual information is further classified into the true or the untrue, and the untrue 
into the unintentional (misinformation) and the intentional (disinformation). Apparently, any 
factual information can be measured by the above formula, because they are the same kind of 
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information which comes from comparing propositions with facts. The consistent prediction 
provides positive information while the inconsistent provides negative information. The 
instructional information proposed by Floridi can also be measured by the same information 
formula. For example, yj =“Set the next electrical pole 50 meters (xj) away”.  Without the 
instruction, the distance has a probability distribution P(xi), i=1, 2, …. With the instruction, the 
actual distance is  X=xi which provides the information of yj as shown in Eq. (7) and (8). If there 
is no deviation, that is X=xj, the amount of the information is the maximum, I=-logT(Aj). When 
the deviation reaches to a certain level, the information becomes negative.  

3.2 How the semantic information measure serves to Popper’s information criterion  

Let us consider information regarding stock market index predictions, “The index (xi ) will 
be about xj at the end of this year”. The truth function is probably bell-like distribution 
surrounding xj: 

)]2/()(exp[)|( 22 dxxxAT jiij   

(9) 
 where d is standard deviation. Hence the SIF can be written as 

)2/)()](/1log[);( 22 dxxATyxI jijji （ , 

(10) 
The above formula means Information=Testing severity - Relative square deviation.  

If Aj is not fuzzy, and xi is must in Aj, or Aj is fuzzy and xi has no deviation from the Idea xj, 
then above information measure becomes Barhillel-Carnap information measure [4].  

The above semantic information measure has three characteristics:  
1. To determine the amount of information, we need to test the prediction by the fact. When 

the fact is exactly consistent with the prediction, that is xi=xj, the information reaches the 
maximum. The information decreases as deviation increases. When deviation reaches a certain 
level, information is negative. This relationship just right manifests ordinary error criterion. 

2.  The smaller the T(Aj) is, or the lower the horizontal line in Fig. 3 is, the more information 
there is if the prediction is correct. This exactly manifests Popper’s notion: the smaller the 
logical probability of a predicate is, the more information there is if it can withstand the test. 
Under the following two conditions the logical probability becomes small: 1) The coverage of 
the truth function of the predicate is small, indicating an unusual event. 2) The probability of X 
covered by the truth function of a predicate is small, indicating an occasional event. Therefore, 
smaller logical probability of predicates means the specificity and occasionality of events 
described by predicates. It is specificity and occasionality that Popper [25] used to explain the 
severity of tests and his information criterion. 

3. Popper affirms that a tautology contains no information, because it is not verifiable or 
logically non-falsifiable and hence has no scientific value. The above formula reaches the same 
conclusion: if the truth function of a propositions is always 1 or 0 or a constant, then its average 
is also the same and information I is always 0. In this way, it is easy to avoid BCP. 

3.3 Generalized Kullback-Leibler formula and Popper’s falsification 

Averaging );( ji yxI  in Eq. (8), we can obtain the mean information of Predicate yj 
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where P(xi| yj) is conditional probability from statistics as evidence. Note that it is improper to 
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put  LP on the left of the log because LP is not normalized and hence improper for averaging.  
It can be proved that if there is a counter-example xi for which P(xi| yj)>0, T(Aj|xi)=0, yet 

T(Aj)0, then the average information is -∞. This coincides with Popper’s view: one exception is 
enough to falsify a universal proposition. However, this view is about clear-cut propositions. 
How do we test probabilistic propositions (such as “The stock market will go up most likely”) 
and fuzzy propositions (such as “There will be a lot of rain this year”)? Popper did not offer a 
proper method. In daily life and social science, most predictions and predicates are probabilistic 
or fuzzy.  The above formula allows a reasonable evaluation of these predicates and avoids 
negative infinite information.  

The above formula can be also written as  
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where )|( ji AxP ,  i=1, 2, …, can be understood as theoretical prediction;  the )|( ji yxP , i=1, 

2, …, can be understood as factual test; the P(xi), i=1, 2, …, can be understood as background 
knowledge or context. The Eq. (12) is similar to a formula proposed by Theil [32]. It is 
illustrated in Fig. 5.  

 
Figure 5  The illustration of the generalized Kullback-Leibler formula 

The above formula can be written as the difference of two Kullback-Leibler distances [13]: 
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(13) 
Since Kullback-Leibler distance is larger than or equal to 0, when the right part is 0, that is 

)|()|( jiji yxPAxP  , i=1, 2, … 

(14) 
the amount of information reaches the maximum, equivalent to the Kullback-Leibler information. 
Therefore, Eq. (11) or (12) can be called as the Generalized Kullback-Leibler Formula (GKLF). 
It conforms to ordinary error criterion: consistency is good. This formula also shows that the 
more different the factual statistics is from prior knowledge, the more information there is if the 
theoretical prediction is correct. This is the very manifestation of Popper’s view: the more 
unexpected a proposition or predicate is and thus the more severe the test is, the more 
information there is if it can withstand the test.  

The GKLF supports such an induction logic: We believe a predicate is due to that more 
positive examples and less negative examples can increase its average information instead of its 
logical probability. This induction logic can keep reasonable thought in Carnap and others’ 
induction logic and compatible with Popper’s theory.     
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3.4 Semantic mutual information and its significance for optimizing general 
communications 

       Averaging I(Xi; yi), j=1, 2, …, we can get semantic mutual information or Generalized 
Mutual Information (GMI) I(X;Y) ([15], Sec. 4.5): 
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(15) 
where H(Y) is called generalized entropy and H(Y|X)  is called generalized conditional entropy 
which can also be called fuzzy entropy. The formula of GMI is meaningful to general 
communications. The classical Rate Distortion Theory [7, 29] deals with the optimization of 
electronic communication: given a source and average distortion D,at least how much Shannon 
Mutual Information SMI. denoted by  R(D),  is needed? In other words, given the source and 
SMI R, what is the minimum of average distortion D(R)? However, the distortion in the classical 
information theory is defined subjectively without an objective standard. Now we can use the 
semantic information I(xi; yj) to replace the distortion d(xi , yj) to evaluate quality of general 
communications and to reform Rate Distortion Theory into Rate Fidelity Theory  ([16], Sec. 5.6). 
According to Rate Fidelity Theory, we can get some meaningful conclusions. For example, if we 
believe one’s talk randomly, we would be more ignorant about facts and hence would lose some 
information. If we want to deceive enemies better by lies, we also need a certain amount of SMI, 
which means that lies according to fact is more harmful than lies according to nothing ([16], Sec. 
5.7). For image communication, there is an optimal match between visual discrimination and 
image resolution because the discrimination of colors or pixels by human eyes is limited, 
therefore an overly high resolution of images is actually not necessary ([16], Sec. 5.9).  

Generalized entropy H(Y) and GMI I(X; Y) in Eq. (16) are also meaningful in coding. 
Suppose H(Y) is source instead of destination and any xjϵAj can be the destination of yj, we 
change P(X|Y) to get the minimum I*(X; Y) of I(X; Y).  We define R(AJ)=I*(X; Y) which is called 
Rate Tolerance for given source P(Y) and AJ  ([16], Sec. 5.5), [19]. It can been proved that if 
each Aj ϵ AJ  is a classical set, then R(AJ ) can be written in the form of H(Y), and also called 
Generalized Hartley Measure by others [12, 26].  If each Aj ϵ AJ  becomes the same size ball 
around the center xj where Aj  is in a multi-dimension space, then R(AJ) or H(Y) becomes 
Complexity Distortion [30]. Fuzzy entropy H(Y|X) indicates the fuzziness of language. It can be 
proved that fuzziness decreases information for correct propositions and also reduces 
information loss for wrong ones. If sets in AJ are fuzzy, then R(AJ ) can be written in the form of 
GMI and has some kind of equivalence relation to R(D) ([16], Sec. 5.5).  

4 The applications of SIF and Fuzzy Information Criterion 

4.1 Optimizing semantic channel with Fuzzy Information Criterion (FIC) 

Suppose A is the set of rainfall and sunshine means negative rainfall, then the available 
forecasts set B may includes “small rain” (short for “there will be small rain”), “moderate rain”, 
“heavy rain”, “torrential rain”, “cloud”, “sunshine”, and also “small or moderate rain”, 
“moderate or heavy rain” and son on. If the rainfall predicted is xi , then we select different yj to 
calculate I(xi; yj) by Eq. (8). The yj that makes I(xi; yj) reach its maximum is most acceptable. If 
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the predicted rainfall is in an uneven distribution on time, or in a probability distribution, then we 
can use the Eq. (11) or (12) to measure average information I(X; yj) carried by yj. The 
membership function T(Aj|X) had better be obtained from statistics of random sets, or from 
definition as by the following Eq. (19) as a makeshift.  

Now we consider another question. For given forecasting rules, i.e. Shannon channel P(Y|X), 
and source P(X), can we find a semantic channel T(Aj| xi), i=1, 2, …; j=1,2,…, denoted by 
T(AJ|X), which can convey semantic information whose amount reaches its upper limit: Shannon 
mutual information? If audience understand the weather forecast by this channel, they can obtain 
more information, especially will not obtain -∞ information when a wrong forecast happens. If 
an observatory obtains this semantic channel T(AJ|X) from its past forecasts, it can compares this 
channel with those sentences’ meaning in daily language, and then improves their selecting rule 
of sentences. For example, if it often makes wrong forecasts, it should select fuzzier sentences. 
Fortunately, we can solve semantic channel T(AJ|X) that matches Shannon’s channel.   

Suppose there are M kinds of weather in A, i=1, 2, …, M, and N sentences in B, j=1, 2, …, N. 
Then the semantic channel 
is a M*N matrix. From Eq. 

(14) , we know that the average information I(X; yj) reaches its maximum when 
 

  (16) 
 This is the inverse formula of the set-Bayes formula (6). Let the maximum of  T(Aj| xi ), i=1, 
2, …, M be 1, we have the optimal semantic channel: 

)|(*/)|()|( ijijij xyPxyPxAT  ,  i=1, 2, …, M; j=1, 2, … N 

(17) 
where P*(yj| xi) is the maximum of P(yj| X). We call this criterion for selecting truth function 
according to Eq. (17) as Fuzzy Information Criterion (FIC).  

Philosopher Weitgenstein has a famous remark: The meaning of language lies in how it is 
used in daily life. The above conclusion shows that understanding semantic meaning (truth 
function) according to conventional usage (conditional probabilistic distribution) can improve 
the average information, which supports Weitgenstein’s view. When audience or listeners 
continue to improve their understanding, forecasters or speakers also continue to improve their 
selecting rules of sentences. Language is evolving in this way.  

4.2 To evaluate and optimize fuzzy predictions, estimates, and tests  

According to Popper’s theory, any scientific statement can be viewed as a hypothesis or 
prediction. Following predictions include scientific and daily statements, which can be consistent 
or inconsistent with facts. Hereafter, predictions, estimates, and tests discussed are all fuzzy even 
if “fuzzy” is not used.  

A prediction, estimation, or test yj can be defined by its truth function T(Aj|X). We select yj 
according to prior probability distribution P(X) and predicted probability distribution P(X| yj).  
Let’s look at these general predictions “The stock index of this year will increase about 30%-
50%”, “There is moderate or heavy rain tomorrow”, and “The thief is not a young man.” The 
truth functions of these predictions have more than one peak and usually cover a certain range. If 
there is only one center with possible deviation for a prediction, then the prediction becomes an 
estimate. For example, GPS, thermometer, watch, and human color perception provide 
information by estimates. In mathematics an estimate is denoted by jx


, which means  yj = jx


 

=“X≈xj”. In fuzzy estimate, we provide not only jx


 but also standard deviation. If the estimated 

value is one of  two, then the estimate becomes test. An example of tests is to make positive or 

)(/)|()()|( jijjij yPxyPATxAT 
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negative sign in medical examinations. These types of information can be measured by Eq. (8) 
for a single event X=xi, and by Eq. (11) or (12) for average information. 

Theoretically, the truth function of a predicate can be obtained by the statistics of a random 
set; practically, in most cases, it can be defined by some parameters. A general truth function of 
predictions in one-dimension space can be determined by four parameters,  d1, c1, c2, and 
d2(c1≤c2), shown in Eq. (18) and Fig. 5. 
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(18) 

 
Fig. 5   Using four parameters to construct a truth function for semantic meaning 

When c1=0, the left part of the function is a horizontal line with height 1. When c2 =∞, the 
right part of the function is a horizontal line with height 1. When c1= c2 and d1= d2, the 
prediction becomes an estimate and the function is in bell-like distribution. Next we focus on the 
optimization of estimates for which c1= c2= jx


and d1= d2=d. The optimization of predictions and 

tests can follow the same patterns.  
If d is constant when yj changes, then we can change only jx


 for the maximum I*(X; yj) of 

I(X; yj ) . The jx


 that makes I(X; yj)= I*(X; yj) is the optimal estimate. If d=dj that is variable with 

jx


, then a pair of parameters jx


 and dj  that makes I(X; yj)= I*(X; yj) is the optimal estimate. 

According the last section for semantic channel optimization, we can make use of FIC to adopt 
an approximate method. First we select xi* that makes P( yj | xi*)= P*( yj | xj) as jx


. Then we 

select some xi to get its T(Aj|xi) by Eq. (18). From this T(Aj|xi) and Eq. (18), we can get dj. Since 
the dj  is related “some xi ”. It seems feasible to try different “some xi ” to get different dj, then to 
select their average. The FIC for estimates should be compatible with or similar to Akaike 
Information Criterion [2] and Bayesian Information Criterion [6], and also related to Maximum 
Likelihood Method [3, 22].  

 In Artificial Intelligence (AI) systems, the information granule is used to simplify statistics 
and extract information [23, 38]. To obtain more intension or specificity, the coverage of 
information granule for samples should be as small as possible; however, to reduce omissions 
and errors, the coverage should be sufficiently large and fuzzy. To balance specificity and 
coverage to optimize the information granules, we can also use the FIC.  

4.3 To Optimize GPS and translation: for re-judgment 

Theoretically, vehicles’ using GPS (Global Positioning System) to position (tell yj) is based 
on the distances from vehicles to three GPS satellites (calculated from time differences of 
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signals).  GPS not only gives the most likely position of the vehicle but also error precision.  The 
error precision of GPS is often represented by Root Mean Square Error, or RMS.  “RMS=10 
meters” means that in 68.2% of chances the vehicle is in the circle within 10-meter radium and 
with a reading xj as the center.  That is to say, GPS provides the truth function of yj or jx


: 

)]2/()(exp[)|( 22 dxxxAT jiij   

(19) 
where d is RMS denoting error precision. We can also think that GPS provides similar 
conditional probability distribution P(yj|xi) with a coefficient for normalization, which does not 
affect the optimization of re-judgment. However, jx


does not mean the actual position of the 

vehicle, because if yj= jx


refers to a position in a pond or on a roof, we can not judge that the 

vehicle is in the pond or on the roof.  We must also consider the prior probability distribution of 
X or the larger possibility of the vehicle on roads.  Therefore we need to use P(xi) and T(Aj|xi) or 
P(yj|xi), i=1, 2, …, to re-judge the position of the vehicle.  

Assuming the re-estimate is kx


, including only positions on roads, and the truth function of 

kx


is )]2/()(exp[)|( 22 ’dxxxAT kiik   where d’ (d’<d) is standard deviation, we can use k
jy  to 

denote re-judgment yk= kx


 when the calculated position is jx


.  Then, the average information is 

)(

)|(
log)|();(

i

ki

i
jik

j

xP

AxP
AxPyXI   

(20) 
Change yk  to maximize );( k

jyXI . The yk that makes );( k
jyXI  reach its maximum is the 

optimal re-judgment.   
If jx


 has systematic deviations from xi , we can use FIC to modify its T(Aj|X) and the 

positioning. For example, if T(Aj | xi )=exp[-(xj -100- xi )
2/(2d2)] where the systematic deviation 

is 100, then as xi = xi *=xj-100,  P(yj | xi *) is the maximum of  P(yj | X). So, jx


 shoud be 

replaced by jx


-100. 

To optimize GPS parameter d, we can also use the method for searching d in fuzzy estimate.  
The same holds true for language translation.  Assume that yj is a sentence of source 

language set, and yk is a sentence of target language set.  Their truth functions are T(Aj xi) and 
T(Ak| xi), i=1, 2, …. We can change yk  to maximize );( k

jyXI  in Eq. (20), the yk that makes 

);( k
jyXI  reach its maximum is the most informative translation.  

4.4 Testing fuzzy reasoning and verifying FIC 

Reasoning can be divided into logical reasoning and experiential reasoning (including 
scientific reasoning). In logical reasoning, we pay attention only to relation between concepts. 
Even if the reasoning is correct, for people knowing the reasoning rule, the reasoning is 
tautology and the information is 0.  If it is wrong, the information is negative to people who 
believe. For example, “If  John is Tom’s son’s son, then Tom is John’s grandfather” and 
“Because (a+b)(a-b)=a2-b2,  (100+1)(100-1)=1002-1=9999” are logical reasoning. Mathematical 
calculation is also logical reasoning. Certainly, for people who do not know the calculation rule 
or are inconvenient to calculate, the calculation can offer positive information. 

Experiential reasoning or scientific reasoning changes the expected occurrence probability of 
fact X. If it is prone to error logically and cannot be falsified factually, then the amount of 
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information is large; if it is falsified, the information should be negative. We will focus on 
experiential reasoning and the conclusion should be compatible with logical reasoning. 

There are many kinds of fuzzy reasoning which are experiential in daily language, such as 
old farmers’ sayings, “Foggy spring brings rain; foggy summer brings heat; foggy fall brings 
cool breeze; foggy winter brings snow”, “If a man’s face looks yellowish, he might be ill”. These 
examples of reasoning cannot be falsified by one counter-example, but can be falsified by 
statistical data or negative reasoning information.  

Assume A is the set of people, weathers, or their various properties, y1 and y2 are fuzzy 
predicates with truth value functions T(A1|xi) and T(A2|xi), i=1,2,… For the ease of illustration of 
the reasoning information, we assume A is one dimensional in Fig. 7.   

Suppose two predicates y1 and y2 are not correlative, then the membership grade function of 
the intersection of two fuzzy sets  T(A1A2|xi)= T(A1|xi) T(A2|xi). If y1 and y2 are strongly 
correlative, then T(A1A2|xi) follows Zadeh’s definition [36]:  

T(A1A2|xi)= min(T(A1|xi), T(A2|xi) 
(21) 

We also have the membership grade of difference set [14] ]0),|()|(max[)|( 2121 iii xATxATxAAT 


, 

 which is used for color model [14] and different from Zadeh’s definition [36]. The reason is that 
if A1 and A2 are positively correlative, then A1 and the complement of  A2  must be negatively 
correlated. We calculate the information provided by strongly correlative y1 and y2 minus the 
information provided by single y1 to get the information provided by y1->y2. The formula is  
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(22) 
Compared with the Barhille and Carnap’s formula Inf(j/i)=Inf(i, j)-Inf(i) [4], this formula needs 
both prior and posterior LPs of y1y2 (i. e. y1 and y2) and y1; two predicates y1 and y2 are fuzzy. The 
Eq. (22) is illustrated in Fig. 7.  

 
Fig. 7 The illustration of reasoning information 
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This formula indicates that, according to the prior LP distribution of X, the larger the 

)( 21



AAT  is and the less the )( 12 AAT is, the more unexpected the reasoning is and the easier the 
falsification is, and hence the more potential information the reasoning can provide. If there is 
always )|()|( 12 ii xATxAT   factually, indicating that the reasoning is able to withstand the test, 

then the reasoning can provide more information. If there is )|()|( 12 ii xATxAT   prior in any 

region, then the numerator and the denominator are always 1, and hence the reasoning is 
tautology and the information is 0.  

Now we can use )|(/)|( 121 ii xATxAAT  as the truth-value of the reasoning y1->y2. We also 

write is as )|(/)|( 121 ii xyTxyyT  or T(y2| y1, xi) since T(y2|y1,xi)=T(y2|( y1, xi))=T(y2, y1, xi)/T(y1, xi) 

=[T(y1 y2| xi)P(xi)]/[T(y1| xi)P(xi)]=T(y1y2| xi)/T(y1| xi). So there is  
)|(/)]|(),|(min[),|()|( 1211221 iiiii xATxATxATxyyTxyyT   

(23) 
Its prior logical probability is T(y2| y1)= T(A2A1)/ T(A1). If y1 and y2 is not prior correlated, then 
T(y2| y1)= T(y2), and Eq. (22) becomes 
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),|(
log)|;(

2

12
12 yT

xyyT
yyxI i

i   

(24) 
In order to obtain the average information from the reasoning y1->y2 for variable X, the 

statistical conditional probability P(xi| y1->y2), i=1,2… is used for test. There is 
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(25) 
If X can be divided into counter-examples and positive examples to the reasoning, the average 
information of y1-> Y2 is: 
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(26) 
where the first item is for the counter-examples; y2’ is the negate of y2; Y2 is one in { y2, y2’}. 
Similarly, we use y1’ as the negate of y1, and Y1 as one in { y1, y1’}. The average information of 
y1‘->Y2  is:  
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(27) 
where the second item is for the counter-examples. Then we have semantic mutual information: 

I(X; Y1->Y2)= P(y1) I(X; y1->Y2)+ P(y1’) I(X; y1‘->Y2) 
(28) 

Now we calculate the information of the reasoning between triglyceride and fatty liver to 
illustrate the application of Eq. (26), (27)  and (28). The reference [35] provides the data from 
health examines of 500 people as shown in table 1. 

Table 1  The numbers of 4 types of people  
numbers no fatty liver fatty liver Total 
low triglyceride 3223 427 3650 
high triglyceride 647 703 1350 
Total 3870 1130 5000 
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We use X to denote one of 5000 people, y1 to denote predicate “X has high triglyceride”, y2 to 

denote “X has fatty liver”. Now we calculate the average information of Y1->Y2 under the 
framework of Shannon’s theory, shown in Table 2. 

Table 2  The conditional probability P(Y2| Y1) and Shannon mutual information  
P(Y2| Y1) y2’  y2 P(Y1) I (bit) 
P(Y2|y1’)  0.883 0.117 0.73 I(y1’; Y2)=0.057
P(Y2|y1) 0.479 0.521 0.27 I(y1; Y2)=0.296 
P(Y2) 0.774 0.226 1 I(Y1; Y2)=0.121 

 
Now we come back to the discussion under the framework of semantic information. Assume 

that true-value of the reasoning for counter-examples is 0.2, then the Shannon’s channel 
becomes the semantic channel, shown in Table 3.  

Table 3  The truth value T(Y1-> Y2|X), semantic channel, and average information 
T(Y1-> Y2|X) XϵA2’ XϵA2 P(Y1) I (bit) 
T(y1’->Y2|XϵA1’) 1 0.2 0.73 I(X; y1’->Y2)=0.186
T(y1->Y2|XϵA1) 0.2 1 0.27 I(X; y1->Y2)=-0.286
LP 0.784 0.416  I(Y1; Y2)=0.059 

 
It is assumed that factual statistics equals to the conditional probability, that is,  

P(XϵA2 | y1)=P(y2’ | y1)=0.479 and P(XϵA2| y1)=P(y2| y1)=0.521, According to Eq. (3), 
T(A2)=P(y1)+0.2*P(y1’ )=0.27+0.2*0.73=0.416; T(A2’)=P(y1’)+0.2*P(y1)=0.73+0.2*0.27=0.784.  
According to Eq. (26), there is I(X; y1->Y2)=0.479log(0.2/0.784)+ 0.622log(1/0.416) = -0.286 bit, 
According to Eq. (27), I(X; y1‘->Y2)=0.186 bit. According to Eq. (28), I(X; Y1->Y2) =0.059 bit, 
which is obviously smaller than the Shannon mutual information I(Y1; Y2)=0.121 bit in Table 2. 

Can we adjust the true-values of the counter-examples to improve semantic information? 
Yes! According to FIC in Sec. 4.1, first we use Eq. (17) to get the optimized LPs: T(A2)=0.434 
and T(A2’)= 0.877. Then we use Eq. (18) to get the optimized true-values for counter-examples: 

),'|( 112 AXyyT  =0.225, ),|'( 112 AXyyT  =0.543. According to Eq. (28), we get I(X; Y1-> 
Y2)= 0.121 bit which is  equal to the Shannon mutual information I(Y1; Y2) in Table 2. 
Table 4  Optimized T(Y1->Y2| X) so that I(X; Y1->Y2) is equal to the Shannon mutual information 
T(Y1->Y2|X) XϵA2’ XϵA2 P(Y1) I (bit) 
T(y1’->Y2|XϵA1’) 1 0.225 0.73 I(X; y1’->Y2)=0.057 
T(y1->Y2|XϵA1) 0.542 1 0.27 I(X; y1->Y2)=0.298 
LP 0.877 0.434  I(Y1; Y2)=0.121 

5 Discussion and Summary 
There seem to be two kinds of information theories: one is classical, with Shannon’s theory 

at its core and data coding optimization as its purpose, without taking into account semantic 
meaning; another is the information theory related to semantic meaning. The later is for 
philosophy, artificial intelligence, and daily communication, and rarely uses Shannon’s formulas.      
Now we see that the SIF from the classical relative information formula with a slight change can 
greatly improve explanatory power and bridge two kinds of information theories.  
     This paper briefly reviews the research history of semantic information and introduces a 
method to obtain the SIF compatible both with Shannon and Popper’s theories. This paper also 
explains how the SIF and the FIC can be applied to the fields such as predictions, estimates, tests, 
AI, GPS, language translation, and fuzzy reasoning.  
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The semantic similarity measures have been discussed by many researchers [5, 27]. With 
the SIF, we can obtain the semantic mutual information measure between two predicates, such as 
the above y1 and y2. This measure should be related to semantic similarity measure for fuzzy 
concepts, which needs further research. The relationship between the Fuzzy Information 
Criterion and the Maximum Likelihood Method [3, 31] is also worth to discuss in future. It is 
possible that SIF and FIC are widely used in AI.  
Acknowledgment 
I want to express my gratitude to Professor Pei-Zhuang Wang for his long time support for my 
research on semantic information, and to Dr. Ya Li and others for their help in preparing and 
revising this manuscript. 
 References 
 [1] P. Adriaans, A critical analysis of Floridi’s theory of semantic information, Knowledge, 

Technology & Policy, 23(1) and (2)(2010)41-56. 
[2] H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic 

Control 19 (6)(1974)716–723  
[3] J. Aldrich, R. A. Fisher and the making of maximum likelihood 1912–1922, Statistical Science, 

12(3)(1997)162–176.  
[4] Y. Bar-Hillel, R. Carnap. An outline of a theory of semantic information. Tech. Rep. No.247, 

Research Lab. of Electronics, MIT, 1952. 
 [5] M. Batet, S. Harispe, S. Ranwez, D. Sánchez, V. Ranwez, An information theoretic approach 

to improve semantic similarity assessments across multiple ontologies, 
Information Sciences, 283(1)(2014)197-210. 

[6] K. P. Burnham, D. R. Anderson,  ultimodel inference: understanding AIC and BIC in Model 
Selection, Sociological Methods & Research, 33(2004)261–304. 

[7] T. Berger, Rate Distortion Theory, Enklewood Cliffs, N.J. Prentice-Hall, 1971. 
[8] G. D. Crnkovic, W. Hofkirchner, Floridi’s “Open Problems in Philosophy of Information”, Ten 

Years Later, Information 2011, 2(2)(2011)327-359 
[9] S. D’ Alfonso, On Quantifying Semantic Information, Information, 2(1)(2011)61-101 
[10] L. Floridi, Outline of a theory of strongly semantic information. Minds and Machines, 14 

(2004)197-221. 
[11] L. Floridi, Semantic conceptions of information, in Stanford Encyclopedia of Philosophy, 

http://seop.illc.uva.nl/entries/information-semantic/, substantive revision Jan 7, 2015. 
[12] G. Klir, Uncertainty and Information: Foundations of Generalized Information Theory, John 

Wiley, Hoboken, NJ, 499 pp., 2005. 
[13] S. Kullback, R.A. Leibler, On information and sufficiency, Annals of Mathematical Statistics , 

22 (1)(1951)79–86. 
[14] C. Lu, Decoding model of color vision and verifications, ACTA OPTIC SINICA, 9(2)(1989), 

158-163. 
 [15] C. LU, B-fuzzy set algebra and a generalized cross-information equation, Fuzzy Systems and 

Mathematics(in Chinese) , 1(1991)76-80. 
[16] C. Lu, A Generalized Information Theory( in Chinese), Hefei, China Science and 

Technology University Press, 1993. 
 [17] C. Lu (1994), Meanings of generalized entropy and generalized mutual information for 

coding,  J. of China Institute of Communication(in Chinese), 15(6)(1994)37-44. 
[18] C. Lu,  Entropy Theory of Portfolio and Information Value (in Chinese), Hefei, Science and 

Technology University Press , 1997. 
[19] C. Lu, A generalization of Shannon's information theory, Int. J. of General Systems, 28 (6) 

1999, 453-490. 



 17

 [20] C. Lu, GPS Information and Rate-Tolerance and its Relationships with Rate Distortion and 
Complexity Distortions(in Chinese),  Journal of Chengdu University Of Information 
Technology, 6(2012)27-32. 

[21] J. Mingers, Prefiguring Floridi’s theory of semantic information, TripleC 11(2)(2013)388-401. 
[22]A. Mohammad-Djafari, Entropy, Information Theory, Information Geometry and Bayesian 

Inference in Data, Signal and Image Processing and Inverse Problems, Entropy, 
17(2015)3989-4027. 

[23] W. Pedrycz, New frontiers of computing and reasoning with qualitative information, 
International Conference on Oriental Thinking and Fuzzy Logic (held in Dalian, China, Aug. 
17-20, 2015) 

[24] K. Popper, Logik Der Forschung: Zur Erkenntnistheorie Der Modernen Naturwissenschaft, 
Wien: J. Springer, 1935; English translation: The Logic of Scientific Discovery, London: 
Hutchinson, 1959. 

[25] K. Popper, Conjectures and Refutations, London and New York, Routledge, 2002.  
[26] M. Poulya, J. Kohlasb, P. Y A Ryanc, Generalized information theory for hints， 

International Journal of Approximate Reasoning，54(1)(2013)228–251. 
[27] P. Resnik, Semantic Similarity in a Taxonomy: An Information-Based Measure and its 

Application to Problems of Ambiguity in Natural Language, Intelligence Research 11 (1999) 
95-130. 

[28] A. M. Rosie, Information and communication theory, New w York, Gordon and Breach, 1966. 
[29] C.E. Shannon, A mathematical theory of communication. Bell System Technical Journal, 27 

(1948) 379–429, 623–656. 
[30] D. M. Sow, Complexity Distortion Theory, IEEE Trans on Information Theory, 49(3)(2003) 

604 - 608 
[31] Wang, P. Z., Fuzzy Sets and Random Sets Shadow (in Chinese), Beijing Normal University 

Press, 1985. 
[32] M. A. Tanner, Tools for Statistical Inference: Methods for the Exploration of Posterior 

Distributions and Likelihood Functions; Springer series in Statistics; Springer: New York, 
NY, USA, 1996.  

[33] H. Theil,  Economics and information theory, North-Holland Pub. Co.,  Amsterdam and 
Rand McNally, Chicago, 1967. 

[34] W. Weaver, Recent contributions to the mathematical theory of communication. In: The 
Mathematical Theory of  Communication, edited by C. E. Shannon and W. Weaver, 
University of Illinois Press, Urbana, 1949. 

[35] G. Yin, J. Ding, Q. Gong, L. Shi, J. Liu, The relationship of fatty liver with high blood lipids, 
high blood glucose and high UA, Modern Medicine Journal of China, 8(9)(2006)7-8. 

[36] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3)(1965)338–353. 
[37] L. A. Zadeh, Probability measures of fuzzy events, J. of Mathematical, Analysis and 

Applications, 23(2)(1986)421-427. 
[38] L. A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human 

reasoning and fuzzy logic, Fuzzy Sets and Systems, 90(1997)111-127.  
 
 
Welcome to comment or publish this paper. 


