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Abstract. We information-theoretically reformulate two measures of
capacity from statistical learning theory: empirical VC-entropy and em-
pirical Rademacher complexity. We show these capacity measures count
the number of hypotheses about a dataset that a learning algorithm fal-
sifies when it finds the classifier in its repertoire minimizing empirical
risk. It then follows from that the future performance of predictors on
unseen data is controlled in part by how many hypotheses the learner
falsifies. As a corollary we show that empirical VC-entropy quantifies the
message length of the true hypothesis in the optimal code of a particular
probability distribution, the so-called actual repertoire.

1 Introduction

This note relates the number of hypotheses falsified by a learning algorithm to the
expected future performance of the predictor it outputs. It does so by reformu-
lating two basic results from statistical learning theory information-theoretically.

Suppose we wish to predict an unknown physical process σ∗ : X → Y occur-
ring in nature after observing its outputs (y1, . . . , yl) on sample D = (x1, . . . , xl)
of its inputs, where inputs arise according to unknown distribution P . One
method is to take a repertoire F of functions from X → Y and choose the
predictor f̂ ∈ F that best approximates σ∗ on the observed data. How confident
can we be in f̂ ’s future performance on unseen data?

Statistical learning theory provides bounds on f̂ ’s expected future perfor-
mance by quantifying a tradeoff implicit in the choice of repertoire F . At first
glance, the bigger the repertoire the better since the best approximation to σ∗ in
F can only improve as more more functions are added to F . However, increas-
ing F , and improving the approximation on observed data, can reduce future
performance due to overfitting. As a result, the bounds depend on both the ac-
curacy with which f̂ approximates σ∗ on the observed data and the capacity of
repertoire F , see Theorems 9 and 10.

We wish to connect statistical learning theory with Popper’s ideas about
falsification. Popper argued that no amount of positive evidence confirms a the-
ory [11]. Rather, theories should be judged on the basis of how many hypotheses
they falsify. A theory is falsifiable if there are possible hypotheses about the
world (i.e. data) that are not consistent with the theory. A bold theory falsi-
fies (disagrees with) many potential hypotheses about observed data. Testing a
bold theory, by checking that the hypotheses it disagrees with are in fact false,
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provides corroborating evidence. If a theory has been thoroughly tested then
(perhaps) we can have confidence in its predictions. Popper’s criticism of posi-
tive confirmation was devastating. However, and hence the “perhaps”, he failed
to provide a rationale for trusting the predictions of severely tested theories.

To understand how falsifying hypotheses affects future performance we refor-
mulate learning as a kind of measurement. Before doing so, we need to describe
precisely what we mean by measurement.

Given physical system X with state space S(X), a classical measurement is
a function f : S(X) → R. For example a thermometer f maps configurations
(positions and momenta) of particles in the atmosphere to real numbers. When
the thermometer outputs 15◦C it generates information by specifying that at-
mospheric particles were in a configuration in f−1(15) ⊂ S(X). The information
generated by the thermometer is a brute physical fact depending on how the
thermometer is built and its output. We quantify the information, see §2, by
comparing the size of the total configuration space S(X) with the size of the
pre-image f−1(15). The smaller the pre-image, the more informative the mea-
surement, see §2 for details.

More generally, any (classical) physical process f : X → Y can be thought of
as performing measurements by taking inputs in X to outputs in Y. Section §4
introduces an important example, the min-risk RF,D : Σ(X ,Y) → R, which
outputs the minimum value of the empirical risk over repertoire F on a hy-
pothesis space Σ(X ,Y). Finding the min-risk is a necessary step in finding the

best approximation f̂ to σ∗ in F . Since computing the min-risk requires actually
implementing it as a physical process somehow or other, the measurements it
performs and the effective information it generates are brute physical facts, no
different in kind than the information generated by a thermometer.

It turns out that the min-risk categorizes hypotheses in Σ according to how
well they are approximated by predictors in repertoire F . Proposition 12 shows
that the effective information generated by the min-risk is (essentially) the em-
pirical VC-entropy. Moreover, the effective information generated by the min-risk
“counts” the number of hypotheses about D that F falsifies, see Eq. (13). As a

consequence, Corollary 13, we obtain that the future performance of predictor f̂
is controlled by (i) how well f̂ fits the observed data; (ii) how many hypotheses
about the data the min-risk rules out and (iii) a confidence term.

It follows that, assuming the assumptions of the theorems below hold, bounds
on future performance are brute physical facts resulting from the act of mini-
mizing empirical risk, and so falsifying potential hypotheses, on observed data.

A consequence of our results, Corollary 15, is that empirical VC-entropy is es-
sentially the minimal length of the true hypothesis under the optimal code for the
actual repertoire (a distribution depending on the min-risk). This suggests there
may be interesting connections between VC-theory and the minimum message
length (MML) approach to induction proposed by Wallace and Boulton [15,16].

Finally, section §4.2 reformulates empirical Rademacher complexity via fal-
sification. Here we build on Solomonoff’s probability distribution introduced
in [12]. In short, we take Solomonoff’s definition and substitute the min-risk in



place of the universal Turing machine, thereby obtaining what we refer to as the
Rademacher distribution – a non-universal analog of Solomonoff’s distribution.
Rademacher complexity is then computed using the expectation of the min-risk
over the Rademacher distribution, see Proposition 17.

The min-risk thus provides a bridge that not only connects VC-theory to a
computable analog of Solomonoff’s seminal distribution, but also sheds light on
how falsification provides guarantees on future performance.

Related work. The connection between Popper’s ideas on falsifiability and
statistical learning theory was pointed out in [5,7,14]. However, these works focus
on VC-dimension, which does not relate to falsification as directly as VC-entropy
and Rademacher complexity which we consider here. Further, VC-entropy is a
more fundamental concept in statistical learning theory than VC-dimension since
VC-dimension is defined in terms of the limit behavior of the growth function,
which is an upper bound on VC-entropy [14]. For more details on the link between
MML and algorithmic probability, see [17].

Acknowledgements. I thank David Dowe and Samory Kpotufe for useful
comments on an earlier version of this paper.

2 Measurement

We consider a toy universe containing probabilistic mechanisms (input/output
devices) of the following form

Definition 1 Given finite sets X and Y, a mechanism is a Markov matrix m
defined by conditional probability distribution pm(y|x).

Mechanisms generate information about their inputs by assigning them to out-
puts [1, 2].

Definition 2 The actual repertoire (or measurement) specified by m out-
putting y is the probability distribution

pm(x|y) :=
pm(y|x)

p(y)
· punif (x),

where punif (x) = 1
|X | is the uniform distribution. The effective information

generated by the measurement is

ei(m, y) := H
[
pm(X|y)

∥∥∥punif (X)
]
,

where H[p‖q] =
∑
i pi log2

pi
qi

is Kullback-Leibler divergence.

The Kullback-Leibler divergence H[p‖q] can be interpreted informally as the
number of Y/N questions needed to get from distribution q to distribution p.
However, as pointed out in [6], Kullback-Leibler divergence is invariant with
respect to the “framing of the problem” – the ordering and structure of the
questions – suggesting it is a suitable measure of information-theoretic “effort”.



The definition of measurement is motivated by the special case where pm
assigns probabilities that are either 0 or 1; in other words, when it corresponds
to a set-valued function f : X → Y. The measurement performed by f is

pf (x|y) =

{ 1
|f−1(y)| if f(x) = y

0 else,

where | · | denotes cardinality. The support of pf (X|y) is the preimage f−1(y) ⊂
X . All elements of the support are assigned equal probability – they are treated
as an undifferentiated list. The measurement pm(X|y) therefore generalizes the
notion of preimage to the probabilistic setting.

The effective information generated by f outputting y is ei(f, y) = log2
|X |

|f−1(y)| :

ei(f, y) = log2 |X | − log2 |f−1(y)|
=
(

no. potential inputs
)
−
(

no. inputs in pre-image
)

=
(

no. inputs ruled out
)
,

(1)

where inputs are counted in bits (after logarithming). Effective information is
maximal (log2 |X | bits) when a single input leads to y, and is minimal (0 bits)
when all inputs lead to y. In the first case, observing f output y tells us exactly
what the input was, and in the latter case, it tells us nothing at all.

2.1 Semantics

Next we consider two approaches to characterizing the meaning of measurements.
The first relates to possible world semantics [9]. Here, the meaning of a sentence is
given by the set of possible worlds in which it is true. Meaning is thus determined
by considering all counterfactuals. For example, the meaning of “That car is 10
years old” is the set of possible worlds where the speaker is pointing to a car
manufactured 10 years previously. Since the set of contains cars of many different
colors, we see that color is irrelevant to the meaning of the sentence.

More precisely, the meaning of sentence S is a map from possible worlds W
to truth values vS : W → {0, 1}. Equivalently, the meaning of a sentence is

W ⊃ v−1S (1)(
possible worlds

)
⊃
(

worlds where S is true
)
.

(2)

Inspired by possible world semantics, we propose

Definition 3 The meaning of output y by mechanism m is

punif (X) → pm(X|y)(
possible inputs

)
→
(

inputs that cause y
)
.

(3)

For a deterministic function this reduces to X ⊃ f−1(y).
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Fig. 1: The effective information generated by measurements. (A) A determin-
istic device can receive 144 inputs and produce 3 outputs. (B): Each input is implicitly
assigned to a category (shaded areas). The information generated by the dark gray
output is log2 144− log2 9 = 4 bits.

Grounding meanings in mechanisms yields four advantages over the possible
worlds approach. First, it replaces the difficult to define notion of a possible
world with the concrete set of inputs the mechanism is physically capable of
receiving. Second, in possible world semantics the work of determining whether
or not a sentence is true is performed somewhat mysteriously offstage, whereas
the meaning of a measurement is determined via Bayes’ rule. Third, the approach
generalizes to probabilistic mechanisms. Finally, we can compute the effective
information generated by a measurement, whereas there is no way to quantify
the information content of a sentence in possible world semantics.

2.2 Risk

The second, pragmatic notion of meaning characterizes usefulness. We consider
a special case, well studied in statistical learning theory, where usefulness relates
to predictions [14].

Let Σ(X ,Y) = {σ : X → Y} be the set of all functions (deterministic mech-
anisms) mapping X to Y = {−1,+1}. We will often write Σ for short. Suppose
there is a random variable X taking values in X with unknown distribution
P and an unknown mechanism σ∗ ∈ Σ, the supervisor, who assigns labels to
elements of X .



Definition 4 The risk quantifies how well mechanism f approximates an un-
known or partially known mechanism σ∗:

R(f) =
∑
x∈X

I
[
f(x) 6= σ∗(x)

]
· p(x). (4)

It is the probability that f and σ∗ disagree on elements of X .

Unfortunately, the risk cannot be computed since P and σ∗ are unknown.

Definition 5 Given a finite sample D = (x1, . . . , xl) ∈ X l with labels L =
σ∗D = (y1, . . . , yl) ∈ Y l, the empirical risk of f : X → Y

R(f,D,L) =
1

l

l∑
i=1

I
[
f(xi) 6= yi

]
(5)

is the fraction of the data D on which f and σ∗ disagree.

The empirical risk provides a computable approximation to the (true) risk.

Remark 6 Note that in this paper, sets X and Y are both finite. Similarly, the
training data D ∈ X l and labels L ∈ Y l also live in finite sets.

3 Statistical learning theory

Suppose we wish to predict the unknown supervisor σ∗ based on its behavior on
labeled data (D,L). A simple way to find a mechanism in repertoire F ⊂ Σ(X ,Y)
that approximates σ∗ well is to minimize the empirical risk.

Definition 7 Given repertoire F ⊂ Σ and unlabeled data D ∈ X l, define learn-
ing algorithm

AF,D : Σ → F : σ 7→ arg min
f∈F

R(f,D, σD) (6)

which finds the mechanism in F that minimizes empirical risk.

Learning algorithm AF,D finds the mechanism in F that appears, based on
the empirical risk, to best approximate σ∗. Empirical risk stays constant or
decreases as F is enlarged, suggesting that the larger the repertoire the better.

This is not true in general since minimizing risk – and not empirical risk –
is the goal. There is a tradeoff: increasing the size of F leads to overfitting the
data which can increase risk even as empirical risk is reduced.

The tendency of a repertoire to overfit data depends on its size or capacity.
We recall two measures of capacity that are used to bound risk: empirical VC-
entropy [13] and empirical Rademacher complexity [8].



Definition 8 Given unlabeled data D ∈ X l and repertoire F ⊂ Σ let

qD : F → Rl : f 7→
(
f(x1), . . . , f(xl)

)
. (7)

The empirical VC-entropy1 of F on D is V(F ,D) := log2 |qD(F)|, where
|qD(F)| is the number of distinct points in the image of qD.

The empirical Rademacher complexity of F on D is

R(F ,D) =
1

|Σ|
∑
σ∈Σ

[
sup
f∈F

1

l

l∑
i=1

σ(xi) · f(xi)

]
. (8)

VC-entropy “counts” how many labelings of D the classifiers in F fit perfectly.
Rademacher complexity is a weighted count of how many labelings of D functions
in F fit well.

The following theorems are shown in [3] and [4] respectively:

Theorem 9 (empirical VC-entropy bound)
With probability 1− δ, the expected risk is bounded by

R(f) ≤ R(f,D,L) + c1

√
V(F ,D)

l
+ c2

√
1− log2 δ

l
(9)

for all f ∈ F , where the constants are c1 =
√

6
log2 e

and c2 =
√

1
log2 e

.

Theorem 10 (empirical Rademacher bound)
For all δ > 0, with probability at least 1− δ,

R(f) ≤ R(f,D,L) +R(F ,D) + c3

√
1− log2 δ

l
, (10)

for all f ∈ F , where c3 =
√

2
log2 e

.

The tradeoff between empirical risk and capacity is visible in the first two terms
on the right-hand sides of the bounds.

The left-hand sides of Eqs (9) and (10) cannot be computed since P and
σ∗ are unknown. Remarkably, the right-hand sides depend only on mechanism
f chosen from repertoire F , labeled data (D,L) and desired confidence δ. The
theorems assume data is drawn i.i.d. according to P and labeled according to
σ∗; it make no assumptions about the distribution P on X or supervisor σ∗,
except that they are fixed.

1 VC-entropy is the expectation of empirical VC-entropy [14]. Also, note the standard
definition of VC-entropy uses loge rather than log2.



4 Falsification

This section reformulates the results from statistical learning theory to show how
the past falsifications performed by a learning algorithm control future perfor-
mance. We show that the empirical VC-entropies and Rademacher complexities
admit interpretations as “counting” (in senses made precise below) the number
of hypotheses falsified by a particular measurement performed when learning.

We start by introducing a special mechanism, the min-risk, which is used
implicitly in learning algorithm AF,D. As we will see, the structure of the mea-
surements performed by the min-risk determine the capacity of the learning
algorithm.

Definition 11 Given repertoire F ⊂ Σ and unlabeled data D ∈ X l, define the
min-risk as the minimum of the empirical risk on F :

RF,D : Σ → R : σ 7→ min
f∈F

R(f,D, σD). (11)

The min-risk is a mechanism mapping supervisors σ in Σ to the empirical
risk of their best approximations AF,D(σ) in F , see Fig. 2. Note that inputs to
the min-risk are themselves mechanisms.

We suggestively interpret the setup as follows. Suppose a scientist studies a
universe where inputs in X appear according to distribution P , and are assigned
labels in Y by unknown physical process σ∗. The hypothesis space is Σ(X ,Y),
the set of all possible (deterministic) physical processes that take X to Y.

The scientist’s goal is to learn to predict physical process σ∗, on the basis
of a small sample of labeled data (D,L). She has a theory, repertoire F , and a

method, AF,D, which she uses to fit some particular f̂ ∈ F given L.
The most important question for the scientist is: How reliable are predictions

made by f̂ on new data? We will show that f̂ ’s reliability depends on the mea-
surements performed by the min-risk – i.e. on the work done by the scientist
when she applies method AF,D to find f̂ .

4.1 Empirical VC entropy

Empirical VC-entropy is, essentially, the effective information generated by the
min-risk when it outputs a perfect fit:

Proposition 12 (VC-entropy via effective information)
Empirical VC entropy is

V(F ,D) = l − ei (RF,D, 0) . (12)

Proof: Let X = D ∪ Dc and |X | = m. Then Σ = {σ : D → Y} × {σ : Dc → Y}.
By definition

ei (RF,D, 0) = log2 |Σ| − log2 |R−1F,D(0)|,

with log2 |Σ| = m. It remains to show that |R−1F,D(0)| = 2m−l · |qD(F)|. Points in
the image of qD correspond to labelings σ of the data by functions in F . Thus,
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Fig. 2: The structure of the measurement performed by the min-risk. The
min-risk categorizes potential hypothesis in Σ according to how well they are fit by
mechanisms in theory F .

|qD(F)| counts distinct labelings of D that F fits perfectly. These occur with
multiplicity 2m−l in the pre-image by the product decomposition of Σ above. �

We interpret the result as follows. Suppose the scientist applies theory F
to explain her labeled data and perfectly fits function f̂ = AF,D(σ∗) with risk
ε = 0.

By Definition 3, the meaning of her work is Σ ⊃ R−1F,D(0): the set of mech-
anisms that her theory F fits perfectly. The effective information generated by
her work is

ei(RF,D, 0) = log2 |Σ| − log2 |R−1F,D(0)|
=

(
total no. of hypotheses

)
−
(

no. that theory fits
)

=
(

no. of hypotheses falsified
)
,

(13)

where hypotheses are counted in bits (after logarithming). A theory is informa-
tive if it rules out many potential hypotheses [11].

The number of hypotheses the scientist falsifies when using theory F to fit f̂
has implications for its future performance:

Corollary 13 (information-theoretic empirical VC bound)

With probability 1− δ, the risk of predictor f̂ = AF,D(σ∗) outputted by learning
algorithm AF is bounded by

R(f) ≤ R(f,D,L) + c1

√
1− ei(RF,D, 0)

l
+ c2

√
1− log2 δ

l
. (14)

Proof: By Theorem 9 and Proposition 12. �



The corollary states that minimizing empirical risk embeds expectations
about the future into predictors. So long as the corollary’s assumptions hold,
future performance by f̂ is controlled by: (i) the output of the min-risk, i.e. the

fraction ε of the data that f̂ fits; (ii) the effective information generated by the
min-risk, i.e. the number (in bits) of hypotheses the learning algorithm falsifies
if it fits perfectly; and (iii) a confidence term. The only assumption made by the
corollary is that P and σ∗ are fixed.

Remark 14 The theorem provides no guarantees on the future performance of
a theory that “explains everything”, i.e. F = Σ, no matter how well it fits the
data. This follows since effective information is zero when F = Σ, and so the
second term on the right-hand side of Eq. (14) is c1 ≈ 2.

Reformulating the above result in terms of code lengths suggests a connection
between VC-theory and minimum message length (MML), see [16] and §6.6 of [6].
Recall that, given probability distribution p(X), the message length of event x
in an optimal binary code is len(x) := − log2 p(x).

Corollary 15 (VC-entropy controls code length of true hypothesis)
Denote the min-risk by m = RF,D. The length of the true hypothesis σ̂ in the
optimal code for the actual repertoire specified by the min-risk, pm(Σ|ε = 0), is

len(σ̂) = V(F ,D) +
(
|X | − |D|

)
.

Proof: By Proposition 12 we have − log2 pm(σ̂|ε = 0) = log2 |R−1F,D(0)|. �

The length of the message describing the true hypothesis in the actual reper-
toire’s optimal code is the empirical VC-entropy plus a term, (|X |−|D|) = (m−l),
that decreases as the amount of training data increases. The shorter the message,
the better the predictor’s expected performance (for fixed empirical risk).

4.2 Empirical Rademacher complexity

VC-entropy only considers hypotheses that theory F fits perfectly. Rademacher
complexity is an alternate capacity measure that considers the distribution of risk
across the entire hypothesis space. This section explains Rademacher complexity
via an analogy with Solomonoff probability [12,17].

We first recall Solomonoff’s definition. Given universal Turing machine T ,
define (unnormalized) Solomonoff probability

pT (s) :=
∑

{i|T (i)=s•}

2−len(i), (15)

where the sum is over strings2 i that cause T to output s as a prefix, and len(i) is
the length of i. We adapt Eq. (15) by replacing Turing machine T with min-risk
RF,D : Σ → R.

2 A technical point is that no proper prefix of i should output s.



Definition 16 Equipping hypothesis space with the uniform distribution punif (Σ),
all hypotheses have length len(σ) = |X | = log2 |Σ| in the optimal code. Set the
Rademacher distribution for the min-risk m = RF,D as

pm(ε) :=
∑

{σ|RF,D(σ)=ε}

2−len(σ) =


∣∣R−1
F,D(ε)

∣∣
|Σ| if ε ∈ RF,D(Σ)

0 else.

(16)

The Rademacher distribution is constructed following Solomonoff’s approach
after substituting the min-risk as a “special-purpose Turing machine” that only
accepts hypotheses in finite set Σ as inputs. It tracks the fraction of hypotheses
in Σ that yield risk ε.

The Rademacher distribution arises naturally as the denominator when using
Bayes’ rule to compute the actual repertoire pm(Σ|ε):

pm(σ|ε) =
pm(ε|σ)

pm(ε)
· punif (σ), where pm(ε|σ) =

1 if RF,D(σ) = ε

0 else.

Proposition 17 (Rademacher complexity via min-risk)

R(F ,D) = 1− 2 · E
[
ε
∣∣ pm(ε)

]
. (17)

Proof: We refer to E
[
ε
∣∣ pm(ε)

]
as the expected min-risk. From Eq. (8),

R(F ,D) =
1

|Σ|
∑
σ∈Σ

[
sup
f∈F

1

l

l∑
i=1

σ(xi) · f(xi)

]
.

Observe that 1
l

∑l
i=1 σ(xi)·f(xi) = 1−2R(f,D, σ). It follows that supf∈F

1
l

∑l
i=1 σ(xi)·

f(xi) = 1− 2RF,D(σ), which implies

R(F ,D) = 1− 2
∑
σ∈Σ

RF,D(σ)

|Σ|
= 1− 2

∑
ε

ε ·
∣∣R−1F,D(ε)

∣∣
|Σ|

. �

Rademacher complexity is low if the expected min-risk is high. The expected
min-risk admits an interesting interpretation. For any hypothesis σ ∈ R−1F,D(ε)

the classifier f̂σ := AF,D(σ) ∈ F outputted by the learning algorithm yields

incorrect answers on fraction ε = 1
l

∑l
i=1 I

[
f̂σ(xi) 6= σ(xi)

]
of the data. It follows

that∑
ε pm(ε) · ε =

∑
ε

∣∣R−1
F,D(ε)

∣∣
|Σ| · 1

l

∑
l I
[
f̂σ(xi) 6= σ(xi)

]
=
∑
ε

(
fraction of hypotheses falsified

)
·
(

on fraction ε of the data
)
.

A bold theory F is one for which E[ε|pm(ε)] is high, meaning that its predic-
tors (the classifiers it tries to fit to data) are sufficiently narrow that it would
falsify most hypotheses on most of the data.



When a bold theory happens to fit labeled data well, it is guaranteed to perform
well in future:

Corollary 18 (information-theoretic empirical Rademacher bound)

With probability 1− δ, the risk of predictor f̂ = AF (D,L) outputted by learning
machine AF is bounded by

R(f) ≤ R(f,D,L) +

[
1− 2

∑
ε

ε · 2−ei(RF,D,ε)

]
+ c3

√
1− log2 δ

l
(18)

Proof: By Proposition 17 and definition of effective information we have

R(F ,D) = 1− 2
∑
ε

ε ·
∣∣R−1F,D(ε)

∣∣
|Σ|

= 1− 2
∑
ε

ε

2ei(RF,D,ε)
.

The result follows by Theorem 10. �

Rademacher complexity is low if the min-risk’s sharp measurements (high ei)
are accurate (low ε), and conversely. Analogously to Corollary 13, the Rademacher
bound implies the future performance of a classifier depends on: (i) the fraction

ε of the data that f̂ fits; (ii) the weighted (by the fraction ε of data that falsifies
them) sum of the fraction of hypotheses falsified; and (iii) a confidence term.
Once again, the only assumption is that P and σ∗ are fixed.

5 Discussion

Learning according to algorithm AF,D entails computing the min-risk, which
classifies hypotheses about D according to how well they are approximated by
predictors in repertoire F . Repertoires that rule out many hypotheses when
they fit labeled data (D,L) generate more effective information than repertoires
that “approximate everything”. As a consequence, when and if an informative
repertoire fits labeled data well, Corollary 13 implies we can be confident in
future predictions on unseen data.

A pleasing consequence of reformulating empirical VC-entropy and empirical
Rademacher complexity in terms of falsifying hypotheses is that it directly con-
nects Popper’s intuition about falsifiable theories to statistical learning theory,
thereby providing a rigorous justification for the former.

Our motivation for reformulating learning theory information-theoretically
arises from a desire to better understand the role of information in biology.
Although Shannon information has been heavily and successfully applied to bio-
logical questions, it has been argued that it does not fully capture what biologists
mean by information since it is not semantic. For example, Maynard Smith states
that “In biology, the statement that A carries information about B implies that
A has the form it does because it carries that information” [10]. Shannon in-
formation was invented to study communication across prespecified channels,



and lacks any semantic content. Maynard Smith therefore argues that a differ-
ent notion of information is needed to understand in what sense evolution and
development embed information into an organism.

It may be fruitful to apply statistical learning theory to models of develop-
ment. One possible approach is to consider analogs of repertoire F . For example,
F may correspond to the repertoire of possible adult forms a zygote could develop
into. The particular adult form chosen, f̂ ∈ F , depends on the historical interac-
tions (D,L) between the organism and its environment, assuming these can be
suitably formalized. The information generated by the organism’s development
would then have implications for its future interactions with its environment.
More speculatively, a similar tactic could be applied to quantify the information
embedded in populations by inheritance and natural selection.
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