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Abstract

This paper proposes a reformulation of the treatment
of boundaries, fiat parts and aggregates of entities in
Basic Formal Ontology. These are currently treated
as mutually exclusive, which is inadequate for biolog-
ical representation since some entities may simulta-
neously be fiat parts, boundaries and/or aggregates.
We introduce functions which map entities to their
boundaries, fiat parts or aggregations. We make use
of time, space and spacetime projection functions
which, along the way, allow us to develop a simple
temporal theory.
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1 Introduction

Developed at the Institute for Formal Ontology and
Medical Information Science, Basic Formal Ontology
(BFO) is a theory of the basic structures of reality.
BFO endorses the view that the world contains occur-
rents and continuants. Occurrents are entities which
unfold, or develop in time. Continuants are entities
which have a continuous existence and a capacity to
endure through time. Both types of entities exist
in time in different ways. By heeding a notion of
(Zemach 1970), namely that distinct modes of being
generate distinct ontologies, BFO distinguishes be-
tween two kinds of ontologies: one for continuants,
the other for occurrents. The Open Biomedical On-
tologies consortium’s Relation Ontology describes in-
ter and intra relations between the two ontologies in
order to support automated reasoning about the spa-
tiotemporal, temporal and spatial dimensions of bi-
ological and medical phenomena. We refer to BFO
merged with the Relation Ontology simply as ‘BFO’.
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In BFO there are three main categories of occur-
rents: processes, spatiotemporal regions and tempo-
ral regions. Examples of processes include the process
of respiration, a human life, the development of an
embryo, the flight of a bird, and the functioning of the
heart. Examples of spatiotemporal regions include
the spatiotemporal location of an individual organ-
ism’s life and the spatiotemporal location of a repli-
cating strand of DNA, whereas examples of temporal
regions include the time taken by a cell undergoing
meiosis, and the moment a finger is detached in an
industrial accident. In BFO there are three main cat-
egories of continuants: dependent continuants, inde-
pendent continuants and spatial regions. Dependent
continuants are entities such as qualities, roles and
dispositions that inhere in independent continuants.
Independent continuants are entities in which depen-
dent continuants, such as qualities and dispositions
can inhere in. Examples of independent continuants
include a human individual and a heart, whereas ex-
amples of dependent continuants include the mass of
a cloud, the role of being a doctor, the disposition of a
vase to break when dropped, the function of the heart
to pump blood and the spectrum of the sun. Exam-
ples of spatial regions include a cubed-shape part of
space, and a point in space.

The paper is structured as follows. Section 2 pro-
vides an overview of the BFO type hierarchy and is
based on work found in (Spear 2006). Sections 3 and
4 describe mereological relations which are required
in later sections. Section 3 is influenced by theory
described by (Simons 1987), whereas Section 4 is in-
fluenced by (Smith 1996). Section 5.2 is based on
work in (Smith et al. 2005), however the rest of Sec-
tion 5 is new material. Here we introduce our time,
space and spacetime projection functions and outline
a simple temporal theory. Section 6 is entirely new
and introduces functions which handle boundaries,
fiat parts and aggregates. Section 7 draws conclu-
sions. Throughout this paper we rely on the typog-
raphy described in Figure 1. Relations between types
are depicted in italics, whereas all other relations are
depicted in bold. The logical connectors ¬, =, ∧, ∨,
⇒ and⇔ have their usual interpretation. The symbol
=def is used for definitions, ∀ for universal quantifi-
cation, ∃ for existential quantification, and ι for the
definite descriptor. We omit leading universal quan-
tifiers in our formulae. Names of axioms begin with
‘A’, names of definitions begin with ‘D’, and names
of theorems begin with ‘T’.
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Occurrent O o
Process P p
Spatiotemporal Region U u
Scattered Spatiotemporal Region us(k)

Connected Spatiotemporal Region uc

Temporal Region T t
Scattered Temporal Region ts(k)

Connected Temporal Region tc

Temporal Instant i
Temporal Interval v

Continuant C c
Spatial Region S s
Independent Continuant A a
Material Continuant M m
Site

Dependent Continuant
Generic Dependent Continuant
Specific Dependent Continuant
Quality
Realisable Entity
Role
Disposition
Function

time projection τ
space projection ψ, ψi

spacetime projection µ
boundary function β, βi

fiat part function ϕ, ϕi

aggregation function α, αi

Figure 1: Candidate BFO 2.0 type hierarchy and ty-
pography used throughout this paper. Upper-case ro-
man letters denote occurrent and continuant types
and lower-case roman letters denote instances.

2 The type hierarchy

BFO distinguishes between types and instances.
Types are what all members of a natural kind, group-
ing or species have in common. For example: cat,
cell and photosynthesis are types. Instances can be
thought of as the individual occupants of reality. For
example: my neighbour’s cat, the red blood cell on
this microscope slide, and the process of photosynthe-
sis the gum tree in my backyard performs throughout
its lifetime are all instances. Types can be instanti-
ated by more than one entity at more than one time,
whereas instances are one-off, they can exist only in
one place at one time. Types exist when and where
their instantiations exist. Instances exist in space and
time, and come into and pass out of existence.

2.1 Instances and subtypes

The primitive binary relational assertion
x instance of X has the meaning: instance x
is an instantiation of type X. We say ‘x is an occur-
rent instance’ (or, more simply, ‘x is an occurrent’) if
and only if x instance of Occurrent . A type X is a
subtype of Occurrent if and only if all instances of X
are occurrents. In that case we call X an ‘occurrent
type’. In the following we use O, O1, . . . and o, o1, . . .
to range over occurrent types and occurrents, respec-
tively. In BFO, an example of an occurrent type is

Temporal Instant . We say “x is a temporal instant
instance’ (or, more simply, x is a ‘temporal instant’)
if and only if x instance of Temporal Instant . We
use i, i1, . . . to range over temporal instants.

The primitive ternary relational assertion
x instance ofX at i has the meaning: instance x is
an instantiation of type X at the temporal instant
i. We say ‘x is a continuant instance at temporal
instant i’ (or, more simply ‘x is a continuant at i’) if
and only if x instance of Continuant at i. A type X
is a subtype of Continuant if and only if all instances
of X at any temporal instant are continuants at
that instant. In that case we call X a ‘continuant
type’. We use C, C1, . . . and c, c1, . . . to range over
continuant types and continuants. We furthermore
write o :O as an abbreviation for o instance ofO and
c :C at i as an abbreviation for c instance of C at i.

Any two occurrent types are such that the in-
stances of one are not the instances of the other.
Any two continuants types are such that the instances
of one at any given temporal instant are not the in-
stances of the other at that same temporal instant.

O1 = O2 ⇒ ∀o. (o :O1 ⇔ o :O2) (A2.1)
C1 = C2 ⇒ ∀c, i. (c :C1 at i⇔ c :C2 at i) (A2.2)

An occurrent type O1 is a (subtype of) occurrent
type O2 if and only if all instances of O1 are also
instances of O2. A continuant type C1 is a continu-
ant type C2 if and only if all instances of C1 at any
temporal instant i are also instances of C2 at i.

O1 is a O2 =def ∀o. o :O1 ⇒ o :O2 (D2.1)
C1 is a C2 =def ∀c, i. c :C1 at i⇒ c :C2 at i (D2.2)

For example: DNA is a nucleic acid ;
photosynthesis is a physiological process.

Although we do not show them here, using defin-
tions D2.1 and D2.2, and axioms A2.1 and A2.2, we
can prove theorems which state that the subtype rela-
tion is reflexive, antisymmetric and transitive. More-
over we can trivially prove two theorems (that appear
in later proofs) which tell us that occurrent and con-
tinuant types inherit their subtype instances.

o :O1 ∧O1 is a O2 ⇒ o :O2 (T2.1)
c :C1 at i ∧ C1 is a C2 ⇒ c :C2 at i (T2.2)

2.2 Occurrent types

Occurrents are entities that happen, unfold, or
develop in time. They are sometimes referred
to as ‘perdurant’ entities. The type Occurrent
has three mutually exclusive subclasses: Process,
Spatiotemporal Region and Temporal Region. Pro-
cesses always depend on one or more independent
continuants. For example the flight of a bird, the
life of an organism, the process of cell division, or the
course of a disease.

Process is a Occurrent (A2.3)
Spatiotemporal Region is a Occurrent (A2.4)

Temporal Region is a Occurrent (A2.5)

We differentiate between connected and scattered
spatiotemporal regions. A scattered spatiotemporal
region is the mereological sum of multiple connected
spatiotemporal regions which are separated in space-
time. A connected spatiotemporal region is any spa-
tiotemporal region that is not scattered.
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Scattered Spatiotemporal Region (A2.6)
is a Spatiotemporal Region

Connected Spatiotemporal Region (A2.7)
is a Spatiotemporal Region

A spatiotemporal interval is a connected spa-
tiotemporal region that endures for more than a sin-
gle instant of time. A spatiotemporal instant is a
connected spatiotemporal region at a specific instant
in time.

Spatiotemporal Interval (A2.8)
is a Connected Spatiotemporal Region

Spatiotemporal Instant (A2.9)
is a Connected Spatiotemporal Region

We also differentiate between connected and scat-
tered temporal regions. A scattered temporal region
is the mereological sum of multiple connected tempo-
ral regions which are separate in time. A connected
temporal region is any temporal region that is not
scattered.

Connected Temporal Region (A2.10)
is a Temporal Region

Scattered Temporal Region (A2.11)
is a Temporal Region

A temporal interval is a connected temporal re-
gion that lasts for more than a single instant of time.
A temporal instant is a connected temporal region
comprising a single instant in time.

Temporal Interval (A2.12)
is a Connected Temporal Region

Temporal Instant (A2.13)
is a Connected Temporal Region

2.3 Continuant types

Continuants are entities that exists in full at
any time at which they exist at all, persist
through time while maintaining their identity,
and have no temporal parts. They are some-
times referred to as ‘endurant’ entities. The
type Continuant has three mutually exclusive sub-
classes: Spatial Region, Independent Continuant and
Dependent Continuant .

Spatial Region is a Continuant (A2.14)
Independent Continuant is a Continuant (A2.15)

Dependent Continuant is a Continuant (A2.16)

Any point, line, surface or volume is an instance
of Spatial Region.

Material continuants are entities which are the
bearers of dependent continuants. They are entities
in which dependent continuants inhere. Material con-
tinuants themselves cannot inhere in anything. Sites
(such as hollows, cavities and tunnels) are entities
which can move through space and also can be occu-
pied by material continuants.

Material Continuant (A2.17)
is a Independent Continuant

Site is a Independent Continuant (A2.18)

Dependent continuants are entities which inhere
in independent continuants. Thus in order to exist,
some independent continuant must also exist. De-
pendent continuants can be either specific or generic.
An existing specific dependent continuant inheres in
a single, specific bearer, whereas an existing generic
dependent continuant can inhere in multiple bearers.
For example the redness of this apple is not identical
to the redness of that apple, but the pdf file in my
inbox and on my desktop are identical. For each en-
tity in which a generic dependent continuant inheres
there exists a ‘concretization’ of the generic depen-
dent continuant which is itself specific.

Specific Dependent Continuant (A2.19)
is a Dependent Continuant

Generic Dependent Continuant (A2.20)
is a Dependent Continuant

Qualities (such as temperature, shape and mass)
are entities which inhere in a specific bearer and are
such that they are exhibited in full whenever they are
borne. Realisable entities are entities which inhere in
a specific bearer and are sometimes (not always) re-
alised as processes. For example the role of being a
surgeon may inhere in a person, but that role is not
realised when that person is away from work. Like-
wise the disposition of a match to ignite is realised
when the match is struck and starts to burn.

Quality (A2.21)
is a Specific Dependent Continuant

Realisable Entity (A2.22)
is a Specific Dependent Continuant

We do not further address dependent continuants
in this paper. We instead refer the reader to (Arp &
Smith 2008) for more details.

3 Basic mereological relations

3.1 Parthood

In BFO, occurrent parthood is specified using the
primitive binary relational assertion o1 part of o2. A
time-indexed version c1 part ofc2 at i is used for con-
tinuants where i is a temporal instant. The instance
level parthood relation is reflexive (A3.1 and A3.2),
antisymmetric (A3.3 and A3.4) and transitive (A3.5
and A3.6).

o part of o (A3.1)
c part of c at i (A3.2)

o1 part of o2 ∧ o2 part of o1 ⇔ o1 = o2 (A3.3)
c1 part of c2 at i ∧ c2 part of c1 at i (A3.4)

⇔ c1 = c2

o1 part of o2 ∧ o2 part of o3 (A3.5)
⇒ o1 part of o3

c1 part of c2 at i ∧ c2 part of c3 at i (A3.6)
⇒ c1 part of c3 at i

If a spatial region s1 is part of a spatial region s2
at a given temporal instant, then s1 is part of s2 at all
times. For example, at this instant in time the spatial
region occupied by Tokyo is part of the spatial region
occupied by Japan, but that same spatial configura-
tion held before Tokyo was even built (and will hold
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after the city is demolished by Godzilla). Instead of
the ternary relational assertion s1 part of s2 at i we
write the binary assertion s1 part of s2 without the
time-index.

An occurrent type O1 is part of occurrent type O2
if and only if for all instances o1 of O1, there exists
an instance o2 of O2 such that o1 is part of o2. A
continuant type C1 is part of continuant type C2 if
and only if for all instances c1 of C1 at any temporal
instant i, there exists an instance c2 of C2 at i such
that c1 is part of c2 at i.

O1 part of O2 =def ∀o1. o1 :O1 (D3.1)
⇒ ∃o2. o2 :O2 ∧ o1 part of o2

C1 part of C2 =def ∀c1, i. c1 :C1 at i (D3.2)
⇒ ∃c2. c2 :C2 at i ∧ c1 part of c2 at i

For example: nucleoplasm part of nucleus;
gastrulation part of embryonic development . Note
the definitions make use of an ‘all-some’ structure.
O1s in every case exist as parts of O2s, however O2s
may exist without having O1s as parts. For example:
menopause part of ageing

Although we do not show them here, using defini-
tions D3.1 and D3.2, and the reflexivity and transi-
tivity of the instance-level parthood relation, we can
prove theorems stating that the type-level parthood
relation is reflexive and transitive. We specify axioms
which tell us that the relation is antisymmetric.

3.2 Overlaps

Another relation we use frequently in this paper is
overlaps. A spatiotemporal region u1 overlaps a
spatiotemporal region u2 if and only if there exists a
spatiotemporal region u which is both a part of u1 and
u2. We define similar relations for temporal regions
and spatial regions (not shown here). An independent
continuant a1 overlaps an independent continuant a2
at a temporal instant i if and only if there exists an
independent continuant a which is both a part of a1
and a2 at i.

u1 overlaps u2 =def (D3.3)
∃u. u part of u1 ∧ u part of u2

a1 overlaps a2 at i =def (D3.4)
∃a. a part of a1 at i ∧ a part of a2 at i

The instance-level overlap relation is reflexive,
symmetric and intransitive.

u overlaps u (T3.1)
a overlaps a at i (T3.2)

u1 overlaps u2 ⇒ u2 overlaps u1 (T3.3)
a1 overlaps a2 at i⇒ a2 overlaps a1 at i (T3.4)

∃u1, u2, u3. ¬(u1 overlaps u2 (T3.5)
∧ u2 overlaps u3 ⇒ u1 overlaps u3)
∃a1, a2, a3. ¬(a1 overlaps a2 at i (T3.6)

∧ a2 overlaps a3 at i
⇒ a1 overlaps a3 at i)

Proof. Since u is an occurrent by A2.4 and T2.1, we
can prove T3.1 by A3.1 and D3.3. Similarly since
a is a continaunt by A2.15 and T2.2, we can prove
T3.2 by A3.2 and D3.4. T3.3 and T3.4 follow from
D3.3 and D3.4, respectively. In order to prove T3.5
by contradiction we choose spatiotemporal regions u1,

u2 and u2 such that u1 overlaps u2, u2 overlaps u3
and ¬(u1 overlaps u2). We prove T3.6 in a similar
fashion. �

A spatiotemporal region type U1 overlaps a spa-
tiotemporal region type U2 if and only if for all in-
stances u1 of U1, there exists an instance u2 of U2
such that u1 overlapsu2. We define similar relations
for temporal region types and spatial regions types
(not shown here). An independent continuant type
A1 overlaps an independent continuant type A2 if and
only if for all instances a1 of A1 at any temporal in-
stant i, there exists an instance a2 of A2 at i such
that a1 overlaps a2 at i.

U1 overlaps U2 =def ∀u1. u1 :U1 (D3.5)
⇒ ∃u2. u2 :U2 ∧ u1 overlaps u2

A1 overlaps A2 =def ∀a1, i. a1 :A1 at i (D3.6)
⇒ ∃a2. a2 :A2 at i ∧ a1 overlaps a2 at i

For example: cube overlaps cube face; nucleus
overlaps cell .

The type-level overlap relation is reflexive (T3.7
and T3.8), symmetric between spatiotemporal re-
gion types (A3.7), antisymmetric between indepen-
dent continuant types (A3.8), and intransitive (A3.9
and A3.10). Note that T3.7, A3.7 and A3.9 also hold
for temporal region types and spatial region types.
It is possible that A1 in general overlaps A2 while
no analogous statement holds for A2 in relation to
A1. For example, although uterine tract overlaps
urogenital system, it is not the case in general that
urogenital system overlaps uterine tract .

U overlaps U (T3.7)
A overlaps A (T3.8)

U1 overlaps U2 ⇒ U2 overlaps U1 (A3.7)
A1 overlaps A2 ∧A2 overlaps A1 (A3.8)

⇒ A1 = A2

∃U1, U2, U3. ¬(U1 overlaps U2 (A3.9)
∧ U2 overlaps U3 ⇒ U1 overlaps U3)

∃A1, A2, A3. ¬(A1 overlaps A2 (A3.10)
∧A2 overlaps A3 ⇒ A1 overlaps A3)

Proof. T3.7 can be proved by D3.5 and T3.1. T3.8
can be proved by D3.6 and T3.2. �

4 Connected and scattered regions

This section describes standard mereological rela-
tions, for example as outlined in (Casati & Varzi
1999) and (Smith 1996), which allow us to define con-
nected and scattered spatiotemporal and temporal re-
gions.

For every property or condition ϕ that is true of at
least one spatiotemporal region, there is a spatiotem-
poral region consisting precisely of all the ϕers. This
spatiotemporal region is called the spatiotemporal fu-
sion of the ϕers and is denoted σu(ϕu). We define
the temporal fusion and spatial fusion of the ϕers in
a similar fashion (not shown here).

σu(ϕu) =def ιu1∀u2. (u1 overlaps u2 (D4.1)
⇔ ∃u. (ϕu ∧ u overlaps u2))

We call u1 +u2 the sum of spatiotemporal regions
u1 and u2, and define it as the spatiotemporal fusion
of parts of u1 or u2. We define the sum of temporal

74



regions and the sum of spatial regions in a similar
fashion (not shown here).

u1 + u2 =def σu(u part of u1 (D4.2)
∨ u part of u2)

We call u1−u2 the difference of spatiotemporal re-
gion u1 from spatiotemporal region u2, and define it
as the spatiotemporal fusion of parts of u1 which don’t
overlap u2. We call ū the complement of spatiotem-
poral region u, and define it as the spatiotemporal
fusion of spatiotemporal regions which don’t overlap
u. We define the difference of temporal regions and
the difference of spatial regions, and the complement
of both temporal and spatial regions in a similar fash-
ion (not shown here).

u1 − u2 =def σu(u part of u1 (D4.3)
∧ ¬(u overlaps u2))

ū =def σu
′(¬(u′ overlaps u)) (D4.4)

The spatiotemporal region u1 is an
interior part of the spatiotemporal region u2
if and only if u1 is a non-equivalent (i.e. proper) part
of u2 and any spatiotemporal region which partially
overlaps u1 also overlaps the difference of u2 from
u1. We define similar relations for temporal regions
and spatial regions (not shown here).

u1 interior part of u2 =def u1 part of u2 (D4.5)
∧ u1 6= u2

∧ (∀u′. u′ overlaps u1 ∧ ¬(u′ part of u1)
∧ ¬(u1 part of u′)

⇒ u′ overlaps (u2 − u1))

A spatiotemporal region u1 crosses a spatiotem-
poral region u2 if and only if u1 overlaps both u2
and its complement. A spatiotemporal region u1
straddles a spatiotemporal region u2 if and only if
any spatiotemporal region for which u1 is an inte-
rior part also crosses u2. We define similar relations
for temporal regions and spatial regions (not shown
here).

u1 crosses u2 =def u1 overlaps u2 (D4.6)
∧ u1 overlaps ū2

u1 straddles u2 =def (D4.7)
∀u. u1 interior part of u⇒ u crosses u2

A spatiotemporal region u′ is the boundary of
a spatiotemporal region u if and only if any part
of u′ also straddles u. We call û the closure of a
spatiotemporal region u and define it as the sum of
u and its boundaries. A spatiotemporal region u1
is separate from a spatiotemporal region u2 if and
only if the closure of u1 does not overlap u2 and u1
does not overlap the closure of u2. We define similar
relations for temporal regions and spatial regions (not
shown here).

u′ boundary of u =def ∀u′′. u′′ part of u′ (D4.8)
⇒ u′′ straddles u

û =def u+ σu′(u′ boundary of u) (D4.9)
u1 separate from u2 =def (D4.10)

¬(û1 overlaps u2) ∧ ¬(u1 overlaps û2)

A connected spatiotemporal region uc is not the
sum of separate spatiotemporal regions. Nor is a con-
nected temporal region tc the sum of separate tem-
poral regions.

¬(∃u1, u2. u
c = u1 + u2 (A4.1)

∧ u1 separate from u2)
¬(∃t1, t2. tc = t1 + t2 (A4.2)
∧ t1 separate from t2)

A scattered spatiotemporal region us(k) is the sum
of k separate connected spatiotemporal regions. Like-
wise a scattered temporal region ts(k) is the sum of k
separate connected temporal regions. We use the no-
tation

∧k−1
j=1 xj relxj+1 to mean x1 relx2∧x2 relx3∧

. . . ∧ xk−1 rel xk for relation rel.

∃uc
1, . . . , u

c
k. u

s(k) = uc
1 + · · ·+ uc

k (A4.3)

∧
k−1∧
j=1

uc
j separate from uc

j+1

∃tc1, . . . , tck. ts(k) = tc1 + · · ·+ tck (A4.4)

∧
k−1∧
j=1

tcj separate from tcj+1

We represent a scattered temporal region com-
prised of k separate temporal intervals by vs(k).

5 Spatial, temporal and spatiotemporal pro-
jections

The time projection function τ maps a process to its
‘spell’, i.e. the temporal region corresponding to the
time during which the process endures. In BFO, we
make the assumption that there is no such thing as
an instantaneous process, hence any process endures
through either a temporal interval v, or through a
scattered temporal region vs(k) comprised of k tempo-
ral intervals separated in time (A5.1). The spacetime
projection function µ maps a process to its ‘span’,
i.e. the spatiotemporal region corresponding to the
area of spacetime in which the process unfolds. For
any process there exists a spatiotemporal region in
which that process unfolds (A5.2). The space projec-
tion function ψ maps a process to its ‘spread’, i.e. the
spatial region corresponding to the area of space over
which the process covers. For any process there ex-
ists a spatial region over which that process covers
(A5.3). The time-indexed space projection function
ψi maps an independent continuant at the temporal
instant i to the spatial region corresponding to the
area of space which the independent continuant oc-
cupies at i. If an independent continuant exists at a
given temporal instant, then there is a unique spatial
region occupied by that continuant (A5.4 and A5.5).

∃v. (τ(p) = v) ∨ ∃vs(k). (τ(p) = vs(k)) (A5.1)
∃u. µ(p) = u (A5.2)
∃s. ψ(p) = s (A5.3)

a :Independent Continuant at i (A5.4)

⇒ ∃s. ψi(a) = s

ψi(a) = s1 ∧ ψi(a) = s2 ⇒ s1 = s2 (A5.5)
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If a process p1 is part of a process p2, then p1’s spell
is part of p2’s spell. If a process p1 is part of a process
p2, then p1’s span is part of p2’s span; moreover if p1’s
span is part of p2’s span then p1 is part of p2. If a
process p1 is part of a process p2, then p1’s spread is
part of p2’s spread.

p1 part of p2 ⇒ τ(p1) part of τ(p2) (A5.6)
p1 part of p2 ⇔ µ(p1) part of µ(p2) (A5.7)
p1 part of p2 ⇒ ψ(p1) part of ψ(p2) (A5.8)

Note that BFO already features an expression
a located in s at i which is semantically equivalent
to ψi(a) = s. Moreover in (Smith et al. 2005) an
independent continuant a1 is located in an inde-
pendent continuant a2 at temporal instant i if and
only if there are spatial regions s1 and s2 such that
a1 located in s1 at i and a2 located in s2 at i and
s1 part of s2.

5.1 Temporal ordering

In BFO, all times are with respect to a single inertial
frame of reference (making the ontology inadequate
for describing special relativity). The primitive bi-
nary relational assertion i1 earlier than i2 is used
to order temporal instants along the time line. Al-
though we do not show them here, we specify axioms
which tell us that the temporal ordering relation is
irreflexive, asymmetric and transitive.

Two non-equivalent temporal instants are seperate
and one is earlier than the other.

i1 6= i2 ⇔ i1 separate from i2 (A5.9)
⇔ (i1 earlier than i2 ∨ i2 earlier than i1)

According to the ontology, temporal instants only
exist at the boundary of temporal intervals. Hence
the boundary of any temporal interval v is the sum
of two temporal instants which are separated.

∃i1, i2. σt(t boundary of v) = i1 + i2 (A5.10)
∧ i1 separate from i2

A temporal instant i1 starts a temporal interval
v if and only if i1 is the earlier instant lying at v’s
boundary. Likewise, a temporal instant i2 ends a
temporal interval v if and only if i is the later instant
lying at v’s boundary.

i1 starts v =def (D5.1)
∃i2. σt(t boundary of v) = i1 + i2

∧ i1 earlier than i2
i2 ends v =def (D5.2)

∃i1. σt(t boundary of v) = i1 + i2
∧ i1 earlier than i2

Every temporal interval is started and ended by a
temporal instant.

∃i1, i2. i1 starts v ∧ i2 ends v (T5.1)
∧ i1 earlier than i2

Proof. T5.1 follows from A5.10 with A5.9 and using
D5.1 and D5.2. �

5.2 Participation

The primitive ternary relational assertion
p has participant a at i is used to specify that
independent continuant a at temporal instant i
participates in some way in process p. A process
type P has participant independent continuant type
A if and only if for all instances p of P there exists
some a of A at some temporal instant i such that
p has participant a at i.

P has participant A =def ∀p. p :P (D5.3)
⇒ ∃a, i. a :A at i

∧ p has participant a at i

For example: cell division has participant
chromosome; photosynthesis has participant
chlorophyll .

An independent continuant a exists at a tempo-
ral instant i if and only if there is some process in
which a is a participant at i. (An independent con-
tinuant will at least participate in its own life.) A
process p occurs at at i if and only if there is some
independent continuant a which is a participant of p
at i.

a exists at i =def (D5.4)
∃p. p has participant a at i

p occurs at i =def (D5.6)
∃a. p has participant a at i

If an independent continuant is instantiated at a
temporal instant, then it exists at that temporal in-
stant and vice versa. There are at least two temporal
instants at which any process occurs.

a :Independent Continuant at i (A5.11)
⇔ a exists at i

∃i1, i2. p occurs at i1 ∧ p occurs at i2 (T5.2)
∧ i1 6= i2

Proof. From A5.1 we know the spell of p is either
a temporal interval or a scattered temporal region
vs(k) comprised of k temporal intervals. If we choose
the former, T5.2 follows from A5.12 and T5.1. If we
choose the latter, T5.2 follows from A5.13, A4.4 and
T5.1. We can use A4.4 since we know vs(k) is a tem-
poral region by A2.12, A2.10, the transitivity of the
subtype relation, and T2.1. �

5.3 First and last instants

A temporal instant i is the first instant of a process
p if and only if p occurs at i and does not occur at any
temporal instant before i. A temporal instant i is the
last instant of a process p if and only if p occurs at
i and does not occur at any temporal instant after i.

i first instant of p =def p occurs at i (D5.7)
∧ ∀i′. i′ earlier than i

⇒ ¬(p occurs at i′)
i last instant of p =def p occurs at i (D5.8)

∧ ∀i′. i earlier than i′

⇒ ¬(p occurs at i′)

A process has unique first and last temporal in-
stants.
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i1 first instant of p ∧ i2 first instant of p (T5.3)
⇒ i1 = i2

i1 last instant of p ∧ i2 last instant of p (T5.4)
⇒ i1 = i2

Proof. T5.3 can be proved by contradiction using
D5.7 and A5.9. T5.4 can be proved by contradiction
using D5.8 and A5.9. �

If the spell of a process p is the temporal interval
v and temporal instants i1 and i2 start and end v,
respectively, then p occurs at both i1 and i2 and does
not occur at any instant before i1 or after i2. If the
spell of a process p is the scattered temporal region
vs(k) comprised of temporal intervals v1, . . . , vk and
temporal instant i1 starts v1 and temporal instant i2
ends vk, then p occurs at both i1 and i2 and does not
occur at any instant before i1 or after i2.

τ(p) = v ∧ i1 starts v ∧ i2 ends v (A5.12)
⇒ p occurs at i1 ∧ p occurs at i2

∧ ∀i′, i′′. (i′ earlier than i1
∧ i2 earlier than i′′

⇒ ¬(p occurs at i′) ∧ ¬(p occurs at i′′))

τ(p) = vs(k) ∧ i1 starts v1 ∧ i2 ends vk (A5.13)
⇒ p occurs at i1 ∧ p occurs at i2

∧ ∀i′, i′′. (i′ earlier than i1
∧ i2 earlier than i′′

⇒ ¬(p occurs at i′) ∧ ¬(p occurs at i′′))

Any process has a first and last temporal instant
such that the former is earlier than the latter. If the
spell of a process p is the temporal interval v and
temporal instant i starts (ends) v, then i is the first
(last) instant of p. If the spell of a process p is the
scattered temporal region vs(k) comprised of tempo-
ral intervals v1, . . . , vk and temporal instant i starts
(ends) v1 (vk), then i is the first (last) instant of p.

∃i1, i2. i1 first instant of p (T5.6)
∧i2 last instant of p ∧ i1 earlier than i2

τ(p) = v ∧ i starts v (T5.7)
⇒ i first instant of p

τ(p) = vs(k) ∧ i starts v1 (T5.8)
⇒ i first instant of p

τ(p) = v ∧ i ends v (T5.9)
⇒ i last instant of p

τ(p) = vs(k) ∧ i ends vk (T5.10)
⇒ i last instant of p

Proof. Using A5.1, if the spell of p is a temporal in-
terval, then T5.6 can be proved by T5.1, A5.12, D5.7
and D5.8. If the spell of p is a scattered temporal re-
gion comprised of temporal intervals, then T5.6 can
be proved by T5.1, the transitivity of the temporal or-
dering relation earlier than, A5.13, D5.7 and D5.8.
T5.7 can be proved by A5.12 and D5.7, whereas T5.8
can be proved by A5.13 and D5.7. T5.9 can be proved
by A5.12 and D5.8, whereas T5.10 can be proved by
A5.13 and D5.8. �

Using this theory we can define relations such
as preceded by and immediately preceded by,
whereby a process p′ is preceded by a process p if

and only if the last temporal instant of p is earlier
than the first temporal instant of p′, and a process
p′ is immediately preceded by a process p if and
only if there exists a temporal instant which is both
the first instant of p′ and the last instant of p.

6 Boundaries, fiat parts and aggregates of in-
dependent continuants and processes

As shown in Figure 2, Boundary Of Object ,
Fiat Part Of Object and Object Aggregate were
featured in the original BFO (1.0 version) con-
tinuant type hierarchy, along with Object and
Site, as subclasses of Independent Continuant .
All five types were considered mutually exclusive.
Boundary Of Process, Fiat Part Of Process and
Process Aggregate, along with Process, were featured
in the BFO 1.0 occurrent type hierarchy as subclasses
of Processual Entity . These four types were also
deemed mutually exclusive. In the 1.0 version,
Processual Entity has the same interpretation we
(in this paper) have provided for Process, i.e. an
entity which unfolds or develops in time, and which
depends on one or more independent continuants.
The type Process is interpreted as an entity that is
a maximally connected spatiotemporal whole which
has bona fide beginnings and endings. The candidate
BFO (2.0 version) reflects the type hierarchy given
in Figure 1. The type Processual Entity has been re-
named Process, and the old sense of Process (as being
an entity that is a maximally connected spatiotem-
poral whole) has been removed, since these kinds of
processes occur rarely in reality. The type Object
has been renamed Material Continuant . The types
Boundary Of Object , Fiat Part Of Object and
Object Aggregate along with Boundary Of Process,
Fiat Part Of Process and Process Aggregate have
been entirely removed. This is because we may
only talk of aggregations of material continuants, we
cannot talk of, say, aggregations of fiat parts and/or
boundaries. Moreover, it rules out entities which
are simultaneously fiat parts and aggregates, or say,
boundaries and fiat parts.

Processual Entity
Process
Boundary Of Process
Fiat Part Of Process
Process Aggregate

Independent Continuant
Object
Site
Boundary Of Object
Fiat Part Of Object
Object Aggregate

Figure 2: Original BFO 1.0 Processual Entity and
Independent Continuant type hierarchy.

In this section we introduce a number of functions
which still allow us to talk of boundaries, fiat parts
and aggregates, as well as aggregations which include
boundaries and fiat parts.

6.1 Boundaries

The function βi maps a material continuant at the
temporal instant i to its boundary at i. We refer to
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its boundary as an ‘object boundary’. The function
β maps a process to its boundary. Here we refer to
its boundary as a ‘process boundary’. An object (or
process) boundary can be thought of as that part of
a material continuant (or process) that exists exactly
at the limitation of that material continuant (or pro-
cess). If a material continuant m exists at a temporal
instant i, then it has a boundary which is part of m
at i. Furthermore, every process p has a boundary
which is part of p.

m exists at i⇒ βi(m) part ofm at i (A6.1)
β(p) part of p (A6.2)

The spatial region occupied by the object bound-
ary of a material continuantm at the temporal instant
i is the boundary of the spatial region occupied by m
at i. The spread of a process boundary is the bound-
ary of that process’ spread. Similar axioms hold for
the span and spell of a process and its boundary.

ψi(βi(m)) boundary of ψi(m) (A6.3)
ψ(β(p)) boundary of ψ(p) (A6.4)
µ(β(p)) boundary of µ(p) (A6.5)
τ(β(p)) boundary of τ(p) (A6.6)

A material continuant type M
has object boundary material continuant type
M ′ if and only if for all instances m of M at any
temporal instant i, βi(m) is an instance of M ′ at i.
A process type P has process boundary process type
P ′ if and only if for all instances p of P , β(p) is an
instance of P ′.

M has object boundary M ′ =def (D6.1)

∀m, i. m :M at i⇒ βi(m) :M ′ at i

P has process boundary P ′ =def (D6.2)
∀p. p :P ⇒ β(p) :P ′

The boundary of a cavity is the internal bound-
ary of the material continuant which fully surrounds
it. Other sites (such as hollows and tunnels) have
a boundary which is the boundary of the containing
walls of the hollow or tunnel. For example a bound-
ary of the interior of my coffee mug is the boundary
of the solid, containing part of the mug. The exter-
nal, infinitely thin surface of an apple is a boundary
of the apple, but it is also a boundary of the sur-
rounding air. A boundary of a tunnel bored into the
apple is the boundary of the tunnel walls. Note that
the boundary of the apple is part of the apple, but
the boundary of the surrounding air (tunnel) it is not
part of the surrounding air (tunnel).

6.2 Fiat parts

The function ϕi maps an independent continuant at
the temporal instant i to its fiat part. We refer to
its fiat part as a ‘fiat object part’. The function ϕ
maps a process to its fiat part. Here we refer to its
fiat part as a ‘fiat process part’. A fiat object (or
process) part can be thought of as a part of an inde-
pendent continuant (or process) which is demarcated
by human partitioning. In contrast, a bona fide ob-
ject (or process) part of an independent continuant
(or process) is demarcated by a discontinuity present
at physical gradients which is independent of human
partitioning. We refer the reader to (Smith 2001) for
further discussion regarding fiat parts. A fiat part of

an independent continuant a at the temporal instant
i is a part of a at i. A fiat part of a process p is a
part of p.

ϕi(a) part of a at i (A6.9)
ϕ(p) part of p (A6.10)

An independent continuant type A
has fiat object part independent continuant type A′
if and only if for all instances a of A at any temporal
instant i, there exists a fiat part which is an instance
of A′ at i. A process type P has fiat process part
process type P ′ if and only if for all instances p of P ,
there exists a fiat part which is an instance of P ′.

A has fiat object part A′ =def (D6.3)

∀a, i. a :A at i⇒ ϕi(a) :A′ at i

P has fiat process part P ′ =def (D6.4)
∀p. p :P ⇒ ϕ(p) :P ′

For example: lung has fiat object part upper lobe;
body has fiat object part ventral surface.

If an independent continuant type A has a fiat
object part type A′ then A′ is a part of A. Likewise
if a process type P has a fiat process part P ′ then P ′
is a part of P .

A has fiat object part A′ ⇒ A′ part of A (T6.1)
P has fiat process part P ′ ⇒ P ′ part of P (T6.2)

Proof. T6.1 can be proved by D6.3, A6.9 and D3.2,
since any independent continuant is a continuant by
A2.15 and T2.1. Since any process is an occurrent by
A2.3 and T2.1, T6.2 can be proved by D6.4, A6.10
and D3.1. �

6.3 Aggregates

The function αi maps k independent continuants
a1, . . . , ak to their aggregation at the temporal instant
i. We refer to their aggregation as an ‘object aggre-
gate’. The function α maps k processes p1, . . . , pk
to their aggregation. Here we refer to their aggrega-
tion as a ‘process aggregate’. If k independent con-
tinuants occupy separate spatial regions we can form
their object aggregate. If k processes span separate
spatiotemporal regions we can form their process ag-
gregate.

k∧
j=1

aj exists at i (A6.11)

∧
k−1∧
j=1

ψi(aj) separate from ψi(aj+1)

⇒ ∃a. αi(a1, . . . , ak) = a

k∧
j=1

pj occurs at i (A6.12)

∧
k−1∧
j=1

µ(pj) separate from µ(pj+1)

⇒ ∃p. α(p1, . . . , pk) = p

If a is the object aggregate of independent contin-
uants a1, . . . , ak at temporal instant i, then aj is part
of a at i for 1 ≤ j ≤ k. If p is the process aggregate of
processes p1, . . . , pk, then pj is part of p for 1 ≤ j ≤ k.
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αi(a1, . . . , ak) = a (A6.13)

⇒
k∧

j=1

aj part of a at i

α(p1, . . . , pk) = p⇒
k∧

j=1

pj part of p (A6.14)

If a is the object aggregate of independent continu-
ants a1, . . . , ak at temporal instant i, then the spatial
region occupied by a at i is the sum of the spatial
regions occupied by each aj at i for 1 ≤ j ≤ k. If p
is the process aggregate of processes p1, . . . , pk, then
the spread of p is the sum of the spreads of each pj
for 1 ≤ j ≤ k. Similar axioms hold for the span and
spell of a process aggregate.

αi(a1, . . . , ak) = a (A6.15)

⇒ ψi(a) =
k∑

j=1

ψi(aj)

α(p1, . . . , pk) = p⇒ ψ(p) =
k∑

j=1

ψ(pj) (A6.16)

α(p1, . . . , pk) = p⇒ µ(p) =
k∑

j=1

µ(pj) (A6.17)

α(p1, . . . , pk) = p⇒ τ(p) =
k∑

j=1

τ(pj) (A6.18)

An independent continuant type A is an
object aggregate of independent continuant types
A1, . . . , Ak if and only if for all instances a of A at any
temporal instant i, there exists instances a1, . . . , ak

such that αi(a1, . . . , ak) = a and aj is an instance
of Aj at i for 1 ≤ j ≤ k. A process type P is a
process aggregate of process types P1, . . . , Pk if and
only if for all instances p of P , there exists instances
p1, . . . , pk such that α(p1, . . . , pk) = p and pj is an
instance of Pj for 1 ≤ j ≤ k.

A object aggregate of (A1, . . . , An) =def (D6.5)
∀a, i. a :A at i

⇒ ∃a1, . . . , ak. α
i(a1, . . . , ak) = a

∧
k∧

j=1

aj :Aj at i

P process aggregate of (P1, . . . , Pn) =def (D6.6)
∀p. p :P

⇒ ∃p1, . . . , pk. α(p1, . . . , pk) = p

∧
k∧

j=1

pj :Pj

For example: string trio object aggregate of
(violinist , violist , cellist); playing of a string trio
process aggregate of (playing of violinist , playing of
violist , playing of cellist).

If independent continuant type A is an object ag-
gregate of independent continuant types A1, . . . , Ak
then each Aj is a part of A for 1 ≤ j ≤ k. Likewise if
process type P is a process aggregate of process types
P1, . . . , Pk then each Pj is a part of P for 1 ≤ j ≤ k.

A object aggregate of (A1, . . . , An) (T6.3)

⇒
k∧

j=1

Aj part of A

P process aggregate of (P1, . . . , Pn) (T6.4)

⇒
k∧

j=1

Pj part of P

Proof. T6.3 can be proved by D6.5, A6.13 and D3.2,
since any independent continuant is a continuant by
A2.15 and T2.1. Since any process is an occurrent by
A2.3 and T2.1, T6.4 can be proved by D6.6, A6.14
and D3.1. �

6.4 DOLCE comparison

As a summary, it may be instructive for the reader to
compare the approach of BFO by contrast to that of
DOLCE. The Descriptive Ontology for Linguistic and
Cognitive Engineering has been developed at the Lab-
oratory for Applied Ontology as a reference module
for a library of ontologies which aims to provide ontol-
ogy infrastructure for the Semantic Web. DOLCE has
a cognitive bias since it aims at capturing the ontolog-
ical categories underlying natural language (Gangemi
et al. 2002).

The hierarchy for DOLCE’s Endurant and
Perdurant universals are shown in Figure 3. DOLCE
treats boundaries as instances of the universal
Feature. Other features include holes, bumps, sur-
faces and stains. Features are specifically dependent
on physical objects which act as their hosts. DOLCE
does not consider boundaries of perdurants, nor does
it consider fiat parts. Fiat parts are necessary for bi-
ological representation, but have little relevance lin-
guistically.

Endurant
Physical Endurant

Amount Of Matter
Feature
Physical Object

Non Physical Endurant
Arbitrary Sum

Perdurant
Event

Achievement
Accomplishment

Stative
State
Process

Figure 3: DOLCE Endurant and Perdurant universal
hierarchy.

In DOLCE, an amount of matter refers to mass
nouns, such as some air, some gold, some coffee. A
physical object is an endurant with unity, and is al-
lowed to change parts while keeping its identity. Ex-
amples of non-physical endurants include poems, or
ideas. An arbitrary sum is a collection of endurants
which has no overall unity and cannot be considered
an essential whole. Arbitrary sums change identity
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when they change parts. For example both my left
foot and my car is an arbitrary sum. Thus DOLCE
allows aggregations of boundaries and features along
with other physical objects.

Perdurants (also called occurrences) in DOLCE
are classified according to their cumulativity and
homeomericity. Hence the way aggregations of perdu-
rants are formed in DOLCE is built into the universal
hierarchy itself. Events are non-cumulative. For ex-
ample the aggregation of two consecutive events of
finishing a book does not form a new event which
is the finishing of a book. Events are differentiated
as achievements or accomplishments. Achievements
are instantaneous, for example: reaching the top of
a mountain, departing somewhere, or dying. Accom-
plishments are non-instantaneous, for example: a per-
formance, or climbing a mountain. Statives are cumu-
lative and are differentiated as states and processes.
States, such as sitting, or being red, are homeomeric.
Each stage of a sitting occurrence is still a sitting oc-
currence. Processes, such as running or writing are
non-homeomeric, since there are very short stages of
these occurrences which do not involve running or
writing.

7 Conclusion

We have proposed the introduction of a number
of new functions in order to deal with boundaries,
fiat parts and aggregates in Basic Formal Ontology.
These functions are flexible enough to handle aggrega-
tions of processes and independent continuants along
with their fiat parts and boundaries, and we can also
use these functions to express the fiat parts of bound-
aries. We have introduced time, space and spacetime
projection functions to improve upon the ontology’s
expressibility. We have formalised a simple temporal
theory using these functions.
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