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1. Introduction 

 In this article I define a strong conditional for classical sentential logic, and then extend it 

to three non-classical sentential logics. It is stronger than the material conditional and is not 

subject to the standard paradoxes of material implication, nor is it subject to some of the standard 

paradoxes of C. I. Lewis’s strict implication. My conditional has some counterintuitive 

consequences of its own, but I think its pros outweigh its cons. In any case, one can always 

augment one’s language with more than one conditional, and it may be that no single conditional 

will satisfy all of our intuitions about how a conditional should behave. Finally, I suspect the 

strong conditional will be of more use for logic rather than the philosophy of language, and I will 

make no claim that the strong conditional is a good model for any particular use of the indicative 

conditional in English or other natural languages. Still, it would certainly be a nice bonus if some 

modified version of the strong conditional could serve as one. 
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 I begin by exploring some of the disadvantages of the material conditional, the strict 

conditional, and some relevant conditionals. I proceed to define a strong conditional for classical 

sentential logic. I go on to adapt this account to Graham Priest’s Logic of Paradox, to S. C. 

Kleene’s logic K3, and then to J. Łukasiewicz’s logic Ł, a standard version of fuzzy logic. 

 

2. Extant Conditionals: Material, Strict, and Relevant  

 In classical sentential logic, all conditionals are treated as material conditionals, also 

called material implications. The truth table for the material conditional, which is expressed by 

the symbol ‘⊃’, is: 

p q p ⊃ q 

1 1 1 

1 0 0 

0 1 1 

0 0 1 

 

Though this account of conditionals has some puzzling consequences, the truth table is not itself 

hard to interpret.1 Since the properties of the material conditional are something of a mixed bag, I 

will divide its assessment into three subsections. 

 

                                                                 
1
 For those who aren’t familiar with truth tables or the material conditional, to put things as simply as I can: p ⊃ q is 

read as “If p then q”, or “p implies q,” where one can substitute arbitrary sentences for ‘p’ and ‘q’. The sentence 

substituted for ‘p’ is called the antecedent of the conditional, and the one substituted for ‘q’ is called the 

conditional’s consequent. One reads the rows of the truth table from left to right, starting with the first row and 

working one’s way down until one reaches the last row. Each row represents the “truth values” that sentences can 

take, with ‘1’ representing truth and ‘0’ representing falsity on a given evaluation. In the first row, a ‘1’ occurs in the 

column under p, which means that p is true on the evaluation being considered, and the ‘1’ in the column under q in 

that row means that q is also true on that evaluation. The ‘1’ in the column under p ⊃ q on that same row means that 

it too is true on that evaluation. Thus, what this row tells us is that if p and q are both true then p ⊃ q must be true 

too. Once one has understood how to evaluate this row, one can apply the same method to evaluate the other rows. 

In sum, what the truth table says is that p ⊃ q is false when p is true and q is false; and is true in all other cases. 
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1. The Good: The material conditional satisfies the rule of inference called Modus Ponens: If we 

let ‘’ represent an arbitrary type of conditional, Modus Ponens tells us that from p and p  q 

one can infer q. One can tell by inspecting the truth table for the material conditional that if p and 

p ⊃ q are both true then so is q. In the second and fourth rows, the only cases where q is false, 

either p is false or p ⊃ q is false. Since Modus Ponens is valid, inferring q from p and p ⊃ q will 

never take one from truth to falsity. 

2. The Bad: Because the material conditional is a truth functional operator—one whose truth 

value is determined solely by the truth values of its component sentences—one  cannot tell 

whether it is true without knowing the truth values of p and/or q. If you know that p is false then 

you know that p ⊃ q is true, whatever the truth value of q may be. And if you know that q is true 

then you know that p ⊃ q is true, whatever the truth value of p may be. If all you know is that p is 

true, or if all you know is that q is false, you cannot determine the truth value of p ⊃ q. Among 

other things, this means you cannot use Modus Ponens without knowing whether q is true or false. 

You can only apply Modus Ponens if you know that p and p ⊃ q are both true, and if you know 

that p is true you can’t know whether p ⊃ q is true without knowing whether q is true. If you 

already know that q is true, you don’t need to infer its truth from anything. And if you already 

know that q is false, you know that you cannot infer its truth from anything—if you had a valid 

argument with q as its conclusion, you would know that that argument must be unsound.  So 

while the material conditional satisfies Modus Ponens, the fact that is does is not enough to make 

reasoning with it useful in practice. 

3. The Ugly: Ordinarily, when one asserts a conditional one implies that there is some sort of 

connection between its antecedent and its consequent. As an example, take the sentence “If that 

ball is red, then that ball has a color”. (We shall suppose this sentence is uttered in a context 

where it is clear which ball is meant.)  I’d wager that most people would say that the truth of the 

antecedent guarantees the truth of the consequent; if the ball under discussion is red, it just has to 

be true that it has a color. However, a material conditional can be true when its antecedent and 

consequent have nothing to do with each other. For instance, from the first row of the truth table 

it follows that every true sentence materially implies every other true sentence. Thus, “Electrons 

are negatively charged” materially implies “Neil Armstrong was the first man to walk on the 

Moon”. Yet no matter how true it may be, “If electrons are negatively charged then Neil 

Armstrong was the first man to walk on the Moon” would be an odd thing to say, to say the least. 

Also, it follows from the third and fourth rows of the truth table that a false sentence materially 

implies every true sentence as well as every false sentence. If we interpret the English ‘if...then…’ 

construction as a material conditional, the sentences “If bananas are vegetables then the sky is 
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blue” and “If George W. Bush is articulate then the Pope isn’t Catholic” are both true because 

their antecedents are both false. (In the author’s opinion the antecedent of the last material 

conditional is pretty clearly false. But however that may be, I’ll ask the reader to be kind enough 

to suppose that it is false for the sake of the ensuing discussion.)  The fact that the consequent of 

the first sentence is true and that the consequent of the second sentence is false makes no 

difference. The strangeness of these and similar sentences gives intuitive support to the view that 

‘⊃’ and the English ‘if…then…’ construction do not quite mean the same. 

These and other odd results are often referred to as the paradoxes of material implication. It is 

these “paradoxes” that drove C.I. Lewis to define a different conditional, called the strict 

conditional or strict implication, for which he used the symbol ‘⥽’ , which would not suffer from 

these and similar problems. In effect, Lewis defined strict implications as material implications 

that are necessarily true. Hence, to understand his account fully we will have to say a word about 

necessity. 

 One definition of necessary truth would be that a necessary truth is a statement which 

could not possibly be false. (By saying that so-and-so is possible, I refer how things could have 

turned out, whether they actually turned out that way or not, not to my or anyone else’s 

knowledge—or lack thereof—of how things actually did turn out. The notion of possibility at 

issue here is thus metaphysical rather than epistemological; it deals with the world as opposed to 

our knowledge of it.) Necessary truths hold “come what may,” as the philosopher W. V. O. 

Quine put it in his article “Two Dogmas of Empiricism” [ref]. Take an elementary statement of 

arithmetic, say “7 + 5 = 12”. This statement doesn’t just happen to be true. Irrespective of how 

things actually did turn out, they could have turned out differently in many different ways; 

dinosaurs might never have become extinct, Immanuel Kant could have spent his entire career in 

a dogmatic slumber, and George W. Bush could have been ever so slightly more eloquent but no 

matter how different the world could have been, “7 + 5 = 12” would still have been true. Let us 

use the diamond symbol, ‘◊’, to mean ‘it is possibly the case that’, and the box symbol, ‘□’, to 

mean ‘it is necessarily the case that. Writhing “◊ 7 + 5 = 12” then has the effect of saying that “7 

+ 5 = 12” is possibly true, and writing “□ 7 + 5 = 12” has the effect of saying that “7 + 5 = 12” is 

necessarily true. We can give the meaning of □ p, in general as being equivalent to ¬ ◊ ¬ p, 

where ‘¬’ is the negation sign. (This is just a symbolic translation of the above definition of 

necessary truth.)  
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 Now that we are a little clearer on what □ p means, we can understand Lewis’s account of 

strict implication. He defines a strict conditional of the form p ⥽ q as being equivalent to □ (p ⊃ q) 

[ref].  On this definition, p ⥽ q holds only if p ⊃ q holds no matter what; in other worlds, it holds 

only if there is no possible situation in which p ⊃ q is false. In still other words, in order for p ⥽ q 

to be true, there cannot be any possible situation in which p is true while q is false.  

[…] 

3. CSL and its Meta-Language 

 Now it is time to make things a bit more formal. I shall begin my account of strong 

implication by giving a standard language for classical sentential logic (CSL). For atomic 

sentences, we will use capital letters from the entire alphabet, with numerical subscripts 

appended to them if necessary. As for connectives, we will use the symbols ¬ ,  ⋀ ,  ∨ ,  ⊃ , and  

≡ , respectively, for negation, conjunction, disjunction, material implication, and material 

equivalence. For brackets one can use parentheses, (, ); square brackets, [, ]; or curly brackets, 

{, }. It makes no difference which brackets are used where. I will use 1 and 0 as truth values, 1 

for true and 0 for false. Finally, the usual recursive clauses for constructing well-formed 

formulas—wffs, pronounced “woofs,” for short—from atomic sentences will be adopted.  All 

atomic sentences of CSL are wffs, and where p and q are arbitrary sentences of CSL: 

 1. If p is a wff, so is ¬ (p).2 

2. If p and q are wffs, so is (p ⋀ q). 

3. If p and q are wffs, so is (p ∨ q). 

4.  If p and q are wffs, so is (p ⊃ q). 

5.  If p and q are wffs, so is (p ≡ q). 

6. Nothing else is a wff of CSL. 

 Our meta- language3 for CSL, MCSL, will include the lowercase letters p, q, r, etc, all the 

way to the end of the alphabet, as meta-variables4; these have the same function as the letters we 

                                                                 
2
 However, if p is an atomic sentence, one doesn’t have to put brackets around it.  
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just used in giving the recursive clauses for wffs of CSL. They too may have subscripts 

appended to them if necessary. Any sentence of CSL also belongs to MCSL, though the reverse 

is not true.  Additionally, MCSL includes quote-names for sentences of the object-language. 

Thus the meta-linguistic term ‘A’ names the atomic sentence A of the object- language; the term 

‘B ⋀ C’ names the compound sentence B ⋀ C of the object language, and so on. The meta-

language will also have corner quotes,┌  and   ┐, which selectively quote logical connectives and 

brackets but not the meta-variables p, q, r, (etc.), so that it still makes sense to substitute 

sentences of  CSL for them.5 Finally, MCSL will contain a novel item, the meta- linguistic 

designator ┌(q|p)┐, a “conditional designator” which designates the truth value that q takes given 

that p is true, i.e., given that p has the value 1. It is to be read as ┌ the value of q given p┐ or ┌the 

value of q conditional on p┐. The stroke, |, is not a connective; it merely serves to separate the 

letter q from the letter p.  

 In order to be permissibly substituted into the designator ┌(q|p)┐, q and p must either be 

wffs of CSL, or else sentences of MCSL itself that have been formed from such a designator, or 

sentences which have been formed from a designator which was formed from a sentence which 

was formed from such a designator…  . Ultimately, any sentence that can appear inside the 

conditional designator will have been derived from a sentence of CSL, and no meta-variable will 

appear inside a conditional designator when it is actually being used. (We will see how novel 

sentences can be formed from designators in MCSL in the next section.) If all these conditions 

are met, we will say that ┌(q|p)┐is a well-formed designator—a wfd, pronounced “woofed,” for 

short—and if not, ┌(q|p)┐ is a non-well-formed designator. The conditional designator works like 

this: If p never takes the value 1, then ┌(q|p)┐ designates nothing—for q cannot take a value 

given that p is true if p can never be true—and is said to be empty. It is also empty if the value of 

                                                                                                                                                                                                                 
3
 A meta-language is a language that one uses to talk about another language, which is called the object-language. 

These notions are relat ional: The same language can be a meta-language of one language and an object language of 

another. In logic, formalized meta-languages are employed to talk about various formal logical systems in order to 

avoid the paradoxes and/or viciously circular defin itions that would ensue if one tried to use a formal language to 

make statements about itself.  
4
 A meta-variab le is a variable that belongs to the meta-language of a given language. Here we use the letters p, q, r, 

and so on as meta-variables in MCSL, for which any sentence of CSL can be substituted. 
5
 If we used ordinary quotation marks instead, the meta-variables would be included in the quoted material. For 

example, the sentence A ⋀ B is an instance of 
┌
p ⋀ q

┐
; that is, it is a sentence of CSL that is obtained from 

┌
p ⋀ q

┐ 

by substituting the atomic letters A and B, respectively, for p and q—but the string of symbols ‘p ⋀ q’—notice the 

lack of corner-quotes!—belongs, not to CSL, but rather to its meta-language MCSL, and A ⋀ B is not an instance of 

‘p ⋀ q’, for that is a string of symbols: ‘p’ and ‘q’ are placeholders for sentences, and they themselves assert 

nothing. . 



7 
 

q varies when the value of p is 1, for in that case q doesn’t take a unique value given that p is true. 

If q always takes the value 1 when p takes the value 1, then ┌(q|p)┐ designates 1, and in our 

meta- language we can say that ┌(q|p)┐ = 1, which is another way of saying that ┌(q|p)┐ 

designates 1. Similarly, if q always takes the value 0 when p takes the value 1, then ┌(q|p)┐ 

designates 0, and in our meta-language we can say that ┌(q|p)┐ = 0. 

 We may include ┌(q|p)┐ in a truth table, as long as we remember that the values entered 

under it are the values it designates, not the values it has, i.e. none. (If it is not clear why I have 

characterized ┌(q|p)┐ as a designator, and not as an operator which forms sentences that have 

truth values of their own, consider what value(s) (A | A ⋀ ¬A) would have to have on such an 

approach. In classical logic, the assignment of multiple truth values to the same sentence is a 

Very Bad Thing. In section 5 we’ll explore a logic in which it isn’t.) In addition, I will enter the 

symbol ‘%’ under ┌(q|p)┐to mark the cases where it is empty. The following truth tables will 

illustrate some of the conditional designator’s logical properties: 

 

A ¬A  A ⋀ ¬A (A | A ⋀ ¬A) (A ⋀ ¬A | A) (A ⋀ ¬A | A ⋀ ¬A) 

1 0 0 % 0 % 

0 1 0 % 0 % 

 

A ¬A  A  ∨ ¬A (A | A ∨ ¬A) (A ∨ ¬A | A) (A ∨ ¬A | A ∨ ¬A) 

1 0 1 % 1 1 

0 1 1 % 1 1 

 

 

 

 

 

A B A ⋀ B (A | A) (B | A) (B | A ⋀ B) 

1 1 1 1 % 1 

1 0 0 1 % 1 

0 1 0 1 % 1 

0 0 0 1 % 1 
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4. The Strong Conditional Defined 

 With our meta- linguistic conditional designator ready to hand, we can now define what I 

call the strong conditional, or strong implication, for which I will use the symbol ‘→’. Its 

definition is (where ‘v( )’ is the valuation function, which gives the semantic value of an 

expression): 

 If ┌(q|p)┐= 1, then v(p → q) = 1 

 If ┌(q|p)┐= 0, then v(p → q) = 0 

 If ┌(q|p)┐ is empty, then v(p → q) = 0 

‘→’ is introduced in MCSL. A sentence of the form ┌p → q┐ is a wff of MCSL if and only if the 

corresponding designator ┌(q|p)┐ is a wfd of MCSL.  

 We can then extend CSL by adding in the strong conditional—as well as the 

corresponding strong equivalence connective, ‘↔’, defined as ┌( p → q) ⋀ (q → p)┐— obtaining 

the language I call CSL+. Its recursive clauses for constructing wffs from atomic sentences are 

the same as those for CSL, with two additions to govern our two new connectives:  

┌p → q┐ is a wff of CSL+ if and only if ┌p → q┐ is a wff of MCSL. 

┌p ↔ q┐ is a wff of CSL+ if and only if ┌p → q┐ and ┌q → p┐ are wffs of MCSL. 

We can obtain the following truth tables for ‘→,’ which are counterparts of the ones for ┌(q|p)┐ 

given above: 

 

A ¬A  A ⋀ ¬A (A ⋀ ¬A) → A  A → (A ⋀ ¬A)  (A ⋀ ¬A) → ( A ⋀ ¬A) 

1 0 0 0 0 0 

0 1 0 0 0 0 

 

A ¬A  A  ∨ ¬A (A ∨ ¬A) → A  A → (A ∨ ¬A)  (A ∨ ¬A) → (A ∨ ¬A) 

1 0 1 0 1 1 

0 1 1 0 1 1 
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Furthermore, we have:  

  

  

  

  

  

 

 

This last table shows that explosion, understood as the principle that contradictions imply 

everything, does not hold for ‘→’. However, because CSL+ is (quasi-) classical, contradictions 

still entail everything. This has the consequence that ┌p → q┐ can be false even if p entails q. 

Strong implication is thus, for lack of a better term, more discriminating than entailment.  

 It is a noteworthy fact that in CSL+, the “Law of Identity” is not valid in general. As one 

can tell by inspecting the truth tables I have given, nothing strongly implies a contradiction and 

contradictions strongly imply nothing, and so a fortiori they do not strongly imply themselves. 

We can call these facts the paradoxes of strong implication. In spite of them, every non-

contradictory sentence strongly implies itself, so the “Restricted Law of Identity”—if p is not a 

contradiction, then ┌p → p┐—is valid. 

 However, most common “paradoxes of material implication” do not have counterparts 

that hold for strong implication. For one thing, ¬A fails to entail A → B; so in general, a false 

sentence does not strongly imply every sentence. For another, B fails to entail A → B; so in 

general not every sentence strongly implies a true sentence. This means that, unlike the material 

A B A ⋀ B A → A  A → B (A ⋀ B) → B 

1 1 1 1 0 1 

1 0 0 1 0 1 

0 1 0 1 0 1 

0 0 0 1 0 1 

A ¬A  B A ⋀ ¬A (A ⋀ ¬A) → B B → (A ⋀ ¬A) 

1 0 1 0 0 0 

1 0 0 0 0 0 

0 1 1 0 0 0 

0 1 0 0 0 0 



10 
 

conditional, the joint truth of A and B does not entail A → B; in fact, no distinct atomic 

sentences strongly imply each other. However, we do have the result that every non-

contradictory sentence implies a tautology.  Modus Ponens also holds for ‘→’, as does Modus 

Tollens.6 [Show this] Since the truth values of sentences of the forms ┌p → q┐ and ┌p ↔ q┐ are 

sensitive both to the identity of p and q and their truth-functional structure, I will call them 

structure-sensitive connectives.  

The examples of formulas that we have given up to this point have all been fairly simple. 

We will now turn to sentences involving nested strong conditionals or strong equivalences, 

which are slightly more complex. To form such sentences we can start with this truth table of the 

meta- language MCSL: 

A B C A ⋀ B (A ⋀ B) ⋀ C (A ⋀ B | (A ⋀ B) ⋀ C) (A | A ⋀ B)   (A | (A ⋀ B) ⋀ C) 

1 1 1 1 1 1 1 1 

1 1 0 1 0 1 1 1 

1 0 1 0 0 1 1 1 

1 0 0 0 0 1 1 1 

0 1 1 0 0 1 1 1 

0 1 0 0 0 1 1 1 

0 0 1 0 0 1 1 1 

0 0 0 0 0 1 1 1 

 

 

 Thus, in CSL+ we can have [(A ⋀ B) ⋀ C] → (A ⋀ B) and also (A ⋀ B) → A, as well as 

[(A ⋀ B) ⋀ C] → A. But what about [(A ⋀ B) ⋀ C] → [(A ⋀ B) → A]?  In the meta- language 

MCSL we can have this truth table: 

 

                                                                 
6
 Modus Tollens is a rule of inference which says, from p   q and ¬q, one can in fer ¬p.  
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A B C A ⋀ B (A ⋀ B) ⋀ C (A ⋀ B) → A ((A ⋀ B) → A | (A ⋀ B) ⋀ C)  

1 1 1 1 1 1 1 

1 1 0 1 0 1 1 

1 0 1 0 0 1 1 

1 0 0 0 0 1 1 

0 1 1 0 0 1 1 

0 1 0 0 0 1 1 

0 0 1 0 0 1 1 

0 0 0 0 0 1 1 

 

Here (A ⋀ B) → A takes the value 1 in the only case where (A ⋀ B) ⋀ C takes the value 1, so 

((A ⋀ B) → A | (A ⋀ B) ⋀ C) designates 1, which means the corresponding conditional, [(A ⋀ B) 

⋀ C] → [(A ⋀ B) → A], is true. 

 Can we have more deeply nested strong conditionals and equivalences in CSL+, or would 

we have to extend CSL+ to get a richer language to obtain them? Consider this sentence: 

A → (A → [(A ⋀ A) → (A ∨ A)]) 

Is this a wff of CSL+? We can begin its formulation by constructing a meta- linguistic truth table 

of MCSL, like so: 

 

A A ⋀ A A ∨ A (A ∨ A | A ⋀ A) (A ⋀ A) → (A ∨ A) ((A ⋀ A) → (A ∨ A) | A) 

1 1 1 1 1 1 

0 0 0 1 1 1 
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Starting with the sentence of the fourth column, i.e. (A ∨ A | A ⋀ A), and working to the right, 

each formula is either a designator of MCSL formed from some of the sentences of the preceding 

columns, or else a strong conditional formed from such a designator of a preceding column. 

Continuing the table, we obtain: 

 

A → [(A ⋀ A) → (A ∨ A)] (A → [(A ⋀ A) → (A ∨ A)] | A) A → (A → [(A ⋀ A) → (A ∨ A)]) 

1 1 1 

1 1 1 

 

So far, it seems that the answer to our question of whether we have to extend our language 

beyond CSL+ is “No”: Given that it can handle some nested strong conditionals, it can handle 

them all.  […] 

 

5. A Strong Conditional for the Logic of Paradox 

 In this section I define a modified form of the strong conditional that will apply to our 

first example of a non-classical logic, which is an extension of Graham Priest’s Logic of Paradox, 

or LP for short. LP is a “dialetheic” logic—one in which sentences may admissibly be deemed 

both true and false. It is motivated as a way to accept that some paradoxes, like the infamous Liar 

Paradox, are really what they appear to be: genuine contradictions. Whatever one may think of 

its motivation, it is, qua logic, an interesting system which merits investigation.  

 The language of LP, as I present it here, is much the same as the language of CSL. We 

will retain the same atomic sentences, connectives, brackets, and recursive clauses for well-

formed formulas. The main difference lies in the assignments of truth values to sentences. In LP 

there are three truth values, the sets {1}, {0}, and {1, 0}; {1} being interpreted as (exclusively) 

true, {0} being interpreted as (exclusively) false, and {1, 0} being interpreted as both true and 

false. LP is a first-order language, but I will omit the details pertaining to the quantifiers, 
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predicates, etc., because the issues we will consider concern only the propositional aspects of the 

language. Priest gives the following clauses for negation and conjunction, respectively [ref]: 

 

1 ∈ v(¬A)  iff  0 ∈ v(A) 

0 ∈ v(¬A)  iff 1 ∈ v(A) 

1 ∈ v(A ⋀ B)  iff 1 ∈ v(A) and 1 ∈ v(B) 

0 ∈ v(A ⋀ B)  iff 0 ∈ v(A) or 0 ∈ v(B) 

(Where ‘iff’ means ‘if and only if’).  That is, 1 (true) is a member of the value of “¬A” iff 0 (false) 

is a member of the value of A, and 0 is a member of the value of “¬A” iff 1 is a member of the 

value of A. Similarly, 1 is a member of the value of “A ⋀ B” iff 1 is both a member of the value 

of A and the value of B, and 0 is a member of the value of “A ⋀ B” iff  0 is either a member of 

the value of A or the value of B (or both). Similar clauses may be given for the other connectives, 

the construction of which I will leave as an exercise for the reader. 

 Let us proceed to the definition of the strong conditional. We start with our meta-

language for LP, i.e. MLP. MLP is much like MCSL. It includes the lowercase letters p, q, r, etc, 

as meta-variables, the sentences of LP itself, quote-names for both atomic and compound 

sentences of LP, corner quotes, and its own meta- linguistic designator ┌(q|p)┐. Since some 

sentences can actually take the value {1, 0} in this logic, our account of MLP’s designator will 

have to differ from the one we gave of MCSL’s. To determine what value ┌(q|p)┐ designates, we 

construct a truth table and check to see if there are any rows where 1 ∈ v(p). If not, ┌(q|p)┐ is 

empty. If there are, we check to see if 1 ∈ v(q) in every row where 1 ∈ v(p). If so, 1 ∈ ┌(q|p)┐ . In 

addition, we check to see if 0 ∈ v(q) in every row where 1 ∈ v(p). If so, we also have 0 ∈ ┌(q|p)┐. 

If neither 1 nor 0 is a member of v(q) on every evaluation where 1 ∈ v(p), ┌(q|p)┐ is empty.  

We’ll begin our definition of strong implication for LP+ by appealing to the following 

truth table of MLP: 
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The definition of strong implication for the extended language LP+  is then: 

If ┌(q|p)┐  = {1}, then v(p → q) = {1} 

 If ┌(q|p)┐ = {0}, then v(p → q) = {0} 

If ┌(q|p)┐ = {1, 0}, then v(p → q) = {1, 0} 

 If ┌(q|p)┐ is empty, then v(p → q) = {0}. 

 

Given our truth table for ┌(q|p)┐and this definition, we can obtain this truth table for strong 

implication in LP+: 

 

 

 

 

A ¬A  B (A ⋀ ¬A) (A | A ⋀ ¬A) (A ⋀ ¬A | A) (B | A ⋀ ¬A) (A ⋀ ¬A | B) 

1 0 1 0 1, 0 0 % 0 

1 0 0 0 1, 0 0 % 0 

0 1 1 0 1, 0 0 % 0 

0 1 0 0 1, 0 0 % 0 

1 0 1, 0 0 1, 0 0 % 0 

1, 0 1, 0 1 1, 0 1, 0 0 % 0 

0 1 1, 0 0 1, 0 0 % 0 

1, 0 1, 0 0 1, 0 1, 0 0 % 0 

1, 0 1, 0 1, 0 1, 0 1, 0 0 % 0 
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In LP+, strong implication satisfies Modus Ponens in this sense: If 1 ∈ v(p), and p → q,  1 ∈ v(q). 

This is significant because in LP the only candidate conditional is the material conditional, and it 

does not satisfy Modus Ponens.   […] 

 

6. A Strong Conditional for K3 

 I’ll now sketch a strong conditional for the logic K3, a language which is basically the 

same as LP except that the third value is interpreted as “neither true nor false” rather than “both 

true and false.” The language has much in common with LP, the only important difference being 

the notation for the truth values. We will continue to use 1 for truth and 0 for falsity, and 

introduce the letter n for “neither true nor false”.  

 As usual, we introduce a conditional designator in the meta-language of K3, MK3. To 

evaluate ┌(q|p)┐for a given truth table, we check to see if there is a row of the table where v(p) = 

1. If not, ┌(q|p)┐ is empty. If there is a row where v(p) = 1, we check to see if v(q) = 1 in every 

row where v(p) = 1, and if it does, ┌(q|p)┐ = 1. If v(q) = 0 in every row where v(p) = 1, ┌(q|p)┐ = 

0. If v(q) = n in every row where v(p) = 1, then ┌(q|p)┐ =n. As always, if v(q) varies when  v(p) = 

1, ┌(q|p)┐is empty. In light of this, we have these truth tables: 

A ¬A  B (A ⋀ ¬A) (A ⋀ ¬A) → A (A ⋀ ¬A) → B A → (A ⋀ ¬A) B → (A ⋀ ¬A) 

1 0 1 0 1, 0 0 0 0 

1 0 0 0 1, 0 0 0 0 

0 1 1 0 1, 0 0 0 0 

0 1 0 0 1, 0 0 0 0 

1 0 1, 0 0 1, 0 0 0 0 

1, 0 1, 0 1 1, 0 1, 0 0 0 0 

0 1 1, 0 0 1, 0 0 0 0 

1, 0 1, 0 0 1, 0 1, 0 0 0 0 

1, 0 1, 0 1, 0 1, 0 1, 0 0 0 0 
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A ¬A  A ⋀ ¬A (A | A ⋀ ¬A) (A ⋀ ¬A | A) (A ⋀ ¬A | A ⋀ ¬A) 

1 0 0 % 0 % 

n n n % 0 % 

0 1 0 % 0 % 

 

 

A ¬A  A  ∨ ¬A (A | A ∨ ¬A) (A ∨ ¬A | A) (A ∨ ¬A | A ∨ ¬A) 

1 0 1 % 1 1 

n n n % 1 1 

0 1 1 % 1 1 

 

 

 

In the extended language K3+ we could then get corresponding truth tables with the strong 

conditional in place of the conditional designator by a process which is by now familiar enough 

A ¬A  B (A ⋀ ¬A) (B | A ⋀ ¬A) (A ⋀ ¬A | B) A  ∨ ¬A (B |  A  ∨ ¬A) (A  ∨ ¬A | B) 

1 0 1 0 % % 1 % % 

1 0 0 0 % % 1 % % 

0 1 1 0 % % 1 % % 

0 1 0 0 % % 1 % % 

1 0 n 0 % % 1 % % 

n n 1 n % % n % % 

0 1 n 0 % % 1 % % 

n n 0 n % % n % % 

n n n n % % n % % 
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that I shall spare the reader the details. What is distinctive about K3+ is that, since sentences 

which are tautologies in CSL can be neither true nor false in K3+, and hence not true, sentences 

of can K3+ can fail to strongly imply a tautology. B fails to strongly imply A  ∨ ¬A , for B can 

have the value 1 while A  ∨ ¬A  has the value n. However, A still strongly implies A  ∨ ¬A, since 

A  ∨ ¬A cannot be neither true nor false when A is true.  

[…] 

 

7. A Strong Conditional for a Fuzzy Logic 

 The logic that is the topic of this section is J. Łukasiewicz’s logic Ł. Ł is what is known 

as a fuzzy logic. Fuzzy logics have an infinity of truth values, one for every real number between 

0 and 1, which are interpreted as being degrees of truth—ways of being more-or- less true, or 

partially true and partially false. Such logics are often motivated by an ancient puzzle known as 

the Sorities Paradox. One instance of the paradox is this: Suppose there is a baby girl named 

‘Tracy’. Over time Tracy grows up, and eventually she will be an adult. A few moments after 

being born, Tracy is not an adult by any stretch of the imagination. At age fifty, she is an adult if 

anyone is. Now, it seems very plausible to claim that if Tracy is not an adult at some time t, she 

will also not be an adult one second later. She is not an adult a second after being born, nor is she 

an adult one second after that, nor one second after that… but eventually those seconds will add 

up to fifty years, and if this line of reasoning is correct she will still not be an adult! In classical 

logic, the principle of bivalence, which holds that every sentence is either true or false seems to 

demand that there’s some precise point in the course of Tracy’s life when she goes from being a 

child to being an adult. That is counterintuitive, to put it mildly. “Fuzzy logicians” propose 

replace that point with a smooth gradient: As Tracy gets older, that claim that she is an adult 

gradually goes from being mildly true to moderately true to very true, and eventually to being 

completely true.  

 In Łukasiewicz’s logic Ł the definition of negation is: 

v(¬p) = 1 – v(p) 

That is, ¬p's degree of truth is 1 minus the degree of truth of p, which seems plausible enough. 

 The definition of conjunction is: 
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  v(p ⋀ q) = Min(v(p), v(q)) 

This means that the truth value of ┌p ⋀ q┐ is the minimum of the value of p and the value of q—

the value of whichever of them happens to be lower (If their values are equal, it has the value 

they share.) This is a generalization of the definition of conjunction for classical logic: 0 is less 

than 1, so if either p or q has the value 0 ┌p ⋀ q┐ must have the value 0 as well. If p and q both 

have the value 1, ┌p ⋀ q┐ has the value 1. 

 It proves to be just as easy to define disjunction as it was to define conjunction: 

 v(p ∨ q) = Max(v(p), v(q)) 

The truth value of ┌p ∨ q┐ is the maximum of the values of p and q—the value of whichever of 

them happens to be greater (As above, if their values are equal, it has the value they share.) This 

is a generalization of the definition of disjunction for classical logic: 1 is greater than 0, so if 

either p or q has the value 1 so does ┌p ∨ q┐, and if both p and q have the value 0 then ┌p ∨ q┐ 

does too.[…] 

MŁ contains an operator which we have not yet encountered in any of the preceding languages. 

This is the operator [d], which I call ‘op’, which in a sense bridges the gap between MŁ and Ł+. 

Op is an operator forming operator: It takes a degree of truth, d, and forms a sentential operator 

which, when prefixed to a sentence p, has the effect of saying that p has d as its degree of truth. 

[…] 

 We come now to the definition of MŁ’s conditional designator. If ┌(q|p)┐ is empty, v(p → 

q) = 0. If ┌(q|p)┐ is not empty and p’s degree of truth, d, is 1, then v(p → q) = ┌(q|p)┐. If ┌(q|p)┐  

is not empty and d is distinct from 1, we can “fudge”: 

┌(q |[d]p)┐ = v(p → q)  

The reason we can fudge is that v([d]p) = 1 iff v(p) = d. If a sentence attributes to p any value 

other than d, that sentence has the value 0. Thus, any sentence which has an operator formed 

from op as its main operator either has 1 or 0 as its truth value; there are no intermediate 

possibilities.  

 Now, if we wish to know, for example, what value A  ∨ ¬A must take when A is true to 

the degree 0.75, we begin by substituting ‘0.75’ for ‘d’ in op and by substituting ‘A’ for ‘p’ to 

form the sentence [0.75]A. Then we take both of these sentences and substitute them into MŁ’s 
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conditional designator, yielding: (A ∨ ¬A | [0.75]A). To evaluate this sentence, we start (surprise!) 

by constructing a truth table in MŁ: 

 

A ¬A A  ∨ ¬A [0.75]A (A ∨ ¬A | [0.75]A) 

1 0 1 0 0.75 

0.75 0.25 0.75 1 0.75 

0 1 1 0 0.75 

 

If we want to know what value A ∨ ¬A takes when A takes on other values, say 0.50 or 0.25, we 

proceed similarly: 

 

A ¬A A  ∨ ¬A [0.50]A (A ∨ ¬A | [0.50]A) [0.25]A (A ∨ ¬A | [0.25]A) 

1 0 1 0 0.50 0 0.75 

0.50 0.50 0.50 1 0.50 0 0.75 

0.25 0.75 0.75 0 0.50 1 0.75 

0 1 1 0 0.50 0 0.75 

 

[…] 


