

Stensvold, CR; Clark, CG; Rser, D (2013) Limited intra-genetic diversity in Dientamoeba fragilis housekeeping genes. Infection, genetics and evolution, 18. pp. 284-6. ISSN 1567-1348 DOI: https://doi.org/10.1016/j.meegid.2013.00

Downloaded from: http://researchonline.lshtm.ac.uk/1013002/

DOI: 10.1016/j.meegid.2013.05.003

Usage Guidelines

 $Please \ refer \ to \ usage \ guidelines \ at \ http://researchonline.lshtm.ac.uk/policies.html \ or \ alternatively \ contact \ researchonline@lshtm.ac.uk.$

Available under license: Copyright the publishers

- 1 <u>Title</u>
- 2 Limited intra-genetic diversity in *Dientamoeba fragilis* housekeeping genes.
- 3
- 4 <u>Authors</u>
- 5 Christen Rune Stensvold^{a,*}, C Graham Clark^b, Dennis Röser^a
- 6
- 7 <u>Affiliation</u>
- 8 ^aLaboratory of Parasitology, Department of Microbiology and Infection Control, Statens Serum Institut,
- 9 Artillerivej 5, DK-2300 Copenhagen S, Denmark
- 10 ^bFaculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street,
- 11 WC1E 7HT London, UK.
- 12
- 13 <u>Corresponding author</u>
- 14 Christen Rune Stensvold, Laboratory of Parasitology, Department of Microbiology and Infection Control,
- 15 Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark. Tel: +45 3268 8224; email: run@ssi.dk
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23

24	Abstract

25	Dientamoeba fragilis is a common parasite of unsettled clinical significance. Differences in clinical outcome of
26	intestinal parasitic infections may reflect parasite genetic diversity, and so tools to study intra-genetic diversity
27	that could potentially reflect differences in clinical phenotypes are warranted. Here, we show that genetic
28	analysis of three Dientamoeba fragilis housekeeping genes enables clear distinction between two genotypes,
29	but that integration of housekeeping genes in multi-locus sequencing tools for <i>D. fragilis</i> may have limited
30	epidemiological and clinical value.
31	
32	<u>Keywords</u>
33	Dientamoeba, genetic diversity, actin, elongation factor, multilocus sequencing, molecular epidemiology
34	
35	<u>Highlights</u>
36	Carriers of Dientamoeba fragilis may or may not experience symptoms $ ightarrow$ intragenetic diversity may be
37	associated with clinical outcome $ ightarrow$ SSU rDNA analysis enables the distinction of two genotypes $ ightarrow$ analysis of
38	two additional <i>D. fragilis</i> genes did not add further genetic resolution $ ightarrow$ analysis of <i>D. fragilis</i> housekeeping
39	genes may have limited epidemiological value.
40	
41	
42	
43	
44	
45	
46	

47 <u>Manuscript</u>

48

- 49 **1. Introduction**
- 50

51	Dientamoeba fragilis is an intestinal parasite of unsettled clinical significance and possibly transmitted by
52	pinworm (Johnson et al., 2004; Röser et al., 2013a; Stensvold et al., 2007a). In our laboratory 43% of
53	approximately 22,000 faecal DNAs from patients with intestinal symptoms and analyzed by real-time PCR were
54	positive, with a range in positive proportion from 10—70% depending on age group (Röser et al., 2013b). The
55	parasite is common in individuals both with and without intestinal symptoms (Stensvold et al., 2009), and
56	similar to the situation for various other intestinal parasites, identification of tools to study intra-genetic
57	diversity that could potentially reflect differences linked to clinical outcome of infection and facilitate
58	epidemiological studies appears relevant.
59	
60	RFLP analysis of SSU rDNA PCR products enables distinction between the two genotypes currently known
61	(genotypes 1 and 2); the sequences differ by at least 2% (Johnson and Clark, 2000; Peek et al., 2004; Stark et
62	al., 2005). Genotyping has also been performed by SSU rDNA SNP analysis using PCR and pyrosequencing
63	(Stensvold et al., 2007b). The value of sequencing the Internal Transcribed Spacer (ITS) region for typing studies

64 of *D. fragilis* is limited due to intra-strain genetic heterogeneity (Windsor et al., 2006). C-profiling was

epidemiological relevance on a broader scale.

65 developed as a means of extracting useful data from sequenced ITS clones (Bart et al., 2008), but the method

66 has only been employed in a minor case report (Stark et al., 2009), and so little is known on its applicability and

68

69	Studies of other housekeeping genes may prove useful in terms of obtaining higher resolution than can be
70	obtained by studies of SSU rRNA genes alone, as in the case of other metamonads such as Giardia and
71	Trichomonas (Cornelius et al., 2012; Feng and Xiao, 2011). Two D. fragilis genotype 1 housekeeping genes,
72	namely actin and elongation factor 1 alpha (EF-1 $lpha$) were recently sequenced (Noda et al., 2012), and this study
73	aimed to characterize these two genes in <i>D. fragilis</i> genotype 2 and in <i>D. fragilis</i> -positive patient samples sent
74	for parasitological analysis in our clinical microbiology laboratory.

76 2. Materials and methods

77

78 A total of 40 faecal DNAs were chosen randomly among those testing positive for D. fragilis by a D. fragilisspecific real-time PCR (Verweij et al., 2007) in our clinical microbiology laboratory. DNAs had been extracted 79 80 directly from fresh faecal specimens from patients with gastrointestinal complaints in the absence of viral or 81 bacterial pathogens, using the automated NucliSENS® easyMag® protocol (Andersen et al., 2013). Each DNA 82 was submitted to single round conventional PCRs targeting actin and EF-1α genes, but also SSU rRNA genes for 83 confirmation of the real-time PCR result and for genotyping. Primers for SSU rDNA amplification by 84 conventional PCR and sequencing were those used by Röser et al. (2013a) (Table 1), while primers for 85 amplification of actin and EF-1α genes were designed based on GenBank accession nos. AB468093 and 86 AB468119, respectively. In cases where virtually complete genes (>95%) could not be obtained, primers targeting a minor fragment of the genes were used (Table 1). 87

88

Since actin and EF-1α gene sequences were available only for genotype 1 (Noda et al., 2012) and not had been
characterized for genotype 2, these genes were amplified from DNA from the Bi/PA strain (kindly provided by
Dr Graham Clark) and sequenced bidirectionally; sequences were submitted to GenBank (Accession nos.

KC967121-KC967122). As a control measure, the SSU rRNA gene was amplified from the Bi/PA strains as well,
and the 364 bp SSU rDNA sequence obtained in the present study showed 100% identity to the Bi/PA strain
sequence present in GenBank (acc. no. U37461).

95

96	Virtually complete actin and EF-1 $lpha$ sequences (>95% gene coverage) representing the Bi/PA strain were		
97	translated, concatenated, aligned with translated and concatenated reference sequences (Noda et al., 2012)		
98	including <i>D. fragilis</i> genotype 1 (DfA3 and DfE3C clones), and submitted to phylogenetic analysis, including		
99	distance-based (Neighbor-Joining (NJ)) and Maximum Likelihood (ML) analysis, using Molecular Evolutionary		
100	Genetics Analysis version 5 (MEGA 5) (Tamura et al., 2011); ModelTest (Posada and Crandall, 1998) was		
101	performed and the WAG + Γ model selected. Statistical support for distance-based and ML trees was evaluated		
102	using bootstrapping (1,000 replicates). Phylogenetic analysis of each individual translated gene (actin and EF-		
103	1 α) was also performed; for ML analysis, the WAG + Γ model was selected for analysis of actin proteins, while		
104	the rtRev + Γ model was chosen for EF-1 α proteins. Since these models are not available for NJ analysis, NJ		
105	analysis used JTT + Γ, and the gamma value (given in the ModelTest output) was 0.41 and 0.5 for the actin and		
106	EF-1α, respectively.		
107			
108	All data were anonymised prior to analysis, and so no personally identifiable data were included in the study.		
109			

110 **3. Results and Discussion**

111

Using the faecal DNA templates from patient samples, the SSU rRNA, actin, and EF-1 α genes could be amplified and unambiguously sequenced in 32/40, 29/40 and 21/40 cases, respectively. As seen, EF-1 α genes could be successfully amplified and sequenced in only 53% of the cases, which could be explained by the fact that Ct-

values obtained by real-time PCR (SSU rRNA gene) were significantly lower for DNAs from which EF-1α genes
could be amplified and unambiguously sequenced than for the DNAs where either no amplification was
obtained or where (often faint) PCR products gave rise to unclear sequence traces (p<0.001; Student's T-test
for comparison of means (data not shown)).

119

120 Sequences were aligned and interpreted manually. One patient sample (1/32, 3%) (T14157) was found to 121 belong to genotype 2, while the remainder of the samples (31/32, 97%) for which SSU rDNAs were available 122 belonged to genotype 1; these data are in line with previous reports on the relative prevalence of the two 123 genotypes (Johnson and Clark, 2000; Peek et al., 2004; Windsor et al., 2006). T14157 and Bi/PA were 100% 124 identical across all three genes (data not shown). T14157 was from a 62 year old male with persistent intestinal 125 symptoms, who had submitted multiple faecal samples for traditional clinical microbiology analyses with no 126 evidence of enteric viruses, enteropathogenic bacteria or other intestinal parasites except for *Blastocystis*; this 127 patient was the oldest patient in the study group (n=40; median age: 16.5 years [IQR 6.0-42.0]).

128

The two genotypes differed by 29 unambiguous SNPs scattered across the actin gene, (Supplementary Fig. 1), of which 4 were non-synonymous substitutions. Likewise, across the EF-1 α gene (Supplementary Fig. 2), 25 scattered unambiguous SNPs were identified, of which 4 were non-synonymous substitutions. In comparison, SSU rRNA genes from the two genotypes differ by at least 2% and hence, the amount of genetic variation seen across the actin and EF-1 α genes, which are both in the size range of 800-850 bp, is comparable to the amount of variation seen in the SSU rRNA gene, if only a little higher (about 3%).

135

136 No strain-unique SNPs were detected across any of the two genes among the genotype 1 samples. However,

137 there were several positions in each sequence exhibiting consistent allelic heterozygosity, although difficult to

discern in some of the trace files, and representing synonymous substitutions only.

139

Phylogenetic analysis of concatenated actin and EF-1α proteins using translated sequence data and reference
sequences from the alignment given by (Noda et al., 2012)) consolidated the existence of two genotypes
clustering with maximum bootstrap support, and sharing a most recent common ancestor with *Histomonas*(Figure 1); individual trees produced for each translated gene consolidated these phylogenetic inferences
(Supplementary Fig. 3).

145

Although the study is limited by the fact that *D. fragilis* from healthy individuals was not included, the present
data suggest a high degree of conservation in *D. fragilis* housekeeping genes.

148

149 The data show that analysis of intra-genetic diversity in house-keeping genes may have limited epidemiological 150 and clinical usefulness in studies of D. fragilis in humans. However, pigs and gorillas have been identified as 151 natural hosts of D. fragilis (Cacciò et al., 2012; Lankester et al., 2010; Stark et al., 2008), and while SSU rDNA 152 data point towards the probability that pigs are natural hosts of genotype 1 (Cacciò et al., 2012), it remains to 153 be seen whether analysis of non-SSU rRNA genes in isolates from non-human hosts identify intra-genetic 154 variation, thereby enabling studies of transmission and further exploration of zoonotic potential. 155 As yet, D. fragilis genome sequences have not been published, but steadily decreasing costs related to genome 156 sequencing using high-throughput platforms and identification of ways to obtain genomic data from small 157 amounts of DNA should prompt the initiative of complete sequencing of mitochondrial or even nuclear

158	genomes in future efforts to screen isolates from symptomatic and asymptomatic carriers for genetic variation.
159	Finally, the prevalence and clinical significance of genotype 2 should be studied and compared to genotype 1.
160	
161	Acknowledgements
162	
163	Lis Lykke Wassmann is thanked for excellent laboratory assistance.
164	
165	Figure legends
166	
167	Figure 1. Phylogenetic analysis of translated and concatenated actin and EF-1 $lpha$ sequences representing the
168	Bi/PA and the DfA3 strains along with reference organisms from the publication by (Noda et al., 2012); ML tree
169	is shown with the support values in the order ML/NJ . Values less than 50% with both methods are either not
170	shown or marked by an asterisk. <i>Df</i> = <i>D. fragilis</i> .
171	
172	Supplementary Figure 1: Alignment of actin gene sequences for genotype 1 (DfA3 clone; AB468093) and
173	genotype 2 (Bi/PA strain; KC967121).
174	
175	Supplementary Figure 2: Alignment of EF-1 α gene sequences for genotype 1 (DfE3C clone; AB468119) and
176	genotype 2 (Bi/PA strain; KC967122).
177	
178	Supplementary Figure 3: Phylogenetic analysis of translated EF-1 α and actin gene sequences. The ML tree is
179	shown with the support values in the order ML/NJ. Values less than 50% with both methods are either not
180	shown or marked by an asterisk. <i>Df</i> = <i>D. fragilis.</i>

1	Q	1
т	ο	т

182 F	References
-------	------------

Andersen, L.O., Röser, D., Nejsum, P., Nielsen, H.V., Stensvold, C.R., 2013. Is supplementary bead beating for
 DNA extraction from nematode eggs using the NucliSENS(R) easyMag(R) protocol necessary? J Clin Microbiol
 51, 1345-1347.

187

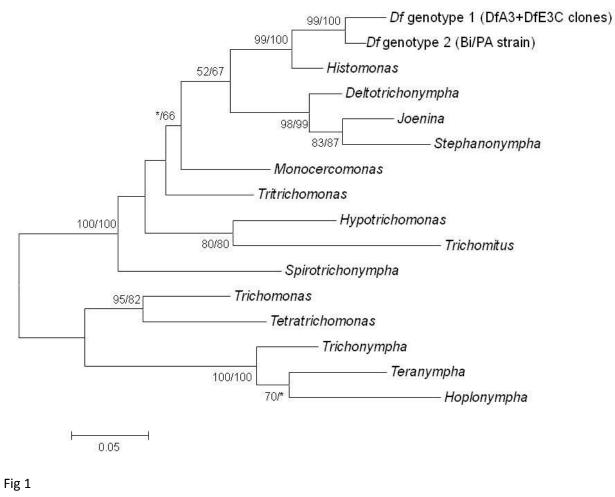
Bart, A., van der Heijden, H.M., Greve, S., Speijer, D., Landman, W.J., van Gool, T., 2008. Intragenomic variation
in the internal transcribed spacer 1 region of *Dientamoeba fragilis* as a molecular epidemiological marker. J Clin
Microbiol 46, 3270-3275.

191

Cacciò, S.M., Sannella, A.R., Manuali, E., Tosini, F., Sensi, M., Crotti, D., Pozio, E., 2012. Pigs as natural hosts of
 Dientamoeba fragilis genotypes found in humans. Emerg Infect Dis 18, 838-841.

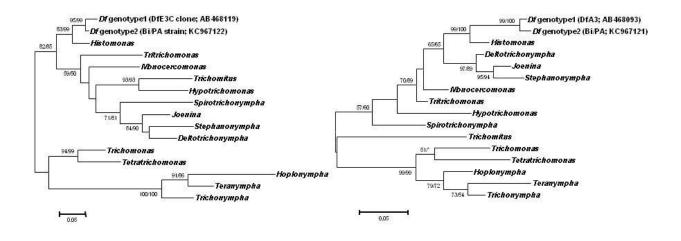
194

- 195 Cornelius, D.C., Robinson, D.A., Muzny, C.A., Mena, L.A., Aanensen, D.M., Lushbaugh, W.B., Meade, J.C., 2012.
- 196 Genetic characterization of *Trichomonas vaginalis* isolates by use of multilocus sequence typing. J Clin
- 197 Microbiol 50, 3293-3300.
- 198
- Feng, Y., Xiao, L., 2011. Zoonotic potential and molecular epidemiology of *Giardia* species and giardiasis. Clin
 Microbiol Rev 24, 110-140.
- Johnson, E.H., Windsor, J.J., Clark, C.G., 2004. Emerging from obscurity: biological, clinical, and diagnostic
- aspects of *Dientamoeba fragilis*. Clin Microbiol Rev 17, 553-570.


204	Johnson, J.A., Clark, C.G., 2000. Cryptic genetic diversity in <i>Dientamoeba fragilis</i> . J Clin Microbiol 38, 4653-4654.
205	
206	Lankester, F., Kiyang, J.A., Bailey, W., Unwin, S., 2010. Dientamoeba fragilis: initial evidence of pathogenicity in
207	the western lowland gorilla (Gorilla gorilla gorilla). J Zoo Wildl Med 41, 350-352.
208	
209	Noda, S., Mantini, C., Meloni, D., Inoue, J., Kitade, O., Viscogliosi, E., Ohkuma, M., 2012. Molecular phylogeny
210	and evolution of parabasalia with improved taxon sampling and new protein markers of actin and elongation
211	factor-1α. PLoS One 7, e29938.
212	
213	Peek, R., Reedeker, F.R., van Gool, T., 2004. Direct amplification and genotyping of Dientamoeba fragilis from
214	human stool specimens. J Clin Microbiol 42, 631-635.
215	
216	Posada, D., Crandall, K.A., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-
217	818.
218	
219	Röser, D., Nejsum, P., Carlsgart, A.J., Nielsen, H.V., Stensvold, C.R., 2013a. DNA of Dientamoeba fragilis
220	detected within surface-sterilized eggs of Enterobius vermicularis. Exp Parasitol 133, 57-61.
221	
222	Röser, D., Simonsen, J., Nielsen, H.V., Stensvold, C.R., Mølbak, K., 2013b. Dientamoeba fragilis in Denmark:
223	epidemiological experience derived from four years of routine real-time PCR. Eur J Clin Microbiol Infect Dis. DOI
224	10.1007/s10096-013-1880-2.

226	Stark, D., Beebe, N., Marriott, D., Ellis, J., Harkness, J., 2005. Detection of Dientamoeba fragilis in fresh stool
227	specimens using PCR. Int J Parasitol 35, 57-62.
228	
229	Stark, D., Phillips, O., Peckett, D., Munro, U., Marriott, D., Harkness, J., Ellis, J., 2008. Gorillas are a host for
230	Dientamoeba fragilis: an update on the life cycle and host distribution. Vet Parasitol 151, 21-26.
231	
232	Stark, D., Barratt, J., Ellis, J., Harkness, J., Marriott, D., 2009. Repeated Dientamoeba fragilis infections: a case
233	report of two families from Sydney, Australia. Infect Dis Rep; 1:e4.
234	
235	Stensvold, C.R., Arendrup, M.C., Mølbak, K., Nielsen, H.V., 2007a. The prevalence of Dientamoeba fragilis in
236	patients with suspected enteroparasitic disease in a metropolitan area in Denmark. Clin Microbiol Infect 13,
237	839-842.
238	
239	Stensvold, C.R., Jespersgaard, C., Dinesen, K., Sorensen, J.F., Molbak, K., Nielsen, H.V., 2007b. Prevalence of
240	Dientamoeba fragilis genotypes in different Danish populations as assessed by PCR and SNP genotyping.
241	Tropical Medicine & International Health 12, 182-182.
242	
243	Stensvold, C.R., Lewis, H.C., Hammerum, A.M., Porsbo, L.J., Nielsen, S.S., Olsen, K.E., Arendrup, M.C., Nielsen,
244	H.V., Mølbak, K., 2009. Blastocystis: unravelling potential risk factors and clinical significance of a common but
245	neglected parasite. Epidemiol Infect 137, 1655-1663.
246	

247	Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary			
248	genetics analysis u	netics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol		
249	Biol Evol 28, 2731	ol 28, 2731-2739.		
250				
251	Verweij, J.J., Mulder, B., Poell, B., van Middelkoop, D., Brienen, E.A., van Lieshout, L., 2007. Real-time PCR for			
252	the detection of Dientamoeba fragilis in fecal samples. Mol Cell Probes 21, 400-404.			
253				
254	Windsor, J.J., Mac	farlane, L., Clark, C.G., 2006. Internal transcribed	spacer dimorphism and diversity in	
255	Dientamoeba frag	ilis. J Eukaryot Microbiol 53, 188-192.		
256				
257				
258				
259				
260				
261				
262				
263				
264				
265				
266	Table 1. Primers u	sed in the study (see text for details).		
	Gene	Primers	Reference	
	SSU rRNA (18S)	DFpn_1f 5'-GCC AAG GAA GCA CAC TAT GG-3'	(Röser et al., 2013a)	


DFpn_364r

	5'-GTA AGT TTC GCG CCT GCT-3'	
Actin	DF_ACTIN_3f 5'-CCA CAC ATT CTA CAA CGA ATT AC-3' DF_ACTIN_157F 5'-GTT CTT TCA CTT TAC TCA TCA GGT C-3' DF_ACTIN_291R 5'-GAC CAG CAA GGT TGA GTC TC-3'	Present study
	DF_ACTIN_843r 5'-TGG ACC AGC TTC ATT GTA TTC-3'	
EF-1α	DF_EF_1f 5'-CTC ACT TTG GAA GTT CGA ATC-3' DF_EF_265F 5'-TCA AAG GCT CGT TAT GAT GAA ATC-3' DF_EF_364R 5'-GAA ACC TGA GAT TGG AAC AAA C-3' DF_EF_ 836r 5'-CTG TGT GGC AAT CGA AAA C-3'	Present study

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
KC967121(Bi/PAstrain AB468093(DfA3clone) Consensus	CACCE	ICACATTCT			CCAGCTGAACA CCAGCTGAACA CCAGCTGAACA	CCCAGTTCT	CTTACAGAAG	CCCCAATGA	ACCCAAAGGC	FAACCGTGAA	AAGATGATTCA	ACTTATGTT		ATGTTC
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
KC967121(Bi/PAstrain AB468093(DfA3clone) Consensus	CAGC	TTCTATGT	TGGTATCCAA	GCTGTTCTTT	CACTTTAC <mark>G</mark> CA Cactttactca Cactttac <mark>g</mark> Ca	TCAGGTCGT	CAACAGGTAT	TGTTTTCGA	TGCAGGTGAT	GGTGTTTCAC	ACACAGTTCC	ATCTACGAA	GGTTA <mark>c</mark> tcact	CCCACA
	261	270	280	290	300	310	320	330	340	350	360	370	380	390
KC967121(Bi/PAstrain AB468093(DfA3clone) Consensus	CGCCF	ITCATGAGA	CTCAACCTTG	CTGGTCGTGA	TCTTACA <mark>A</mark> CTT TCTCACAGCCT TCTcACA <mark>GC</mark> CT	ACCTTCAAAA	GATCCTTAAC	GAACGTGGT	TACACATTCA	CAACATCCGC	TGAAAAGGAAA	ATTGTTCGTG	ATATCAAGGAF	
	391	400	410	420	430	440	450	460	470	480	490	500	510	520
KC967121(Bi/PAstrain AB468093(DfA3clone) Consensus	TGCTF			TGAAGAAATG	AACAAGGCHGC AACAAGGCTGC AACAAGGCLGC	TACAACATC	GAATGTGATG	TTTCATACA	CATTACCAGA	FGGTAACGTT	ATCACAATTG	CTAACGAACG	TTTCAGGTGCC	CAGAAC
	521	530	540	550	560	570	580	590	600	610	620	630	640	650
KC967121(Bi/PAstrain AB468093(DfA3clone) Consensus	TTCT	TTCAAGCC	ACACTTCAAT	GGTTTCGAAT	TCGAAGGTATT TCGAAGGTATT TCGAAGGTATT	GACACAACA	TCTTCAACTC	AATCATGCA	ATGCGATATT	GATGTTCGTA	AGGATCTTTA	GCTAACATT	GTTCTCTCCGG	TGGTAC
	651	660	670	680	690	700	710	720	730	740	750	760	770	780
KC967121(Bi/PAstrain AB468093(DfA3clone) Consensus	CACAF	TGTTCGAA	GGTCTTCCAG	AACGT <mark>atc</mark> ga	AAAGGAAATGG AAAGGAAATGG AAAGGAAATGG	TTCGTCTTG	TCCACCAACC	ATGAAGATT	AAGGTTGTTG	CCCCACCAGA	ACGTAAGTATO	GCTGTTTGGA	TTGGTGGTTCC	ATCCTT
	781	790	800	810	820	830	840 8	46						
KC967121(Bi/PAstrain AB468093(DfA3clone) Consensus	GCTTO	ACTTGCTA	CATTCCCACA	AATGGTTATC	ACACGTGATGA Acacgtgatga Acacgtgatga									
Suppl Fig 1														

	1	10	:	20	30	40	50	60	70	80	90	100	110	120	130
AB468119(DfE3Cclone) KC967122(Bi/PAstrain Consensus	стса	CTTTGG												TTCTCGTTATC TTCTCGTTATC TTCTCGTTATC	
	131	140	1	50	160	170	180	190	200	210	220	230	240	250	260
AB468119(DfE3Cclone) KC967122(Bi/PAstrain Consensus						AAGGTCAAAC	ACGTGAACA	CGCTCTTCTT	GCTTTCACACT	CGGTATCAA	GCAACTCATCO	ITTGGTGTTA	ACAAGATGGA	TGATAACACAG TGATAACACAG TGATAACACAG	ITTAACT ITTAACT
	261	270	2	30	290	300	310	320	330	340	350	360	370	380	390
AB468119(DfE3Cclone) KC967122(Bi/PAstrain Consensus	ACTC	AAAGGC	TCGTTTCG	TGAAATC	GTTGGTGA	AATGACACGT	ATCCTTACA	RACATTGGTT	TCAAGCCAGAA	CAATACAAG	TTYGTTCCAAT	INTCAGGTTT	GCTGGTGAT	AACATGACAGA AACATGACAGA AACATGACAGA	AAAGTC
	391	400	4:	LO	420	430	440	450	460	470	480	490	500	510	520
AB468119(DfE3Cclone) KC967122(Bi/PAstrain Consensus						CTCGAAACAC	TCGATACAC	TTAACCCACC		ATGACCGTC	CACTCCGTCT	CCAGTTCAA	GATGTTTACA	AGATCTCAGGT Agatctcaggt Agatctcaggt	
	521	530	5	10	550	560	570	580	590	600	610	620	630	640	650
AB468119(DfE3Cclone) KC967122(Bi/PAstrain Consensus					AGGTATCA	TGAAGCCAAA	CATGACAGT	TGTTTTCGCT	CCATCAACAGT	TACAACTGA	AGTTAAGTCAA	ITCGAAATGCI	ACCACACACA	ACTTCCAGAAG ACTCCCAGAAG ACTCCCAGAAG	CCGTTC
	651	660	6	70	680	690	700	710	720	730	740	750	760	770	780
AB468119(DfE3Cclone) KC967122(Bi/PAstrain Consensus	CAGG	TGATAA	CATTGGTT	CAACGTT	AAGTCAGT	TGCTGTTTCT	GATATCAAG	CGTGGTTATG	TTGTTGGTGAA	IGCAAACCGT	GATCCACCAG	TCAATGCCT	FAGCTTTACA	GCTCAAATGAT GCTCAAATGAT GCTCAAATGAT	CATTTC
	781	790	8	00	810	820	830	838							
AB468119(DfE3Cclone) KC967122(Bi/PAstrain Consensus	AAACO	CACCCA	GGTAAGAT	CACGCCG	GTTACCAA	CCAGTTTTCG CCAGTT CCAGTT									
Suppl Fig 2															

Ef1α

Actin

279 280 Suppl Fig 3