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Abstract 

Estimator variables are factors that can affect the accuracy of eyewitness identifications but that 

are outside of the control of the criminal justice system. Examples include (1) the duration of 

exposure to the perpetrator, (2) the passage of time between the crime and the identification 

(retention interval), (3) the distance between the witness and the perpetrator at the time of the 

crime. Suboptimal estimator variables (e.g., long distance) have long been thought to reduce the 

reliability of eyewitness identifications (IDs), but recent evidence suggests that this is not true of 

IDs made with high confidence and may or may not be true of IDs made with lower confidence. 

The evidence suggests that while suboptimal estimator variables decrease discriminability (i.e., 

the ability to distinguish innocent from guilty suspects), they do not decrease the reliability of 

IDs made with high confidence. Such findings are inconsistent with the longstanding “optimality 

hypothesis” and therefore require a new theoretical framework. Here, we propose that a signal-

detection-based likelihood ratio account – which has long been a mainstay of basic theories of 

recognition memory – naturally accounts for these findings. 

 

Keywords: eyewitness identification, confidence and accuracy, estimator variables, system 

variables 

 

Public Significance Statement: This study challenges the assumption that poor witnessing 

conditions lead to unreliable eyewitness identification evidence. In particular, it shows that 

witnesses viewing a perpetrator over a long distance, but providing a confident identification can 

be accurate. We show how formal recognition memory theories can account for this result. 
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The Role of Estimator Variables in Eyewitness Identification 

According to the Innocence Project (2017), of the 350 wrongful convictions that have 

been overturned by DNA evidence to date in the United States, approximately 70% involved the 

misidentification of an innocent suspect by an eyewitness. Research-based efforts to better 

understand and perhaps reduce that problem have long been guided by the distinction between 

system variables and estimator variables (Wells, 1978). System variables are factors that are 

under the control of the legal system, such as the wording of lineup instructions given at the time 

an eyewitness identification is attempted, whereas estimator variables are factors that are not 

under the control of the legal system, such as the distance between the perpetrator and the 

witness at the time of the crime. Here, we focus on estimator variables, a number of which are 

widely believed to affect the reliability of eyewitness identifications. We argue that estimator 

variables do not appreciably affect the reliability of identifications made with a particular level of 

confidence (particularly high confidence), and we offer a signal-detection-based theory of 

eyewitness identification taken directly from the basic recognition memory literature to account 

for that surprising result. We offer this theory as an alternative to the “optimality hypothesis” 

(Deffenbacher, 1980, 2008), which holds that confidence becomes less indicative of accuracy 

under suboptimal estimator variable conditions. Our signal-detection-based theory consists of a 

standard likelihood ratio model of recognition memory. This widely used theoretical framework 

naturally predicts that as the conditions of encoding and retrieval become less favorable, overall 

accuracy will decline, but the accuracy of a suspect ID made with a particular level of confidence 

(e.g., the accuracy of a high-confidence suspect ID) will remain unchanged. To illustrate how the 

model works, we develop it in relation a detailed reanalysis of data from an experiment 

investigating the effect of distance between a witness and a target individual.  
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The Prevailing View of Estimator Variables 

We begin by taking stock of the prevailing view of the effect of estimator variables on the 

reliability of eyewitness identification. Consider a recent amicus brief filed by the American 

Psychological Association (APA) in the case of Commonwealth of Pennsylvania v. Walker 

(2014), which explains why the APA has standing to weigh in on this matter: 

The American Psychological Association (APA) is the leading association of psychologists in the United 
States. A nonprofit scientific and professional organization, it has approximately 155,000 members and 
affiliates, including the vast majority of psychologists holding doctoral degrees from accredited universities 
in the United States…APA has a rigorous approval process for amicus briefs, the touchstone of which is an 
assessment of whether the case is one in which there is sufficient scientific research, data, and literature 
relevant to a question before the court that APA can usefully contribute to the court’s understanding and 
resolution of that question. 
  

On page 9-13, the brief includes a paragraph about each of 6 estimator variables widely believed 

to affect the reliability of eyewitness identification. The first sentence or two of each paragraph is 

quoted next in order to succinctly convey the scientific consensus about these variables:  

a. Passage of Time. Empirical research establishes that as time passes between an event and an associated 
identification, the identification becomes increasingly unreliable—put simply, the memory “decays.”  

b. Witness Stress. The level of stress experienced by an eyewitness at the time of exposure to the 
perpetrator can also affect the reliability of a subsequent identification. 

c. Exposure Duration. Studies have similarly demonstrated that the reliability of an eyewitness 
identification diminishes when the witness sees the perpetrator for only a short period of time.   

d. Distance. As everyday experience tells us, clarity of vision decreases with distance. Experimental 
research provides specifics about this relationship between distance and the ability to identify faces. The 
research reveals that—for people with normal vision— this ability begins to diminish at approximately 25 
feet, and nearly disappears by approximately 150 feet. 

e. Weapon Focus. Weapon focus “refers to the visual attention eyewitnesses give to a perpetrator’s weapon 
during the course of a crime”—attention that is “expected … [to] reduce his or her ability to later recall 
details about the perpetrator or to recognize the perpetrator.”  
f. Cross-Race Bias. Finally, extensive empirical research demonstrates that eyewitnesses are more accurate 
at identifying perpetrators of their own race than those of a different race. 

  
On page 13, the upshot of the scientific consensus is summarized as follows: 

The point is simply that eyewitness reliability— the linchpin of admissibility under this Court’s 
precedent—is…determined by numerous factors identified by scientific                                                                                                                                                                                                                                                                                                                                                                                                           
research, many of which (the estimator variables) have nothing to do with the conduct of law enforcement. 
Eyewitness testimony can be unreliable even where there is no state-created suggestiveness. 
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Perhaps not surprisingly, these conclusions about the deleterious effect of certain 

estimator variables on the reliability of eyewitness identification have been increasingly 

embraced by the legal system. For example, in State v. Almaraz (2013), a ruling from the Idaho 

State Supreme Court stated the following about the effect of estimator variables: 

In contrast, the research established that the following estimator variables diminish the reliability of a 
witness's identification: (1) stress; (2) the use of a visible weapon during a crime;[6] (3) the shorter the 
duration of a criminal event; (4) the greater the distance and the poorer the lighting conditions; (5) 
increased levels of intoxication; (6) the use of disguises during the crime and changes in facial features 
between the time of initial observation and a subsequent identification; (7) the greater the period of time 
between observation and identification to law enforcement;[7] (8) race-bias;[8] and (9) feedback from co-
witnesses confirming the identification of a perpetrator (pp. 10-11).  
 

Essentially the same interpretation can be found in jury instructions that are now used in the 

states of New Jersey and Massachusetts. For example, according to Papailiou, Yokum & 

Robertson (2015), New Jersey jury instructions admonish jurors that:  

To decide whether the identification testimony is sufficiently reliable evidence to conclude that this 
defendant is the person who committed these offenses charged, you should evaluate the testimony of the 
witness in light of the factors for considering credibility that I have already explained to you. In addition, 
you should consider the following factors that are related to the witness, the alleged perpetrator, and the 
criminal incident itself (p. 12).  

 
The instructions then consist of one paragraph each about several estimator variables. We 
reproduce the listed estimator variables and a key sentence or two from each paragraph below: 
 

a. Stress: Even under the best viewing conditions, high levels of stress can reduce an eyewitness’s ability to 
recall and make an accurate identification. Therefore, you should consider a witness’s level of stress and 
whether that stress, if any, distracted the witness or made it harder for him or her to identify the perpetrator.   

b. Duration: The amount of time an eyewitness has to observe an event may affect the reliability of an 
identification.    

c. Weapon Focus: You should consider whether the witness saw a weapon during the incident and the 
duration of the crime. The presence of a weapon can distract the witness and take the witness’s attention 
away from the perpetrator's face. As a result, the presence of a visible weapon may reduce the reliability of 
a subsequent identification if the crime is of short duration.   

d. Distance: A person is easier to identify when close by. The greater the distance between an eyewitness 
and a perpetrator, the higher the risk of a mistaken identification.  

e. Lighting: Inadequate lighting can reduce the reliability of an identification. You should consider the 
lighting conditions present at the time of the alleged crime in this case.   

f. Disguises/Changed Appearance: The perpetrator’s use of a disguise can affect a witness’s ability both to 
remember and identify the perpetrator (pp. 12,13).  
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This interpretation of how estimator variables affect the reliability of eyewitness 

identification probably comes as no surprise to the reader because it accords with textbook 

treatments of the issue. However, in contrast to the prevailing view, our proposal is that none of 

these estimator variables appreciably affects the reliability of an ID made with a particular level 

of confidence – for good theoretical reasons (and contrary to the optimality hypothesis). 

Ironically, that key result – namely, that reliability for a given level of confidence is largely 

unaffected by estimator variables – may have been overlooked because of the field’s once 

negative view of the information value of confidence. For example, the New Jersey jury 

instructions presented in Papailiou et al. (2015) provides the following (very common) statement 

about the information value of eyewitness confidence: 

As I explained earlier, a witness’s level of confidence, standing alone, may not be an indication of the 
reliability of the identification. Although some research has found that highly confident witnesses are more 
likely to make accurate identifications, eyewitness confidence is generally an unreliable indicator of 
accuracy (p. 13).  
 

In contrast to the longstanding view that confidence is not predictive of accuracy, a great deal of 

evidence has now accumulated demonstrating that on an initial eyewitness identification test 

using a fair lineup, confidence is undeniably predictive of accuracy (e.g., Brewer & Wells, 

2006). Moreover, IDs made with high confidence are generally highly accurate under those 

conditions (Wixted et al., 2015; Wixted & Wells, 2017). This new understanding sets the stage 

for another surprising claim that we make here: for a given level of confidence, estimator 

variables have little to no effect on the reliability of eyewitness identifications. The main point of 

our article is that this non-intuitive result is naturally predicted by a standard likelihood ratio 

theory of recognition memory (heretofore applied mainly to list-memory paradigms). This 

longstanding framework is at odds with the optimality hypothesis. Next, we briefly summarize 

both of these theoretical accounts of the confidence-accuracy relationship.  
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Likelihood Ratio Models 

 Recognition memory models need to account for basic empirical phenomena and the 

most extensively studied is the mirror effect. This is the finding that if a condition gives better 

recognition performance then it will increase the ability of the observer to respond “old” when 

the item was presented and “new” when the item was not presented (Glanzer & Adams, 1985). 

Likelihood ratio models account for the mirror effect by modifying the assumed decision axis so 

that an observer evaluates the likelihood of the item being old or new on the basis of a computed 

log likelihood that includes both the familiarity of the item and the background or contextual 

information about the study conditions (Glanzer, Adams, Iverson, & Kim, 1993). This is in 

contrast to strength or familiarity based accounts that assume that the observer considers only the 

familiarity of the item in relation to a set of criteria (in a rating task) or a criterion (in a forced 

choice task) placed along the strength axis. In sum, these models assume that the observer 

evaluates an odds ratio associated with the test item, not its level of familiarity. The odds ratio is 

equal to the likelihood that the item was drawn from the target distribution divided by the 

likelihood that it was drawn from the lure/filler distribution, or; 𝐿𝑅 𝑥 = 𝑓 𝑥 𝑆2 /(𝑓(𝑥)|𝑆1) , 

where S2 is the height of the target distribution and S1 is the height of the filler distribution. 

Further, as elaborated below, the likelihood ratio account also predicts that observers will 

attempt to maintain a constant ratio over weak and strong conditions. They achieve this by 

adjusting their decision criteria (Stretch & Wixted, 1998). The use of the log-likelihood when 

unequal variances occur in the target and filler distributions complicates the picture, however, we 

consider the equal variance case here and show that it provides a good approximation to the data.  

The Optimality Hypothesis 
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 The optimality hypothesis is not a statement of the reliability of eyewitness 

identifications, per se, but is instead a statement about the correlation between confidence and 

accuracy under favorable vs. unfavorable information processing conditions. The proposal is that 

the confidence-accuracy correlation should vary directly with the optimality of those conditions 

(Deffenbacher, 1980). In other words, the correlation should be higher when (for example) 

exposure to the perpetrator is long, distance between the witness and perpetrator is short, and 

stress is low compared to when exposure to the perpetrator is short, distance between the witness 

and perpetrator is long, and stress is high. Technically, but improbably, the reduced correlation 

associated with poorer information processing conditions could arise because eyewitness 

identifications become perfectly accurate under poor information processing conditions 

regardless of confidence (100% correct for IDs made with low confidence and 100% correct for 

IDs made with high confidence). In that case, the confidence-accuracy correlation would drop to 

0 when conditions were poor, in accordance with the optimality hypothesis.  

Although technically possible, this is certainly not how the optimality hypothesis has 

been used to help understand the reliability of eyewitness identification. Instead, the argument 

has been made that under suboptimal conditions of encoding and retrieval, the trustworthiness of 

eyewitness identifications can be expected to decrease. For example, Deffenbacher (2008) 

argued that under poor information processing conditions, “…not only will familiar faces be 

judged to be unfamiliar and unfamiliar faces be judged as familiar more frequently, but the same 

confidence rating is also more likely to be applied both to a judgment that a face seen before is 

indeed familiar and to a judgment that another face, never seen before, is also familiar” (p. 819). 

The optimality hypothesis therefore helps to explain the widespread belief that the usefulness of 
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eyewitness confidence as an indicator of accuracy – including high confidence – will decrease as 

information processing conditions get worse.  

The Measure of Interest 

 Prior accounts of the role of estimator variables on the reliability of eyewitness 

identification have been complicated by the use of the term “accuracy,” the meaning of which is 

not as obvious as intuition might suggest. Accuracy can be measured in an overall sense that 

takes into account errors of any kind, including failures to identify the perpetrator as well as false 

identifications of the innocent (measured by overall percent correct, d', area under the ROC, etc.) 

or in a more specific sense that focuses on the trustworthiness of an identification of a suspect 

(which does not take into consideration the error of failing to identify the perpetrator). The 

general measure of accuracy is what we will henceforth refer to as “discriminability,” and the 

more specific measure of accuracy is what we will refer to as “reliability.”   

Mickes (2015) pointed out that, as a general rule, when the question concerns a system 

variable, such as simultaneous vs. sequential lineup format, a measure of discriminability (e.g., 

d', or better yet, area under the ROC curve) usually provides the answer. The same is true in the 

field of medicine when the question concerns a medically relevant “system variable,” such as 

which diagnostic test for diabetes is the best one to use. By contrast, when the question concerns 

an estimator variable, such as the effect of distance on the accuracy of a suspect ID, a measure of 

positive predictive value (PPV) usually provides the answer (Schum, 1981). PPV is the 

probability that a suspect identification that has been made by an eyewitness is correct. The same 

considerations also apply to the field of medicine when the question concerns the effect of a 

medically relevant “estimator variable” on the outcome of a diagnostic test, such as the effect of 

ethnicity on the likelihood of actually having diabetes given a positive test result. 
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The key point is that d' and PPV measure different things and answer different questions, 

yet that fact is obscured by the use of the term “accuracy” to refer to both. For example, Cutler 

(2006) documented the effects of a number of estimator variables on the accuracy of eyewitness 

identification (e.g., same- vs. cross-race, exposure duration, retention interval, presence vs. 

absence of a weapon, and eyewitness stress). Research findings were reviewed suggesting that 

all of these variables can reduce the overall accuracy of eyewitness identifications – a measure 

that includes the error of failing to identify the perpetrator – and that there is a consensus among 

eyewitness experts to that effect. Stated differently, researchers agree that these variables reduce 

discriminability (i.e., the ability of a witness to distinguish between innocent and guilty 

suspects). Cutler (2006) then made the argument that “Therefore, individuals who must evaluate 

eyewitness identifications-investigators, attorneys, judges, and jurors-would benefit from 

education about the effects of estimator variables on identification accuracy” (p. 339). However, 

as noted by Mickes (2015), judges and jurors are not interested in a measure of discriminability. 

Instead, they are interested in the reliability of a suspect identification that was made by an 

eyewitness who will end up testifying at trial. In other words, they are interested in PPV (a 

measure that does not take into account the error of failing to identify the perpetrator).    

 These considerations reveal why it is essential to be clear about whether the accuracy 

measure of interest is discriminability or reliability. The basic components of both measures 

consist of correct suspect IDs (identifying the guilty perpetrator from a lineup) and false suspect 

IDs (misidentifying the innocent suspect from a lineup). Thus, we describe those two constituent 

measures next so that we can then illustrate the difference between discriminability and PPV. In 

police department field studies, these two measures cannot be directly computed, but they can be 
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directly computed in lab studies because the experimenter knows if the suspect in the lineup is 

innocent or guilty.  

In a typical laboratory task, each observer first watches a perpetrator commit a simulated 

crime and is later presented with an array of n stimuli (n = 6 or 8, typically). On target-present 

trials, the array consists of 1 target (a photo of the perpetrator) and n – 1 physically similar fillers 

(or foils). On target-absent trials, the array consists of n fillers. One of those fillers can be 

designated as the innocent suspect even though, in a fair lineup, the innocent suspect is, from the 

point of view of the witness, just another filler (i.e., just another person who physically 

resembles the perpetrator but who is not actually the perpetrator). The observer’s job is to 

indicate whether the target is present in the array and, if so, to specify which person it is. On 

target-present trials, the observer can correctly identify the target (a correct ID, or a “hit”), 

incorrectly identify a filler, or incorrectly reject the array. On target-absent trials, the observer 

can incorrectly identify the filler who serves as an innocent suspect (a false suspect ID, or a 

“false alarm”), incorrectly identify a distractor, or correctly reject the array.  

A measure of discriminability is based on the hit rate and the false alarm rate. The hit rate 

is the proportion of observers presented with a target-present array who correctly identify the 

guilty suspect (i.e., number of guilty suspect IDs divided by the number of target-present 

lineups), and the false alarm rate is the proportion of observers presented with a target-absent 

array who incorrectly identify the innocent suspect (i.e., number of innocent suspect IDs divided 

by the number of target-absent lineups). In the common case in which target-absent lineups 

consist of n fillers with no one designated as the innocent suspect, the false alarm rate can be 

equivalently estimated by counting all filler IDs from target-absent lineups and dividing by n. 
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Participants who do not identify the suspect in target-present and target-absent either identify a 

filler or reject the lineup. Neither outcome endangers the suspect in the lineup.  

The focus on suspect IDs to measure discriminability and reliability (PPV) does not 

imply that filler IDs or lineup rejections are of no interest to the legal system. Those outcomes 

are clearly of interest because, for example, they are somewhat indicative of innocence (Wells, 

Yang & Smalarz, 2015; Wixted & Wells, 2017). Nevertheless, suspect identifications are of most 

interest because a suspect who is identified by an eyewitness is imperiled, whether the suspect is 

innocent or guilty. Thus, the discriminability measure of interest here is the ability to 

discriminate innocent from guilty suspects, and the PPV measure of interest here is the 

probability that a suspect who has been identified with a particular level of confidence is guilty.    

One additional measurement detail should be briefly addressed before we consider the 

difference between discriminability and reliability in more detail. As noted by Juslin et al. 

(1996), judges and jurors are primarily concerned with the reliability of a suspect ID that has 

been made with the particular level of confidence, not with the relationship between confidence 

and accuracy. For example, if the witness testifying at the trial expressed 100% confidence in an 

ID of the suspect from a lineup, their question is: “How trustworthy is an ID made with 100% 

confidence?” Their question is not: “What is the difference in the reliability associated with IDs 

made with 60% confidence vs. 100% confidence”? The optimality hypothesis and the likelihood 

ratio account we advance here speak to the relationship between confidence and accuracy. 

However, the likelihood ratio account also makes it clear that the best way to assess the 

confidence-accuracy relationship is not by using a correlation coefficient. Instead, the best way 

to understand the confidence-accuracy relationship is to plot PPV as a function of confidence, 

which Mickes (2015) referred to as a “confidence-accuracy characteristic” (CAC) plot. Such a 
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plot not only clearly reveals the relationship between confidence and accuracy, it also provides 

the information of most interest to judges and jurors, namely, the reliability of an ID made with a 

particular level of confidence.  

Discriminability vs. PPV 

 The number of hits (guilty suspect IDs) and false alarms (innocent suspect IDs) are used 

to compute both discriminability and PPV. Figures 1 and 2 illustrate what these two measures 

capture and how they differ from each other. The left panel of Figure 1 shows 10 individuals in 

Population 1, 5 falling into Category G and 5 falling into Category I. Those in Category G might 

be people who have diabetes or who are guilty suspects, whereas those in Category I might be 

people who do not have diabetes or who are innocent suspects. Because, in this example, the 

number of Gs equals the number of Is, this is an equal base-rate scenario. Most lineup 

experiments conducted in the laboratory use equal base rates because half the participants are 

tested using a target-present lineup and half are tested using a target-absent lineup. Before the 

diagnostic test is administered (i.e., before the diabetes test is administered or before the lineup is 

administered), we have no eyewitness-based information about who falls into Category G or 

Category I. After the test is administered, we have updated eyewitness-based diagnostic 

information about that. 

 Discriminability refers to how well the two groups are sorted into their correct categories 

based on the results of the diagnostic test. High discriminability is characterized by a high hit 

rate and a low false alarm rate. In this example, the hit rate is .60 (3 of 5 Gs corrected sorted into 

Category G), and the false alarm rate is .20 (1 of 5 Is incorrectly sorted into Category G). The 

goal of a police chief is to use the lineup procedure that best sorts innocent and guilty suspects 

into their correct categories. That is, the police chief is dealing with lineups as a system variable, 
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and the goal is to find the lineup that simultaneously yields the highest hit rate (so that guilty 

suspects can be prosecuted) and the lowest false alarm rate (to avoid prosecuting innocent 

suspects). If one lineup format yields both a higher hit rate and a lower false alarm rate than 

another, then it would be the objectively superior procedure and would clearly be the one to use. 

In ways that are described in more detail later, the hit and false alarm rates can be combined to 

create a single measure of discriminability, the most common ones of which are d' (a theory-

based measure) or area under the receiver operating characteristic (an atheoretical measure). For 

the moment, assume that a hit rate of .60 and a false alarm rate of .20 yields a d' of 

approximately 1.0 (we will precisely define d' in a later section). 

 As noted by Mickes (2015), judges and jurors considering an eyewitness who identified a 

suspect have no control over the lineup procedure that was used, and their question has nothing 

to do with discriminability. From their perspective, lineup format is an estimator variable, and 

they are trying to judge the reliability of a suspect ID that was already made. In other words, 

their question is not “which procedure better sorts innocent and guilty suspects into their correct 

categories?” but instead is “given that this witness made a suspect ID, what is the probability that 

the ID is correct?” This is a question about PPV, and it is measured by considering the subset of 

people who were positively identified (3 Gs and 1 I in the example shown in the left panel of 

Figure 1). PPV is equal to the number of hits divided by the total number of positive IDs (hits 

plus false alarms). Thus, for this example, PPV = .75, which means that the probability that the 

ID is correct is .75 (and the probability is .25 that an innocent suspect was identified instead).  

PPV can also be computed from the hit rate (HR) and the false alarm rate (FAR), where 

HR equals the number of hits divided by the number of target-present lineups (nTP), and FAR 

equals the number of false alarms divided by the number of target-absent lineups (nTA). As 
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noted above, the base rate, or prevalence (p), of target-present lineups in lab studies is usually 

.50, where p = nTP / (nTP + nTA). For the more general case involving any base rate, PPV = 

pHR / [pHR + (1-p)*FAR]. For the typical equal-base-rate situation (i.e., p = .50), p drops out of 

the equation, so PPV = HR / (HR + FAR). This equal-base-rate version is the PPV value 

typically analyzed in lineup studies that report CAC curves. The same information could be 

quantified by converting PPV into an odds ratio, where Odds = PPV / (1 - PPV) = HR / FAR. 

This is the familiar “diagnosticity ratio.” In this case, the diagnosticity ratio would equal .75 / (1 

- .75) = = .75 / .25 = 3.0. The diagnosticity ratio is not a useful measure for a system-variable 

question, but it is a useful measure for an estimator-variable question, especially when it is 

computed separately for different levels of confidence (e.g., Brewer & Wells, 2006). We will 

focus mainly on PPV because, for most people, a probability measure is more easily understood 

than an odds ratio.  

 The key point is that discriminability and PPV measure completely different things. That 

fact is most easily illustrated by simply changing base rates, as illustrated in the right panel of 

Figure 1, while holding the diagnostic performance of the lineup constant. In the right panel, the 

to-be-diagnosed population (Population 2) consists of 5 Gs (guilty suspects) and 10 Is (innocent 

suspects), which means that the base rate of guilty suspects in this population is 5 / 15, or .33. 

The diagnostic performance of Diagnostic Test 2 is identical to that of Diagnostic Test 1 (e.g., 

they could be the same exact lineup test applied to different populations), so the hit and false 

alarm rates remain unchanged, and d' is still ≈ 1.0 (i.e., discriminability remains unchanged). 

Because it is insensitive to base rates, discriminability is not a Bayesian measure. However, 

notice that PPV is now reduced to .60. This means that a suspect ID becomes less trustworthy 
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even though the identical lineup procedure was used. Because it is sensitive to base rates, PPV is 

a Bayesian measure. 

 Figure 2 illustrates another concept, which is that PPV can change even when both base 

rates and discriminability are held constant. The left panel is the same as it was for Figure 1. For 

the right panel, imagine that everything is the same (same exact test applied to the same exact 

equal base-rate population) except that now suspect IDs made with low confidence are treated as 

effective non-IDs. In other words, a higher (more conservative) standard is used such that a low-

confidence ID, because of its highly error-prone nature, is counted as a negative test (not as a 

positive test) for G. In the simplest case, this manipulation would reduce both the hit rate and the 

false alarm rate (because neither low-confidence hits nor low-confidence false alarms would be 

counted as positive IDs) but would not change discriminability. Even so, adopting this more 

conservative standard would increase PPV (and the corresponding diagnosticity ratio), as 

illustrated in the right panel of Figure 2. Indeed, many studies have now conclusively shown that 

adopting a more conservative decision rule has the effect of increasing PPV (e.g., Mickes et al., 

2012; Mickes et al., 2017).  

 These illustrations merely underscore the critical point that discriminability and PPV (or 

the diagnosticity ratio) measure different things that are of interest to different actors in the legal 

system. Discriminability is the measure of most interest to a policymaker, whose goal is to 

maximize the hit rate while simultaneously minimizing the false alarm rate. PPV is the measure 

of most interest to judges and jurors, whose goal is to assess the reliability of a suspect ID that 

was made with a particular level of confidence (Mickes, 2015). 

The Effect of Estimator Variables on the Confidence-Accuracy Relationship 
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 With these considerations in mind, we can return to the main question of interest, which 

concerns the effect of estimator variables on the reliability of eyewitness identification. Wixted 

and Wells (2017) recently reviewed the eyewitness identification literature, reanalyzing the data 

from confidence-accuracy studies in terms of CAC analysis (Mickes, 2015), where the dependent 

measure – namely, suspect ID accuracy as a function of confidence – is equivalent to plotting 

PPV computed separately for each level of confidence. It might be better to refer to this 

relationship as the “confidence-PPV relationship,” but we use the standard term “confidence-

accuracy relationship” because it is a ubiquitous phrase.   

Some of the studies reviewed by Wixted and Wells (2017) manipulated estimator 

variables. More specifically, those studies manipulated retention interval (short vs. long), 

exposure duration (short vs. long), attention (full vs. divided), presence vs. absence of a weapon, 

and match between the race of the witness and the perpetrator (same-race vs. cross-race). The 

results of those studies are reproduced here in Figure 3 (the ones that included a manipulation of 

retention interval) and Figure 4 (the ones that manipulated a variety of other estimator variables). 

It is readily apparent that none of these variables had an appreciable effect on the accuracy (i.e., 

PPV) of suspect IDs made with high confidence, though they may have had some effect on the 

accuracy of suspect IDs made with lower levels of confidence. In all cases, regardless of whether 

the estimator variable was favorable or not, low confidence was associated with relatively low 

accuracy and high confidence was associated with very high accuracy. 

 All of the studies considered above were lab studies, but the results they reported are 

consistent with the results of a recent police department field study that was specifically designed 

to examine the information value of eyewitness confidence (Wixted, Mickes, Dunn, Clark & W. 

Wells, 2016). In that study, eyewitness decisions were recorded from six-person photo lineups 
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administered as part of criminal investigations in the Robbery Division of the Houston Police 

Department between January 22 and December 5, 2013. This study involved the administration 

of 348 simultaneous and sequential lineups, the investigators were unaware of the identity of the 

suspect in each lineup (i.e., double-blind administration was used), and the lineups involved 

suspects who were unknown to the eyewitnesses prior to the crime. Although measures of 

estimator variables were not collected as part of this study, a survey of cases from the same 

division of the Houston Police Department from the previous year reported by W. Wells, 

Campbell, Li and Swindle (2016) indicated that 61.6% were cross-race cases, 73.5% involved 

the presence of a weapon, and the average delay between the offense and the identification 

procedure was over a month (median = 2.5 weeks). Moreover, it seems reasonable to suppose 

that witness stress was typically high. In other words, the estimator variables were such that one 

might reasonably assume that the reliability of eyewitness identifications in this study would be 

very poor. Even so, estimated suspect ID accuracy (estimated PPV) was very similar to what has 

been observed in lab studies, and estimated high-confidence accuracy was very high. The results 

are reproduced here in Figure 5.  

The key point is that the estimator variables considered above appear to have had 

virtually no effect on the reliability of IDs made with high confidence (and little to no effect on 

IDs made with lower levels of confidence). This is true even though there is no doubt at all that 

these same variables all had a substantial effect on discriminability. For example, there is no 

doubt that forgetting occurs as the retention interval increases. Thus, after a long retention 

interval, it is more difficult for eyewitnesses to discriminate between innocent and guilty 

suspects. Nevertheless, the reliability of eyewitness IDs made with high confidence is very high 

whether the retention interval is short or long. Although counterintuitive, there is no 
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contradiction between these two observations about the effect of retention interval on the 

accuracy of eyewitness identifications.  

As has been noted before, findings like these are incompatible with the optimality 

hypothesis, at least to the extent that the hypothesis is assumed to apply to representations of the 

confidence-accuracy relationship other than the point-biserial correlation coefficient. The point-

biserial correlation coefficient statistic has long been known to be inappropriate for assessing the 

confidence-accuracy relationship because the correlation can be close to zero even when 

confidence is perfectly predictive of accuracy (as was first shown by Juslin et al., 1996). Thus, a 

theory that is limited to making predictions about how the size of the correlation coefficient 

changes as a function of information processing conditions would not be particularly useful. If 

the optimality hypothesis is assumed to also apply to the confidence-accuracy relationship as 

depicted in a CAC analysis (i.e., PPV plotted as a function of confidence), then the data shown in 

Figures 3 and 4 would seem to contradict it.  

What theoretical framework makes sense of this unexpected pattern of results – a pattern 

that, as shown earlier, is completely at odds with the prevailing view of the effect of estimator 

variables? The main purpose of our article to show how these findings are naturally predicted by 

a signal-detection-based likelihood ratio theory of recognition memory. Such theories, in one 

form or another, have long been a cornerstone in the basic recognition memory literature 

(Glanzer & Adams, 1990; Glanzer, Adams, Iverson & Kim, 1993; McClelland & Chappel, 1998; 

Osth, Dennis & Heathcote, 2017; Shiffrin & Steyvers, 1997; Stretch & Wixted, 1998; Wixted & 

Gaitan, 2002). The argument we advance here is that this theoretical framework not only applies 

to list-memory studies but also to eyewitness identification procedures. We illustrate the 

likelihood ratio account in relation to empirical data from an estimator variable study reported by 
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Lindsay, Semmler, Weber, Brewer and Lindsay (2008). They manipulated the distance between 

a target person and the witness and measured eyewitness identification accuracy using a 6-person 

simultaneous lineup in which confidence ratings were recorded using a 100-point confidence 

scale. Next, we briefly describe that study and related work, and then we present our model-

based interpretation of the results reported by Lindsay et al. (2008). 

Method 
 

 Empirical Studies of Effect of Distance on Eyewitness Identification 

 Very few studies have measured the effect of distance on the accuracy of discriminability 

and reliability. Using a list-memory paradigm, Lampinen, Erickson, Moore and Hittson (2014) 

had participants view 8 target individuals from a particular distance and then tested their ability 

to identify those targets from a list of 16 photographs presented one at a time, with confidence 

ratings collected using an 8-point scale. Different groups of participants were tested at different 

distances ranging from 15 ft (~5 m) to 120 ft (~37 m). As might be expected, discriminability 

(measured by d' or ROC analysis) decreased with distance. Although not specifically analyzed, 

their data appear to indicate that high-confidence accuracy decreased dramatically as 

discriminability declined with increasing distance (contrary to what has been found for other 

estimator variables). The generalizability of these findings to memory tested using a lineup with 

once-tested participants is not clear. 

Lindsay et al. (2008) 

The only study of distance that tested memory using a lineup, with each participant tested 

only once, was reported by Lindsay et al. (2008). Original ethics approval was granted by the 

Social and Behavioural Research Ethics Committee at Flinders University (Approval# 3268). In 

this study, 11 different research assistants served as the targets (i.e., as the “perpetrators”). 
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Approximately 1,300 participants (i.e., witnesses) were approached during normal daily 

activities and asked to observe one of these targets, who was a certain distance away, for about 

10 s. The distances varied across participants, but the short distances fell in the range of 4 to 15 

m, whereas the long distances fell in the range of 20 to 50 m. After observing the target, the 

participant was first asked to answer various questions (e.g., questions about how far away the 

target was and what the target looked like) and was then asked to try to identify the target from a 

6-person target-present or target-absent simultaneous photo lineup. The participant-witnesses 

were randomly assigned to one of three conditions. In the perceptual judgment condition, the 

participant was still looking at where the target had just been standing while answering questions 

and taking the simultaneous lineup test. The immediate judgment condition was the same except 

that the participant turned around and was no longer looking at the spot where the target had just 

been observed. In the delayed judgment condition, the participants were contacted a day later, at 

which time they answered the questions and completed the photo lineup test over the internet. 

After making a lineup decision, all participants provided a confidence rating using a 100-point 

confidence scale. For our analyses, we collapsed these ratings in low (0-60), medium (70-80) and 

high (90-100) confidence. Data from studies using a 100-point confidence scale are often 

collapsed in just this way (e.g., Mickes, 2015) because there would otherwise be too few 

responses in a given confidence category to meaningfully analyze (especially in the 0-60 range, 

where relatively few responses tend to be made).  

Our main focus will be on the delayed judgment condition because, as noted by Lindsay 

et al. (2008), witnesses tested using a lineup are not likely to be at the scene of the crime when 

the test is administered. As they put it, the delayed judgment condition “…arguably most closely 

approximates the situation for real-life witnesses” (p. 533). In that condition, all responses were 
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necessarily based on retrieval from long-term memory, as is true of real eyewitnesses who are 

tested using a photo lineup, and as is also true of most laboratory studies, which typically impose 

a distractor task between the mock-crime video and the photo lineup test. In the perceptual and 

immediate judgment conditions, by contrast, participants presumably tried to maintain an active 

representation of the just-seen target in working memory at all times in order to answer the 

questions about that person and to then make an identification of the target from the photo 

lineup.  

Results 

Figure 6A shows the CAC plots for the short- and long-distance IDs from the delayed 

judgment condition. As with the other estimator variables considered earlier, the reliability of an 

eyewitness identification made with a particular level of confidence is apparently unaffected by 

distance. Moreover, for both distances, high-confidence IDs are highly accurate. Once again, this 

result is inconsistent with the optimality hypothesis. Figure 6B shows the CAC plots for short- 

and long-distance IDs from the perceptual and immediate judgment conditions combined. For 

these conditions, unlike in the delayed judgment condition, and unlike for the other estimator 

variables shown in Figures 3 and 4, accuracy was reduced under poorer witnessing conditions 

(long-distance), even when confidence was high. This pattern seems more consistent with the 

optimality hypothesis in that not only is high-confidence accuracy reduced from 98% correct 

when distance was short to 90% correct when distance was long, confidence ratings appear to be 

at least somewhat less predictive of accuracy when distance was long (i.e., the function relating 

PPV to accuracy is slightly flatter compared to when distance was short). 

Our main focus will be on explaining the pattern observed in the delayed judgment 

condition, which is similar to the pattern that has been observed for a number of other estimator 
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variables as well (Figures 3 and 4). Does any existing theory make sense of those surprising 

results? After describing a basic signal detection model and fitting that model to the data from 

the delayed judgment condition to estimate the effect of distance on d' (discriminability), we 

consider how the PPV results shown in Figure 6A (reliability) correspond to predictions made by 

a constant likelihood ratio version of that model. The model predicts that PPV will remain 

essentially unchanged even if an estimator variable like distance has a large effect on d' (as 

would be expected). 

A Constant-Likelihood-Ratio Model of Distance 

 Signal detection theory applied to lineups. Our theoretical account begins with what is 

arguably the simplest signal detection model of lineup performance, which is illustrated in Figure 

7. This basic model is not itself a constant likelihood ratio model but is the foundation of such a 

model. The signal detection model shown in Figure 7 represents distributions of memory-match 

signals generated in the minds of once-tested observers presented with target-present or target-

absent lineups. Each face in the photo array generates a memory signal of some strength. On 

average, but not always, the face of the perpetrator will generate a stronger memory signal 

compared to innocent suspects or fillers. According to this simple model, memory strength 

values for lures (innocent suspects and fillers) and for targets (guilty suspects) are distributed 

according to Gaussian distributions with means of µLure and µTarget, respectively, and standard 

deviations of σLure and σTarget, respectively. In a fair target-absent lineup, the innocent suspect is, 

from the witness's point of view, just another filler.1 A 6-member target-present lineup is 

conceptualized as 5 random draws from the lure distribution and 1 random draw from the target 

distribution, and a fair 6-member target-absent lineup is conceptualized as 6 random draws from 
                                                
1 Hence, there is only one lure distribution (the use of an unfair lineup in which the innocent suspect stands out from 
the fillers because of the suspect’s resemblance to the perpetrator would require a third distribution with a mean 
higher than µLure and lower than µTarget).   
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the lure distribution. For simplicity, we consider the equal-variance version of this model (i.e., 

σTarget = σLure), and, as is typically done for equal-variance models, we set µLure = 0 and σTarget = 

σLure= 1. Thus, if µTarget is estimated to equal 2.0 when the model is fit to data, it would indicate 

that the mean of the target distribution is estimated to be 2.0 standard deviations above the mean 

of the lure distribution. For the equal-variance version of the model, µTarget is the same as d'. 

Thus, for this example, d' would be equal to 2.0. 

When confidence ratings are supplied by witnesses, they are conceptualized in terms of 

different decision criteria. Assuming 3 different levels of confidence associated with a positive 

ID (low, medium or high confidence), there are 3 different confidence criteria. Unlike list-

learning studies, confidence ratings are often not taken when the decision is to reject the test 

item(s), and even when they are, the ratings are not made in relation to a particular face in the 

lineup (as they are for positive IDs). Thus, we consider confidence for positive IDs here. The 

parameters c1 through c3 in Figure 7 represent the confidence criteria for positive IDs of a 

suspect or a filler, assuming a 3-point confidence scale. When the model is fit to the data, it not 

only estimates d', it also estimates the locations of c1, c2, and c3. If, when fit to the data, c1, c2, 

and c3 are estimated to be 1.00, 1.75, and 2.60, it would mean that c1 is placed 1 standard 

deviation above the mean of the lure distribution, c2 is placed 1.75 standard deviations above the 

mean of the lure distribution, and c3 is placed 2.60 standard deviations above the mean of the 

lure distribution. These are the locations of the confidence criteria in Figure 7. 

 To apply this model to empirical data, a decision rule needs to be specified about when a 

face should be identified. Using the simplest decision rule, which Clark, Erickson and Breneman 

(2011) referred to as the Best-Above-Criterion decision rule, an ID is made if the most familiar 

person in a lineup (i.e., the "best" person) exceeds c1. A different decision rule might be based 
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on the difference in the memory strength of the best face and one or more of the other faces in 

the lineup (referred to as the Best-Next decision rule), but the simplest decision rule makes use 

of the most familiar face only (i.e., the best face). If the memory strength of the most familiar 

face in the lineup exceeds c1 but not c2, an ID is made with the lowest level of confidence. If it 

exceeds c2 but not c3, the ID is made with medium confidence. If the most familiar face in the 

lineup exceeds c3, an ID of that face is made with the highest level of confidence. The model is 

fit to all of the data from a given condition – that is, it is fit to the frequency counts of guilty 

suspect IDs and filler IDs made with particular levels of confidence, plus No IDs, from target-

present lineups, and to filler IDs made with particular levels of confidence, plus No IDs, from 

target-absent lineups.  

In essence, the likelihood ratio version of the basic model depicted in Figure 7 is a theory 

about how the confidence criteria shift on the memory-strength axis across conditions that affect 

d'. We fit the basic model to the distance data reported by Lindsay et al. (2008) to estimate d' and 

c1, c2 and c3 in both the short- and long-distance conditions. After considering the effect of 

distance on d' (which, of course, is expected to be lower in the long-distance condition), we 

consider whether c1, c2 and c3 shifted across conditions in the manner predicted by a constant-

likelihood ratio account (and, if so, what that outcome predicts about how distance should affect 

PPV as a function of confidence). How c1, c2 and c3 shift across conditions is the crux of the 

issue. 

Estimating d' from the empirical distance data. There is no doubt, of course, that as 

distance increases, discriminability decreases. Indeed, if the distance between the witness and the 

perpetrator is great enough, discriminability will obviously drop to zero. In this regard, Loftus 

and Harley (2005) recount the case of a witness who was 450 ft (~137 m) away from the 
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perpetrator at the time of the crime but identified him at trial nonetheless. Loftus (2010) 

describes yet another case of a witness who was 271 ft (~83 m) away from the perpetrator at the 

time of the crime but, again, identified him at trial. Because, as they showed, it is not possible to 

recognize faces from these distances, it seems likely that these witnesses made their 

identifications based on something other than a memory match signal (e.g., perhaps due to police 

pressure). Here, our concern is with identifications that are made based on the strength of a 

memory-match signal between a face in a photo lineup and the memory of the perpetrator on an 

initial memory test using a fair lineup.  

Table 1 shows the observed frequency counts from the delayed judgment condition of 

Lindsay et al. (2008), with “don’t know” responses included with “No ID” responses. It makes 

sense to do so because, according to this model, none of the faces in lineups that received a 

“don’t know” response exceeded c1. For a given set of parameter values (e.g., µTarget = 2.0 and 

c1, c2, and c3 = 1.0, 1.75 and 2.60, respectively), the model generates a full set of predicted 

frequency counts similar to the values shown in Table 1. A chi-square goodness-of-fit statistic is 

then computed comparing the full set of predicted values to the full set of observed values. The 4 

parameters are adjusted until the chi-square associated with the observed and predicted values is 

minimized. The parameter values that minimize chi square are the optimal parameter values.  

  



THE ROLE OF ESTIMATOR VARIABLES        27 

Table 1 

  
Short Long 

  
Confidence 

  
Low Med High Low Med High 

TA Filler IDs 26 17 6 36 11 2 
No IDs 68 58 

TP 

Filler IDs 6  4 0 13  1 1 
Suspect 
IDs 11  9 20 13  14 5 
No IDs 19 38 

 

When the model in Figure 7 is fit to the data shown in Table 1, it fit the data well, χ2(10) 

= 12.67, p = .242, and the estimated value of  d' was much higher for the short-distance condition 

(1.73) compared to the long-distance condition (1.20). The difference between these two d' 

estimates was significant because when the d' values were constrained to be equal, the fit to the 

data was much worse, χ2(1) = 6.59, p = .010. This expected effect of distance on discriminability 

is most clearly illustrated by plotting the ROC for each condition. Figure 8 presents the ROC 

data (correct suspect ID rate vs. false suspect ID rate) computed from the values shown in Table 

1. The correct ID rate for each level of confidence is computed by counting the number of 

correct IDs made from target-present lineups with that level of confidence or a higher level of 

confidence, divided by the total number of target-present lineups. Note that filler IDs from 

target-present lineups are not included in this calculation, but those responses were taken into 

account when the model was fit to the data. Because these data were collected from a procedure 

in which no one was pre-designated as the innocent suspect, the false ID rate for each level of 

confidence (for plotting the ROC) is computed by counting the number of filler IDs made from 

target-absent lineups with that level of confidence or higher, divided by the total number of 

target-absent lineups and then dividing again by the lineup size of 6 (this is the false alarm rate 
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shown on the x-axis). Dividing by lineup size when there is no designated innocent suspect 

provides an estimate of the false suspect ID rate.  

The ROC data clearly show the expected effect of distance on discriminability (higher in 

the short-distance condition). The smooth curves drawn through the ROC points show the 

predictions of the best-fitting signal detection model. That is, the upper curve is generated by a 

signal detection model using the BEST decision rule with d' =1.73, and the lower curve is 

generated by a signal detection model using the BEST decision rule with d' =1.20. 

Estimating c1, c2, and c3 from the empirical distance data. As noted earlier, for judges 

and jurors, the accuracy measure of interest is reliability (PPV), not d'. In particular, their 

question concerns PPV associated with the level of confidence expressed by the eyewitness at 

the time of the initial ID. PPV is a different accuracy measure, and the predictions made by a 

signal detection model about PPV for each level of confidence is determined not only by d' but 

also by where c1, c2, and c3 are placed on the memory strength axis.  

In the basic memory literature, a great deal of evidence suggests that participants provide 

confidence ratings in such a way as to maintain constant likelihoods of being correct (e.g., 

Glanzer, Adams, Iverson & Kim, 1993). The constant likelihood ratio principle is most easily 

illustrated by considering how c1 changes as a function of discriminability. Likelihood ratio 

models assume that a decision criterion is placed on a memory-strength axis based on the odds 

that a test item with that memory strength was drawn from the target distribution. Graphically, 

this odds value is given by the height of the target distribution divided by the height of the lure 

distribution at the point. In the example shown in Figure 7, c1 is placed at the point on the 

memory-strength axis where the heights of the target and lure distributions are exactly equal. 

This means that a test face that generates a memory strength that falls at that point is equally 
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likely to be a target or a lure (the odds that it is a target or a lure are even). For any memory 

strength to the right of c1, the height of the target distribution is greater than the height of the 

lure distribution, which means that any face that generates a memory-strength signal that falls 

above c1 is more likely to have come from the target distribution than the lure distribution.  

A bit to the right of c1 is a memory strength value where the height of the target 

distribution is twice the height of the lure distribution. A face with a memory strength that falls at 

that point is twice as likely to be a target as it is to be a lure. Thus, a witness who is aware of that 

fact should be more confident that the face is a target (compared to a face that generates a 

memory strength value that falls where c1 is placed). Faces that generate even stronger memory-

strength values (i.e., even further to the right) are associated with even higher odds ratios that the 

face is the target. That fact is not visually apparent because it appears that for very strong faces 

(very far to the right), the target and lure distributions eventually return to being equally high as 

the heights of both distributions descend towards the x-axis. In truth, that is an optical illusion 

because the ratio continues to increase towards infinity the higher the memory strength of the 

face (Stretch & Wixted, 1998). Thus, a participant who is aware of that fact should be ever more 

confident that the face is a target as memory strength increases. 

The constant likelihood ratio model makes a clear prediction about how c1 should change 

as d' decreases under poorer estimator variable conditions (in this case, longer distance). Figure 9 

illustrates the prediction. As d' decreases, the point on the memory-strength axis where the target 

and lure distributions intersect (the equal likelihood point) shifts to the left. Thus, to maintain the 

same 1/1 likelihood ratio associated with the decision criterion, c1 needs to shift to the left. If c1 

is in fact placed in such a way as to maintain even odds, when the simple signal detection model 

is fit to the data, the estimate of where c1 is placed should be lower in the long-distance (low-d') 
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condition compared to the short-distance (high-d') condition. If that outcome were observed, 

then, in terms of likelihood ratios, the criterion would not have shifted at all. In both conditions, 

a positive ID would be made when the odds are greater than even that the face was drawn from 

the target distribution (i.e., the same decision criterion is used when the criterion is defined as a 

likelihood ratio). In terms of its placement on the memory-strength axis (which is what a fit of 

the signal detection model estimates), c1 will have shifted to the left in the condition with lower 

discriminability. 

The decision criteria for making an ID with higher confidence (c2 and c3) are placed at 

points on the memory-strength axis associated with likelihood ratios greater than 1/1. For 

example, c2 might be placed where the height of the target distribution is 5 times that of the lure 

distribution, and c3 might be placed where the height of the target distribution is 10 times that of 

the lure distribution. How should the estimated locations of c2 and c3 on the memory-strength 

axis change in order to maintain those same likelihood ratios as d' decreases under poorer 

estimator variable conditions? Should they also shift to the left and by the same amount as c1? 

The answer is “no.” As shown by Stretch and Wixted (1998), in order to maintain constant 

likelihood ratios, the criteria would need to fan out on the memory-strength axis. In fact, the 

fanning out of the confidence criteria as d' decreases is the signature prediction of a constant 

likelihood ratio model. It is the pattern that would need to be observed for PPV to remain 

essentially constant for a given level of confidence even though discriminability decreases. In 

list-memory experiments, the predicted fanning pattern is reliably observed (Stretch & Wixted, 

1998). Is the constant-likelihood ratio pattern also observed when the signal detection model is 

fit to the distance data in Table 1? Indeed it is. 
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The estimates of c1, c2 and c3 were 1.40, 1.86, and 2.36, respectively, in the short-

distance condition, and 1.39, 2.06, and 2.79, respectively, in the long distance condition. Figure 

10 shows a visual representation of the best-fitting signal detection models in the short- and 

long-distance conditions, and it is apparent that the three confidence criteria fan out as d' 

decreases. If the confidence parameters are constrained to be equal to each other across 

conditions (i.e., c1 short = c1 long, c2 short = c2 long, and c3 short = c3 long), the model fits 

worse, though the effect is only marginally significant, χ2(3) = 7.74, p = .052. This result 

indicates that the criteria likely did shift on the memory-strength axis across conditions in the 

general manner predicted by a constant likelihood ratio account (i.e., they fanned out as 

discriminability decreased). 

A stronger test of the likelihood ratio account would be to constrain the confidence 

criteria across the two distance conditions such that they have the same likelihood ratios. In other 

words, whatever c1, c2 and c3 are estimated to be in the short-distance condition, c1, c2 and c3 

in the long-distance condition would be constrained to fall at locations on the memory-strength 

axis that maintain the same corresponding likelihood ratios. Remarkably, imposing this 

constraint did not worsen the fit to any appreciable degree, χ2(3) = 0.03, p = .999. This result 

means that the likelihood ratio values associated with c1, c2 and c3 in the short-distance 

condition were virtually identical to the likelihood ratio values associated with c1, c2 and c3 in 

the long-distance condition (i.e., the data are fully consistent with a constant-likelihood ratio 

model). The likelihood ratios associated with c1, c2 and c3 for both conditions were estimated to 

be 2.54, 5.62, and 13.34, respectively. The fact that the data were almost perfectly consistent 

with a constant likelihood ratio model is presumably coincidental because measurement error 
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alone would be expected to make an almost perfect outcome unlikely even if the likelihood ratio 

account is correct. Still, the data clearly support the likelihood ratio account. 

 The constant likelihood ratios associated with the confidence criteria across conditions 

predicts that PPV will remain unchanged even as d' decreases under poorer estimator variable 

conditions. Figure 11 shows the predicted CAC plots for the best-fitting signal detection model 

depicted in Figure 10. Clearly, despite the large and statistically significant effect of distance on 

discriminability (i.e., despite the significant effect on that measure of accuracy), under a 

constant-likelihood ratio model, distance should have no effect on PPV (i.e., on this measure of 

accuracy). Although the best-fitting constant-likelihood ratio model appears to overestimate low-

confidence accuracy (estimating it to be about 78% correct, higher than what is seen in the actual 

data shown in Figure 6), the distance data are generally consistent with this interpretation, and so 

are the other estimator variable CAC plots shown earlier in Figures 3 and 4. In other words, the 

observed PPV results follow naturally from a standard constant likelihood ratio account that has 

long been applied to list-learning studies from the basic recognition memory literature. 

Do people really compute likelihood ratios? 

 An intriguing question – one that lies at the heart of debates about likelihood ratio models 

in the basic recognition memory literature – concerns how it is that participants manage to 

maintain constant likelihood ratios for the various confidence criteria across conditions. A 

computer does it by using the equation for the Gaussian distribution, which is: 
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where x represents a particular memory-strength value on the x-axis. For the equal-variance 

model, σ = 1 for both the target and lure distributions. For the target distribution, µ = d' and for 

the lure distribution, µ = 0. Thus, for the target distribution, this equation becomes  

( ) 2' 2

2
1)( dxexf −−=
π

 

and for the lure distribution, it becomes 
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Consider where on the x-axis c1 should be placed to achieve a likelihood ratio of L (where L 

might equal 5, for example). c1 should be placed at the value of x that satisfies this equation: 

( ) ( ) 202' 22

/ −−−−= xdx eeL  

Solving for x yields: 

𝑥 =
ln 𝐿
𝑑!

+ 𝑑!/2 

This is where on the x-axis c1 should be placed to keep the likelihood ratio at L. As d' changes, 

the location on the x-axis where c1 should be placed to maintain the same likelihood ratio also 

changes. Our signal detection model fits suggest that the confidence criteria do in fact shift on 

the x-axis in accordance with this equation to maintain constant likelihood ratios for c1, c2 and 

c3.   

 Does that result mean that participants are capable of computing ratios of Gaussian 

distributions in their heads in order to determine where the confidence criteria should be placed? 

Skepticism about that possibility has long been a headwind that likelihood ratio models have had 

to confront. Wixted and Gaitan (2002) argued that what appears to be a remarkable ability to 

compute Gaussian-based likelihood ratios is perhaps better construed as a reflection of the 

participant’s learning history, something that is often ignored in cognitive models of recognition 
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memory. According to this view, participants have learned from error-feedback provided by 

everyday experience that when someone was viewed from a long distance, then a stronger 

memory-match signal is needed before deciding with high confidence that that a photo matches 

the previously observed individual (Mickes, Hwe, Wais & Wixted, 2011). Indeed, it is hard to 

imagine why everyday life experience would not teach this lesson. Other models provide 

different mechanistic accounts of how constant likelihood ratios are maintained as d' changes, 

and some further assume that the x-axis is not best construed in terms of memory strength but is 

properly construed as a log likelihood ratio variable itself (e.g., Glanzer & Adams, 1990; Osth, 

Dennis & Heathcote, 2017). Regardless of which view is correct, the fact that recognition 

memory performance is often accurately predicted by a likelihood ratio model can now be 

extended to eyewitness identification. Moreover, this account naturally predicts the otherwise 

surprising finding that estimator variables, while having a large effect on discriminability, have 

little to no effect on PPV for a given level of confidence. 

 Although the constant likelihood ratio model provides an adequate account of the CAC 

data from the delayed judgment condition shown in Figure 6A, it clearly does not provide an 

adequate account of the CAC data from the perceptual and immediate judgment conditions 

shown in Figure 6B. For those combined data, the model in Figure 7 does not provide a very 

good fit in the first place, χ2(10) = 29.9, p < .001 (indicating that the observed data deviate 

significantly from the data predicted by the best-fitting model). In addition, when a constraint 

was added such that c1, c2 and c3 are required to maintain constant likelihood ratios across 

conditions, the fit was dramatically worse, χ2(3) = 28.9, p < .001. The fit was also dramatically 

worse when c1, c2 and c3 were constrained to be equal across conditions or to shift in lockstep 

across conditions. In short, the basic signal detection model did not characterize these data very 
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well, and the confidence criteria shifted across conditions in ways that are hard to theoretically 

conceptualize. The identification decisions in these conditions may differ from what was 

observed in the delayed judgment condition because participants attempted to actively maintain a 

representation of the target they had just seen while answering questions and taking the lineup 

test. Whether or not that explanation is correct, the data are not consistent with the constant 

likelihood ratio model offered here or with any other simple model of criterion placement that 

we can identify. Future work will be needed to understand how identification proceeds in these 

sorts of conditions.   

General Discussion 

 Suboptimal estimator variables have long been thought to compromise the reliability of 

eyewitness identification, but a considerable body of recent work suggests that this intuitively 

reasonable assumption is not correct. At best, it is incomplete. As shown in Figures 3 through 6, 

estimator variables such as retention interval, exposure duration, presence or absence of a 

weapon, same- vs. cross-race, and full vs. divided attention, have no apparent effect on the 

accuracy on suspect IDs (defined as PPV) made with high confidence. Often, they have little to 

no effect on suspect IDs made with lower levels of confidence as well, though an apparent effect 

on lower levels of confidence shows up fairly often. The data we reanalyze here from Lindsay et 

al. (2008) indicate that the same may be true for short- vs. long-distance. In the condition of their 

experiment that most closely approximated the situation for real-life witnesses, confidence was a 

strong predictor of accuracy whether distance was short or long, and high-confidence accuracy 

was similarly high in both cases (Figure 6A). However, this was not true in the two less 

forensically-relevant conditions in which participants were tested after having just observed the 
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target moments ago. It is not clear why that procedural difference would yield a different pattern 

of results, but it clearly did (Figure 6B). 

 As illustrated in Figures 1 and 2, PPV is the information of most interest to judges and 

jurors (Mickes, 2015). It seems fair to suggest that estimator variables play a less important role 

than has been assumed for decades. Estimator variables do have an undeniable effect on 

accuracy measured in terms of discriminability (e.g., d'), but that effect is not particularly 

informative to judges and jurors. Discriminability refers to the ability of eyewitnesses to 

distinguish between innocent and guilty suspects, and it includes a consideration of failures to 

correctly identify the guilty suspect. PPV, by contrast, focuses on positive IDs only. In a trial 

where an eyewitness is testifying, that eyewitness has made a positive ID. The accuracy of that 

ID is what the court wants to know, and the answer is provided by PPV, not d'. In sum, our 

reanalysis shows that a high confidence identification decision is just as diagnostic of guilt under 

poor observation conditions as it is under good observation conditions, it is simply the frequency 

of high confidence identification decisions that change. 

On the whole, these results are incompatible with the optimality hypothesis, which holds 

that IDs made with a particular level of confidence become less reliable when estimator variables 

are suboptimal. That prediction is clearly wrong for IDs made with high confidence (which are 

the most important IDs because they often result in witnesses testifying against a suspect), 

though suspect ID accuracy may be somewhat reduced for IDs made with lower levels of 

confidence. If so, however, it would mean that confidence becomes more predictive of accuracy 

under worse memory conditions because the slope of the CAC plot would become steeper in the 

low-d' condition (e.g., see the lower right panel of Figure 3). Such a result is the opposite of what 

the optimality hypothesis predicts.  
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 Here, we advanced the argument that a constant likelihood ratio account predicts that 

even when an estimator variable has a large effect on discriminability, it will have no effect on 

PPV measured for different levels of confidence. In the basic memory literature, the results often 

suggest that participants behave largely in accordance with such a model, though not exactly in 

accordance with it. For example, in summarizing the results of several list-memory studies. 

Stretch and Wixted (1998) noted that “In general, although the criteria do fan out in the weak 

condition as the likelihood ratio model predicts, they do not fan out as much as they should” (p. 

1405). Although the distance data analyzed here were almost perfectly consistent with a 

likelihood ratio account (i.e., the criteria did fan out as much as they should in the weak long-

distance condition), it seems likely that participants in general will not be perfectly optimal in 

this regard. Indeed, as noted above, suboptimal estimator variables do appear to sometimes 

reduce the accuracy of suspect IDs made with lower levels of confidence (contrary to what an 

idealized likelihood ratio model would predict). The likelihood ratio account is also consistent 

with recently published research looking at the impact of age of the witness on identification 

performance, with Colloff, et al. (2017) showing that older witnesses spread their confidence 

criteria out to maintain the accuracy of their high confidence identifications.  The standard 

likelihood ratio model from the basic memory literature would seem to offer the only account 

proposed thus far that can accommodate the surprising fact that estimator variables that have an 

undeniable effect on discriminability often have a minimal effect on PPV.  
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Figure Captions 

Figure 1. A schematic illustration of how hit and false alarm rates differ from PPV. Only PPV is 

affected by the base rate of G (where G = guilty suspects or people with diabetes and I = 

innocent suspects or people without diabetes). 

Figure 2. A schematic illustration of how hit rates, false alarm rates, and PPV are affected by 

changing the criterion for counting a test result as “positive.” 

Figure 3. Suspect ID accuracy in terms of percent correct (% correct) as a function of confidence 

from four studies that manipulated retention interval. The figures are reproduced from a recent 

review by Wixted and Wells (2017). 

Figure 4. Suspect ID accuracy in terms of percent correct (% correct) as a function of confidence 

from four studies that manipulated a variety of estimator variables. The figures are reproduced 

from a recent review by Wixted and Wells (2017). 

Figure 5. Estimated suspect ID accuracy as a function of confidence from a recent police 

department field study reported by Wixted et al. (2016). 

Figure 6. A. Suspect ID accuracy as a function of confidence when the distance between the 

witness and perpetrator was short vs. when it was long in the delayed condition of Lindsay et al. 

(2008). B. Corresponding data from the perceptual and immediate conditions combined. 

Figure 7. Illustration of the basic signal detection model of lineups. According to this model, an 

ID is made if the face with the strongest memory strength in the lineup exceeds the decision 

criterion (c1). A low-confidence ID is made if that memory strength falls between c1 and c2; a 
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medium-confidence ID is made if it falls between c2 and c3; and a high-confidence ID is made if 

it falls above c3. 

Figure 8. ROC data for short and long distances in the delayed condition of Lindsay et al. 

(2008). The smooth curves represent the predictions of the best-fitting signal detection model 

illustrated in Figure 7. 

Figure 9. An illustration of how the decision criterion (c1) would shift as discriminability 

declines in order to maintain a constant likelihood ratio of 1/1. 

Figure 10. An illustration of the best-fitting signal detection models when distance was short vs. 

long in the delayed condition of Lindsay et al. (2008). 

Figure 11. Predicted suspect ID accuracy from the best-fitting models shown in Figure 10. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Confidence
0-60 70-80 90-100

%
 C

or
re

ct

50

60

70

80

90

100

Short Distance
Long Distance


