
Tree-based Cryptographic Access Control

James Alderman?, Naomi Farley??, and Jason Crampton
james.alderman@rhul.ac.uk, naomi.farley.2010@live.rhul.ac.uk,

jason.crampton@rhul.ac.uk

Royal Holloway, University of London,
Egham, Surrey, TW20 0EX

Abstract. As more and more data is outsourced to third party servers,
the enforcement of access control policies using cryptographic techniques
becomes increasingly important. Enforcement schemes based on symmet-
ric cryptography typically issue users a small amount of secret material
which, in conjunction with public information, allows the derivation of
decryption keys for all data objects for which they are authorized.
We generalize the design of prior enforcement schemes by mapping ac-
cess control policies to a graph-based structure. Unlike prior work, we
envisage that this structure may be defined independently of the pol-
icy to target different efficiency goals; the key issue then is how best to
map policies to such structures. To exemplify this approach, we design a
space-efficient KAS based on a binary tree which imposes a logarithmic
bound on the required number of derivations whilst eliminating public
information. In the worst case, users may require more cryptographic
material than in prior schemes; we mitigate this by designing heuristic
optimizations of the mapping and show through experimental results
that our scheme performs well compared to existing schemes.

1 Introduction

Access control is a fundamental security service in modern computing systems.
Informally, requests from users to interact with protected resources are filtered
and only those interactions that are authorized by a policy configured by the
resource owner(s) are allowed. Software-based access control mechanisms are
not appropriate when resources are stored by an untrusted third party. Instead,
we may use cryptographic mechanisms whereby data objects are encrypted and
authorized users are given appropriate cryptographic keys. The problem, then,
is to efficiently and accurately distribute appropriate keys to users. Symmetric
cryptography may be preferred over public key techniques (e.g. Attribute-based
Encryption) due to their better efficiency and smaller ciphertext and key sizes.

Thus, in recent years, there has been considerable interest in Key Assign-
ment Schemes (KASs) [1, 2, 5, 9, 13, 16, 21], which are particularly suitable for

? James Alderman was supported by the European Comission through H2020-ICT-
2014-1-644024 “CLARUS”.

?? Naomi Farley was supported by the UK EPSRC through EP/K035584/1 “Centre
for Doctoral Training in Cyber Security at Royal Holloway”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/131177466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

enforcing information flow policies. Such policies define a partially ordered set
(poset) of security labels encoding hierarchical access rights [7]. KASs typically
represent the poset as a directed acyclic graph [2, 13–16, 21, 22] and enable it-
erative key derivation along paths: users are issued a small number of secrets
and users with security label x can derive the key associated to y < x using the
secret associated with x and public information associated with edges in a path
from x to y.

The general design goals of a KAS [16] are to minimize: a) the cryptographic
material required by each user; b) the amount of public information required; and
c) the computational cost of key derivations. Unsurprisingly, it is not possible to
realize all objectives simultaneously, and so trade-offs have been sought. Deriva-
tion in early KASs was based on expensive computations [1]. The performance
of more recent KASs is heavily dependent on the graph chosen to represent the
policy. The graphs used in prior KASs are subsets of the transitive closure of
the poset, often simply the Hasse diagram [14–16, 21]. Many works [2, 4, 12, 22]
reduce derivation costs by adding ‘shortcut’ edges to the Hasse diagram but re-
quire a substantial amount of additional public information e.g. O(n2) where n
is the number of labels in the policy and may itself be large, particularly when
labels are defined in terms of subsets of attributes. Recent works [13–15, 17] aim
for space-efficient KASs by eliminating public information via partitioning the
Hasse diagram into chains or trees; however users may require additional secrets
and it is not possible to bound derivation costs (beyond the trivial O(n)).

In this work, we generalize the design approaches of prior KASs to consider
mapping the policy poset to any directed acyclic graph, not only a subset of the
transitive closure of the poset. In particular, one may choose such an enforcement
structure independently of the poset to target particular design goals of the
resulting KAS. The natural questions that then arise are ‘what structure should
we choose?’ and ‘how should the policy be mapped to this structure?’. We define
the following steps to follow when designing a KAS:

1. Identify the design criteria to be optimized and choose an enforcement struc-
ture that provides these properties;

2. Choose a mapping from the policy poset to the enforcement structure that
optimizes performance of the remaining criteria;

3. Instantiate a key derivation mechanism over the enforcement structure to
define the keys and secrets to be used in the KAS.

Prior KASs were restricted in the choice of enforcement structure due to only
considering trivial mappings to enforcement structures (i.e. nodes in the enforce-
ment structure corresponded directly to labels in the poset). In contrast, we in-
troduce additional flexibility by allowing one to optimize the choices of structure
and mapping to achieve different design goals. We hope that this flexible design
approach will spur the design of novel KASs to target specific requirements.

To illustrate our approach, we shall design a KAS which eliminates pub-
lic information and in which derivation costs are logarithmically bounded; our
example therefore bridges the gap between KASs [2, 4, 12, 22] that bound deriva-
tion costs and recent works which eliminate public information [13–15, 17] but

which cannot bound derivation. To achieve this goal, we use a binary tree as our
enforcement structure. This choice is simple and intuitive to serve as an exam-
ple, introduces interesting optimization problems when choosing the mapping,
and reduces storage costs for users by removing the need for users to store the
enforcement structure — derivation paths are immediately apparent from the
security labels. Thus, our KAS may be applicable to settings in which storage for
(possibly large) derivation information on client devices is limited and in which
key derivation should be fast e.g. consider a smart card which must derive tempo-
ral access keys. We shall also see that our KAS permits very flexible assignment
of access rights, lending itself to settings with diverse user populations.

The remaining design criteria to be optimized (through the choice of map-
ping from policy poset to enforcement structure) is the amount of cryptographic
material required by users. As with [14, 15], removing public information results
in users requiring additional secrets; in our case, the worst-case bound is dn/2e
secrets. We develop heuristic methods for finding a mapping which minimizes
the average number of secrets users must store and demonstrate via experimen-
tal evaluation that our scheme works well in practice. Indeed, we show that our
scheme compares favorably with other KASs that require no public information.

We begin with relevant background material. In Section 3, we introduce our
KAS based on a binary tree, before proposing methods to optimize the choices of
structure and mapping in Section 4. Section 5 experimentally evaluates the KAS,
and in Section 6 we discuss interesting policy features enabled by our scheme.

2 Background and Notation

A partially ordered set (poset) [15] is a pair (L,6) where 6 is a binary, reflexive,
anti-symmetric, transitive order relation on L. For x, y ∈ L, we may write y > x
if x 6 y, and x < y if x 6 y, x 6= y. We say that y covers x, denoted x l y,
if and only if x < y and there exists no z ∈ L such that x < z < y. We say
that x, y ∈ L are incomparable if x 66 y and y 66 x. The width of a poset is the
size of its largest set of incomparable elements. For l ∈ L, the order filter of l is
↑l = {x ∈ L : x > l} and the order ideal of l is ↓l = {x ∈ L : x 6 l}.

An information flow policy [7] defines a poset (L,6) of security labels, a set
of users U , a set of data objects O, and a function λ : U ∪O → L. A user u ∈ U
is authorized to read an object o ∈ O if and only if λ(o) 6 λ(u).

Key Assignment Schemes (KASs) [2, 16, 21] enforce read-only information
flow policies, primarily using symmetric cryptography. A setup authority gen-
erates a unique key κl associated to each label l ∈ L and each data object o is
encrypted using κλ(o). Each user u requires the keys {κl : l 6 λ(u)} to decrypt
the objects for which she is authorized. Typically a KAS reduces the number of
keys issued to users by giving each user a small amount of secret information
from which they can derive all keys for which they are authorized. The strongest
notion of security for a KAS (Key Indistinguishability [2]) requires that a collu-
sion of users cannot distinguish a key for which they are not authorized from a
random string (i.e. unauthorized users learn nothing about the keys used to pro-

tect objects). To achieve such a notion, one typically requires a strict separation
between secrets, issued to users, and keys, used to encrypt and decrypt objects.

Definition 1. A Key Assignment Scheme (KAS) for a poset (L,6) comprises:

– ({σl, κl}l∈L , Pub)
$← Gen(1ρ, (L,6)) is a probabilistic polynomial-time algo-

rithm run by a setup authority that takes a security parameter 1ρ and (L,6)
and outputs a symmetric key κl and a secret σl for each l ∈ L, along with a
set of public derivation information Pub;

– κ ← Derive((L,6), x, y, σx, Pub) is a deterministic polynomial-time algo-
rithm run by a user to derive κy from the secret material σx. It takes (L,6),
labels x, y ∈ L, the secret σx, and public information Pub, and outputs the
derived key κ = κy assigned to label y if y 6 x, and outputs κ =⊥ otherwise.

A KAS is correct if κy ← Derive((L,6), x, y, σx, Pub) for all ρ ∈ N, all (L,6), all
({σl, κl}l∈L , Pub) output by Gen(1ρ, (L,6)), and all x, y ∈ L such that y 6 x.

Let ε denote the empty string and x ‖ y denote the concatenation of strings
x and y. The power set of a set X, denoted 2X , is the set of all subsets of X.

Let G = (V,E) be a directed graph where, for vertices x, y ∈ V , (x, y) ∈ E
denotes a directed edge from x to y. We say that x is an ancestor of y (and y is
a descendant of x) if there exists a directed path from x to y in G. The Hasse
diagram, H(L,6) = (L,E), of a poset (L,6), is a directed graph with vertex set
L and where (x, y) ∈ E if and only if y l x in (L,6). Let H?(L,6) = (L,E?)
be the transitive closure of H(L,6), where E? = {(x, y) : y < x}.

A matching of an undirected graph G = (V,E) is a set M ⊆ E of pairwise
non-adjacent edges i.e. no two edges in M share a common vertex. When G has
weighted edges, a maximum weight matching M in G is a matching for which
the sum of the weights of the edges in M is maximal.

3 Our Construction

We begin by motivating our choice of enforcement structure according to the de-
sign goals of our example (to minimize public information and to bound deriva-
tion costs). We then show how to instantiate a KAS on this structure using a
very simple key derivation mechanism.

3.1 Defining the Enforcement Structure

The best approach we currently know to construct KASs without public deriva-
tion information is to ensure that every vertex in the enforcement structure
(directed acyclic graph) has in-degree at most 1 i.e. each secret is derived from
at most one other secret [14, 15]. For this reason, we will choose a tree structure.

We shall restrict our focus to binary trees, which are simple to discuss in
this introductory work whilst enabling a KAS in which users need not store the
enforcement structure itself, further reducing storage costs. A binary tree also
appears to be a reasonable choice in general: we shall see that the number of

secrets that must be issued can be reduced when multiple users are authorized
for some set of access rights (security labels) and that these sets correspond to
descendants of nodes in the tree; hence we may expect more users to share a set
of labels when the size of that set is small i.e. when the degree of nodes is low.

The maximum derivation cost for any key is bounded by the maximal path
in the enforcement structure. The minimal depth of a binary tree with n leaves is
dlog ne.1 Internal nodes with a single child only increase derivation paths and so
we restrict our focus to full binary trees (where all nodes have 0 or 2 children).

We therefore define our enforcement structure to be a rooted, full binary
tree with n leaves and of depth dlog ne. Note that there remain many such trees
and many ways in which to map a specific policy poset to such a tree; these
choices have a direct effect of the efficiency of the resulting KAS. In this section
we shall assume that the specific tree and mapping are given and we shall show
how to assign and derive secrets and keys (for an arbitrary policy). We consider
methods to optimize these choices to enforce specific policies in Section 4.

3.2 Instantiating a KAS on our Enforcement Structure

Let ((L,6), U,O, λ) be a read-only information flow policy and let n = |L|
be the number of security labels in the policy. Suppose that we have chosen
a specific full binary tree Tn = (V,E) with n leaves and depth dlog ne and a
bijective mapping α from security labels in L to the leaves of Tn. Intuitively, our
construction generates keys using the binary tree structure as follows:

1. We associate a binary string of length at most dlog ne to each vertex in V;
2. We then associate a secret to the root node of Tn from which a secret for

each non-root vertex may be derived using standard key derivation methods.
The binary string associated to the vertex dictates how the secret is derived;

3. For each security label l ∈ L, we define the key κl used to protect data
objects in the KAS to be the secret assigned to the leaf labeled α(l). To
minimize the material issued to users, we issue secrets associated to non-leaf
nodes of Tn from which secrets for all descendant nodes can be derived (in
particular users can derive all keys for which they are authorized).

Labeling the tree. We label the root node of Tn by the empty string ε and,
for each node x ∈ V , label the left and right children of x (if they exist) by
x ‖ 0 and x ‖ 1 respectively. Figure 1a gives an example labeling of a tree T5.
We may abuse notation by referring to a node of Tn and its associated binary
string interchangeably. We denote the set of leaf nodes in Tn by V .

Deriving keys. We now assign a secret to each node. Let ρ be a security
parameter and let F : {0, 1}ρ×{0, 1}? → {0, 1}ρ be a Pseudo-Random Function
(PRF) which takes a key k and a string x and outputs a pseudo-random string
of the same length as the key. We shall write Fk(x) in preference to F (k, x).

1 All logarithms are base 2 throughout this paper.

The secret s(ε) associated to the root node ε ∈ V is chosen uniformly at

random: s(ε)
$←− {0, 1}ρ . For each non-root node y = x ‖ b in V , where x ∈ V

and b ∈ {0, 1}, we compute the secret s(y) = Fs(x)(b). If x is a prefix of y, then
s(y) may be derived from s(x) by iteratively applying F on each remaining bit of
y in turn. This is shown in Figure 1b and in GetSec in Figure 1c. For appropriate
choices of F , it is computationally infeasible to compute s(x) from s(y).

Assigning keys. Recall that α is a bijective mapping associating each security
label l ∈ L to a unique leaf node α(l) in V . For a set of security labels X ⊆
L, we define α(X) = {α(x) : x ∈ X}. Recall also that each object o ∈ O is
associated with a security label λ(o) ∈ L. Hence, λ(o) is associated with a leaf
node α(λ(o)) ∈ Tn. We may refer to the secrets associated to leaf nodes in Tn
as keys; o should thus be encrypted under the key κλ(o) = s(α(λ(o))).

Each user u ∈ U is authorized for the security labels ↓λ(u) =
{l ∈ L : l 6 λ(u)} and hence requires the keys {κx = s(x) : x ∈ α(↓λ(u))} . We
may reduce the cryptographic material that u must be issued by using non-leaf
nodes of Tn to represent multiple elements of ↓λ(u). If α(↓λ(u)) contains all de-
scendant leaf nodes of a node x ∈ V , we may instead issue the single secret s(x);
keys for all descendant leaf nodes can then be efficiently derived. More formally:

Definition 2. Given X ⊆ V , we define the minimal cover, dXe, of X to be the
smallest subset of V such that:

1. for every x ∈ X, there exists an ancestor of x in dXe;
2. for every y ∈ dXe, every z ∈ V that has y as an ancestor belongs to X.

Then, a user issued a set of secrets σλ(u) containing {s(x) : x ∈ dα(↓λ(u))e} may
derive κl = s(α(l)) if and only if l 6 λ(u). Condition 1 ensures that a user can
derive all keys for which they are authorized (correctness), whilst Condition 2
ensures that they cannot derive any other keys (security). Since Tn is a full tree
(every node has 0 or 2 children), it is easy to see that dXe is unique.

As an example, consider an information flow policy mapped to the tree T5
given in Figure 1a and suppose α(↓l) = {010, 011, 1} for some label l ∈ L. Then,
dα(↓l)e = {01, 1}, and σl contains FFs(ε)(0)(1) and Fs(ε)(1).

A simple method to compute dXe for X ⊆ V is to observe that a node x ∈ V
is an ancestor of a node y ∈ V if and only if the binary string associated to x is
a prefix of the string associated to y. Let us define the strict prefix of bit string
b0b1 . . . bi to be b0b1 . . . bi−1. Then, if two bit strings in X share a strict prefix,
both may be replaced by the strict prefix and the keys for both strings can be
computed in a single step. We may continue replacing pairs of bit strings in X
(of the same length) with their common strict prefix until no more pairs can
be found. With this method, dXe can be computed directly from the set of bit
strings X and the set up authority need not store the enforcement structure Tn.

3.3 Summary and Discussion

Our complete KAS construction is given in Figure 1c. It is easy to see that:
1) no user requires more than dn/2e secrets; 2) no user requires more than

000 001 010 011

00 01

0 1

ε

(a) T5

Fs(00)(0) Fs(00)(1) Fs(01)(0) Fs(01)(1)

Fs(0)(0) Fs(0)(1)

Fs(ε)(0) Fs(ε)(1)

s(ε)

(b) Secret generation

Gen(1ρ, (L,6))

Let α : L→ V

s(ε)
$←− {0, 1}ρ

Pub←⊥
foreach l ∈ L :

κl ← GetSec(α(l), ε, s(ε))

↓(l)←
{
l′ ∈ L : l′ 6 l

}

foreach x ∈ dα(↓(l))e :

s(x)← GetSec(x, ε, s(ε))

σl ← {(x, s(x)) : x ∈ dα(↓(l)e}
return ({κl, σl}l∈L , Pub)

Derive(−,−, α(y), σx,−)

foreach (l, s(l)) ∈ σx :

if l is a prefix of α(y)

return GetSec(α(y), l, s(l))

return ⊥

GetSec(a, b, s(b))

if b is not a prefix of a

return ⊥
z ← b

for i = len(b) . . . len(a)− 1 :

s(z ‖ ai) = Fs(z)(ai)

z ← z ‖ ai
return s(a)

(c) Our KAS construction

Fig. 1: Our KAS construction with an example tree T5 and an illustration of
secret generation. The inputs to the supporting algorithm GetSec in the KAS
are two bit strings a = a0 . . . am, b = b0 . . . bn, where m,n ∈ N, and a secret s(b).

dlog ne steps to derive a decryption key; and 3) no additional information is
required to perform key derivation. In contrast, for an iterative KAS with public
information [16]: 1) users require a single secret; 2) derivation may take up
to n steps; 3) up to O(n2) items of public information may be required. In
other words, our scheme has advantages in terms of public information and
derivation cost, but users may need to manage additional secrets. A more detailed
comparison with related work is given in Section 5.

Derivation in our construction requires knowledge of a binary label α(y)
for y ∈ L; hence one may argue that the α mapping should constitute public
information. It seems apparent, however, that storing some representation of
labels is an inherent requirement of any efficient KAS — data objects must be
labeled by their security label to identify the objects to be retrieved from the
file-system and the decryption keys to use, whilst secrets must be labeled such
that they can be used to derive appropriate decryption keys.2

In our scheme, σλ(u) contains the appropriate binary labels and we assume
that each object o ∈ O is labeled by α(λ(o)) instead of λ(o). (In fact, α(λ(o)) is
a compact way to uniquely represent security labels and may actually decrease
storage costs.) Thus, the input to Derive in our KAS includes α(y) instead of
y ∈ L, and α need not be public. Derive requires only the binary string α(y) of
the target label y and a suitable secret σx; we omit other unrequired inputs.

To our knowledge, all prior KASs (including those without public derivation
information) require that users store the enforcement structure for use during

2 It is unfortunate that existing KAS definitions do not permit consideration of such
implementation details. In our case, permitting Gen to take the full policy rather
than just (L,6) could aid defining α. Alternatively, the input could be (α(L),6).

Derive. In schemes that use public information, this is to identify the information
needed to derive the next secret in the derivation “path”. In schemes based on
tree or chain partitions [13–15, 17], the algorithm must know which secret should
begin the derivation. In contrast, a nice feature of our scheme with the above
method for computing dα(↓λ(u))e is that Derive need only test whether one
binary string is a prefix of another. Thus, it is sufficient for users to provide only
the binary labels α(λ(o)) and dα(↓l)e, which we have already argued represent
necessary knowledge for users of any KAS. Furthermore, the steps required to
derive a key are immediately apparent from the binary label itself, without
requiring user knowledge of Tn or (L,6). In short, our scheme means that only
the administrator need know the actual structure of the security policy. This
clearly has practical advantages, but is also useful if policy privacy is required.

Correctness and Security. It is easy to see that our KAS is correct due to Condi-
tion 1 of Definition 2 and the iterative nature of the key generation. The iterative
function s computes s(x) from any prefix y of x, and Condition 1 of Definition 2
ensures that, for all labels l ∈ ↓λ(u), there exists a prefix of α(l) in dα(↓λ(u))e.

Our scheme meets the strongest security property currently defined for KASs:

Theorem 1. Let F : {0, 1}ρ × {0, 1}? → {0, 1}ρ be a secure pseudo-random
function with security parameter ρ ∈ N. Then, for any information flow policy
P = ((L,6), U,O, λ), the KAS in Figure 1c is strongly key indistinguishable.

The full version of this paper gives a security proof bounding the advantage of an
adversary against our KAS by the (negligible) advantage of a set of distinguishers
against F .

Our scheme is somewhat unusual in that each label is associated with a single
value. All prior schemes, to our knowledge, that achieve key indistinguishability
require each label to be associated with a secret and a key. In our case, secrets
are associated with interior nodes of the tree (which are not associated to a
security label), while keys are just secrets associated with leaf nodes; the values
issued to users (i.e. secrets σλ(u)) may, and do, contain keys themselves.

Related Work. Our construction is similar to the Goldreich, Goldwasser and Mi-
cali (GGM) puncturable PRF [19]. In Section 6, we take advantage of the inherent
puncturing mechanism to enforce additional policy features such as separation
of duty and limited-depth inheritance. The iterative application of a PRF over a
tree structure superficially resembles the forward-secure key updating scheme of
Backes et al. [6] in which all keys are generated independently for the purpose of
key refreshing (e.g. for a single label); we define multiple, related security labels
and keys. Finally, Blundo et al. [8] also considered methods to derive keys using
tree structures in the context of access control matrices, showed that finding
optimal trees to minimize user secrets is an NP-hard problem and introduced
heuristic approaches; our work focuses on the design of KASs for information
flow policies and considers different heuristic techniques in Section 4.

4 Optimizing the Enforcement Structure and Mapping

We now complete our KAS by considering methods to fine-tune the specific
choice of enforcement structure and to choose the mapping from policy poset
to enforcement structure. We have seen that our KAS has some advantages
over prior KASs but that users may require many secrets in the worst-case. We
therefore aim to design methods that, given a policy poset, mitigate this concern
and optimize the performance of the resulting KAS. (Prior schemes are limited
in this regard as they only consider a trivial mapping and are hence limited to
enforcement structures based directly on the poset e.g. Hasse diagrams.)

Recall that each user u ∈ U is issued a set of secrets σλ(u) associated to
the minimal cover dα(↓λ(u))e of their authorized set. Thus, whenever α(↓λ(u))
contains both children of a node in Tn, the size of σλ(u) is reduced by one. To
minimize the average size of σλ(u) over all users u ∈ U , we therefore aim to define
α such that the authorized sets α(↓λ(u)) contain as many such pairs of child
nodes as possible. Of course, every such reduction increases the derivation cost
by one but the maximal derivation path remains bounded by dlog ne. Figure 2
illustrates the effect of choosing two different α mappings when n = 5.

Unfortunately, we conjecture that finding an optimal mapping is a hard prob-
lem. The number of permissible trees and mappings grows exponentially and it
appears difficult to optimally group labels (to share a common prefix in Tn)
without considering a global view — each choice restricts the possible groupings
for other labels and whilst some label groupings would benefit some users, they
may lead other users to require a large number of secrets.

Our goal in this section, therefore, is to introduce heuristics to find ‘good’
α mappings. We first describe our best performing heuristic, based on finding
maximal matchings between sets of labels with respect to suitable weightings.
We then discuss a considerably cheaper heuristic which, in our experiments,
provides reasonable performance.

4.1 The FindTree Heuristic

Recall that the size of a binary label represents the depth of the associated node
in Tn; thus we may fully describe the structure of Tn and the assignment of
labels to leaves via an α mapping that outputs binary labels of varying sizes.
To represent such a mapping, let us define a partition to be a recursive data
structure with an associated depth function D. For each l ∈ L, let P = [l] be a
partition (of depth D(P) = 0). For two partitions P and Q, let [P,Q] also be a
partition of depth max(D(P),D(Q)) + 1. Any binary tree T can be represented
by a partition e.g. T5 in Figure 2b is represented by [[[[b], [e]], [d]], [[a], [c]]].

Our aim is to find a partition P of depth D(P) = dlog ne that maximizes the
number of shared strict prefixes in the authorized sets of all users. Our approach
is to find pairs of labels that most commonly occur together in authorized sets,
and to which the greatest number of users are assigned; such pairs shall be
assigned to sibling leaf nodes in Tn. Every time a user is authorized for the pair
of labels, they may instead be issued the single secret associated to their parent.

a

c d

b

e

(a) Poset

d a c b

00 01

0 e

ε

(b) T5 generated by α2

l ↓l α1(l) α2(l) dα1(↓l)e ceilα2(↓l)
a {a, c, d, e} 001 10 {00, 010, 1} {001, 01, 1}
b {b, d, e} 011 000 {011, 000, 1} {0}
c {c} 010 11 {010} {11}
d {d, e} 000 01 {000, 1} {001, 01}
e {e} 1 001 {1} {001}

Fig. 2: An example showing the effects of two different choices of α mappings.
Observe that the average size of dα2(↓l)e is smaller than that of dα1(↓l)e.

Intuitively, to optimally pair sets of labels, we form a weighted graph where
vertices represent partitions of labels and edge weights represent the number of
users authorized for all labels in the connected partitions. We find a maximum
weight matching on this graph which selects edges to maximize the associated
weights; matched vertices represent partitions that should be grouped as a sub-
tree in Tn. We iterate this process to form larger groups, beginning with pairs
since smaller sets of labels are most likely to occur in multiple authorization
sets and hence benefit the most users. Ultimately we create a sequence of nested
partitions (of differing sizes) describing which labels should be grouped, and at
which level, in Tn. Each chosen partition size dictates the structure of Tn; the
optimal structure is thus derived from the specific policy being enforced.

Our FindTree heuristic is given in Figure 3. Figure 3 illustrates the heuristic
on the poset in Figure 2a; the selected maximum weight matchings are illustrated
by solid edges. The average number of secrets required is 6

5 using the mapping
found via FindTree compared to 8

5 when using the α2 mapping from Figure 2b.

FindTree begins by defining a set of vertices V for a graph, where each vertex
is a trivial partition [l] for a label l ∈ L. A loop then iteratively groups labels
together to form sub-trees in Tn. On each iteration, Step 2 forms a graph in
which vertices represent previously found partitions and edges represent poten-
tial groupings; restrictions on permissible groupings are discussed below. Step 3
assigns a weight to each edge corresponding to the number of users autho-
rized for all labels in the connected partitions: let U(l) = |{u ∈ U : λ(u) = l}|
be the number of users assigned to a label l ∈ L, and recall the order filter
↑l = {x ∈ L : x > l} describes the labels authorized for l. For a partition P , let
elems(P) denote the set of labels in a partition P e.g. elems([[d, b], [a]]) = {a, b, d}
and let ↑P =

⋂
l∈elems(P) ↑l be the set of labels in the order filter of all labels in

P
$←− FindTree((L,6), U, λ):

Let i = 1. Define V = {[l] : l ∈ L}. While |V | > 2:

1. If |V | 6 2dlog |L|e−i then increment i.
2. Construct the undirected graph G = (V,E) where each vertex is a partition and

E = {PQ : P,Q ∈ V, P 6= Q,D(P),D(Q) 6 i− 1}.

3. For each edge PQ ∈ E, define the weight w(PQ) =
∑

z∈(↑P∩↑Q) U(z) to be the
number of users authorized for all labels in the partitions P and Q.

4. Find a maximum weight matching M of G.
5. Define a new set of vertices V ′ = {[P,Q] : PQ ∈M}, where each vertex is a new

partition comprising two partitions that were paired in the maximal matching.
6. For any unmatched vertices (i.e. vertices X ∈ V such that no edge in M includes

X), add X to V ′.
7. Redefine the vertex set V = V ′ and go to next iteration.

If |V | = 1, return V , else return the partition [V [0], V [1]].

v ∈ V ↑v U(v)

[a] {a} 1

[b] {b} 2

[c] {a, c} 3

[d] {a, b, d} 2

[e] {a, b, d, e} 1

(a) Initial vertices and user
assignments

[a]

[b][e]

[d] [c]

0111

0

2

2

1

1

5

(b) First matching

v ↑v
[[d], [e]] {a, b, d}
[[a], [c]] {a}

[b] {b}
(c) Vertices formed from
first matching

[[d], [e]]

[[a], [c]][b]

12

0

(d) Second matching

d e

00 b a c

0 1

ε

(e) Final partition
[[[[d], [e]], [b]], [[a], [c]]]

l α(l) d↓α(l)e
a 10 {00, 1}
b 01 {0}
c 11 {11}
d 000 {00}
e 001 {001}

(f) Resulting mapping α
and minimal covers

Fig. 3: The FindTree heuristic to find a suitable binary tree partition and example
application on the poset in Figure 2a with user assignments shown in Table 3a.

P . Then the weight assigned to an edge connecting P and Q is the sum of U(z)
for z ∈ ↑P ∩ ↑Q i.e. the number of users authorized for all labels in P and Q.

Step 4 applies a maximum weight matching algorithm which selects a set
of non-adjacent edges from G with the greatest total weight (i.e. the groupings

that benefit the most users). Step 5 forms a set of vertices to create the graph
for the next iteration; each vertex is a partition formed from a pair of partitions
matched in Step 4. Step 6 also defines vertices for partitions left unmatched in
Step 4 such that later iterations may consider them to form a sub-tree containing
triples of labels. The process is repeated until a single partition remains; to ensure
termination, we assume that maximal matchings contain at least one edge.

We maintain a counter i representing the level of Tn at which sub-trees
induced by the current partition matchings shall be rooted. The level of the root
node is equal to the depth of the tree and the level of the lowest leaf node is
0. To ensure that the tree has depth dlog ne, we only add an edge in Step 2
between partitions P and Q if the depth of P and Q does not exceed i−1; thus,
when i = 1, we only pair singleton labels, and when i = dlog ne, we only pair
partitions of depth at most dlog ne− 1. In Step 1 we also check that the number
of partitions remaining is at most 2dlogne−i before incrementing i to ensure that
enough groupings are performed at each level for the final tree to be binary.

If one stores ↑v and D(v) for each v ∈ V , we may construct each weighted
graph G in O(n3) time. Finding the maximum weight matching requires O(n3)
time [18]. Since we iterate O(n) times, our heuristic requires O(n4) time.

4.2 The Order Filter Sort Heuristic

FindTree is our best-performing heuristic. From experimental evaluation, how-
ever, we observe that when there is a choice of tree (i.e. when |L| is not 2x or
2x − 1 for some x), FindTree chooses a structure (isomorphic to) a left-balanced
tree approximately half the time. (A left-balanced, or complete, tree has all lev-
els completely filled except possibly the last, and the leaves are as far left as
possible.) In the full version of this paper, we show that amending FindTree to
only map labels to a fixed left-balanced tree structure does not significantly de-
grade the heuristic’s performance but reduces the run-time to O(n3 log n). We
conjecture that the maximal weight matching algorithm chooses as many pairs
as possible during the first iteration causing most tuples to comprise pairs and
making it likely that the resulting tree structure resembles a left-balanced tree.

However, if one is willing to fix the tree-structure to be left-balanced, a very
cheap heuristic is to simply sort labels by the size of their order filters ↑l in
decreasing order, and to map labels to leaf nodes from left to right. Intuitively
one hopes that by pairing labels with large order filters, the order filters are
likely to intersect. Users authorized for a label within the intersection require at
least one fewer secret. This heuristic requires O(n log n) time, and we shall see
in Section 5 that it performs remarkably well in practice. Unlike FindTree, this
heuristic does not consider the number of users assigned to labels. We therefore
expect FindTree to be more optimal in general, although we may hope that many
realistic policies may have many users assigned to ‘low’ labels (with large order
filters) which would favor this cheaper heuristic.

Scheme Max. Keys
K

Public Info
P

Derivations
D

Trivial [16] O(n) 0 0

Iterative [2, 16] 1 |E?| O(n)

Direct [2, 16] 1 |E| 1

Tree [15] O(`) 0 O(n)

Chain [14] O(w) 0 O(n)

Our Scheme O(
⌈
n
2

⌉
) 0 O(dlog(n)e)

Table 1: Comparison of different KASs. |E?| and |E| represent the number of
edges in the Hasse diagram H(L,6) and its transitive closure, respectively.

5 Evaluation

We now compare our scheme to prior KASs with respect to the following pa-
rameters: K is the maximum number of keys/secrets a user must be issued, P
is the amount of public derivation information, and D is the maximum number
of derivation steps required. The discussion is summarized in Table 1.

Many schemes issue users a single key (K = 1) and enable iterative derivation
along paths in the enforcement structure using public information. In many
schemes [16, 21], the enforcement structure is simply the Hasse diagram of (L,6),
in which case P = O(n2) and D = O(n). An alternative is to define a directed
graph where xy is an edge if and only if y < x, in which case P = O(n2) and
D = 1. The ‘trivial’ KAS supplies users with the keys associated to all y 6 λ(u);
hence K = O(n), P = 0 and D = 0. Recent schemes remove public information
by forming a sub-graph of the Hasse diagram which is either a tree [15] or a
chain partition [14, 13, 17]. In these schemes, P = 0, while D = O(n) (or, more
precisely, the depth of the poset) but users may require several keys: for schemes
based on chain partitions, K = w where w is the width of (L,6); in schemes
based on tree partitions, K = ` keys, where ` > w is the number of leaves in the
tree. Recall that in our scheme: K = dn/2e keys; P = 0; and D = O(dlog ne).

We now present an experimental evaluation showing the performance of these
KASs in practice in the worst- and average-cases. For each value of |L|, we
average the results on 30 posets generated randomly by choosing a ‘connection
probability’ p for each node x uniformly at random; for each other node y, a
covering relation y l x is added to the poset with probability p. The number of
users assigned to each label is chosen randomly between 0 and 100. For a fair
comparison, we aim to evaluate the KASs on a variety of posets and have not
aimed towards any particular policy. A priority for future work is to evaluate
KASs on specific real-world policies of interest; unfortunately we have thus far
been unable to find real examples of interesting sizes. Most KAS literature does
not provide experimental evaluations; ours is certainly the first to compare the
efficiency of chain and tree-based KASs, which may be of independent interest.

(a) (b)

(c) (d)

Fig. 4: Experimental evaluation

We compare an Iterative scheme that uses public derivation information (the
extended scheme by Atallah et al. [2] instantiated on the Hasse Diagram of the
poset), Chain- [14] and Tree-based Schemes [15] (which do not require public
information), and our KAS using both the FindTree and the order filter-based
heuristics. Figures 4a and 4c show the average and maximum number of deriva-
tion steps required to compute any key. Derivation steps are considered to be
PRF evaluations (the iterative scheme [2] also requires a number of decryptions
which are not counted). Figures 4b and 4d show the average and maximum
number of secrets (or keys) required by any user in each scheme. The iterative
scheme is omitted for clarity, since each user requires one secret.

Recall that the design goals of this example were to bound derivation costs
whilst eliminating public information, and it can be seen that this is achieved.
Our scheme outperforms all other KASs in terms of derivation costs in these
tests. In particular, our logarithmic growth contrasts with the linear cost of
tree-based schemes and, particularly in the worst-case, can become rather high.

Furthermore, recall that the storage costs are further reduced in our scheme
compared to other KASs since users need not store the enforcement structure.
With regards to the number of secrets a user requires (which was not one of our
primary design goals), our KAS outperforms chain-based schemes but does not
quite match tree-based schemes. However, in concrete terms, the actual number
of secrets required does not vary greatly between any scheme. Importantly, in
these experiments, our theoretical worst-case bound of dn/2e is not met. Whilst
it remains possible to obtain this bound (e.g. if the poset is highly symmetrical
with equal user assignments over all labels), we expect that such policies may be
rather unlikely and that our heuristics will mitigate the concern in practice. Re-
markably, the heuristic based on order-filters (with runtime O(n log n)) performs
comparably to FindTree heuristic (with runtime O(n4)).

Ultimately, the best choice of KAS will always depend on the requirements
of the specific application setting and on the policy being enforced. Our scheme
appears to be a good well-rounded candidate and may be the best choice if
derivation costs or storage requirements are a concern. Our scheme out-performs
chain-based schemes in terms of both derivation costs and the number of user
secrets required. Furthermore, the analysis required to find an optimal chain-
partition requires O(n4w) time, where w is the width of the poset [14], whilst our
cheapest heuristic requires just O(n log n). Thus, in many settings, our scheme
may be preferable over chain-based schemes.

6 Flexible Access Management

In this section, we summarize some additional features enabled by our KAS; the
full version of this paper will also introduce a general policy representation (sub-
suming information flow, temporal and role-based policies) and an associated
KAS allowing flexible grouping of access rights.

Prior KASs require all keys, secrets and derivation information to be de-
fined and assigned during Gen which may be inefficient when policies define a
large number of labels, some of which may never actually be assigned or used.
In particular, some policies define a set of primitive labels (e.g. roles, attributes
or time periods) and must include security labels for all combinations that may
be assigned during the system lifetime (e.g. role-based policies define 2R labels
for R roles [11]). In contrast, using our KAS, one can define Tn for n primitive
labels and define a single secret (for the root node of Tn) during Gen. Instead of
defining additional labels for each potential combination, one can dynamically
issue secrets corresponding to the minimal cover of a required set of primitives
as required — one can dynamically form new ‘labels’ that cover the required
access rights as users join the system. Our mechanism is similar to the GGM
puncturable PRF [19] and this can be viewed as utilizing the puncturing mech-
anism to define access rights. A puncturable PRF issues keys restricting the
pseudo-random outputs that may be computed, which is precisely the goal of a
KI-secure KAS. This puncturing technique enables useful features such as:

Limited Depth Inheritance is an important component of hierarchical access
policies to prevent senior users aggregating excessive access rights [2, 10, 20]. En-
coding such restrictions directly into the poset may increase the number of labels
and derivation paths (and hence the amount of public information) or increase
the width of the poset (and hence the number of secrets users must hold [14, 15]).
To our knowledge, the only KAS that directly allows limited depth inheritance [2]
requires public information and, crucially, is not collusion resistant (and hence
not KI-secure). In contrast, our KAS can enable limited depth inheritance to be
efficiently implemented. Intuitively, we wish to change the authorized set of a
user from ↓u = {y ∈ L : y 6 λ(u)} to ↓ul = {y ∈ L : y 6 λ(u), y 6< l} where l is a
threshold label beyond which derivation should be prevented. Clearly, it is rather
difficult to terminate derivation in typical iterative KASs where the key for l ∈ L
is determined by the secrets of labels l′ > l. In our KAS, on the other hand,
secrets correspond to interior nodes of Tn which are not associated to security la-
bels. Thus, one can simply issue the minimal cover dα(↓ul)e = d{α(l′) : l′ ∈ ↓ul}e
and ignore any labels below the threshold when selecting the set of secrets.

Separation of Duty policies form an important business practice which com-
partmentalize objects and users to avoid conflicts of interests. In essence, users
assigned a label l should no longer inherit the access rights of a set of labels
X ⊆ L which, again, often requires complex and costly modifications to the
poset. Using our KAS, one may simply issue dα(↓u \X)e = d{α(l) : l ∈ ↓u \X}e.

Interval-based Policies such as temporal or geo-spatial policies [3, 12] can be
handled in the same way. Consider a temporal policy where L is a set of time
periods [0, n] and users are authorized for time intervals [a, b) for 0 6 a, b < n.
Prior KASs require a label for each possible interval. Using our KAS, we may
instead define L to be simply [0, n] and issue precisely the secrets corresponding
to d{α(x) : x ∈ [a, b)]}e. Intuitively, one may think of L as a total order and use
the limited depth inheritance constraint to restrict derivation from a down to b.

7 Conclusion

We have introduced a novel approach to designing KASs by mapping policies
to enforcement structures which need not be derived directly from the policy
poset. We have given an example of a very simple KAS based on a binary tree
and introduced heuristics to optimally map the policy to a tree. We have shown
that our KAS performs favorably to prior schemes, and reduces the storage
requirements of user devices and logarithmically bounds derivation costs.

It is also important to consider how keys and secrets can be updated. KASs
with public information [2, 16] may amend a portion of that information to
define new secrets using the same derivation mechanism, but prior work [14,
15] has not considered how to perform updates without public information. A
natural solution is to include counters in the PRF inputs when deriving keys;
each derivation step may have a ‘version’ indicated by the counter. Derivation
costs will not increase but users must learn current counter values in some way.
Investigating such methods and their associated costs will be a priority for future

work. We would also like to use our experimental implementations to perform a
thorough comparison of the relative costs and strengths of KASs compared to
public key schemes e.g. Attribute-based Encryption.

We hope that future work will also consider enforcement structures to target
different design goals of KASs and develop interesting optimization strategies for
the mappings e.g. one could generalize our construction to n-ary trees or trees
with varying degrees. Finally, we hope that our work spurs the development of
efficient constrained PRFs tailored to enforcing access control policies.

References

1. S. G. Akl and P. D. Taylor. Cryptographic Solution to a Problem of Access Control
in a Hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983.

2. M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken. Dynamic and Efficient
Key Management for Access Hierarchies. ACM Trans. Inf. Syst. Secur., 12(3),
2009.

3. M. J. Atallah, M. Blanton, and K. B. Frikken. Efficient techniques for realizing
geo-spatial access control. In F. Bao and S. Miller, editors, ASIACCS, pages 82–92.
ACM, 2007.

4. M. J. Atallah, M. Blanton, and K. B. Frikken. Incorporating Temporal Capabil-
ities in Existing Key Management Schemes. In J. Biskup and J. Lopez, editors,
Computer Security - ESORICS 2007, 12th European Symposium On Research In
Computer Security, Dresden, Germany, September 24-26, 2007, Proceedings, vol-
ume 4734 of Lecture Notes in Computer Science, pages 515–530. Springer, 2007.

5. G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci. Provably-Secure Time-
Bound Hierarchical Key Assignment Schemes. J. Cryptology, 25(2):243–270, 2012.

6. M. Backes, C. Cachin, and A. Oprea. Secure Key-Updating for Lazy Revocation.
In ESORICS, volume 4189 of Lecture Notes in Computer Science, pages 327–346.
Springer, 2006.

7. D. E. Bell and L. J. LaPadula. Computer security model: Unified exposition and
Multics interpretation. Technical Report ESD-TR-75-306, MITRE Corp., 1975.

8. C. Blundo, S. Cimato, S. D. C. di Vimercati, A. D. Santis, S. Foresti, S. Para-
boschi, and P. Samarati. Managing key hierarchies for access control enforcement:
Heuristic approaches. Computers & Security, 29(5):533–547, 2010.

9. A. Castiglione, A. D. Santis, B. Masucci, F. Palmieri, A. Castiglione, J. Li, and
X. Huang. Hierarchical and Shared Access Control. IEEE Trans. Information
Forensics and Security, 11(4):850–865, 2016.

10. J. Crampton. On permissions, inheritance and role hierarchies. In S. Jajodia,
V. Atluri, and T. Jaeger, editors, ACM Conference on Computer and Communi-
cations Security, pages 85–92. ACM, 2003.

11. J. Crampton. Cryptographic Enforcement of Role-Based Access Control. In Formal
Aspects in Security and Trust, volume 6561 of Lecture Notes in Computer Science,
pages 191–205. Springer, 2010.

12. J. Crampton. Practical and efficient cryptographic enforcement of interval-based
access control policies. ACM Trans. Inf. Syst. Secur., 14(1):14, 2011.

13. J. Crampton, R. Daud, and K. M. Martin. Constructing Key Assignment Schemes
from Chain Partitions. In S. Foresti and S. Jajodia, editors, Data and Applica-
tions Security and Privacy XXIV, 24th Annual IFIP WG 11.3 Working Confer-
ence, Rome, Italy, June 21-23, 2010. Proceedings, volume 6166 of Lecture Notes in
Computer Science, pages 130–145. Springer, 2010.

14. J. Crampton, N. Farley, G. Gutin, and M. Jones. Optimal Constructions for Chain-
Based Cryptographic Enforcement of Information Flow Policies. In DBSec, volume
9149 of Lecture Notes in Computer Science, pages 330–345. Springer, 2015.

15. J. Crampton, N. Farley, G. Gutin, M. Jones, and B. Poettering. Cryptographic
Enforcement of Information Flow Policies Without Public Information. In Applied
Cryptography and Network Security - 13th International Conference, ACNS 2015,
New York, NY, USA, June 2-5, 2015, Revised Selected Papers, pages 389–408,
2015.

16. J. Crampton, K. M. Martin, and P. R. Wild. On Key Assignment for Hierarchical
Access Control. In CSFW, pages 98–111. IEEE Computer Society, 2006.

17. E. S. V. Freire, K. G. Paterson, and B. Poettering. Simple, Efficient and Strongly
KI-Secure Hierarchical Key Assignment Schemes. In CT-RSA, volume 7779 of
Lecture Notes in Computer Science, pages 101–114. Springer, 2013.

18. Z. Galil. Efficient Algorithms for Finding Maximum Matching in Graphs. ACM
Comput. Surv., 18(1):23–38, Mar. 1986.

19. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

20. R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The NIST model for role-based
access control: towards a unified standard. In ACM Workshop on Role-Based
Access Control, pages 47–63, 2000.

21. A. D. Santis, A. L. Ferrara, and B. Masucci. Efficient Provably-Secure Hierarchical
Key Assignment Schemes. In L. Kucera and A. Kucera, editors, Mathematical
Foundations of Computer Science 2007, 32nd International Symposium, MFCS
2007, Ceský Krumlov, Czech Republic, August 26-31, 2007, Proceedings, volume
4708 of Lecture Notes in Computer Science, pages 371–382. Springer, 2007.

22. A. D. Santis, A. L. Ferrara, and B. Masucci. New constructions for provably-
secure time-bound hierarchical key assignment schemes. In V. Lotz and B. M.
Thuraisingham, editors, SACMAT 2007, 12th ACM Symposium on Access Control
Models and Technologies, Sophia Antipolis, France, June 20-22, 2007, Proceedings,
pages 133–138. ACM, 2007.

