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ABSTRACT
Remote storage delivers a cost effective solution for data
storage. If data is of a sensitive nature, it should be en-
crypted prior to outsourcing to ensure confidentiality; how-
ever, searching then becomes challenging. Searchable en-
cryption is a well-studied solution to this problem. Many
schemes only consider the scenario where users can search
over the entirety of the encrypted data.

In practice, sensitive data is likely to be classified accord-
ing to an access control policy and different users should
have different access rights. It is unlikely that all users have
unrestricted access to the entire data set. Current schemes
that consider multi-level access to searchable encryption are
predominantly based on asymmetric primitives. We inves-
tigate symmetric solutions to multi-level access in search-
able encryption where users have different access privileges
to portions of the encrypted data and are not permitted to
search over, or learn information about, data for which they
are not authorised.

Keywords
Searchable Symmetric Encryption, Multi-level, Access Con-
trol, Information Flow Policy

1. INTRODUCTION
Searchable encryption (SE) enables a user to search over

encrypted data that has been outsourced to a remote server.
In some schemes [4, 5, 9, 18, 19, 20], the data owner may
authorise multiple users to make search queries — in such
cases, a querier is either authorised to search over the en-
tirety of the data or not at all, in which case (ideally) no
information about the outsourced data should be revealed.
In practice, the access control requirements of outsourced
data sets are likely to be more fine-grained than this binary
‘all or nothing’ approach; hence existing schemes do not suf-
fice.

We study the problem of enforcing a multi-level access
control policy (MLA) in the context of searchable symmet-

ric encryption (SSE). As a notable example of this form of
data classification, the UK government uses three levels of
data classification: official, secret and top secret [16]. In
our model, a user with ‘secret’ clearance should be unable
to learn any information about data items classified as ‘top
secret’, such as whether they contain searched keywords or
not. This is an example of an information flow policy with
a total order of security labels [2].

More precisely, consider a (possibly large) data set which
is to be outsourced to an external storage provider, which
could be outside of the data owner’s trusted zone. Although
the provider has a business incentive to provide a storage
and search service to the client (and to any other users au-
thorised by the data owner), the provider may attempt to
learn information about the sensitive data stored; in short,
the storage provider may be honest-but-curious. Hence, the
data must be encrypted prior to outsourcing, and the search
procedure should not reveal unintended information to the
storage provider or to other unauthorised entities. Each data
item within the data set may be associated with some key-
words, over which searches may be performed. Furthermore,
each data item may differ in sensitivity and have different
access control requirements. The data owner may authorise
additional users to search the data set and, again, each user
may have different access control clearance and therefore be
able to access or search different sets of data items. Let us
define a set of security labels L, which forms a totally or-
dered set (L,6) to reflect the inheritance of access rights.
Each user u and data item d is assigned one of these labels,
denoted λ(u) and λ(d) respectively. A user u may search a
data item d if and only if λ(u) > λ(d).

Public-key encryption (PKE), especially functional en-
cryption, has previously been used to achieve MLA in SE [3,
11, 15, 21]. In general, PKE is computationally more inten-
sive than symmetric key encryption (SKE), perhaps making
SKE more suitable for practical systems. The enforcement
of MLA policies in symmetric SE has, up to now, remained
relatively unexplored. Kissel et al. [14] presented a SKE-
based scheme in which users are divided into groups that
each have a specified dictionary of keywords they may search
over. These groups are arranged hierarchically so that each
group may also search for all keywords in dictionaries as-
signed to groups at lower levels in the hierarchy. Although
this scheme presents a form of hierarchical access in SSE,
users may still search over the entire data set. In most access
control scenarios, we are concerned with protecting a data
item (i.e. the complete content of a data item), not just
a single keyword describing the data item. Furthermore,
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it may be difficult to correctly administer an access con-
trol policy expressed only in terms of authorised keywords;
data items may gain their classification level due to semantic
meaning regarding their contents (for example, the subject
to which they pertain), which may not trivially be captured
through the associated keywords. For example, consider two
data items containing information about company spending:
one providing a public report of company-wide spending,
whilst the other pertains specifically to the research depart-
ment. Whilst both items may be labelled by a keyword
such as ‘finance’, detailed knowledge of research spending
may be deemed more sensitive than a generalised report.
Simply authorising users to search for keywords, such as ‘fi-
nance’, does not suffice in this instance as not all users that
can search the public report should also be able to view the
specific report. The access control policy in this case must
be managed carefully — perhaps additional, more granular,
keywords must be defined e.g. ‘finance-public’ (leading to
an increase in the size of the searchable encryption index
and a subsequent loss of efficiency) or a (less efficient) SE
scheme that supports ‘conjunctive keyword-only access con-
trol’ would be required such that one can be authorised to
search for (‘finance’ AND ‘public’) and only data items with
both keywords would be returned. In this work, we con-
sider the problem of fine-grained classification of data items
directly and gain a more efficient solution.

In this work, we consider Multi-level Searchable Symmet-
ric Encryption (MLSSE). We begin in Section 2 by reviewing
background material, before defining our system and secu-
rity models in Sections 3.1 and 3.2. In Section 3.3, we intro-
duce our instantiation based on the constructions of [9, 13],
and then show, in Section 3.5, how to extend our construc-
tion to support a dynamic data set using techniques from
[13]. Section 3.6 discusses the efficiency of our scheme. The
full security proofs of our constructions are omitted but are
available in the full version of our paper [1].

2. BACKGROUND
We aim to enforce information flow policies within search-

able encryption, which encompass a wide range of access
control policies that are of practical interest, including the
Bell-LaPadula model, temporal, role-based and attribute-
based access control [8].

Definition 1. An information flow policy is a tuple P =
((L,≤),U ,D, λ), where (L,≤) is a partially ordered set (poset)
1 of security labels, U is a set of users, D is a set of objects
(data items), and λ : U ∪D → L is a function mapping users
and objects to security labels in L. We say that u ∈ U is
authorised to read (search) an object d ∈ D if λ(d) 6 λ(u).

In this paper, we will focus on the case where (L,≤) is
a total order (chain) giving a simple hierarchy of security
levels and, without loss of generality, we assume that each
user and object is assigned to at most one security label.
Given a set X, we denote the power set of X, comprising
all combinations of elements in X, by 2X . Throughout this
paper we refer to ‘security levels’ and ‘security labels’ as
access levels.

1A poset is a set of labels L and a binary order relation 6
on L such that for all x, y and z ∈ L, x 6 x (reflexivity), if
x 6 y and y 6 x then x = y (antisymmetry), and if x 6 y
and y 6 z then x 6 z (transitivity). If x 6 y then we may
write y > x.

Definition 2. A Multi-User Searchable Symmetric Encryp-
tion (MSSE) scheme is a set of six polynomial time algo-
rithms defined as follows:

• KO
$← MSSE.KeyGen(1k): A probabilistic algorithm

run by the data owner that takes a security parameter
k ∈ N and outputs a secret key KO.

• (ID, stO, stS)
$← MSSE.BuildIndex(KO,D,G): A prob-

abilistic algorithm run by the data owner that takes a
set of data items D, a set of authorized users G and
the secret key KO. It outputs an index ID, and server
and owner states stS and stO.

• Ku
$← MSSE.AddUser(u,KO, stO) : A probabilistic al-

gorithm run by the data owner that takes the identity,
u, of a user to be enrolled in the system along with the
owner’s secret key and state. It outputs a secret key
for the new user Ku.

• Tω ← MSSE.Query(ω,Ku)2: A deterministic algorithm
run by a user that takes a keyword ω and the user’s
secret key, and outputs a search token.

• Rω ← MSSE.Search(Tω, ID, stS): A deterministic al-
gorithm run by the server that takes as input a search
token, an encrypted index and the server state, and
outputs a set Rω of identifiers of data items contain-
ing ω.

• (stO, stS)
$← MSSE.Revoke(u,KO, stO): A probabilis-

tic algorithm run by the data owner that takes a user
identity of a user to be revoked along with the data
owner’s secret key and state. It outputs new server
and owner states.

For a data set D and keyword ω ∈ ∆ (where ∆ is a
dictionary of possible keywords), let us denote by Dω the
expected results of searching for ω in D (in the plain); in-
formally we say that an MSSE scheme is correct if it also
produces the output Dω. More formally, a MSSE scheme
MSSE is correct if for all k ∈ N, for all KO output by
MSSE.KeyGen(1k), for all D ∈ 2∆, for all G ∈ 2U , for all
(ID, stO, stS) output by MSSE.BuildIndex(KO,G,D), for all
ω in ∆: Search(MSSE.Query(Ku, ω), ID, stS) = Dω.

Definition 3. A Broadcast encryption (BE) scheme is a
set of four polynomial time algorithms as follows, where U
is the user space of all possible user identities:

• (PP,KBE)
$←BE.Keygen(1k): A probabilistic algorithm

that takes a security parameter k outputs public pa-
rameters PP and a master secret key KBE.

• C $←BE.Enc(M,G): A probabilistic algorithm that takes
a plaintext M , a set of users G ∈ U authorized to de-
crypt and produces a ciphertext C.

• Ku
$← BE.Add(KBE, u): A probabilistic algorithm that

takes as input the master secret key KBE and a user
identifier u ∈ U , and outputs a user key Ku.

2This algorithm is sometimes referred to as MSSE.Trapdoor
in the literature, however to maintain consistent notation
throughout this paper we refer to it as MSSE.Query



• (M or ⊥) ←BE.Dec(C,Ku): A deterministic algo-
rithm that takes a ciphertext C and a secret key Ku

and outputs either a plaintext M or a failure symbol
⊥.

BE is correct if ∀k ∈ N, for all PP and KBE output by
BE.KeyGen(1k,m), for all M in the plaintext space, all sets
of users G ∈ U , every Ku output by BE.Add(u,KBE) and
all C output by BE.Enc(M,G) where u ∈ G we have: M ←
BE.Dec(C,Ku).

3. MULTI-LEVEL ACCESS IN SEARCHABLE
SYMMETRIC ENCRYTION

A MLSSE scheme permits searching over encrypted data
in the symmetric key setting for multiple users that have
varying access rights to the set of data items. The access
levels are hierarchical (totally ordered), meaning a user may
search all data items at their own access level as well as all
data items that are classified at lower access levels.

3.1 System Model
Consider a data owner O, a server S, and a set of m

data users U={u1, ..., um}. The data owner possesses a set
of data items D={d1, ..., dn} which they wish to encrypt
and outsource to S whilst authorising other users to search
over some data items within D. Each data item di ∈ D is
associated with an identifier iddi .

To enable searching over the encrypted data, O must up-
load some encrypted metadata to the server. It first de-
fines a dictionary of keywords, denoted ∆ = {ω1, ..., ω|∆|},
and assigns a set δdi ⊆ ∆ of keywords to each data item
di ∈ D. We refer to the set of keywords for all data items
as δD = (δd1 , ..., δdn). The data owner then produces an
encrypted index ID based on δD, over which searches will
be performed.
O also defines an information flow policy P with a la-

belling function λ mapping each user ui ∈ U and data item
dj ∈ D to an access level, denoted λ(ui) and λ(dj) respec-
tively, in the totally ordered set L = {a1, ..., al}. Access
control in our model is enforced at data item level — users
are restricted in the data items that they may search, not the
keywords they may search for [14]. A user with access level
λ(ui) is authorised to search a data item with classification
λ(dj) if and only if λ(dj) ≤ λ(ui). To search for a keyword
ω ∈ ∆, a user ui (with access level λ(ui)) generates a search
query Tω,λ(ui). Let Dω be the set of identifiers of all data
items assigned the keyword ω, and denote by Dω,λ(ui) ⊆ Dω
the search results that user ui is authorised to view; in other
words, the set of identifiers of all data items iddj assigned ω
where λ(dj) ≤ λ(ui).

To add and revoke users, we use broadcast encryption (BE)
(Definition 3) as per [9]; a user may only produce a valid
search query if they are authorized in the BE scheme.

To ease notation, we define the tuple di
aug = (di, idi, δdi ,

λ(di)) to completely describe a data item di ∈ D (being the
data itself, the identifier, the associated keywords and the
security classification). We denote the information regarding
all data items by Daug = {d1

aug, ..., dn
aug}.

We present a structure only MLSSE system — we only
consider the data structure (index) and do not encrypt the
data items themselves; data items may be encrypted sepa-
rately and retrieved based on the search results, which com-
prise a set of data item identifiers that fulfil the query. We

permit data items to be of any format and the sets of key-
words can be arbitrarily chosen from the dictionary — they
may not necessarily correspond to the actual content of the
data, but could be descriptive attributes of the data item.
This may help minimise the risk of a statistical attack on
the index as the frequency of a certain word in a document
is not necessarily reflected in the set of keywords chosen to
index the data item.

Definition 4. A Multi-level Searchable Symmetric Encryp-
tion Scheme (MLSSE) scheme consists of six algorithms de-
fined as follows:

• (KO, kS , PP )
$← KeyGen(1k, S,P): A probabilistic al-

gorithm run by the data owner O that takes the secu-
rity parameter k, policy P and the server identity S,
and outputs O’s secret key KO, a server key kS and
public parameters PP .

• ID
$← BuildIndex(Daug,KO, PP ): A probabilistic al-

gorithm run by O. It takes the description of the data
set Daug and O’s secret key, and outputs the index ID.

• (Ku, PP )
$← AddUser(u, λ(u),KO, PP ): A probabilis-

tic algorithm run by O to enrol a new user into the
system. It takes the new user’s identity u and access
level λ(u), and O’s key, and outputs a secret key for
the new user.

• Tω,λ(u) ← Query(ω,Ku): A deterministic algorithm
run by a user with access level λ(u) to generate a search
query. It takes as input a keyword ω ∈ ∆ and the
user’s secret key and outputs a search query Tω,λ(u).

• Rω,λ(u) ← Search(Tω,λ(u), ID, kS): A deterministic al-
gorithm run by S to search the index for data items
containing a keyword ω. It takes a search query and
the index, and returns the search resultsRω,λ(ui), com-
prising either a set Dω,λ(u) of identifiers of data items
dj containing ω such that for all λ(dj) ≤ λ(u) (where
λ(u) is the access level of the user that submitted the
search query), or a failure symbol ⊥.

• (KO, PP )
$← RevokeUser(u,KO, PP ): A probabilistic

algorithm run by O to revoke a user from the system.
It takes the user’s id, the data owner’s and server’s se-
cret keys, and outputs updated owner and server keys.

An MLSSE scheme is correct if for all k ∈ N, for all
KO, kS output by KeyGen(1k, S,P), for all Daug, for all
ID output by Buildindex(Daug,KO, PP ), for all ω ∈ ∆, for
all u ∈ U , for all Ku output by AddUser(u, λ(u),KO, PP ),
Search(Query(ω,Ku), ID, kS) = Dω,λ(u).

3.2 Security model
A secure MLSSE scheme would, ideally, reveal no infor-

mation regarding the data set D to the server (i.e. a curious
server cannot learn information about the data it stores) and
reveal no information to users regarding data items that they
are not authorised to search. However, most SSE schemes
leak additional information to gain efficiency. For exam-
ple, the search results {Rω1,a , ..., Rωp,a} for a set of queries
{Tω1 , ..., Tωp} could be revealed. This is referred to as the
access pattern (Definition 5) and defines the link between



a search query and the search results it produces; it may
be thought of as a database where each row stores a search
query and a corresponding set of identifiers of data items
that satisfies the search query.

Most efficient SSE schemes also leak the search pattern
(Definition 6), which reveals the set of search queries made
to the server. In most single-user SSE schemes [6, 7, 9,
10, 12, 13], search queries are formed deterministically; the
server can therefore ascertain whether a search query has
been made previously.

Definition 5. For a sequence of q search queries
Ω = {Tω1,a1 , ..., Tωq,aq} where for 1 ≤ i, j ≤ q: ωi and ωj
or λ(ui) and λ(uj) are not necessarily distinct for i 6= j, the
access pattern is defined as:

AP (ID,Ω) = {(Tω1,a1 , Rω1,a1), ..., (Tωq,aq , Rωq,aq )}.

Definition 6. For a sequence of q search queries
Ω = {Tω1,a1 , ..., Tωq,aq} where for 1 ≤ i, j ≤ q: ωi and ωj
or λ(ui) and λ(uj) are not necessarily distinct for i 6= j, the
search pattern is defined as a q× q symmetric binary matrix
SP (ID,Ω) such that for 1 ≤ i, j ≤ q:

SP (ID,Ω)i,j = 1 ⇐⇒ Tωi,ai = Tωj ,aj .

Intuitively, the search pattern reveals when the ith and jth
queries are the same, which happens when queries are issued
for the same keyword by users with the same access level.

Definition 7. For an index ID we define the setup leakage
LSetup(ID) to be all the information that is leaked by the
index ID.

Definition 8. For an index ID and set of q search queries
Ω = (Tω1 , ..., Tωq ) we define the query leakage LQuery(ID,Ω)
to be all the information leaked by evaluating the queries in
Ω on the index ID.

We now formalise the notions of security we require in
MLSSE. We use cryptographic games to formalize our no-
tions of security. For each game, a challenger C instantiates
a probabilistic polynomial time (PPT) adversary A whose
inputs are chosen to reflect the information available to a
realistic adversary. Our notion of adaptive security is based
on that of IND-CKA2 presented in [9]. In the following
we represent the dictionary of keywords as ∆, λ defines the
mapping function as described in Section 3.

3.2.1 Multi-level Access
Our first security notion, in Figure 1, is that of multi-level

access which requires that a user, u, cannot receive search
results or learn information relating to data items di such
that λ(u) < λ(di). More specifically, a server colluding with
several users cannot learn anything about the index beyond
the specified leakage according to the corrupt users’ access
rights.

We define a maximal query leakage with access level λmax
on ID to be
LQuery(ID, {Tωi,λmax}ωi∈∆) — this is the leakage resulting
from every possible keyword search with the maximal access
level available, in Game 1 we denote this as Lmax(ID).

The challenger sets up the system, including instantiating
several global variables (which the challenger can use in the
main game and in oracle functions, but which the adversary

cannot see): L is a list of users that have been corrupted,
λmax is the maximal access level of any corrupted user, and
chall is a Boolean flag to show whether the challenge pa-
rameters have been generated yet. The adversary is given
the security parameter, access control policy, server key and
the public parameters, as well as providing access to the
following oracles.

The AddUser oracle allows the adversary to enrol a user
into the system, and the adversary corrupts this user by re-
ceiving the user key. If the challenge has not yet been gen-
erated, then the challenger adds the requested user to the
list L of corrupted users, checks if the maximal access level
of corrupted users needs updating, and runs the AddUser
algorithm. Otherwise, if the challenge has been generated,
the above procedure is carried out only if the maximal query
leakage for the new user’s access level is equal on both chal-
lenge data sets — that is, providing the user key for the
queried user cannot allow the adversary to trivially distin-
guish the two data sets.

The RevokeUser oracle first checks that the requested
user has indeed been added previously. If so, it removes the
user identity from L and checks whether the maximal access
level needs changing. It returns the server key resulting from
running the RevokeUser algorithm.

The BuildIndex oracle simply runs BuildIndex and re-
turns the output to the adversary.

After a polynomial number of queries, the adversary out-
puts two data sets which must have identical maximal query
leakages for the maximal access level of any corrupted user.
The adversary cannot choose data sets where a user that it
has corrupted could make any query that legitimately dis-
tinguishes the data sets since this would count as a trivial
win. Whilst this may appear to be a strong assumption, we
believe it to be the minimal assumption necessary to avoid
trivial wins in the multi-user setting. The main issue is
that in the multi-user setting it is necessary to consider the
server colluding with a set of users (but not the data owner);
as such, the adversary is able to perform the roles of the
server and of an authorised user, and therefore may produce
arbitrary search queries and perform searches themselves.
Thus, the challenger in the game is unable to monitor which
searches have been performed and hence cannot determine
whether the query leakages of the actual queries on both
data sets are equal, and instead must rely on the stronger
assumption that no possible authorised search query can
distinguish the data sets. Note that Van Rompay et al. [17]
deal with the multi-user case without this assumption since
they deal with single word indexes and have a proxy through
which all queries are made.

The challenger sets the challenge flag to true and chooses
a random bit b which determines the data set used to form
an index. The adversary is given the index and oracle access
as described in Game 1 and must determine which data set
was used.

Definition 9. (Multi-level Access) Let ML be a multi-
level searchable symmetric encryption scheme where k ∈ N
is the security parameter, P is an information flow policy,
S is the identity of the server and A a PPT adversary. The
advantage of A is:

AdvMLA
A (ML, 1k,P) = |Pr[ExpMLA

A [ML, 1k, S,P] = 1]−1

2
|.

We say thatML is (LSetup,LQuery)-secure against adaptive



Game 1 ExpMLA
A [X]:

1: λmax ←⊥
2: chall← false

3: (KO,KS , PP )
$← KeyGen(1κ,U ,P)

4: (Daug0 ,Daug1 , st)
$← AO(X,KS , PP )

5: ID0

$← BuildIndex(Daug0 ,KO, PP )

6: ID1

$← BuildIndex(Daug1 ,KO, PP )

7: if LλmaxSearch(ID0 ) 6= Lλ
max

Search(ID1 ) then

8: return 0

9: chall← true

10: b
$← {0, 1}

11: b′
$← AO(IDb , st)

12: if b′ = b then return 1

13: else return 0

Oracle 1 AddUser(u, λ(u),KO, PP )

1: if chall = false then

2: if λ(u) > λmax then

3: λmax ← λ(u)

4: return AddUser(u, λ(U),KO, PP )

5: else

6: if λ(u) > λmax then

7: return ⊥
8: else

9: return AddUser(u, λ(u),KO, PP )

chosen keyword attacks in the sense of Game 1 if for all A,
all k ∈ N, all S and all P, AdvMLA

A (ML, 1κ, S,P) ≤ negl(k)
for a negligible function negl.

3.2.2 Revocation Security
In MLSSE, as with other multi-user SSE schemes, we need

to consider user revocation to remove a user’s ability to sub-
mit valid search queries to the server, and hence receive
search results. We capture this in Game 2. The adver-
sary is given the public parameters and selects a data set
(along with associated access levels, keywords and identi-
fiers). The challenger then creates the index. The adver-
sary is given access to a set of oracles that perform the
AddUser(·, λ(·),KO, PP ), Search(·, ID, kS) and
RevokeUser(·,KO, PP ) functions, where the parameters rep-
resented by · are provided by the adversary, and the adver-
sary is given the resulting user keys and search results. Once
the adversary has completed his queries, the challenger re-
vokes all users that were queried to the AddUser oracle but
were not subsequently queried to the RevokeUser oracle (i.e.
all users for which the adversary holds a valid user key). The
adversary must then produce a search query T which, when
used as input to the Search algorithm, does not produce ⊥
i.e. the adversary must produce a valid search query even
though it does not hold a non-revoked key.

Definition 10. (Revocation) LetML be a multi-level search-
able symmetric encryption scheme where k ∈ N is the secu-
rity parameter, S the server identity, P is an information
flow policy and A a PPT adversary. We define the advan-
tage of A in Game 2 as:

AdvRevoke
A (ML, 1κ, S,P) = |P[ExpRevoke

A [ML, 1κ, S,P] = 1]−1

2
|.

Game 2 ExpRevoke
A [X]:

1: G ← ∅
2: (KO,KS , PP )

$← KeyGen(1κ,U ,P)
3: (Daug , st)← AO(X,PP )

4: ID
$← BuildIndex(Daug,KO,PP)

5: st
$← AO(st)

6: for u ∈ G do

7: (KO, PP )
$← RevokeUser(u,KO, PP )

8: Tω
$← AO(st, PP )

9: R← Search(Tω , ID,KS)
10: if R 6=⊥ then

11: return 1

12: else

13: return 0

Oracle 2 AddUser(u, λ(u),KO, PP )

1: if u ∈ G then

2: return ⊥
3: else

4: G ← G ∪ u
5: return AddUser(u, λ(u),KO, PP )

Oracle 3 RevokeUser(u,KO, PP )

1: if u ∈ G then

2: G ← G \ u
3: return RevokeUser(u,KO, PP )

4: else

5: if u /∈ G then

6: return ⊥

We say that ML achieves revocation if for all A, all k ∈ N,
all S and all P,

AdvRevoke
A (ML, 1κ, S,P) ≤ negl(k).

3.3 Construction
Our construction MLSSE is an adaptation of the scheme

of Kamara et al. [13], which is based on the construction of
the influential inverted index scheme SSE-1 by Curtmola et
al. [9].

Informally, MLSSE scheme uses an array A of linked lists,
along with a look-up table T to index the encrypted data.
This produces a sequential search that lends itself well to the
hierarchical access rights on the data items that we require.
For each keyword ωi ∈ ∆, we define a list Lωi which stores
the identifiers for all data items containing that keyword and
is ordered according to the access level of the data items —
data items with the highest classification are placed at the
beginning of the list, and those with the lowest classification
at the end. Each list Lωi is encrypted and stored in A as
a linked list. During the search phase the look-up table T
is used to point the server to the correct node in the array
depending on the information in the search query i.e. which
keyword was searched for and what access rights the user
that submitted the search query has. This node is decrypted
using information in the search query and the node itself,
revealing the address of the next node in the linked list.
The server may continue to decrypt all other relevant nodes
in the linked list, obtaining the set of search results relevant
to the user’s searched keyword and access level.



The key difference between our scheme and that of [13]
is that, rather than pointing to the beginning of each linked
list, the entry in T will point to the appropriate position
within the linked list according to the access rights of the
querier (recall that the list is ordered by access levels). Since
it is not possible to move backwards through the encrypted
lists, the only search results available are those contained
beyond this point in this list — that is, identifiers for those
documents containing the keyword and whose classification
is at most that of the querier, as required by the information
flow policy.

Let BE be an IND-CPA secure broadcast encryption scheme.
We define the following pseudorandom functions (PRFs):

F : {0, 1}k × {0, 1}∗ → {0, 1}k,

G : {0, 1}k × {0, 1}∗ → {0, 1}∗,

P : {0, 1}k × {0, 1}∗ → {0, 1}k,

H : {0, 1}∗ × {0, 1}k → {0, 1}∗,

and a pseudorandom permutation (PRP):

φ : {0, 1}k×{0, 1}∗×{0, 1}k×{0, 1}k → {0, 1}k×{0, 1}∗×{0, 1}k,

A is a |∆| × |L| array and T is a dictionary of size |∆| · |L|.
We denote the address of a node N in A as addrA(N).

Let λ map users and data items to their relevant access
levels as described in Section 3.1. We define a function γ
which outputs three ordered lists Lωi ,Xωi and Nωi given the
set of identifiers Daug and the array A. We refer to the nth

item in a list Lωi as Li[n]. The list Lωi contains identifiers
of data items in Dωi ordered from the identifiers with the
highest to the lowest access levels, the list Nωi contains the
addresses of |Lωi | nodes chosen randomly from A and the list
Xωi contains the indices of the identifiers in Lωi where each
access level starts i.e. if we have an ordered list of identifiers
Lωi = (id1, id2, id3, id4, id5) where:

a1 = λ(id1) = λ(id2) = λ(id3) > λ(id4) = λ(id5) = a3.

We have that Xωi [3] = 4, which says that the list of nodes
with access level at most a3 starts at the fourth entry in Lωi .
There is an entry per each access level in Xωi , even if two
access levels have the same starting point in Lωi ; from the
example above we can see that Xωi [2] = Xωi [3] = 4. If an
access level is not authorised to view any data items in Dωi
then the entry corresponding to that access level (as well
as the entries corresponding to all access levels below it) in
Xωi is set to ⊥. An identifier of a data item di ∈ Dωi will
inherit the access level label of the respective data item, i.e.
λ(iddi) = λ(di).

Alg. 1 (KO,KS , PP )
$← KeyGen(1κ,U ,P)

1: for i ∈ |L| do
2: kai,1, kai,2, kai,3

$← {0, 1}κ

3: (PPBE, kBE)
$← BE.KeyGen(1κ, |U|)

4: stO
$← {0, 1}κ

5: S
$← U

6: G ← {S}
7: stS

$← BE.Enc(stO,G, kBE)
8: return

9: KO ← ({kai,1}i∈|L|, {kai,2}i∈|L|, {kai,3}i∈|L|, kBE, stO)

10: PP ← (P,G, stS , PPBE)

11: KS
$← BE.Add(kBE, S)

Alg. 2 ID
$← BuildIndex(Daug,KO, PP )

1: free← {addr(Ni)}[i∈|A|]
2: for 1 ≤ i ≤ |W| do
3: (Lωi ,Xωi ,Nωi ← γ(Dωi ))
4: free← free \ Nωi
5: for 1 ≤ j ≤ |Nωi | − 1 do

6: rj
$← {0, 1}κ

7: A[Nωi [j]] ←
((

Lωi [j],Nωi [j + 1], Pkλ(Lωi [j+1]),3
(ωi)) ⊕

H
(
Pkλ(Lωi [j]),3

(ωi), rj
))
, rj

)
8: r|Nωi |

$← {0, 1}κ

9: A[Nωi [|Nωi |]] ←
((

Lωi [|Nωi |], 0, 0) ⊕

H
(
Pkλ(Lωi [|Nωi |]),3

(ωi), r|Nωi |
))
, r|Nωi |

)
10: for 1 ≤ ` ≤ |L| do
11: if Xωi [a`] 6=⊥ then

12: T[Fka`,1 (ωi)]← (Nωi [Xωi [a`]]⊕Gka`,2 (ωi))
13: else

14: T[ka`,1(ωi)]←⊥
15: return ID ← (A,T)

Alg. 3 (Ku, PP )
$← AddUser(u, λ(u),KO, PP )

1: G ← G ∪ {u}
2: ku

$← BE.Add(kBE, u)

3: stS
$← BE.Enc(stO,G, kBE)

4: return

5: PP ← (P,G, stS , PPBE)

6: Ku ← (ku, kλ(u),1, kλ(u),2, kλ(u),3)

Alg. 4 (KO, PP )
$← RevokeUser(u,KO, PP )

1: stO
$← {0, 1}κ

2: G ← G \ {u}
3: stS

$← BE.Enc(stO,G, kBE)
4: return KO ← ({kai,1}i∈[|L|], {kai,2}i∈[|L|], {kai,3}i∈[|L|], kBE, stO)



Alg. 5 (Tω,λ(u))← Query(ω,Ku)

1: st′O ← BE.Dec(ku, stS)

2: if st′O =⊥ then

3: return ⊥
4: tω,λ(u) ← (Fkλ(u),1 (ω), Gkλ(u),2 (ω), Pkλ(u),3 (ω))

5: return

6: Tω,λ(u) ← φst′
O
(tω,λ(u))

Alg. 6 Rω,λ(u) ← Search(Tω,λ(u), ID,KS)

1: st′O ← BE.Dec(KS , stS)

2: Parse φ−1
st′
O
(Tω,λ(u)) as (τ1.τ2, τ3)

3: Rω,λ(u) ← ∅
4: if T[τ1] =⊥ then

5: return ⊥
6: v2 ← 1

7: while v2 6= 0 do

8: Parse T[τ1]⊕ τ2 as y

9: Parse A[y] as (z1, z2)

10: Parse z1 ⊕H(τ3, z2) as (v1, v2)

11: Rω,λ(u) ←Rω,λ(u) ∪ {v1}
12: return Rω,λ(u)

The KeyGen algorithm initialises the system and gener-
ates the keys KO, kS , along with the public parameters,
PP. The key KO includes the secret key for the BE scheme
and the sets of |L| keys for each pseudo-random function:
F,G and P and the key for the pseudo-random permuta-
tion φ (referred to as the data owner’s state, stO). The
server is enrolled as a user and its secret key is also gener-
ated (although it does not receive the necessary keys to form
search queries). PP includes the information flow policy P,
the authorized user group G, the server state stS (which is
an encryption of the owner state generated using BE) and
the public parameters for BE, PPBE.

The BuildIndex algorithm initializes a set free which con-
sists of all nodes in the array A. BuildIndex considers each
keyword contained in the dataset in turn. For each keyword
ωi, the function γ generates Lωi ,Xωi and Nωi . The free list
is then updated according to which nodes have been cho-
sen by γ. The nodes in the array that form the linked lists
consist of the identifier from Lωi of a data item containing
ωi, the address in the array of the next node in the linked
list, the key used to decrypt the following node in the linked
list and a random bit string ri ∈ {0, 1}k. The identifier,
address of the next node and the key used to decrypt the
following node in the linked list are XORed with the output
of a PRF H in order to encrypt this information. For the
first node in the linked list he input of H is the decryption
key for the current node (which corresponds to an access
level and keyword and forms part of the search query) along
with ri), hence the information stored in the node can only
be decrypted by the server if the server has a search query
generated by a user who is authorized to view the data item
whose identifier is stored at that node. The decryption key
for all subsequent nodes is contained in the previous node of
the linked list. BuildIndex then proceeds to create the look-
up table T. Unlike prior schemes [9], each user may have a
different access level and thus the starting points for search
results within the linked lists may vary; a search query made

by a user with a higher access level should traverse more of
the list than that of a user with lower access rights (the user
is authorised to search more data items). Table T has an
entry for each access level/keyword pair containing the ad-
dress of a node in A, which is the node in the linked list Lωi
from which the user with a specified access level is autho-
rised to decrypt. If an access level is not authorised to view
any part of the linked list then the value in T is set to ⊥.
Finally the index ID = (A,T) is returned.

The AddUser algorithm grants a user u the ability to
search the index at a specific access level. The user is added
to the set G of authorized users and a BE key, ku, is de-
rived for the new user. The new user is given ku and the
secret keys associated with their access level kλ(u),1, kλ(u),2

and kλ(u),3 and PP is updated.
The RevokeUser algorithm revokes a user’s search privi-

leges. A new value for stO is selected and the user is re-
moved from G. This value is encrypted using BE to form
the new server state stS . The updated versions of KO and
PP are ouput.

The Query algorithm generates a search query for a user
u to search for a keyword w. The user first attempts to
decrypt the current server state stS using their secret key
ku; we denote the output of the decryption by st′O. Note
that if u is not authorised then decryption will return ⊥, if
this is the case Query outputs ⊥. The query itself comprises
three parts. The first is the output of the PRF F applied to
the keyword ω, keyed with the secret key for F associated
with the user’s access level kλ(u),1. This part of the query is
used to locate the relevant entry in T. The second part is the
output of the PRF G applied to the keyword ω and is used
to mask the entry in T in order to locate the user’s relevant
the starting position in the linked list corresponding to ω in
A. The third part is the output of the PRF P applied to
the keyword ω, which is used to decrypt the first relevant
node in A according to the user’s access level. The PRP φ
is applied to the search query, using st′O as the key.

The Search algorithm finds data item identifiers associated
with the searched keyword from the subset of data item iden-
tifiers the user is authorized to search. The server decrypts
stS and applies the inverse of the PRP φ to the query it
received; it parses the result as (τ1, τ2, τ3). The server then
looks up entry T[τ1] and if that entry is not equal to ⊥, the
server XORs the value with τ2 and parses the resulting value
as y. The server looks up the node at A[y], parses the entry
as (z1, z2), and decrypts it by XORing z1 with the output
of H (which takes as input τ3 along with z2).

The server is able to sequentially decrypt the rest of the
list stored in A until they reach a node where the address
stored in that node for the next item in the linked list is 0.

3.4 Security
In MLSSE search queries for the same keyword that are

produced by users with different access levels are indistin-
guishable from one another. That is, a search query for a
keyword ω from a user ui with access level λ(ui) is indis-
tinguishable from a search query for ω from a user uj with
access level λ(uj) for λ(ui) 6= λ(uj). This means that from
the queries alone an adversary is unable to deduce how many
times a certain keyword has been searched for overall, it can
only deduce how many times the same keyword has been
searched for within each access level. This information leak-
age is less than that of standard single or multi user SSE



schemes such as [6, 7, 9, 10, 12, 13].
In terms of access pattern we also reduce the amount

of information leakage compared with standard single user
or multi-user SSE schemes. In particular we do not reveal
whether a data item contains the keyword ωi associated with
a search query unless the access level of that data item is
less than or equal to that of the user ui that generated the
search query, meaning that an adversary cannot see a full
set of search results.

However when a search query is paired with the search
results it generates (the access pattern, Definition 5) then
an adversary may be able to correlate which search queries
are for the same keyword by looking at the intersections of
the search results. For example if one set of search results is
a subset of another set of search results then this may imply
that the two search queries used to generate these results are
for the same keyword. An adversary may eventually be able
to build up a complete set of search results for a particular
keyword, which is equivalent to the leakage produced by a
search query in a single user SSE scheme. The server does
not know, however, how many access levels there are alto-
gether so a server would need to receive all possible search
queries before it can ascertain whether or not a set of search
results for a particular keyword is complete or not.

The hierarchal relationships between the data item iden-
tifiers i.e. which identifiers represent data items at higher
access level than others could also be leaked in the same way.
If an adversary has ascertained that two sets of search re-
sultsRω,ai ⊂ Rω,aj represent searches for the same keyword
ω, then an adversary will be able to conclude that identi-
fiers in the set Rω,aj \ Rω,ai are at a higher access level
than those in Rω,ai . We note that unless the search results
are padded in some way this leakage is inevitable. Padding
search results is not standard in SSE schemes as it requires
post-processing of the search results by the user hence we
do not pad the search results in our system model in order
to maintain an efficient scheme.

From this we can see that initially our scheme leaks less in-
formation about the search pattern and access pattern than
a single user SSE scheme, however over time as more queries
are generated the information leakage tends to that of a sin-
gle user SSE scheme. The information leakage relating to a
keyword ω i.e. the access patterns for search queries corre-
sponding to ω only reaches that of a single user SSE scheme
once a search query has been generated at each possible ac-
cess level, our leakage remains lower up until this point.

As a search query for a keyword and access level pair is
created deterministically we can think of the search query
as a codeword for the combination of that keyword and ac-
cess level. The index usually reveals these codewords as a
search is carried out by matching search queries to relevant
codewords in the index. A codeword for keyword ω at access
level a is denoted id(ω, a).

We give the specific leakage functions to precisely capture
the leakage in MLSSE, where Ω is a set of queries from users
in the system that have been evaluated on the encrypted
index by the server:

1. LSetup(ID) = (|A|, |T|, [id(ω, a)]ω∈∆,i∈[|L|])

2. LQuery(ID,Ω) = (AP (ID,Ω), SP (ID,Ω), [id(ω, a)]∀Tω,a∈Ω,Ω)

Theorem 1. Given an IND-CPA secure broadcast encryp-
tion scheme BE, a pseudo-random permutation φ, and pseu-
dorandom functions F,G, P,H. Let MLSSE be the searchable

symmetric encryption scheme with multi-level access defined
in Algorithms 1-6. Then MLSSE is (LSetup,LQuery)-secure
in the sense of multi-level access and revocation.

We provide the intuitions of our security proofs here and
refer the reader to the full online version of the paper for
the full security proofs [1].

Multi-level access: To show multi-level access we reduce
the security to that of the IND-CPA security of a symmet-
ric encryption scheme which encrypts plaintexts by XORing
them with the output of a PRF. We assume the possibility
of a adversary A that is able to break the multi-level secu-
rity of our scheme then we construct a second adversary A’
that is able to use A as a subroutine in order to break the
IND-CPA security of the symmetric encryption scheme with
non-negligible probability.

Revocation: In this proof we show that if we assume
an adversary A with non-negligible advantage δ in Game 2
then A can be used as a subroutine by an adversary ABE to
break the security of an IND-CPA secure broadcast encryp-
tion scheme BE.

3.5 Achieving dynamicity
We can extend MLSSE to support multi-level access on

a dynamic data set by adding two new data structures to
the index: a deletion table (Td) and a deletion array (Ad).
There are also four additional algorithms: AddToken,Add,
DeleteToken,Delete. Array Ad stores a list of nodes for each
data item which point to nodes in A that would need to be
removed if the corresponding data item was deleted. This
means that every node in A will have a corresponding node
in Ad, which is called its dual node. Td is a table with an
entry for each data item which points to the start of the
corresponding linked list in Ad, given a valid delete token
for that data item. In addition to these two new structures
the index consists of a search array As and a search table
Ts (as in the original construction) and a free list that keeps
track of all the unused space in As.

In the dynamic scheme searching for a keyword is done
similarly to the static construction in Section 3.3 and follows
the concept of linked lists presented by [9].

To add a data item to the index, changes need to be made
to Td,As and Ad. The data owner creates an add token
using AddToken and sends this to the server. The server
then determines the free space available in As using the free
list and adds the relevant information to the free nodes and
updates the free list. When adding a new data item the
relevant nodes cannot be added to the end of each linked
list; instead we have to insert in the appropriate place in
the linked list according to the access level of the new data
item. Information in the add token will allow the server to
locate the correct point at which to insert the nodes in each
linked list, so instead of the entry in Ts just pointing to the
end node of each linked list this is altered so that it points
to the correct node in the linked list according to the access
level of the new data item. The respective predecessor of
each new node is modified to point to the new node instead
of its previous ancestor.

In order to remove a data item, a deletion token is cre-
ated which allows the server to locate and delete the correct
entries in Td. This, in turn, allows the server to locate and
delete the correct entries in As. Some nodes will need to be
updated in As (as some of the linked lists will have nodes
which point to nodes that have been deleted) and this is



done using homomorphic encryption.

3.6 Efficiency
In this section we discuss the efficiency of our multi-user,

multi-level construction compared with the single-user con-
struction of [13]. As our scheme is static and the scheme of
[13] is dynamic, we ignore the structures and algorithms in
[13] that apply to the dynamicity, such as the deletion table,
the deletion array and algorithms AddToken,Add,DeleteToken,
Delete.

The index is composed of a look-up table and a search
array. No changes are made to the search array that effect
the time needed to generate it or the search time, but the
look-up table needs to be augmented by a factor of |L|; this
will require more space on the server but does not effect the
search time. The size of our index is O(∆ · |L|+ n) whereas
the size of the index in the single user scheme is O(∆ + n)

There search time of our scheme is O(|Dω,a|) where Dω,a
is the set of data item identifiers satisfying the search query
Tω,a. This is equivalent to the search time of [13], however in
our scheme the size of Dω,a is likely to be smaller, depending
on the access level of the user who generated the search
query.

The amount of computation required to generate the search
queries as well as the size of the search queries is the same
in both schemes, they are both constructed by evaluating
three PRFs.

We note that in terms of efficiency our construction is very
similar to that of [13]. This is also true for the dynamic
version of our construction.

4. CONCLUSION
We have defined a new system, security models and a con-

struction for symmetric solutions to searching on encrypted
data in the multi-level setting. Users may search for key-
words within a set of encrypted data items, restricting the
search to data items they are authorised to view only. Fu-
ture work will focus on increasing the range of query types
beyond that of single keyword equality search and to expand
the access control policies to arbitrary information flow poli-
cies.
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