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Abstract

Since their introduction, the use (and abuse) of computer systems has grown astronomi-

cally, and consequently so has the need to manage the sharing of data between users, processes

and systems. Within a computer it is the access control system, implementing a formally de-

fined access control model, which is responsible for enacting the security policies to prevent

unauthorized disclosure, manipulation, and deletion of system and user data. I begin this the-

sis by discussing the background and development of key historical access control models, and

by highlighting their features and limitations. In the remainder of this thesis I then present the

design of a relationship-based access control model, called RPPM, which I introduce with the

intention of addressing the limitations of existing models, and to accommodate richer types

of access control policy.

My contribution to the body of knowledge is, therefore, the design of the RPPM access

control model. RPPM is the first relationship-based access control model formally, and fully

designed for general computing applications, whether they comprise one or more isolated,

networked or distributed systems. I first introduce a base functional RPPM model and subse-

quently introduce three sets of enhancements which provide incremental developments to the

fundamental workings of RPPM; these enhancements increase the expressiveness of the base

model’s policy language, as well as introducing optimisations, such as caching, and support

for history-based policies. I then introduce several enhancements focused on applying RPPM

to general computing scenarios: administration; and inter-operation. I demonstrate how all

of these features may be consolidated into a single model which may then be applied to pub-

lish/subscribe architectures. Finally, I tailor this relationship-based publish/subscribe access

control system to Internet of Things as this is a particularly topical and important application

domain in need of security controls.
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“[E]ducation is the silver bullet. Education is everything. We don’t need little

changes, we need gigantic, monumental changes. Schools should be palaces. The

competition for the best teachers should be fierce. They should be making

six-figure salaries. Schools should be incredibly expensive for government and

absolutely free of charge to its citizens.”

Sam Seaborn in The West Wing (#1.18) - Six Meetings Before Lunch [172]

“It is a capital mistake to theorise before one has data. Insensibly one begins to

twist facts to suit theories, instead of theories to suit facts.”

Sherlock Holmes in The Adventures of Sherlock Holmes [70]
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Chapter 1

Introduction

1.1 Overview

In modern computing there are very few computer systems where every user of that

system is required to be able to perform all possible actions on all possible resources.

More usually there is a need to selectively limit the actions which can be performed

on resources; access control is the security service which provides this capability. The

reasons why such limitations are required vary depending on the computer system.

There may simply be a distinction between configuration (administrative) functions

versus operation (user) functions, or between a write mode and a read mode. There

may be a need to isolate the data belonging to each individual user from every other

user, or there may be more complex requirements based on concepts such as security

clearance level, job role or previous activity. Whatever the reason, access control’s

purpose is to allow authorized access requests whilst denying unauthorized requests,

whether from an external actor (or non-system device) or from a legitimate system

user (or system device).

In many situations, access control is policy-based: interactions between users

and resources are modelled as “requests” and the policy specifies (either implicitly

or explicitly) which requests are to be granted and which denied. An access control

system is based on an access control model, which will define the data structures

used to specify an access control policy, and an algorithm, to determine whether

a request is authorized by a given policy. Traditional authorization policies are

user-centric, in the sense that authorization is defined, ultimately, in terms of user

identities. However, I believe that this user-centric approach is inappropriate for

many applications, and that what should determine authorization are the relation-

ships that exist between entities in the system. As is customary in the literature

I will use the terms subjects and objects when referring to the parties who are to,
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respectively, perform and be the target of authorization (inter)actions.

In this thesis I present my contribution to the body of knowledge – a relationship-

based access control model designed for general computing applications. To a crude

approximation my model takes inspiration from three sources: the overall design

of the decision algorithm is similar to UNIX; the path conditions (sequences of

relationships which are matched during policy evaluation) are similar in spirit to

some of the existing proposals for relationship-based access control; and the use of

implementation-specific authorization principals bears some resemblance to RBAC.

However, I believe my path conditions provide a more rigorous foundation for access

control mechanisms than existing proposals for relationship-based access control. I

also believe my use of authorization principals provides highly desirable abstraction

and scalability properties. Additionally, my model is generic, thus able to describe

systems of various forms, be they social networks, IT systems (singularly or as

networks) or entire businesses.

1.2 Brief Motivation

There have been numerous access control models defined since the topic first at-

tracted interest in the 1960s. I provide a detailed review of many of these models

and their underlying principles in Chapter 2, along with indication of existing is-

sues which motivate my work in Chapter 3. For now I provide a brief motivating

introduction as part of orientation to this thesis.

One of the earliest access control models was the protection matrix [123]. The

protection matrix model simply enumerated all authorized actions. This is a concep-

tually simple approach; however it is inefficient when dealing with more than a few

subjects and objects. New models have since been introduced with the intention of

addressing limitations in existing models, or to accommodate richer types of access

control policy.

A prime example of this is the role-based access control (RBAC) model which

allows permissions to perform actions to be granted to job roles [79]. Subjects are

assigned to their applicable roles and thus gain the permissions to perform the nec-

essary actions for that role. The RBAC model offers several significant benefits over

previous models. In particular, it reduces the administrative burden of managing

the access control system by abstracting policy assignment away from subjects to

roles; additionally, it is conceptually simple, thereby being easily understood and

implemented. It is principally for these reasons that it (or some close variant) has

become so widely utilised in modern computing systems. Since RBAC’s inception
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there have been numerous variations and extensions suggested to adapt it for spe-

cific applications. These extensions have included, for example, support for role

hierarchies, as well as geographical and temporal constraints [30, 67].

More recently, alternative models have been growing in popularity, with attribute-

based access control (ABAC) [109] and usage control (UCON) [143] receiving partic-

ular attention. All of these models assume that authorization should, essentially, be

based on user attributes (particularly user identities). However, in many computing

systems it is not the individual that is relevant to the access control decision, but the

relationship that exists between the individual requesting access and the resource to

which access is requested. Consider, for example, a request by a user 𝑢 to read the

records of a patient 𝑝. The fact that 𝑢 is a doctor is a necessary, but not sufficient,

condition for access to be granted. Specifically, 𝑢 should be one of 𝑝’s doctors. A

second example arises when the same user may occupy different roles in different

contexts. A PhD student, for example, may be an enrolled student on course 𝑐1

and a teaching assistant for course 𝑐2. Clearly, a request to read the coursework of

another student should be disallowed if the coursework is for course 𝑐1 and allowed

if for course 𝑐2.

Whilst parameterized variants of RBAC are able to bundle the context into the

role [88], this often leads to a proliferation of roles as each specific context must

be “identified”. As the number of roles tends towards the number of users this

undermines RBAC’s reduced administrative burden. Access control languages based

on first order logic or logic programming can express complex access control policies

that can deal with such situations [22, 94]. However, this comes at the cost of

complexity, both for end users that have to specify policies and in terms of policy

evaluation.

A new paradigm, known as relationship-based access control, has emerged, par-

ticularly to address access control in online social networks [44, 82]. In this thesis, I

extend relationship-based access control to arbitrary computing systems. I provide

a richer policy framework than RBAC, taking relationships into account, while re-

taining conceptual simplicity. However, I also exploit features of RBAC and UNIX

to provide a scalable and intuitive policy language and evaluation strategy. I intro-

duce the concept of a path condition, which is used to associate a request with a

set of security principals at request time. The security principals are authorized to

perform particular actions. Thus, at a high-level a security principal is analogous

to a role.

As indicated, my model takes its inspiration from the UNIX access control model,

RBAC and existing work on relationship-based access control. However, it provides
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a much richer and more flexible basis for specifying access control policies than

any of these models. In particular, it provides arbitrary flexibility in the definition

of principals, unlike UNIX; it supports policy specification based on relationships,

unlike RBAC; and it provides policy abstraction (based on principals) and support

for general-purpose computing systems, unlike existing work on relationship-based

access control (which has focused on social networks).

1.3 Contributions

In this thesis I introduce RPPM, a novel relationship-based access control model

designed for general computing applications, which:

1. Is able to model a wide range of systems, including online social networks

which originally motivated relationship-based access control, due to its support

for any entity and relationship types required.

2. Can be configured to guarantee that a conclusive authorization decision (ap-

prove or deny) can be computed for any request.

3. Can control actions requested by any type of entity on any other type, such

that subjects may be users, autonomous entities, automated agents or even

inanimate objects if so desired.

4. Abstracts permission assignment away from subjects to principals, reducing

the administrative burden and enabling the system graph to be managed in

isolation to the policies.

5. Employs flexible policy rules which support the definition of policies covering

individual entities, multiple specific entities, all entities of one (or more) types,

or every entity in the system.

6. Can define set-based or graph-based policies comprising multiple rules, where

each can employ a required and forbidden path of relationships built with reg-

ular expression-like operators to support concatenation, disjunction, conjunc-

tion, Kleene plus, optional and Kleene star.

7. Is able to cache the result of principal-matching directly within the system

graph such that future requests between that subject and object (no matter

what action is requested) may be processed far faster.

8. Is able to support useful policy configurations such as history-based access

control, separation of duty, binding of duty and Chinese Wall.
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9. Can match principals based on paths of relationships between arbitrary entities,

thus enabling subgraph patterns to be used to evaluate requests.

10. Can be used to completely administer instances of itself without extra-model

authorization.

11. Can evaluate both local and remote requests, such that subjects may interact

with objects in the local security domain or a remote security domain to which

their system is connected.

12. Can implement a range of access control models not based on relationships,

specifically: multi-level security; RBAC; UNIX; and multi-level security’s

*-property.

13. Can consolidate all of these features to produce a robust model for access control

which can be further tailored to popular communication architectures.

1.4 Thesis Structure

The body of this thesis describes the features and workings of RPPM, a relationship-

based access control model built upon the concepts of relationships, paths, and

principal matching. Following a systematic approach commonly used in the field of

access control [3, 49, 58, 144, 164, 165], I present a basic functional RPPM model

(which I will refer to as RPPM0) and subsequently introduce groups of enhance-

ments to define more robust and capable RPPM models; the inter-dependencies of

these models are shown in Figure 1.1, where directed arrows indicate the flow of

functionality from the base model, through various models which depend on it, to

more functionally-rich models (i.e. the head of each arrow points to the dependent

model).

This systematic approach allows the model enhancements to form a natural pro-

gression through the course of the thesis. However, the enhancements I will present

take two forms which I choose to highlight. The first three enhancements provide

incremental developments to the fundamental workings of RPPM, whilst the latter

enhancements are focused on supporting RPPM’s ongoing use in general application

domains. In order to provide clear discussions for these two distinct aspects I have

structured the body of this thesis in two, corresponding, parts. However, prior to

that I introduce the topics relevant to this thesis and my motivation for developing

RPPM. The complete structure of this thesis is, therefore, as follows.
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RPPM0

(the base model)

RPPM1b

(policy configuration

enhancements)

RPPM1a

(request evaluation

enhancements)

RPPM1c

(targeting

enhancement)

Inter-RPPM
(inter-operation)

ARPPM
(administration)

RPPM3

(consolidated)

RPPM-PS
(publish/subscribe)

RPPM-IoT
(Internet of Things)

Figure 1.1: RPPM model dependencies

Chapter 2 – Background I provide a history of the significant developments in the

field of logical access control, from its inception in the 1960s through to present

day. Specifically, I provide an introduction to core security concepts relevant to

understanding the design and implementation of computer protection systems, and

discussions of the evolution of the most significant access control models: the access

matrix; multi-level security (MLS); role-based access control (RBAC); attribute-

based access control (ABAC); and relationship-based access control (ReBAC), on

which this thesis is based.

Chapter 3 – Motivation I provide a snapshot of the current norm with regard

to access control within modern operating systems and web applications. I then

discuss a range of existing issues with the models commonly employed, highlighting

the models’ features and limitations whilst providing insight into the way in which

models were intended to resolve the issues of their predecessors. From these issues

I motivate the development of RPPM, a relationship-based access control model

suitable for general computing applications.
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Part I – RPPM’s Fundamentals Part I discusses the basic functional model RPPM0,

and three enhancements, RPPM1a, RPPM1b and RPPM1c, which independently

develop the model’s fundamental workings. Whilst these enhancements are discussed

independently, they may equally be employed together in some combination. Due

to the distinct nature of these enhancements their combining leads to no additional

interaction and so requires no specific handling.

Chapter 4 – RPPM0 I introduce a base RPPM model (RPPM0) which is able

to evaluate authorization requests for a modelled system; RPPM0 uses a two step

evaluation process which first matches security principals to the request, and second

determines whether those principals are authorized to perform the requested action.

I compare RPPM0 to other existing relationship-based access control models to

illustrate how it is more broadly applicable and less constrained. I also demonstrate

how RPPM0 can be used to implement several popular access control models which

are not based on relationships: multi-level security and RBAC.

Chapter 5 – RPPM1a I introduce three request evaluation enhancements to the

base RPPM model to produce the RPPM1a model. The first of these enhancements,

policy graph evaluation, increases the policy language’s expressiveness by allowing

RPPM1a to support list-oriented policies, conjunction and principal activation. The

other two enhancements, target-based request evaluation and caching edges, provide

optimisations of the request evaluation process (specifically the most complex, com-

pute principals step). I compare these enhancements to other access control models

and demonstrate how RPPM1a can be used to implement the UNIX access control

model.

Chapter 6 – RPPM1b I introduce audit edges to the base RPPM model to pro-

duce the RPPM1b model. With these edges RPPM is no longer “memory-less” with

regards to request evaluation. Specifically, using audit edges RPPM1b can support

four common policy configuration enhancements : history-based policies; separation

of duty; binding of duty; and Chinese Wall. I compare these enhancements to other

access control models and demonstrate how RPPM1b can be used to implement

multi-level security’s *-property.

Chapter 7 – RPPM1c I introduce path expressions as a targeting enhancement to

the base RPPM model. Path expressions enable RPPM1c to match principals based

on paths of relationships between arbitrary entities within the modelled system,
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rather than just between the subject and object of the request. Through careful

definition of path expressions RPPM1c’s policies can, further, match principals based

on (limited) subgraph patterns. I compare this enhancement to other relationship-

based access control models.

Part II – Applying RPPM Part II discusses several enhancements focused on ap-

plying RPPM to general computing scenarios. ARPPM is built incrementally on

RPPM1c to provide the administration support which is important for any ongoing

use. In turn, Inter-RPPM is built incrementally on RPPM1a to enable authorization

decisions to be made across multiple distinct security domains. I combine all of the

RPPM functionality described to this point to produce RPPM3, and then make use

of this model as part of a relationship-based publish/subscribe access control system

called RPPM-PS. Finally, I consider how RPPM-PS may be tailored to an Internet

of Things.

Chapter 8 – ARPPM I define a set of administration requirements which I re-

quire any administrative RPPM model to satisfy. I then introduce administrative

enhancements to the RPPM1c model to produce the ARPPM model. These en-

hancements include four minor request and policy changes as well as an initial

system graph state. Together these changes enable ARPPM to meet the admin-

istration requirements defined previously. I compare these enhancements to other

access control models.

Chapter 9 – Inter-RPPM I introduce two inter-operation enhancements to the

RPPM1a model to produce Inter-RPPM. The first provides the means by which

distinct system graphs may be connected together, whilst the second introduces the

request evaluation processing necessary to allow system graphs in Inter-RPPM to

evaluate remote requests in addition to the existing local ones. I briefly compare

these enhancements to other access control models; inter-operation has not previ-

ously been considered in the case of relationship-based access control.

Chapter 10 – RPPM-PS I provide an introduction to publish/subscribe systems

as a specific approach to communication in large, distributed information dissem-

ination environments. I combine the RPPM functionality so far described in this

thesis into a single RPPM3 model and then demonstrate how this can be used as

the basis for a relationship-based access control model (RPPM-PS) tailored to pub-

lish/subscribe systems.
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Chapter 11 – RPPM-IoT I introduce Internet of Things as a topical and im-

portant application domain within which the publish/subscribe approach is being

applied. I then discuss how RPPM-PS may be tailored to provide access control for

publish/subscribe systems in an Internet of Things to produce RPPM-IoT.

Chapter 12 – Conclusions I revisit my motivations as part of reviewing my contri-

bution to the body of knowledge. I also introduce a range of topics for future work

with the hope of stimulating further discussion in the research community.
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Chapter 2

Background

This thesis will present the design of a relationship-based access control model tai-

lored for general computing applications. An access control model provides a syntax

for authorization policies and a specification of the algorithm used to evaluate re-

quests. In this chapter I provide a history of the significant developments in the

field of logical access control, from its inception in the 1960s through to present day.

In so doing I highlight a range of concepts, models, and features which will be relied

upon (and referenced) throughout the remainder of the thesis. Those readers with

a broad knowledge of access control may choose to skip this chapter, referring back

to specific sections only as they find necessary.

2.1 Early Multi-User Systems

2.1.1 The Reference Monitor

Since the advent of electronic data sharing, introduced by the multi-user computer

systems of the 1960s and early 1970s, there has been a need to protect1 stored

information from unauthorized “use”. A single-user computer system fully isolated

from outside influences is both inherently more secure, and inherently less useful

(but not useless) than one which enables data exchange and may be used by multiple

individuals. However, given the social proclivity of humankind it is no surprise that

the development of computer systems rapidly passed beyond isolation towards a

more interactive and communicative paradigm. This trend continues to this day,

with the increasing use of mobile devices and socially-interactive apps, even as flaws

and security incidents receive growing attention from the mainstream media and the

public alike.

1The term protection was, historically, used to refer to security techniques controlling the access of executing
programs to stored information [162].
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In the beginning, as multi-user computer systems began to develop, the three

core concerns of information security (confidentiality, integrity, and availability)

took shape, and a set of minimum requirements for secure multi-user systems was

identified, I quote [7]:

a) A physically secure environment for the computer, and other physical elements

of the system including terminals where present;

b) Control of access to the system;

c) An adequate method of internally isolating individual programs (users) simulta-

neously resident on the system; and

d) An adequate method of limiting access to programs and data files.

However, whilst physical access control was reasonably well understood at this

time, the mechanisms for logical access control (necessary for the last two require-

ments) were receiving preliminary, but concerted, attention. From this early work

came the concept of the reference monitor, a core component in a model for a secure

computing environment designed to mitigate the threat of malicious users [6].

The reference monitor mediates all “references” (access requests) to programs or

data which occur as part of a process running on the system. Each reference is val-

idated according to the access granted the user executing the process. Thereby, the

reference monitor enforces the wider protection system’s defined protection policy,

one request at a time. In order to ensure this critical role is performed securely,

three operating principles were identified for the reference monitor, I quote [6]:2

a) The reference validation mechanism must be tamper proof;

b) The reference validation mechanism must always be involved; and

c) The reference validation mechanism must be small enough to be tested (exhaus-

tively if necessary).

These principles help ensure that the reference monitor is able to consistently

perform the role intended. The relevance of this design has led the reference mon-

itor to be a key consideration of many new protection systems as they have been

developed.

It is worth briefly noting that the operation of a reference monitor relies upon the

successful authentication of the user and the integrity of various data, including the

association of executing processes to the authenticated user identity. To this end,

Creps identifies seven divisions of “what a secure system must protect”, I quote [66]:
2The later two principles are clearly extended in Saltzer and Schroeder’s design principles, discussed below.
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∙ Security management – the management of security-relevant system attributes

(e.g., subject/object classification changes, dynamic policy modifications).

∙ Secrecy – the prevention of information disclosure to unauthorized subjects

(e.g., no read up, no write down, discretionary permissions, distribution caveats,

aggregation issues, covert channels, emanations control).

∙ Integrity – the prevention of information modification by unauthorized subjects

(e.g., no read down, no write up, domain separation and type enforcement,

separation of duties, transaction-based process control).

∙ Availability – the assurance that system services and information will be avail-

able whenever needed (e.g., fault tolerance, reaction to attack, metrics defining

acceptable levels of availability).

∙ Identification – the association of a system subject or object with its iden-

tification attributes (e.g., naming issues, uniqueness, mobility of identifiers,

organizational identification schemes, organization head).

∙ Authentication – the assurance that a subject’s or object’s identification at-

tributes are valid (e.g., mutual, multiple, staged, ongoing/continual).

∙ Audit – the logging of all security-relevant system events (e.g., events to be

audited, information to be recorded and derived from audited events, real-time

attack interdiction requirements).

Whilst I will not focus on the later five topics any further, they are relevant to

protection systems of all kinds and are relied upon for the effective operation of

access controls.

2.1.2 Secure By Design

By the early 1970s there were five main types of computing system protection avail-

able, with many systems in use still being unprotected [162]. Some (all-or-nothing)

systems offered two ways of working, whereby information was either freely shared

or was totally isolated. More significantly, the recent developments of that time

had introduced controlled sharing systems, as well as those providing a protected

subsystem within which user-programmed sharing controls could be employed. The

first of these enabled the owner of a resource to control low-level access to it (such as

read, write, and execute) in isolation to any other resource managed by the system.

The second allows control over higher-level functions by abstracting the user from

the resource, leaving them to call specific entry points which may enforce arbitrary
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authorization decisions on the requested operation (much like a sandbox with pre-

defined interfaces). Whilst these protection systems focused on restricting sharing

itself, considerable interest in computer systems within the defence sector was fo-

cusing some attention on putting strings on information which would indicate how

that information should be treated “after” its sharing (see Section 2.1.4).

Amongst the early work which produced these protection mechanisms, a broad

range of factors impacting the effectiveness of such security controls was identified;

disappointingly, many of these are still often overlooked, leading to today’s com-

monplace security issues. As an example, Saltzer and Schroeder’s seminal work from

1975 contains a multitude of insights [162], with the fundamentals of many mod-

ern protection schemes clearly visible in the topics discussed. Unfortunately, whilst

these insights are regularly discussed and employed in theoretical or academic mod-

els, they are given less attention in commercial products. There are many potential

reasons for this, but no doubt competing requirements, the complexity of certain

implementations or environments, and a lack of awareness or understanding have

contributed in many cases. Whatever the reason, numerous security violations do

indeed occur, as Saltzer and Schroeder predicted, because of implementation flaws

preventable through the appropriate use of their key design principles for protection

systems:

∙ Economy of mechanism – which requires a simple design, thus reducing the

likelihood of mistakes and increasing the chance of their discovery.

∙ Fail-safe defaults – which promotes a psychology of granting access where other-

wise it is denied; an approach more noticeable than the inverse when incorrectly

operating (whether through implementation or configuration).

∙ Complete mediation – which ensures that every access attempt is evaluated

and caching of such evaluations’ results is limited and discarded when invalid.

∙ Open design – which avoids reliance being placed on the secrecy of a mechanism

whose distribution and use will, ultimately, likely result in its disclosure.

∙ Separation of privilege – which segregates cooperative keys to prevent total

compromise of the mechanism from a single breach.

∙ Least privilege – which limits the repercussions from unintended operations.

∙ Least common mechanism – which reduces the routes for un-managed user

interaction and minimises the number of parties for whom a single mechanism

must be “acceptably” secure.
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∙ Psychological acceptability – which enables regular, automatic use of a mech-

anism by users by aligning it with their frame of reference for such a control.

In particular the principles of “economy of mechanism”, “open design”, “least privi-

lege”, and “psychological acceptability” are commonly lacking in modern implemen-

tations (although not always together). As an example, Porter Felt et al. identified

that developers producing apps for the Android mobile operating system commonly

(35.8%) ignored the principle of “least privilege” by requesting unnecessary permis-

sions [75]. In the defence of these developers, however, Porter Felt et al. identified

that many of these extra permissions were likely requested as a result of documenta-

tion errors and a lack of understanding – suggesting an associated failing in the use

of the “economy of mechanism” and “psychological acceptability” design principles

by the creators of the Android platform and its documentation. Such failings are

certainly the cause of some identified weaknesses in modern operating systems such

as Android [168].

2.1.3 The Access Matrix

Whilst Saltzer and Schroeder’s design principles resonate with stories of modern-day

flaws, their discussion of list-based (e.g., access control list systems) and ticket-based

(e.g., capability systems) protection mechanisms, used individually or in combina-

tion3, also highlights concepts still relevant today. Both of these mechanisms de-

veloped from the concept of an access matrix, which was initially motivated by the

need to provide a systematic way of identifying, and controlling access to, objects

which are shared [123].

The rows in the access matrix (see Table 2.1, adapted from [123]) represent the

protection domains (e.g., protection rings) within which a process may be operating,

whilst the columns represent the objects which may be targeted by the process.

The intersecting cells contain access attributes, which determine the privileges that

a process from that domain (row) is granted on that object (column).4

A domain may grant (add) an attribute on any object to another domain if it has

the “control” attribute for that domain’s object (e.g., Domain 1 may add attributes

for any object to Domain 2 in Table 2.1, because the access attributes for Domain 1

(row) on the Domain 2 object (column) include the “control” attribute). In addition,

a domain may grant (copy) an attribute on an object to any other domain if its own

access attribute for that object contains the attribute in question marked with the
3Saltzer and Schroeder note that “[m]ost real systems use a combination of these two forms, the capability system

for speed and an access control list system for human interface” [162].
4The close association with the row and column header labels and the access attributes means that this type of

approach has been referred to as Identity-Based Access Control (IBAC) [105].
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copy flag, represented by * (e.g., Domain 3 may copy its “owner” attribute for object

File 2 to either of the other domains). Finally, a domain may revoke (remove) an

attribute on an object from another domain it is has the “owner” attribute for that

domain’s object.

Domain
1

Domain
2

Domain
3

File 1 File 2 Process
1

Domain 1 *owner
control

*owner
control

*call *owner
*read
*write

Domain 2 call *read write wakeup
Domain 3 owner

control
read *owner

Table 2.1: Portion of an access matrix

List-based and ticket-based protection mechanisms rely on different “viewpoints”

of the access matrix, as illustrated by Figure 2.1. An access control list (ACL) for

an object is formed by taking the (domain name, access attribute) pairs for an

object column and “attaching” them to the object in question. Equivalently, a ca-

pability for a domain is formed by taking the (object name, access attribute)

pairs for a domain row and associating them with the relevant domain.

File 1

Domain 1 *owner
*read
*write

Domain 2 *read
Domain 3 read

(a) Access control list for File 1

Domain
1

Domain
2

Domain
3

File 1 File 2 Process
1

Domain 2 call *read write wakeup

(b) Capability for Domain 2

Figure 2.1: Access matrix viewpoints

The key difference that results in these mechanisms relates to the manner in

which an authorization request is evaluated by the reference monitor. With list-

based systems, an authorizing check is performed by the reference monitor when a

process requests to use a particular privilege on an object. The reference monitor

searches the object’s access list and determines whether the identified process may

be granted the requested access. (This approach is akin to a doorman checking

whether a visitor is on the guest-list for an event.) In contrast, in a ticket-based
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system, the process selects and presents the relevant ticket from its capability list

when requesting the access. In this instance the reference monitor’s authorizing

check simply validates the presented ticket. Operationally, evaluating a list-based

system is principally a search problem (assuming the access list is trusted), whilst

evaluating a ticket-based system is principally a validation problem (to ensure invalid

capabilities are not accepted). In order to make the most of both approaches, hybrid

mechanisms may be employed (as noted by Saltzer and Schroeder [162]).

Considering the differences between these mechanisms further, it can be desirable

to answer two questions in respect of a protection system: “what can a specific sub-

ject do?” and “which subjects can do things to a specific object?” (where I use the

term subject here, as is usual, to refer to the entity which makes an authorization re-

quest, be that a user or a process working on their behalf within a security domain).

Whilst answers for both of these questions can be determined from the access ma-

trix, access control lists and capabilities can each readily answer only one of these

questions. To determine “what can a specific subject do?” requires information

about a specific domain’s access attributes, and so is easily determined by looking

at that domain’s capability. In contrast, to determine the answer when access lists

are employed involves parsing every object’s access list to identify access attributes

associated with the particular domain. The inverse is true when determining “which

subjects can do things to a specific object?” as this requires information about a

specific object’s access attributes. This is easier to determine when using a list-based

system than when using a ticket-based system.

Whilst the ability to answer such questions is not usually the most significant

factor in selecting a protection mechanism, it is important to understand that the

ultimate selection impacts the ease of auditing, as well as the function, of the sys-

tem protected. As I will discuss, there have been numerous access control models

offered since the access matrix. However, its uncomplicated approach means that it

continues to be heavily relied upon (often from the viewpoint of an access list) to

manage fine-grained control of access to individual objects. Whilst this is often in

conjunction with a more versatile access control model, it highlights the simplicity

and longevity of the access matrix approach.

2.1.4 Mandatory Access Control

The fact that the access matrix model may be enforced from two different perspec-

tives (list-based and ticket-based) is not unique; other aspects of access control can,

equally, be considered from multiple viewpoints. Another such aspect, identified
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during the early work on protection systems, is the distinction over whether pro-

tection policies are: unchangeable for an object and must be satisfied throughout

its life (i.e., mandatory); or dynamic and modifiable by the object’s owner or other

authorized party (i.e., discretionary) [36]. Commonly, this distinction is extrapo-

lated such that Mandatory Access Control (MAC) systems are assumed to involve a

centrally defined policy (possibly managed outside of the access control model which

enforces it) whilst Discretionary Access Control (DAC) systems are assumed to be

decentralized. Whilst this extension isn’t fundamental to either definition, it is a

logical corollary.

It should be clear from the previous discussion that the access matrix is an

example of a DAC system. It enables domains to make modifications to objects’

access attributes based on the presence of the attributes “control” and “owner”, or

the presence of a copy flag. These modifications, where authorized, may be made

at any time through the life of the target object.

In contrast, the defence sector provides the most commonly cited example, even

considered synonymous by some [69], for MAC; security labels are employed to limit

the disclosure of labelled (or classified) objects to subjects which have at least as

high a (clearance) label [24]. Once created and labelled, the labels of subjects and

objects are not changed and, thereby, the policy which applies to them doesn’t

either.

Early developments of secure computer systems in the defence sector by Bell and

LaPadula had at their core this fixed, mandatory protection policy. They focused

on preventing unauthorized disclosure by ensuring that the initial, and all future,

states of the protection system were secure and devoid of compromise [24]. In these

(multi-level) secure systems of the 1970s, a (direct) compromise was identified by

the allocation of an object to a subject which had a lower classification (a breach of

what was later known as the simple security property [25]), or which did not have the

necessary need-to-know categories to match those of the object (enforced through

the inclusion of a discretionary security mechanism). In order to protect against

potential future compromise (rather than direct compromise) the *-property was

also included, ensuring that a subject could not (intentionally, or otherwise) write

to an object of one classification, the data it was reading from a higher classification

object [23].

Bell and LaPadula’s approach later became formalised within Division B and Di-

vision A of the US Department of Defense’s Trusted Computer System Evaluation

Criteria (TCSEC) [69], frequently referred to as the Orange Book. These higher

security divisions required evaluated systems to enforce mandatory access control
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policies, and supporting policy elements, in conjunction with the fine-grained dis-

cretionary access control policies required of the (lower) Class C2 systems.5 This

arrangement should not be viewed as indicating that mandatory access control is

more secure than discretionary access control. A comparison of security cannot eas-

ily be made at such an abstract level. Instead, it is indicative of the view within the

defence sector at the time that mandatory protection, as used to implement security

classification levels, was an additional, centrally-defined protection required on top

of discretionary protection, which limited users’ access but which users could “pass

on” to each other [69].

Whilst the work of Bell and LaPadula focused on preventing unauthorized dis-

closure, Biba placed greater focus on ensuring the integrity of information using

mandatory (and discretionary) protection mechanisms. Specifically, he introduced

integrity levels, alongside the existing security levels, such that modifications could

only be made to objects with equal or lower integrity, thus preventing malicious sab-

otage [36]. This approach prevents writing up to a higher integrity level in a similar

way that Bell and LaPadula prevent writing down to a lower security classification

level.

Clark and Wilson would later also focus on integrity rather than disclosure, al-

though they moved away from military systems and instead highlighted the signifi-

cant role that integrity requirements have within commercial systems [54]. Rather

than implementing a policy associated with levels of security, their mandatory policy

targeted two mechanisms “at the heart of fraud and error control: the well-formed

transaction, and separation of duty”. Well-formed transactions ensure internal con-

sistency within the system and are enforced by limiting data manipulation to a small

number of inspected programs, and by logging (for auditing purposes) all modifica-

tions made. In contrast, separation of duty ensures external consistency with the

real world by preventing a single party from maliciously manipulating internal checks

and balances in order to reflect a false representation of reality. Clark and Wilson’s

consideration of commercial systems in 1987, and their introduction of separation

of duty were key parts of a shifting of focus away from multi-level secure systems

toward alternative models of access control.
5The distinction between Division B and Division A being that to meet Division A’s requirements a system must

be able to be formally verified.
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2.2 The Introduction of Roles

2.2.1 Role-Based Access Control

As the adoption of commercial multi-user computer systems grew significantly

through the late 1980s and early 1990s, several issues became clearer. The con-

cept of grouping users or processes in some way had been introduced during earlier

research [123, 162], and this idea had been further developed and implemented in

versions of the Multics [161] and UNIX [155] operating systems. Subsequently, this

approach had also been included in the discretionary access control requirements of

TCSEC [69]. However, it was the increasing commercial adoption which cemented

the reality: administration of access control policies would be a significant bottle-

neck if each user of the system had to be individually assigned permissions to access

any of the system’s objects.

Not long after, the idea that commercial systems would solely implement DAC

was challenged. TCSEC’s definition of MAC had not focused on the mandatory

nature of the policy being enforced, but had instead focused on how it could be

used to restrict access to objects based on their sensitivity. As such, mandatory

controls were thought of more as being appropriate to the defence sector, rather than

more broadly as being appropriate to any situation requiring consistent, system-

level policies. However, in 1992 Ferraiolo and Kuhn identified that there were key

commercial access control policies which were not discretionary because they were

associated with some legal, ethical, regulatory, best practice, or business-owned data

management policy. As such, the user should not be in a position to pass on their

access to others at their own discretion. Whilst such policies are mandatory, in order

to avoid confusion with the association of MAC and the military they described a

need for a non-discretionary form of access control in the commercial sector [79].

The non-discretionary access control model that Ferraiolo et al. proposed for

commercial systems was the Role-Based Access Control (RBAC) model [77, 79]. In

the RBAC model, roles are granted permissions to perform operations on objects.

Users are then assigned as members of roles, and by activating a subset of these roles

within a session a user is able to utilise the activated roles’ permissions in order to

act on an object (as shown in Figure 2.2, adapted from [80]). This design enables

a non-discretionary (i.e., mandatory) protection policy to be defined through the

granting of permissions to roles and the assignment of users to roles. Assignment to

a role indicates a user meets the minimum competency to perform tasks appropriate

to that role. Users are unable to arbitrarily “pass on” their privileges to other

users, as only membership of the relevant role will grant access. In addition, the
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abstraction of users behind roles was intended to reduce the administrative overhead

of managing the access control model. Rather than having to assign permissions for

each new user to access the system’s objects, instead in RBAC the new user is simply

added to appropriate roles.

USERS

(UA) User
Assignment

ROLES

(RH)
Role Hierarchy

(PA) Permission
Assignment

user
sessions

session
roles

SESSIONS

PERMISSIONS

OPERATIONS OBJECTS

Figure 2.2: Hierarchical RBAC

Whilst these are the most distinctive, RBAC’s features extend beyond its ability

to enforce mandatory policies, and the abstraction of permission assignment away

from users using roles. Access control models had previously solely focused on

defining policies for low-level (file-system or memory) functions such as read, write

and execute. By enabling the definition of access control policies for system-specific

operations, RBAC is able to control more complex application interactions relevant

to the roles and objects to which operations are granted. (These are referred to as

abstract permissions in [163].)

Additionally, RBAC’s support of role hierarchies offers a convenient way to fur-

ther ease the administration burden using a partial ordering of roles.6 Through the

resulting hierarchy, permissions assigned to (junior, or less specialised) child roles

are inherited by (senior, or more specialised) parent roles, and, thereby, may be

utilised by members of those parent roles. This inheritance reduces the number of

roles to which a user must be assigned; when made a member of a senior role, users

gain the benefits of the more junior roles in the hierarchy implicitly.

6Role hierarchies were included as a core component of the original definitions of RBAC [77, 79] but, likely
inspired by the partitioning of Sandhu et al. [164], later became an optional component, as did separation of duty,
of the INCITS ANSI standard version of RBAC [108].
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2.2.2 RBAC Administration

As shown in Figure 2.3, the features and components of the RBAC model (as pre-

viously discussed and illustrated in Figure 2.2) naturally define a sequence of man-

agement steps for the administration and use of an instance of RBAC.

setup

role added
to role

hierarchy

𝑡0

operation
authorized

to role

𝑡1

day-to-day
administration

user
authorized as
role member

𝑡2

use

user
activates role

in session

𝑡3

user
performs
operation

𝑡4

Figure 2.3: RBAC management and use time-line

The “earlier” steps (𝑡0 and 𝑡1) enable the necessary setup of (part of) an RBAC

model, with new roles added into the hierarchy and selected operations explicitly

authorized to them. (As such, these steps are not performed frequently.) In contrast,

day-to-day administration is focused around authorizing users to be members of

particular roles (𝑡2). As users join or leave an organisation, their membership of

appropriate roles must be granted or revoked. Further, as users change job function

there is likely a need to change their associated roles to reflect their new duties.

Hence this management step is more commonly performed than the initial setup of

these roles within the model. Once the model is appropriately configured, in many

environments authorized users interact with the system frequently, activating roles

and performing operations on objects (𝑡3 and 𝑡4) in order to complete their necessary

business tasks.

In order to support all of these management steps, the RBAC model previously

defined was supplemented, producing the administrative RBAC ’97 (ARBAC97)

model introduced by Sandhu et al. [163]. Given the fact that RBAC’s own features

help ease administration of access control, Sandhu et al. saw it as only “natural

to ask how RBAC itself can be used to manage RBAC”. The ARBAC97 model,

therefore, contains administrative equivalents of several (regular) RBAC compo-

nents from Figure 2.2. An administrative role hierarchy comprising administrative

roles compliments the regular role hierarchy; in addition, specific administrative

permissions compliment the regular permissions. Using these administrative com-

ponents a user can activate administrative roles in a session, and, thereby, perform

administrative operations on objects within the system.
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In reality, the ARBAC97 model is actually a collection of three models [163].

RRA97 (role-role assignment ’97) enacts the 𝑡0 management step from Figure 2.3,

whereby broad policy is set through the organisation of the regular role hierarchy.

PRA97 (permission-role assignment ’97) enacts the application administration rel-

evant to the 𝑡1 management step by controlling the assignment of permissions to

roles. Finally, URA97 (user-role assignment ’97) enacts the (more regular) personnel

management of step 𝑡2 by authorizing users’ memberships of roles.

It is important to note that each of these models only controls the administration

of regular RBAC model components. Administrative authorization requests are

evaluated and if successful result in a change in the assignment of a regular role,

permission, or user to a regular role. In contrast, ARBAC97 assumes that an extra-

model chief security officer is available to manage the administrative components

using some undefined external process.

The assignments of the ARBAC97 sub-models can be viewed as relations be-

tween the constituent model elements. These relations (whether associated with

assignment or revocation operations) each identify an authorized administrative role

within which the request’s subject must be a member. They additionally identify

the (regular) role(s) to which the request’s object, be it a role, permission or user,

may be assigned. In order to provide fine grained control over the use of adminis-

trative permissions, ARBAC97 also enforces prerequisite conditions on assignment

relations within each of the three sub-models.7 In its simplest, non-trivial form a

prerequisite condition is a prerequisite role within which the request’s object must

already be a member. Less trivially, a prerequisite condition is a Boolean expression

employing combinations of such (regular) roles and utilising negation, logical AND,

and logical OR operators.

2.2.3 RBAC Constraints

Whilst prerequisite constraints enable fine grained control over the targeting of ad-

ministrative operations, more generally RBAC supports the enforcement of a wide

variety of policy configurations at different management steps, as shown in Fig-

ure 2.4 [77].

The principle of least privilege (as identified by Saltzer and Schroeder [162]) limits

the repercussions from unintended operations by preventing users having access to

privileges that they do not require to perform their job function. An administrator

7Prerequisite conditions are enforced for can assigna and can assigng within RRA97, for can assignp within
PRA97, and for can assign within URA97. The equivalent can revokea, can revokeg, can revokep, and can revoke

relations do not enforce prerequisite conditions.
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Figure 2.4: RBAC management and use time-line with constraints

can enforce least privilege through two mechanisms in ARBAC97 [163]. Firstly, the

administrator limits the operations granted to roles (𝑡1) so that only the minimum

necessary to perform the role are authorized to it. Secondly, the administrator

limits the roles to which a user is authorized (𝑡2) so that they may not activate roles

unnecessary for their job function.

A user may, further, support the principle of least privilege within each session

(𝑡3), by only activating the roles that they require for the tasks they are about to

perform. Whilst this last point will not protect the system from a malicious autho-

rized user, it can protect the system from operations triggered by an authorized user

unknowingly. Malware, such as a Trojan horse (which masquerades as a legitimate

program), executed unwittingly by a user will frequently attempt to undertake more

sensitive operations than those the user would commonly perform. By only activat-

ing the roles necessary for a session, the user reduces the likelihood of the malware’s

requested operations being authorized.

In order to prevent another form of over-privileged user, in some situations it

is desirable to constrain certain roles using cardinality limits, such that the “ca-

pacity” of the role is not exceeded. This policy configuration is enacted when the

administrator authorizes users to roles (𝑡2), ensuring that excess authorized users

are removed before new ones are added. For instance, this may be used to limit the

membership of particular management roles to a single user, or the membership of

a process approver role to an easily audited number.

In contrast, there are several policy configurations which are concerned with

preventing individual users employing multiple, conflicting roles as part of a business

process. Such separation of duty constraints (as identified by Clark and Wilson [54])

are designed to limit authorized users from abusing multiple roles to their own gain.

The common example given is one in which a business wishes to prevent individual
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workers in a finance department from adding a new supplier, posting an invoice for

that supplier, and authorising payment of that invoice. It should be clear that if a

single individual could perform all these operations, they would be able to defraud

the business to their own benefit.8

The most restrictive separation of duty constraint is Static Separation of Duty

(SSOD), which is enforced in ARBAC97 when users are assigned to roles (𝑡2) [163].

In SSOD an administrator is prevented from authorizing a user’s membership of

multiple conflicting roles. In this arrangement, the user is only ever able to fulfil a

single (consistent) role from a set of conflicting roles (for example, they are only ever

able to post invoices for existing suppliers). As an alternative, Dynamic Separation

of Duty (DSOD) is enforced when users activate roles for a session (𝑡3). In this

arrangement, the user is a member of multiple conflicting roles and can take on

different roles at different times, but is unable to take on more than one during a

single session. With an appropriate definition of a session, this enables a user to

perform each of the operations during separate instances of the business process,

but not in an arrangement which would enable fraud to occur. Finally, Operational

Separation of Duty (OSOD) is a, less commonly identified, variant of the policy

which relies on support for high-level, system-specific operations. OSOD is enforced

when abstract permissions are granted to roles (𝑡1), with the constraint preventing all

of an end-to-end process’ system-specific operations from being assigned to a single

role. OSOD may be less commonly used as this approach only works when SSOD

is also employed. This is because the OSOD constraint is negated if a user may be

assigned to multiple roles which together are authorized the full set of operations.

2.3 Generalised Attributes

2.3.1 Attribute-Based Access Control

Whilst RBAC was principally developed between 1992 and 2004,9 another, now

prominent, form of access control has seen a far longer period of refinement.

Attribute-Based Access Control (ABAC) was first referenced towards the end of

1989, when it was proposed as a means of preventing (direct) unauthorized disclo-

sure of information in military command, control and communications (C3) sys-

tems [66]. Since then research and standardisation activities have been varied (and

8Separation of duty prevents a single individual abusing such a process, it does not, however, prevent such abuse
in the case of a conspiracy. Alternative 𝑛 of 𝑚 policies can require a minimum cardinality subset of the authorized
users to undertake tasks within a business process. However, such policies are not readily supported by RBAC.

9Ferraiolo and Kuhn first proposed their non-discretionary approach in 1992 [79] and the INCITS ANSI standard
for RBAC was published in 2004 [108].
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intermittent), although a significant drive is well under way at present.

Where RBAC employs role membership as the specific basis for its access con-

trol decisions, ABAC instead supports the evaluation of whatever system-specific

attributes are relevant. In this way, properties of the subject and object (and some-

times the environment) may be considered during a request’s evaluation, with a

subject’s role membership just one viable attribute for consideration.

From a standardisation point of view there have been several distinct contribu-

tions, all made within the last 15 years. eXtensible Access Control Markup Language

(XACML) was first introduced in 2003, undergoing several revisions before version

3.0 was released in January 2013 [141]. Whilst it doesn’t use the term attribute-

based access control specifically, the XACML standard provides a policy language

for expressing access control policies, requests, and responses where authorization

decisions are based on attributes of the subject and the resource (i.e., the object).

In 2013, the functional definition of another, less language-focused, ABAC model,

called Next Generation Access Control (NGAC) was standardised [109]. In contrast

to XACML, NGAC is a more architectural standard, concerned with the arrange-

ment and interaction of components rather than the specific language employed

during those interactions. Most recently, in 2014, a guide to the definition of ABAC

and considerations for its deployment and use in enterprise environments was pub-

lished [105].

From whichever viewpoint ABAC is considered, it is the attributes of entities

within the system that are used to evaluate policy. When ABAC was first proposed,

in 1989 and 1990, a number of attributes10 were highlighted, including: unique

identifier; security level; integrity properties; roles; caveats; nationality; and organ-

isation [66, 126]. This collection of attributes was inspired principally by ABAC’s

consideration as an alternative to specific MAC or DAC approaches in use within the

defence sector. Hence these attributes were selected based on considerations associ-

ated with implementing multi-level security and need-to-know constraints. Whilst

only a small number of attributes was initially highlighted, in contrast to the ex-

isting models of the time ABAC was positioned as a general framework through

which various policy approaches could be enforced. A significant benefit of such

a general approach was believed to be that policy constructs (such as a lattice of

security levels or a role hierarchy) did not need to be hard coded into the access con-

trol model. Even so, public research into ABAC initially faltered and, as discussed,

RBAC instead was the focus of 1990s access control research.
10Recently Ahmed et al. presented a comprehensive classification of attribute types through which these and

other attributes may be viewed and compared [3].
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After the initial military focus, the approach of checking attribute values as part

of the evaluation of authorization policies resurfaced a decade later, with applica-

tions motivated by the growth of the World Wide Web [112, 145]. Digitally signed

attributes, however stored and communicated, were suggested as a trustworthy ba-

sis for distributed access control decisions across the Internet. However, it was not

until 2002 that ABAC’s use in decentralized access control was more formally and

completely presented.

2.3.2 RT

Whilst referred to as a role-based trust-management framework, the RT model intro-

duced in 2002 was identified as being “especially suitable for attribute-based access

control” [125]. In defining RT, Li et al. proposed that any expressive ABAC system

support:

a) Decentralized attributes – where entities assert attributes for other entities;

b) Delegation of attribute authority – where entities trust other entities’ judgements

about attributes;

c) Inference of attributes – where entities infer attributes from other attributes;

d) Attribute fields – where attributes may include values which constrain the at-

tribute’s use; and

e) Attribute-based delegation of attribute authority – where entities delegate to

other entities, trusting them because of their attributes.

Whilst RT supports these features and embraces ABAC, in other ways its presen-

tation is less forward-thinking. Somewhat confusingly, given that ABAC is more gen-

eral than RBAC, Li et al. present the outcome of predicates on attributes through

role membership (or lack thereof). This presentation of ABAC in the terms of

RBAC, rather than the other way around, may well have been motivated by the

dominating position that the RBAC model held within access control research at

the time. Whatever the cause, there is no doubt that this resulted in RT being given

the “role-based” part of its name.

However presented, RT enables credentials to be determined for a subject using

local, and distributed, attributes evaluated using rules defined as logical expressions.

In order to ensure that distributed attributes can be effectively used to infer local

attributes, and to determine credentials, RT includes requirements for clear nota-

tion and naming across authority domains. Without such requirements even simple

policies could not be defined.
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As well as simple policies enabling the identification of credentials from individual

attribute values, RT supports more complex arrangements, such as static separation

of duty and threshold policy configurations. These are both achieved through the

use of role-product operators applied to pairs of roles (whether local or distributed).

(Recall that membership of such roles may be determined through the evaluation

of attributes.) Whilst separation of duty requires agreement between two distinct

entities, threshold structures, more generally, require 𝑘 entities agree so that an

inference can be made. In this way, threshold structures are a dynamic constraint, as

they do not a priori fix how entities may participate in satisfying the constraint. This

is reinforced by RT’s use of two different operators, allowing threshold structures

to distinguish between requiring multiple entities and multiple different entities –

where the second more closely aligns to the concept of separation of duty.

2.3.3 XACML

Like RT, eXtensible Access Control Markup Language (XACML) provides a way

for distributed, and locally stored, attributes to be evaluated when enforcing an

authorization policy defined using logical expressions. In addition, the XACML

specification focuses on defining: an XML-based policy language through which au-

thorization policies, requests and responses may be communicated; the mechanisms

through which such language elements are processed; and the architectural elements

which participate [141]. The combination of these specification elements has led to

the XACML standard being readily implemented by practitioners into products and

systems.

To more fully support a distributed authorization architecture, XACML parti-

tions functionality amongst architectural elements which may be distributed across

distinct system components in a particular implementation (as illustrated in Fig-

ure 2.5, adapted from [141]).11 Key amongst these architectural components are

the:

∙ Policy Administration Point (PAP) – where the access control policy is entered

into the system.

∙ Policy Enforcement Point (PEP) – where the authorization request is received

and the authorization decision is enforced.

∙ Policy Decision Point (PDP) – where the access control policy is evaluated and

an authorization decision determined.
11The XACML specification refers to these architectural elements as “actors”.
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∙ Policy Information Point (PIP) – where information relevant to policy evalu-

ation is stored or collated prior to being used by the PDP.

∙ Context Handler – where authorization requests and decisions are converted

between system-specific formats and XACML, and where information is routed

from PIP to PDP.

Access
Requester

PEP
Obligations

Service

PDP
Context
Handler

Resource

PIP

SubjectsPAP Environment

1. policy

2. access request

3. request

4. request notification

5. attribute queries

6. attribute query

7a. subject attributes

7b. environment attributes

7c. resource attributes

8. attributes

9. resource content

10. attributes

11. response context

12. response

13. obligations

Figure 2.5: XACML data flow

The PxP architectural components have since been commonly referred to when

discussing the compartmentalisation and distribution of the functions of authoriza-

tion systems of all forms. However, these concepts were not original to XACML.

The concepts of a policy decision point and policy enforcement point were origi-

nally defined in an RFC draft from 1997 [191], and the policy information point

was defined in another such draft from 2000 [183]. Whilst not formally defined until

XACML, the policy administration point was first referenced in 2000 [8].

For the various, potentially distributed, XACML components to work together ef-

fectively, clearly defined language elements and processing mechanisms are required.

XACML’s policy language is constructed, naturally, around rules, policies, and pol-

icy sets. Rules are evaluated, where they apply, by the PDP and their defined effect

results if their condition evaluates to True. However, as individual rules cannot

be communicated between components, sets of rules are brought together within a
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policy. Grouping rules within policies also provides for greater management and

evaluation options. To extend these options further, XACML allows policies to be

grouped within a policy set (and policy sets to be further collected together in parent

policy sets).

Each of the three language elements supports a target (a logical expression over

attributes which determines the applicability of the element), obligations (which

must be performed by the PEP in conjunction with the evaluation), and advice

(which provides the PEP supplemental information about the decision, but which

may be ignored) [141, S3.3]. The data flow of Figure 2.5 shows how the compo-

nents work together to transport policy elements, the request, and relevant entity

attributes to the PDP so that request evaluation can be performed and the policy el-

ements evaluated. There are four decisions available at each level of evaluation [141,

S5.53]:

∙ Permit – returned when the requested access is granted at that level.

∙ Deny – returned when the requested access is denied at that level.

∙ NotApplicable – returned when no policy applies to the request at that level.

∙ Indeterminate – returned when an error occurs whilst evaluating the policy at

that level.

A rule will result in “Permit” or “Deny”, as indicated by its effect, as long as its

condition evaluates to True when evaluated. If the condition evaluates to False the

rule’s result is “NotApplicable”; this is also the case if the rule’s target doesn’t

match and the condition is never evaluated. Any error when evaluating the target

or the condition results in “Indeterminate”.

In addition to a target, obligations and advice, policies also support rule-

combining algorithms which identify how decisions and obligations from the con-

tained rules should be brought together to produce single outcomes. The decisions

which result from evaluating individual rules are combined within the containing

policy to produce a decision there. Policy sets have equivalent algorithms, called

policy-combining algorithms, which are used to combine results from evaluating mul-

tiple contained policies or policy sets. If the policy is itself contained in a policy set

then this decision, along with those of the other contained policies, are combined

(and so on).

XACML supports a range of combining algorithms for evaluating lists of policy

elements [141, SAppendix C]:12

12In reality the “Indeterminate” decision is frequently extended to indicate whether the evaluation where the error
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∙ Deny-overrides (ordered and unordered) – prioritises “Deny”, if found in any

result, over “Permit”, “Indeterminate” and “NotApplicable”.

∙ Permit-overrides (ordered and unordered) – prioritises “Permit”, if found in

any result, over “Deny”, “Indeterminate” and “NotApplicable”.

∙ Deny-unless-permit (unordered) – defaults to “Deny”, but prioritises “Per-

mit” if found in any result; it never leads to decisions of “Indeterminate” or

“NotApplicable”.

∙ Permit-unless-deny (unordered) – defaults to “Permit”, but prioritises “Deny”

if found in any result; it never leads to decisions of “Indeterminate” or

“NotApplicable”.

∙ First-applicable (ordered) – defaults to “NotApplicable”, but prioritises

whichever other result occurs first, if any do.

∙ Only-one-applicable (policy-combining only) – results in “NotApplicable” if no

policy or policy set applies, results in “Indeterminate” if more than one policy

or policy set applies, and where a single policy or policy set is applicable it

reflects the result of evaluating that one.

Once an ultimate decision is determined by the PDP this is enforced by the PEP

(as illustrated in Figure 2.5) along with any associated obligations.

2.3.4 NGAC

Whilst XACML has been well received, more recent ABAC research has led to the

functional definition of Next Generation Access Control (NGAC). The first version of

the INCITS ANSI standard for the functional architecture of NGAC was published

in 2013, more recently a public review of a draft revision was held from 30th Decem-

ber 2016 to 28th February 2017 [110]. Even though both XACML and NGAC are

standards defining authorization using attributes, there are various differences [78].

Not all of these differences favour one model over the other; rather, the two specifi-

cations focus on different approaches to defining an access control model as well as

employing different design decisions.

From an architectural perspective, NGAC employs the PAP, PEP, PDP, and PIP

elements utilised by XACML.13 However, the PDP interacts with the PIP via the

PAP, rather than through an additional component (such as XACML’s Context

occurred could have resulted in a “Permit” decision (“Indeterminate{P}”), a “Deny” decision (“Indeterminate{D}”),
or either (“Indeterminate{DP}”). To simplify the discussion I have assumed a single “Indeterminate” decision.

13Although it refers to them as “entities”.
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Handler). To the base PxP components NGAC adds one or more Resource Access

Points (RAPs), which are used to interact with protected resources upon access

being granted, and zero or more Event Processing Points (EPPs), which identify

and coordinate the processing of obligations related to the access request. NGAC’s

arrangement of these components is shown in Figure 2.6 (adapted from [110]), as

are the interfaces between them which are used during the processing of resource

requests (R), administrative requests (A), and obligations (O).

PEP(s) RAP(s)
Protected
Resources

EPP(s)PDP(s)

PAP

PIP

R,A R R

R,A

R,A,O

R,A,O

O

O

O

O

Figure 2.6: NGAC access information flows

Policies in NGAC are enumerations of relations rather than logic expressions.

The policies can contain four types of configured relations [110, S6.2.4]:

∙ Assignment relations – which provide a hierarchy for policy elements (users,

user attributes, objects, object attributes, and policy classes).

∙ Association relations – which identify access rights available to users in respect

of a specific attribute.

∙ Prohibition relations – which identify access rights denied to users and processes

in respect of specific attribute sets.

∙ Obligation relations – which modify policy information in association with

events.

From these configured relations, four derived relations are calculated:

∙ Privilege relations (derived from association and assignment relations) – a per-

mission given to users to perform specific access rights on policy elements.

∙ Capability relations (derived from privilege relations) – the capability associ-

ated with a privilege.
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∙ Access control entry relations (derived from privilege relations) – the Access

Control Entry (ACE) associated with a privilege, as would be present in an

ACL.

∙ Restriction relations (derived from conjunction and disjunction over prohibi-

tion relations) – a permission denied to users and processes, preventing them

performing specific access rights on policy elements.

Requests are evaluated in the PDP, with privileges in those policies positively

supporting access. The actual granting of access, however, also requires there to be

no relevant restrictions defined in the policy. Whilst user and object attributes are

considered within policies, NGAC does not support evaluation informed by envi-

ronmental attributes [78]. Once an authorization decision is made by the PDP, the

PEP enforces this access decision.

If the request is granted and an EPP is present in the system then the authoriza-

tion event will cause the EPP to coordinate the processing of any relevant obligations

(using the interfaces indicated in Figure 2.6). The EPP triggers the PAP to identify

relevant obligations within the PIP, which the PAP returns. Each relevant obli-

gation is processed by the EPP, and the obligation’s event response is passed to

the PDP for execution. Whilst XACML does not prescribe what obligations may

achieve, NGAC limits them to modifying NGAC policy information. Therefore, the

PDP’s execution of the obligation’s event response ultimately directs the PAP to

trigger a policy change within the PIP.14

Another significant difference between NGAC and XACML is the fact that NGAC

supports specific administrative requests which are evaluated using the model itself

(much like ARBAC97, described in Section 2.2.2).15 Whilst resource requests are

enforced by the PEP, in conjunction with a RAP, an administrative request in NGAC

is enforced by the PDP passing the authorized instructions to the PAP, which in

turn triggers policy changes within the PIP.

2.3.5 NIST’s ABAC Guidance

Whilst the XACML and NGAC specifications define potential ABAC solutions,

NIST’s guide to ABAC (published in 2014) provides a general definition of the term

attribute-based access control, and also documents considerations relevant to its use

within large enterprises [105]. The definition provided in this guidance necessitates
14Interestingly, the processing of policy changes caused by obligations operates under the auspices of the user that

created the obligation (not the one that triggered it). Therefore, the creating user must remain active in the policy
configuration for the obligation to be operable.

15The topic of administration is not covered in the core XACML standard and is instead defined in a later,
separate Administration and Delegation Profile specification [140].
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the use of subject and object attributes, in conjunction with environmental condi-

tions, during ABAC’s request evaluation. (NGAC does not support environmental

inputs, as I have mentioned, and so fails to meet NIST’s definition.) However,

like both XACML and NGAC the guidance assumes the same core architectural

elements: the PAP; PEP; PDP; and PIP.16 To these the NIST guide adds an op-

tional Context Handler, similar to that of XACML, which executes workflow logic

coordinating the evaluation and enforcement of policy.

The NIST guide identifies the human expression of a system’s high-level autho-

rization requirements as a Natural Language Policy (NLP) which is reflected within

an access control model as a machine-enforceable Digital Policy (DP). In turn, it

identifies that the model’s evaluation of DPs is managed using a Metapolicy (MP)

which defines priorities and resolves conflicts. (XACML’s combining algorithms

provide just such a metapolicy element.) Within this conceptual arrangement, the

NIST guide allows for rules to be defined through any appropriate computational

language, such as a logical expression (as used in XACML) or an enumeration of

relations (as used in NGAC).

Unlike the other ABAC standards, the NIST guide also considers the process

through which an ABAC system may be deployed within an enterprise. To do so it

focuses on all but the disposal phase of the NIST System Development Life Cycle

(SDLC), illustrated in Figure 2.7 (adapted from [105]).

Initiation

Disposal
Acquisition/
Development

Operations/
Maintenance

Implementation/
Assessment

Figure 2.7: NIST system development life cycle

Within the initiation phase the guide highlights the need to: build a business

case; identify scalability, feasibility, and performance requirements; and develop

operational requirements. For the acquisition/development phase it identifies the

need to: generate business processes; develop or acquire the system; and consider

how it will be relied upon. In the implementation/assessment phase of the SDLC the
16Although this time they are referred to as “functional points”.
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guide indicates the need to consider: caching of attributes; minimizing the number of

attribute sources; and clearly defining interface specifications. Finally, it identifies

the availability of quality data as a consideration for the operations/maintenance

phase of the SDLC.

2.3.6 Controlling Use After Access

Around the time that XACML was being standardised, an extension to access con-

trol was receiving attention and supposedly offering “a promising approach for the

next generation of access control” [143]. (However, as seen in Section 2.3.4, the term

next generation access control was ultimately co-opted for an attribute-based access

control model.) Usage Control (UCON) combines the scopes of access control, trust

management and digital rights management in order to, respectively, support the

authorization of known individuals, the authorization of unknown individuals, and

to perform client-side enforcement of usage. Whilst access control and trust man-

agement are focused on the control of access within the confines of the protection

system, Digital Rights Management (DRM) is focused on maintaining control once

the object in question has been disseminated to the subject. Given the existing de-

mand for a reference monitor to mediate access requests, DRM introduces a specific

requirement for a Client-side Reference Monitor (CRM).

As it was developed when ABAC was first seeing application in distributed access

control, UCON employs a simple form of ABAC for its access control component.

However, it is the overall construction and function of UCON which are particularly

noteworthy, rather than the fact that it makes use of an attribute-based access

control model. The core components of UCON are highlighted within the ABC

model, shown in Figure 2.8 (adapted from [165]), with authorizations (A), obligations

(B), and conditions (C) determining the access and ongoing usage a subject may

have over an object.

UCON’s rights identify privileges a subject may action on an object; however,

these rights are determined by a usage decision function when the access is at-

tempted through the evaluation of attributes, authorizations, obligations, and con-

ditions. Three different types of subject are identified: consumer subjects, who

exercise rights to access objects; provider subjects, who provide objects and hold

certain rights on them; and identifiee subjects, who are identified within objects

which hold privacy-sensitive information. Whilst the research published focuses on

consumer subjects, in reality the rights of related subjects (of all types) may be

relevant to authorization requests on an object.
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(C)

Usage
Decision

Figure 2.8: ABC model components

Firstly, authorizations determine whether the subject is allowed to perform the

requested action on the object; these are determined by evaluating authorization

rules using subject and object attributes. Authorizations may be evaluated before

access is granted (as is normal for access control models), but may also be evaluated

during usage (either continuously or periodically). An authorization may, addition-

ally, require updates to some attributes of the subject or object, with these updates

possible before, during, or after usage. UCON distinguishes immutable attributes,

which cannot be changed by the user’s actions on protected objects, and mutable

attributes which can [144].

In contrast, obligations identify mandatory requirements which a subject must

perform as part of an authorization. As with authorizations, these can be evaluated

before and during usage. However, whilst obligations may require updates to the

attributes of the subject, they cannot affect those of the object. Finally, conditions

are environmental or system-oriented checks which must be satisfied. Whilst these

may be evaluated before and during usage, they cannot affect attributes of either

the subject or the object.

Whilst there are similarities between UCON and NGAC, it is important to note

that common behaviour is achieved differently and common concepts behave dis-

tinctly. Specifically, whilst they both support updating attributes as part of the

authorization process, in UCON this is simply a stated feature whilst in NGAC

this requires the functionality provided by obligations. In contrast, obligations in

UCON may determine initial (or ongoing) access, whilst in NGAC they are enacted

subsequent to access being granted. More fundamentally, however, UCON is con-

cerned with ensuring that a subject’s ongoing access to an object continues to meet
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the authorization policy, requirements placed on the usage, and the environmental

conditions in which the use occurs. In so doing, UCON seeks to prevent authorized

parties from abusing their access.

2.4 Relationships

2.4.1 Friend, of a Friend, of a Friend, of a Friend, ...

As the popularity of Online Social Networks (OSNs)17 grew in the early 2000s,

research into the sharing of resources between members of online communities de-

veloped. Such communities are less formally defined than commercial or military

organisations, and are also far more dynamic in their make-up. Therefore, access

control models grounded in relatively static and centralized concepts (such as secu-

rity levels and roles) were not appropriate for these applications. Whilst initial work

on ABAC was under way at the time, a more intuitive foundation was required and

attributes were not believed to be appropriate for such situations [41]. This alterna-

tive grounding was identified, quite naturally, in relationships – a concept intrinsic

to those applications.

The human race has developed and excelled as a social species, and this is reflected

by the way that our brains develop and operate [55]. Whilst we rely on relationships

with others (such as parents and teachers) for our own development, we also make

significant use of the concept of relationships to comprehend and communicate ab-

stract ideas to others. The use of relationships as the basis for describing (sharing)

interactions is, therefore, intuitive and highly appropriate to access control.

Early work on access control in online communities focused on a single friend re-

lation, and so introduced managed access to resources through the presence of friend

and friend-of-a-friend relationships [120]. This concept was subsequently synthesized

with trust relationships to create an access control model for social networks based

on relationships [44, 45]. Carminati et al. represent a social network as a graph in

which the edges are labelled by relationships (such as friendOf) and all nodes repre-

sent users. Each edge is also labelled with a trust value, indicating the “strength”

of the relationship, as shown in Figure 2.9 (adapted from [44]).

Access Rules in their model determine the access conditions which must be sat-

isfied for a user to be able to access the resources (not represented in the graph) of

another user, the resource owner. Each access condition identifies at least one maxi-

mum length, minimum strength chain of relations of a specific type which must exist

17Within the access control literature social networks are also referred to as Web-Based Social Networks (WBSNs)
and Social Network Systems (SNSs). However, for consistency I shall limit myself to referring to OSN.
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Figure 2.9: OSN subgraph

between the requestor and another user. This other user does not have to be the

resource owner who defines the access condition, it can, instead, be any user within

the graph, or a wildcard indicating no specific user is specified. Therefore, for exam-

ple, a resource owner may require a chain of friendOf relationships with maximum

length 3 and minimum strength 0.5 exist between the requestor and themselves,

whilst also requiring a chain of colleagueOf relationships with maximum length 2

and minimum strength 0.8 exist between the requestor and a third party.

Around the same time, Carminati et al. produced an OSN access control model

based on semantic web technologies [43]. Unlike the approach just described, their

semantic web approach supports an OSN graph containing both users and resources.

The OSN’s users, resources, relationships and actions are modelled within an ontol-

ogy to create a Social Network Knowledge Base (SNKB). This enables automated

processing and inference based on the hierarchy of semantics.

Security policies (for access and administration) in this semantic model are en-

coded using Semantic Web Rule Language (SWRL) and are stored in another on-

tology called the Security Authorization Knowledge Base (SAKB). Thereby, autho-

rizations and prohibitions may be defined for subjects attempting to act on objects.

Specifically, the policy’s security rules contain an antecedent and a consequent.

Rule antecedents comprise a conjunction of atoms derived from the SNKB, and

specified using Web Ontology Language (OWL). Rule consequents contain either an

authorization or prohibition for a particular action. Access requests are granted

if the antecedents of applicable authorization security rules are satisfied and the

antecedents of applicable prohibition rules are not satisfied.

The atoms supported within their security rule antecedents are:

∙ C(𝑥) – which holds if 𝑥 is an instance of the class or data range C.

∙ P(𝑥, 𝑦) – which holds if 𝑥 is related to 𝑦 by property P.
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∙ sameAs(𝑥, 𝑦) – which holds if 𝑥 and 𝑦 are the same object.

∙ differentFrom(𝑥, 𝑦) – which holds if 𝑥 and 𝑦 are different objects.

∙ builtIn(𝑟, 𝑥, . . . ) – which holds if built-in relation 𝑟 holds on the arguments

𝑥, . . . .

The first of these constructs enables rules to apply to specific resource types, e.g.

Photo(?targetObject), whilst the second can be used to require specific direct

relationships exist, e.g. Friend(?owner,?targetSubject).

Whilst these models enable relationships to be used to define access control poli-

cies, the policy languages are limited. Relationships are principally based on a

single relation (whether a direct relation between two entities, or a chain). The

semantic model does enable a rule to be constructed from multiple conjoined atoms

referring to different direct relationships. However, specific identifiers or variables

must be used for each object, and so this approach can only be employed for short

paths which are pre-determined (i.e., passing through specific objects). More flexible

relationship-based policies were needed to support the more diverse social network

architectures envisaged.

2.4.2 Relationship-Based Access Control

In 2011, Fong introduced a Relationship-Based Access Control (ReBAC) model with

a far richer policy language than those seen before [82].18 Fong’s work specifies a

policy for each resource, where a policy is specified using multi-modal logic. The

rationale for using a modal logic is that each relationship specifies an accessibility

relation between users, which is used to provide semantics for the model’s policies.

This richer language enables Fong to encode far more complex combinations of

relationships into ReBAC’s policies, thus allowing more diverse architectures and

applications to be supported.19 The policy syntax is specified by the grammar

𝜑, 𝜓 ::= ⊤ | a | ¬𝜑 | 𝜑 ∨ 𝜓 | ⟨𝑖⟩𝜑

This grammar enables policies to be defined for direct relationships, where 𝑖 is a re-

lationship identifier, as well as chains of relationships.20 The grammar also supports

negation and disjunction, which in turn enable several other forms to be derived

(including conjunction, derived from a combination of negation and disjunction).

18Fong et al. had previously generalised the Facebook access control model using a similar construction, but this
was less well developed [83].

19Fong utilised an electronic health records case study in presenting this language.
20Within the grammar ⊤ is always true and a asserts the accessor is the owner.
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Using this grammar Fong’s policies can encode combinations of multi-relation paths

between the accessor and either the owner or arbitrary third parties.

A social network in Fong’s ReBAC model is a graph of binary relations where

all of the vertices are users. Each resource (not in the graph) will have an owner,

and will also have a policy predicate, formed from a modal formula, which returns

a Boolean value if the resource’s policy is satisfied between the accessor and the

owner.21 The access context of the social network is the configuration of the users

and relationships. This context can be modified through a state transition which

may add relationships (using the PUSH rule), remove relationships (using the POP

rule), or replace relationships (using the EDGE rule).

Whilst the initial ReBAC work makes use of multi-modal logic, in 2012 Bruns et

al. employ hybrid logic [41] to increase the language’s richness further. The hybrid

logic grammar, shown below, has some similarities to the multi-modal logic one.

Direct and indirect relationships are supported in the same way, as is negation.

𝑡 ::= 𝑛 | 𝑥

𝜑 ::= 𝑡 | 𝑝 | ¬𝜑 | 𝜑1 ∧ 𝜑2 | ⟨𝑖⟩𝜑 | ⟨−𝑖⟩𝜑 | @𝑡𝜑 | ↓ 𝑥𝜑

There are several small changes introduced, conjunction is now a defined language

component whilst disjunction is derived, and traversal against the direction of a

relationship is also defined through −𝑖.22 More significantly, by using hybrid logic

this revised version of ReBAC may bind variables within policies, ↓ 𝑥𝜑 binds the

current node to variable 𝑥, and may “jump” to specific nodes, @𝑡 jumps to a node

named by 𝑡. This allows policies to be defined requiring combinations of multi-

relation paths between pairs of, arbitrary or specific, users.

Bruns et al. define an archetypal access control model using this hybrid logic

policy language but continue to limit it in several ways. Firstly, the set of nodes

they support only contains principals (users), and not their resources. Secondly,

they limit the free variables to own and req, for owner and requester respectively,

and determine satisfaction between them. Several more complex policies are illus-

trated, however, with the use of nominals, to identify specific users, and graded may

modalities, such as ⟨𝑖⟩𝑛𝜑 to require the current node to have (at least) 𝑛 distinct

𝑖-relations with other nodes from where 𝜑 holds.

21Whilst the grammar can support policies not terminated at the owner (e.g., ⟨spouse⟩⊤, which simply requires
the accessor to have a spouse relation with some user) Fong’s satisfaction semantics are defined between the accessor
and the owner.

22Within the grammar 𝑛 is a nominal, 𝑥 is a variable, and 𝑝 is a proposition.
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2.4.3 U2U and U2R

In 2012, Cheng et al. also focused on the use of relationship-based access control

within OSN. Whilst their initial work only considered User-to-User (U2U) relation-

ships [52], this was swiftly followed by work which also allows for the specification

of User-to-Resource (U2R) relationships [51].

Cheng et al.’s U2R relationship-based access control model comprises six basic

components (as illustrated in Figure 2.10,23 adapted from [51]): users; sessions; re-

sources; policies; a Social Graph (SG); and a Decision Module (DM). The social

graph contains those users and resources which are part of the OSN, along with the

relations between these entities. The resources concerned may be objects (O), poli-

cies (P) or user sessions, and the resource relations are not limited to user ownership

as had been the convention up to this point.

When users log into the OSN they establish sessions and may, subsequently,

request access to act on target entities (whether users or resources). As sessions

are considered resources, and so may themselves be targeted by actions, Cheng et

al. distinguish actions which may be made against offline target users, i.e. those

without a session, and online target users with a session.

Accessing
Users

𝑃𝐴𝑈

𝑃𝐴𝑆

Accessing
Sessions

Decision
Module (DM)

𝑃𝑆𝑌 𝑆 𝑃𝑇𝑈

𝑃𝑇𝑆

Target
Users

Target
Sessions

𝑃𝑂 Objects

𝑃𝑃 Policies
Social Graph

(SG)

Targets (T)

Request Access

Figure 2.10: U2R model components

The U2R model supports numerous policy components, many of which are un-

der individual control. The centralized System-specified Policy (𝑃𝑠𝑦𝑠) includes an

authorization policy which applies to all requests, and also includes conflict reso-

lution policies for dealing with issues that occur when evaluating the many U2R

23Within Figure 2.10 dashed lines indicate inputs, solid lines without heads indicate attachment, solid lines with
a single arrowhead indicate the request evaluation process, solid lines with multiple arrowheads indicate 1-to-n
mappings (where the double arrowhead indicates the 𝑛 end), and solid lines with a single circle head indicate
constraints.
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policies. Policy conflicts which arise may be resolved using disjunction, conjunction

or prioritisation.

As well as these system-specified policies, the U2R model includes six other types

of policy:

∙ Accessing User Policy (𝑃𝐴𝑈) – a policy defined by a user to constrain what they

themselves can access.

∙ Target User Policy (𝑃𝑇𝑈) – a policy defined by a user to constrain what actions

can be performed on them.

∙ Accessing Session Policy (𝑃𝐴𝑆) – a policy defined by a Controlling User (CU)

to constrain what their sessions can access.

∙ Target Session Policy (𝑃𝑇𝑆) – a policy defined by a CU to constrain what

actions can be performed on the controlled sessions.

∙ Object Policy (𝑃𝑂) – a policy defined by a CU to constrain what actions can

be performed on the controlled objects.

∙ Policy for Policy (𝑃𝑃 ) – a policy defined by a CU to constrain what actions can

be performed on the controlled policies.

Each of U2R’s authorization policies specifies an action which is authorized if an

associated graph rule is satisfied in the social graph. The graph rules, as illustrated

in Figure 2.11, identify a starting node and a path rule, comprising one or more

path specs which are combined using conjunction, disjunction and negation. Path

specs, in turn, consist of a path of relations, based on regular expressions, along

with a hopcount. Whilst Kleene operators (⋆ and +) are allowed in these paths,

the hopcount limits the distance (i.e., the number of relations) over which a path of

relationships may be identified.

graph rule

starting node path rule

¬ path spec ∧/∨ ¬ path spec . . .

path hopcount

Figure 2.11: U2R graph rule structure

When evaluating requests, the decision module employs a path checking algo-

rithm to evaluate each relevant path spec within the social graph, beginning from

the appropriate starting node (which may be defined as the requester, target(s), or

controlling user). The (destination) evaluating node depends upon the policy and

58



CHAPTER 2. BACKGROUND

whether the requester is the starting node. If the policy is 𝑃𝑠𝑦𝑠 or 𝑃𝐴𝑆 the evalu-

ating node is the requester; for other policies, if the requester is the starting node

then the evaluating nodes are a set including the target(s) of the request and the

controlling user of the policy, otherwise the evaluating nodes are just the target(s)

of the request. The results of checking each path spec are combined within a path

rule to determine the outcome for each of the relevant policies’ graph rules. These

outcomes are then composed across the relevant authorization policies using the

conflict resolution policy to produce a final result.

2.5 Model Internals

So far in this chapter I have described significant developments in the field of logical

access control, highlighting key concepts upon which access control may be grounded

(such as the use of roles, attributes and relationships) and important model imple-

mentations (such as the access matrix, MLS, RBAC, XACML, and ReBAC). It

should be clear from the discussion so far, that a protection system may employ

various types of information to inform an authorization decision. Further, there are

multiple ways in which this information may be structured and processed as part of

the evaluation of the system’s authorization policy. A comparison of the internals

of some of the existing models is shown in Table 2.2, and discussed in the following

paragraphs.

Access
Matrix

MLS UNIX RBAC XACML ReBAC

Grounding Users Levels Security
Principals

Roles Attributes Relationships

Data
Structure

Matrix Lattice ACL Sets Tuples Graph

Evaluation
Algorithm

Matrix
Lookup

Ordering
Check

ACL
Lookup

Set
Membership

Policy
Algebra

Policy
Algebra

Algorithm
Input

Subject and
Object

Subject’s
Level and
Object’s
Level

Security
Principal
and Object

Activated
Roles and
Permission
Assignment

Tuple
Collection
and Policy
Rules

Graph
Relations
and Policy
Logic

Table 2.2: Comparison of existing models’ internals

Access Matrix In the access matrix model, the privileges granted to subjects on

objects are encoded within a matrix (as the name suggests). The matrix itself is

a dynamic data structure; changes may be made to privileges as described in Sec-

tion 2.1.3. However, the information required for the evaluation of an authorization

request is encoded completely in the matrix at the time of request evaluation. The
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evaluation process itself is a simple lookup of subject and object in the matrix, with

no complex processing required.

MLS In contrast, in multi-level security subjects and objects are assigned levels

which are themselves defined within a lattice. The lattice of levels is static, and

whilst new subjects and objects may be introduced to the system, their security lev-

els are managed centrally (as described in Section 2.1.4). The information required

for the evaluation of an authorization request is encoded completely in the lattice of

levels and the labels of subjects and objects. The request evaluation process involves

an ordering check of the subject’s level versus the object’s level in the lattice.

UNIX UNIX employs access control lists, one per object, to store the permissions

(read, write, and execute) granted to three security principals (“owner”, “group”

and “other”). The access control list data structure is static in size, as the number

of principals is fixed, but permissions may be changed within the data structure

using the write permission. The request evaluation process is performed in two

steps. Firstly, a security principal is matched to the request by checking whether

the subject is the object’s “owner”, or, if not, whether the subject is a member of the

object’s “group”. If the subject has neither of these relationships with the object,

then the “other” security principal applies. The second step involves a simple lookup

of the matched (request-time) security principal in the access control list.

RBAC As described in Section 2.2.1, in RBAC roles are employed to abstract per-

mission assignment away from subjects. The numerous assignments within RBAC

(including users to roles and permissions to roles) can, fundamentally, be repre-

sented through sets. These sets are dynamic data structures, with the activation of

roles within sessions being the most dynamic aspect. The request evaluation process

involves a chain of set membership checks through which a subjects activated roles

are identified and the permissions assigned to these roles are determined.

XACML Within the XACML model it is the evaluation of attributes against pol-

icy rules using a policy algebra which determines the authorization decision. This

policy algebra not only determines how to process individual rules, it also identi-

fies how decisions within policies and policy sets may be combined (as described in

Section 2.3.3). Subjects and objects may have values for a wide range of attributes,

where each attribute and value form a tuple (or key, value pair).
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ReBAC In a similar way to XACML, ReBAC (as described in Section 2.4.2) em-

ploys a policy algebra to evaluate authorization policy. As I have described, the

fundamental difference is that ReBAC employs relationships rather than attributes

as the grounding for its protection system. The (social) graph of relationships be-

tween users in ReBAC is the dynamic data structure which the access control model

relies upon. Each policy rule (predicate) defines a path of relationships which much

be satisfied for the accessor to be granted.

RPPM In this thesis I shall introduce the RPPM model of access control. This

relationship-based access control model employs a graph of relationships as its core

data structure (similar to ReBAC), a two-step request evaluation process deter-

mining security principals at request-time (similar to UNIX), and implementation-

specific security principals to abstract permission assignment away from subjects

(similar to RBAC).

2.6 Summary

When compared to many scholarly endeavours, the development of logical access

control is relatively young. That being said, interest in logical access control has

existed throughout a considerable portion of the history of digital electronic com-

puters, indicating its significance since multi-user sharing computer systems where

developed. During that time there have been a variety of conceptual frameworks

used to ground the designs of access control models. I have discussed privileges,

capabilities, security levels, roles, attributes, and relations within this chapter. It

is important to recognise that there are some natural constraints which flow from

using each of these foundations, but that the design of the access control model

determines the extent to which these constraints are limiting, and what additional

constraints affect the model’s use.
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Chapter 3

Motivation

It should be clear from Chapter 2 that authorization is a key security service within

modern computing environments and that there is an existing range of access control

models available to implementers. Whilst a range of choices does exist, it should

also be clear that it commonly takes time to develop and refine the concepts on

which access control models are based. Throughout their development and use,

even fundamental principles (such as what constitutes mandatory access control)

have seen varied interpretation and debate, often driven by differences in perspective.

Given the increasing ubiquity of computing, and the increasing significance of

information and cyber security, there is a general need for security services to support

the growing use of technology in existing, and new, applications. Each of the access

control models introduced in Chapter 2 was developed to achieve specific goals based

on a particular body of knowledge and with particular use cases and constraints in

mind. As each new model has been introduced this has, therefore, been with the

intention of addressing limitations in existing models or to accommodate richer types

of access control policy. I continue that trend in this thesis. Specifically, I believe

that relationship-based access control may be applied far more broadly than prior

work has considered, and that the use of relationships is more intuitive than other

foundations for a range of topical environments.

3.1 The Current Norm

Whilst recently both attribute-based access control (ABAC) and relationship-based

access control (ReBAC) have been undergoing considerable active research, many

computer systems and organisations are still primarily using access control lists

(ACLs) with privileges granted to groups and individual users. Whilst mandatory

access control implementations are now commonly supported on UNIX and Linux
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operating systems (as detailed below), these are primarily operating pre-configured,

targeted profiles which protect specific system components and services rather than

user data as a whole. Role-based access control (RBAC) is more prevalent in web

applications and cloud services, but these equally place significant reliance on access

control lists.

Microsoft Windows In Windows the underlying authorization and access control

process employs access control lists to provide discretionary access control [130, 133,

135]. This is the primary access control model employed by users and administrators

of Microsoft Windows. Two additional mechanisms are currently also supported, but

I believe are less widely used and understood.1 Authorization Manager, available

since 2003, can enforce a role-based access control model [132]; however, this is

deprecated in Windows Server 2012 and so will be removed in some future release

of the operating system [131]. Dynamic access control (DAC), which implements

an attribute-based access control model, was introduced in Windows 8 and Windows

Server 2012 [134]. Whilst these features are installed by default, they cannot be

implemented outside of an Active Directory domain and so can only be used in

enterprise networks.

UNIX/Linux Both UNIX and Linux make use of UNIX file system read, write and

execute permissions which are specified for: the object’s “owner”, identified by user

id (uid); members of the object’s assigned “group”, identified by group id (gid);

and everyone else (known as “other” or “world”). Individual subjects are mapped

to one of these three principals at the time of request evaluation. In this way,

whilst each object must still be enumerated, the enumeration of subjects is limited

to just these three security principals. However, the root user (identified as uid 0)

bypasses authorization checks and so is able to perform any action on any object,

no matter the defined permissions. Since this initial, limited, security model was

introduced, individual “flavours” of UNIX and “distributions” of Linux have added

their own security features in order to support more robust models. UNIX extensions

and Linux Security Modules (LSM) enable such additional security features to be

“plugged in” through loadable modules:

∙ UNIX extensions – various modules support various extensions [86]:

– BSD file flags – override specific UNIX permissions to prevent certain ac-

cesses by all users.
1Whilst articles identifying the existence and basic configuration of these mechanisms is available online, I have

been unable to find any articles or case studies indicating their actual use outside of Microsoft IT.
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– POSIX access control lists – provide more fine-grained control over the

permissions granted or denied to users or groups.

– POSIX MAC modules – provide support for targeted or general policies

using labels.

∙ Linux Security modules (LSM) – various such modules exist implementing

mandatory access control models:

– SELinux – is able to monitor or enforce configured policies using labels.

SELinux is enabled by default with a targeted policy (i.e., covering only

specific processes) in CentOS, Fedora and Red Hat [46, 74, 98].

– AppArmor – is able to monitor or enforce configured policies using file

paths and is enabled by default in Ubuntu [181].

– Smack – is able to enforce configured policies using extended attributes

and is enabled by default in Tizen [179].

Apple MacOS Apple’s OS X contains several security subsystems due to the fact

that it comprises several kernel components. The lower-level Mach kernel component

provides a port-based interface to the CPU and memory, which it protects with port

rights; these are capabilities required to grant permission to send or receive through

the port [11, 12]. The upper-level BSD kernel component provides the file system,

networking and UNIX security model. Through these components OS X gains [13]:

∙ Basic user credentials – if the caller is running as root, they bypass further

authorization checks. Additionally, in OS X any member of the admin group

can perform “almost all functions the root user can”.

∙ Sandbox entitlements – OS X apps are limited to specific file system and net-

working resources no matter the permissions their processes may have. This

sandboxing is provided by a mandatory access control framework, based on

TrustedBSD [178].

∙ POSIX access control lists – OS X v10.4 and later enables users or groups to

be granted or denied specific permissions on individual files and directories.

∙ UNIX permissions – read, write and execute permissions are specified for the

owner, the group, and all others on each file system object.

∙ BSD file flags – when file flags are set they override specific UNIX permis-

sions and so prevent certain file system operations such as backing up, moving,

renaming, and over-writing objects.
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Android Android is based on the Linux kernel and makes use of the file system read,

write and execute permissions that this kernel provides [10]. To protect the system’s

core libraries, runtime and apps, Android mounts the system partition as read-only.

In addition, Android implements SELinux’s mandatory access control model which

is configured with everything in enforcing mode since Android 5.0 (L) [9].

Apple iOS Whilst iOS is based on Apple’s OS X, and so implements the same un-

derlying permissions model as described above, the app sandboxing (i.e., mandatory

access control) constraints are the primary limiting factor due to the configuration

of iOS devices [13].

Web Applications and Cloud Services Numerous web-based application and infras-

tructure platforms are available to modern users, and many base their protection

systems on access control lists with permissions assigned to users and groups. Some

may even implement a simplified version of role-based access control (usually where

the roles are pre-defined and administration-related, implemented without any hi-

erarchy). For example:

∙ Atlassian Cloud – (used for software development and collaboration) supports

access control lists for users, groups, and pre-defined project roles [17].

∙ Dropbox Business – (used for data sharing) supports sharing of folders with

groups, where each group is assigned to either an “editor” or “view-only”

role [71].

∙ Intuit QuickBooks – (used for book-keeping) also supports access control lists

for users and a special “master administrator” role [153].

∙ Salesforce – (used for customer relationship management) supports access con-

trol lists for users and groups, and also supports role-based access control with

a role hierarchy [159].

In contrast, social networks like Facebook typically employ relationship-based access

control (ReBAC) models, often based on a single type of relation between user

entities (commonly friend) and another between resources and the controlling user

(commonly owner) [83].
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3.2 Existing Issues

3.2.1 List Management

Whilst access control lists are still commonly employed (as per Section 3.1) due to

their simplicity, their use continues to suffer from a significant burden of admin-

istration [77]. The introduction of new users into a system requires an associated

assignment of permissions on existing protected resources. Equally, the introduc-

tion of a new resource requires the assignment of permissions to appropriate existing

users. The same issues arise when users move from one part of an organisation to

another.

It was these issues which, in part, motivated the proposal and development of role-

based access control [80]. Nevertheless, ACLs have continued to be used. Modern

implementations of ACLs commonly make use of groups and inheritance as ways to

partially reduce the burden of managing file system permissions in such scenarios [13,

133]. Whilst these features remove the need to undertake a considerable number of

administrative actions in the general case, the administration of ACL permissions

in any other scenario remains burdensome.

Whilst a greater adoption of more easily managed models is the true solution,

there are a number of likely reasons why significant use of ACLs has perpetuated:

they are conceptually simple; they potentially give an illusion of greater control by

directly linking users (or groups) to resources; and there are few operating systems

in mass use today which are not built on the foundations of those initially created

decades ago. Whatever the cause, the ongoing limitations of ACLs have led man-

agement products to be developed (e.g., [152]), wrapping more intuitive user tools

around the model with the goal of easing some of the associated administrative

burden.

An intuitive, easily managed access control model continues to be needed to

replace access control lists. Whilst role-based access control was meant to be that

model, the issue of role explosion (discussed next) has limited the perceived benefit.

3.2.2 Role Explosion

Role-based access control was motivated by the desire to “articulate and enforce

enterprise-specific security policies and to streamline the typically burdensome pro-

cess of security management” [77]. RBAC’s ability to support a range of useful

enterprise policy configurations (as discussed in Section 2.2.3) alone makes it far

superior to access control lists. However, it is the simplification of administration
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which perpetuated as the main motivating factor [163].

RBAC’s “abstraction” of permission assignment to roles, rather than users, alle-

viates some of the administrative burden of ACLs. Whilst direct assignment may

give an illusion of control, in reality the abstraction behind roles is a far more pow-

erful construct. The intention of role abstraction is that the number of roles should

be far less than the number of users in a system. As noted by Sandhu et al. in [163]:

“Administration of RBAC is very important, and must be carefully con-

trolled to ensure that policy does not drift from its original objectives. In

large enterprise-wide systems, the number of roles can be in the hundreds

or thousands, and users in the tens or hundreds of thousands.”

RBAC enables policies to be defined for roles, which are fewer in number than users,

thus requiring less effort to manage. However, as indicated by Sandhu et al. there

may still be a huge number of roles in practice. In some cases an “explosion” of

roles occurs due to the need to distinguish specific contextual constraints that must

be considered alongside a particular base role. Hilchenbach highlighted this using

the example of probation periods for bank tellers when reporting observations from

early implementations in 1997 [101]. I provide two, related, motivating examples of

the inadequacy of roles to support context.

Wide-Acting Roles A commonly cited example, which is related to Hilchenbach’s,

demonstrates the issue of roles which are too wide-acting. This example considers

a Doctor role within a healthcare record management system [20, 21, 48, 62, 63,

82, 143, 157]. Whilst the general statement that a Doctor role should have access

to patient healthcare records is likely considered true, in reality many security re-

searchers do not desire that any member of the Doctor role should have access to all

healthcare records. There may be specific healthcare records, such as those of heads

of state or heads of government, which it may be deemed necessary to have more

restricted; but more generally, for patient privacy, many would only wish access to

their healthcare record by a Doctor who is directly treating them, or (legitimately)

advising on such treatment. It is this relationship context which is lacking in role

definitions.

Conflicting Roles The second example demonstrates an issue which arises when the

same user may occupy different roles in different contexts. This example considers

a PhD student enrolled as a student on a postgraduate course, and also working as

a teaching assistant on an undergraduate one [63]. As a member of the university
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department’s Student role and Teaching-Assistant role, issues arise when the PhD

student attempts to read coursework of another student. Obviously, I would wish

the request to be granted if the coursework was submitted to the undergraduate

course, but denied if it were for the postgraduate course. However, it is unclear

from RBAC alone what should happen in the case of such a conflict. In reality, the

outcome (grant or deny) would depend on the specific implementations of the model

and the policy, with both outcomes possible given particular implementations. Once

again it is the relationship context which is lacking.

Whilst the parameterization of roles offers a potential means of resolving such is-

sues [88], this adds further to the role explosion already highlighted. Certainly hav-

ing a Student-for-Course-X role and also a Teaching-Assistant-for-Course-Y role (along

with their counterparts Student-for-Course-Y and Teaching-Assistant-for-Course-X)

would avoid the conflict previously identified, but this could rapidly require a large

number of roles to accommodate the necessary options in a university. It is less

clear how the Doctor role should be partitioned as part of parameterization, but it is

likely that significantly more roles would result whatever approach were employed.

Given the desire that RBAC should ease administrative burden, the issues associ-

ated with role explosion mean that an intuitive, context-aware access control model

is needed. Whilst some would say that attribute-based access control is meant to be

that model, it is not appropriate for all applications (as discussed next) [41, 63, 85].

3.2.3 Attribute Applicability

The fact that attribute-based access control is able to support multi-factor deci-

sions is a significant development over the role-specific viewpoint of RBAC (the key

features of which ABAC can implement using a role attribute). ABAC provides a

versatile basis on which authorization policy may be defined, using attributes which

are of particular relevance to the system in question. Specifically, ABAC enables

policy to be defined with respect to one or more attribute values such that entities

may be provisioned into a system without referencing or altering the protection pol-

icy. Further, this avoids the need for capabilities to be directly assigned to subjects

and so allows the evaluation of attributes at request time.

Whilst the generality of ABAC makes it suitable for a wide variety of applications,

it is not believed to be the most appropriate model for every environment [41, 63, 85].

Sharing in social networks can be more easily articulated through relationships than

attributes, and, as indicated in Section 2.4.1, the fact that the human race is such
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a social species means that we use relationships to comprehend and communicate

all manner of abstract ideas. I, therefore, share the view of Fong and Siahaan that

“in many emerging application domains” an access decision “depends not on the

intrinsic attributes of the accessor, but on the relationship between the accessor

and the owner” [85].2 Instead, I believe that relationship-based access control has

great utility – a fact further evidenced by the breadth of research in this field3 and

recently acknowledged by Ahmed et al. when they stated that both ABAC and

ReBAC “have considerable applications in industry, and are anticipated to continue

being important for the foreseeable future” [3].

Ahmed et al.’s recent work comparing generic types of ABAC and ReBAC mod-

els has determined that both equivalences and non-equivalences exist between these

models [3]. Most notably in their comparison, they identify that ABAC models

which support various types of attribute value4 are more expressive than pure Re-

BAC models, which do not themselves make use of attributes (on either nodes or

relationships). However, they also identify that for ABAC to express a “node dy-

namic” ReBAC model, i.e. one where the entities and relations are able to change

through the life of the model, then the ABAC model must support attributes with

values from a countably infinite set of entities.

Further work is required on ABAC to determine the real-world implications this

may have. It may be that this simply impacts formal analysis, and that from a purely

analytical perspective ABAC may be the more expressive model. However, given

that it is the relational context which is missing in the RBAC scenarios discussed in

Section 3.2.2, it seems counter-intuitive to encode these relationships within complex

attributes as part of ABAC when they may be treated simply and natively in a

ReBAC model. In the future ABAC and ReBAC may be seen as simply different

perspectives on a single access control problem, with particular benefits of usability,

intelligibility, expressiveness, computability, efficiency of storage, and efficiency of

computation determining which of the perspectives (or their implementations) is

particularly relevant for representing a system at any moment in time.

3.2.4 Relationship Context

As with ABAC, relationship-based access control enables authorization policies to

be defined independent of the specific participating entities [105]. Therefore, the

2As this thesis will demonstrate I, further, believe that relationships with, and between, resources are also highly
relevant to access decisions.

3For example, with regard to: OSN, [5, 41, 43, 44, 45, 51, 52, 83, 104, 120]; more general computing, [60, 62, 63,
64, 65, 82, 84, 85]; policy languages, [41, 85, 128, 194]; administration, [49, 64, 157, 174]; implementation, [157]; and
other models, [3, 21, 50, 156].

4Specifically, values representing identifiable entities, non-entities, and structured combinations of the two.
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addition (and deletion) of entities and relationships does not require an associated

change in policy to impact the decisions which result from authorization requests.

This significantly alleviates the administrative burden associated with access control

lists. Further, the use of environment-specific relationships enables the appropriate

interactions to be represented whilst avoiding “tedious role parameterization” [84].

Whilst there are a number of existing relationship-based access control models,

each has limitations which prevent their broader application. Here I summarise the

key features and limitations of five significant ReBAC models. These limitations

motivate the features of the general computing relationship-based access control

model which is the topic of the remainder of this thesis.

Carminati et al., 2006 [44] This simple social network model uses a graph which

contains users connected by relations of various types. The graph does not support

resources, and so the model assumes ownership is the single (extra-model) user-

resource relation. Another limitation of this model is that its policy access conditions

may only identify direct (or indirect) chains of relationships of a single relation

type. It is, therefore, not possible to define policies over multi-relation chains.

Whilst access to objects is controlled by positive access rules (comprising disjoint

sets of conjoined access conditions) which must be satisfied for access to be granted,

negative rules are not supported. Finally, requests are evaluated solely between the

requestor and the resource owner.

Carminati et al., 2009 [43] This semantic web model is also limited to social net-

works, but the graph for this model supports both users and resources. The model

supports various types of relationships between all combinations of users and re-

sources. In addition, the policy security rules may be authorization rules or prohi-

bition rules, with each type of rule containing a conjunction of atoms, as described

in Section 2.4.1. However, as atoms can reflect at most a single relation between

two object nodes, paths of relationships must be carefully constructed using dis-

tinct atoms with common object labels or variables. Whilst variable relationship

type paths may be defined, the need to identify both objects involved in each di-

rect relation (by variable, if not specifically by label) limits the policy language

to pre-determined paths. Requests are evaluated between the target subject and

the target object, but individual security rules are evaluated between the contained

atoms’ objects.
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Fong (and Siahaan), 2011 [82, 85] and Bruns et al., 2012 [41] The ReBAC model

introduced by Fong (and Siahaan) and developed by Bruns et al. is mostly presented

in terms of social networks; however, they have also demonstrated its use for the

sharing of healthcare records. The model’s graph is limited to users and, as with

Carminati et al.’s 2006 model, it is assumed that ownership is the single (extra-model)

user-resource relation. The logic-based policies (originally modal logic and later

hybrid logic) support multiple chains of different relations joined using conjunction,

disjunction and negation. When hybrid logic is supported, these policies also allow

the binding of variables to user nodes. Whilst the grammar is able to define chains

between the requestor and arbitrary third-parties, the request processing requires

the policy to be satisfied between the requester and the resource owner. A further

limitation of the ReBAC model is that a policy must be defined for (and then is

stored with) each resource individually.

Cheng et al., 2012 [51, 52] Cheng et al.’s U2U and U2R relationship-based access

control models are, once again, focused on social networks. Whilst the U2U model

graph is limited to users, the U2R model graph also supports three kinds of re-

sources: objects; policies; and user sessions. The U2R model supports any relations

amongst the users and resources, making this the most flexible graph yet. Cheng et

al.’s policy language is based on a path of relations constructed using regular expres-

sions. However, whilst the Kleene operators are supported, the lengths of satisfying

paths are limited by a hopcount. It is claimed that such restrictions are appropriate

in social networks because of the “six-degrees-of-separation” phenomenon, which

means the diameter of a social network is very small (compared to the number of

nodes it contains); such claims do not apply for more general applications. The path

specs (paths and hopcounts) are joined using conjunction, disjunction and negation

(much like the chains in Fong’s ReBAC) to produce a path rule which is associ-

ated with a starting node. Evaluation of the resulting path rule requires satisfaction

between the starting node and each of the evaluation nodes (see Section 2.4.3 for

information on how these are determined). However, Cheng et al. do not allow

cycles when satisfying path rules in the social network. There are seven distinct

policies (system-specified policy, accessing user policy, target user policy, accessing

session policy, target session policy, object policy, and policy for policy) which are

enforced within the U2R model, which apply to a request depends on the requester

and the resources targeted, as described in Section 2.4.3.

Whilst these relationship-based access control models introduce a variety of useful
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concepts, each limits the graph (its nodes or relationships) or the policy language

(use of multiple relationships in a chain or the length of such chains) in a manner

which prevents it from being an effective alternative to ABAC in more general

computing applications.

3.3 Summary

Whilst modern computer systems still make considerable use of early access control

models, where newer models are available they provide significant benefits. However,

whilst newer models are introduced with the intention of addressing limitations

in existing models, this does not mean that they are without their own issues or

are the best choice for all environments. Given the issues I have highlighted in

Section 3.2, I believe (as do others) that there are opportunities for developments

in relationship-based access control. I have, therefore, been motivated to develop a

relationship-based access control model which is more flexible in its graph and policy

construction, such that it can provide: less burdensome administration than access

control lists; a range of policy configurations without the role explosion of role-

based access control; more intuitive relation-driven sharing to suit applications less

appropriate for attribute-based access control; and a broader range of applications

than the existing relationship-based access control models. The remainder of this

thesis describes that model.
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Chapter 4

RPPM0

The base RPPM model (RPPM0) is designed to address many of the concerns dis-

cussed in Section 3.2. As with other relationship-based access control models, the

central component of the RPPM model is a labelled graph, the system graph, in

which nodes represent the system’s entities and the labelled edges represent rela-

tionships between them.

The functionality I will introduce throughout this chapter instils desirable prop-

erties in RPPM:

∙ Generality – RPPM’s system graph supports nodes representing any concrete

and logical entity types. System-specific entity types may be used as required,

with logical entities able to give context to concrete entities.

∙ Abstraction – RPPM uses paths of edges in the system graph to identify se-

curity principals to which permissions are associated. This abstraction eases

administration in a similar way to that of roles in RBAC; it also enables the

content and arrangement of the system graph to be changed independently of

RPPM’s policies.

∙ Conciseness – RPPM’s access control policy language and rule structure is de-

signed to minimise RPPM’s components, avoiding duplication and waste, whilst

maintaining granularity and robustness. Amongst other things this allows rules

to be defined which can apply to many (or even all) objects and actions, further

easing the administration of the model.

∙ Versatility – RPPM’s access control policy may be defined by requiring the

existence of a path of edges between the subject and the object, by forbidding

the existence of such a path of edges, or both.
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∙ Completeness – RPPM is able to guarantee a single authorization decision when

a conflict resolution strategy and default decisions are employed.

Much of the functionality of the RPPM0 model described here has previously been

published, in conjunction with Jason Crampton, in [62, 63].

4.1 Overview

4.1.1 Grounding

The RPPM model is designed as a general model for access control, utilising rela-

tionship information in order to make authorization decisions. The generality comes

from the model’s ability to support whatever entity and relationship types are neces-

sary to describe a particular system at the desired level of detail. Abowd et al. define

the term context to refer to “any information that can be used to characterize the

situation of an entity” [2]. As well as concrete entities, such as users and resources,

RPPM’s nodes can also represent logical entities with which other entities are asso-

ciated. These logical entities (and their connecting relationships) can be employed

to give context, or some system-specific grounding, to the concrete entities. For

example, in the case of a medical records management system we may have concrete

entities representing patients, doctors, healthcare records and medicines; addition-

ally we may have logical entities representing medical cases, healthcare teams and

research projects.

4.1.2 Request Evaluation

Request evaluation in the RPPMmodel is a two-step process, as shown in Figure 4.1,

where first I compute principals and subsequently compute authorizations. This

two-step request evaluation process is inspired by UNIX, which first determines the

relevant principal (from “owner”, “group” and “other”) and then authorizations

(from the permission mask of the object) [57]. Unlike UNIX, however, RPPM does

not constrain a modelled system to a particular set of principals.

Request
Compute
Principals

Compute
Authorizations

Decision

Figure 4.1: Request evaluation processing overview

The RPPM model employs two distinct policies to support the two-step request

evaluation process: the principal-matching policy and the authorization policy. The

purpose of the principal-matching policy is to determine which security principals
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are relevant to an access request. The purpose of the authorization policy is to

determine whether the principal is authorized to perform the requested action.

A security principal is, therefore, the central component in RPPM’s policies and,

in line with the definition given by Saltzer and Schroeder, is the “entity in a computer

system to which authorizations are granted” [162]. A request is mapped to a set

of principals and each principal is authorized to perform particular actions. This

abstraction avoids directly assigning permissions to subjects, enabling the system

graph to be updated in isolation from the policies. Further, I use principals to ease

the administration burden in a way analogous to the use of roles in role-based access

control. However, my association of subjects to principals is a request-time dynamic

process, unlike the static membership of roles utilised in RBAC.1

4.2 Compute Principals

4.2.1 System Model and System Graph

The flexibility provided by allowing RPPM’s nodes to represent any concrete or

logical entities is powerful; however, it can also limit the checks and controls avail-

able for administration of an implementation of the model. In order to provide an

underlying structure and, therefore, a basis on which to incorporate the appropriate

checks and controls, I first define a system model which constrains the “shape” of

the system graph.

Definition 4.1. A system model comprises a set of types 𝑇 , a set of relationship

labels 𝑅, a set of symmetric relationship labels 𝑆 ⊆ 𝑅 and a permissible relationship

graph 𝐺PR = (𝑉PR, 𝐸PR), where 𝑉PR = 𝑇 and 𝐸PR ⊆ 𝑇 × 𝑇 ×𝑅.

Definition 4.2. Given a system model (𝑇,𝑅, 𝑆,𝐺PR), a system instance is defined

by a system graph 𝐺 = (𝑉,𝐸), where 𝑉 is the set of entities and 𝐸 ⊆ 𝑉 × 𝑉 × 𝑅,
and a function 𝜏 : 𝑉 → 𝑇 which maps an entity to a type. 𝐺 is well-formed if for

each entity 𝑣 in 𝑉 , 𝜏(𝑣) ∈ 𝑇 , and for every edge (𝑣, 𝑣′, 𝑟) ∈ 𝐸, (𝜏(𝑣), 𝜏(𝑣′), 𝑟) ∈ 𝐸PR.

The definition of a system graph allows for multiple edges between nodes, as

multiple relationships frequently exist between entities in the real world; such a

graph is sometimes called a multigraph. Such edges may be directed (asymmetric)

or undirected (symmetric) depending on the type of relationship. I will depict an

edge (𝑣, 𝑣′, 𝑠), when 𝑠 ∈ 𝑆, without arrowheads, as can be seen in Figure 4.2 in

the case of the Sibling-of relationship. (Due to the symmetry of 𝑠, the edge (𝑣, 𝑣′, 𝑠)

1RBAC does enable session-specific activation of roles, but even so the roles are then static for the session and
those available for the session only come from those already (statically) authorized to the user.
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implies an edge (𝑣′, 𝑣, 𝑠) and vice versa.) An edge (𝑣, 𝑣′, 𝑟), when 𝑟 ∈ 𝑅∖𝑆, is directed
from 𝑣 to 𝑣′, depicted with an arrowhead pointing towards 𝑣′ (see Figure 4.2a). The

directed edges (𝑣, 𝑣′, 𝑟) and (𝑣′, 𝑣, 𝑟) represent two different relationships. Of course

both may belong to 𝐸, in which case this will be depicted with arrowheads at both

ends of the link between 𝑣 and 𝑣′ (see Figure 4.2b).

Alice Bob
Sibling-of

Brother-of

Sister-of

(a)

Chris Bob
Sibling-of

Brother-of

(b)

Figure 4.2: Illustrating different edges in system graph instances

The administrative interface for any implementation of the RPPM model must

ensure that the system graph is always well-formed with respect to its underlying

system model. As the system being modelled may well be dynamic, updates to the

system graph must be controlled in order to continue to maintain its well-formedness.

I will discuss administration of RPPM models and policies in detail in Chapter 8.

Remark 4.1. It is important to note that whilst, for ease of exposition, I will reg-

ularly use examples involving entities of a “user” type, the RPPM system model

and system graph definitions place no requirement on human participation. In fact,

all of the RRPM functionality I will introduce in this thesis (no matter the RPPM

model) operates exactly the same if there are no human entity types employed and

if the participants of every request are autonomous entities, automated agents or

even inanimate objects. The make-up of any instance of the RPPM model is princi-

pally driven by the system being modelled. Only where that system requires entities

reflecting human “actors” should they be modelled through appropriate entity types.

4.2.2 Path Conditions

In order to limit the administrative burden of defining access control policies in

systems with many subjects, the RPPM model abstracts permission assignment to

security principals (in the same way that roles simplify policy specification and main-

tenance in RBAC). To determine if a particular principal is relevant to a request,

an associated required (positive) chain of relationships must be matched between

the subject and object of the request whilst a forbidden (negative) chain must not

be matched. Such chains of relationships are called path conditions, and are com-

posed of relationship labels, organised as sequences, with support for several regular
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expression-like operators.2

Definition 4.3. Given a set of relationships 𝑅, a path condition is defined recur-

sively as:

∙ ◇ is a path condition;

∙ 𝑟 is a path condition for all 𝑟 ∈ 𝑅; and

∙ if 𝜋 and 𝜋′ are path conditions, then 𝜋, 𝜋+, (𝜋) and 𝜋 ; 𝜋′ are path conditions.

A path condition of the form 𝑟 or 𝑟, where 𝑟 ∈ 𝑅, is said to be an edge condition.

Informally, ◇ defines an “empty” path condition, whilst 𝜋 represents 𝜋 reversed.

𝜋+ (the Kleene plus operator3) represents one or more occurrences, in sequence, of

𝜋, and (𝜋) provides a means of clearly indicating the extent of path condition 𝜋 such

that use of the Kleene plus operator is unambiguous. Lastly, 𝜋 ; 𝜋′ represents the

concatenation of two path conditions.

The satisfaction of a path condition is defined relative to a system graph 𝐺 and

two nodes 𝑢 and 𝑣 in the graph.

Definition 4.4. Given a system graph 𝐺 = (𝑉,𝐸) and two nodes 𝑢, 𝑣 ∈ 𝑉 , I write

𝐺, 𝑢, 𝑣 |= 𝜋 to denote that the path condition 𝜋 is satisfied from 𝑢 to 𝑣 in 𝐺. Then,

for all 𝐺, 𝑢, 𝑣, 𝜋, 𝜋′:

∙ 𝐺, 𝑢, 𝑣 |= ◇ iff 𝑣 = 𝑢;

∙ 𝐺, 𝑢, 𝑣 |= 𝑟 iff (𝑢, 𝑣, 𝑟) ∈ 𝐸;

∙ 𝐺, 𝑢, 𝑣 |= (𝜋) iff 𝐺, 𝑢, 𝑣 |= 𝜋;

∙ 𝐺, 𝑢, 𝑣 |= 𝜋 iff 𝐺, 𝑣, 𝑢 |= 𝜋;

∙ 𝐺, 𝑢, 𝑣 |= 𝜋 ; 𝜋′ iff there exists 𝑤 ∈ 𝑉 s.t. 𝐺, 𝑢, 𝑤 |= 𝜋 and 𝐺,𝑤, 𝑣 |= 𝜋′; and

∙ 𝐺, 𝑢, 𝑣 |= 𝜋+ iff 𝐺, 𝑢, 𝑣 |= 𝜋 or 𝐺, 𝑢, 𝑣 |= 𝜋 ; 𝜋+.

Path condition satisfaction is a binary concept, and so conversely a path condition

may not be satisfied between two nodes 𝑢 and 𝑣 in a system graph 𝐺.

Definition 4.5. I use the notation 𝐺, 𝑢, 𝑣 ̸|= 𝜋 to denote that the path condition 𝜋

is not satisfied between 𝑢 and 𝑣 in 𝐺. The meanings for specific 𝜋 follow naturally

from the inverse of the definitions in Definition 4.4:
2The definition of path conditions employs common regular expression operators, as do [52] and [114]. I exclude

several common operators from my definition for conciseness, see Remark 4.2.
3Recall, from Section 2.4.3, that Cheng et al. limit their use of Kleene operators with a hopcount in light of the

“six-degrees-of-separation” phenomenon. I do not bound the Kleene plus operator as no such assumptions about
path length can be made for more general systems. Such unbound paths are useful when traversing a sub-graph
comprising similar types of elements that might have arbitrary diameter (as in a directory tree, for example).
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∙ 𝐺, 𝑢, 𝑣 ̸|= ◇ iff 𝑣 ̸= 𝑢;

∙ 𝐺, 𝑢, 𝑣 ̸|= 𝑟 iff (𝑢, 𝑣, 𝑟) ̸∈ 𝐸;

∙ 𝐺, 𝑢, 𝑣 ̸|= (𝜋) iff 𝐺, 𝑢, 𝑣 ̸|= 𝜋;

∙ 𝐺, 𝑢, 𝑣 ̸|= 𝜋 iff 𝐺, 𝑣, 𝑢 ̸|= 𝜋;

∙ 𝐺, 𝑢, 𝑣 ̸|= 𝜋 ; 𝜋′ iff there doesn’t exist 𝑤 ∈ 𝑉 s.t. 𝐺, 𝑢, 𝑤 |= 𝜋 and 𝐺,𝑤, 𝑣 |= 𝜋′;

and

∙ 𝐺, 𝑢, 𝑣 ̸|= 𝜋+ iff 𝐺, 𝑢, 𝑣 ̸|= 𝜋 and 𝐺, 𝑢, 𝑣 ̸|= 𝜋 ; 𝜋+.

The compositional nature of path conditions, along with the regular expression-

like operators, means that there is flexibility in how chains of relationships can be

specified in a path condition. For example, the path conditions 𝜋 ;𝜋+ and 𝜋+ ;𝜋 are

valid representations of the same chain of relationships – specifically, two or more

instances of the relationship 𝜋. I now define what I mean by the equivalence of two

path conditions, enabling me to define the concept of simple path conditions.

Definition 4.6. Path conditions 𝜋 and 𝜋′ are said to be equivalent, denoted 𝜋 ≡ 𝜋′,

if, for all system graphs 𝐺 = (𝑉,𝐸) and all 𝑢, 𝑣 ∈ 𝑉 , I have

𝐺, 𝑢, 𝑣 |= 𝜋 if and only if 𝐺, 𝑢, 𝑣 |= 𝜋′.

Trivially, by Definition 4.4 and the definition of a symmetric relationship, I have

(i) ◇ ≡ ◇; (ii) (𝜋) ≡ 𝜋 for all path conditions 𝜋; and (iii) 𝑠 ≡ 𝑠 for all 𝑠 ∈ 𝑆.
The set of all path conditions, given a set of relationships, is a monoid algebraic

structure. ◇ acts as the identity element, whilst ; provides the single associative

binary operation.

Proposition 4.1. For all path conditions 𝜋1 and 𝜋2:

(i) 𝜋1 ; ◇ ≡ ◇ ; 𝜋1 ≡ 𝜋1;

(ii) 𝜋+
1 ≡ 𝜋1

+;

(iii) 𝜋1 ≡ 𝜋1;

(iv) 𝜋1 ; 𝜋2 ≡ 𝜋2 ; 𝜋1;

(v) (𝜋+)+ ≡ 𝜋+; and

(vi) 𝜋+
1 ; 𝜋1 ≡ 𝜋1 ; 𝜋

+
1 .
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Proof. All results follow immediately from Definitions 4.4 and 4.6. Consider (iv),

for example. By definition, 𝐺, 𝑢, 𝑣 |= 𝜋1 ; 𝜋2 if and only if 𝐺, 𝑣, 𝑢 |= 𝜋1 ; 𝜋2. And

𝐺, 𝑣, 𝑢 |= 𝜋1 ;𝜋2 if and only if there exists 𝑤 such that 𝐺, 𝑣, 𝑤 |= 𝜋1 and 𝐺,𝑤, 𝑢 |= 𝜋2.

Thus I have 𝐺, 𝑢, 𝑣 |= 𝜋1 ; 𝜋2 if and only if there exists 𝑤 such that 𝐺,𝑤, 𝑣 |= 𝜋1 and

𝐺, 𝑢, 𝑤 |= 𝜋2. That is 𝐺, 𝑢, 𝑣 |= 𝜋2 ; 𝜋1.

Definition 4.7. Given a set of relationships 𝑅, a simple path condition is defined

recursively as:

∙ ◇, 𝑟 and 𝑟, where 𝑟 ∈ 𝑅, are simple path conditions; and

∙ if 𝜋 ̸= ◇ and 𝜋′ ̸= ◇ are simple path conditions, then (𝜋), 𝜋 ; 𝜋′ and 𝜋+ are

simple path conditions.

In other words, ⋆ occurs in a simple path condition if and only if ⋆ is an element

of 𝑅. It follows from Proposition 4.1 that every path condition may be reduced to

a simple path condition. The path condition 𝑟1 ; 𝑟2 ; (𝑟1 ; 𝑟3)+, for example, can be

transformed into the equivalent, simple path condition (𝑟3 ; 𝑟1)
+ ; 𝑟1 ; 𝑟2 using the

equivalences in Proposition 4.1.

Henceforth, I assume all path conditions are simple. Thus I define the set of

relationship labels to be ̃︀𝑅 = 𝑅∪𝑅, where 𝑅 is defined to be {𝑟 : 𝑟 ∈ 𝑅}. Given this

formulation, the system graph must satisfy the following consistency requirements:

∙ (𝑡, 𝑡′, 𝑟) ∈ 𝐸PR if and only if (𝑡′, 𝑡, 𝑟) ∈ 𝐸PR;

∙ (𝑣, 𝑣′, 𝑟) ∈ 𝐸 if and only if (𝑣′, 𝑣, 𝑟) ∈ 𝐸; and

∙ (𝑣, 𝑣′, 𝑠) ∈ 𝐸 if and only if (𝑣′, 𝑣, 𝑠) ∈ 𝐸 and 𝑠 ∈ 𝑆.

Example 4.1. Returning to my motivating issue of wide-acting roles from Sec-

tion 3.2.2, I consider the example system graph shown in Figure 4.3.4 It should be

clear that I can define a path condition to “describe” the particular sequence of re-

lationships between a doctor and the healthcare record of a patient they are treating.

In this way, I may constrain access to such a path, rather than simply to a qualified

doctor, or even a doctor simply working at the relevant institution. In the case of

Figure 4.3, the path condition Treating ; Pertains-to could be used within appropriate

policies to grant access to healthcare records by treating physicians.
4Throughout this thesis I use different styles of graph node to represent the different types of entity within the

system graph. Where it is relevant I will explicitly indicate what entity types the example’s styles relate to using a
legend. Elsewhere, such as here, it is sufficient to appreciate that different types of entity are used, without focusing
on what those types are.
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institution

doctor
A

doctor
B

doctor
C

patient
1

patient
2

patient
3

record
1

record
2

record
3

Employed-at

Employed-at

Employed-at

Registered-at

Registered-at

Registered-at

Pertains-to

Pertains-to

Pertains-to

Treating

Figure 4.3: A healthcare system graph fragment

4.2.3 Principal-Matching Policy

As just introduced, a path condition allows a path of relationships to be specified

such that the path condition’s satisfaction indicates that that path of relationships

exists between two entities in the system graph. Path conditions can, therefore, be

employed within principal-matching rules to enable the compute principals step of

request evaluation to identify those principals matched to a particular request.

Each principal-matching rule in the principal-matching policy specifies two targets

– a required target and a forbidden target5 – along with a principal. Every path

condition 𝜋 is a target and a request (𝑠, 𝑜, 𝑎), where 𝑠 and 𝑜 are vertices in the system

graph 𝐺 (and 𝑎 ∈ 𝐴 is a requested action), matches target 𝜋 if 𝐺, 𝑠, 𝑜 |= 𝜋. I define

two special targets: all and none, where all matches every request and none matches

no request. By a slight abuse of notation (all and none are not path conditions), I

will write 𝐺, 𝑠, 𝑜 |= all and 𝐺, 𝑠, 𝑜 ̸|= none, for any request (𝑠, 𝑜, 𝑎). Given a request

𝑞 = (𝑠, 𝑜, 𝑎), where 𝑠 and 𝑜 are vertices in the system graph 𝐺, I will tend to write

𝐺, 𝑞 |= 𝜋, rather than 𝐺, 𝑠, 𝑜 |= 𝜋, to simplify notation.

Definition 4.8. Let 𝑃 be a set of security principals. A principal-matching rule

has the form (𝜑, 𝜓, 𝑝), where 𝑝 ∈ 𝑃 and 𝜑 and 𝜓 are targets. A principal-matching

policy is a set of principal-matching rules.

Informally, targets are used to determine which rules are applicable to a given

request, where 𝜑 specifies a required path in the system graph and 𝜓 specifies a

forbidden path.6 The meaning of a principal-matching policy (PMP) is defined in

the context of a system graph and a request.

5The required target is existential, it must exist at least once to be matched, whilst the forbidden target is
universal, it most not exist at all to be matched.

6RPPM0 can only consider targets defined by a single path; I will introduce an enhancement in Chapter 5 which
will enable RPPM to support conjunction and thereby multiple paths of relations per target.
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Definition 4.9. A principal-matching rule (𝜑, 𝜓, 𝑝) is applicable to a request

𝑞 = (𝑠, 𝑜, 𝑎) if and only if 𝐺, 𝑞 |= 𝜑 and 𝐺, 𝑞 ̸|= 𝜓. Given a system graph 𝐺 = (𝑉,𝐸),

a PMP 𝜌 and a request 𝑞 = (𝑠, 𝑜, 𝑎), where 𝑠, 𝑜 ∈ 𝑉 , the set of matched principals

J𝜌K𝐺𝑞 is defined as

J𝜌K𝐺𝑞
def
= {𝑝 ∈ 𝑃 : (𝜑, 𝜓, 𝑝) ∈ 𝜌 is applicable to 𝑞}.

Henceforth, 𝐺 will be assumed to be given, so I will simply write J𝜌K𝑞 to denote

the set of matched principals for policy 𝜌 and request 𝑞. I will further abbreviate

this to J𝜌K when 𝑞 is obvious from context.

The matching of security principals through the satisfaction (or otherwise) of

required and forbidden targets enables the “layout” of a relevant part of the sys-

tem graph to be used to inform the request. This matching of principals does not

take into consideration the requested action. Therefore, the notion of a principal

may be seen as that of a label given to the subject of a request by the request’s

object, independent of the intended action. As previously indicated, such a notion

is comparable to that of UNIX where, for example, the “owner” principal may apply

independent of whether a read or write request is made.

Remark 4.2. Path conditions are clearly closely related to regular expressions.

However, for conciseness I do not include several common operators in my defi-

nition of path conditions: disjunction; conditional, which is equivalent to zero or

one time; and the Kleene star, equivalent to zero or more times. Instead, I accom-

modate each of these operators through the use of two (or more) principal-matching

rules.7

The path condition 𝜋*;𝜋′, for example, can be associated with a principal 𝑝 by spec-

ifying the principal-matching rules (𝜋′, none, 𝑝) and (𝜋+ ; 𝜋′, none, 𝑝). This approach

is preferable to including these operators definitively as their inclusion would not

increase the expressiveness of the policy language but would introduce greater com-

plexity into the request evaluation process which will be discussed in Section 4.2.4.8

Remark 4.3. In some cases it is desirable for a PMP to specify a default principal

𝑝def , much like the concept of “other” (also known as “world”) in the UNIX access

control system. To do so, I include the principal-matching rule (all, none, 𝑝def).
7Whilst I find no need within this thesis, these derived operators could be used as “syntactic sugar” to document

policies using fewer rules.
8Specifically, I would require an additional non-deterministic finite automaton construction mechanism for each.
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4.2.4 Principal Matching using NFA

Whilst Section 4.2.3 described the formal principal-matching policy components,

I choose to implement the necessary processing in RPPM using non-deterministic

finite automata (NFA). Briefly, I exploit the correspondence between path con-

ditions and regular expressions to build a non-deterministic finite automaton 𝑀𝜋

for path condition 𝜋; and I use the correspondence between labelled graphs and

non-deterministic finite automata (NFA) to construct a non-deterministic finite au-

tomaton 𝑀𝐺,𝑞 derived from the system graph 𝐺 and information in a request 𝑞.

For brevity, I will write 𝑀𝑞 for 𝑀𝐺,𝑞, as 𝐺 will always be obvious from context. I

use these non-deterministic finite automata to determine whether each principal-

matching rule is applicable to a request, and whether its principal is, therefore,

matched.

Non-Deterministic Finite Automata

I now describe the correspondence between path conditions and non-deterministic

finite automata (NFA) in more detail. I also explain how to define the request NFA

𝑀𝑞 given a system graph 𝐺 and a request 𝑞. Finally, I explain how to construct an

automaton that will determine whether a request 𝑞 matches a path condition 𝜋 (in

the context of a system graph 𝐺).

A non-deterministic finite automaton is a 5-tuple𝑀 = (𝑄,Σ, 𝛿, 𝑠, 𝐹 ) where [189]:

∙ 𝑄 is the set of states ;

∙ Σ is the set of inputs (the alphabet);

∙ 𝛿 ⊆ 𝑄×𝑄× Σ is the transition relation; and

∙ 𝑠 ∈ 𝑄 is a start state and 𝐹 ⊆ 𝑄 is the set of accepting states.

Let 𝜔 = 𝜎1 . . . 𝜎ℓ, where 𝜎𝑖 ∈ Σ, be a word over the alphabet Σ. The automaton 𝑀

accepts word 𝜔 if there exists a sequence of states, 𝑞0, . . . , 𝑞ℓ such that:

∙ 𝑠 = 𝑞0;

∙ (𝑞𝑖, 𝑞𝑖+1, 𝜎𝑖+1) ∈ 𝛿 for 0 6 𝑖 6 ℓ− 1; and

∙ 𝑞ℓ ∈ 𝐹 .

I write 𝐿(𝑀) to denote the set of words (or language) accepted by 𝑀 .
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Given two automata, 𝑀1 = (𝑄1,Σ1, 𝛿1, 𝑠1, 𝐹1) and 𝑀2 = (𝑄2,Σ2, 𝛿2, 𝑠2, 𝐹2), the

intersection NFA 𝑀∩ = (𝑄1 ×𝑄2,Σ1 ∩ Σ2, 𝛿∩, (𝑠1, 𝑠2), 𝐹1 × 𝐹2) accepts the lan-

guage 𝐿(𝑀1) ∩ 𝐿(𝑀2), [122, 127, 154], where

𝛿∩ = {((𝑞1, 𝑞2), (𝑞′1, 𝑞′2), 𝜎) : (𝑞1, 𝑞′1, 𝜎) ∈ 𝛿1, (𝑞2, 𝑞′2, 𝜎) ∈ 𝛿2}.

Path Conditions as NFA

I now explain how to construct an automaton for a path condition. The construc-

tion is straightforward and is based on standard techniques (see, for example, [4]),

given the obvious similarities between path conditions and regular expressions. By

construction, every automaton will have a single final state. Moreover, because I do

not include disjunction, or the optional and Kleene star operators, in the definition

of path conditions, there is a unique transition from the initial state.9

Proposition 4.2. Let 𝑟 ∈ ̃︀𝑅, and let 𝜋 and 𝜑 be path conditions with automata

𝑀𝜋 = (𝑄𝜋,Σ𝜋, 𝛿𝜋, 𝑠𝜋, {𝑓𝜋}) and 𝑀𝜑 = (𝑄𝜑,Σ𝜑, 𝛿𝜑, 𝑠𝜑, {𝑓𝜑}) accepting languages

𝐿(𝑀𝜋) and 𝐿(𝑀𝜑), respectively. Then:

∙ 𝑀𝑟 = ({𝑠, 𝑓}, {𝑟}, {(𝑠, 𝑓, 𝑟)}, 𝑠, {𝑓});

∙ 𝑀𝜋;𝜑 = (𝑄𝜋;𝜑,Σ𝜋 ∪ Σ𝜑, 𝛿𝜋;𝜑, 𝑠𝜋, {𝑓𝜑}), where 𝑄𝜋;𝜑 = 𝑄𝜋 ∪𝑄𝜑 ∖ {𝑠𝜑} and

𝛿𝜋;𝜑 = 𝛿𝜋 ∪ 𝛿𝜑 ∪ {(𝑓𝜋, 𝑞, 𝑟) : (𝑠𝜑, 𝑞, 𝑟) ∈ 𝛿𝜑} ∖ {(𝑥, 𝑦, 𝑧) ∈ 𝛿𝜑 : 𝑥 = 𝑠𝜑}; and

∙ 𝑀𝜋+ = (𝑄𝜋,Σ𝜋 ∪ {𝜖}, 𝛿𝜋+ , 𝑠𝜋, {𝑓𝜋}), where 𝜖 is the empty symbol and

𝛿𝜋+ = 𝛿𝜋 ∪ {(𝑓𝜋, 𝑠𝜋, 𝜖)}.

The constructions of 𝑀𝑟, 𝑀𝜋;𝜑 and 𝑀𝜋+ are illustrated in Figure 4.4.

The construction of the intersection NFA is simpler if the component automata

do not contain empty transitions. Accordingly, I modify the automaton for 𝑀𝜋+ to

remove the empty transition. Since every automaton representing a path condition

has a single transition from the initial state, I may assume that I can write any

path condition 𝜋 ̸= ◇ in the form 𝑟 ; 𝜋′, where 𝑟 ∈ ̃︀𝑅. Hence, I may represent 𝜋+

by the automaton shown in Figure 4.5a. In the special case that 𝜋 = 𝑟 for some

𝑟 ∈ ̃︀𝑅, 𝜋′ = ◇ and, therefore, the start and final states of 𝜋′ coincide, as shown in

Figure 4.5b.

9Recall from Remark 4.2 that whilst these three operators may be used as “syntactic sugar” they are not part
of my definition of path conditions as they do not increase the expressiveness of the policy and would increase the
complexity of evaluation by allowing multiple transitions from the corresponding automaton’s initial state.
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Figure 4.4: Schematic representations of automata for 𝑟, 𝜋 ; 𝜑 and 𝜋+
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Figure 4.5: Schematic representation of automata for 𝜋+ without the empty transition

Example 4.2. Consider the path condition(︁
𝑟1 ; 𝑟

+
2

)︁+

; (𝑟1 ; 𝑟3)+.

Then, I may transform this into a simple path condition using the rules in Proposi-

tion 4.1.

(𝑟1 ; 𝑟
+
2 )

+ ; (𝑟1 ; 𝑟3)+ = (𝑟1 ; 𝑟3)
+ ;

(︁
𝑟1 ; 𝑟

+
2

)︁+

= (𝑟1 ; 𝑟3)
+ ;

(︁
𝑟1 ; 𝑟

+
2

)︁+

= (𝑟3 ; 𝑟1)
+ ; (𝑟1 ; 𝑟

+
2 )

+

The corresponding non-deterministic automaton is shown in Figure 4.6. Note the

number of states is 5 and the number of transitions is 7. In Section 4.5.2 I establish

the way in which the number of states and transitions vary with the structure of 𝜋.

q0start q1 q2 q3 q4
r3 r1

r3

r1 r2

r1

r2

Figure 4.6: Automaton for (𝑟3 ; 𝑟1)+ ; (𝑟1 ; 𝑟+2 )+

88



CHAPTER 4. RPPM0

Principal Matching

The set of matched principals for a request is determined by identifying those

principal-matching rules that are applicable to a given request 𝑞 = (𝑠, 𝑜, 𝑎). Re-

call that a system graph 𝐺 = (𝑉,𝐸) contains a set of nodes 𝑉 and a set of

edges 𝐸 ⊆ 𝑉 × 𝑉 × ̃︀𝑅, where ̃︀𝑅 is the set of relationship labels. Given a re-

quest 𝑞 = (𝑠, 𝑜, 𝑎) and the system graph 𝐺 = (𝑉,𝐸), I define the automaton

𝑀𝑞 = (𝑉, ̃︀𝑅,𝐸, 𝑠, {𝑜}). Thus, every labelled edge in 𝐺 defines a transition and the

start and final states are 𝑠 and 𝑜, respectively.

It is trivial to decide whether a request matches the all and none targets. Hence,

I focus my attention on targets that are path conditions. Informally, given a path

condition 𝜋, a request 𝑞 and a system graph 𝐺, I wish to find a path in the directed

graph 𝐺 (equivalently a word accepted by 𝑀𝑞) that is also a word accepted by 𝑀𝜋.

Thus, for a principal-matching rule (𝜑, 𝜓, 𝑝) to be applicable to a request, where 𝜑

and 𝜓 are path conditions, I require 𝜑 to be matched by the request and 𝜓 to not be

matched. Therefore, I compute the two intersection languages 𝐿(𝑀𝜑) ∩ 𝐿(𝑀𝑞) and

𝐿(𝑀𝜓) ∩ 𝐿(𝑀𝑞); the former must be non-empty and the latter must be empty. I

test these language properties by constructing two intersection automata, one from

𝑀𝜑 and 𝑀𝑞, the second from 𝑀𝜓 and 𝑀𝑞.

4.3 Compute Authorizations

4.3.1 Authorizing Principals

Having determined the set of principals which match to a request, the second step of

RPPM’s request evaluation process determines whether those principals are autho-

rized to perform the requested action. This second step involves simple comparisons

and set membership checks as part of evaluating the authorization policy.

Definition 4.10. An authorization rule has the form (𝑝,𝑋, 𝑌, 𝑏), where 𝑝 ∈ 𝑃 ,

𝑋 ⊆ 𝑇 ∪ 𝑉 , 𝑌 ⊆ 𝐴 and 𝑏 ∈ {0, 1}.10 Given a PMP 𝜌, an authorization rule

(𝑝,𝑋, 𝑌, 𝑏) is applicable to a request 𝑞 = (𝑠, 𝑜, 𝑎) if all of the following conditions

hold:

∙ 𝑝 ∈ J𝜌K𝑞;

∙ 𝑋 ∩ {𝜏(𝑜), 𝑜} ≠ ∅; and

∙ 𝑌 ∩ {𝑎} ≠ ∅.
10Recall that 𝑇 is the set of entity types in the system model, 𝑉 is the set of entities in the system graph and 𝐴

is the set of actions.
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An authorization policy is a set of authorization rules. Given a PMP 𝜌, an autho-

rization policy 𝜚 and a request 𝑞 = (𝑠, 𝑜, 𝑎), the set of authorization decisions J𝜌, 𝜚K𝐺𝑞
is defined as

J𝜌, 𝜚K𝐺𝑞
def
= {𝑏 ∈ {0, 1} : (𝑝,𝑋, 𝑌, 𝑏) ∈ 𝜚 is applicable to 𝑞}.11

The rule (𝑝, {𝑜}, {𝑎}, 1) indicates that principal 𝑝 is authorized to perform action

𝑎 on object 𝑜, while (𝑝, {𝑜}, {𝑎}, 0) indicates 𝑝 is not authorized. A rule such as

(𝑝, {𝑜}, {𝑎1, 𝑎2}, 1) can be used to authorize a principal for multiple actions, in this

case 𝑎1 and 𝑎2, whilst the rule (𝑝, {𝑜}, 𝐴, 1) can, therefore, be used to authorize a

principal for all actions on a given object.

Remark 4.4. For simplicity of notation (particularly within examples where la-

bels may not have been assigned for the relevant sets), I will make use of the

wild card character ⋆ when referring to all actions in authorization rules. There-

fore, conceptually (𝑝,𝑋,𝐴, 𝑏) is equivalent to (𝑝,𝑋, ⋆, 𝑏), represented in notation as

(𝑝,𝑋,𝐴, 𝑏) ≡ (𝑝,𝑋, ⋆, 𝑏).

I can also prohibit specific actions using a negative authorization tuple. Thus,

the inclusion of (𝑝, {𝑜}, ⋆, 1) and (𝑝, {𝑜}, {𝑎}, 0) in the policy may authorize 𝑝 for all

actions on object 𝑜, except action 𝑎.

Should it be desired, an authorization rule may cover multiple objects. The

rule (𝑝, {𝑜1, 𝑜2}, {𝑎}, 1) authorizes 𝑝 for action 𝑎 on objects 𝑜1 and 𝑜2, whilst the

authorization rule (𝑝, {𝑡}, {𝑎}, 1) authorizes 𝑝 for action 𝑎 on all of the entities of

type 𝑡. Broader still, the rule (𝑝, 𝑉, {𝑎}, 1) authorizes 𝑝 for action 𝑎 on all entities

within the system graph.

Remark 4.5. Note that due to the system graph’s well-formedness property (from

Definition 4.2), I have (𝑝, 𝑉, 𝑌, 𝑏) ≡ (𝑝, 𝑇, 𝑌, 𝑏).

Remark 4.6. As I did with authorization rules which control all actions (rather

than a specific subset), I will make use of ⋆ when referring to all entities within

authorization rules. Therefore, (𝑝, 𝑉, 𝑌, 𝑏) ≡ (𝑝, 𝑇, 𝑌, 𝑏) ≡ (𝑝, ⋆, 𝑌, 𝑏).

Example 4.3. Returning to my motivating issue of conflicting roles from Sec-

tion 3.2.2, I can envisage a higher education system that includes a PhD student,

student 1, a professor, several courses (such as course 1) and some coursework an-

swers (such as answer 1). I have arranged this mix of concrete and logical entities

in the system graph fragment shown in Figure 4.7.

11As with the set of matched principals, I will simply write J𝜌, 𝜚K𝑞 to indicate the set of authorization decisions
for policy 𝜚 and further abbreviate this to J𝜌, 𝜚K when no ambiguity will arise.
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Enrolled-on
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Figure 4.7: A higher education system graph fragment

It is natural that I would wish to constrain student 1 from accessing answers

(other than their own) for courses on which they are enrolled as a student, whilst

I would wish to grant access to those for courses for which they are a teaching

assistant. To do so requires the ability to distinguish the context (in this case the

course) associated with a request. I can achieve this in the RPPM model through

the inclusion of logical entities in the system graph, and the specification of policies

using relationships associated with those logical entities.12

𝜌 = {(Creator-of, none, author),

(Ta-for ; Coursework-for, Enrolled-on ; Coursework-for, course-ta),

(Responsible-for ; Coursework-for, none, course-leader)}

𝜚 = {(author, ⋆, {read,write}, 1),

(course-ta, ⋆, {read, grade}, 1),

(course-leader, ⋆, {read, review}, 1)}

Consider the request (student 1 , answer 1 , read), for example. There is no path in

the graph between student 1 and answer 1 that matches any of the required targets in

rules within 𝜌. Thus, the set of matched principals is empty (which will lead to the

request being denied, assuming a deny-by-default discipline). On the other hand, the

set of matched principals for request (student 1 , answer 2 , read) is {author}, since
there is a path from student 1 to answer 2 with label Creator-of; hence the request will

be granted (because of the first rule in 𝜚). However, the set of matched principals for

request (student 1 , answer 3 , read) is {course-ta} and the request will be permitted

12Note that this use of relationships and logical entities further demonstrates RPPM’s ability to mitigate RBAC’s
wide-acting roles issue. By defining policies such as these it prevents, for example, “all” teaching assistants being
able to access “all” coursework. The context of students’ relationships with courses inform principal-matching
through each target’s path conditions.
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(because of the second rule in 𝜚). Note the difference in outcomes for the two requests

(student 1 , answer 1 , read) and (student 1 , answer 3 , read) because of the different

relationships that exist between student 1 and the courses associated with the objects

answer 1 and answer 3.

Two further requests (professor , answer 1 , read) and (professor , answer 2 , read)

will result in the set of matched principals {course-leader} and these requests will

be granted, whereas the set of matched principals for (professor , answer 3 , read) is

empty (and the request will be denied). Again, the professor’s relationship with

the two courses determines the principals (and thus decisions) associated with the

respective requests.

Whilst this example’s requests have either resulted in an empty or singleton

set of matched principals, policies may equally produce larger sets of matched

principals. For example, if the system graph of Figure 4.7 included the edge

(professor , student 1 ,Mentor-for) and the principal-matching policy 𝜌 included a rule

(Mentor-for ; Creator-of, none, mentor), then the request (professor , answer 2 , read)

would result in the set of matched principals {course-leader,mentor}.

4.3.2 Alternative Authorization Processes

Whilst the compute authorizations step of request evaluation is able to produce a

set of authorization decisions for a request, the partition between the two request

evaluation steps enables alternative authorization processes to be employed, should

that be desired. Specifically, any alternative mechanism of determining decisions

could be used in place of compute authorizations, as long as the mechanism was

able to complete it’s processing using a set of matched principals as input.

For example, the set of matched principals from the compute principals step

could be passed to XACML, or another ABAC model, where it could be treated

as an attribute, or a collection of attributes. The relationship-derived principals

would then inform an ABAC-based authorization decision, alongside other attributes

within that protection system.

In Chapter 9 I will describe a similar mechanism where the set of matched princi-

pals is passed to another RPPM system graph. This enables the request evaluation

in one system graph to be informed by the relationships in another.

4.4 Deterministic Authorization Policy

As each authorization rule has a binary decision outcome, the set of authorization

decisions which results from compute authorizations may take one of four possible
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values: ∅; {0}; {1}; or {0, 1}. Whilst the second and third of these values results in

a single authorization decision, deny or allow respectively, the first and fourth value

are inconclusive on their own.

A set of authorization decisions equal to ∅ indicates that the authorization policy

does not specify whether or not any of the matched principals is authorized to

perform the requested action. In contrast, a value of {0, 1} indicates that there are

at least two rules with conflicting decisions. For systems where a single authorization

decision must be guaranteed (a deterministic policy [180]), the following conflict

resolution and default decision functions are provided. Proof of the determinism of

these features is given in Section 4.4.3.

4.4.1 Conflict Resolution

The authorization rule (𝑝, {𝑜}, {𝑎}, 0) explicitly disallows 𝑝 from performing action

𝑎 on object 𝑜, while (𝑝, {𝑜}, {𝑎}, 1) explicitly allows it. Accordingly, I define an

extended authorization policy to be a pair (𝜚, 𝜒), where 𝜚 is a set of authorization

rules and 𝜒 is a conflict resolution strategy (CRS) which is used to reduce the set of

matching decisions to a single decision.13 That is, J𝜌, (𝜚, 𝜒)K ∈ {∅, {0}, {1}}. In the

interests of brevity, I will continue to write J𝜌, 𝜚K in preference to J𝜌, (𝜚, 𝜒)K.
I present two conflict resolution strategies which may be employed within

RPPM:14

∙ DenyOverrides – reduces a value of {0, 1} for the set of authorization decisions

to {0}, leaving all other values unchanged.

∙ AllowOverrides – reduces a value of {0, 1} for the set of authorization decisions

to {1}, leaving all other values unchanged.

4.4.2 Default Decisions

In some cases a default access control decision (allow or deny) needs to be specified

in the event that no authorization rules apply to a request. Systems may need to

support allow-by-default when the system enters an emergency state, such as the

opening of fire exit doors when there is a fire. Other circumstances will commonly

require fail-safe handling, where a deny-by-default strategy is implemented in order

13For avoidance of doubt, conflict resolution strategies are distinct from (and do not compete with) the required
and forbidden targets of the principal-matching rules. Those targets define which paths are required and forbidden
for an individual principal to be matched to a request. These strategies determine which authorization rule outcomes,
those granting or denying the requested action, should be prioritised when determining an ultimate decision.

14Whilst I do not define a CRS of DenyUnlessPermit (as defined in [141]) this can be achieved by using AllowOver-
rides with a deny-by-default strategy (see Section 4.4.2). In the case of PermitUnlessDeny this can be achieved by
using DenyOverrides with an allow-by-default strategy.
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to ensure no unauthorised access is allowed. Some systems may be deemed so

sensitive that there may be no conditions under which allow-by-default would be

enabled.

There are two circumstances in the RPPM model when default decision-making

applies. The first is when no matched principals are identified (J𝜌K = ∅), whilst the
second is when there are no explicit authorizations (J𝜌, 𝜚K = ∅). Accordingly, I allow
for a default decision to be applied at one of the following levels: default-per-subject,

default-per-object, default-per-type or system-wide default. The default-per-subject

decision is only applied when there are no matched principals.15

Definition 4.11. Given a system graph 𝐺 = (𝑉,𝐸), 𝑉𝑠𝑜 ⊆ 𝑉 × {sub, obj}, a set of

types 𝑇 , and a request 𝑞 = (𝑠, 𝑜, 𝑎), a default decision function

𝛾 : 𝑉𝑠𝑜 ∪ 𝑇 ∪ {sys} → {⊥, 0, 1}

is a function which maps entities within the system graph to default decisions for

requests, where ⊥ is undefined, 0 is deny and 1 is allow.16 The function maps

default decisions on a per subject (𝑢, sub), per object (𝑢, obj), per object type 𝑡 ∈ 𝑇
and system-wide basis. When initialized, 𝛾(sys) = 0 and the function maps all other

inputs to ⊥ until they are configured.

The four defaults are evaluated in order, where defined (i.e., where not set to ⊥),
with the first applicable default determining the authorization decision. In this way,

if there is a default 𝛾(𝑠, sub) defined for the subject 𝑠 of the request (𝑠, 𝑜, 𝑎), the

subject’s default (allow or deny) applies. If no subject default is defined for 𝑠, then

the default 𝛾(𝑜, obj) for the object 𝑜 of the request shall apply, if defined. If there

is no subject default for 𝑠 and no object default for 𝑜, then the default 𝛾(𝜏(𝑜)) for

the type of object 𝜏(𝑜) shall apply, if defined. If none of these defaults are defined,

then the system-wide default 𝛾(sys) shall apply.17

4.4.3 Proof of Determinism

The determinism of RPPM’s authorization policy when a conflict resolution strategy

and a default decision function are employed is simple to prove.

Proof. The compute principals step of request evaluation produces a set of matched

15Default-per-subject is not applied when there are no explicit authorizations: when the set of possible decisions
is determined, the subject is no longer relevant, having been used to identify the appropriate matched principals.

16Although I do not allow 𝛾(sys) to be set to ⊥.
17As an alternative, a system-wide default may be achieved using the default principal 𝑝def as described in

Remark 4.3. I have not relied upon this here as I introduce a comparable administrative default decision function
in Chapter 8, and both system-wide defaults cannot be achieved with a single default principal.
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principals

J𝜌K𝐺𝑞
def
= {𝑝 ∈ 𝑃 : (𝜑, 𝜓, 𝑝) ∈ 𝜌 is applicable to 𝑞}.

Given any system graph 𝐺 and any request 𝑞 = (𝑠, 𝑜, 𝑎), if J𝜌K𝐺𝑞 = ∅, then the default

decision function processing occurs. In the trivial case, 𝛾(𝑠, sub) = ⊥, 𝛾(𝑜, obj) = ⊥,
𝛾(𝜏(𝑜)) = ⊥, and 𝛾(sys) ∈ {0, 1}. Therefore, a single authorization decision results.

In the non-trivial case, one or more of 𝛾(𝑠, sub), 𝛾(𝑜, obj) and 𝛾(𝜏(𝑜)) is equal to 0 or

1. Whatever combination, a single authorization decision results as these defaults

are evaluated in order, where defined, with the first applicable default determining

the authorization decision.

If J𝜌K𝐺𝑞 ̸= ∅, then compute authorization step of request evaluation is performed,

producing a set of authorization decisions

J𝜌, 𝜚K𝐺𝑞
def
= {𝑏 ∈ {0, 1} : (𝑝,𝑋, 𝑌, 𝑏) ∈ 𝜚 is applicable to 𝑞}.

If J𝜌, 𝜚K𝐺𝑞 = ∅, then once again default decision function processing occurs. In the

trivial case, 𝛾(𝑜, obj) = ⊥, 𝛾(𝜏(𝑜)) = ⊥, and 𝛾(sys) ∈ {0, 1}. Therefore, a single

authorization decision results. In the non-trivial case, one or both of 𝛾(𝑜, obj) and

𝛾(𝜏(𝑜)) is equal to 0 or 1. Whatever combination, a single authorization decision re-

sults as these defaults are evaluated in order, where defined, with the first applicable

default determining the authorization decision.

If J𝜌, 𝜚K𝐺𝑞 ̸= ∅, then J𝜌, 𝜚K𝐺𝑞 ∈ {{0}, {1}, {0, 1}}. If J𝜌, 𝜚K𝐺𝑞 ∈ {{0}, {1}}, then
a single authorization decision results. If J𝜌, 𝜚K𝐺𝑞 = {0, 1}, then conflict resolution

processing occurs and J𝜌, 𝜚K𝐺𝑞 is reduced to {0} in the case of DenyOverrides or {1} in
the case of AllowOverrides. In either case, a single authorization decision results.

4.5 Request Evaluation

4.5.1 End-to-End Process

Figure 4.8 provides a detailed architecture of the complete RPPM request evaluation

process, indicating the inputs necessary and decisions employed. Recall, the first

step of request evaluation, compute principals, is rather complex and, conceptually,

requires the identification of paths within the system graph in order to determine

the principals which match a request. However, the second step, compute autho-

rizations, involves simple lookups to determine whether the matched principals for

a request are authorized to perform the requested action on the object.

Pseudo-code for the entire request evaluation process is shown in Algorithm 4.1.

I determine the set of matched principals using Algorithm 4.2
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Figure 4.8: Request evaluation detailed architecture

Algorithm 4.1 RequestEvaluation

Require: System graph 𝐺 = (𝑉,𝐸), set of relationship labels ̃︀𝑅, set of types 𝑇 , request 𝑞 = (𝑠, 𝑜, 𝑎), principal-
matching policy 𝜌, default decision function 𝛾 and extended authorization policy (𝜚, 𝜒)

Ensure: Returns authorization decision
1: J𝜌K← ComputePrincipals(𝐺, ̃︀𝑅, 𝑞, 𝜌)
2: if J𝜌K = ∅ then
3: J𝜌, 𝜚K← ApplyDefaults(𝛾, 𝑜, 𝑠)
4: else
5: J𝜌, 𝜚K← ComputeAuthorizations(𝑞, (𝜚, 𝜒), J𝜌K)
6: if J𝜌, 𝜚K = ∅ then
7: J𝜌, 𝜚K← ApplyDefaults(𝛾, 𝑜)
8: end if
9: end if
10: if J𝜌, 𝜚K = {0} then
11: return false // deny
12: else if J𝜌, 𝜚K = {1} then
13: return true // allow
14: end if

(ComputePrincipals). This automata language evaluation process described in

Section 4.2.4 is used in lines 4 and 5.

Having identified the set of matched principals, the set of authorizations can be

easily determined from the applicable authorization rules (as per Definition 4.10)

using Algorithm 4.3 (ComputeAuthorizations). This process is far simpler than that

of Algorithm 4.2, being limited to simple comparisons and set membership checks.
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Algorithm 4.2 ComputePrincipals

Require: System graph 𝐺 = (𝑉,𝐸), set of relationship labels ̃︀𝑅, request 𝑞 = (𝑠, 𝑜, 𝑎) and principal-matching policy
𝜌

Ensure: Returns set of matched principals J𝜌K
1: J𝜌K← ∅
2: 𝑀𝑞 ← (𝑉, ̃︀𝑅,𝐸, 𝑠, {𝑜})
3: for (𝜑, 𝜓, 𝑝) ∈ 𝜌 do
4: if (𝜑 = all) or (𝐿(𝑀𝜑) ∩ 𝐿(𝑀𝑞) ̸= ∅) then
5: if (𝜓 = none) or (𝐿(𝑀𝜓) ∩ 𝐿(𝑀𝑞) = ∅) then
6: J𝜌K← J𝜌K ∪ 𝑝
7: end if
8: end if
9: end for
10: return J𝜌K

Lines 7 through 11 of Algorithm 4.3 provide for conflict resolution, should it be

required, as described in Section 4.4.1.

Algorithm 4.3 ComputeAuthorizations

Require: Request 𝑞 = (𝑠, 𝑜, 𝑎), extended authorization policy (𝜚, 𝜒) and set of matched principals J𝜌K
Ensure: Returns set of authorization decisions J𝜌, 𝜚K
1: J𝜌, 𝜚K← ∅
2: for (𝑝,𝑋, 𝑌, 𝑏) ∈ 𝜚 do
3: if (𝑝 ∈ J𝜌K) and ((𝑜 ∈ 𝑋) or (𝜏(𝑜) ∈ 𝑋)) and (𝑎 ∈ 𝑌 ) then
4: J𝜌, 𝜚K← J𝜌, 𝜚K ∪ 𝑏
5: end if
6: end for
7: if J𝜌, 𝜚K = {0, 1} then
8: if 𝜒 = DenyOverrides then
9: J𝜌, 𝜚K← {0}
10: else if 𝜒 = AllowOverrides then
11: J𝜌, 𝜚K← {1}
12: end if
13: end if
14: return J𝜌, 𝜚K

In cases where default decisions processing is desired, a decision is determined

using Algorithm 4.4 (ApplyDefaults).18

Algorithm 4.4 ApplyDefaults

Require: Default decision function 𝛾, object 𝑜, and (optionally) subject 𝑠
Ensure: Returns a single element set of authorization decisions, {0} or {1}
1: if not 𝑠 is nothing then
2: if 𝛾(𝑠, sub) ̸= ⊥ then
3: return ∅ ∪ 𝛾(𝑠, sub)
4: end if
5: else if 𝛾(𝑜, obj) ̸= ⊥ then
6: return ∅ ∪ 𝛾(𝑜, obj)
7: else if 𝛾(𝜏(𝑜)) ̸= ⊥ then
8: return ∅ ∪ 𝛾(𝜏(𝑜))
9: else
10: return ∅ ∪ 𝛾(sys)
11: end if

18Note that in Algorithm 4.4 I return the union of the default decision with the empty set in order to return a
single element set containing the decision.
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4.5.2 Complexity

The algorithms ComputeAuthorizations and RequestEvaluation do not involve signif-

icant computation. The worst case time complexity of request evaluation is, there-

fore, dominated by the complexity of ComputePrincipals, which is dependent on two

things:19

∙ The number of principal-matching rules to be evaluated; and

∙ The complexity of determining whether the intersection NFA accept non-empty

languages.

To evaluate the second of these factors, I define the length ℓ(𝜋) of a (simple) path

condition 𝜋 to be:

∙ ℓ(𝜋) = 1 if 𝜋 = 𝑟 for some 𝑟 ∈ ̃︀𝑅;
∙ ℓ(𝜋 ; 𝜋′) = ℓ(𝜋) + ℓ(𝜋′); and

∙ ℓ(𝜋+) = ℓ(𝜋).

In other words, ℓ(𝜋) is simply the number of occurrences of elements in ̃︀𝑅 in 𝜋. I

now consider the size, number of states and transitions, of the automaton 𝑀𝜋.

Proposition 4.3. Let 𝑟 ∈ ̃︀𝑅, 𝜋 and 𝜑 be path conditions. Then:

∙ |𝑄𝑟| = 2 and |𝛿𝑟| = 1 for 𝑟 ∈ ̃︀𝑅;
∙ |𝑄𝜋;𝜑| = |𝑄𝜋|+ |𝑄𝜑| − 1 and |𝛿𝜋;𝜑| = |𝛿𝜋|+ |𝛿𝜑|; and

∙ |𝑄𝜋+ | = |𝑄𝜋| and |𝛿𝜋+| = |𝛿𝜋|+ 1.

Proof. The proof follows immediately by inspection of the automata in Figure 4.4.

Corollary 4.1. Let 𝜋 be a simple path condition and let 𝜗(𝜋) denote the number

of occurrences of + in 𝜋. Then for path condition 𝜋, |𝑄𝜋| = ℓ(𝜋) + 1 and |𝛿𝜋| =
ℓ(𝜋) + 𝜗(𝜋).

Proof. The result may be proved by a straightforward induction on the structure of

𝜋. Clearly, the result for |𝑄𝜋| holds for path condition 𝜋 = 𝑟, 𝑟 ∈ ̃︀𝑅. Now consider

path condition 𝜋 ; 𝜑 and assume the result holds for 𝜋 and 𝜑. Then

|𝑄𝜋;𝜑| = |𝑄𝜋|+ |𝑄𝜑| − 1 = (ℓ(𝜋) + 1) + (ℓ(𝜑) + 1)− 1 = ℓ(𝜋 ; 𝜑) + 1,

19The automata for path conditions contained in rules in the PMP can be pre-computed once and then used, as
required, to construct the intersection automata.
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as required. Finally, consider path condition 𝜋+ and assume the result holds for 𝜋.

Then

|𝑄𝜋+| = |𝑄𝜋| = ℓ(𝜋) + 1 = ℓ(𝜋+) + 1.

Similarly, the result for |𝛿𝜋| holds for path condition 𝜋 = 𝑟. Now consider path

condition 𝜋 ; 𝜑 and assume the result holds for 𝜋 and 𝜑. Then

|𝛿𝜋;𝜑| = |𝛿𝜋|+ |𝛿𝜑| = ℓ(𝜋) + 𝜗(𝜋) + ℓ(𝜑) + 𝜗(𝜑) = ℓ(𝜋 ; 𝜑) + 𝜗(𝜋 ; 𝜑).

Finally, consider 𝜋+ and assume the result holds for 𝜋. Then

|𝛿𝜋+ | = |𝛿𝜋|+ 1 = ℓ(𝜋) + 𝜗(𝜋) + 1 = ℓ(𝜋+) + 𝜗(𝜋+).

The complexity of computing the intersection NFA for automata 𝑀 and 𝑀 ′ is

determined by the size of the respective transition relations, since I compute a prod-

uct automaton whose transition relation is determined by the transition relations of

the component automata. In the worst case, the size of an automaton’s transition

relation 𝛿 ⊆ 𝑄 × 𝑄 × Σ is 𝑂(|𝑄|2 · |Σ|). The size of the transition relation in 𝑀𝑞

is, therefore, 𝑂(|𝑉 |2 · | ̃︀𝑅|). However, in the case of my path condition automata, I

have |𝛿𝜋| = ℓ(𝜋) + 𝜗(𝜋).

Thus, the overall complexity of evaluating a path condition 𝜋 with respect to a

request and system graph 𝐺 is 𝑂((ℓ(𝜋)+𝜗(𝜋)) · |𝑉 |2 · | ̃︀𝑅|). Each principal-matching

rule contains at most two path conditions as targets. And each principal-matching

rule in policy 𝜌 must be evaluated. Thus the overall complexity of evaluating a

request is

𝑂(|𝜌| · 𝜗(𝜌) · |𝑉 |2 · | ̃︀𝑅|), where 𝜗(𝜌) = max{ℓ(𝜋) + 𝜗(𝜋) : 𝜋 ∈ 𝜌}.

4.6 Model Comparisons

4.6.1 Relationship-Based Access Control

The RPPM0 model is designed as a relationship-based access control model able

to support general computing applications. It, therefore, does not suffer most of

the limitations of other relationship-based access control models (as identified in

Section 3.2.4). Table 4.1 shows a comparison of a variety of relevant features between

RPPM0 and the relationship-based access control models previously discussed [41,

43, 44, 51, 52, 82, 85]. Whilst this base version of RPPM limits path evaluation
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to between the subject and object of the request and cannot support conjunction,

RPPM0 has numerous benefits over other models.

Generality Its ability to support any entity and relationship types within the sys-

tem graph makes it able to describe any system desired. The policy rule targets

are defined using paths which may comprise multiple distinct relationship types and

may identify paths of any length satisfied through any entities; this way the tra-

versed entities do not need to be identified during policy creation (explicitly or via

variables), and paths are not restricted to avoid cycles. Further, its policies may

be defined using paths which exist between any entity types, and so may control

actions undertaken by any system entity on any other system entity. Specifically,

there is no constraint on user involvement and so the model may equally be used

to manage access by autonomous components, automated agents, or even inani-

mate objects should that be desired for a particular application. None of the other

relationship-based access control models offer this degree of generality.

Abstraction and Conciseness Many relationship-based access control models di-

rectly bind permissions to users through paths of relationships. In contrast, RPPM0

abstracts the permission assignment away from requesting entities using principals.

This enables a far more flexible model, whereby changes may be made to the sys-

tem graph without the need to modify policy. Further, policy rules may cover large

numbers of (unidentified) entities, greatly reducing the administrative burden of

managing the policy.20 For example, a single rule may apply to all entities, all enti-

ties of a specific subset of types, all entities of a particular type, a specific subset of

entities, or a single entity. Once again, none of the other relationship-based access

control models offer such features.

Versatility By supporting two targets in the principal-matching rules, RPPM0 may

match principals when a path of relations exists between the subject and the object,

or only when such a path is absent. As well as matching principals based on paths

in the system graph, these rules allow the use of the special targets all and none

which together are matched for all requests (thus enabling the creation of a default

principal). Only Carminati et al.’s semantic web model offers both positive and

negative rules [43]; however, they do not have concepts equivalent to my special

targets as they directly assign permissions to users.

20As entities aren’t specifically identified in policy rules, the rules may be applicable to entities present in the
system graph at the time the rules were created and also entities which are added afterwards.
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Completeness Whilst the rules of RPPM0 enable principals to be matched and

authorization decisions to be made in a wide range of circumstances, I also cater for

circumstances which result in either multiple conflicting authorization rules applying

or none. Conflict resolution strategies resolve conflicting rules, enabling either a

DenyOverrides or AllowOverrides mode of operation to apply. If no authorization

rules apply, either because no principals were matched or those that were do not

lead to a decision, then the default decision function ensures that an authorize or

deny outcome is determined. The default decision function’s system entry enables

the model to apply an allow-by-default or deny-by-default strategy.

In comparison, Carminati et al.’s social network model employs a deny-by-

default strategy, but it doesn’t support negative rules and so cannot produce con-

flicts [44]. The same is true of the ReBAC model of Fong (and Siahaan) and Bruns et

al. [41, 82, 85]. Carminati et al.’s semantic web model implements the equivalent

of DenyOverrides and deny-by-default, with access only granted if an authorization

exists but no prohibitions exist [43]. Cheng et al.’s U2R model allows the resolu-

tion of conflicts between policies using disjunction, conjunction or prioritisation. It

employs a deny-by-default strategy alongside this [51, 52].

One limitation of RPPM0 is the fact that the targets within principal-matching

rules do not support conjunction of multiple paths. Whilst a rule may require one

path of relations and forbid another, targets cannot be constructed from multiple

paths at present. I will introduce an enhancement in Chapter 5 which will enable

RPPM to support conjunction. The other limitation is that the targets may only

be satisfied between the subject and object of the request. I will introduce a further

enhancement, in Chapter 7, which will rectify this limitation.

4.6.2 Implementing Non-ReBAC Models

The base RPPM model (RPPM0) provides a sufficiently general model of access

control that it may be used to implement other existing access control models.

Specifically, it is possible to construct an RPPM instance with the appropriate

system model, system graph, and policies such that authorization requests evaluated

by that RPPM instance would be authorized, or denied, in the same manner as

those within the implemented access control model. Whilst I shall provide a clear

explanation of how such implementations may be constructed for popular models

(so that the reader may get an intuition of the flexibility and power of RPPM), I

shall not prove their equivalence formally.
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Social
Network
Model [44]

Semantic
Web [43]

ReBAC [41,
82, 85]

U2R [51, 52] RPPM0

Graph Entities Users Users and
resources

Users Users, objects,
policies and
sessions

⋆

Graph
Relations

⋆ ⋆ ⋆ ⋆ ⋆

Graph
Limitations

No resources None No resources No cycles None

Resource
Relations

Ownership ⋆ Ownership ⋆ ⋆

Path
Evaluation
Between
(Types)

Users and
Users

Users and
Resources

Users and
Users

Users and ⋆ ⋆ and ⋆

Path
Evaluation
Between
(Entities)

Requestor and
resource owner

Subject and
object

Requester and
resource owner

A pair from
requester,
target and
controlling
user

Subject and
object

Multiple
Distinct
Relations in
Paths

No Yes Yes Yes Yes

Policy
Language

Conditions
over relation,
max length
and min
strength

Atoms over
type of
resource,
direct relation,
and same or
different entity

Propositions
over direct
relation,
variables and
nominals

Regular
expressions
over relations

Regular
expressions
over relations

Paths in Rules Positive
conjunction of
conditions

Positive
conjunction of
atoms

Positive and
negative,
conjunction
and
disjunction of
propositions

Positive and
negative,
conjunction
and
disjunction of
expressions

Single positive
and single
negative path

Rule Types Positive only Positive and
negative

Positive only Positive only Positive and
negative

Rule
Limitations

Single relation
within exact
path

Exact path via
pre-
determined
objects

Defined per
resource

Path length
limited by
hopcount

Lack of
conjunction

Evaluation
Basis

CWM
reasoner [29]

SweetRules
reasoner [92]

Depth-first
search model
checker

Depth-first
search with
limited depth

Regular
language
emptiness
evaluation

Key: The wild card character ⋆ is used in this table to indicate “anything” or “all”.

Table 4.1: Relationship-based access control model comparisons with RPPM0

UNIX

Whilst RPPM0 is able to define the necessary access control model structure and

policies, the set-based authorization policy evaluation of RPPM0 is unable to enforce

UNIX’s ordered request evaluation process, whereby the “owner” permissions apply,

or the “group” permissions apply, or the “other” permissions apply. RPPM0 is,

therefore, unable to implement the UNIX access control model. However, I shall
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introduce an enhancement in Chapter 5 which will enable RPPM to fully implement

UNIX’s access control model (see Section 5.2.2).

Multi-Level Security

In contrast, RPPM0 is able to implement and enforce basic multi-level security poli-

cies ensuring no direct compromise, or “reading up”, of labelled objects. To achieve

this, the model is configured such that the security levels are logical entities within

the system graph, alongside concrete entities representing the users and objects.

The clearances of users are represented by the presence of a relationship between

each user and the security level representing their maximum clearance. Similarly,

the classifications of objects are represented by the presence of an equivalent rela-

tionship between each object and the security level representing its classification.

This arrangement is depicted, conceptually, in Figure 4.9.21

users secret

top secret

official

objects

Cleared-to

Cleared-to

Cleared-to

Classified-at

Classified-at

Classified-at

Dominates

Dominates

Figure 4.9: Multi-level security generalisation

More formally, an RPPM0 model configured as follows would grant actions to

cleared-users where the maximum clearance of the user is at least the classification

of the object.

𝑇 = {users , levels , objects}̃︀𝑅 = {Cleared-to,Classified-at,Dominates,

Cleared-to,Classified-at,Dominates}

𝑆 = ∅

𝐸PR = {(users , levels ,Cleared-to), (objects , levels ,Classified-at),

(levels , levels ,Dominates)}

𝐺PR = (𝑇,𝐸PR)

21Figure 4.9 does not show a system graph, it shows a high-level representation of the “shape” of a system graph.
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𝑉 ⊇ {official , secret , top secret}

𝜏(official) = levels

𝜏(secret) = levels

𝜏(top secret) = levels

𝐸 ⊇ {(top secret , secret ,Dominates), (secret , official ,Dominates)}

𝐺 = (𝑉,𝐸)

𝑃 = {cleared-user}

𝜌 = {(Cleared-to ; Classified-at, none, cleared-user),

(Cleared-to ; Dominates+ ; Classified-at, none, cleared-user)}

(𝜚, 𝜒) = ({(cleared-user, {objects}, ⋆, 1)},DenyOverrides)

𝛾(objects) = 0

𝛾(sys) = 0

The model specification should be self-explanatory; there are three entity types 𝑇 as

previously mentioned and three relationships (and their inverses) ̃︀𝑅 which are limited

to particular pairs of those entity types 𝐺PR. The system graph 𝐺 = (𝑉,𝐸) of the

implementation must include the (three) security levels which are ordered using the

Dominates relation.22 The principal-matching policy employs a cleared-user principal

which is matched in two rules where the required path condition is based on the

possible paths of relations between users and objects for which they have clearance.

The authorization policy grants all actions23 and the default decision function is

configured to deny access for requests made targeting objects if no principals are

matched.24

Whilst, using this approach, it is possible to enforce Bell and LaPadula’s sim-

ple security property using RPPM0 [25], the model cannot support the dynamic

session awareness required to implement the *-property which prevents potential

future compromises associated with “writing down” [23]. However, I shall introduce

an enhancement in Chapter 6 which will enable RPPM to implement the aware-

ness necessary to prevent a cleared-user from writing classified material to a lower

classification object (see Section 6.2.2).

22In reality, the relation simply links the security levels, the ordering comes about because the second principal-
matching rule includes one or more instances of the relation as part of required paths.

23Obviously a more refined authorization policy could be employed here should it be necessary.
24Whilst 𝛾(sys) is sufficient here, I’ve included 𝛾(objects) for clarity of the example.
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RBAC

RPPM0 may also be configured to implement core RBAC [108]. However, given

that there are no generic roles applicable to all systems (unlike the consistent se-

curity levels of MLS) I shall describe the implementation procedurally rather than

explicitly.

I assume the set of entities is the disjoint union of users, roles, permissions and

objects. I, initially, employ two types of relationship, the User-role relationship, re-

ferred to as user assignment and abbreviated ua, along with the Role-permission re-

lationship, referred to as permission assignment and abbreviated pa. The principal-

matching policy is then defined with each rule having the form (ua ;pa, none, 𝑝) where

the principal 𝑝 has the same name as the permission identified by the pa edge. The

authorization policy contains elements (𝑝, {ob}, {op}, 1) which map the principals to

objects, allowing them operations (as per the permission binary relation in RBAC).

Further, I can introduce the Role-role relationship (abbreviated rr) in order to

extend this configuration to implement a role hierarchy. Finally, I may also introduce

the User-permission relationship (abbreviated up), in order to articulate exceptions

to the basic RBAC model by directly associating permissions with users.

4.7 Summary

I have introduced a base RPPM model (RPPM0) which is more broadly applicable

and less constrained than other existing relationship-based access control models.

I have also demonstrated how it may be used to implement several popular access

control models which are not based on relationships, specifically multi-level security

and RBAC. Whilst I have also shown that RPPM0 provides numerous features be-

yond those of the relationship-based access control models discussed in Section 3.2.4,

there are further features which are desirable for an access control model for gen-

eral computing applications. Through the remainder of this thesis I will introduce

enhancements to the base RPPM model.
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Chapter 5

RPPM1a

In this chapter I shall introduce RPPM1a, an RPPM model containing a number

of enhancements over the base model (RPPM0). Specifically, RPPM1a includes the

following request evaluation enhancements :

∙ Policy graph evaluation – this enhancement enables RPPM to support

principal-matching based on conjunction of paths and, as a corollary, enables

list-oriented policies (such as those used by UNIX). Support for conjunction is

based on a generic mechanism called principal activation, whereby the matching

of one (or more) principal(s) leads to the matching of others.

∙ Target-based request evaluation – this enhancement is a minor optimisation

of the compute principal step which enables RPPM to only process those

principal-matching rules which can affect the result of the request’s evaluation.

∙ Caching edges – this enhancement is a major optimisation which enables RPPM

to completely bypass the compute principal step of request processing if a

request by the same subject on the same object has previously been evaluated

in full.

The basis for the policy graph evaluation and target-based request evaluation en-

hancements described in Sections 5.1.1 and 5.1.2 has previously been published,

in conjunction with Jason Crampton, in [63]. The caching edges enhancement of

Section 5.1.3 has been published likewise in [60, 61, 63].
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5.1 Request Evaluation Enhancements

5.1.1 Policy Graph Evaluation

As discussed in Section 4.2.3, RPPM0 matches principals to a request by evaluating

rules within a principal-matching policy (PMP). Each of these principal-matching

rules makes use of two targets, one of which is required and one of which is forbidden.

Disjunction, where a principal is activated if at least one of several path conditions

is satisfied, is supported in RPPM0 through the use of multiple principal-matching

rules for the same principal (as described in Remark 4.2). However, there may also

be times when there is a need to match a security principal only if each one of several

path conditions is satisfied. The basic RPPM policy model described in Chapter 4

does not support such conjunction requirements.

Hence, I introduce the idea of a policy graph. I arrange the rules in a PMP as

a directed acyclic graph, making the process of matching principals more like the

evaluation of XACML policies [141].1

Definition 5.1. Given a system graph 𝐺 = (𝑉,𝐸) and a set of principals 𝑃 , a

policy graph 𝐺𝜌 = (𝑉𝜌, 𝐸𝜌) is a directed acyclic graph with a unique root (of in-

degree 0) such that each vertex is a principal-matching rule. The set of principals

includes a special principal called the null principal and the principal-matching rule

for the root is defined to be (all, none, null).

Definition 5.2. Given a policy graph 𝐺𝜌 = (𝑉𝜌, 𝐸𝜌), if there exist edges

(𝑣𝜌1 , 𝑣𝜌2), (𝑣𝜌2 , 𝑣𝜌3), . . . , (𝑣𝜌𝑘−1
, 𝑣𝜌𝑘)

in 𝐸𝜌 then I say 𝑣𝜌1 is an ancestor of 𝑣𝜌𝑖, for any 𝑖, 1 < 𝑖 6 𝑘, and I will write

𝑣𝜌1 > 𝑣𝜌𝑖. I also say 𝑣𝜌𝑖 is the parent of 𝑣𝜌𝑖+1
. Descendent and child are, naturally,

the inverse of ancestor and parent, respectively.

Informally, the policy graph allows the applicability of one principal-matching

rule to “trigger” other descendent principal-matching rules (the edges in the policy

graph determining which rules trigger other rules). More formally, the evaluation

of a policy graph with respect to a request, in order to compute a set of matched

principals, is performed as per Algorithm 5.1.2 This “variant” of the ComputePrinci-

1Recall from Section 4.3.2 that the partition between compute principals and compute authorizations enables
an alternative authorization process, such as XACML, to be employed to make the ultimate authorization decision.
Even so, a policy graph is still necessary to enable the conjunction of path conditions to be used as targets when
matching a principal. Additionally, I will use policy graphs in Chapter 9 when evaluating requests across multiple
system graphs.

2Note that I do not add the null principal to the set of matched principals (line 7) so that it does not interfere
with authorization decisions.
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pals algorithm may be employed in place of Algorithm 4.2 with only minor changes

to the calling arguments. Firstly, Algorithm 5.1 takes a policy graph rather than a

principal-matching policy; secondly, it takes a new argument called the principal-

matching strategy 𝜎. I present two principal-matching strategies which may be

employed within RPPM:

∙ AllMatch – the set of matched principals contains all of those principals matched

during a complete evaluation of the policy graph.

∙ FirstMatch – the set of matched principals contains only the first principal

matched when evaluating rules within the policy graph.3

Algorithm 5.1 ComputePrincipals (policy graph variant)

Require: System graph 𝐺 = (𝑉,𝐸), set of relationship labels ̃︀𝑅, request 𝑞 = (𝑠, 𝑜, 𝑎), policy graph 𝐺𝜌 = (𝑉𝜌, 𝐸𝜌)
and principal-matching strategy 𝜎

Ensure: Returns set of matched principals J𝜌K
1: J𝜌K← ∅
2: 𝑀𝑞 ← (𝑉, ̃︀𝑅,𝐸, 𝑠, {𝑜})
3: while Perform breadth-first search of 𝐺𝜌 starting at root vertex do
4: Evaluate current vertex, (𝜑, 𝜓, 𝑝) ∈ 𝑉𝜌
5: if (𝜑 = all) or (𝐿(𝑀𝜑) ∩ 𝐿(𝑀𝑞) ̸= ∅) then
6: if (𝜓 = none) or (𝐿(𝑀𝜓) ∩ 𝐿(𝑀𝑞) = ∅) then
7: if 𝑝 ̸= null then
8: J𝜌K← J𝜌K ∪ 𝑝
9: if 𝜎 = FirstMatch then
10: return J𝜌K
11: end if
12: end if
13: else
14: Prune all (𝜑′, 𝜓′, 𝑝′) from evaluation, where (𝜑, 𝜓, 𝑝) > (𝜑′, 𝜓′, 𝑝′)
15: end if
16: else
17: Prune all (𝜑′, 𝜓′, 𝑝′) from evaluation, where (𝜑, 𝜓, 𝑝) > (𝜑′, 𝜓′, 𝑝′)
18: end if
19: end while
20: return J𝜌K

It is possible to represent a list-oriented policy using the policy graph (as illus-

trated in Figure 5.1) by limiting the policy graph to a rooted ordered tree.4 If I also

employ the FirstMatch principal-matching strategy then not only will this policy be

ordered, but the first matched principal will be all that is returned.5

However, this graph-based approach also makes it possible to encode principal

activation rules of the form “if 𝑝 is applicable to a given request then so is principal

𝑝′”.6 Moreover, I can insist that a principal 𝑝𝑛+1 is only activated if multiple path

conditions 𝜋1, . . . , 𝜋𝑛 are satisfied (equivalent to 𝜋1 ∧ · · · ∧ 𝜋𝑛). This is illustrated in

3Equivalent to XACML’s “First-applicable” combining algorithm [141].
4For the avoidance of doubt, the breadth-first search of policy graphs illustrated in this thesis is performed from

left to right.
5This approach enables RPPM to implement the UNIX access control model, as will be described in Section 5.2.2.
6Assuming the AllMatch principal-matching strategy is employed.
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(all, none, null)

(𝜑2, 𝜓2, 𝑝2)(𝜑1, 𝜓1, 𝑝1) (𝜑3, 𝜓3, 𝑝3) (𝜑4, 𝜓4, 𝑝4) (𝜑5, 𝜓5, 𝑝5)

Figure 5.1: A list-oriented tree PMP

Figure 5.2, where path conditions 𝜑1 through 𝜑3 must be satisfied for principal 𝑝4

to be matched to the request.

I believe that such arrangements are useful for combining specialisms with more

general principals; for example, a Quality Engineer principal could be activated if

both the Engineer and Quality Team Member principals are matched. Nevertheless,

principal activation will be particularly relevant to inter-operation and the evalua-

tion of requests in Inter-RPPM (see Section 9.2.2).

Note that principal-matching rules of the form (all, none, 𝑝) are always applicable

(as all is always satisfied and none is never satisfied) and, when evaluated, always

result in principal 𝑝 ̸= null being added to the set of matched principals. Rules of

this form are used to “activate” a principal 𝑝 once some set of preceding principals

(from parent rules) are matched.

(all, none, null)

(𝜑2, none, 𝑝2)(𝜑1, none, 𝑝1) (𝜑3, none, 𝑝3)

(all, none, 𝑝4)

Figure 5.2: Policy conjunction

Example 5.1. Let us consider the evaluation of the simple policy graph in Figure 5.3

using the AllMatch principal-matching strategy. When evaluating this policy graph

there are four potential outcomes. The set of matched principals may be one of ∅,
{𝑝1}, {𝑝2, 𝑝4}, or {𝑝1, 𝑝2, 𝑝3, 𝑝4}.7 In particular, 𝑝4 is activated if 𝑝2 is, because the

path conditions associated with 𝑝2 are satisfied (and the targets associated with 𝑝4

are trivially satisfied); and if both 𝑝1 and 𝑝2 are activated (because their respective

path conditions are satisfied) then so is 𝑝3 (as well as 𝑝4).
7Recall that the null is not added to the set of matched principals.
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(all, none, null)

(𝜑1, 𝜓1, 𝑝1) (𝜑2, 𝜓2, 𝑝2)

(all, none, 𝑝3) (all, none, 𝑝4)

Figure 5.3: A graph-based PMP

5.1.2 Target-Based Request Evaluation

When Evaluating Principal-Matching Policy Sets

The RPPM0 request evaluation process, described in Section 4.2 and Section 4.3,

evaluates every principal-matching rule to identify those principals applicable to

a request. It subsequently determines whether those principals are authorized to

perform the requested action on the object. This process is rather inefficient, as one

or more of the principals matched in this way may not appear in any authorization

rules associated with the requested object. A natural optimisation is to employ

“target-based” evaluation of requests, as exemplified by XACML [141] and other

target-based languages [59].

Simply, rather than evaluating every (𝜑, 𝜓, 𝑝) in the principal-matching policy

𝜌 to determine the matched principals for a request 𝑞 = (𝑠, 𝑜, 𝑎), I only need to

evaluate those rules in the subset

{(𝜑, 𝜓, 𝑝) ∈ 𝜌 : (𝑝,𝑋, 𝑌, 𝑏) ∈ 𝜚, 𝑜 ∈ 𝑋 or 𝜏(𝑜) ∈ 𝑋, 𝑎 ∈ 𝑌 }.

By Definition 4.10, this is equivalent to

{(𝜑, 𝜓, 𝑝) ∈ 𝜌 : (𝑝,𝑋, 𝑌, 𝑏) ∈ 𝜚 is applicable to 𝑞}.

In the worst case, of course, I still have to evaluate the entire set of principal-

matching rules and each authorization rule will now be checked twice for applica-

bility (once before compute principals, and once during compute authorizations).

However, the additional complexity from this repeated check is negligible (asymp-

totically), particularly when compared to the potential benefits for models where

authorization rules don’t regularly cover all objects and where multiple principals

are employed.
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When Evaluating Principal-Matching Policy Graphs

In contrast, request evaluation using the policy-graph variant of the ComputePrinci-

pals algorithm (as described in Section 5.1.1) already includes several mechanisms

by which a subset of the principal-matching rules may be evaluated. Firstly, Algo-

rithm 5.1 prunes descendent rules where the ancestor rule is not matched; secondly,

the FirstMatch principal-matching strategy, when employed, short circuits evaluation

once the first principal is matched.

Whilst these mechanisms exist, a target-based approach similar to that just de-

scribed may be employed. However, this approach must take into consideration

principal-activation. Therefore, rather than simply evaluating principal-matching

rules for principals which are part of applicable authorization rules, I must also

evaluate all principal-matching rules which are ancestors of such rules. I, therefore,

start out evaluating only the rules in the set

{(𝜑, 𝜓, 𝑝) ∈ 𝜌 : (𝑝,𝑋, 𝑌, 𝑏) ∈ 𝜚 is applicable to 𝑞 or

(𝑝′, 𝑋 ′, 𝑌 ′, 𝑏′) ∈ 𝜚 is applicable to 𝑞, (𝜑, 𝜓, 𝑝) > (𝜑′, 𝜓′, 𝑝′)}

and may evaluate fewer rules due to pruning and the choice of principal-matching

strategy.

Once again, in the worst case I still have to evaluate the entire policy graph

and each authorization rule will be checked twice for applicability. As before, the

additional complexity from this repeated check is asymptotically negligible.

5.1.3 Caching Edges

Principal-Matching Optimisation

Whilst the base RPPM model can cover a wide range of systems, the compute prin-

cipals step of request evaluation may be computationally intensive for very large

system graphs or systems employing principal-matching policies which contain a

very large number of rules. The target-based optimisation for request evaluation,

described in Section 5.1.2, offers a potential reduction in the processing required dur-

ing the compute principals step. However, the benefit is limited to simply excluding

some of the principal-matching rules during the evaluation of individual requests.

Which rules, if any, are excluded varies with each request, but the remainder must

be processed as before.

However, note that the set of matched principals for a subject-object pair re-

mains static until a change is made to the system graph or certain associated policy
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components. This observation suggests a more widely applicable optimisation. Ac-

cordingly, I introduce the concept of caching edges and make use of the relative

stability of matched principals in order to reduce the processing required for future

authorization requests. In order to implement caching edges, a form of typed edge,

I allow edges within the system graph to be labelled: from the base model’s set of

relationship labels ̃︀𝑅; and with a subset of principals from 𝑃 .

In particular, when I evaluate a request (𝑠, 𝑜, 𝑎) that results in a set of matched

principals J𝜌K ⊆ 𝑃 , I add an edge (𝑠, 𝑜, J𝜌K) to the system graph, directed from 𝑠

to 𝑜 and labelled with J𝜌K; this edge identifies the matching principals relevant to

future requests of the form (𝑠, 𝑜, 𝑎′). The subsequent processing of such requests

can, therefore, skip the computationally expensive step of computing the matched

principals and instead use J𝜌K (the label of the caching edge) as input to the second

(compute authorizations) step of request evaluation. Recall that the action of a

request is not part of the compute principals step of request evaluation, and so

caching edges are created and used independent of the requested action.

Remark 5.1. As the target-based request evaluation described in Section 5.1.2 skips

principal-matching rules which are not for the requested object and action, not all

potential matched principals are determined. This strong form of target-based request

evaluation is, therefore, incompatible with caching edges. I therefore weaken the

notion of target-based evaluation when used with caching edges to evaluate principal-

matching rules for principals which are part of authorization rules appropriate for

the target object, no matter the action. In the case of evaluating request 𝑞 = (𝑠, 𝑜, 𝑎)

against a set-based PMP, the evaluated principal-matching rules are

{(𝜑, 𝜓, 𝑝) ∈ 𝜌 : (𝑝,𝑋, 𝑌, 𝑏) ∈ 𝜚, 𝑜 ∈ 𝑋 or 𝜏(𝑜) ∈ 𝑋}.

In the case of evaluating request 𝑞 = (𝑠, 𝑜, 𝑎) against a graph-based PMP, the evalu-

ated rules are

{(𝜑, 𝜓, 𝑝) ∈ 𝜌 : (𝑝,𝑋, 𝑌, 𝑏) ∈ 𝜚, 𝑜 ∈ 𝑋 or 𝜏(𝑜) ∈ 𝑋, or

(𝑝′, 𝑋 ′, 𝑌 ′, 𝑏′) ∈ 𝜚, 𝑜 ∈ 𝑋 or 𝜏(𝑜) ∈ 𝑋, (𝜑, 𝜓, 𝑝) > (𝜑′, 𝜓′, 𝑝′)}.

Example 5.2. Recall from Example 4.3, that student 1 is the teaching assistant for

course 2 and can (based on the rules repeated below), therefore, match the principal
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course-ta and be authorized to read and grade answer 3.

𝜌 = { . . . , (Ta-for ; Coursework-for, Enrolled-on ; Coursework-for, course-ta), . . . }

𝜚 = { . . . , (course-ta, ⋆, {read, grade}, 1), . . . }

Suppose that student 1 makes the request (student 1 , answer 3 , read). Then this

request will be authorized because J𝜌K = {course-ta}. At this stage, I may there-

fore add an edge (student 1 , answer 3 , {course-ta}), thereby caching the outcome of

the principal-matching phase of request evaluation, as illustrated in Figure 5.4. (I

use the convention that caching edges have a diamond-shaped arrow head.) Then

a subsequent request (student 1 , answer 3 , grade) will only need to determine that

course-ta is associated with the subject-object pair (student 1 , answer 3 ) and can

immediately evaluate the authorization rules (and thereby authorize the request).

student
1

course
1

course
2

answer
1

answer
3

answer
2

professor

student
2

Enrolled-on

Responsible-for

Ta-forCoursework-for

Coursework-for

Coursework-for
Creator-of

{course-ta}

Enrolled-on

Creator-of

Figure 5.4: Adding the caching edge (student 1 , answer 3 , {course-ta})

Whilst the benefit of caching may seem limited in such a trivial example, recall

that (as per Section 4.5.2) the overall complexity of request evaluation comes solely

from the compute principals step, and is

𝑂(|𝜌| · 𝜗(𝜌) · |𝑉 |2 · | ̃︀𝑅|), where 𝜗(𝜌) = max{ℓ(𝜋) + 𝜗(𝜋) : 𝜋 ∈ 𝜌}.

For any system where repeat requests are made by a subject on a particular object,

the compute principals step may be bypassed after it has been performed in full

once. I propose that such repeat requests are common in many computing systems.

In my experience users commonly request access to resources multiple times as

they perform multiple operations on those resources (e.g., read, write, and print).

Equally, users repeat access requests on resources over time as they continue to

rely on or modify the content within them. For example, access requests to execute

software applications, and the multitude of associated resource requests that go with
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these, occur daily with users having applications which they prefer for e-mail, web

browsing and writing documents. I, therefore, believe that caching can provide a

significant improvement in many situations.

Cache Management

Whilst the performance improvement offered by caching edges may be significant,

there is a need to carefully manage any implementation of caching edges to prevent

this improvement being countered by an indiscriminate increase in the number of

edges in the system graph. In the worst case, the number of caching edges directed

out of a node is 𝑂(|𝑉 |), where 𝑉 is the set of nodes in the system graph. However,

there are strategies that can be used to both prevent the system graph realizing the

worst case and to reduce the impact of large numbers of caching edges. To maintain

an acceptable number of caching edges, I could, for example, use some form of cache

purging. I could also distinguish between relationship edges and caching edges using

some flag on the edges, and index the caching edges to dramatically decrease the

time taken to search the set of caching edges. Employing these techniques should

enable the benefits of caching edges to be realised without incurring unacceptable

costs during identification of the relevant caching edge.

More fundamentally, a change to any of the following components of the model

could alter the list of matched principals which would be determined for a particular

pairing of subject and object. Such changes, therefore, may affect the correctness

of caching edges. (The obvious exception is a change to the system graph resulting

from the addition or deletion of a caching edge.)

∙ The system graph;

∙ The principal-matching policy; and

∙ The principal-matching strategy (if a graph-based PMP is employed).

The most crude management technique for handling such changes involves re-

moving all caching edges from the system graph whenever one of the above changes

occurs. However, in certain specific scenarios it may be possible for a system to iden-

tify a scope of impact for a particular change and thus apply a more refined manage-

ment technique. For example, if a change to the set-based principal-matching policy

removes all rules which are used to match a certain principal (and nothing more),

then it would be sufficient for only caching edges labelled with a set including that

principal to be purged. Whilst such a refinement may further optimise the opera-

tions performed by the authorization system, its applicability will depend upon the
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configuration of the authorization system in its entirety.

I have already noted that it may make sense to purge the cache in order to limit

the number of caching edges in the system graph. Again, there are several possible

purging strategies. I present three cache purging strategies which may be employed

within RPPM:

∙ MaxThreshold – the number of caching edges within the system graph is limited

to a maximum threshold as either a specific value or a percentage of the total

number of edges.

∙ MaxThresholdOut – the number of caching edges out of each entity is limited

to a maximum threshold value.

∙ Timeout – the duration for which caching edges persist is limited by a timeout

value, with edges “retired” once their timeout has expired.

Numerous other strategies could be defined, as could mixed strategies, and these

may be desirable for specific applications.

Pre-Emptive Caching

Any optimisation provided by the caching of matched principals relies upon the exis-

tence of a caching edge in order to reduce the authorization request processing. The

first request between a subject and object must, therefore, be processed normally in

order to determine the set of matched principals which will label the caching edge. If

this initial evaluation were only performed when an authorization request were sub-

mitted then the benefit of caching edges would be limited to repeated subject-object

interactions alone.

However, many authorization systems will experience periods of time when no

authorization requests are being evaluated. The nature of many computing tasks

is such that authorization is required sporadically amongst longer periods of com-

putation by clients of the authorization system and idle time for the authorization

system itself. These periods of reduced load on the authorization system can be

employed for the purpose of pre-emptive caching.

Thus for pairs of nodes (𝑢, 𝑣) in the system graph, I may compute J𝜌K𝑢,𝑣 and insert

a caching edge (𝑢, 𝑣, J𝜌K𝑢,𝑣).8 The fact that a request’s action is not employed during

the principal matching process means that to perform this further optimisation

an authorization system solely requires a subject and object between whom the

matched principals are to be identified. There are numerous potential strategies

8Here I use the notation J𝜌K𝑢,𝑣 as an equivalent to J𝜌K𝑞 where 𝑞 = (𝑢, 𝑣, 𝑎) for any 𝑎 ∈ 𝐴.
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for determining which subject-object pairs should be considered for pre-emptive

caching. Here I describe two simple and natural strategies.

Subject-focused. Subject-focused pre-emptive caching assumes that subjects

which have recently made authorization requests are active and so will likely

make further requests. The authorization system, therefore, prioritises deter-

mining the list of matched principals between the most recently active subjects

and a set of target objects. The set of target objects could be selected at ran-

dom or may be systematically chosen using an appropriate mechanism for the

system defined in the system graph. This might involve the target objects being

popular, significant or those whose access may be particularly time-sensitive.

I envisage that the interpretation of these concepts may be system specific, as

may be their relative worth.

As pre-emptive caching builds the number of caching edges within the system

graph the number of subjects and objects under consideration could be ex-

panded to provide greater coverage of the potential future requests (allowing

for whatever cache purging strategy is employed).

Object-focused. In certain applications, there will be resources that will be used

by most users, such as certain database tables. Thus, it may make sense to

construct caching edges for all active users for certain resources.

No matter the strategy, pre-emptive caching makes use of available processing

time in order to perform the most complex part of authorization request evaluation:

principal matching. Any requests that are made utilising a subject-object pair which

has already been evaluated by pre-emptive caching will be able to make use of the

caching edge already established, even if that request were the first received for that

pair. Once determined, caching edges resulting from pre-emptive caching are no

different from those established as a result of request evaluation.

5.2 Model Comparisons

5.2.1 Request Evaluation Enhancements

The RPPM1a model introduces three request evaluation enhancements to the

RPPM0 model, increasing the expressiveness of the policy language and optimising

the request evaluation process. The enhancements may be employed individually or

in combination, as is appropriate for the system being modelled and the policies to

be enforced.
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Policy Graph Evaluation By organising the principal-matching policy within a

graph, RPPM1a can express more complex policies, including ordered lists, con-

junction and principal activation. Principal-matching rules are vertexes within the

policy graph, and the edges indicate the child rules which should be evaluated if their

parent rules are matched. This arrangement allows a policy to contain dependencies

and enables rules to be pruned from the evaluation if their parent rules don’t match,

thus reducing the number of rules that need to be evaluated. Whatever the arrange-

ment of the policy graph, the process of evaluating individual principal-matching

rules is no different to that used by RPPM0. Whilst “policy graphs” have been used

in other access control models, these uses are not directly equivalent to mine and the

term has been variously used to define: separation of duty and temporal constraints

between roles [35]; constraints between the types of entity [102] (much like my path

condition); and, more close to my use, chains of first-order logic policies protecting

a resource [167].

Target-Based Request Evaluation Strong target-based request evaluation in

RPPM1a only evaluates principal-matching rules which can affect the result of the

current request evaluation. These are determined by identifying the principals within

authorization rules defined for the target object and requested action. In contrast,

weak target-based request evaluation, which can be used alongside caching edges,

evaluates principal-matching rules which can affect the result of any request between

the subject and object (ignoring the action). Whether strong or weak, target-based

request evaluation can reduce the number of principal-matching rules which must

be evaluated by RPPM1a when compared to RPPM0.
9 Whilst the mechanisms may

be different, other models, such as XACML and PTaCL, employ targets to limit the

requests to which the model’s policy rules apply [59, 141].

Caching Edges Caching edges have direct value in the RPPM1a model, allowing the

computationally expensive part of the request evaluation process to be bypassed.

This allows for intuitive and broadly applicable optimisation strategies to be em-

ployed. There has been some interest in recent years in reusing, recycling or caching

authorization decisions at policy enforcement points in order to avoid re-computing

decisions [37, 117, 118, 187]. These techniques have perceived benefit, in partic-

ular, in large-scale, distributed, systems due to demands for reduced latency and

resilience to intermittent communications failures. Whilst caching in the RPPM

model does not resolve connectivity issues directly, the capability has considerable
9This optimisation benefits any system where authorization rules don’t regularly cover all objects and where

multiple principals are employed.
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impact on latency. Moreover, a cached edge applies to multiple requests, irrespective

of whether the exact request has previously been evaluated, unlike many, if not all,

proposals in the literature. Whilst many authorization recycling strategies involve

the policy enforcement point maintaining its own cache, or employing a “specula-

tive” system [115], caching in the RPPM1a model updates the system graph itself

and thus is implemented by very simple enhancements to the base model.

5.2.2 Implementing Non-ReBAC Models

UNIX

As described in Section 4.6.2, RPPM0 was unable to implement the UNIX access

control model as it cannot replicate UNIX’s ordered request evaluation process. The

introduction of policy graph evaluation in RPPM1a, however, resolves this limitation.

To implement the UNIX access control model, RPPM1a is configured such that the

entity types are users, groups and objects. Three relationship types are defined in

the system model: the uo relationship is used between users and objects to identify

UNIX’s “owner” principal; the ug relationship identifies user membership of groups;

and the go relationship identifies group assignment to objects. Together, these last

two relationships are used to identify UNIX’s “group” principal, whilst a default

principal-matching rule is used to identify “other”.

𝑇 = {users , groups , objects}

𝑅 = {uo, ug , go}

𝑆 = ∅

𝐸PR = {(users , objects , uo), (users , groups , ug), (groups , objects , go)}

𝐺PR = (𝑇,𝐸PR)

In order to have RPPM evaluate the three principal-matching rules in order, and

to ensure only one of them is matched, I employ the graph-based PMP shown in

Figure 5.5 and the FirstMatch principal-matching strategy. The combination of

these two elements means that only the first principal from owner, group or 𝑝def

(conceptually equivalent to UNIX’s “other”) will be matched to the request. As 𝑝def

is matched trivially, due to the use of the principal-matching rule (all, none, 𝑝def),

one of the three principals will always be matched.
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(all, none, null)

(uo, none, owner) (ug ; go, none, group) (all, none, 𝑝def)

Figure 5.5: The UNIX tree policy

5.3 Summary

I have introduced three request evaluation enhancements to the base RPPMmodel to

produce RPPM1a. I have shown how these enhancements increase the expressiveness

of the policy language, and optimise the processing of request evaluation by reducing

or bypassing the processing of the most complex step (compute principals). I have

also demonstrated how the policy graph enhancement enables RPPM to implement

the UNIX access control model. Whilst these enhancements have made RPPM more

useful and efficient, further enhancements (introduced in the next chapter) are also

desirable to ensure that RPPM may be effective in a range of enterprise application

environments where prior decisions are important to the current evaluation.
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RPPM1b

In this chapter I present RPPM1b, a development of the RPPM0 model which in-

cludes audit edges. In addition to their use for the logging of authorization decision

outcomes, I use audit edges to implement the following policy configuration enhance-

ments :

∙ History-based policies – the introduction of decision audit edges enables RPPM

to include ad hoc principal-matching rules which inform authorization decisions

based on the results of previous request evaluations.

∙ Separation of duty – the systematic use of decision audit edges enables policies

to be defined whereby a subject is only permitted to perform one of 𝑛 con-

strained actions on an object. I further show that RPPM can support more

stringent constraints such as requiring 𝑛 one-time actions to be distributed

amongst 𝑛 subjects.

∙ Binding of duty – the systematic use of decision audit edges also enables policies

requiring a single subject to perform a set of 𝑛 constrained actions on an object.

∙ Chinese Wall – the introduction of interest audit edges enables RPPM to track a

subject’s interest in objects and to, thereby, deny access requests which attempt

to access objects in a distinct conflict of interest class.

Policy configurations for history-based policies, (standard) separation of duty and

Chinese Wall, described in Section 6.1, have previously been published, in conjunc-

tion with Jason Crampton, in [60, 61, 63].
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6.1 Policy Configuration Enhancements

6.1.1 History-Based Policies

The RPPM0 and RPPM1a models (introduced in Chapters 4 and 5) use paths of

relationships through logical and concrete entities to inform authorization decisions.

Whilst there is nothing to prevent such entities within a system from being time-

related,1 request evaluation in these models is based on context derived purely from

the moment in time at which the evaluation is performed. Even where caching

is employed, past evaluations do not impact the result of the current evaluation,

only the complexity of determining that result. These forms of the RPPM model

are, therefore, “memory-less” with respect to request evaluations. I introduce audit

edges to enable RPPM1b to inform the current context of the system graph based

on the evaluation of previous requests.

As with caching edges (introduced in Section 5.1.3), audit edges are a form of

typed edge which I introduce into the system graph. Specifically, I support two

kinds of audit edge:

∙ Decision audit edges – which record the decisions from previous authorization

requests and are labelled with an indication of whether a requested action 𝑎

was authorized 𝑎⊕ or denied 𝑎⊖ to a subject on an object.

∙ Interest audit edges – which record a subject’s active or blocked interest, 𝑖⊕ or 𝑖⊖

respectively, in an entity. (I shall return to interest audit edges in Section 6.1.4.)

At its basis, the introduction of decision audit edges allows the system to record

whether previously requested actions were authorized or denied. Both authorized

and denied decision audit edges are inserted, automatically, into the system graph

after request evaluation completes. Specifically, if such an edge does not already

exist, a decision audit edge is added between the subject and object of the evaluated

request, indicating its result.2

Whilst RPPM1a’s caching edges arise from the principal-matching part of the

request evaluation process, an audit edge arises from the second phase of the eval-

uation process, compute authorizations. I extend the set of relationship labels by

defining the relationships 𝑎⊕ and 𝑎⊖ for each action 𝑎, and upon completion of

request evaluation:

1A system might employ logical entities representing groups, including an ex -employee group or a 2017 -cohort
group.

2In some situations there may be merit in recording every occurrence of an action (by a subject on an object)
being authorized or denied. Modifying the decision audit edge’s label to include a count would be a simple way of
achieving this if it were required.
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∙ I add the edge (𝑠, 𝑜, 𝑎⊕) to the system graph if the decision for (𝑠, 𝑜, 𝑎) is allow;

and

∙ I add the edge (𝑠, 𝑜, 𝑎⊖) to the system graph if the decision for (𝑠, 𝑜, 𝑎) is deny.

These edges can be utilised in a variety of ways depending on the requirements

of the authorization system. At their simplest, they provide a record which may be

used as input for auditing or other processing outside of the authorization system.3

In contrast, decision audit edges may also be used to satisfy part of a path condition

in the system graph, thus enabling authorization decisions to be made based on

historical evidence. Reputation and history-based access control (HBAC) systems

rely on just such knowledge of previous actions to inform decisions [1, 72, 121].

Principal-matching rules may, therefore, be created to make direct use of decision

audit edges. Some obvious examples include:

∙ The principal-matching rule (all, 𝑎⊕, 𝑝) can be used to match the principal 𝑝 to

any request where the subject has not previously been granted the action 𝑎 on

the object;

∙ The rule (all, 𝑎⊖, 𝑝) requires that the subject has never been denied action 𝑎 on

the object; and

∙ The rule (𝑎⊕, none, 𝑝) requires that the subject must have previously had a

request to perform action 𝑎 on the object approved.

Example 6.1. Returning to my higher education example (introduced in Exam-

ple 4.3), suppose that I have student 2 who is enrolled on course 2 and is the author

of coursework answer 3. Then student 1, the teaching assistant for the course will,

at some point, grade the coursework answer 3. At this point, student 2 should not be

able to modify answer 3. I could enforce this requirement by modifying the principal-

matching rule (Creator-of, none, author)—which assigns any user who is the creator

of a piece of coursework to the author principal—to

(Creator-of, Enrolled-on ; Ta-for ; grade⊕, author).

This rule includes a forbidden target Enrolled-on ; Ta-for ; grade⊕ that must not be

matched if the principal author is to apply to a request. This path condition traces a

path from the enrolled student to the course to the teaching assistant to the (graded)

coursework. Figure 6.1 illustrates the system graph once the teaching assistant has

3In this form they may, for example, be used to identify potentially malicious actors. A node with a large number
of, or a sudden increase in, denied decision audit edges may be considered worthy of further investigation.
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graded answer 3; I represent allow audit edges using dashed lines. Note that there

is a path from student 2 to answer 3 matching the prohibited path condition.

student
1

course
1

course
2

answer
1

answer
3

answer
2

professor

student
2

Enrolled-on

Responsible-for

Ta-forCoursework-for

Coursework-for

Coursework-for
Creator-of

grade⊕

Enrolled-on

Creator-of

Figure 6.1: Adding the decision audit edge (student 1 , answer 3 , grade⊕)

Of course, in practice student 2 will still wish to read answer 3, so I might wish

to specify a separate rule, rather than modify the existing rule. This separate rule

could have the form

(Enrolled-on ; Ta-for ; grade⊕, none, graded-student),

and then I specify an additional authorization rule

(graded-student, ⋆, {write}, 0)

which explicitly denies write access to any object by the principal graded-student.

6.1.2 Separation of Duty

Whilst decision audit edges can be used in an ad hoc manner to enforce application-

specific constraints, I can also use them to enforce separation of duty in a systematic

way. Separation of duty requires that certain combinations of actions are performed

by a number of distinct individuals so as to reduce the likelihood of abuse of a system.

In its simplest form, separation of duty constraints require two individuals to each

perform one of a pair of distinct actions so that a single individual cannot abuse the

system. A common application environment for such constraints is that of a finance

system, where, for example, the individual authorized to add new suppliers should

not be the same individual who is authorized to approve the payment of invoices

to suppliers. If a single individual were able to perform both of these actions they

could set themselves up as a supplier within the finance system and then approve

for payment any invoices they submitted as that supplier.
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One of 𝑛 Actions

I define a mechanism here through which subjects are limited to performing one

of 𝑛 specific actions associated with an object.4 Let us consider the system graph

fragment shown in Figure 6.2a, a set of 𝑛 actions of interest {𝑎1, . . . , 𝑎𝑛} ⊇ 𝐴, and

the policies

𝜌 = {(𝑟, none, 𝑝)}

(𝜚, 𝜒) = ({(𝑝, {𝑜}, ⋆, 1)},DenyOverrides).

With these policies (whether I use audit edges or not), the request 𝑞1 = (𝑢1, 𝑜, 𝑎1)

made by 𝑢1 will be authorized by matching principal 𝑝, as will subsequent requests

𝑞2 = (𝑢1, 𝑜, 𝑎2) and 𝑞3 = (𝑢1, 𝑜, 𝑎3). A similar result would have occurred if these

requests had been submitted with 𝑢2 or 𝑢3 as the subject.

u1 o

u2

u3
r

r

r

(a) System graph fragment

u1 o

u2

u3
r

r

r

a⊕
1

a⊖
2

a⊖
3

a⊕
3

a⊕
2

a⊖
3

(b) After request 𝑞′6 = (𝑢2, 𝑜, 𝑎3)

Figure 6.2: Enforcing separation of duty

Now suppose I wish to restrict each user to a single interaction with 𝑜. Given

𝑛 actions of interest {𝑎1, . . . , 𝑎𝑛} and index 𝑖, 1 6 𝑖 6 𝑛, I shall use the notation

𝐴𝑛̸𝑎𝑖 = {𝑎1, . . . , 𝑎𝑛} ∖ {𝑎𝑖} to indicate the set of 𝑛 − 1 actions of interest other than

4Note that this doesn’t force users to specific (or even distinct) actions. However, I will define a more restrictive
mechanism later in Section 6.1.2.
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action 𝑎𝑖. Then I define the policies

𝜌′ = 𝜌 ∪ {(𝑎⊕𝑖 , none, 𝑝𝑖) : 1 6 𝑖 6 𝑛}

𝜚′ = 𝜚 ∪ {(𝑝𝑖, {𝑜}, 𝐴𝑛̸𝑎𝑖 , 0) : 1 6 𝑖 6 𝑛}.

Then, starting anew with no audit edges in the system graph (as per Figure 6.2a),

request 𝑞′1 = (𝑢1, 𝑜, 𝑎1) matches the rule in 𝜌, as before, and the request is authorized

by the rule in (𝜚,𝜒). However, assuming the audit edge (𝑢1, 𝑜, 𝑎
⊕
1 ) is now added to

the system graph, a subsequent request 𝑞′2 = (𝑢1, 𝑜, 𝑎2) will match the new principal-

matching rule (𝑎⊕1 , none, 𝑝1), leading to a deny decision (because of the new, blocking,

authorization rule (𝑝1, {𝑜}, {𝑎2, 𝑎3}, 0)). At this point a deny audit edge (𝑢1, 𝑜, 𝑎
⊖
2 )

will be added to the system graph. Similarly, request 𝑞′3 = (𝑢1, 𝑜, 𝑎3) will be denied

by the same rules. Attempts by 𝑢2 or 𝑢3 to perform multiple different actions will,

equally, result in at most one allow decision. For example, 𝑢3 may be granted

𝑞′4 = (𝑢3, 𝑜, 𝑎2) but would subsequently be denied 𝑞′5 = (𝑢3, 𝑜, 𝑎3); 𝑢2 may be granted

𝑞′6 = (𝑢2, 𝑜, 𝑎3). This case of 𝑛 = 3 is illustrated in Figure 6.2b, where each of the

three users has been permitted to perform one of the three actions. More formally,

I have the following result.

Proposition 6.1. Given an RPPM separation of duty policy, as described above, for

any user 𝑢 the request (𝑢, 𝑜, 𝑎) is allowed if the request is authorized by 𝜌′ and (𝜚′, 𝜒)

and no request of the form (𝑢, 𝑜, 𝑎′) has been previously authorized where 𝑎′ ̸= 𝑎 and

𝑎, 𝑎′ ∈ {𝑎1, . . . , 𝑎𝑛}. The request is denied otherwise.

Proof. Consider 𝐸⊕ = {(𝑠1, 𝑜1, 𝑎⊕1 ), . . . , (𝑠𝑚, 𝑜𝑚, 𝑎⊕𝑚)} the set of authorized decision

audit edges where 𝐸⊕ ⊂ 𝐸, resulting from a sequence of 𝑚 authorized requests

{(𝑠1, 𝑜1, 𝑎1), . . . , (𝑠𝑚, 𝑜𝑚, 𝑎𝑚)}, and a new request (𝑢, 𝑜, 𝑎) where 𝑎 ∈ {𝑎1, . . . , 𝑎𝑛}.
Then:

∙ If there exists (𝑢, 𝑜, 𝑎′⊕) ∈ 𝐸⊕ for some 𝑎′ ̸= 𝑎, 𝑎′ ∈ {𝑎1, . . . , 𝑎𝑛} then (𝑢, 𝑜, 𝑎)

will be denied, using the DenyOverrides CRS, by matching the principal-

matching rule (𝑎′⊕, none, 𝑝𝑎′) in 𝜌
′∖𝜌 and the authorization rule (𝑝𝑎′ , {𝑜}, 𝐴𝑛̸𝑎′ , 0)

in 𝜚′ ∖ 𝜚 being applicable to the request.

∙ Otherwise, (𝑢, 𝑜, 𝑎) is authorized by matching principal 𝑝 in the principal-

matching rule (𝑟, none, 𝑝) ∈ 𝜌 and then by authorization rule (𝑝, {𝑜}, ⋆, 1) ∈ 𝜚
being applicable to the request.

Whilst I have introduced this mechanism for separation of duty employing a

set-based PMP and the DenyOverrides conflict resolution strategy (as provided by
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RPPM0), it operates equally well with a graph-based list-oriented policy (as intro-

duced in RPPM1a) assuming the added constraint rules are inserted at the start of

the PMP’s list.

𝑛 One-time Actions Distributed Amongst 𝑛 Subjects

The separation of duty mechanism just described prevents each subject from per-

forming more than one action on an object. This constraint is the most commonly

considered duty constraint; however, within workflow systems a wider range of con-

straints can be found [31, 39, 56, 114]. Whilst I leave the wider topic of workflow

support within RPPM for future work, I illustrate here that RPPM is already able to

support more powerful constraints than standard separation of duty. For example,

RPPM1b can support a stronger constraint whereby 𝑛 one-time actions (which may

be thought of as tasks in respect of workflows) are distributed amongst 𝑛 subjects.

Let us, once again, consider the system graph fragment shown in Figure 6.2a, a

set of 𝑛 actions of interest {𝑎1, . . . , 𝑎𝑛} ⊇ 𝐴, and the initial policies

𝜌 = {(𝑟, none, 𝑝)}

(𝜚, 𝜒) = ({(𝑝, {𝑜}, ⋆, 1)},DenyOverrides).

Now suppose I wish to distribute 𝑛 actions amongst 𝑛 users, such that each user

is only able to perform a single, distinct, un-repeated task on 𝑜.5 Once again, given

𝑛 actions of interest {𝑎1, . . . , 𝑎𝑛} and index 𝑖, 1 6 𝑖 6 𝑛, I shall use the notation

𝐴𝑛̸𝑎𝑖 = {𝑎1, . . . , 𝑎𝑛} ∖ {𝑎𝑖} to indicate the set of 𝑛 − 1 actions of interest other than

action 𝑎𝑖. Then based on policies defined for separation of duty

𝜌′ = 𝜌 ∪ {(𝑎⊕𝑖 , none, 𝑝𝑖) : 1 6 𝑖 6 𝑛}

𝜚′ = 𝜚 ∪ {(𝑝𝑖, {𝑜}, 𝐴𝑛̸𝑎𝑖 , 0) : 1 6 𝑖 6 𝑛},

I define the policies

𝜌′′ = 𝜌′ ∪ {(𝑟 ; 𝑟 ; 𝑎⊕𝑖 , none, 𝑝𝑟𝑟𝑖) : 1 6 𝑖 6 𝑛}

𝜚′′ = 𝜚′ ∪ {(𝑝𝑟𝑟𝑖, {𝑜}, {𝑎𝑖}, 0) : 1 6 𝑖 6 𝑛}.

Note that the target 𝑟 ; 𝑟 ; 𝑎⊕𝑖 (used in the new principal-matching rules of 𝜌′′) is

satisfied if any of the users have been previously authorized to perform the action

𝑎𝑖, no matter which user is the subject.

5Such an arrangement may, for example, be relevant in the commonly cited finance system use case.
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Proposition 6.2. Given an RPPM distributed actions policy, as described above,

for any user 𝑢 the request (𝑢, 𝑜, 𝑎) is allowed if the request is authorized by 𝜌′′ and

(𝜚′′, 𝜒) and no request of the form (𝑢, 𝑜, 𝑎′) has been previously authorized, where

𝑎′ ∈ {𝑎1, . . . , 𝑎𝑛}, and where no request of the form (𝑢′, 𝑜, 𝑎) has been previously

authorized, where 𝑢 ̸= 𝑢′. The request is denied otherwise.

Proof. Consider 𝐸⊕ = {(𝑠1, 𝑜1, 𝑎⊕1 ), . . . , (𝑠𝑚, 𝑜𝑚, 𝑎⊕𝑚)} the set of authorized decision

audit edges where 𝐸⊕ ⊂ 𝐸, resulting from a sequence of 𝑚 authorized requests

{(𝑠1, 𝑜1, 𝑎1), . . . , (𝑠𝑚, 𝑜𝑚, 𝑎𝑚)}, and a new request (𝑢, 𝑜, 𝑎) where 𝑎 ∈ {𝑎1, . . . , 𝑎𝑛}.
Then:

∙ If there exists (𝑢, 𝑜, 𝑎′⊕) ∈ 𝐸⊕ for some 𝑎′ ̸= 𝑎, 𝑎′ ∈ {𝑎1, . . . , 𝑎𝑛} then (𝑢, 𝑜, 𝑎)

will be denied, using the DenyOverrides CRS, by matching the principal-

matching rule (𝑎′⊕, none, 𝑝𝑎′) in 𝜌
′∖𝜌 and the authorization rule (𝑝𝑎′ , {𝑜}, 𝐴𝑛̸𝑎′ , 0)

in 𝜚′ ∖ 𝜚 being applicable to the request.

∙ If there exists (𝑢′, 𝑜, 𝑎⊕) ∈ 𝐸⊕ then (𝑢, 𝑜, 𝑎) will be denied, using the Deny-

Overrides CRS, by matching the principal-matching rule (𝑟 ; 𝑟 ; 𝑎⊕, none, 𝑝𝑟𝑟𝑖) in

𝜌′′ ∖ 𝜌′ and the authorization rule (𝑝𝑟𝑟𝑖, {𝑜}, {𝑎}, 0) in 𝜚′′ ∖ 𝜚′ being applicable to

the request.

∙ Otherwise, (𝑢, 𝑜, 𝑎) is authorized by matching the principal 𝑝 in the principal-

matching rule (𝑟, none, 𝑝) ∈ 𝜌 and then by authorization rule (𝑝, {𝑜}, ⋆, 1) ∈ 𝜚
being applicable to the request.

6.1.3 Binding of Duty

Whilst separation of duty constraints prevent a subject performing multiple actions

on an object, the purpose of binding of duty constraints is the opposite. A binding of

duty constraint on a set of actions specifically requires that they must be performed

by a single subject [176, 184]. I define a mechanism here through which a set of 𝑛

specific actions must be performed by a single subject on an object.

Let us again consider the system graph fragment shown in Figure 6.2a, a set of

𝑛 actions of interest {𝑎1, . . . , 𝑎𝑛} ⊇ 𝐴, and the initial policies

𝜌 = {(𝑟, none, 𝑝)}

(𝜚, 𝜒) = ({(𝑝, {𝑜}, ⋆, 1)},DenyOverrides).
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Now suppose I wish to constrain 𝑛 actions to a single subject. Then I define

policies

𝜌′ = 𝜌 ∪ {(𝑟 ; 𝑟 ; 𝑎⊕𝑖 , 𝑎⊕𝑖 , 𝑝𝑒𝑥𝑐𝑙) : 1 6 𝑖 6 𝑛}

𝜚′ = 𝜚 ∪ {(𝑝𝑒𝑥𝑐𝑙, {𝑜}, {𝑎1, . . . , 𝑎𝑛}, 0)}.

Note that the target combination of 𝑟 ; 𝑟 ; 𝑎⊕𝑖 as a required target and 𝑎⊕𝑖 as a

forbidden target means that the principal matching-rule (𝑟 ; 𝑟 ; 𝑎⊕𝑖 , 𝑎
⊕
𝑖 , 𝑝𝑒𝑥𝑐𝑙) is only

matched if a user other than the requesting subject has previously been authorized

to perform the action 𝑎𝑖.

Proposition 6.3. Given an RPPM binding of duty policy, as described above, for

any user 𝑢 the request (𝑢, 𝑜, 𝑎) is allowed if the request is authorized by 𝜌′ and (𝜚′, 𝜒)

and no request of the form (𝑢′, 𝑜, 𝑎′) has been previously authorized where 𝑢′ ̸= 𝑢 and

𝑎, 𝑎′ ∈ {𝑎1, . . . , 𝑎𝑛}. The request is denied otherwise.

Proof. Consider 𝐸⊕ = {(𝑠1, 𝑜1, 𝑎⊕1 ), . . . , (𝑠𝑚, 𝑜𝑚, 𝑎⊕𝑚)} the set of authorized decision

audit edges where 𝐸⊕ ⊂ 𝐸, resulting from a sequence of 𝑚 authorized requests

{(𝑠1, 𝑜1, 𝑎1), . . . , (𝑠𝑚, 𝑜𝑚, 𝑎𝑚)}, and a new request (𝑢, 𝑜, 𝑎) where 𝑎 ∈ {𝑎1, . . . , 𝑎𝑛}.
Then:

∙ If there exists (𝑢′, 𝑜, 𝑎′⊕) ∈ 𝐸⊕ for some 𝑎′ ∈ {𝑎1, . . . , 𝑎𝑛} then (𝑢, 𝑜, 𝑎) will be

denied, using the DenyOverrides CRS, by matching the principal-matching rule

(𝑟 ;𝑟 ;𝑎⊕, 𝑎⊕, 𝑝𝑒𝑥𝑐𝑙) in 𝜌
′ ∖𝜌 and the authorization rule (𝑝𝑒𝑥𝑐𝑙, {𝑜}, {𝑎1, . . . , 𝑎𝑛}, 0)

in 𝜚′ ∖ 𝜚 being applicable to the request.

∙ Otherwise, (𝑢, 𝑜, 𝑎) is authorized by matching the principal 𝑝 in the principal-

matching rule (𝑟, none, 𝑝) ∈ 𝜌 and then by authorization rule (𝑝, {𝑜}, ⋆, 1) ∈ 𝜚
being applicable to the request.

6.1.4 Chinese Wall

The Chinese Wall principle may be used to control access to information in order

to prevent any conflicts of interest arising. The standard use case concerns a con-

sultancy that provides services to multiple clients, some of which are competitors of

each other. It is important that a consultant does not access documents of company

𝑐 if she has previously accessed documents of a competitor of 𝑐. To support the

Chinese Wall policy, data is categorised using conflict of interest classes to indicate

groups of competitor entities [40]. Requests to access a company’s resources within a
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conflict of interest class will only be authorized if no previous request was authorized

accessing resources from another company in that conflict of interest class.

It should immediately be clear that audit edges have a part to play in enforcing

Chinese Wall policy, with prior actions affecting the result of the current request

evaluation. Whilst decision audit edges could be used to achieve the desired con-

flict of interest protection, the fact that these are added between the subject and

object of the decided request limits their usefulness in the kinds of large entity ar-

rangements that Chinese Wall is intended for. Specifically, in a large system graph

representing multiple companies and their many resources organised in various ar-

rangements, the Chinese Wall principal-matching rules expected to traverse the

audit edges would become complex and numerous. This is because there would be

an interest in the existence of paths from a user through a resource belonging to

one organisation, through a competing organisation, and through that competing

organisation’s resources and back to the user. In order to conceptually simplify the

policy arrangement for Chinese Wall, I introduce interest audit edges as a second

type of audit edge.

In a similar way to decision audit edges, interest audit edges record information

related to previous requests which can be utilised to make future decisions. However,

whilst the decision audit edges record the direct result of a previous request evalua-

tion, interest audit edges record the higher level notion of “interest” associated with

those requests. A subject which requests to perform an action on an object can be

considered to be showing an interest in that object (or an entity which that object

is related to). An authorization system may be configured to use the record of this

interest to determine whether a future request on that, or another, object should be

approved or denied.

Let us suppose that for a given conflict of interest class 𝑐 and every user 𝑢, I have

𝐺, 𝑢, 𝑐 |= 𝜋1, and for every resource 𝑜, I have 𝐺, 𝑜, 𝑐 |= 𝜋2. Then for this conflict of

interest class I have 𝐺, 𝑢, 𝑜 |= 𝜋1 ;𝜋2 for every user and resource. This arrangement is

depicted, conceptually, in Figure 6.3a.6 I introduce a logical entity into the system

graph to represent a conflict of interest class and the relationship 𝑚, where an edge

(𝑐, 𝑖,𝑚) indicates company 𝑐 is a member of conflict of interest class 𝑖. (I assume

here that membership of conflict of interest classes is determined when the system

graph is initially populated and remains fixed through the lifetime of the system.)

I now introduce interest audit edges into the system graph which are added

between users and companies (see Figure 6.3b).7 Active interest audit edges are

6Figure 6.3 does not show a system graph, it shows high-level representations of the “shape” of a system graph.
7As the interest audit edge connects to a company, rather than it’s resources, this abstracts some of the complexity

which would have existed if decision audit edges had been employed.
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(a) Basic layout with COICs
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𝜋1 𝜋2
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a⊕

a⊖

(b) With audit edges

Figure 6.3: Chinese Wall generalisation

labelled with 𝑖⊕, whilst blocked interest audit edges are labelled with 𝑖⊖. I denote

edges of the form (𝑢, 𝑐, 𝑖⊕) with a filled circle head and those of the form (𝑢, 𝑐, 𝑖⊖)

with a filled square head. I, therefore, extend the set of relationships ̃︀𝑅 to include

the set {𝑖⊕, 𝑖⊖}, thus allowing the system graph to support these new edges.8 When

users are authorized (or denied) access to particular data entities, authorized (or

denied) decision audit edges will result for these requests as shown in Figure 6.3b.

Given a system graph 𝐺 = (𝑉,𝐸) such that 𝐺, 𝑢, 𝑐 |= 𝜋1 and 𝐺, 𝑜, 𝑐 |= 𝜋2 for all

users 𝑢, all objects 𝑜 and all companies 𝑐 with membership of a given conflict-of-

interest class 𝑖, I assume an initial policy

𝜌 = {(𝜋1 ; 𝜋2, none, 𝑝)}

𝜚 = {(𝑝, ⋆, {read}, 1)}.

This policy ensures that every request of the form (𝑢, 𝑜, read) is matched to principal

𝑝 which is authorized to read every 𝑜.

Now suppose that I wish to extend this basic policy and enforce a Chinese Wall

policy, which requires that if a user 𝑢 reads a document belonging to company 𝑐

8Whilst I do not rely upon decision audit edges to enforce Chinese Wall policies they, equally, do not interfere with
interest audit edges. My discussion of Chinese Wall will consider an authorization system which is also supporting
decision audit edges so as to provide a more complete picture of an RPPM1b model.

131



CHAPTER 6. RPPM1B

where (𝑐, 𝑖,𝑚) ∈ 𝐸 then 𝑢 must not read any document belonging to 𝑐′, where 𝑐′ ̸= 𝑐

and (𝑐′, 𝑖,𝑚) ∈ 𝐸. Then I redefine the policy to9

𝜌′ = {(𝜋1 ; 𝜋2, 𝑖⊖ ; 𝜋2, 𝑝)}

𝜚′ = 𝜚.

Consider an initial request (𝑢, 𝑜, read), where 𝑜 is a document owned by 𝑐 a

member of conflict-of-interest class 𝑖. If principal 𝑝 is matched, that is

𝐺, 𝑢, 𝑜 |= 𝜋1 ; 𝜋2 and 𝐺, 𝑢, 𝑜 ̸|= 𝑖⊖ ; 𝜋2,

then the request is authorized (since the principal 𝑝 is matched) and the following

edges are added to 𝐺:10

∙ (𝑢, 𝑐, 𝑖⊕);

∙ (𝑢, 𝑐′, 𝑖⊖) for all 𝑐′ ̸= 𝑐 where (𝑐, 𝑖,𝑚) ∈ 𝐸 and (𝑐′, 𝑖,𝑚) ∈ 𝐸; and

∙ (𝑢, 𝑜, 𝑟𝑒𝑎𝑑⊕).

Consider a subsequent request (𝑢, 𝑜′, read), where 𝑜′ is owned by 𝑐′ ̸= 𝑐 and 𝑐′

belongs to the same conflict-of-interest class as 𝑐. Then 𝐺, 𝑢, 𝑜′ |= 𝑖⊖ ;𝜋2, principal 𝑝

is no longer matched and the request will be denied (assuming the default decision

function is populated to ensure a denial in such cases).

This is illustrated in Figure 6.4, where 𝜋1 = 𝑤𝑓 ; 𝑐𝑓 and 𝜋2 = 𝑑𝑓 (where 𝑤𝑓 is

short for Works-for, 𝑐𝑓 is short for Consults-for and 𝑑𝑓 is short for Document-for).

A member of staff 𝑢1 works for a consultancy firm 𝑒1 that acts on behalf of clients

(𝑐1, 𝑐2 and 𝑐3) and stores data about the commercial interests of those clients in

the form of files (𝑓1, 𝑓2, 𝑓3 and 𝑓4). The figure illustrates the system graph before

(Figure 6.4a) and after (Figure 6.4b) requests (𝑢1, 𝑓1, read) and (𝑢1, 𝑓4, read) have

been authorized (note both 𝑓1 and 𝑓4 are files of the same company 𝑐1). This results

in additional edges in the system graph (shown in Figure 6.4b), notably (𝑢1, 𝑐2, 𝑖
⊖),

which means that 𝐺, 𝑢1, 𝑓2 |= 𝑖⊖ ; 𝜋2 and the request (𝑢1, 𝑓2, read) would be denied

(since 𝑝 would not be matched). Note that request (𝑢1, 𝑓3, read) would be permitted

because 𝐺, 𝑢1, 𝑓3 ̸|= 𝑖⊖ ; 𝜋2. The audit and interest edges added through evaluation

of these two further requests are also shown in Figure 6.4c.

My discussion has so far considered the case where a single path of relationships

exists between users and companies and between objects and companies; in reality
9If my base principal-matching rule employed a prohibited target already then I could still enforce the Chinese

Wall policy by inserting an additional principal-matching rule of the form (𝑖⊖ ; 𝜋2, none, 𝑝𝑏𝑙𝑜𝑐𝑘) where the principal
𝑝𝑏𝑙𝑜𝑐𝑘 is denied all actions on all objects [60].

10Note that interest audit edges are only added when a request is authorized.
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there may be multiple alternative paths and the basic layout can be adjusted to

enable this.11 To support such multi-path scenarios, the approach described above

can be generalised as follows. Let 𝜋1, . . . , 𝜋𝑛 where 𝑛 > 1 be paths between users

and companies, and let 𝜋′1, . . . , 𝜋
′
𝑚 where 𝑚 > 1 be paths between objects and

companies. The set of principal-matching rules required to authorise users to access

objects (through all possible combinations of these paths) is

{(𝜋𝑖 ; 𝜋′𝑗, none, 𝑝) : 1 6 𝑖 6 𝑛, 1 6 𝑗 6 𝑚}.

In order to support Chinese Wall policies, these rules are modified to

{(𝜋𝑖 ; 𝜋′𝑗, 𝑖⊖ ; 𝜋′𝑗, 𝑝) : 1 6 𝑖 6 𝑛, 1 6 𝑗 6 𝑚}.

More generally, suppose I have a principal-matching policy 𝜌 and an extended

authorization policy (𝜚, 𝜒) where 𝜒 = DenyOverrides. In order to enforce the Chinese

Wall constraint using the basic layout shown in Figure 6.3 I define the policies

𝜌′ = 𝜌 ∪ {(𝑖⊖ ; 𝜋2, none, 𝑝𝑐𝑤)}

𝜚′ = 𝜚 ∪ {(𝑝𝑐𝑤, ⋆, ⋆, 0)}.

Proposition 6.4. Given an RPPM Chinese Wall constraint, as described above,

for any user 𝑢 the request (𝑢, 𝑜, 𝑎) is allowed if the request is authorized by 𝜌′ and

(𝜚′, 𝜒) and the user 𝑢 does not have an active interest in any company 𝑐′ which is a

member of the same conflict of interest class as the company 𝑐 ̸= 𝑐′ responsible for

𝑜. In all other cases the request is denied.

Proof. Let 𝐺 = (𝑉,𝐸) be a system graph, 𝐸𝑖⊕ = {(𝑢1, 𝑐1, 𝑖⊕), . . . , (𝑢𝑗, 𝑐𝑗, 𝑖⊕)} be a

set of active interest edges and 𝐸𝑖⊖ = {(𝑢1, 𝑐1, 𝑖⊖), . . . , (𝑢𝑘, 𝑐𝑘, 𝑖⊖)} be a set of blocked
interest audit edges, where 𝐸𝑖⊕ ∪ 𝐸𝑖⊖ ⊂ 𝐸 and where for all edges (𝑢𝑙, 𝑐𝑙, 𝑖

⊖) ∈ 𝐸𝑖⊖ ,
(𝑐𝑙, 𝑖,𝑚) ∈ 𝐸, (𝑐𝑛, 𝑖,𝑚) ∈ 𝐸 and (𝑢𝑙, 𝑐𝑛, 𝑖

⊕) ∈ 𝐸𝑖⊕ . Consider a new request (𝑢, 𝑜, 𝑎),

where 𝐺, 𝑜, 𝑐 |= 𝜋2 for some company 𝑐. Then:

∙ If there exists (𝑢, 𝑐, 𝑖⊖) ∈ 𝐸𝑖⊖ then (𝑢, 𝑜, 𝑎) will be denied, using the DenyOver-

rides CRS, by matching the principal-matching rule (𝑖⊖ ; 𝜋2, none, 𝑝𝑐𝑤) in 𝜌
′ ∖ 𝜌

and the authorization rule (𝑝𝑐𝑤, ⋆, ⋆, 0) in 𝜚
′ ∖ 𝜚 being applicable to the request.

∙ Otherwise, (𝑢, 𝑜, 𝑎) is authorized if it is authorized by 𝜌 and 𝜚.

11The key components of the basic layout are the existence of a subset of system graph entities 𝐶 ⊂ 𝑉 (in my
example companies) connecting users to objects, the fact that each 𝑐 ∈ 𝐶 is a member of at most one conflict of
interest classes 𝑖, and the fact that 𝐶 is the range for interest audit edges.
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Figure 6.4: Enforcing the Chinese Wall policy

6.2 Model Comparisons

6.2.1 Policy Configuration Enhancements

The introduction of audit edges into the RPPM1b model enables RPPM to support

a range of useful policy frameworks. Whilst audit edges enable a record of previous

request evaluations to be kept, some systems may use previous activity to enforce

constraint policies such as separation of duty [89, 171] and Chinese Wall [40].

History-Based Policies Audit edges enable RPPM1b to evaluate authorization de-

cisions based on the results of previous request evaluations. Decision audit edges

are added automatically to the system graph once request evaluation is completed.

In so doing, these edges identify whether the evaluated request was authorized or
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denied. Principal-matching rules may employ such edges, within the definition of

targets, to require or forbid the results of particular previous actions during the

current evaluation. Fong et al. have similarly enabled a relationship-based model

to enforce history-based policies, in their case by incorporating temporal operators

to the logic of Fong’s ReBAC model [84]. As I have, they document historical inter-

actions through binary relations, but they choose to track a sequence (or “trace”)

of graph states, where each state transition is associated with the addition of a

single “event” edge representing one those interactions. Whilst this (heavier-weight

method) enables them to evaluate policy based on combinations of relationships

and events (as I do) their work is developed in the context of social networks, and is

thus unsuitable for the more generic access control applications for which the RPPM

model was designed.

Separation of Duty and Binding of Duty By using audit edges systematically

RPPM1b is able to implement separation of duty constraints, as are commonly em-

ployed in role-based access control and workflow systems [31, 39, 56, 114, 163]. The

kinds of policy construction used to define separation of duty policies can equally be

applied in RPPM1b to produce binding of duty constraints. In the case of role-based

access control, separation of duty is commonly divided into two types: static and

dynamic (as described in Section 2.2.3). Whilst RBAC’s distinction based on role

membership and activation doesn’t apply to RPPM, in reality the separation of duty

mechanism described in Section 6.1.2 is more akin to dynamic separation of duty;

this is due to the fact that RPPM’s principal-matching determines principals, and

thereby applicable constraints, at request-time. Whilst separation of duty has been

briefly considered in Fong’s ReBAC model [82], binding of duty constraints are not

supported by any other relationship-based access control model.

Chinese Wall As with decision audit edges, RPPM1b supports the addition of inter-

est audit edges once request evaluation is completed and the request is authorized.

These edges identify a subject’s interest in another entity within the system graph

(which does not have to be the object of the request, but must be directly or in-

directly related to that object). Once again, principal-matching rules may employ

these edges when defining targets to ensure conflicting interest requests are denied.

Brewer and Nash’s seminal paper on the Chinese Wall policy employed an enforce-

ment mechanism based on a history matrix, which records what requests have pre-

viously been allowed [40]. It is very natural to record such information as audit

edges in the system graph and to use these edges to define and enforce history-
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based policies. Chinese Wall has only been given brief consideration in another

relationship-based access control model [14].

6.2.2 Implementing Non-ReBAC Models

Multi-Level Security

Section 4.6.2 described how the RPPM0 model may be used to enforce the simple

security property of multi-level security. However, RPPM0 is unable to support the

dynamic session awareness required to implement the *-property which blocks “writ-

ing down”. The interest audit edges discussed in Section 6.1.4 offer the mechanism

through which this may be achieved in RPPM1b.

To use interest audit edges to enforce the *-property, the principal-matching

policy of RPPM1b is changed from

𝜌 = {(Cleared-to ; Classified-at, none, cleared-user),

(Cleared-to ; Dominates+ ; Classified-at, none, cleared-user)}

to

𝜌′ = {(Cleared-to ; Classified-at, 𝑖⊖ ; Classified-at, cleared-user),

(Cleared-to ; Dominates+ ; Classified-at, 𝑖⊖ ; Classified-at, cleared-user)}.

RPPM1b is then configured such that when a request (𝑢, 𝑜, 𝑎) is authorized, interest

audit edges are added between the subject 𝑢 and each of the security levels (official ,

secret and top secret). Specifically, an active interest edge (𝑢, 𝑙, 𝑖⊕) is inserted be-

tween the subject 𝑢 and the level 𝑙 where (𝑜, 𝑙,Classified-at) ∈ 𝐸. Additionally,

blocked interest edges (𝑢, 𝑙′, 𝑖⊖) are inserted between the subject 𝑢 and all levels

𝑙′ ̸= 𝑙. (In this way, the security levels are used like the companies of Figure 6.4.)

The sole difference from the Chinese Wall policy is that the interest audit edges

directed out of a subject must be purged when the subject ends their session with

the system. This is because the *-property is a transient, session-specific constraint,

unlike Chinese Wall which is permanent.

Let us consider the system graph fragment shown in Figure 6.5a and an ini-

tial request 𝑞1 = (𝑢1, 𝑜2, read). This request will be authorized using the second

principal-matching rule of 𝜌′ as no interest edges exist, 𝑢1 is cleared to top secret,

and the object 𝑜2 is classified at a level dominated by top secret. The successful

authorization results in the insertion of interest audit edges between 𝑢1 and each of

the three security levels (and an authorized decision audit edge), as shown in Fig-
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ure 6.5b. The presence of the (𝑢1, official , 𝑖⊖) edge means that a subsequent request

𝑞2 = (𝑢1, 𝑜3,write) would be denied, as neither rule in 𝜌′ would now match.
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(a) System graph fragment
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(b) After request 𝑞1 = (𝑢1, 𝑜2, read)

Figure 6.5: Enforcing the *-property

It is worth noting that this policy construction not only prevents “writing down”

but also prevents “reading down” once a session is active. I assume that a new session

is used to request reading at a different security level. If, however, it was desired that

users should be able to read down within the same session, the principal-matching
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policy required is12

𝜌′′ = {(Cleared-to ; Classified-at, 𝑖⊖ ; Classified-at, cleared-user),

(Cleared-to ; Dominates+ ; Classified-at, 𝑖⊖ ; Classified-at, cleared-user),

(𝑖⊕ ; Dominates+ ; Classified-at, none, cleared-user)}.

6.3 Summary

I have introduced audit edges to the base RPPM model to produce RPPM1a. I have

shown how these edges can support four policy configuration enhancements com-

monly considered within authorization systems: history-based access control; sepa-

ration of duty; binding of duty; and Chinese Wall. These enhancements have made

RPPM able to handle specific policy frameworks; however, another enhancement,

enabling relationships between arbitrary entities to be involved in the evaluation, is

desirable to broaden the expressiveness of RPPM’s policies. This enhancement is

introduced in the next chapter.

12Note that the third rule of 𝜌′′ has a required target which begins with 𝑖⊕ rather than Cleared-to. This is
necessary to prevent reading above the current session level.
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RPPM1c

In this chapter I shall introduce RPPM1c as an RPPM model with a targeting

enhancement over the base model (RPPM0):

∙ Path expressions – this enhancement enables RPPM to support evaluation of

authorization requests through the consideration of paths between arbitrary

entities within the system graph, rather than just between the subject and

object. This ultimately enables RPPM to require or forbid a (limited) subgraph

pattern when matching a principal.

The basis for this enhancement has previously been published, in conjunction with

Jason Crampton, in [64].

7.1 Targeting Enhancement

7.1.1 Path Expressions

The targets within RPPM0’s principal-matching rules comprise path conditions

which are required or forbidden between the subject and the object of the request.

However, it can also be desirable to consider paths involving or between other enti-

ties. (For example, Cheng et al. consider paths between any pair from the requester,

target(s) and controlling user [51], whilst Stoller supports paths between arbitrary

entities [174].)

In some cases these other entities may be individually significant (although not

the subject or object of the request), such as when having a relationship with an

entity representing a particular team or board conveys “supervisory” or “senior”

status in some way. In other cases these other entities may be generally interesting

for particular policies, such as when general policies in a university may be oriented

around entities of a course or department type, thus enabling a single policy to be
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employed across all courses and departments even when evaluating requests between

users and coursework papers. As I will demonstrate in ARPPM, see Chapter 8, the

ability to consider paths involving entities other than the subject and object is also

particularly useful for administrative requests.

To support paths between arbitrary entities in an RPPM1c system graph I intro-

duce the concept of an extended path condition, constructed from a path condition

with two typed entity conditions, one at each end. The entity conditions allow ar-

bitrary entities within the system graph to be specifically identified by their name

or their role in the request, or more generally identified by their type. One or more

extended path conditions may be grouped together within a set called a path ex-

pression.1 Where a path expression contains multiple extended path conditions, the

entity conditions within these may use variables to ensure the same entity (or type

of entity) is present when satisfying more than one extended path condition.

Definition 7.1. An untyped entity condition is either an entity variable 𝑥, an

entity 𝑣 in 𝑉 , or an entity label from the set 𝑅𝐿 = {subject, object}.

The set of entities that satisfies an untyped entity condition 𝑒 with respect to a

request 𝑞 = (𝑠, 𝑜, 𝑎), denoted J𝑒, 𝑞K, is defined as

for any entity variable 𝑥, J𝑥, 𝑞K = 𝑉

for any entity 𝑣 in 𝑉 , J𝑣, 𝑞K = {𝑣}

Jsubject, (𝑠, 𝑜, 𝑎)K = {𝑠}

Jobject, (𝑠, 𝑜, 𝑎)K = {𝑜}.

Remark 7.1. Whilst it may be desirable to identify specific entities within a system

graph using an untyped entity condition, it may be more useful to identify entities

generally by their type. For example, in the case of my higher education example, I

may require a path of relationships exist between the subject of the request (specifically

identified using the untyped entity condition subject) and any entity of the course

type. Such an approach enables policies to be defined independent of the specific

courses being run by the university. Therefore, it is desirable to define the concept

of a typed entity condition, but before I do so it is important to note that the entities

represented by an untyped entity condition still have a type themselves, and this is

easily identified where an untyped entity condition is satisfied by a singleton set with

respect to a request.

Given a request 𝑞, for an untyped entity condition 𝑒 = 𝑣, 𝜏(𝑒) = 𝜏(𝑣). For

1This approach is inspired by that outlined by Stoller; however, I provide a complete formal definition of the
components and of their processing [174].
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𝑒 ∈ 𝑅𝐿, 𝜏(𝑒) = 𝜏(𝑢) where 𝑢 ∈ J𝑒, 𝑞K. For example, if 𝑞 = (𝑠, 𝑜, 𝑎) and 𝑒 = subject,

𝜏(𝑒) = 𝜏(𝑠).

Definition 7.2. A typed entity condition has the form (𝑒, 𝑓), where 𝑒 is an untyped

entity condition and 𝑓 either belongs to 𝑇 or is a type variable.

Let Var𝑉 denote the set of entity variables and Var𝑇 denote the set of type

variables. I assume that Var𝑉 ∩ Var𝑇 = ∅. The set of entities that satisfies a typed

entity condition (𝑒, 𝑓) with respect to a request 𝑞, denoted J(𝑒, 𝑓), 𝑞K, is defined as

J(𝑒, 𝑓), 𝑞K =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑉 if 𝑓 ∈ Var𝑇 , 𝑒 ∈ Var𝑉

{𝑣 : 𝜏(𝑣) = 𝑓} if 𝑓 ∈ 𝑇 , 𝑒 ∈ Var𝑉

∅ if 𝑓 ∈ 𝑇 , 𝑒 ̸∈ Var𝑉 , 𝜏(𝑒) ̸= 𝑓

J𝑒, 𝑞K otherwise.

A typed entity condition (𝑒, 𝑓) in which 𝑒 is not an entity variable is said to be

a simple typed entity condition. Note that for any simple typed entity condition

(𝑒, 𝑓) and any request 𝑞, J(𝑒, 𝑓), 𝑞K is either the empty set or J𝑒, 𝑞K (which, in turn,

is either a singleton set or the empty set). For example, the simple typed entity

condition (𝑢, 𝜏(𝑢)), where 𝑢 ∈ 𝑉 , is satisfied by {𝑢} for any request. Henceforth, I

will be working exclusively with typed entity conditions and I will, therefore, refer

to entity conditions and simple entity conditions.

Definition 7.3. An extended path condition has the form 𝜂 · 𝜋 · 𝜂′, where 𝜂 is a

simple entity condition, 𝜂′ is an entity condition, and 𝜋 is a path condition.

I define satisfaction of an extended path condition 𝜂 · 𝜋 · 𝜂′ based on the satisfac-

tion of the contained path condition 𝜋 between entities meeting the specified entity

conditions, 𝜂 and 𝜂′. Let

𝜈 : Var𝑉 ∪ Var𝑇 → 𝑉 ∪ 𝑇,

where 𝜈(𝑒) ∈ 𝑉 for 𝑒 ∈ Var𝑉 and 𝜈(𝑓) ∈ 𝑇 for 𝑓 ∈ Var𝑇 ,

be a variable mapping function which maps entity variables to entities and type vari-

ables to types. I write 𝜈(𝜂) = (𝜈(𝑥), 𝜈(𝑦)) to denote the entity condition 𝜂 = (𝑥, 𝑦)

once variables have been replaced by entities and types.

Definition 7.4. An extended path condition 𝜂 · 𝜋 · 𝜂′ is satisfied by system graph 𝐺

and request 𝑞, denoted 𝐺, 𝑞 |= 𝜂 · 𝜋 · 𝜂′, if and only if there exists a variable mapping

function 𝜈 such that:
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∙ J𝜈(𝜂), 𝑞K ̸= ∅, and

∙ There exists 𝑣 ∈ J𝜈(𝜂′), 𝑞K such that ∃𝑢 ∈ J𝜈(𝜂), 𝑞K, 𝐺, 𝑢, 𝑣 |= 𝜋.2

I write 𝐺, 𝑞 ̸|= 𝜂 · 𝜋 · 𝜂′ otherwise.

An extended path condition may not be satisfied even if it contains no variables.

In particular, given the extended path condition (𝑒, 𝑓) · 𝜋 · (𝑒′, 𝑓 ′),

∙ It may be the case that 𝑒, 𝑒′ ∈ 𝑉 but 𝐺, 𝑒, 𝑒′ ̸|= 𝜋; or

∙ It may be the case that 𝑒 ∈ 𝑅𝐿 and 𝑓 ̸= 𝜏(𝑒); or

∙ It may be the case that 𝑒′ ∈ 𝑅𝐿 and 𝑓 ′ ̸= 𝜏(𝑒′).

In each of these cases, there can be no mapping 𝜈 such that the extended path

condition is satisfied.

It should be clear that extended path conditions could be used to define the

targets within a principal-matching rule; however, then entity variables and type

variables could only parameterize the entity conditions at either end of a single

required or forbidden path. I wish to make use of such variables across multiple

required or forbidden paths; I, therefore, define a path expression as a set of extended

path conditions, and I enable path expressions to be used as targets within principal-

matching rules (alongside the special targets all and none).

Definition 7.5. Given a principal-matching rule (𝜑, 𝜓, 𝑝), where the required target

𝜑 is a path expression {𝜂1 · 𝜋1 · 𝜂′1, . . . , 𝜂𝑗 · 𝜋𝑗 · 𝜂′𝑗}, 𝜑 is satisfied by system graph 𝐺

and request 𝑞, denoted 𝐺, 𝑞 |= 𝜑, iff there is a function 𝜈𝜑 : Var𝑉 ∪ Var𝑇 → 𝑉 ∪ 𝑇
such that for all 𝑖 ∈ {1, . . . , 𝑗}:

∙ J𝜈𝜑(𝜂𝑖), 𝑞K ̸= ∅ and

∙ There exists 𝑣 ∈ J𝜈𝜑(𝜂′𝑖), 𝑞K such that 𝐺, J𝜈𝜑(𝜂𝑖), 𝑞K, 𝑣 |= 𝜋𝑖.

The required target 𝜑 is not satisfied by 𝐺 and 𝑞, denoted 𝐺, 𝑞 ̸|= 𝜑, otherwise.

Definition 7.6. Given a principal-matching rule (𝜑, 𝜓, 𝑝), where the forbid-

den target 𝜓 is a path expression {𝜂1 · 𝜋1 · 𝜂′1, . . . , 𝜂𝑘 · 𝜋𝑘 · 𝜂′𝑘}, 𝜓 is not satis-

fied by system graph 𝐺 and request 𝑞, denoted 𝐺, 𝑞 ̸|= 𝜓, iff for all functions

𝜈𝜓 : Var𝑉 ∪ Var𝑇 → 𝑉 ∪ 𝑇 I have:

∙ J𝜈𝜓(𝜂𝑖), 𝑞K = ∅ or

∙ 𝐺, J𝜈𝜓(𝜂𝑖), 𝑞K, 𝑣 ̸|= 𝜋𝑖 for all 𝑣 ∈ J𝜈𝜓(𝜂′𝑖), 𝑞K,
2Note that as 𝜂 is required to be a simple entity condition in Definition 7.3, J𝜈(𝜂), 𝑞K is either a singleton set or

the empty set. Therefore, if there does exist 𝑢 ∈ J𝜈(𝜂), 𝑞K, then J𝜈(𝜂), 𝑞K = {𝑢}.
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for all 𝑖 ∈ {1, . . . , 𝑘}. The forbidden target 𝜓 is satisfied by 𝐺 and 𝑞, denoted

𝐺, 𝑞 |= 𝜓, otherwise.

Informally, these definitions ensure that a principal-matching rule constructed

using path expression targets is conceptually equivalent to a sequence of rules in a

policy graph fragment, where a single variable mapping function maps variables to

entities and types in that fragment for each target.3 So, for example, the principal-

matching rule

({𝜂1 · 𝜋1 · 𝜂′1, 𝜂2 · 𝜋2 · 𝜂′2, 𝜂3 · 𝜋3 · 𝜂′3}, {𝜂4 · 𝜋4 · 𝜂′4, 𝜂5 · 𝜋5 · 𝜂′5, 𝜂6 · 𝜋6 · 𝜂′6}, 𝑝)

is conceptually equivalent to the policy graph fragment shown in Figure 7.1. The

principal 𝑝 is only matched to the request if all of the rules are matched (i.e., all three

required extended path conditions are satisfied and all three forbidden extended path

conditions are not satisfied).

(𝜂1 · 𝜋1 · 𝜂′1, none, null)

(𝜂2 · 𝜋2 · 𝜂′2, none, null)

(𝜂3 · 𝜋3 · 𝜂′3, none, null)

(all, 𝜂4 · 𝜋4 · 𝜂′4, null)

(all, 𝜂5 · 𝜋5 · 𝜂′5, null)

(all, 𝜂6 · 𝜋6 · 𝜂′6, 𝑝)

𝜈 : Var𝑉 ∪Var𝑇 → 𝑉 ∪ 𝑇

𝜈′ : Var𝑉 ∪Var𝑇 → 𝑉 ∪ 𝑇

Figure 7.1: Policy graph equivalent of path expressions

Example 7.1. Returning once again to my higher education example (introduced in

Example 4.3), Figure 7.2 shows a slightly more detailed system graph including the

department, dept. 1, within which the example is set. Recall the original principal-

matching rule through which the course-ta principal is matched.

𝜌 = { . . . , (Ta-for ; Coursework-for, Enrolled-on ; Coursework-for, course-ta), . . . }

It may be desirable to define a more specific policy for this principal using targets

3Note that whilst this conceptual equivalency exists, path expression targets may be used in a set-based principal-
matching policy as well as a graph-based one.
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based on path expressions.

𝜌′ = {. . . , ({(subject, 𝑢𝑠𝑒𝑟) ·Member-of · (dept 1 , 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡),

(subject, 𝑢𝑠𝑒𝑟) · Ta-for · (𝑒𝑣1, 𝑐𝑜𝑢𝑟𝑠𝑒),

(dept 1 , 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡) · Runs · (𝑒𝑣1, 𝑐𝑜𝑢𝑟𝑠𝑒),

(object, 𝑐𝑜𝑢𝑟𝑠𝑒𝑤𝑜𝑟𝑘) · Coursework-for · (𝑒𝑣1, 𝑐𝑜𝑢𝑟𝑠𝑒)},

{(subject, 𝑡𝑣1) · Enrolled-on ; Coursework-for · (object, 𝑡𝑣2)},

course-ta), . . . }

If we, once again, consider the request (student 1 , answer 1 , read), then the course-

ta principal will be matched with

J(subject, 𝑢𝑠𝑒𝑟)K = {student 1},

J(dept 1 , 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡)K = {dept 1},

J(𝑒𝑣1, 𝑐𝑜𝑢𝑟𝑠𝑒)K = {course 1},

J(object, 𝑐𝑜𝑢𝑟𝑠𝑒𝑤𝑜𝑟𝑘)K = {answer 1},

J(subject, 𝑡𝑣1)K = {student 1},

J(object, 𝑡𝑣2)K = {answer 1},

𝐺, student 1 , dept 1 |= Member-of,

𝐺, student 1 , course 1 |= Ta-for,

𝐺, dept 1 , course 1 |= Runs,

𝐺, coursework 1 , course 1 |= Coursework-for,

𝐺, student 1 , coursework 1 ̸|= Enrolled-on ; Coursework-for.

Remark 7.2. Note that a variable occurring only once in a path expression is essen-

tially a “free” variable and can be assigned to any entity (or type, depending on the

nature of the variable). Hence, {(subject, 𝑓) · 𝜋 · (object, 𝑓 ′)}, where 𝑓, 𝑓 ′ ∈ Var𝑇

and 𝑓 ̸= 𝑓 ′, is equivalent to the RPPM path condition 𝜋. In other words, path

expressions of RPPM1c are backwards compatible with path conditions of RPPM0.

Remark 7.3. It is also important to note the requirement that an extended path

condition begin with a simple entity condition. This means that an extended path

condition may only be satisfied by a path starting from a single specific entity within

the system graph, which significantly reduces the complexity of request evaluation. I

do not believe that such a constraint will significantly reduce the applicability of the

RPPM1c model, especially as 𝜋 enables all extended path conditions to be reversed.
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Figure 7.2: Another higher education system graph fragment

Through judicious specification of extended path conditions with multiple occur-

rences of appropriate entity and type variables (as demonstrated in Example 7.1), it

is possible to define targets which result in the evaluation of authorization decisions

based on the matching of subgraph patterns, rather than simply a path between two

arbitrary entities. Whilst highly complex patterns are precluded due to the require-

ment for a simple entity condition at the start of each extended path condition, path

expressions can be used to specify tractable “subgraph isomorphism” tests within

the RPPM1c authorization evaluation.

Request Evaluation

Recall from Section 4.5.1 that RPPM0 employs non-deterministic finite automata

(NFA) as the core component of its request evaluation process. Specifically, in the

ComputePrincipals algorithm (Algorithm 4.2) I use the existence of intersection NFA

accepting languages to match principals, where each intersection NFA combines

the request NFA 𝑀𝑞 = (𝑉, ̃︀𝑅,𝐸, 𝑠, {𝑜}) with a target path condition automaton.4

As RPPM1c’s principal-matching rule targets are path expressions, and these may

contain multiple extended path conditions each of which must be satisfied (or not)

between entities identified by their entity conditions, I may need to consider multiple

intersection NFA for each target. I achieve this for each extended path condition

4This underlying process was unchanged by the introduction of policy graph evaluation in RPPM1a’s variant
ComputePrincipals algorithm, as shown in Algorithm 5.1.
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(𝑒𝑖, 𝑓𝑖) · 𝜋𝑖 · (𝑒′𝑖, 𝑓 ′𝑖) by:5

∙ Using the simple entity condition (𝑒𝑖, 𝑓𝑖) to determine the single start state for

𝑀𝑞𝑖 ;

∙ Using the entity condition (𝑒′𝑖, 𝑓
′
𝑖) to determine the set of accepting states for

𝑀𝑞𝑖 ;

∙ Retrieving the path condition automaton 𝑀𝜋𝑖 ; and

∙ Producing the intersection NFA 𝑀∩𝑖 of 𝑀𝑞𝑖 and 𝑀𝜋𝑖 .

I then ensure that across all of the intersection NFA for the path expression target,

entity conditions using the same entity variable identify the same entity and those

using the same type variable identify the same type of entity. Satisfaction of each

extended path condition (and, thereby, the path expression) is then determined by

the existence of an accepting language for each intersection NFA constrained by the

entity conditions.

Formally, RPPM1c determines the set of matched principals using a path ex-

pression variant of the ComputePrincipals algorithm, as shown in Algorithm 7.1.

This path expression variant requires several changes to the calling arguments when

compared to the original ComputePrincipals algorithm. Specifically, Algorithm 7.1

includes three arguments necessary to determine satisfaction of entity conditions:

the set of types 𝑇 ; the set of entity variables Var𝑉 ; and the set of type variables

Var𝑇 . The algorithm employs a new DetermineTargetSatisfaction algorithm (Algo-

rithm 7.2) to perform the key NFA and path expression-related processing required

to determine whether a path expression target is satisfied within the system graph,

in the context of the current request.

Algorithm 7.1 ComputePrincipals (path expression variant)

Require: System graph 𝐺 = (𝑉,𝐸), set of relationship labels ̃︀𝑅, set of types 𝑇 , request 𝑞 = (𝑠, 𝑜, 𝑎), set of entity
variables Var𝑉 , set of type variables Var𝑇 and principal-matching policy 𝜌

Ensure: Returns set of matched principals J𝜌K
1: J𝜌K← ∅
2: 𝑀𝑞 ← (𝑉, ̃︀𝑅,𝐸, 𝑠, {𝑜})
3: for all (𝜑, 𝜓, 𝑝) ∈ 𝜌 do

4: if DetermineTargetSatisfaction(𝐺, ̃︀𝑅, 𝑇, 𝑞,Var𝑉 ,Var𝑇 , 𝜑, true) then

5: if DetermineTargetSatisfaction(𝐺, ̃︀𝑅, 𝑇, 𝑞,Var𝑉 ,Var𝑇 , 𝜓, false) then
6: J𝜌K← J𝜌K ∪ 𝑝
7: end if
8: end if
9: end for
10: return J𝜌K

5I advocate pre-computing, as far as possible, the generic request NFA 𝑀𝑞 (which forms the basis for each
extended path condition-specific automaton 𝑀𝑞𝑖 ) and the path condition automata for all path expressions in the
principal-matching policy so as to reduce the processing involved during request evaluation.
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Specifically, DetermineTargetSatisfaction performs four distinct activities:

1. It short-circuits evaluation if the target being tested is a special target;

2. It uses the DeterminePossibleECMF algorithm (Algorithm 7.3) to determine the

possible entity condition mappings which produce non-empty accepting lan-

guages for the intersection NFA;

3. It uses the ValidateECMF algorithm (Algorithm 7.4) to determine the valid

entity condition mappings which (as well as being possible) are consistent in

variable usage; and

4. It uses the validated mappings to determine whether a required target is satis-

fied or a forbidden target is not satisfied.

Algorithm 7.2 DetermineTargetSatisfaction

Require: System graph 𝐺 = (𝑉,𝐸), set of relationship labels ̃︀𝑅, set of types 𝑇 , request 𝑞 = (𝑠, 𝑜, 𝑎), set of entity
variables Var𝑉 , set of type variables Var𝑇 , target 𝜙 (one of the special targets all or none, or a path expression
containing |𝜙| extended path conditions), and required target indicator 𝑟𝑡𝑖

Ensure: Returns true if the target satisfaction matches the required target indicator and false otherwise
1: // short-circuit evaluation for special targets
2: if (𝜙 = all) and (𝑟𝑡𝑖 = true) then
3: return true
4: else if (𝜙 = none) and (𝑟𝑡𝑖 = false) then
5: return true
6: else if (𝜙 = all) or (𝜙 = none) then
7: return false
8: else
9: // instantiate entity condition mapping function (initially all values are ∅)
10: 𝑓𝐸𝐶 : N6|𝜙| × {start-node, end-node} → 2𝑉

11: // update entity condition mapping function with possible entities

12: 𝑓𝐸𝐶 ← DeterminePossibleECMF(𝐺, ̃︀𝑅, 𝑞, 𝜙, 𝑓𝐸𝐶)
13: // update entity condition mapping function with valid entities

14: 𝑓𝐸𝐶 ← ValidateECMF( ̃︀𝑅, 𝑇,Var𝑉 ,Var𝑇 , 𝜙, 𝑓𝐸𝐶)
15: if 𝑟𝑡𝑖 = true then
16: // required target satisfied if all extended path conditions are satisfied between valid entities for both

their entity conditions
17: if ∀(𝑒𝑛, 𝑓𝑛) · 𝜋𝑛 · (𝑒′𝑛, 𝑓 ′𝑛) ∈ 𝜙: (𝑓𝐸𝐶(𝑛, start-node) ̸= ∅) and (𝑓𝐸𝐶(𝑛, end-node) ̸= ∅) then
18: return true
19: end if
20: else
21: // forbidden target not satisfied if there aren’t pairs of valid entities between which all extended path

conditions are satisfied
22: if ∀(𝑒𝑤, 𝑓𝑤) · 𝜋𝑤 · (𝑒′𝑤, 𝑓 ′𝑤) ∈ 𝜙: (𝑓𝐸𝐶(𝑤, start-node) = ∅) or (𝑓𝐸𝐶(𝑤, end-node) = ∅) then
23: return true
24: end if
25: end if
26: return false
27: end if

The DeterminePossibleECMF algorithm (shown in Algorithm 7.3) iterates through

each extended path condition identifying possible start and accepting states which

contribute to each accepting intersection NFA. The entity condition mapping func-

tion is updated to reflect these possible entities from the system graph.
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Algorithm 7.3 DeterminePossibleECMF

Require: System graph 𝐺 = (𝑉,𝐸), set of relationship labels ̃︀𝑅, request 𝑞 = (𝑠, 𝑜, 𝑎), path expression target 𝜙
containing |𝜙| extended path conditions, and an entity condition mapping function 𝑓𝐸𝐶

Ensure: Returns an updated entity condition mapping function 𝑓𝐸𝐶
1: for all (𝑒𝑖, 𝑓𝑖) · 𝜋𝑖 · (𝑒′𝑖, 𝑓 ′𝑖) ∈ 𝜙 do
2: 𝑓𝐸𝐶(𝑖, start-node)← ∅
3: 𝑓𝐸𝐶(𝑖, end-node)← ∅
4: 𝑠𝑀𝑞𝑖

← J(𝑒𝑖, 𝑓𝑖), 𝑞K
5: 𝐹𝑀𝑞𝑖

← J(𝑒′𝑖, 𝑓
′
𝑖), 𝑞K

6: if (𝑠𝑀𝑞𝑖
= ∅) or (𝐹𝑀𝑞𝑖

= ∅) then

7: continue
8: end if
9: 𝑀𝜋𝑖 ← PathConditionNFA(𝜋𝑖) // produce 𝑀𝜋𝑖 = (𝑄𝜋𝑖 ,Σ𝜋𝑖 , 𝛿𝜋𝑖 , 𝑠𝜋𝑖 , 𝐹𝜋𝑖 ) as per Section 4.2.4

10: 𝑀𝑞𝑖 ← (𝑉, ̃︀𝑅,𝐸, 𝑠𝑀𝑞𝑖
, 𝐹𝑀𝑞𝑖

)

11: 𝑀∩𝑖 ←𝑀𝜋𝑖 ∩𝑀𝑞𝑖 // note 𝑀∩𝑖 = (𝑉 ×𝑄𝜋𝑖 ,
̃︀𝑅 ∩ Σ𝜋𝑖 , 𝛿∩𝑖 , (𝑠𝑀𝑞𝑖

, 𝑠𝜋𝑖 ), 𝐹𝑀𝑞𝑖
× 𝐹𝜋𝑖 )

12: if 𝐿(𝑀∩𝑖 ) = ∅ then
13: continue
14: else
15: 𝑓𝐸𝐶(𝑖, start-node)← 𝑠𝑀𝑞𝑖

16: 𝐴𝑃 ← {ℎ0, . . . , ℎ𝑥 : ℎ0 = (𝑠𝑀𝑞𝑖
, 𝑠𝜋𝑖 ), ℎ𝑦 ∈ 𝑉 ×𝑄𝜋𝑖 for 𝑦 > 0, ℎ𝑥 ∈ 𝐹𝑀𝑞𝑖

× 𝐹𝜋𝑖 ,

(ℎ𝑧 , ℎ𝑧+1, 𝜎𝑧+1) ∈ 𝛿∩𝑖 for 0 6 𝑧 6 𝑥− 1}
17: 𝑓𝐸𝐶(𝑖, end-node)← {𝑢𝑞𝑖 ∈ 𝑉 : ℎ0, . . . , ℎ𝑥 ∈ 𝐴𝑃, ℎ𝑥 = (𝑢𝜋𝑖 , 𝑢𝑞𝑖 )}
18: end if
19: end for
20: return 𝑓𝐸𝐶

The ValidateECMF algorithm (shown in Algorithm 7.4) also iterates through each

extended path condition; however, it refines the entity condition mapping function

values based on variable use within the entity conditions of all the extended path

conditions. Only entities which are consistently possible for all uses of a variable

remain in the mapping function.

7.2 Model Comparisons

7.2.1 Targeting Enhancement

Path Expressions Path expressions in the RPPM1c model enable RPPM to eval-

uate principal-matching rule targets between arbitrary entities, and can even be

used to evaluate authorization decisions in respect of (limited) subgraph patterns.

Most other relationship-based access control models are far less expressive. Whilst

Bruns et al.’s ReBAC hybrid logic grammar is able to define chains between the

requestor and arbitrary third-parties, their request processing requires the policy to

be satisfied between the requestor and the resource owner [41].6 Cheng et al. offer

some improvement by enabling their graph rules (described in Section 2.4.3) to be

evaluated between a pair from the requester, target(s) and controlling user, depend-

ing in which of their policies the rule is defined [51]. Whilst this is more expressive

6Although their hybrid operators allow the path to ‘jump’ during that chain.
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Algorithm 7.4 ValidateECMF

Require: Set of relationship labels ̃︀𝑅, set of type 𝑇 , set of entity variables Var𝑉 , set of type variables Var𝑇 , path
expression target 𝜙 containing |𝜙| extended path conditions, and an entity condition mapping function 𝑓𝐸𝐶

Ensure: Returns an updated entity condition mapping function 𝑓𝐸𝐶
1: for all (𝑒𝑗 , 𝑓𝑗) · 𝜋𝑗 · (𝑒′𝑗 , 𝑓 ′𝑗) ∈ 𝜙 do
2: if 𝑓𝑗 ∈ Var𝑇 then
3: // simple entity condition containing a type variable
4: 𝑇𝑗sn ← {𝑡 ∈ 𝑇 : ∃𝑢𝑗sn ∈ 𝑓𝐸𝐶(𝑗, start-node), 𝜏(𝑢𝑗sn ) = 𝑡}
5: if 𝑓 ′𝑗 = 𝑓𝑗 then

6: 𝑓𝐸𝐶(𝑗, end-node)← {𝑢𝑗en ∈ 𝑓𝐸𝐶(𝑗, end-node) : 𝜏(𝑢𝑗en ) ∈ 𝑇𝑗sn}
7: end if
8: for all (𝑒𝑘, 𝑓𝑘) · 𝜋𝑘 · (𝑒′𝑘, 𝑓

′
𝑘) ∈ 𝜙 do

9: if (𝑘 ̸= 𝑗) and (𝑓𝑘 = 𝑓𝑗) then
10: 𝑓𝐸𝐶(𝑘, start-node)← {𝑢𝑘sn ∈ 𝑓𝐸𝐶(𝑘, start-node) : 𝜏(𝑢𝑘sn ) ∈ 𝑇𝑗sn}
11: else if (𝑘 ̸= 𝑗) and (𝑓 ′𝑘 = 𝑓𝑗) then
12: 𝑓𝐸𝐶(𝑘, end-node)← {𝑢𝑘en ∈ 𝑓𝐸𝐶(𝑘, end-node) : 𝜏(𝑢𝑘en ) ∈ 𝑇𝑗sn}
13: end if
14: end for
15: else if 𝑓 ′𝑗 ∈ Var𝑇 then

16: // entity condition containing a type variable
17: 𝑇𝑗en ← {𝑡 ∈ 𝑇 : ∃𝑢𝑗en ∈ 𝑓𝐸𝐶(𝑗, end-node), 𝜏(𝑢𝑗en ) = 𝑡}
18: for all (𝑒𝑙, 𝑓𝑙) · 𝜋𝑙 · (𝑒′𝑙, 𝑓

′
𝑙 ) ∈ 𝜙 do

19: if (𝑙 ̸= 𝑗) and (𝑓𝑙 = 𝑓 ′𝑗) then

20: 𝑓𝐸𝐶(𝑙, start-node)← {𝑢𝑙sn ∈ 𝑓𝐸𝐶(𝑙, start-node) : 𝜏(𝑢𝑙sn ) ∈ 𝑇𝑗en}
21: else if (𝑙 ̸= 𝑗) and (𝑓 ′𝑙 = 𝑓 ′𝑗) then

22: 𝑓𝐸𝐶(𝑙, end-node)← {𝑢𝑙en ∈ 𝑓𝐸𝐶(𝑙, end-node) : 𝜏(𝑢𝑙en ) ∈ 𝑇𝑗en}
23: end if
24: end for
25: else if 𝑒′𝑗 ∈ Var𝑉 then

26: // entity condition containing an entity variable
27: for all (𝑒𝑚, 𝑓𝑚) · 𝜋𝑚 · (𝑒′𝑚, 𝑓 ′𝑚) ∈ 𝜙 do
28: if (𝑚 ̸= 𝑗) and (𝑒′𝑚 = 𝑒′𝑗) then

29: 𝑓𝐸𝐶(𝑚, end-node)← {𝑢𝑚en ∈ 𝑓𝐸𝐶(𝑚, end-node) : 𝑢𝑚en ∈ 𝑓𝐸𝐶(𝑗, end-node)}
30: end if
31: end for
32: end if
33: end for
34: return 𝑓𝐸𝐶

than approaches which limit the evaluation of paths to between a particular pair

of entities (frequently the subject and the object or the subject and the object’s

“owner”) [41, 43, 44, 52, 82, 85], their limited extension is focused on supporting

the various sources of policy in their model. The approach outlined by Stoller, in his

RPPM2 model, is the only one other than mine (which it inspired) able to support

paths between arbitrary entities [174]. However, mine is less restrictive:7

∙ Firstly, RPPM1c enables me to constrain path conditions to entities by their

label, their type, their role in the request, or one of two kinds of variable (which

can be used to constrain multiple paths to involving the same entity, without

specifying beforehand the identity of that entity). In contrast Stoller constrains

them to entities by their labels or a variable.

7As an aside, Stoller also replaced RPPM’s principal-matching policy with a path-expression naming mechanism.
I believe that the two-step request evaluation process is far more powerful a concept than simply a shorthand naming
mechanism (as demonstrated, for example, by policy graph evaluation in Chapter 5).
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∙ Secondly, the RPPM2 authorization checking algorithm entirely rejects rules

which begin with “unbound variables” whilst I only preclude rules which begin

with a constraint which may be satisfied by more than one entity in the system

graph.

Authorization Rule Targets

In [64] Jason Crampton and I introduced required and forbidden path expression

targets into RPPM’s authorization rules (in place of the element 𝑋 identifying the

objects to which the rule applied). The intention of this modification was to mirror

target use in RPPM’s principal-matching rules. In this thesis, however, I do not

modify my existing authorization rule structure in this way, as this change would

reduce the expressiveness of RPPM1c’s policy, rather than enhance it. Specifically,

any policy which may be created using the definition of principal-matching rules

and authorization rules in [64] may be defined in RPPM1c whilst limiting the au-

thorization rules (𝑝,𝑋, 𝑌, 𝑏) so that 𝑋 = ⋆.8

It should be clear that a policy, defined as per [64],

𝜌[64] = {(𝜑, 𝜓, 𝑝)}

𝜚[64] = {(𝑝, 𝜑′, 𝜓′, 𝑦, 𝑑)}

is equivalent to the RPPM1c policy9, where conjunction in 𝜌 is achieved using a

graph-based policy from RPPM1a,

𝜌 = {(𝜑 ∪ 𝜑′, 𝜓 ∪ 𝜓′, 𝑝)}

𝜚 = {(𝑝, ⋆, {𝑦}, 𝑑)}.

Further, if multiple authorization rules existed in 𝜚[64] for the principal 𝑝, these

could be accommodated in RPPM1c by utilising multiple distinct principals. So, for

example, the policy

𝜌[64] = {(𝜑, 𝜓, 𝑝)}

𝜚[64] = {(𝑝, 𝜑′, 𝜓′, 𝑦′, 0), (𝑝, 𝜑′′, 𝜓′′, 𝑦′′, 1)}
8Without limiting 𝑋 to ⋆, RPPM1c’s policies may be more expressive than those of [64].
9Although if 𝑦 = ⋆ in 𝜚[64], then {𝑦} is replaced with ⋆ in 𝜚.
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is equivalent to the RPPM1c policy
10

𝜌 = {(𝜑 ∪ 𝜑′, 𝜓 ∪ 𝜓′, 𝑝′), (𝜑 ∪ 𝜑′′, 𝜓 ∪ 𝜓′′, 𝑝′′)}

𝜚 = {(𝑝′, ⋆, {𝑦′}, 0), (𝑝′′, ⋆, {𝑦′′}, 1)}.

7.3 Summary

I have introduced path expressions to the targets of the base RPPM model’s

principal-matching rules to produce RPPM1c. I have also shown how these enable re-

quest evaluation to consider paths of relationships between arbitrary entities within

the system graph. Whilst this enhancement has made RPPM’s policy language

more expressive, a clear approach to administration is required (and introduced in

the next chapter) to enable RPPM to be implemented and operated in a controlled,

secure manner.

10Although, if 𝑦′ = ⋆ in 𝜚[64], then {𝑦′} is replaced with ⋆ in 𝜚. The same applies to 𝑦′′.

151



CHAPTER 7. RPPM1C

152



Part II

Applying RPPM

153





Chapter 8

ARPPM

For any access control model to be effective it must keep track of the current state

of the system it models. However, most systems are not static and, therefore, the

associated access control model instance will not be static either. Even in the case

of systems which are static, initial configuration will normally be required before

the model can be used. Therefore, no matter the reason behind a change to a model

instance, there is a need for that change to be controlled. Without this control,

unauthorized changes could cause legitimate authorization requests to be denied

(type I errors), or allow illegitimate authorization requests to be approved (type

II errors). Uncontrolled changes could also cause the model instance to become

inconsistent with the model’s underlying assumptions or requirements. For all of

these reasons, the administration of an access control model instance is a critical

aspect of the model’s ongoing effectiveness.

In this chapter I present ARPPM, a model based on RPPM1c and containing

a number of administrative enhancements to support the management of RPPM

model instances:

∙ Administrative requests and policies – this enhancement introduces an admin-

istrative form of authorization request and updates RPPM1c’s entity conditions

so that they may be satisfied by participants of such requests. It also defines

applicability of authorization rules in respect of administration requests and

defines a default administrative decision function.

∙ Initial system graph – the specification of an initial system graph state ensures

that an ARPPM model instance may be managed completely and without

extra-model authorization. I provide a recommended initial state and also

detail the requirements for the generalised initial state.

The basis for these administrative enhancements has previously been published, in
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conjunction with Jason Crampton, in [64]. As motivation for these enhancements

I first detail administrative requirements necessary for any RPPM administrative

model and highlight that these requirements are not fully met by existing adminis-

trative features of relationship-based access control models.

8.1 High-Level Approach

There are various high-level approaches to the administration of access control mod-

els. Models supporting mandatory access control (MAC) employ security labels (as

discussed in Section 2.1.4) assigned to subjects by a security controller. The ability

of those subjects to perform particular operations is then determined by a compari-

son of their label with that of the object with which they are interacting [23, 24]. The

policy which defines the acceptable combinations of subject and object labels for a

particular operation is system-wide. Usually only the security controller can modify

labels for subjects, and so the administrative policies are reasonably simple [166].

In contrast, models supporting discretionary access control (DAC) employ names

for subjects and objects. Particular operations on an object are then controlled at

a named individual (or named group) level [69]. The definition of policies granting

permission to named individuals or groups is carried out by any authorized subject

within the system. This allows for a wider variety of administrative architectures

and leads to the notions of a hierarchy of administrators, administrative scope and

resource ownership [166].

Whatever the high-level approach to administration, the mechanism through

which the access control policies are administered has a significant impact on the se-

curity of the protection system. Recall from Section 2.1.2 the eight design principles

identified by Saltzer and Schroeder [162]. Whilst these principles were not specifi-

cally targeted at securing the administration of the access control model, it is clear

that the “complete mediation” principle requires that such changes be managed and

that the “economy of mechanism”, “fail-safe defaults”, “separation of privilege” and

“least privilege” principles may all be relevant to such management.

Given that access control models are themselves designed to evaluate authoriza-

tion requests, it is common for access control models to mediate both operational

and administrative requests. For the access control model designer such an approach

is instinctive and preserves an economy of concept, thus easing human comprehen-

sion in a manner in line with Saltzer and Schroeder’s “psychological acceptability”

principle. Whilst this approach is commonly employed [64, 110, 140, 157, 163, 174],

it has, however, been identified by some as being in line with the “economy of

156



CHAPTER 8. ARPPM

mechanism” design principle [124, 174]. In actuality that principle requires that

a design be “simple and small as possible” [162], which may not, necessarily, al-

ways align with the natural desire to protect the protection mechanism with its own

capabilities. There may be particular circumstances when such a meta-model ap-

proach leads to significant complexities which warrant an alternative arrangement.

Therefore, preserving economy of concept may not always be compatible with pre-

serving “economy of mechanism”. That said, in the case of access control model

administration I believe such arrangements to be the exception.

8.1.1 RPPM Administration Requirements

Whilst administration has been given some, limited, consideration with respect to

relationship-based access control, I believe a requirements-driven approach, as used

by Li and Mao for UARBAC [124], will avoid the existing issues of proposed solutions

(identified in Section 8.1.2). I, therefore, first identify requirements for any admin-

istrative RPPM model. When specifying these requirements I consider commonly

applied best practice as well as desirable properties relevant to the practicality,

robustness and usability of implementations of relationship-based access control.1

AR1: Use the model’s concepts to administer itself As discussed above, it is only

natural that authorization of administrative requests in respect of an access control

model should be determined using the model itself (see ARBAC [163] for RBAC [79],

for example). My first requirement is, therefore, to use the model’s concepts to

administer itself.

AR2: Control the addition and deletion of model components Given that an update

action may be modelled through the combined use of deletion and addition actions,

my second requirement is that the model control the addition and deletion of model

components. As RPPM employs a graph-based model of a system, I chose to perform

(and control) administration using two actions: addEdge and deleteEdge.

AR3: Support multiple administrators It is widely accepted that the use of a single

“global” administrator account to perform all administrative tasks is undesirable

from organisational, auditing and “least privilege” perspectives [162]. My third re-

quirement is, therefore, that the model be able to support multiple administrators.
1Since originally presenting these requirements in [64] I have removed two requirements. The requirement to

“Support multiple controlling paths” has been removed as I have chosen to introduce path expressions as a separate,
targeting enhancement, described in Chapter 7. The requirement to “Perform request evaluation efficiently” has
also been removed as this was a vague and imprecise requirement (as noted by one of the anonymous reviewers)
which isn’t focused, specifically, on administration.
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In the case of RPPM, I require that any authorized entity be able to perform ad-

ministrative actions where the relationships necessary to satisfy the specified admin-

istrative policies exist. If the only authorized entity is a central security controller

then RPPM may be managed in a mandatory manner. However, the creation of

these relationships through administrative requests allows administrators to dele-

gate their control to others, thus producing a hierarchy of administrators. Further,

the specifics of these relationships enable administrative scopes to be created. In

this way, a discretionary approach to administration may be taken with an adminis-

trative request made by an entity only authorized when made in a context to which

they have the necessary relationships.

AR4: Exclude extra-model authorization Many administrative models rely heav-

ily on a benevolent, correct and complete extra-model administrator in order to

boot-strap and manage the intra-model administrative capabilities. I require that

the model should exclude extra-model authorization and be self-contained, ensuring

“complete mediation” [162]. Specifically, I require the model to be used to authorize

all changes to the model instance such that all necessary administrative requests are

evaluated within the bounds of the instance.

AR5: Control changes to all parts of the model In order to be a complete model of

administration it is necessary for administrative requests targeting types, permissible

relationships, entities, relationships, and access control policies and their elements

to be managed. The fifth requirement to control changes to all parts of the model

increases the utility of the administrative model and is in line with the “complete

mediation” design principle [162], drawing parallels with AR4. As the RPPM model

utilises paths in the system graph to evaluate and control actions, I require that the

system graph contain entities representing the various model components. This

enables complete mediation of administrative requests.

8.1.2 Existing Issues

The matter of administration for relationship-based access control is not solved at

present. Whilst various models make some mention of administration (see Sec-

tion 8.3.1), none of these is able to meet all of my requirements. Of the two most

administratively-proficient relationship-based access control models, both Rizvi et

al.’s implementation of ReBAC [157] and Stoller’s RPPM2 [174] satisfy three of my

five requirements. Neither satisfy AR4 and AR5, and whilst they both do man-

age the addition and deletion of models elements (AR2) this is only with regard
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to certain elements. There is, therefore, need for a more complete approach to

administration in relationship-based access control.

AR1 Rizvi et al. use ReBAC’s hybrid logic to determine whether administrative

actions are enabled (between the primary participants) and applicable (between

all participants) [157]. Similarly, Stoller’s RPPM2 model, which modifies an early

version of RPPM [60, 62], controls administrative actions using the mechanisms of

RPPM [174].

AR2 Rizvi et al. limit themselves to just adding and deleting edges. In contrast,

RPPM2 also uses specific actions for adding and deleting entities and rules, and for

setting system-wide default decisions and conflict resolution strategies.

AR3 As both Rizvi et al. and Stoller make use of relationship-based access control

models to evaluate their administrative request, they also implicitly support multiple

administrators (as multiple entities may have the same relationships with other

entities).

AR4 and AR5 Rizvi et al. only consider the administration of relationship edges

and so fail to allow and control changes to other model components which are left,

presumably, to some extra-model administrator. Similarly, whilst Stoller states that

RPPM2 “is comprehensive in the sense that it allows and controls changes to all as-

pects of the ReBAC policy”, it fails to allow and control changes to RPPM’s system

model or actions which are also left, presumably, to some extra-model administrator.

8.2 Administrative Enhancements

8.2.1 Administrative Requests and Policies

Four minor request and policy changes are required in ARPPM to support admin-

istration of RPPM model instances using the model itself (as required by AR1):

∙ Firstly, there is a need for entities to be able to issue administrative requests

in addition to the operational requests so far considered.

∙ Secondly, there is a need for principal-matching rules to be matched in light of

these requests, and hence for the participants of the request to be identifiable

in the same way as the subject and object of operational requests.
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∙ Thirdly, there is a need for authorization rules to be applicable to administrative

requests, but only if the rule is not limited to specific objects in the system

graph.

∙ Fourthly, there is a need for a default decision function specific to administrative

requests.

As indicated in the discussion of AR2, I choose to model all administrative re-

quests through the addition and deletion of edges to the system graph. An entity

is automatically added to the system graph upon the addition of its first incident

edge, and is automatically deleted upon deletion of its last incident edge. I, there-

fore, extend RPPM1c’s definition of a request to enable actions to target edges as

well as entities.2

Definition 8.1. An administrative request has the form (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎),

where 𝑠, 𝑣1, 𝑣2 ∈ 𝑉 , 𝑡1, 𝑡2 ∈ 𝑇 , 𝑟 ∈ 𝑅 and 𝑎 ∈ {addEdge, deleteEdge}. In or-

der to be well-formed any administrative request requires 𝜏(𝑣1) = 𝑡1, 𝜏(𝑣2) = 𝑡2

and (𝑡1, 𝑡2, 𝑟) ∈ 𝐸PR. Additionally, a well-formed addEdge request requires

𝑉 ∩ {𝑣1, 𝑣2} ≠ ∅ and (𝑣1, 𝑣2, 𝑟) ̸∈ 𝐸, whilst a well-formed deleteEdge request requires

(𝑣1, 𝑣2, 𝑟) ∈ 𝐸.

The effect of granting the well-formed request (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), addEdge) is to

add (𝑣1, 𝑣2, 𝑟) to 𝐸 (having added either 𝑣1 or 𝑣2 to 𝑉 , as necessary).3 The ef-

fect of granting the well-formed request (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), deleteEdge) is to remove

(𝑣1, 𝑣2, 𝑟) from 𝐸; any vertex that is no longer connected to any other vertex as a re-

sult of the edge deletion will also be deleted. Henceforth, I assume all administrative

requests are well-formed.

Remark 8.1. Whilst it may be desirable, in some circumstances, to have an en-

tity in the system graph which is not connected by a particular relationship 𝑟 (for

example, so that that relationship may be utilised in a forbidden target), I do not

allow disconnected entities to remain in the system graph. Doing so would introduce

a requirement for additional actions addEntity and deleteEntity; however, such ac-

tions are unnecessary as some connecting relationship 𝑟′ ̸= 𝑟 can always be present

without interfering with the use of 𝑟 in forbidden targets.

Remark 8.2. RPPM0’s first step for deciding whether to grant an operational re-

quest (𝑠, 𝑜, 𝑎) attempts to match principals to the request by evaluating principal-

matching rules. The targets of each principal-matching rule are evaluated in respect
2I explain why I extend RPPM1c and not RPPM0 in Remark 8.2.
3The types 𝑡1 and 𝑡2 are required in the request such that either entity 𝑣1 or 𝑣2 may be created in the system

graph.
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of paths between 𝑠 and 𝑜 in the system graph. This is insufficient when decid-

ing whether to grant the administrative request (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎) for two rea-

sons. Firstly, I believe, as Stoller’s healthcare example illustrates [174], that mul-

tiple paths of relationships may be relevant to the authorization of administrative

requests. Crucially, there is no node in the system graph representing the object

edge (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟) and, even if such entities were introduced, logically one would

not be present at the time a request to first add the edge is made. Evaluating paths

between 𝑠 and (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟) is, therefore, impractical and insufficient.

I, therefore, base ARPPM on the RPPM1c model in order to make use of its path

expression targets. In this way, administrative requests may match principals based

on multiple paths of relationships between arbitrary entities in the system graph.

In order to enable the participants of an administrative request to be identified

in the same way as for operational requests, I update RPPM1c’s definitions of an

untyped entity condition and its satisfaction (from Section 7.1.1).

Definition 8.2. An untyped entity condition is either an entity variable 𝑥, an entity

𝑣 in 𝑉 , or an entity label from the set 𝑅𝐿 = {subject, object, object-start, object-end}.

The set of entities that satisfies an untyped entity condition 𝑒 with respect to a

request 𝑞, denoted J𝑒, 𝑞K, is defined as

for any entity variable 𝑥, J𝑥, 𝑞K = 𝑉

for any entity 𝑣 in 𝑉 , J𝑣, 𝑞K = {𝑣}

Jsubject, (𝑠, 𝑜, 𝑎)K = Jsubject, (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎)K = {𝑠}

Jobject, (𝑠, 𝑜, 𝑎)K = {𝑜}

Jobject-start, (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎)K = {𝑣1}

Jobject-end, (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎)K = {𝑣2}

Jobject, (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎)K = ∅

Jobject-start, (𝑠, 𝑜, 𝑎)K = Jobject-end, (𝑠, 𝑜, 𝑎)K = ∅.

Other than the change to untyped entity conditions, the principal-matching pol-

icy and its evaluation in ARPPM remains unchanged from RPPM1c, and the pro-

cessing of operational requests is unaffected.

In light of the fact that an administrative request does not identify a specific

object entity within the system graph (Jobject, (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎)K = ∅), I extend
RPPM1c’s definition of authorization rule applicability (Definition 4.10) to encom-

pass administrative requests.4

4Recall from Section 7.2.1 that, unlike [64], I do not introduce path expression targets to authorization rules as
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Definition 8.3. An authorization rule has the form (𝑝,𝑋, 𝑌, 𝑏), where 𝑝 ∈ 𝑃 ,

𝑋 ⊆ 𝑇 ∪ 𝑉 , 𝑌 ⊆ 𝐴 and 𝑏 ∈ {0, 1}. Given a PMP 𝜌, an authorization rule

(𝑝,𝑋, 𝑌, 𝑏) is applicable to an administrative request 𝑞 = (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎) if all

of the following conditions hold:

∙ 𝑝 ∈ J𝜌K;

∙ 𝑋 = 𝑉 or 𝑋 = 𝑇 ;5 and

∙ 𝑌 ∩ {𝑎} ≠ ∅.

Other than the introduction of authorization rule applicability in respect of ad-

ministrative requests, the computing of the set of authorization decisions from a

set of matched principals in ARPPM remains unchanged from RPPM1c, and the

processing of operational requests is unaffected.

Having determined the set of authorization decisions, I may determine whether

a request is authorized in the same manner as RPPM1c, employing default deci-

sions and a conflict resolution strategy where appropriate. I believe that default

decision-making associated with administrative requests should be distinct from

that of operational requests. The default-per-object and default-per-type are cer-

tainly redundant as administrative actions are performed on edges rather than sin-

gle entities. I, therefore, allow for specific administrative default decisions at the

default-per-subject and system-wide default levels only.

Definition 8.4. Given a system graph 𝐺 = (𝑉,𝐸), a set of types 𝑇 , and an adminis-

trative request 𝑞 = (𝑠, (𝑣1, 𝑡1, 𝑣2, 𝑡2, 𝑟), 𝑎), a default administrative decision function

𝛾𝛼 : 𝑉 ∪ {sys} → {⊥, 0, 1}

is a function which maps entities within the system graph to default decisions for

administrative requests, where ⊥ is undefined, 0 is deny and 1 is allow.6 The func-

tion maps default decisions on a per subject 𝑢 ∈ 𝑉 and system-wide basis. When

initialized, 𝛾𝛼(sys) = 0 and the function maps all other inputs to ⊥ until they are

configured.

It should be clear that the four minor request and policy changes required to sup-

port administration do not significantly alter the process of (operational) request

evaluation used by RPPM1c. In the same way that a principal may be matched to

multiple operational requests by distinct subjects (as long as the required target is

this reduces the rules’ general expressiveness.
5Recall from Remark 4.6 that I may use ⋆ to indicate all entities.
6Although I do not allow 𝛾𝛼(sys) to be set to ⊥.
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satisfied and the forbidden target is not satisfied), a principal may be matched to

multiple administrative requests also. It is by virtue of RPPM’s principal-matching

process and the abstraction of authorizations away from subjects that multiple ad-

ministrators are naturally supported by ARPPM as required by AR3.

Example 8.1. Returning to my higher education example (introduced in Exam-

ple 4.3), Figure 8.1a shows a pair of courses in dept. 1 without students. The policy

𝜌 = {. . . , ({(subject, 𝑢𝑠𝑒𝑟) ·Member-of · (dept 1 , 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡),

(dept 1 , 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡) · Runs · (object-end, 𝑐𝑜𝑢𝑟𝑠𝑒),

(subject, 𝑢𝑠𝑒𝑟) · Responsible-for · (object-end, 𝑐𝑜𝑢𝑟𝑠𝑒)},

none, course-admin), . . . }

𝜚 = {. . . , (course-admin, ⋆, {addEdge, deleteEdge}, 1), . . . }

would enable the successful authorization of the administrative requests

𝑞1 = (professor 1 , (student 1 , user , course 1 , course,Enrolled-on), addEdge) and

𝑞2 = (professor 2 , (student 2 , user , course 2 , course,Enrolled-on), addEdge),

whereby two students are enrolled on the two courses by the administering professors,

leading to Figure 8.1b. However, the administrative request

𝑞3 = (professor 1 , (student 1 , user , course 2 , course,Ta-for), addEdge)

would be denied as professor 1 does not have the relationships to have authority over

course 2.

Remark 8.3. It is worth noting that Example 8.1 clearly demonstrates how logical

entities (in this case courses), and the relationships entities have with them, provide

context to RPPM’s request evaluation. A single principal-matching rule is, thereby,

able to manage access based on this context such that multiple administrators are able

to perform administrative actions whilst being confined to their appropriate scopes.

8.2.2 Initial System Graph

The ARPPM model described so far is able to meet all but two of my user re-

quirements. In order to exclude extra-model administration (AR4) and to control

changes to all parts of the model (AR5) I must define an initial state for the sys-

tem graph, populating it with entities reflecting model components. The minimum

requirements for such an initial state involve an interplay of the entities, relation-
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Figure 8.1: Administering a higher education system graph fragment

ship labels, system graph layout, and the model’s policies. The requirements result

naturally from (conceptually) adding entities, relationships and policy rules to an

empty system graph up to such point that an initial administrative entity is able to

subsequently make any and all changes that they may choose. I list these minimum

requirements in Section 8.2.2.

In order to enable a discussion of how administration works in practice, I will

first detail a recommended arrangement for the system graph initial state. This

recommendation is a minimal viable arrangement which meets the requirements of

Section 8.2.2.
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Recommended Initial State

In this recommended arrangement I require all system graphs to be initialized as per

Figure 8.2a. For ease of exposition, I omit from Figure 8.2a, and the following dis-

cussion and example, reversed edges (i.e., the existence of an edge (𝑇, 𝑟𝑜𝑜𝑡, 𝑟𝛼) ∈ 𝐸
where the edge (𝑟𝑜𝑜𝑡, 𝑇, 𝑟𝛼) ∈ 𝐸), caching edges and audit edges. In addition, to

allow a comprehensible diagram, I omit from Figure 8.2a edges from 𝐸PR𝐼 (I use the

suffix 𝐼 to indicate initialization) and also edges related to default decision entries

mapped to ⊥.
The initial underlying system model, principals, actions, principal-matching pol-

icy and extended authorization policy for this system graph are

𝑇𝐼 = {𝑡𝛼, 𝑡𝑡, 𝑡𝑟, 𝑡𝑝, 𝑡𝑎, 𝑡𝑝𝑚𝑟, 𝑡𝑎𝑟, 𝑡𝑠, 𝑡𝑓 , 𝑡𝑑𝑑, 𝑡𝑐𝑟𝑠}̃︀𝑅𝐼 = {𝑟𝑚, 𝑟𝛼, 𝑟𝑚, 𝑟𝛼}

𝑆𝐼 = ∅

𝐸PR𝐼 = {(𝑡, 𝑡𝑠, 𝑟𝑚) : 𝑡 ∈ 𝑇𝐼 ∖ {𝑡𝑓 , 𝑡𝑑𝑑, 𝑡𝑐𝑟𝑠, 𝑡𝛼}} ∪

{(𝑡𝛼, 𝑡′, 𝑟𝛼) : 𝑡′ ∈ 𝑇𝐼} ∪ {(𝑡𝑑𝑑, 𝑡𝑓 , 𝑟𝑚)}

𝐺PR𝐼 = (𝑇𝐼 , 𝐸PR𝐼 )

𝑃𝐼 = {model-admin}

𝐴𝐼 = {addEdge, deleteEdge}

𝜌𝐼 = {({(subject, 𝑡𝛼) · 𝑟𝛼 · (object-end, 𝑡𝑣1)}, none,model-admin),

({(subject, 𝑡𝛼) · 𝑟𝛼 ; 𝑟𝑚+ · (object-end, 𝑡𝑣1)}, none,model-admin)}

(𝜚𝐼 , 𝜒𝐼) = ({(model-admin, ⋆, {addEdge, deleteEdge}, 1),DenyOverrides).

At its core, the initial system graph contains an administrative entity root , of type

t𝛼
7, and entities representing the initial sets of types, relationship labels, principals,

actions, principal-matching rules and authorization rules. The initial relationship

entities are those necessary to construct this initial system graph: namely entities

representing an Administrate relationship (which I will also refer to as r𝛼), a Member-

of relationship (which I will also refer to as rm), and their reversed counterparts,

r𝛼 and rm respectively. These have Member-of relationships with an entity ̃︀R which

represents the set of relationship labels. There are no initial symmetric relationship

labels, although an entity S representing the set of symmetric relationship labels is

present. The initial type entities represent the administrative entity’s type t𝛼, the

types type tt , the relationships type tr , the principals type tp , the actions type ta ,

7This could be a human administrator of type user , or an autonomous administrator of type auto.
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the principal-matching rules type tpmr , the authorization rules type tar , the sets type

ts , the functions type tf , the default decisions type tdd , and the conflict resolution

strategy type tcrs . These have Member-of relationships with T which represents the

set of types.

root

T

t𝛼tt

tr

tp

ta

tpmr

tar

ts tf tdd

tcrs

̃︀R

S

r𝛼 r𝛼 rm rm
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Figure 8.2: Initial system graph (simplified)

There is a single initial principal entity representing a model-admin principal

which has a Member-of relationship with the entity representing the set of principals

P . The administrative actions addEdge and deleteEdge are represented by similarly

named entities which have Member-of relationships with the entity representing the

set of actions A. There are two initial principal-matching rules and an authorization

rule which have Member-of relationships with the entities representing the policies,

𝜌 and 𝜚 respectively. The initial principal-matching rules enable the model-admin

principal to be matched to administrative requests made in respect of edges directed

towards entities with which the subject has an Administrate (𝑟𝛼) relationship, as
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identified by the path expression

(subject, 𝑡𝛼) · 𝑟𝛼 · (object-end, 𝑡𝑣1),

or edges directed towards entities with which the subject can satisfy the path ex-

pression

{(subject, 𝑡𝛼) · 𝑟𝛼 ; 𝑟𝑚+ · (object-end, 𝑡𝑣1)}.8

The initial authorization rule grants the addEdge and deleteEdge actions to the

model-admin principal without constraint.

In addition, the initial system-wide default decisions, 𝛾(sys) = 0 and 𝛾𝛼(sys) = 0 ,

haveMember-of relationships with the entities representing the default decision func-

tion 𝛾 and the default administrative decision function 𝛾𝛼, respectively. Finally,

an entity representing the initial conflict resolution strategy, DenyOverrides is also

present. root has an Administrate relationship with the conflict resolution strategy

entity, the entities representing the default decision functions, all of the set enti-

ties previously described and with itself. From this initial system graph, changes

are made through the addition and deletion of edges using administrative requests.

(Recall that an entity is automatically added to the system graph upon the addi-

tion of its first incident edge, and is automatically deleted upon deletion of its last

incident edge.)

In order to configure an ARPPM system graph for an actual system the root

entity would add entities, by adding edges, to the newly initialized system graph

(as I will illustrate in Example 8.2). In so doing, root would be able to modify the

underlying system model to support the desired entity types and relationships, and

could then introduce concrete and logical system entities into the graph by adding

edges such as (𝑟𝑜𝑜𝑡, 𝑢, 𝑟𝛼). How the structure of the system graph develops will

be up to the root entity and, subsequently, to any entities granted the ability to

administer the system graph through the existence (or otherwise) of relationships

satisfying the requisite paths. Such design choices are likely to be instance, if not

system, specific and are not constrained by ARPPM.

To prevent an ARPPM model from becoming unusable I do not allow any of

the initial system graph’s edges to be deleted except those involving entities of the

types 𝑡𝑑𝑑 and 𝑡𝑐𝑟𝑠 (which may need to be deleted in order to change the system-wide

default decisions or conflict resolution strategy). All other changes to the system

graph are managed by the mechanisms of ARPPM. Whilst changes to the system

8Whilst these initial principal-matching rules only apply to requests directed towards one of the initial entities,
any object edge directed away may be converted to an object edge directed towards by simply switching the entities
and replacing the path condition 𝜋 with 𝜋.
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model (𝑇,𝑅, 𝑆,𝐺PR), where 𝐺PR = (𝑇,𝐸PR), are triggered through the system

graph, I require that once granted they are enacted by an authorized and correct

“system administrator”.9

I require an ARPPM implementation’s PDP to enforce the following restrictions

to changes to the initial system graph:

1. Changes to 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 or 𝑟 ∈ ̃︀𝑅 ∖ 𝑆 are triggered, respectively, by admin-

istrative requests of the form (𝑢, (𝑡, 𝑡𝑡, 𝑇, 𝑡𝑠, 𝑟𝑚), 𝑎
′), (𝑢, (𝑠, 𝑡𝑟, 𝑆, 𝑡𝑠, 𝑟𝑚), 𝑎

′), and

(𝑢, (𝑟, 𝑡𝑟, ̃︀𝑅, 𝑡𝑠, 𝑟𝑚), 𝑎′) where 𝑢 is the administrative entity (initially root) and

𝑎′ ∈ {addEdge, deleteEdge}. Changes to 𝐸PR are triggered by administrative

requests adding or deleting edges between the entities representing types in 𝐺.

In each case the authorized administrative request is only considered complete

once the system administrator has updated the system model to reflect any

desired changes.

2. {(𝑡𝛼, 𝑡, 𝑟𝛼) : 𝑡 ∈ 𝑇} ⊂ 𝐸PR.

3. 𝐸PR ∩ {(𝑡, 𝑡′′, 𝑟) : 𝑡 ∈ 𝑇, 𝑡′′ ∈ {𝑡𝑠, 𝑡𝑓}, 𝑟 ̸∈ {𝑟𝑚, 𝑟𝛼}} = ∅.

4. Given 𝑇 ′′ = {𝑡𝑡, 𝑡𝑟, 𝑡𝑝, 𝑡𝑎, 𝑡𝑝𝑚𝑟, 𝑡𝑎𝑟, 𝑡𝑑𝑑},
𝐸PR ∩ {(𝑡, 𝑡′′, 𝑟) : 𝑡 ∈ 𝑇, 𝑡′′ ∈ 𝑇 ′′, 𝑟 ̸= 𝑟𝛼} = ∅.

5. Given 𝑇 ′ = {𝑡𝑠, 𝑡𝑡, 𝑡𝑟, 𝑡𝑝, 𝑡𝑎, 𝑡𝑝𝑚𝑟, 𝑡𝑎𝑟, 𝑡𝑑𝑑},
𝐸PR ∩ {(𝑡′, 𝑡′′, 𝑟) : 𝑡′ ∈ 𝑇 ′, 𝑡′′ ̸= 𝑡𝑠, 𝑟 ̸= 𝑟𝑚} = ∅.

The last three restrictions require that:

3. Edges connecting to entities of the sets type 𝑡𝑠 or functions type 𝑡𝑓 must be

either Member-of (𝑟𝑚) or Administrate (𝑟𝛼) relationships;

4. Edges connecting to entities of the types found in the set 𝑇 ′′ must be Adminis-

trate (𝑟𝛼) relationships; and

5. Edges connecting from entities of the types found in the set 𝑇 ′ can only connect

to the sets type 𝑡𝑠 and must do so using a Member-of (𝑟𝑚) relationship.

Example 8.2. Having initialized a new ARPPM model instance, as per my recom-

mended arrangement, it is possible to construct Example 8.1’s system graph fragment

9Note that changes to the system model are authorized within ARPPM in the same way that all other adminis-
trative requests are. It is only the resulting manipulation of the elements which must occur outside of the system
graph to which they relate.
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(as shown in Figure 8.1a) within that new instance by issuing: the sequence of re-

quests

𝑞1 = (root , (course, tt ,T , ts , rm), addEdge)

𝑞2 = (root , (department , tt ,T , ts , rm), addEdge)

𝑞3 = (root , (user , tt ,T , ts , rm), addEdge)

to create the necessary entity types; the sequence of requests

𝑞4 = (root , (Member -of , tr , ̃︀R, ts , rm), addEdge)
𝑞5 = (root , (Responsible-for , tr , ̃︀R, ts , rm), addEdge)
𝑞6 = (root , (Runs , tr , ̃︀R, ts , rm), addEdge)

to create the necessary relationship labels; the sequence of requests

𝑞7 = (root , (department , tt , course, tt ,Runs), addEdge)

𝑞8 = (root , (user , tt , course, tt ,Responsible-for), addEdge)

𝑞9 = (root , (user , tt , department , tt ,Member-of), addEdge)

to create the necessary permissible edges; the sequence of requests

𝑞10 = (root , (course 1 , course, root , t𝛼, r𝛼), addEdge)

𝑞11 = (root , (course 2 , course, root , t𝛼, r𝛼), addEdge)

𝑞12 = (root , (dept 1 , department , root , t𝛼, r𝛼), addEdge)

𝑞13 = (root , (professor 1 , user , root , t𝛼, r𝛼), addEdge)

𝑞14 = (root , (professor 2 , user , root , t𝛼, r𝛼), addEdge)

to create the necessary entities; and the sequence of requests

𝑞15 = (root , (professor 1 , user , course 1 , course,Responsible-for), addEdge)

𝑞16 = (root , (professor 1 , user , dept 1 , department ,Member-of), addEdge)

𝑞17 = (root , (dept 1 , department , course 1 , course,Runs), addEdge)

𝑞18 = (root , (professor 2 , user , course 2 , course,Responsible-for), addEdge)

𝑞19 = (root , (professor 2 , user , dept 1 , department ,Member-of), addEdge)

𝑞20 = (root , (dept 1 , department , course 2 , course,Runs), addEdge)

to create the necessary relationships between those entities.
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The policies associated with Example 8.1 may be created using a similar process.

For conciseness, I will refer to the principal-matching rule used in the example as

𝑃𝑀𝑅1; and so

𝑃𝑀𝑅1 = ({(subject, 𝑢𝑠𝑒𝑟) ·Member-of · (dept 1 , 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡),

(dept 1 , 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡) · Runs · (object-end, 𝑐𝑜𝑢𝑟𝑠𝑒),

(subject, 𝑢𝑠𝑒𝑟) · Responsible-for · (object-end, 𝑐𝑜𝑢𝑟𝑠𝑒)},

none, course-admin).

Then the policies may be created using the requests

𝑞21 = (root , (course-admin, tp ,P , ts , rm), addEdge)

𝑞22 = (root , (PMR1 , tpmr , 𝜌, ts , rm), addEdge)

𝑞23 = (root , ((course-admin, ⋆, {addEdge, deleteEdge}, 1 ), tar , 𝜚, ts , rm), addEdge).

This ARPPM model instance is now configured and ready for the requests to add

students, as discussed in Example 8.1.

Generalised Initial State

Whilst I have outlined a specific recommended initial state above, my specific ar-

rangement is just one of the infinite viable initial states. A system graph arrange-

ment is a viable initial state if it contains entities representing all of the model com-

ponents, and it contains appropriate relationships (reflected amongst those entities)

to enable the policies (also reflected amongst those entities) to be used to authorize

administrative requests by some initial administrative entity to add incident edges

to any of those entities. Specifically, it must contain:10

1. An initial administrative entity to submit requests in the initialized model.

2. Entities representing each of the model’s element containers (i.e., sets and func-

tions): types; relationships; principals; actions; principal-matching rules; au-

thorization rules; and default decision functions.

3. An entity representing the initial value for the conflict resolution strategy.

4. Paths of (one or more) relationships connecting the initial administrative entity

and the entities from items 2 and 3.
10I work on the assumption that the initial state should not rely on default decisions to authorize administrative

requests as such a model is likely inherently prone to entities being overprivileged until it is further “locked down”.

170



CHAPTER 8. ARPPM

5. Entities representing at least one principal-matching rule to match at least one

principal to those paths of relationships.

6. Entities representing at least one authorization rule to authorize administrative

actions to those matched principals.

7. Paths of (one or more) relationships connecting the entities from items 5 and 6

to the entities representing their containers in item 2.

8. Entities representing the initial values for the default decision functions.

9. Entities representing each of the types, relationships, principals, and actions

necessary to create the elements from items 1 through 8.

10. Relationships representing the permissible relationship edges between the types

added in 9.

11. Paths of (one or more) relationships connecting the entities from items 8 and 9

to the entities representing their containers in item 2.

12. Entities representing at least one principal-matching rule to match at least one

principal to the paths of relationships from the initial administrative entity, via

the entities representing the model’s element containers (from item 2), to the

entities in items 8 and 9.

13. Entities representing at least one authorization rule to authorize administrative

actions to those matched principals.

14. Paths of (one or more) relationships connecting the entities from items 12

and 13 to the entities representing their containers in item 2.

Whilst there are infinite possible such arrangements (there are infinite paths of

relationships which could be employed), in reality it is desirable to limit the size and

complexity of the initial state so as to avoid negatively impacting the performance of

request evaluation. Hence, my recommended initial state uses direct Administrates

relationships wherever possible, and thereby requires only two principal-matching

rules and a single authorization rule to function.11

As well as excluding extra-model administration (AR4) and enabling the control

of changes to all parts of the model (AR5), the introduction of an initial system

graph also has a direct impact on the “safety” of the ARPPM model [96]. The initial

11One could argue that rather than having types for each individual model element, a single model entity type
𝑡𝑚 could have been employed to simplify the recommended initial state. I chose to utilise distinct types in order to
provide a more robust starting point which could benefit from specific constraints for the permissible edges and the
restrictions required to ensure the model remains usable.
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system graph is arranged such that the initial administrator is able to perform the

initial addEdge and deleteEdge actions on any entity, and may subsequently introduce

new entities for which it will have the same control. The initial administrator is also

able to introduce relationships which will enable any of these new entities to have

similar or equivalent privileges within the system. Therefore, the safety of ARPPM

is trivially decidable. The same cannot be said without the initial system graph (i.e.

in RPPM0, RPPM1a, RPPM1b or RPPM1c) where the decidability of safety depends

on the specific configuration of the system model, system graph and policies at the

time. In the general case of large, complex arrangements of entities and lengthy

policies safety will be undecidable.

8.3 Model Comparisons

8.3.1 Existing Administrative Models

Given the importance of administration to access control models, it is a topic com-

monly covered in the literature as part of model designs. However, the level of

detail at which administration is considered varies greatly. At the two extremes,

some models only make limited mention of administration [76, 77, 79, 105, 144]

(although they may indicate its importance), whilst others are specifically tai-

lored to defining its functionality [35, 58, 64, 124, 140, 160, 163, 174]. In be-

tween, are models with a range of partial administrative capabilities of one form

or other [43, 51, 103, 108, 110, 125, 157].

Role-Based Access Control

RBAC Whilst the early RBAC papers by Ferraiolo et al. advocate the admin-

istrative benefits of RBAC, they do not articulate the mechanisms through which

administration may be performed [77, 79]. Instead they simply indicate that a se-

curity administrator is required to perform tasks such as assigning users to roles. In

contrast, the specific administrative functions required of an RBAC implementation

are listed in detail in the INCITS ANSI standard (along with the constraints that

apply to these functions) [108]. However, no indication is given of the process for

authorizing the use of those administrative functions.

ARBAC97 The popularity of role-based access control has led to a wide range of

discussions about its administration. The most significant work on administration

of roles is Sandhu et al.’s ARBAC97 model [163], as introduced in Section 2.2.2.
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This administration model employs three component models to manage role-role

assignment (RRA97), permission-role assignment (PRA97) and user-role assignment

(URA97). The concepts of ARBAC97 have been layered on top off, but grounded

in the functionality of, RBAC, thus making it a prime example of using an access

control model to administer itself.

RBAC/Web Not long before ARBAC97, NIST created an implementation of

RBAC for the web (RBAC/Web) and an Admin Tool was produced as part of

this implementation [76]. This reference implementation was specifically designed

for corporate intranet use and clearly explains how RBAC may be of benefit in

such environments. Whilst this implementation highlights the benefits of RBAC to

administrators in particular, it provides minimal information about the processes

by which these benefits are realised. Further, Ferraiolo et al. direct the reader to

ARBAC97 for a “richer, more flexible, model”, and the URA97 model was used to

extend NIST’s implementation of RBAC/Web [163].

SARBAC The scoped administration of role-based access control (SARBAC)

model was designed as a more robust and flexible approach to the management

of RBAC than ARBAC97 [58]. Specifically, SARBAC is constructed from three

components, in a manner similar to ARBAC97; however, the role hierarchy compo-

nent is the foundation of SARBAC whilst it is the capstone of ARBAC97. Crampton

and Loizou highlight that some components of an access control model are static

components whist others are dynamic. They then identify a complete access control

model as one in which a state transition may be defined to track all of the dynamic

components from one change to the next. SARBAC is a complete model which uses

partially ordered sets to define administrative scopes, which, in turn, identify the

roles which may be managed by an administrator. As administrative scopes are dy-

namic, changes to the role hierarchy amend the scope within which an administrator

may operate. This offers SARBAC a flexibility not present in ARBAC97, and, due

to this, hierarchy changes which had to be blocked in ARBAC97 are supported in

SARBAC.

X-GTRBAC Admin In order to support policy administration for multi-domain

environments, Bhatti et al. extend various existing works to define X-GTRBAC

Admin [34, 35, 113, 169]. Within this model they define Admin Domains which are

partially ordered into a domain hierarchy for an enterprise. Each Admin Domain has

an Admin Role which is authorized to manage policy in that domain and subordinate
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domains. Membership of Admin Roles is managed by the system security officer

(SSO) [33].12

UARBAC A further administrative RBAC model is the UARBAC model of Li and

Mao [124]. Before describing their model they clearly articulate a set of six design

requirements (motivated by scalability and flexibility, “psychological acceptability”,

and “economy of mechanism”):13

1. Support decentralized administration and scale to large RBAC systems.

2. Be policy neutral in defining administrative domains.

3. Apparently equivalent sequences of operations should have the same effect.

4. Support reversibility.14

5. Predictability.

6. Using RBAC to administer RBAC.

It seems that reversibility is the key driver of UARBAC’s distinct features. UAR-

BAC adds to RBAC the concept of object classes (equivalent to RPPM’s entity

types) with user and role classes predefined. UARBAC then splits the granting of

permissions into two: an administrator must have the “admin” access mode on an

object to give out permissions about it, and must have the “empower” access mode

on an object to give permissions about another object to it. Further, UARBAC en-

compasses revocation into the granting permissions – thus ensuring an administrator

can always reverse their own actions. Together these changes maximise reversibility

by enabling revocation to be performed either from the perspective of the object

targeted by a permission or that of the object granted a permission. Li and Mao

also alter the role hierarchy of RBAC to support reversibility, making it irreflexive,

acyclic and explicit. This ensures that no changes made to the hierarchy can have

side-effects, and so all changes are efficient to reverse through use of the appropriate

counter-operation.

Attribute-Based Access Control

XACML The core XACML standard does not detail the processes of administra-

tion, instead that information is separated into an associated Administration and
12The SSO seems to be a super-administrator constrained by the model yet not clearly identified. I hypothesise

that the SSO is the initial member of the Admin Role within the first Admin Domain in a hierarchy.
13I used a similar approach when describing the motivation for ARPPM’s design in Section 8.1.1.
14Where Li and Mao consider two aspects: the need for operations to delete objects where they may be added;

and the need for the system state to be returned to the recent past state if an object is added and then deleted.

174



CHAPTER 8. ARPPM

Delegation Profile specification [110, 140, 141].15 This profile specification works on

the basis that policies may be either administrative or access, where administrative

policies delegate the right to issue access to others. Policies have issuers and the

authority of an issuer must be verified back to a trusted policy before the issuer’s

(initially un-trusted) policies may be considered.16 Specifically, a reduction process

is employed to search a graph of the policies within a policy set; the goal being to

determine which of those policies should be considered. Ordered pairs of policies

(within the initially disconnected graph) are evaluated in respect of an access re-

quest to determine if the delegating policy authorizes the delegate for the requested

situation (i.e., whether the issuer of the delegating policy has delegated to the other

the relevant permissions, whether access or administrative). The results of these

evaluations may create directed edges between the adjacent policies, where edges

are labelled with the (non-deny) result determined by the source policy. Once the

reduction graph is produced, a chain of result labels between an issuer’s policy and

a trusted policy determines whether the issuer’s policy will be considered as part of

evaluating the request.

NGAC As indicated in Section 2.3.4, NGAC supports administrative requests

which are evaluated by the PDP and then enacted by the PAP [110]. The PAP

performs the requested administrative operation by executing primitive administra-

tive commands against the PIP where the policy-related data are stored. These

commands include creating and deleting basic elements and containers (such as

users, objects, attributes, policy classes and access rights), as well as creating and

deleting relations and obligations. The policies which govern administration may be

centralized or decentralized but begin with a single administrator [78].

UCON Whilst Park and Sandhu only briefly mention administration when pre-

senting UCON (particularly to distinguish immutable attributes which may only be

changed by administrative action compared with mutable attributes which may be

changed by access), subsequent work by Salim et al. has focused on UCON’s admin-

istration [144, 160]. They introduce a two layer structure, comprising a peer model

and an authoriser model. Subjects then may assert beliefs about other subjects and

objects in the peer model; however, initially those assertions are not trusted and

so not considered during request evaluations. An authority root must identify, in

the authoriser model, the assertions that they wish to be considered. Control of

15The first committee standard was published in October 2010 [140], and the latest, fourth, committee draft was
published for public review in November 2014 [142].

16Trusted policies by their nature do not have an issuer specified and do not need verifying.
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such acceptance is managed by a system-wide administrative policy which is de-

fined outside of Salim et al.’s structure. This policy may be explicit, identifying a

specific authority root, or may be algorithmic, determining subjects able to accept

assertions based on attributes (and expressions on attributes) the subject and object

may hold.

Relationship-Based Access Control

OSNs Models applied to social networking have focused on how users specify poli-

cies controlling access to existing resources. Who is authorized to define such policies

is determined in one of three ways:17

(i) The existence of an “ownership” relation [44, 51];

(ii) The existence of more senior users within the system [51, 103]; or

(iii) The existence of an extra-model administrator (of some kind) [43].

Cheng et al. make use of a controlling user to define policies for entities under their

control [51]. Whilst they use an ownership relation as an example indicator of this

control, alternative relationships are acceptable. Hu and Ahn allow for a variable

number of controllers (owner, contributor, stakeholders and disseminator) contribut-

ing to the policy [103]. Whilst these controllers are identified with implementation

specific constructs (based on a “space” within a social network) it is easy to imagine

that they could be determined by the existence of relationships with a shared data

item entity. Carminati et al. introduced admin policies as one of three policy types

within their semantic web model for social network access control [43]. The admin

policies are determined by the Security Administrator of a social network. A policy

of the form 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡⇒ 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 is based on relationships between a user and

a resource such that if the combination of properties and relationships identified in

the 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 are true then the 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 results. The 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 indicates the

actions the user can grant or prohibit on that resource.

ReBAC The original work by Fong and Siahaan, later extended by Bruns et al.,

on the ReBAC model does not consider administration of the logic-based policies

they define [41, 85]. Whilst Fong’s ReBAC model includes state transitions there is

no discussion of how these are triggered or authorized [82]. However, more recent

practical work on ReBAC by Rizvi et al. does consider administration [157]. In their

healthcare implementation, Rizvi et al. identify specific administrative actions which
17As these models do not abstract authorization policy in the manner that RPPM does, the policies in question

are approximately equivalent to a combination of RPPM’s principal-matching policy and authorization policy.
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are associated with two types of precondition, enabling and applicability, and have

effects which add or delete edges. Their enabling and applicability preconditions are

equivalent to path conditions which must be satisfied between the “participants” of

the action (including the subject and object). Whilst Rizvi et al. do not refer

to state transitions, their modifications to the protection state fulfil single relation

variants of Fong’s PUSH and POP transitions [82].

RPPM Stoller’s RPPM2 model is based on an early version of RPPM with a focus

on the administration of the system graph and major policy components [60, 174].

RPPM2 provides the ability to add and delete edges, entities, and authorization rules

(which are a combination of RPPM’s principal-matching policy and authorization

policy), as well as the ability to set defaults and a conflict resolution strategy.

AReBAC Inspired by requirements for multi-tenancy in cloud computing environ-

ments, Cheng et al. combine Rizvi et al.’s applicability precondition with the policy

language of Stoller’s RPPM2 to define the AReBAC1 model [49]. They further

extend that model to include: cascading revocation (AReBAC2); and support for

provenance (AReBAC3). Cascading revocation requires that dependent edges are

removed when the edge they depend on is removed; this allows the removal of ten-

ant trust relationships to trigger removal of edges previously authorized using that

trust. Support for provenance information then enables these dependencies to be

tracked (using typed edges) in more complex multi-tenancy arrangements.

8.3.2 Administrative Enhancements

The ARPPM model introduces administrative enhancements to the RPPM1c model,

enabling an RPPM model instance to be administered by the model itself.

Administrative Requests and Policies Whilst Carminati et al. use relationships be-

tween a user and a resource to determine the actions the user can grant or prohibit

on that resource, they do not manage the creation and deletion of resources, and

they are, thus, limited to actions performed on resources that already exist [43].

Cheng et al. use relations to indicate control over objects, and thereby the permis-

sions for users to specify administrative policy; however, they give no indication as

to how policy specification is authorized to these controlling users [51]. Further, no

consideration is given as to how the necessary relationships are initially acquired.

In contrast, Stoller includes actions which enable edges, rules, default decisions and

conflict resolution strategies to be defined within his RPPM2 model [174]. However,

177



CHAPTER 8. ARPPM

Stoller introduces a complex “strictness order” on authorization rules in order to

prevent undesirable ramifications of changes to his authorization policy (a combina-

tion of RPPM’s principal-matching policy and authorization policy). Whilst I agree

that it should not be possible to circumvent the access control model, I believe

that a far simpler approach is to explicitly deny undesirable actions by subjects.

I assume that the root entity is trustworthy and correct, and I believe that such

restrictions can be implemented by root through the use of denial authorizations

within the ARPPM authorization policy. In their healthcare implementation of Re-

BAC, Rizvi et al. [157] identify specific administrative actions to add or delete edges

based on relationship-derived enabling and applicability preconditions. Whilst this

construction is not dissimilar to mine, ARPPM is more generic still as it does not

bind graph modifications to implementation specific actions. It should be clear from

my discussion of ARPPM’s functionality that it is a complete model as defined by

Crampton and Loizou [58]. The state of the model is represented by the values

of the system model, system graph, policies and policy elements. Each transition

involves either the addition or deletion of a system graph edge, which, in turn, may

modify the system model, policies and policy elements in a deterministic manner.

Initial System Graph No other relationship-based access control model has so com-

pletely and formally defined administrative features as ARPPM. As part of this

definition, ARPPM requires a grounding upon which the administrative model and

process may assuredly operate. Whilst the initial system graph is that grounding in

ARPPM, such a construct is not seen in other models and each has some aspect of

their finer workings skipped over as a result.

8.4 Summary

I have introduced four minor request and policy changes to RPPM1c and have defined

an initial system graph state that enables the resulting ARPPM model to be used

to administer a model instance fully. I have shown how a newly initialized model

instance may be used as the grounding for a specific system graph, where that system

graph is constructed in the model instance by administrative requests made by the

initial administrative entity. Now that RPPM may be implemented and operated in

a controlled, secure manner I shall describe (in the next chapter) an enhancement

to enable the authorization of inter-domain access control requests.
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Inter-RPPM

Whilst administration (as discussed in Chapter 8) is, probably, the most commonly

discussed aspect of access control model application, the ability of models to support

multi-domain environments is another prominent topic. All access control models

have some scope of enforcement which identifies the security domain over which an

instance has control. The entities and policies associated with a particular instance

are used to enforce the will of the domain’s authorities, be that a single security

controller or some subset of the contained (human or autonomous) entities. However,

that will (and those policies) does not have effect outside of the bounds of the

instance of the model (i.e., on other entities) and has no knowledge of external

parties also. Therefore, the protection system may only protect the system within

which it operates.

In this chapter I present Inter-RPPM, a model based on RPPM1a and containing

a number of inter-operation enhancements to support the authorization of inter-

domain access control requests:

∙ Bridged system group – this enhancement enables system graphs to be con-

nected together via bridges between hub entities.

∙ Inter-operation request evaluation – this enhancement introduces two new re-

quest types to enable system graphs to evaluate remote requests, whether they

originate in that system graph or not. A minor extension to the targets of

principal-matching rules enables principals matched in one system graph to

activate principals in another.

Much of the functionality of the Inter-RPPM model has previously been published,

in conjunction with Jason Crampton, in [65].
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9.1 Motivation

Originally, electronic data sharing began within individual systems and so access

control models focused on managing authorization within a single, local security

domain. As computer systems became more interconnected there became a greater

need to accommodate the processing of requests made by remote subjects. Such a

multi-domain environment is becoming more commonplace (most recently in wire-

less sensor networks (WSN) and Internet of Things (IoT), see Section 10.1 and

Chapter 11) and so models have been tailored to support this functionality. How-

ever, inter-operation has not been considered in relationship-based access control

prior to RPPM. I believe that inter-operation is an important area for investigation

for two key reasons.

Firstly, systems are frequently connected together in order to support a wider

range of services. In such cases, a subject in one system may request to perform

an action on an object in a remote system. Currently such requests cannot be

supported in relationship-based access control models unless a single super-graph1

model captures every entity and relationship within the two, and all intermediary,

systems. This requires global policies, outside of the “authority” of any one com-

ponent system, putting at risk the autonomy of all. The interconnection of discrete

autonomous subgraphs is, therefore, desirable.

Secondly, relationship-based access control models containing very large system

graphs (stand-alone, or super-graph as just discussed) will be impacted by the fact

that request evaluation in such models has a time complexity linked to the number of

nodes in the graph, whether those nodes are relevant to the request being evaluated

or not. It is, therefore, desirable to decompose such very large system graphs into

smaller discrete autonomous subgraphs. Whilst request evaluation complexity in

each of these subgraphs will still be linked to the number of nodes, the practical

overall complexity is expected to be greatly reduced as many requests will only

involve a subset of subgraphs (assuming appropriate routing is available). Therefore,

the distributed evaluation of the request both reduces the load for any one subgraph

and reduces the percentage of the total entity space which must be considered when

matching paths to principals.

I am, therefore, motivated to develop a framework by which two system graphs

may be connected and requests initiated in one may be authorized in the other. I

believe RPPM is naturally suited to this task as it supports the modelling of general

computing environments, to which inter-operation is highly relevant. Further, its

1I use the term super-graph to identify a large system graph which models multiple systems which might otherwise
be modelled by distinct stand-alone system graphs.
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two step request evaluation process and use of security principals provide a natural

“break point” at which a request may be transferred from one system to another

(particularly when employing graph-based policies). RPPM provides a convenient

basis for combining paths from multiple graphs without searching end-to-end across

the, potentially numerous, inter-connected system graphs.

It is important to note the distinction between multi-domain environments and

those that are simply “decentralized”. The term “decentralized” is commonly used

to refer to any (general) environment where administration tasks are distributed

amongst multiple administrators [45, 58, 124, 163]. Obviously a multi-domain en-

vironment meets that definition by virtue of there being distinct administrators

managing distinct policies in distinct domains. In the more general perspective,

whilst the decentralization of administration sets up administrative scopes for in-

dividual administrators, this does not necessarily imply separate security domains

as I have described them. Specifically, whilst administrative scopes for individual

administrators may be distinct, the underlying model elements may be consistent

across those administrators. Whilst administrators may not individually be able to

act on all entities within an instance, if all requests are evaluated within the context

of the instance then that is not a multi-domain environment.

9.2 Inter-Operation Enhancements

9.2.1 Bridged System Group

The goal of my inter-operation framework is to connect distinct and autonomous

system graphs in such a way that I am not required to define and evaluate relation-

ship paths traversing a single super-graph. I, therefore, introduce an inter-operation

framework which maintains the autonomy of individual system graphs by preserving

their individual distinct request evaluation scopes, system models and policies. This

way, the PDP of each individual system graph is able to evaluate “local” requests as

usual, but may also contribute to the evaluation of remote requests crossing multiple

system graphs.

In order to provide connectivity between system graphs, a construct external

to the system graphs is required. I, therefore, introduce the concept of a bridged

system group and employ bridging relationships2, called bridges, between hub entities

within distinct component system graphs. A request to access a remote resource

2I require an extra-model administrator to be responsible for the management of these bridging relationships
as no single intra-model administrator has authority. However, I can also envisage an approach whereby the
bridging relationships are “negotiated” by the authorities of connected system graphs (although I do not consider
the mechanisms by which such an approach may be fulfilled.
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will need to be evaluated by a sequence of RPPM systems. Bridges provide the link

through which I propagate information about the outcome of each system’s local

request evaluation to the next system in the sequence, where it subsequently informs

another local evaluation.

I employ a hierarchical dot notation to label elements: that is 𝐺.𝑣 and 𝐺′.𝑣

represent different nodes (with the same label 𝑣) when 𝐺 and 𝐺′ are distinct system

graphs.3 When all of the elements of a tuple, such as (𝑣, 𝑣′, 𝑟), belong to the same

system graph 𝐺, I will write 𝐺.(𝑣, 𝑣′, 𝑟) to simplify notation.

Definition 9.1. Let 𝒢 = {𝐺1 = (𝑉1, 𝐸1), . . . , 𝐺𝑛 = (𝑉𝑛, 𝐸𝑛)} be a set of system

graphs. Then, a bridge is an edge of the form (𝐺𝑖.𝑢,𝐺𝑗.𝑣,Bridge-to) such that

𝐺𝑖 ̸= 𝐺𝑗. A bridged system group is a pair (𝒢, 𝛽), where 𝛽 is a non-empty set of

bridges and for all (𝐺𝑖.𝑢,𝐺𝑗.𝑣,Bridge-to) ∈ 𝛽, 𝐺𝑖, 𝐺𝑗 ∈ 𝒢.

Informally, a bridged system group comprises two or more RPPMmodel instances

whose system graphs are connected by one or more bridges. Each bridge connects

two hub entities, one each from two distinct component system graphs.

Example 9.1. I illustrate this framework with a simple example which I construct

from two, initially disconnected, model instances, identified by their system graphs

𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), shown schematically in Figure 9.1a.

𝐺1 𝐺2

(a) Disconnected system graphs

𝐺1

𝐺1.ℎ

Bridge-to

𝐺2.ℎ
′

𝐺2

(b) Bridged system group (1,2)

𝐺1

𝐺1.𝑠
𝐺1.ℎ

Bridge-to

𝐺2.ℎ
′

𝐺1.ℎ
′

Bridge-to

𝐺3.ℎ
′

𝐺2

𝐺2.ℎ

Bridge-to

𝐺3.ℎ

Bridge-to

𝐺3

𝐺3.𝑣

(c) Bridged system group (1,2,3)

Figure 9.1: Constructing a bridged system group

In Figure 9.1b I illustrate the inter-connection of system graphs 𝐺1 and 𝐺2

through the bridge (𝐺1.ℎ,𝐺2.ℎ
′,Bridge-to); I develop the example further in Fig-

ure 9.1c to incorporate three system graphs inter-connected via five bridges.4

Bridges are directed – (𝐺2.ℎ,𝐺3.ℎ,Bridge-to) connects 𝐺2.ℎ to 𝐺3.ℎ, but not vice

versa – and are represented by an arrow. However, there may also exist a bridge

3Where there is no ambiguity through context or element naming I continue to leave out the prefix for convenience
and clarity. So I do not prefix 𝑉1 and 𝐸1 in 𝐺1 = (𝑉1, 𝐸1), for example.

4Note that the example of Figure 9.1c could equally represent three distinct system graphs which have been
connected together, or a large stand-alone system graph which has been decomposed into three subsystems.
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(𝐺3.ℎ,𝐺2.ℎ,Bridge-to) in which case I will use a double-headed arrow to represent

the pair of bridges between 𝐺2.ℎ and 𝐺3.ℎ.

Remark 9.1. It is important to note that I place no specific requirements on the

system models of system graphs which participate in a bridged system group. Two

system graphs may be connected by a bridge, yet may have wholly different sets

of entity types and relationship labels. The entities in those system graphs may,

thereby, represent very different systems whose local policies are incomparable. For

example, one system graph may represent a higher education department, much like

that introduced in Example 4.3, whilst another may represent an IoT test lab used

by faculty and students of that department.

Any bridged system group defines inter-system paths, obtained by traversing the

bridges. A system graph sequence defines the sequence of system graphs along such a

path, where no system graph may be repeated and the directionality of the bridging

relationships constrain the sequence. System graph sequences are a key component

of the request evaluation process as they identify a path from the system originating

a request to the system graph containing the target object. Multiple such paths

may exist; I require that the PDP within a system be able to determine the single,

least cost path.

To achieve this I require that an extra-model administrator5 assign costs to

bridges, and that hub entities maintain and exchange system path information us-

ing a modified path-vector routing protocol. Each hub communicates with adjacent

hubs to which it directs a bridging relationship, retrieving the cost of their total

(least) cost path to every other hub, and therefore every other system graph, in the

bridged system group.6 (I use an infinite cost to indicate an unreachable hub.) Upon

receiving these path costs the hub adds to each the cost of the bridge connecting

it to that neighbour; it will then update its local system path table to reflect the

least cost path (if it didn’t already know it) to every hub, along with which adjacent

(or local) hub each least cost path passes through. A system’s PDP can collate

this information from each of its local hub entities in order to determine the single,

least cost path to a target system graph, or to determine that no such path exists.

Henceforth, when identifying a system graph sequence between two system graphs

I assume the least cost such sequence.

Example 9.2. Returning to my example bridged system group, let us consider the

least cost paths which result when the bridge costs are as per Figure 9.2a. For ease
5Or negotiating domain authorities.
6The directionality of bridges is enforced by hub entities not exchanging system path information against the

direction of an incident bridge.
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of comprehension I have replaced the Bridge-to bridge labels in Figure 9.2b with

ordered pairs of bridge costs (where the ordering is derived from the graph number,

i.e., 𝐺1 < 𝐺2 < 𝐺3). The label (10,∞) between 𝐺1.ℎ and 𝐺2.ℎ
′ indicates that the

cost is 10 from 𝐺1.ℎ to 𝐺2.ℎ
′ and the cost is ∞ (due to there being no bridge) from

𝐺2.ℎ
′ to 𝐺1.ℎ.

Bridge Cost

(𝐺1.ℎ,𝐺2.ℎ
′,Bridge-to) 10

(𝐺1.ℎ
′, 𝐺3.ℎ

′,Bridge-to) 50
(𝐺2.ℎ,𝐺3.ℎ,Bridge-to) 10
(𝐺3.ℎ,𝐺2.ℎ,Bridge-to) 20
(𝐺3.ℎ

′, 𝐺2.ℎ
′,Bridge-to) 30

(a) Bridge costs

𝐺1

𝐺1.𝑠
𝐺1.ℎ

(10,∞)

𝐺2.ℎ
′

𝐺1.ℎ
′

(50,∞)

𝐺3.ℎ
′

𝐺2

𝐺2.ℎ

(10, 20)

𝐺3.ℎ

(∞, 30)

𝐺3

𝐺3.𝑣

(b) Bridged system group (1,2,3) with ordered
bridge costs labelling bridges

Figure 9.2: Bridge costs and system path tables

Table 9.1 represents a composite system path table for the entire bridged system

group shown in Figure 9.2b. Such a table will not exist in one place in practice, each

hub’s individual system path table amounts to a row from Table 9.1. Whilst a large

bridged system group, such as in the case of Internet of Things (see Chapter 11),

will likely employ a large number of individual system graphs and, therefore, a large

number of bridges, each hub only processes information from it’s neighbours allowing

this function to easily scale.7

Target hub
𝐺1.ℎ 𝐺1.ℎ′ 𝐺2.ℎ 𝐺2.ℎ′ 𝐺3.ℎ 𝐺3.ℎ′

S
o
u
r
c
e
h
u
b 𝐺1.ℎ (0,−) (0, 𝐺1.ℎ′) (10, 𝐺2.ℎ′) (10, 𝐺2.ℎ′) (20, 𝐺2.ℎ′) (20, 𝐺2.ℎ′)

𝐺1.ℎ′ (0, 𝐺1.ℎ) (0,−) (10, 𝐺1.ℎ) (10, 𝐺1.ℎ) (20, 𝐺1.ℎ) (20, 𝐺1.ℎ)
𝐺2.ℎ (∞,−) (∞,−) (0,−) (0, 𝐺2.ℎ′) (10, 𝐺3.ℎ) (10, 𝐺3.ℎ)
𝐺2.ℎ′ (∞,−) (∞,−) (0, 𝐺2.ℎ) (0,−) (10, 𝐺2.ℎ) (10, 𝐺2.ℎ)
𝐺3.ℎ (∞,−) (∞,−) (20, 𝐺2.ℎ) (20, 𝐺2.ℎ) (0,−) (0, 𝐺3.ℎ′)
𝐺3.ℎ′ (∞,−) (∞,−) (20, 𝐺3.ℎ) (20, 𝐺3.ℎ) (0, 𝐺3.ℎ) (0,−)

Table 9.1: Composite system path table for bridged system group (1,2,3)

9.2.2 Inter-Operation Request Evaluation

As presented in previous chapters, the RPPM model evaluates local requests within

a stand-alone system graph using two steps: compute principals, where principal-

matching rules are evaluated to determine whether security principals match to

the request; and compute authorizations, where authorization rules are evaluated to

7An appropriate mechanism (e.g., digital signatures) must be in place to enable the receiving hub to ensure the
authenticity and freshness of this information. However, I do not mandate the mechanism here.
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determine if the matched security principals are authorized to perform the requested

action. The introduction of inter-operation in Inter-RPPM does not change this

local evaluation process, and it does not extend the authorization scope of a system

graph’s PDP outside of that system graph. (Authorization is still only decided for

local principals, although, as I will show, these decisions can be made on behalf of

remote subjects, and these local principals may be activated by remote principals.)

However, as well as the existing local requests, within Inter-RPPM, remote requests

may be made by a subject 𝐺.𝑠 to perform a remote action 𝐺′.𝑎 (where 𝐺 ̸= 𝐺′) on

a remote object 𝐺′.𝑣. As the authorization scope of system graphs 𝐺 and 𝐺′ are

not extended, such a remote request relies upon PDPs within both system graphs

(and any intermediary graphs also) in order to make the authorization decision for

the requested remote action.

To support these remote actions I introduce an originating remote request (ORR)

and an incoming remote request (IRR).8 The ORR represents the remote request as

it is specified within the originating system graph. The IRR contains additional data

which enable subsequent system graphs to contribute to the evaluation. When pro-

cessing remote requests, every traversed system graphs’ PDP employs the compute

principals step (whether evaluating an ORR or IRR), but only the target system

graph’s PDP computes authorizations. Essentially, non-originating system graphs

re-compute the set of matched principals based on the set computed by the preceding

system graph and identified in the IRR.

Inter-Operation Policy Graph Evaluation

I base Inter-RPPM on the RPPM1a model as I make use of graph-based principal-

matching policies. More specifically, a policy graph is used during the compute

principals step to order the evaluation of principal-matching rules and to enable

principals to be “activated” when specific other principals are matched to a request.

The edges of the policy graph determine which rules trigger other rules. Recall that

in the context of a principal-matching rule, a target is a path condition or one of two

special targets: all or none, where all is always satisfied and none is never satisfied.

I update the definition of a principal-matching rule to make use of extended targets.

Definition 9.2. An extended target is either a target or a set of principals 𝑃𝑡.

Given a system graph 𝐺 = (𝑉,𝐸), 𝑢, 𝑣 ∈ 𝑉 , a set of matched principals J𝜌K and an

extended target 𝑃𝑡, then 𝐺, 𝑢, 𝑣 |= 𝑃𝑡 if and only if 𝑃𝑡 ⊆ J𝜌K. Conversely, 𝐺, 𝑢, 𝑣 ̸|= 𝑃𝑡

if and only if 𝑃𝑡 ∩ J𝜌K = ∅.
8Recall that directed bridges link system graphs, and so, conceptually, a system graph sequence refers to the

chain of system graphs between the originating system graph and the target system graph.
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Rules making use of one or two extended targets, such as (𝑃𝑡, none, 𝑝), activate

the rule’s principal based on constraining principals in the extended target(s). These

constraining principals are either required or forbidden in the current set of matched

principals, where that set may come from earlier in the policy graph’s evaluation or

from some previous evaluation (as will be seen in the case of remote requests).

Example 9.3. I illustrate a policy graph for system graph 𝐺2, containing examples

of these various rules, in Figure 9.3.

(all, none, null)

(𝜑1, 𝜓1, 𝐺2.𝑝1) ({𝐺1.𝑝1}, none, 𝐺2.𝑝2)

(all, none, 𝐺2.𝑝3) (all, none, 𝐺2.𝑝4)

Figure 9.3: 𝐺2’s policy graph

In the case of (𝜑1, 𝜓1, 𝐺2.𝑝1), the principal 𝐺2.𝑝1 will be matched if 𝜑1 is satisfied

and 𝜓1 is not. The rule ({𝐺1.𝑝1}, none, 𝐺2.𝑝2) enables local evaluation in system

graph 𝐺2 to directly make use of the matching of principal 𝑝1 in system graph 𝐺1;

in this case 𝐺2.𝑝2 will be matched if 𝐺1.𝑝1 was matched in 𝐺1. In this way, I

am able to transfer authorization information between autonomous system graphs.

(Principal-matching rules that employ extended targets are similar to RT rules of

the form 𝐴.𝑅← 𝐵.𝑅′, which asserts that an entity assigned to role 𝑅′ by domain 𝐵

is also assigned to role 𝑅 in domain 𝐴 [125].) The rule (all, none, 𝐺2.𝑝3) will only be

evaluated if 𝐺2.𝑝1 was matched, with the principal 𝐺2.𝑝3 being matched automatically

when it is. Finally, if principals 𝐺2.𝑝1 and 𝐺2.𝑝2 were matched because their rules

where applicable, then rule (all, none, 𝐺2.𝑝4) causes 𝐺2.𝑝4 to also be matched.

More formally, I evaluate a policy graph in Inter-RPPM with respect to a request,

in order to compute a set of matched principals, as per Algorithm 9.1.9

Originating Remote Request

An originating remote request (ORR) is made within the originating system graph

and is processed by the local PDP as per Algorithm 9.2, using a policy graph to

compute principals.10

9Note that the algorithm is passed a set of matched principals to which any it matches are added, and that when
evaluating each target it considers the principals in that set if the target defines principals which must be present (or
not). Similar to Algorithm 5.1, the local policy graph variant of ComputePrincipals, I do not add the null principal
to the set of matched principals so that it does not interfere with authorization decisions, no matter the conflict
resolution strategy employed.

10For ease of comprehension, I have simplified the call to ComputePrincipals removing the system graph, relation-
ship labels, principals, policy graph and principal matching strategy arguments so as to highlight the start entity,
target entity, and set of matched principals arguments.
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Algorithm 9.1 ComputePrincipals (inter-operation policy graph variant)

Require: System graph 𝐺 = (𝑉,𝐸), set of relationship labels ̃︀𝑅, set of principals 𝑃 , start entity 𝑠, target entity 𝑜,
policy graph 𝐺𝜌 = (𝑉𝜌, 𝐸𝜌), principal-matching strategy 𝜎 and set of matched principals J𝜌K

Ensure: Returns an updated set of matched principals J𝜌K
1: 𝑀𝑞 ← (𝑉, ̃︀𝑅,𝐸, 𝑠, {𝑜})
2: while Perform breadth-first search of 𝐺𝜌 starting at root vertex do
3: Evaluate current vertex, (𝜑, 𝜓, 𝑝) ∈ 𝑉𝜌
4: if (𝜑 = all) or (𝜑 ⊆ 𝑃 and 𝜑 ⊆ J𝜌K) or (𝐿(𝑀𝜑) ∩ 𝐿(𝑀𝑞) ̸= ∅) then
5: if (𝜓 = none) or (𝜓 ⊆ 𝑃 and 𝜓 ∩ J𝜌K = ∅) or (𝐿(𝑀𝜓) ∩ 𝐿(𝑀𝑞) = ∅) then
6: if 𝑝 ̸= null then
7: J𝜌K← J𝜌K ∪ 𝑝
8: if 𝜎 = FirstMatch then
9: return J𝜌K
10: end if
11: end if
12: else
13: Prune all (𝜑′, 𝜓′, 𝑝′) from evaluation, where (𝜑, 𝜓, 𝑝) > (𝜑′, 𝜓′, 𝑝′)
14: end if
15: else
16: Prune all (𝜑′, 𝜓′, 𝑝′) from evaluation, where (𝜑, 𝜓, 𝑝) > (𝜑′, 𝜓′, 𝑝′)
17: end if
18: end while
19: return J𝜌K

Definition 9.3. Given two distinct system graphs 𝐺 = (𝑉,𝐸) and 𝐺′ = (𝑉 ′, 𝐸 ′)

in a bridged system group (𝒢, 𝛽), an originating remote request takes the form

𝐺.𝑞 = (𝐺.𝑠,𝐺′.𝑣, 𝐺′.𝑎),11 where 𝐺.𝑠 ∈ 𝑉 , 𝐺′.𝑣 ∈ 𝑉 ′ and 𝐺′.𝑎 ∈ 𝐺′.𝐴.

Algorithm 9.2 ProcessORR

Require: System graph 𝐺 = (𝑉,𝐸), set of relationship labels 𝐺. ̃︀𝑅, set of principals 𝐺.𝑃 , ORR
𝐺.𝑞 = (𝐺.𝑠,𝐺′.𝑣, 𝐺′.𝑎), policy graph 𝐺.𝐺𝜌 = 𝐺.(𝑉𝜌, 𝐸𝜌) and principal-matching strategy 𝐺.𝜎

Ensure: Malformed ORR rejected or set of matched principals 𝐺.J𝜌K sent to next system graph in system graph
sequence

1: 𝐿𝐶𝑃𝐺,𝐺′ ← DetermineLeastCostPathToSystemGraph(𝐺′)
2: if 𝐺′ reachable then
3: 𝐺.ℎ← IdentifyLocalHubForLCP(𝐿𝐶𝑃𝐺,𝐺′ )
4: 𝐺.J𝜌K← ComputePrincipals(𝐺.𝑠,𝐺.ℎ, ∅)
5: 𝐺′′.ℎ← IdentifyNeighbourHubForLCP(𝐿𝐶𝑃𝐺,𝐺′ )
6: Securely send 𝐺.𝑞 and 𝐺.J𝜌K to 𝐺′′.ℎ via 𝐺.ℎ
7: else
8: Reject malformed ORR
9: end if

An ORR is considered malformed and rejected (denied) if there is no path between

the originating and target system graphs (lines 2 and 8). When processing the ORR,

the originating system’s PDP must take into account that the target object is located

in a distinct system graph from the subject. Therefore, the ORR is processed

by performing compute principals between the subject and the hub entity which

links the originating system graph to the next graph in the system graph sequence

(lines 1, 3 and 4).12 Note that line 4 passes an empty set to the ComputePrincipals

11Note that the originating remote request 𝐺.𝑞 = (𝐺.𝑠,𝐺′.𝑣, 𝐺′.𝑎) retains the same underlying structure as a local
request made within the same system graph 𝐺.𝑞 = 𝐺.(𝑠, 𝑣, 𝑎).

12The function DetermineLeastCostPathToSystemGraph requires the PDP to interrogate its local hubs and to collate
their responses, as described earlier and as demonstrated in Example 9.4.
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algorithm (defined in Algorithm 9.1) as no principals have yet been matched to

this remote request. The result of processing the policy graph is a set of matched

principals for traversing the originating system graph. This is then passed, along

with the details of the request, across the bridging relationship to the next system

in the system graph sequence (lines 5 and 6).13

Example 9.4. Returning to my bridged system group from Example 9.2, let us

consider the ORR (𝐺1.𝑠, 𝐺3.𝑣, 𝐺3.𝑎). This request would be evaluated locally in

system graph 𝐺1 with a target system graph of 𝐺3. The 𝐺1 PDP can determine

from the system path table entries of its local hubs (shown in Table 9.2), that 𝐺3 is

reachable and that the least cost path is via system graph 𝐺2, accessible through the

local hub 𝐺1.ℎ and its neighbour 𝐺2.ℎ
′.

Target hub
𝐺3.ℎ 𝐺3.ℎ′

Source hub
𝐺1.ℎ (20, 𝐺2.ℎ′) (20, 𝐺2.ℎ′)
𝐺1.ℎ′ (20, 𝐺1.ℎ) (20, 𝐺1.ℎ)

Table 9.2: Composite system path table fragment for 𝐺1

The ComputePrincipals algorithm will, therefore, attempt to match principals be-

tween 𝐺1.𝑠 and 𝐺1.ℎ. As already noted, the input to Algorithm 9.1 contains an

empty set for the existing matched principals when processing an ORR. The set of

matched principals 𝐺1.J𝜌K which results will then be securely sent to 𝐺2.ℎ
′, via 𝐺1.ℎ.

For illustration, Figure 9.4 shows the progress of the remote request once the

ORR has been evaluated in 𝐺1. I have highlighted a path within 𝐺1 to signify the

completion of the principal matching process, and the bridge between 𝐺1.ℎ and 𝐺2.ℎ
′

to signify the transfer of the resulting matched principals.

𝐺1

𝐺1.𝑠
𝐺1.ℎ

(10,∞)

𝐺2.ℎ
′

𝐺1.ℎ
′

(50,∞)

𝐺3.ℎ
′

𝐺2

𝐺2.ℎ

(10, 20)

𝐺3.ℎ

(∞, 30)

𝐺3

𝐺3.𝑣

Figure 9.4: Progress of evaluating a remote request having evaluated the ORR (𝐺1.𝑠, 𝐺3.𝑣,𝐺3.𝑎)
in 𝐺1

13An appropriate mechanism (e.g., digital signatures) must be in place to enable the receiving system to ensure
the authenticity and freshness of such details.
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Incoming Remote Request

An incoming remote request (IRR) is used in any other system graph along the

system graph sequence, up to, and including, the target system graph. Within an

IRR, the subject component of the ORR is replaced with a tuple identifying the

originating subject, the hub entity through which the request was received by the

current system and the set of matching principals which resulted from the preceding

system’s processing of the request. The IRR is processed by the local PDP as per

Algorithm 9.3 and using a policy graph to compute principals.14

Definition 9.4. Given a bridged system group (𝒢, 𝛽) with system graphs and bridges

producing the system graph sequence (𝐺1, . . . , 𝐺𝑖−1, 𝐺𝑖, . . . , 𝐺ℓ), an incoming remote

request in 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) takes the form 𝐺𝑖.𝑞 = ((𝐺1.𝑠, 𝐺𝑖.ℎ,𝐺𝑖−1.J𝜌K), 𝐺ℓ.𝑣, 𝐺ℓ.𝑎),

where 𝐺𝑖.ℎ ∈ 𝑉𝑖 is the hub through which the request entered 𝐺𝑖 and 𝐺𝑖−1.J𝜌K is the

set of matched principals computed by the preceding system graph.

Processing of the IRR depends on whether the PDP is in an intermediate system

graph or the target system graph (lines 1 and 8).

Algorithm 9.3 ProcessIRR

Require: System graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), set of relationship labels 𝐺𝑖. ̃︀𝑅, set of principals 𝐺𝑖.𝑃 , IRR
𝐺𝑖.𝑞 = ((𝐺1.𝑠, 𝐺𝑖.ℎ,𝐺𝑖−1.J𝜌K), 𝐺ℓ.𝑣, 𝐺ℓ.𝑎), policy graph 𝐺𝑖.𝐺𝜌 = 𝐺𝑖.(𝑉𝜌, 𝐸𝜌) and principal-matching strategy
𝐺𝑖.𝜎

Ensure: Set of matched principals 𝐺𝑖.J𝜌K sent to next graph in system graph sequence (intermediate system graph)
or authorization decision made (target system graph)

1: if 𝐺𝑖 ̸= 𝐺ℓ then
2: // intermediate system graph
3: 𝐿𝐶𝑃𝐺𝑖,𝐺ℓ

← DetermineLeastCostPathToSystemGraph(𝐺ℓ)
4: 𝐺𝑖.ℎ

′ ← IdentifyLocalHubForLCP(𝐿𝐶𝑃𝐺𝑖,𝐺ℓ
)

5: 𝐺𝑖.J𝜌K← ComputePrincipals(𝐺𝑖.ℎ,𝐺𝑖.ℎ′, 𝐺𝑖−1.J𝜌K)
6: 𝐺𝑖+1.ℎ← IdentifyNeighbourHubForLCP(𝐿𝐶𝑃𝐺𝑖,𝐺ℓ

)
7: Securely send 𝐺𝑖.𝑞 and 𝐺𝑖.J𝜌K to 𝐺𝑖+1.ℎ via 𝐺𝑖.ℎ

′

8: else
9: // target system graph
10: 𝐺𝑖.J𝜌K← ComputePrincipals(𝐺𝑖.ℎ,𝐺ℓ.𝑣, 𝐺𝑖−1.J𝜌K)
11: 𝐺𝑖.J𝜚K← ComputeAuthorizations(𝐺𝑖.J𝜌K)
12: DecideAuthorizationResult(𝐺𝑖.J𝜌K, 𝐺𝑖.J𝜚K)
13: end if

When processing an IRR in an intermediate system graph, the system’s PDP

must take into account that neither the subject nor target object is located in the

current system graph. Therefore, the IRR is processed by performing compute

principals between two hub entities: the hub entity 𝐺𝑖.ℎ through which the request

entered the system and the hub entity which links the intermediate system graph

to the next graph in the system graph sequence (lines 4 and 5). The set of matched

principals from the preceding system graph is input into the graph policy evaluation
14Once again, for ease of comprehension I have simplified the call to ComputePrincipals removing the system graph,

relationship labels, principals, policy graph and principal matching strategy arguments so as to highlight the start
entity, target entity, and set of matched principals arguments.
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(line 5) and may result in additional principals being activated (and added to it),

as discussed earlier.

As with processing an ORR, the cumulative set of matched principals that results

is then passed, along with the details of the request, across the bridging relationship

to the next system in the system graph sequence (lines 6 and 7). This process

continues until it reaches the target system.

Example 9.5. At the end of Example 9.4, the hub entity 𝐺2.ℎ
′ had received the ORR

(𝐺1.𝑠, 𝐺3.𝑣, 𝐺3.𝑎) and the set of matched principals 𝐺1.J𝜌K from 𝐺1.ℎ. The IRR

((𝐺1.𝑠, 𝐺2.ℎ
′, 𝐺1.J𝜌K), 𝐺3.𝑣, 𝐺3.𝑎) is, therefore, generated by 𝐺2.ℎ

′ and then evaluated

in 𝐺2 with a target system graph of 𝐺3. The 𝐺2 PDP can determine from the system

path table entries of its local hubs (shown in Table 9.3), that 𝐺3 is reachable and

that the least cost path is a direct bridge from the local hub 𝐺2.ℎ to its neighbour

𝐺3.ℎ.

Target hub
𝐺3.ℎ 𝐺3.ℎ′

Source hub
𝐺2.ℎ (10, 𝐺3.ℎ) (10, 𝐺3.ℎ)
𝐺2.ℎ′ (10, 𝐺2.ℎ) (10, 𝐺2.ℎ)

Table 9.3: Composite system path table fragment for 𝐺2

The ComputePrincipals algorithm will, therefore, attempt to match principals be-

tween 𝐺2.ℎ
′ and 𝐺2.ℎ using 𝐺1.J𝜌K as part of the input. The set of matched principals

𝐺2.J𝜌K which results will then be securely sent to 𝐺3.ℎ, via 𝐺2.ℎ.

For illustration, Figure 9.5 shows the progress of the remote request once the

IRR has been evaluated in 𝐺2. I have highlighted a path within 𝐺2 to signify the

completion of the principal matching process, and the bridge between 𝐺2.ℎ and 𝐺3.ℎ

to signify the transfer of the resulting matched principals.

𝐺1

𝐺1.𝑠
𝐺1.ℎ

(10,∞)

𝐺2.ℎ
′

𝐺1.ℎ
′

(50,∞)

𝐺3.ℎ
′

𝐺2

𝐺2.ℎ

(10, 20)

𝐺3.ℎ

(∞, 30)

𝐺3

𝐺3.𝑣

Figure 9.5: Progress of evaluating a remote request having evaluated the IRR
((𝐺1.𝑠, 𝐺2.ℎ

′, 𝐺1.J𝜌K), 𝐺3.𝑣,𝐺3.𝑎) in 𝐺2

When processing an IRR in the target system graph, the policy graph eval-

uation is performed between the hub entity through which the request entered the
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system and the object of the request, note 𝐺𝑖 = 𝐺ℓ (line 10). Once again this

makes use of the preceding system graph’s set of matched principals. However, once

a local set of matched principals is determined the compute authorizations step is

performed. This allows a set of authorization decisions to be determined (line 11).

A definitive decision is then determined, with the same default decision process and

conflict resolution process employed by RPPM1a for local requests (line 12).

9.2.3 Caching in Inter-RPPM

When considering caching, as introduced in Chapter 5, alongside support for the

inter-operation of multiple systems, it is necessary to take into account the four

variants of request processing that may occur in a system graph within a bridged

system group (as shown in Table 9.4).

Request
type

Request Graph Source Target Remote
Input

Local (𝑠, 𝑜, 𝑎) 𝐺 𝑠 𝑜 n/a

ORR (𝐺.𝑠,𝐺′.𝑣, 𝐺′.𝑎) 𝐺 𝐺.𝑠 𝐺.ℎ ∅
IRR -
intermediate

((𝐺1.𝑠, 𝐺𝑖.ℎ,𝐺𝑖−1.J𝜌K), 𝐺ℓ.𝑣, 𝐺ℓ.𝑎) 𝐺𝑖 𝐺𝑖.ℎ 𝐺𝑖.ℎ
′ 𝐺𝑖−1.J𝜌K

IRR - target ((𝐺1.𝑠, 𝐺𝑖.ℎ,𝐺𝑖−1.J𝜌K), 𝐺ℓ.𝑣, 𝐺ℓ.𝑎) 𝐺𝑖 = 𝐺ℓ 𝐺𝑖.ℎ 𝐺ℓ.𝑣 𝐺𝑖−1.J𝜌K

Table 9.4: Request processing variations

Recall that caching edges connect entities in a single system graph, and so are

always added between the entities involved in the request evaluation within that

system graph. As I have demonstrated, when evaluating remote requests the subject

and object are in different system graphs, and so the evaluation performed in any

one graph must consider paths involving at least one hub entity (with that hub

entity acting as a gateway between system graphs). For example, in the target

system graph containing the object of the remote request, the actual evaluation

(and, therefore, the resultant caching edge) will be between the hub entity through

which the request entered the target system graph and the request’s object.

In RPPM1a, as described in Chapter 5, having evaluated a local request (𝑠, 𝑜, 𝑎)

a caching edge of the form (𝑠, 𝑜, J𝜌K) is added to 𝐸, where J𝜌K ⊆ 𝑃 is the set of

matched principals determined by the compute principals step of request evaluation.

In Inter-RPPM, I instead label caching edges in system graph 𝐺𝑖 with a tuple

(J𝜌𝑖𝑛K, 𝐺𝑖.J𝜌K) to indicate the incoming set of matched principals J𝜌𝑖𝑛K as well as

the set subsequently determined from the compute principals step in 𝐺𝑖. In the

case of local requests and originating remote requests, where no incoming set of

matched principals applies, the label will always take the form (∅, 𝐺𝑖.J𝜌K). Note that
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the caching edge may only be used to bypass compute principals for a subsequent

request if the first element of the caching edge’s label is equal to the incoming set

of matched principals.15

Therefore, having been added between two entities 𝑢 and 𝑣, caching edges enable

the compute principals step of request evaluation to be skipped when evaluating

subsequent requests between 𝑢 and 𝑣 where the incoming set of matched principals

is equal to that in the caching edge’s label. When evaluating a request without an

incoming set of matched principals, the existence of the caching edge (𝑢, 𝑣, (∅, J𝜌K))
enables the compute principals step of request evaluation to be skipped, with J𝜌K
used as the result. This may be the case when evaluating the local request (𝑢, 𝑣, 𝑎)

or when the originating remote request (𝐺.𝑢,𝐺′.𝑣′, 𝐺′.𝑎′) is being evaluated, where

𝑣 is the hub entity which connects the current system graph 𝐺 to the next system

graph in the system graph sequence between 𝐺 and the target system graph 𝐺′.

Remark 9.2. For convenience and backwards compatibility, a caching edge labelled

with just a set of matched principals is equivalent to a caching edge labelled with a

tuple where the incoming set is the empty set, i.e. (𝑢, 𝑣, J𝜌K) ≡ (𝑢, 𝑣, (∅, J𝜌K)).

When evaluating an incoming remote request ((𝐺1.𝑠, 𝐺𝑖.ℎ,𝐺𝑖−1.J𝜌K), 𝐺ℓ.𝑣, 𝐺ℓ.𝑎)

and considering paths between 𝐺𝑖.ℎ and 𝐺𝑖.𝑣, a caching edge

(𝐺𝑖.ℎ,𝐺𝑖.𝑣, (J𝜌𝑖𝑛K, 𝐺𝑖.J𝜌K)) only applies if the incoming set of matched princi-

pals 𝐺𝑖−1.J𝜌K is equal to J𝜌𝑖𝑛K, with 𝐺𝑖.J𝜌K used if it is. Otherwise, the request must

be evaluated in full.

Whilst a partial purging strategy was advocated in Section 5.1.3, such an ap-

proach is precluded when Inter-RPPM is used with caching. Specifically the intro-

duction of extended targets increases the potential inter-dependencies to the point

that all caching edges must be removed whenever a model change is made. Given

that caching edges are a useful addition for inter-operation, an aggressive purging

strategy is, therefore, applied when they are employed.

9.3 Model Comparisons

9.3.1 Existing Inter-Operation Models

In contrast to existing support for administration within access control mod-

els, support for inter-operation is far more binary. Where models support it,

the functionality is described in full as it is, usually, the salient feature of that

15Note that it is solely the incoming set of matched principals which must be matched, and not the system graph
from whence it comes.
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model [34, 35, 125, 149, 169, 170]. In particular, research into the use of RBAC in

multi-domain scenarios has led to several approaches to inter-operation based princi-

pally upon role mapping. However, many models do not refer to it and, as far as I am

aware, no other relationship-based access control model considers inter-operation.

Role-Based Access Control

SERAT Shehab et al. define a distributed secure interoperability protocol in which

users are assigned roles in remote domains based upon cross-domain access agree-

ments [170]. The order in which roles are acquired within each domain they access

is referred to as the user’s access path. These paths are checked to ensure that

the principles of autonomy and security are both satisfied. The autonomy principle

requires that a locally permitted access must also be permitted under secure inter-

operation, whilst the security principle requires that a locally denied access must

also be denied under secure inter-operation [90]. Whilst SERAT enables adminis-

trators to manage inter-domain request evaluation policies, the model assumes that

administrators are trusted entities and so does not define the mechanisms which

control their actions.

Multidomain RBAC Shafiq et al. introduce a policy composition framework that

integrates the RBAC policies of initially distinct domains [169]. They represent the

RBAC policies of individual domains using graph models (not dissimilar from, and

capturing the information in, role hierarchies), and include links between graphs

to show relationships between roles in the distinct domains. To compose a global

access control policy they merge the policies of the collaborating domains. They,

additionally, implement a conflict resolution technique to deal with conflicts which

may arise from the differences in how each domain models or references its access

control policies. As with SERAT, Shafiq et al. do not define the mechanisms through

which administrative actions are controlled.

X-GTRBAC Admin As discussed in Section 8.3.1, Bhatti et al. extend various

existing works to define X-GTRBAC Admin [34, 35, 113, 169]. The inter-operation

component of X-GTRBAC Admin is based on Shafiq et al.’s multidomain RBAC

model [169]. However, conflict resolution is extended in X-GTRBAC Admin to

accommodate the dynamic nature of the inter-domain relationships now that ad-

ministration is supported.
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Attribute-Based Access Control

RT The focus of the RT model is distributed authorization through the delega-

tion of authority between organisations using credentials [125]. Credentials provide

capabilities in remote security domains, granted through the delegation of author-

ity over attributes and the delegation of role activations. Specifically, an entity 𝐴

may delegate authority over 𝑅 to 𝐵 through the credential 𝐴.𝑅 ← 𝐵.𝑅, and en-

tity 𝐴 may map a remote role 𝐵.𝑅1 to the local role 𝐴.𝑅 through the credential

𝐴.𝑅 ← 𝐵.𝑅1. Such a delegation can be achieved in Inter-RPPM through the use

of principal activation and an authorization rule of the form ({𝐵.𝑅}, none, 𝐴.𝑅) in
system graph 𝐴. Whilst administration of the RT model is not clearly documented,

Li et al. do indicate that credentials are digitally signed and also indicate that the

entity which issued a particular credential or request may be identified, for example

through the use of a particular key.

XACML The XACML Administration and Delegation Profile specification defines

how issuers may delegate authority to others [140]. It is not clear from the specifica-

tion whether a delegate may be identified within another security domain; however,

a template-based approach to (federated) inter-domain delegation using the specifi-

cation has been introduced [149]. Perez et al. use attributes from a “home” domain

during the evaluation of access requests in the “visited” domain. In order to sim-

plify the creation of policies by delegates they employ policy templates built using

a policy management tool.

9.3.2 Inter-Operation Enhancements

Whilst my work in respect of relationship-based access control inter-operation is

novel, the inter-operation of other access control model instances has been considered

in previous literature as discussed in Section 9.3.1.

Recall that Shehab et al. enable users to be assigned roles in remote domains

with the order in which roles are acquired referred to as the user’s access path [170].

These paths are checked to ensure the principles of autonomy and security [90] are

both satisfied. In Inter-RPPM, remote requests, by construction, are unable to

target local resources and the outcome of local request evaluation is unchanged by

the additions for remote requests. Therefore, both of these principles are satisfied

trivially.

Recall also that Shafiq et al. introduce a policy composition framework and

implement a conflict resolution technique to deal with conflicts which may arise
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from the differences in how each domain models or references its access control

policies [169]. Within Inter-RPPM I have intentionally avoided integrating the poli-

cies of component model instances, and instead have provided a framework through

which those policies may be applied to remote requests.16 This places a greater

requirement upon the manual definition of appropriate policies within each compo-

nent model instance; however, it ensures a consistent policy language and maintains

the autonomy of the security domains.

As already noted, Inter-RPPM’s use of extended targets and principal activation

is similar to RT’s role mapping [125]. However, whilst Inter-RPPM details a process

by which requests may traverse multiple security domains, RT only considers pair-

wise interactions. That is not to say that more complex arrangements could not be

supported by RT; however, no indication is given as to how domain collaborations

are established and how inter-domain requests are routed.

9.4 Summary

I have introduced two enhancements to RPPM1a to produce the Inter-RPPM model.

I have shown how system graphs may be connected via bridges to create a bridged

system group, and how these system graphs may participate in evaluating remote

requests (whether they originated in that system graph or not). In the next chapter

I describe how RPPM’s functionality may be consolidated and applied to a popular

communication architecture.

16That being said I support the use of remote principals, where desired, to provide for more robust policies.
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Chapter 10

RPPM-PS

With the increasing interconnection of computers into larger and more complex net-

works, numerous communication architectures have been proposed, developed and

regularly applied. Whilst these architectures are frequently transparent to the users

of computer systems, their selection and application for particular use cases is a

conscious decision of system designers. Such decisions are particularly influenced

by the goals of the services which the system will provide. For example, many en-

terprise networks are variations on client-server networks (so that company data

may be centrally managed), whilst many consumer services are today commonly de-

ployed using a cloud-based architecture (to facilitate global use and efficient content

distribution).

As computer systems are integrated into an ever increasing, and widely dispersed,

array of machinery and electrical systems, distributed architectures are becoming

more relevant. Recent decades, for example, have seen a significant growth in the

automation of industrial control systems (ICS) which has raised their profile with

regard to critical national infrastructure (CNI) [47, 139] and cyber security [91, S5.4].
A popular approach to information dissemination in large-scale, distributed appli-

cations (such as ICS [116, S5]) is that of publish/subscribe [20, 68, 73]. Specifically,

in publish/subscribe systems event notifications generated by publishers are dis-

tributed to authorized subscribers. There is a clear need for access control at both

ends of this exchange; only authorized publishers should be able to generate event

notifications, with only authorized subscribers able to register (or unregister) their

interest in receiving these events.

In this chapter I shall introduce RPPM-PS, a relationship-based pub-

lish/subscribe access control system which makes use of the functionality of

RPPM1b, ARPPM, and Inter-RPPM. RPPM-PS is designed for general pub-

lish/subscribe systems but may be effectively tailored to more specific application

197



CHAPTER 10. RPPM-PS

domains. (In Chapter 11 I will discuss Internet of Things as a topical and important

domain; I will also discuss how RPPM-PS may be tailored to support the challenges

of domains such as this.)

In this chapter, as a precursor to introducing RPPM-PS, I will first:

∙ Provide an overview of publish/subscribe systems and their components;

∙ Introduce the access control approaches so far considered for publish/subscribe

systems;

∙ Consolidate the various RPPM enhancements introduced in this thesis, pro-

ducing the RPPM3 model; and

∙ Define the specific handling required to enable auditing to work in conjunction

with the inter-operation features of RPPM3.

I then explain how RPPM3 may be applied to publish/subscribe systems, to

produce RPPM-PS, by considering:

∙ The arrangement of entities in the system graph and the specific forms of

request;

∙ The use of services and the need for service discovery ;

∙ The process for subscription management ; and

∙ The ways in which caching, administration and inter-operation are used in

RPPM-PS.

10.1 Publish/Subscribe

Publish/subscribe systems are a form of communication architecture in which sub-

scribers are able to register their interest in data sources made available by publish-

ers. In many cases this is done through intermediary entities, called event services

or brokers, which act as an abstraction and aggregation layer between the other

network clients (subscribers and publishers).

Once such interest has been registered, a subscriber will receive an event mes-

sage (in conjunction with all other subscribers) whenever the publisher publishes a

notification matching the subscriber’s registration. In this way, publish/subscribe

systems provide a many-to-many communication architecture, which allows the pub-

lisher and subscriber to be decoupled in three dimensions [73]:
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∙ Synchronization – the subscribers may be asynchronously notified of an event,

with both the subscriber and publisher able to perform other processes whilst

the end-to-end event notification takes place.

∙ Time – the presence of the broker enables the subscriber to be offline when the

publisher sends an event message, and the publisher may, in turn, be offline

when the subscriber receives that event from the broker.

∙ Space – the presence of the broker also enables the publishers and subscribers

to be unaware of each other’s identity.

This decoupling means that publish/subscribe systems are particularly suited to

large-scale, distributed information dissemination applications. In order to support

various means of specifying events in such applications, three variant schemes have

been proposed [73]:

∙ Topic-based – where brokers present service interfaces for individual, named

topics and subscribers register their interest in a topic as a whole.

∙ Type-based – where subscribers register their interest in types of event, rather

than all those events under a named topic.

∙ Content-based – where publishers categorise individual events, and subscribers

register their interest in specific content by specifying filters over event proper-

ties.

Past research has highlighted the suitability of publish/subscribe systems to large,

distributed applications in domains such as: news delivery; stock market quote

distribution; air traffic control; police infrastructure; healthcare systems; environ-

mental monitoring; industrial automation; wireless sensor networks (WSN); and

Internet of Things (IoT) [20, 106, 111, 148]. Whatever the application, models

of publish/subscribe systems are commonly illustrated and discussed using graphs,

where the edges represent connections between subscribers, brokers, and publish-

ers [19, 20, 26, 106, 111, 148, 150]. I believe that graphs of relationships are

an obvious substitution for these connection graphs, and that the resulting inter-

relationships may be intuitively used to inform authorization decisions about sub-

scription requests.

In fact, I believe, as do others [26, 111, 150], that access control is a key concern of

publish/subscribe systems as it is necessary to manage the distribution of data being

disseminated within the system. In many cases, the desire to control the data flow

comes from the fact that the service publishing that data requires payment for access
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to the information [26]. However, in some cases the control relates to privacy and

safety concerns (such as in the case of police and healthcare environments [111]).

Whatever the driver, a number of publish/subscribe models have been produced

with consideration given to access control.

10.1.1 Access Control Approaches

Whilst consideration has been given to security and access control in pub-

lish/subscribe systems, some of this work solely focuses on the architectures and

protocols employed within an environment to disseminate information to “known

authorized” clients whilst preventing unauthorized actions [151, 173]. In these cases

authorization enforcement is considered, but the mechanism by which the model

determines whether a client is authorized may be glossed over. I do not consider

such work further.

In contrast, there are a number of publish/subscribe models which incorporate

some consideration of authorization decision making, as well as enforcement.

Capabilities

In their multi-domain peer-to-peer publish/subscribe model, Pesonen et al. employ

certificates within a simple public-key infrastructure (SPKI) as signed capabilities

which grant privileges to clients [150]. Issuance of these capabilities to clients is

delegated (within a security domain) by the relevant resource owner to the domain’s

access control manager. The resource owner may be one of two parties depending on

the requested action: it is the type or topic owner in the case of capabilities granting

privileges to extend existing event types or topics, to subscribe to a topic, or to

publish events; and it is the coordinating domain1 in the case of capabilities granting

privileges to join the network, or to introduce a new event type or topic. As each

security domain trusts the coordinating domain and each access control manager is

delegated to by that coordinating domain, each access control manager trusts every

other access control manager for their delegated privileges. Thus, a broker with a

capability issued by a local access control manager may be authorized by a remote

access control manager to connect to that remote domain; this connection creates

a cross-domain bridge and enables events to be routed between the two domains.

Similarly, a client in one domain may be authorized to subscribe to a topic, or

publish an event, in another domain.

1The single, primary security domain which is responsible for forming the multi-domain publish/subscribe system.
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RBAC

Bacon et al. previously detailed a multi-domain publish/subscribe model which

protected service methods using roles [19]. The domains in Bacon et al.’s model

may form a hierarchy with (parameterized) roles managed within those domains.

The methods, which are authorized at a local broker, include: define; advertise;

publish; and subscribe. The roles which protect use of these methods are activated

within the authorization policy’s OASIS2 rules if membership conditions are satis-

fied. These conditions may include prerequisite roles, appointment certificates and

environmental constraints.

ABAC

More recently, several approaches to using attributes to control access to published

data have been presented.

Ion et al. present a scheme by which subscriptions and notifications are encrypted

using attribute-based encryption (ABE) [111]. The use of key-policy ABE (KP-

ABE) and ciphertext policy ABE (CP-ABE) ensure that decryption requires the

satisfaction of access policies by attributes (be they attached to the ciphertext, in

the case of KP-ABE, or the keys, in the case of CP-ABE3). In this way, only clients

which have the required attributes are able to decrypt the subscription requests and

events.

With the growth in interest of Internet of Things (IoT), See Chapter 11, Carmi-

nati et al. introduce a privacy framework to enable publishers (or more specifi-

cally their users) to control how data (and derived data) can be processed by sub-

scribers [42]. To achieve this, event attributes are classified using a data category

tree and policies constrain the purposes for which specific categories of data may

be used. The framework also defines combining strategies by which policies may be

automatically generated for data derived from multiple events.

10.1.2 Architectural Components

The existing research into access control in publish/subscribe systems is typified by

a number of commonalities in the architectures of the systems considered.

Entity Types Unsurprisingly, the systems considered commonly include entities of

three core types: subscribers; publishers; and brokers. In some cases these are sup-

2Open Architecture for Secure Interworking Services [99]
3Note that the key and ciphertext distinctions of KP-ABE and CP-ABE relate to where the policy is associated.

The attributes are associated with the alternate component in each case.
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plemented, for example with gateway entities [106] or access control managers [150];

in other cases the broker entity type may be split to allow for several different types

of broker (such as those which are acting as PDPs and those which are not [26],

and such as those specifically hosting subscribers, hosting publishers or acting as

intermediaries [20]).

Protected Requests All publish/subscribe systems consider authorization of re-

quests by a subscriber to register and deregister their interests, and requests by

publishers to send notifications. Some researchers also consider requests by pub-

lishers to advertise the kinds of event that they publish and requests to create new

kinds of event in the system [19, 150].

Inter-Operation As publish/subscribe systems are suited to large-scale, distributed

applications, the systems commonly consider inter-domain interactions. The con-

nectivity between such security domains varies, as does the placement and role of

broker entities. Whatever the details, these systems enable subscribers in one do-

main to be notified of events published in another domain [19, 20, 106, 150].

Communication Confidentiality Finally, many systems assume that the commu-

nication media which transmit subscription requests and events are vulnerable to

eaves-dropping. Whilst this is not an access control issue per se, these systems

frequently suggest the use of encryption to protect the confidentiality of the data.

I will not consider this point further in this thesis. However, I hold the view that

data published must be appropriately transmitted to ensure confidentiality, integrity

and availability for authorized subscribers. This may be achieved through physical

proximity and direct connectivity, or may be achieved through a more explicit com-

bination of procedural and technical security controls.

10.2 RPPM3

Before I consider the specifics of publish/subscribe within RPPM-PS, I first combine

the functionality of RPPM1b, ARPPM, and Inter-RPPM. The resulting consolidated

RPPM model (RPPM3) enables multiple system graphs supporting administration

(as per ARPPM) to inter-operate as part of a bridged system group (as per Inter-

RPPM). Further, the RPPM3 model also enables the use of:

∙ RPPM1a’s request evaluation enhancements (policy graph evaluation, target-

based request evaluation and caching edges) through Inter-RPPM;
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∙ RPPM1b’s policy configuration enhancements (history-based policies, separa-

tion of duty, binding of duty and Chinese Wall); and

∙ RPPM1c’s targeting enhancement (path expressions) through ARPPM.

In many cases these components coexist trivially by definition (such as in the

case of path expressions and policy graph evaluation4), or because the components

do not interact (such as in the case of caching edges and audit edges). Where

specific handling has been required in preceding models to enable components to

work together, I have detailed the mechanisms employed in such cases; for example,

the interaction of policy graph evaluation and target-based request evaluation was

described in Section 5.1.2, and the interaction of caching and inter-operation was

described in Section 9.2.3. The interoperability of enhancements in RPPM3 requires

consideration of both administration and auditing in light of inter-operation.

The consideration of administration is trivial but worthy of mention. Given

that each of the system graphs in Inter-RPPM’s bridged system group represents

a distinct security domain and, thereby, a scope of administration, the handling of

administrative requests in RPPM3 is no different from ARPPM – administrative

requests are only supported as local requests.

In contrast, auditing requires more specific handling in light of inter-operation

and remote requests.

10.2.1 Auditing in RPPM3

Similar to caching edges in RPPM1a, audit edges introduced in RPPM1b connect

entities relevant to the evaluated request. When considered in respect of RPPM3

and remote requests, there is a need to take into consideration the fact that one

of the entities may be located in a remote system graph (just as I did for caching

edges in Inter-RPPM, as described in Section 9.2.3). Recall from Section 9.2.2

that authorization scope within Inter-RPPM, and therefore in RPPM3, is limited

to individual system graphs. This continues with the introduction of audit edges,

which are also limited to individual system graphs (although they may audit actions

by remote subjects).

Adding Decision Audit Edges

In RPPM1b, as described in Chapter 6, having evaluated a local request (𝑠, 𝑜, 𝑎) a

decision audit edge of the type (𝑠, 𝑜, 𝑎⊕) or (𝑠, 𝑜, 𝑎⊖) will be added to 𝐸 depending

4Principal-matching rules in the policy graph may employ path expression targets without modifying the be-
haviour of the policy graph evaluation.
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on whether the request was approved or denied, respectively. In RPPM3, I instead

label decision audit edges in system graph 𝐺𝑖 with a tuple (𝐺1.𝑠, 𝑎
⊕) or (𝐺1.𝑠, 𝑎

⊖)

to indicate the originating remote subject of the request as well as the decision.

In the case of a local request (𝑠, 𝑜, 𝑎) the label will take the form (𝑠, 𝑎⊕) or (𝑠, 𝑎⊖)

depending on whether the request was approved or denied, respectively.

Remark 10.1. For convenience and backwards compatibility,

(𝑠, 𝑜, (𝑠, 𝑎⊕)) ≡ (𝑠, 𝑜, 𝑎⊕) and (𝑠, 𝑜, (𝑠, 𝑎⊖)) ≡ (𝑠, 𝑜, 𝑎⊖).

However, in the case of remote requests in RPPM3, it is only incoming

remote requests evaluated in the target system graph which determine a re-

sult for the request. Therefore, decision audit edges are neither added dur-

ing the evaluation of originating remote requests nor added during the evalua-

tion of incoming remote requests in intermediate system graphs. In the case of

an IRR ((𝐺1.𝑠, 𝐺𝑖.ℎ,𝐺𝑖−1.J𝜌K), 𝐺ℓ.𝑣, 𝐺ℓ.𝑎) evaluated in the target system graph

𝐺𝑖 = 𝐺ℓ = (𝑉ℓ, 𝐸ℓ), when the request evaluation is completed I add the edge

(𝐺𝑖.ℎ,𝐺ℓ.𝑣, (𝐺1.𝑠, 𝐺ℓ.𝑎
⊕)) or (𝐺𝑖.ℎ,𝐺ℓ.𝑣, (𝐺1.𝑠, 𝐺ℓ.𝑎

⊖)) to 𝐸ℓ depending on whether

the request was approved or denied, respectively. These decision audit edges connect

the hub entity through which the request entered the target system graph and the

object of the request.

Adding Interest Audit Edges

I employ an equivalent approach to the addition of interest audit edges. Recall that

in RPPM1b interest audit edges are used to enforce Chinese Wall, with interest audit

edges added between subjects and entities in the subset 𝐶 (e.g., companies) which

are members of at most one conflict of interest class. I label interest audit edges

in an RPPM3 system graph 𝐺𝑗 with a tuple (𝐺1.𝑠, 𝑖
⊕) or (𝐺1.𝑠, 𝑖

⊖) to indicate the

originating remote subject of the request as well as the interest. In the case of a local

request (𝑠, 𝑜, 𝑎) the label will take the form (𝑠, 𝑖⊕) or (𝑠, 𝑖⊖) depending on whether

the interest is active or blocked, respectively.

Remark 10.2. Once again, for convenience and compatibility,

(𝑠, 𝑜, (𝑠, 𝑖⊕)) ≡ (𝑠, 𝑜, 𝑖⊕) and (𝑠, 𝑜, (𝑠, 𝑖⊖)) ≡ (𝑠, 𝑜, 𝑖⊖).

As with decision audit edges, in the case of remote requests in RPPM3 it

is only incoming remote requests evaluated in the target system graph which

determine a result for the request. Therefore, interest audit edges are not

added during the evaluation of originating remote requests or the evaluation

of incoming remote requests in intermediate system graphs. In the case of
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an IRR ((𝐺1.𝑠, 𝐺𝑗.ℎ,𝐺𝑖−1.J𝜌K), 𝐺ℓ.𝑣, 𝐺ℓ.𝑎), evaluated in the target system graph

𝐺𝑗 = 𝐺ℓ = (𝑉ℓ, 𝐸ℓ) and where 𝐺ℓ.𝑣 is owned by 𝐺ℓ.𝑐 a member of conflict-of-interest

class 𝐺ℓ.𝑖, when the request is authorized the following edges are added to 𝐸ℓ:

∙ (𝐺𝑗.ℎ,𝐺ℓ.𝑐, (𝐺1.𝑠, 𝑖
⊕));

∙ (𝐺𝑗.ℎ,𝐺ℓ.𝑐
′, (𝐺1.𝑠, 𝑖

⊖)) for all 𝐺ℓ.𝑐
′ ̸= 𝐺ℓ.𝑐, where 𝐺ℓ.(𝑐, 𝑖,𝑚) ∈ 𝐸ℓ and

𝐺ℓ.(𝑐
′, 𝑖,𝑚) ∈ 𝐸ℓ; and

∙ (𝐺𝑗.ℎ,𝐺ℓ.𝑣, (𝐺1.𝑠, 𝐺ℓ.𝑎
⊕)).

These interest audit edges connect the hub entity through which the request entered

the target system graph and the companies which are members of the conflict of

interest class related to the object of the request.

Using Audit Edges in Principal Matching

In order to make use of audit edges when satisfying paths in an RPPM3 system graph

I customise the process by which I compute the request NFA 𝑀𝑞 = (𝑉, ̃︀𝑅,𝐸, 𝑠, {𝑜}).
Specifically, when evaluating a request made by the (local or remote) subject 𝐺′.𝑣′

in RPPM3, I define the request NFA as:

𝑀𝑞 = (𝑉, ̃︀𝑅,𝐸 ′, 𝑠, {𝑜}), where
𝐸 ′ = 𝐸 ∪ {(𝑢, 𝑣, 𝑟) : (𝑢, 𝑣, (𝑢′, 𝑟)) ∈ 𝐸, 𝑢′ = 𝐺′.𝑣′} ∖ {(𝑢, 𝑣, (𝑢′, 𝑟)) ∈ 𝐸}.

This minor revision ensures that the request NFA only contains transitions with

singleton labels (as per those in path conditions) and that any audit edge transitions

are only included if the subject of the request which triggered the addition of that

edge is also the subject of the current request.5

10.3 Publish/Subscribe in RPPM-PS

10.3.1 System Graph and Requests

I now develop the RPPM3 model into the RPPM-PS publish/subscribe system.

In order to support publish/subscribe I introduce the concept of services and also

require an RPPM-PS model instance to include the actions publish, subscribe, and

unsubscribe. Then, an RPPM-PS topic-based model using a single (flat) layer of

5The efficiency of computing 𝐸′ will depend on the data structures employed by an implementation, and may
be improved by sorting and labelling edges specifically for this process.
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brokers has the following features.6 The set of entities 𝑉 includes non-intersecting

sets of publishers 𝑉𝑝𝑢𝑏, brokers 𝑉𝑏𝑟𝑜, subscribers 𝑉𝑠𝑢𝑏 and services 𝑉𝑠𝑟𝑣. Each broker

entity 𝑣 ∈ 𝑉𝑏𝑟𝑜 may host one or more services to which an entity 𝑢 ∈ 𝑉𝑠𝑢𝑏 may

subscribe. The notation v 𝑖 ∈ 𝑉𝑠𝑟𝑣 is used to indicate a service of entity 𝑣 for topic 𝑖.

I use the conceptual arrangement of Figure 10.1 to demonstrate the use of the

RPPM3 model.7 Within a system graph, let us suppose that for every publisher 𝑣𝑝

and every service vb
𝑖 I have 𝐺, 𝑣𝑝, vb

𝑖 |= 𝜋1 ; Hosts, and for every subscriber 𝑣𝑠 and

every service vb
𝑖 I have 𝐺, 𝑣𝑠, vb

𝑖 |= 𝜋2 ;Hosts. In order to support inter-operation of

system graphs I enable brokers to be hub entities within the bridged system group,

as will be demonstrated in Section 10.3.6.

publishers brokers subscribers

services

𝜋1 𝜋2

Hosts

Bridge-to

Figure 10.1: RPPM-PS generalisation

Definition 10.1. A publish request takes the form 𝑞𝑝 = (𝑣𝑝, vb
𝑖, publish), where an

entity 𝑣𝑝 ∈ 𝑉𝑝𝑢𝑏 requests to publish an event for topic 𝑖 to service vb
𝑖 hosted by broker

𝑣𝑏 ∈ 𝑉𝑏𝑟𝑜. If 𝑞𝑝 is authorized, then the event associated with the publish action will

be sent to all entities 𝑈 ⊆ 𝑉𝑠𝑢𝑏 subscribed to vb
𝑖.

Definition 10.2. A subscribe request takes the form 𝑞𝑠 = (𝑣𝑠, vb
𝑖, subscribe), where

an entity 𝑣𝑠 ∈ 𝑉𝑠𝑢𝑏 requests to subscribe to service vb
𝑖 hosted by broker 𝑣𝑏 ∈ 𝑉𝑏𝑟𝑜. If

𝑞𝑠 is authorized, then 𝑣𝑠 is said to be subscribed to vb
𝑖.

In order for a subscribe request 𝑞𝑠 = (𝑣𝑠, vb
𝑖, subscribe) to be well-formed, the

subject 𝑣𝑠 must not already be subscribed to service vb
𝑖.

Definition 10.3. An unsubscribe request takes the form 𝑞𝑢 = (𝑣𝑠, vb
𝑖, unsubscribe).

If 𝑞𝑢 is authorized then 𝑣𝑠 is no longer subscribed to vb
𝑖.

In order for an unsubscribe request 𝑞𝑢 = (𝑣𝑠, vb
𝑖, unsubscribe) to be well-formed,

the subject 𝑣𝑠 must be subscribed to service vb
𝑖.

6This approach works equally well as a type-based model. I have focused on a topic-based model solely for clarity
of explanation. Multiple layers of brokers may also be supported by having brokers forward events to “downstream”
brokers hosting the same topic service. The routing of such forwarding occurs using service discovery as discussed
in Section 10.3.2.

7Figure 10.1 does not show a system graph, it shows a high-level representation of the “shape” of a system graph
which may be part of a bridged system group.
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Henceforth, I assume all subscription requests (subscribe or unsubscribe) are well-

formed. Informally, publishers publish events to brokers, with the broker 𝑣𝑏 hosting

a service vb
𝑖 for topic 𝑖. Subscribers may subscribe to service vb

𝑖 in order to be

informed about topic 𝑖. Should a subscriber no longer wish to be informed about

topic 𝑖, they may send an unsubscribe request.8

Example 10.1. In order to support publishing and subscription management in the

arrangement indicated in Figure 10.1, I may employ the principal-matching rules

({(subject, 𝑡𝑝𝑢𝑏) · 𝜋1 ; Hosts · (object, 𝑡𝑠𝑟𝑣)}, none, 𝑝𝑝𝑢𝑏),

({(subject, 𝑡𝑠𝑢𝑏) · 𝜋2 ; Hosts · (object, 𝑡𝑠𝑟𝑣)}, none, 𝑝𝑠𝑢𝑏),

and authorization rules

(𝑝𝑝𝑢𝑏, {𝑡𝑠𝑟𝑣}, {publish}, 1),

(𝑝𝑠𝑢𝑏, {𝑡𝑠𝑟𝑣}, {subscribe, unsubscribe}, 1).

Using this access control policy a publisher 𝑣𝑝 may publish to a service vb
𝑖 using

the 𝑝𝑝𝑢𝑏 principal and a subscriber 𝑣𝑠 may subscribe or unsubscribe from service vb
𝑖

using the 𝑝𝑠𝑢𝑏 principal.

Remark 10.3. Whilst it is instinctive to consider the authorization of access re-

quests by users acting on system resources, recall (from Remark 4.1) that RPPM’s

mechanisms support requests made by any entity to act on any other entity – no

matter what real or virtual system components these may relate to. This is partic-

ularly relevant in the case of publish/subscribe systems, where machine-to-machine

(M2M) interactions are commonplace. The entities within RPPM’s system graph

are each instances of entity types present in the underlying system model. Whilst

most general computing systems are likely to have one or more human user entity

types, some publish/subscribe model instances (such as for WSN and IoT) may be

completely devoid of these; instead, solely comprising entity types representing logical

and (micro)electromechanical components.

Within the RPPM-PS model the brokers act as PDPs and PEPs, thus reducing

the load on publishers and subscribers.9 RPPM-PS’s request evaluation process

enables the evaluation of local and remote requests as per RPPM3. In this way,

8I require unsubscribe requests to be authorized in order to protect a publish/subscribe system from denial of
service attacks caused by the unauthorized manipulation of internal data flows degrading or denying data availability.

9This approach is particularly desirable for more resource constrained applications such as WSN and IoT (see
Chapter 11), but is also relevant to more general publish/subscribe systems which may contain some resource
constrained nodes.
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inter-domain subscription and publishing may be performed as per Chapter 9 and

Section 10.2.1 (see Section 10.3.6).

10.3.2 Service Discovery

Whilst I have identified how publishing and subscription management requests may

be made and evaluated, a client must first determine which service endpoint it

should target for the related topic. The process of service discovery may be more,

or less, complicated depending on the modelled system and the manner in which

it is to be administered. A manually administered system may have no automated

service discovery process, and may instead rely on the human users knowing which

brokers host which topic services. In such a system a user will trigger a subscriber’s

subscription request by interacting with it, and so will specify the target service

endpoint as part of that interaction. They may also interact with the publisher in

order to specify the target service endpoint it should publish to.

In contrast, within systems using, at least some, automated administration or

publishing there will be a need for an automatic service-discovery process. Given

the variability in requirements for specific systems, I do not prescribe the format

of such a process here. In some situations, a “known”, centralized service-discovery

broker may be present in the system, hosting an equally “known” topic service which

reports the topic endpoints available from each of the system’s brokers (a meta-topic

if you will). In other situations, a decentralized, peer-to-peer, discovery process may

be preferable. The benefits, limitations and application of such approaches have

been commonly discussed in other work, such as [129].

Whatever the discovery mechanism employed, it should be possible for subscribers

and publishers to identify brokers’ service endpoints such that the desired topic

events may be exchanged. Multiple brokers may host a service for the same topic,

and some mechanism for selecting a particular broker is also required. The mech-

anism could involve proximity, loading, randomness or some other deciding factor.

Finally, it should also be possible for brokers to identify other brokers hosting the

same topic service so that they may forward events to ensure full coverage for sub-

scribers.

10.3.3 Subscription Management

In order to track successful subscriptions I employ decision audit edges between

clients and brokers. Specifically, a request (𝑣𝑠, vb
𝑖, subscribe) made by subscriber 𝑣𝑠

will be evaluated by 𝑣𝑏; if authorized, it will result in an authorized decision audit
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edge (𝑣𝑠, vb
𝑖, 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒⊕) between 𝑣𝑠 and vb

𝑖.10 If the request (𝑣𝑠, vb
𝑖, subscribe) is

denied then a denied audit edge is added instead.

Subscriptions may be removed by the subscribing entity through the use of an

unsubscribe request. A request (𝑣𝑠, vb
𝑖, unsubscribe) will be evaluated by 𝑣𝑏, as the

subscribe request was. However, if authorized it results in the addition of the autho-

rized decision audit edge (𝑣𝑠, vb
𝑖, 𝑢𝑛𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒⊕) and I require that the authorized

decision audit edge (𝑣𝑠, vb
𝑖, 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒⊕) be purged.11

It may also be desirable for a broker to perform a periodic “validation” of the

subscriptions for topic 𝑖. Such a check forms a key part of usage control and avoids

time-of-check-to-time-of-use (TOCTTOU) errors leading to unauthorized data ac-

cess (for example, as a result of changes to the access control policy subsequent to a

subscription being put in place). Depending on a system’s requirements, subscrip-

tion validation could be performed at specific times or intervals, after the publisher

has published a certain number of events on the topic, or by all brokers after ad-

ministrative changes are made. The criteria could even be specified for individual

brokers or topic services, such that some brokers (perhaps associated with more

sensitive data) perform validation more frequently.

Whatever the trigger, the validation process is conceptually simple. A bro-

ker 𝑣𝑏 evaluates the request (𝑣𝑠, vb
𝑖, subscribe) for all 𝑣𝑠 where there is an edge

(𝑣𝑠, vb
𝑖, 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒⊕) in the system graph. If the request is authorized the subscrip-

tion remains. However, if the request is denied the entry is no longer valid, the

authorized decision audit edge (𝑣𝑠, vb
𝑖, 𝑢𝑛𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒⊕) is added to the system graph

and the edge (𝑣𝑠, vb
𝑖, 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒⊕) is purged.

In some publish/subscribe model instances it may be preferable to clearly dis-

tinguish the audit edges associated with subscriptions from those for other actions,

for example if the model already relies heavily on history-based policies. There are

various ways in which the implementation could achieve this; one way is that the

subscription audit edges could be tracked by each broker for their hosted services

using a local subscription table, as a part of the broker’s internal state. Whilst

this distributed approach modifies the location and presentation of the subscription

records, the underlying processing is no different to that just described.

10I also require any existing authorized decision audit edge (𝑣𝑠, vb
𝑖, 𝑢𝑛𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒⊕) be purged so that only the last

subscribe or unsubscribe authorized decision audit edge exists.
11So that only the last subscribe or unsubscribe authorized decision audit edge exists.
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10.3.4 Caching

The subscription validation process introduced in Section 10.3.3 requires re-

evaluation of subscription requests to ensure the ongoing authorization of sub-

scribers. “Active” publishers also require regular evaluation of publishing requests.

It is, therefore, desirable for caching to be employed in order to reduce the process-

ing during request evaluation by brokers. In the case of RPPM-PS, once a request

is evaluated a caching edge is (automatically) added to the system graph. This edge

can be used to bypass the compute principals step when evaluating future requests

by the same subject on that object.

Example 10.2. Returning to my example, if a request 𝑞1 = (𝑣𝑝, vb
𝑖, publish) is

evaluated with the set of matched principals {𝑝𝑝𝑢𝑏} resulting, then a caching edge

(𝑣𝑝, vb
𝑖, {𝑝𝑝𝑢𝑏}) will be added to the system graph. On subsequent requests 𝑞2, . . . , 𝑞𝑛

by 𝑣𝑝 to publish events to topic 𝑖, this caching edge may be used (until it is purged)

to bypass the compute principals step of request evaluation.

I employ an aggressive purging strategy in order to avoid caching edges being

used once they are no longer valid. Specifically, I require that all caching edges be

purged whenever an administrative change (other than the addition or deletion of

caching edges and subscription-related audit edges) is made to the RPPM-PS model

instance.

10.3.5 Administration

Recall that RPPM-PS is based on RPPM3 such that its system graphs support

administration. In this way, changes to the model instance, including the system

graph and the policies, are authorized by evaluating administrative requests using

RPPM. In order to evaluate and authorize administrative requests, the RPPM-PS

model instance must be set up with its relationships and policies built on top of

a suitable initial system graph, as described in Section 8.2.2. The initial system

graph contains the necessary relationships such that an initial administrative entity,

root , is able to initiate subsequent requests to construct the model instance and then

manage it over the course of its lifetime (likely with the help of other administrators).

It is frequently desirable to distribute the responsibility of administering a system

amongst a number of entities. With a single pair of administrative actions, this

could result in an entity being overprivileged. Therefore, to provide more fine-

grained administration of the RPPM-PS model instance, I replace ARPPM’s coarse

addEdge and deleteEdge administrative actions with a more refined set of initial
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actions

𝐴𝐼 = {publish, subscribe, unsubscribe,

addRelEdge, deleteRelEdge,

addCachingEdge, deleteCachingEdge,

addAuditEdge, deleteAuditEdge}.

By using a more fine-grained set of initial actions, the permissions to administer

normal relationship edges, automatically or manually, can be kept separate from

those used to automatically administer caching edges and audit edges.

In addition, I introduce an automated administrative agent roota (of type auto)

with equivalent relationships to the administrative entity root . Specifically, for ev-

ery edge (root , 𝑣, 𝑟) in the initial set of edges 𝐸𝐼 , I add (roota , 𝑣, 𝑟) to 𝐸𝐼 ; and for

every edge (𝑢, root , 𝑟) ∈ 𝐸𝐼 I add (𝑢, roota , 𝑟) to 𝐸𝐼 . The new roota automated ad-

ministrative agent is responsible for initiating and evaluating (as a PDP) automated

administrative requests within the system. This includes administrative requests to

add (and delete) caching edges and audit edges once requests have been evaluated.

Example 10.3. Returning to my example once more, should I also desire that bro-

kers be able to add new services (in order to introduce new topics) to the system

represented conceptually in Figure 10.1, then I can make use of the administration

part of RPPM-PS and include the principal-matching rule

({(subject, 𝑡𝑏𝑟𝑜) · ◇ · (object-start, 𝑡𝑏𝑟𝑜)}, none, 𝑝𝑏𝑟𝑜𝛼)

and the authorization rule

(𝑝𝑏𝑟𝑜𝛼 , ⋆, {addRelEdge, deleteRelEdge}, 1).

These rules enable a broker 𝑣𝑏 to have an administrative request to add a new service

(𝑣𝑏, (𝑣𝑏, 𝑡𝑏𝑟𝑜, vb
𝑖′ , 𝑡𝑠𝑟𝑣,Hosts), addEdge) granted using principal 𝑝𝑏𝑟𝑜𝛼. As discussed in

Chapter 8, the new service vb
𝑖′ will be added to the system graph as part of adding

the new Hosts edge between 𝑣𝑏 and vb
𝑖′.

10.3.6 Inter-Operation

As RPPM-PS is based on RPPM3 and includes support for inter-operation, pub-

lishers and subscribers may interact with remote brokers using remote requests. In

order to enable individual publish/subscribe systems to interact, brokers may act as
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hubs and be the endpoints of bridges between systems in the bridged system group.

In such an arrangement the specific handling of auditing in light of inter-operation

(outlined in Section 10.2.1) is required to enable remote subscriptions to be tracked

within a model instance. However, other than that specific handling, the processing

of remote requests is no different to that described in Chapter 9.

Example 10.4. Let us consider the bridged system group shown in Figure 10.2. In

this arrangement the broker 𝐺3.𝑣𝑏 hosts service 𝐺3.vb
𝑖 for topic 𝑖 in system graph

𝐺3. Note also that 𝐺3.𝑣𝑏 is a hub for the bridge between system graphs 𝐺2 and 𝐺3.

𝐺1

𝐺1.𝑣𝑝

𝐺1.ℎ
′

Bridge-to

𝐺3.ℎ
′

𝐺2

𝐺2.𝑣𝑠

𝐺2.ℎ

Bridge-to

𝐺3.𝑣𝑏

𝐺3

𝐺3.vb
𝑖

Figure 10.2: Publish/subscribe bridged system group (1,2,3)

A subscriber 𝐺2.𝑣𝑠 may subscribe to the topic 𝑖 by issuing the originating remote

request 𝑞1 = (𝐺2.𝑣𝑠, 𝐺3.vb
𝑖, 𝐺3.subscribe) in system graph 𝐺2. This will result in

the incoming remote request 𝑞2 = ((𝐺2.𝑣𝑠, 𝐺3.𝑣𝑏, 𝐺2.J𝜌K), 𝐺3.vb
𝑖, 𝐺3.subscribe) being

evaluated in system graph 𝐺3. Assuming this request is authorized, the decision

audit edge (𝐺3.𝑣𝑏, 𝐺3.vb
𝑖, (𝐺2.𝑣𝑠, 𝐺3.𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒

⊕)) will be added to system graph 𝐺3,

recording the subscription. The caching edge (𝐺3.𝑣𝑏, 𝐺3.vb
𝑖, (𝐺2.J𝜌K, 𝐺3.J𝜌K𝑞2)) will

also be added to 𝐺3.

If publisher 𝐺1.𝑣𝑝 then sends a notification of an event to this topic

by issuing the originating remote request 𝑞3 = (𝐺1.𝑣𝑝, 𝐺3.vb
𝑖, 𝐺3.publish)

in system graph 𝐺1. This will result in the incoming remote re-

quest 𝑞4 = ((𝐺1.𝑣𝑝, 𝐺3.ℎ
′, 𝐺1.J𝜌K), 𝐺3.vb

𝑖, 𝐺3.publish) being evaluated in sys-

tem graph 𝐺3. Assuming this request is authorized, the decision audit edge

(𝐺3.ℎ
′, 𝐺3.vb

𝑖, (𝐺1.𝑣𝑝, 𝐺3.𝑝𝑢𝑏𝑙𝑖𝑠ℎ
⊕)) will be added to system graph 𝐺3 and the event

will be communicated to all subscribers of 𝐺3.vb
𝑖, including 𝐺2.𝑣𝑠. In addition, the

caching edge (𝐺3.ℎ
′, 𝐺3.vb

𝑖, (𝐺1.J𝜌K, 𝐺3.J𝜌K𝑞4)) will be added to 𝐺3.

10.4 Summary

I have introduced the RPPM-PS model as a consolidated RPPM access control

model tailored to publish/subscribe. This model makes use of the various features
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of RPPM presented in this thesis, and demonstrates that RPPM may be used in

conjunction with other access control paradigms in order to meet the needs of vari-

ous protection systems. Whilst security and access control have received reasonable

attention in publish/subscribe systems (as described in Section 10.1.1), I believe

that relationship-based access control offers a compelling alternative which intu-

itively aligns with how the design of such systems is regularly considered and con-

veyed. As I discussed (in Chapter 3) when motivating the need for RPPM originally:

whilst other access control models already exist, none of these models (now includ-

ing RPPM) is a perfect solution for all circumstances. Each has particular benefits

and limitations; it is up to implementers to select the most appropriate model for

their application, and up to access control model designers to ensure that the op-

tions and information are available for them to make such a selection. In the next

chapter I will discuss how RPPM-PS may be tailored to interactions between more

constrained devices in an Internet of Things.
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Chapter 11

RPPM-IoT

At its core, Internet of Things (IoT) describes a system architecture in which

uniquely identifiable physical objects, the “things”, are interconnected using an

internetwork in such a way that an emergent property of the system is derived from

the processing of sensor (input) data;1 this emergent property is commonly mani-

fested through the triggering of actuators (output) based on the result of primary or

secondary processing of that data. In the case of a smart healthcare environment,

for example, various devices may provide data about the patient and thus enable

medical staff to diagnose, monitor and treat the patient’s ailments.

I believe that IoT’s dependence on data and device functions means that access

control, and the authorization of only legitimate requests, is a key aspect of any safe

and secure solution. The growing research and media interests in Internet of Things

highlight this topical and important application domain as one where security is

particularly relevant [87, 107, 146, 177, 188].

11.1 Internet of Things

When examined carefully, the individual ideas which constitute IoT are not new,

even in concert. However, technological and market developments in recent years

have resulted in the concept of IoT becoming relevant to many aspects of modern

life and enterprise. Specifically, the availability and reliability of fast internet con-

nectivity across the developed world means that many people are able to make use

of a data connection, of one form or another, twenty-four hours a day. The adoption

of wireless technologies, smartphones and mobile apps has meant that much of this

connectivity is utilised whilst people (and devices) are on the move. Developments

in data analysis and machine learning have led to a greater capability and appetite

1Definition adapted from [137].
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for processing large data sets, having been driven in part by the ubiquity of com-

puting which is, subsequently, producing enormous volumes of data. Finally, the

low cost and small size of electronic components means that there is little barrier

to adding processing and networking capabilities to the many electrical, mechani-

cal and even non-technological “things” that we choose to supplement our existence

with. Whatever the drivers, various academic and industrial definitions of IoT exist,

each differing in the degree to which they focus on users, applications, connectivity,

protocols, availability, interactivity, intelligence and devices [148].

11.1.1 Body of Knowledge

Research into IoT began at the start of the twenty-first century after the term was

first used in 1999 [16].2 Whilst the topic has been around for more than fifteen years,

many fundamental aspects of IoT remain open areas for investigation. Early work

in the field was principally associated with the use of radio frequency identification

(RFID) tags to track physical entities. Whilst this remains a prominent technology

within IoT, as time has progressed it has become less dominant in research activities.

Security and privacy considerations, in contrast, are gaining more interest, partic-

ularly as both academic [119] and industrial [146] researchers have had significant

success demonstrating vulnerabilities in a broad range of IoT devices.

There are a number of survey papers which provide a broad summary of the

current understanding of IoT. Atzori et al. identify IoT as the result of the conver-

gence of three visions: the things-oriented, the internet-oriented and the semantic-

oriented [18]. They describe a number of enabling technologies and identify a range

of application domains, of which healthcare (as used in my examples) is one. In

addition, they identify open issues whose resolution is crucial to the success of IoT:

standardisation; addressing and networking; and security and privacy. In respect

of security and privacy, they highlight authentication and data integrity as major

security issues for IoT (where authentication is commonly employed as a precursor

to authorization).

Gubbi et al. also highlighted open challenges in their survey paper [93]. Their

analysis of IoT was driven more from a web services perspective, with the archi-

tecture specifically described through cloud computing, Platform-as-a-Service and

Software-as-a-Service constructs. They identify several challenges including secure

reprogrammable networks and privacy, which considers the need for nodes to be able

2Several authors have claimed that the term Internet of Things was used by the International Telecommunication
Union (ITU) in 1997 [15, 137]. However, I believe they may have misinterpreted a statement in the forward of a
2005 ITU report using the term as its title, “ ‘The Internet of Things’ is the seventh in the series of ‘ITU Internet
Reports’, originally launched in 1997 under the title ‘Challenges to the Network’ ” [182].
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to authenticate and authorize code updates and configuration changes.

Perera et al. provide a comprehensive survey (including the analysis of a large

number of existing IoT projects) which once again identifies security and privacy

(alongside trust) as the key topic requiring further research [148]. They highlight the

role users have to play in IoT and the need for security and privacy to be addressed

as part of winning the trust of these users.

Lastly, Weber cites four security and privacy requirements related to IoT: re-

silience to attack; data authentication; access control; and client privacy [186]. He

also discusses the legal frameworks for IoT and identifies four axes representing the

technical challenges associated with regulation. These challenges are:

∙ Globality – the need for international laws and legal systems;

∙ Verticality – the lifetime of an RFID tag should be at least the lifetime of the

tagged product, to enable complete life cycle management;

∙ Ubiquity – the breadth of the interaction with the physical world; and

∙ Technicity – how the complexity of the technology impacts the development of

rules.

These works highlight that IoT is a complex and multi-faceted topic; particular

IoT systems are highly variable when compared to each other and to themselves at

different moments in time. Given this innate variability and the interaction between

an IoT system and its environment, the processing each system performs, and that

performed as part of managing it, must be informed by its current state. Recall that

the term context is defined by Abowd et al. as “any information that can be used to

characterize the situation of an entity” [2]. I believe context is particularly relevant

to IoT, and modify their extended definition only so as to clarify that “an entity is a

person, place, or object that is considered relevant to the interaction between a user

and an application” or between two applications, including the interacting parties

themselves.

Whilst a few researchers, like Perera et al. [148], have demonstrated an awareness

of the need for context in IoT, the topic of access control has been given limited

attention so far, and some initial ideas have shown little appreciation of the con-

straints likely to arise in IoT application domains. Zhang and Tian attempt to make

use of context in access control by extending RBAC to support context constraints

for IoT [193]. Unfortunately, the implementation details are vague and the provided

case study incomplete. Wu et al. also modify RBAC for IoT, this time to support

cross-domain requests [190]. However, the extent to which context is supported is
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unclear. Obligations and constraints from UCON are included in their modified

RBAC model; however, no explanation or example of their use is provided.

Other researchers feel that RBAC is unsuitable for access control in IoT systems.

Zhang and Gong suggest how UCON may be applied to IoT environments using

a trust management center as an administrator of trust-related attributes for the

devices [192]. Whilst this does leverage historical behaviour to inform future re-

quests, the details are once again sparse. Gusmeroli et al. employ, overly weighty,

digitally signed, XML-formatted capability tokens to communicate a subject’s enti-

tlements [95]. Authorization decisions are made following checks on:

∙ The formal validity of the capability token (and the associated authorization

chain);

∙ The logical validity of the requested operation in respect of the capability token;

∙ The existence (or not) of local restrictions associated with the operations

granted by the capability token; and

∙ The revocation status of the capabilities in the authorization chain.

However, whilst they identify that IoT impacts the relevance of context, they do not

identify the mechanism through which this is considered by their approach when

issuing or validating capability tokens.

In contrast, Bernabe et al. employ a combination of a lighter weight JSON-

formatted capability token along with a fuzzy trustworthiness measure based upon

quality of service, security, reputation and social relationships [28]. This approach

displays greater awareness of the limitations of IoT devices. However, I believe their

simple approach to social relationships, considering groupings (called bubbles) or

whether two devices have interests-in-common or friends-in-common, is insufficient

for the complex interactions which result in IoT environments. I, therefore, believe

that RPPM’s greater emphasis on social relationships makes it particularly well

suited to supporting IoT and the interactions between IoT devices.

11.1.2 Devices

IoT devices are typically thought of as being relatively small, specialised and resource

constrained. Whilst this is true in the case of many wireless sensor network (WSN)

devices [106, 137], more recently manufacturers of non-IoT devices are adding pro-

cessing and networking capabilities to rapidly produce new categories of IoT device.

Whether adapted or designed for IoT, the components of the resultant devices can
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be visualised using a layered model, as illustrated in Figure 11.1. At the lowest layer

is the hardware of the device itself, on top of this is the networking layer, above this

is the device software layer, and at the top is the service layer through which devices

logically interact.

service layer

device software layer

networking layer

hardware layer

Figure 11.1: Device abstraction model

Remark 11.1. It is worth noting that the term “constrained device” is often used

in the IoT literature without a clearly stated definition (although examples may be

cited) [28, 137, 136, 138, 147, 158].3 For the purposes of this thesis I shall employ

the definition given for a “constrained node” in RFC 7228 [38].

“A node where some of the characteristics that are otherwise pretty much

taken for granted for Internet nodes at the time of writing are not attain-

able, often due to cost constraints and/or physical constraints on charac-

teristics such as size, weight, and available power and energy. The tight

limits on power, memory, and processing resources lead to hard upper

bounds on state, code space, and processing cycles, making optimization

of energy and network bandwidth usage a dominating consideration in all

design requirements. Also, some layer-2 services4 such as full connectivity

and broadcast/multicast may be lacking.”

IoT devices individually offer limited capabilities. It is the interconnection of

multiple devices into a wider architecture which gives rise to an IoT system’s emer-

gent properties. Exactly how devices are interconnected is of little consequence at

this level of abstraction. Various wireless communication technologies and protocols

can be employed, each requiring a particular implementation and determining spe-

cific interoperability constraints. However, the underlying functionality of the device

and the wider system is independent of such implementation details. What is more

important is that they can interact through the devices’ service layers producing,

processing and consuming data to support higher functionality.

In a smart healthcare example I can envisage that the combination of a blood

pressure cuff, pulse oximetry device5, nurse’s tablet computer, oxygen supply system
3Further, some authors refer to “highly constrained devices” and it is unclear if, and how, a distinction is drawn

between constrained devices and highly constrained devices [136, 158].
4Where layer-2 here refers to layers in the OSI model, and not to layers from Figure 11.1.
5Used to non-invasively measure and display blood oxygen saturation.
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and hospital’s data storage node may enable a patient to be given the necessary

supply of oxygen based on their body’s requirements, whilst providing a real-time

and historical log for the nurse so that they may monitor the patient’s condition

throughout treatment and recovery.

The interconnection of devices, such as these, within a wider IoT system intro-

duces a new (system-wide) viewpoint which may be modelled in a similar fashion to

the devices themselves. A comparable layered model for the system-wide architec-

ture can be seen in [18], adapted in Figure 11.2, with objects at the bottom, object

abstraction above this, and then service management, service composition and ap-

plications layered in turn. Alongside these layers Atzori et al. identify a vertical

(cross-layer) component comprising the management of trust, privacy and security ;

this highlights that such functionality is required throughout the layered stack.

applications layer

service composition layer

service management layer

object abstraction layer

objects layer

management of
trust, privacy
and security

Figure 11.2: IoT system architecture model

11.2 Tailoring RPPM-PS to IoT

In Chapter 10 I introduced RPPM-PS as a relationship-based publish/subscribe

access control system. Whilst the model I described is suitable for general pub-

lish/subscribe systems, I believe there is a need to tailor the model for application

in an Internet of Things. I, therefore, identify particular characteristics and con-

straints of IoT which are relevant to access control, and identify the refinements

which are required to tailor RPPM-PS to this application domain (producing the

RPPM-IoT model).

Physical World Interaction The IoT application domain is commonly characterised

by the existence of sensors and actuators where these components are associated

with the measurement and manipulation of the physical world. A publish/subscribe

approach is particularly relevant as there will be situations where sources may pro-

duce data at varying rates, intervals and times. This variability may be driven, for

example, by the kind of sensor employed or the environment in which it is placed.

In such situations actuators will be unable to predict when data would be available,
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and a push, rather than pull, architecture is desirable.6 I, therefore, treat sensors

as publishers and actuators as subscribers.

Intermediate Processing As the emergent property of IoT systems is commonly

manifested through the primary or secondary processing of data, it is desirable to

support linear and non-linear arrangements of nodes between the sensor and ac-

tuator. Such arrangements will enable intermediate processing to take place, thus

providing the actuator with processed, rather than raw, sensor data. These pro-

cessed data may be, for example, refined, interpreted, supplemented or filtered so

that the actuator may appropriately interact (e.g., physically, visually or audibly)

with the physical world. Whilst a linear arrangement of nodes allows incremental

changes to be made to the sensor data, non-linear arrangements enable a node to

consume the same data from distinct peers which may have processed the data in

different ways. By subscribing to these alternative data sources a single node may

gain redundancy of input, or a more “information-rich” perspective of the origi-

nal sensor’s output. I, therefore, introduce processors to perform this intermediate

processing alongside RPPM-PS’s publishers, subscribers and brokers.

Resource Constrained Devices Whilst various publish/subscribe systems may in-

clude some resource constrained nodes, there is an expectation that a greater fraction

of the nodes in an IoT system will be constrained, much like in a wireless sensor

network [106, 137]. Where constrained nodes are present, the constraints that may

be encountered are limitations in devices’ “memory, computation, communication,

latency and energy consumption” [136]. The IoT system must, therefore, include

components which may perform access control processing without excessively bur-

dening devices which are constrained. I, therefore, only allow brokers (which I as-

sume are always unconstrained) and unconstrained processors to host services and to

be PDPs and PEPs, thus avoiding burdening publishers, subscribers and constrained

processors.

System Variability Finally, whilst some IoT systems will mostly comprise devices

which are stationary and stable (such as in the case of smart meters, smart light

bulbs, smart kitchen appliances, smart televisions, environmental monitoring sys-

tems and burglar alarm systems in a house), other systems will mostly comprise a

dynamic collection of devices due to device movement (such as in the case of a smart

6This approach can also be seen in the observer design pattern which is implemented as part of the OBSERVE
option of the Constrained Application Protocol (CoAP) [97].
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transit environment) or intermittent connectivity (such as in the case of an “elec-

tromagnetically noisy” manufacturing environment). There is a need to facilitate

this variability so that dynamic systems function efficiently without manual inter-

vention. Depending on the size and stability of an IoT system, subscription-related

requests may be made regularly as entities (temporarily) participate in the system

and must re-establish all of their subscriptions upon each joining. I, therefore, re-

quire the automated administrative agent roota to manage device membership of the

system graph and allow administration to be triggered by various factors including

proximity and liveness.

I now introduce refinements to the RPPM-PS model as I tailor RPPM-IoT to

satisfy these constraints. However, before I begin it is worth noting that many of

RPPM-PS’s features are useful and appropriate as they stand. Particularly, RPPM-

IoT’s use for IoT systems benefits from RPPM-PS’s ability to:

∙ Perform context-aware request evaluation through the use of labelled relation-

ships between concrete and logical entities in the system graph.

∙ Administer the access control model instance such that it always reflects the

IoT system (even as components, temporarily, join and leave).

∙ Enable nodes to host data services to which other nodes may subscribe.

∙ Enable nodes to use service discovery to identify what service endpoints are

available from other nodes.

∙ Perform (periodic) subscription validation to ensure timely revocation when

subscriptions are no longer valid.

∙ Use caching to limit the processing overhead associated with request evaluation

(in particular subscription validation and publishing).

∙ Enable multiple IoT systems to inter-operate.

11.2.1 IoT System Architecture

RPPM-PS’s publish/subscribe conceptual arrangement of Figure 10.1 can be used

as the basis for a similar arrangement for articulating most IoT architectures in

RPPM-IoT (as shown in Figure 11.3, with the RPPM-IoT additions coloured blue).7

As indicated above, I believe it is natural to think of IoT sensors as publishers and

IoT actuators as subscribers. However, in order that actuators may receive some-

thing other than raw sensor input, I introduce processor nodes and enable these to
7Figure 11.3 does not show a system graph, it shows a high-level representation of the “shape” of a system graph

which may be part of a bridged system group.
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publishers

processors

subscribersservices

brokers

𝜋3 𝜋4
Hosts

𝜋5Bridge-to

𝜋1 𝜋2
Hosts

Bridge-to

𝜋6

Figure 11.3: RPPM-IoT generalisation

perform some intermediate processing on data published to their hosted services;8 I

envisage that intermediate processing may include the storing, interpreting, modi-

fying, annotating, combining, filtering, sampling or deleting of some amount of the

data in the notification. With the addition of processors, I believe that any IoT

device may be modelled using some combination of publishers (sensors), processors

and subscribers (actuators).

Example 11.1. For example, Figure 11.4 shows a data flow illustration9 of a pulse

oximetry device, where publishers are circles, processor nodes are hexagons, sub-

scribers are squares and arrows indicate data flow.10 Putting the device into its

real-world context, the pulsox sensor takes light absorption readings, the processor

calculates peripheral oxygen saturation values from these readings and the actuator

displays those values to the user. (For the purposes of this thesis I shall assume that

the pulsox device in question is not a constrained device.)

pulse
oximetry

device

Figure 11.4: Pulsox data flow illustration

This example can be extended, adding four more IoT devices and a broker into

8For brevity I have indicated a single path condition (𝜋5 ) between processors, and another (𝜋6 ) between pro-
cessors and brokers. In reality there may be different relationships between different sets of processors and brokers
in the system graph, and so more than one path condition may apply here. Assuming the principal-matching rules
exist to cater for this, I place no limitation on there being a single path condition in reality.

9I shall consider system graphs presently.
10For ease of discussion, I have not labelled the arrows to indicate what data fields are exchanged. I leave it to

the reader to envisage appropriate fields given the example.
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Figure 11.5, such that the pulsox device is part of a system with: a ward alerting

node, which only comprises a processor; a simple external display, which only com-

prises an actuator; a ward occupancy broker, represented by a pentagon; and two bed

occupancy sensors, which each comprise only a sensor.

pulse
oximetry

device

ward
alerting

node

simple
external
display

ward
occupancy

broker

bed
occupancy

sensor

bed
occupancy

sensor

Figure 11.5: IoT healthcare data flow illustration

I will demonstrate the use of this system throughout the remainder of the chapter.

Given the conceptual arrangement in Figure 11.3, the set of entities 𝑉 within an

IoT system graph includes non-intersecting sets of publisher entities 𝑉𝑝𝑢𝑏, processor

entities 𝑉𝑝𝑟𝑜, subscriber entities 𝑉𝑠𝑢𝑏, broker entities 𝑉𝑏𝑟𝑜 and services 𝑉𝑠𝑟𝑣. The

notation v 𝑖 ∈ 𝑉𝑠𝑟𝑣 is used to indicate the 𝑖𝑡ℎ service of entity 𝑣 ∈ 𝑉𝑝𝑟𝑜 ∪ 𝑉𝑏𝑟𝑜.

11.2.2 Brokers

Before I demonstrate how processors function, it is important to clarify the role of

brokers in IoT systems. In RPPM-IoT, brokers continue to be used as they were

in RPPM-PS; they relay (unmodified) event notifications which are published to

their topic services.11 In so doing, brokers distribute particular sensor data to all of

the authorized subscribers of the sensor data topic. As in RPPM-PS, brokers may

also act as hubs for bridges connecting multiple IoT system graphs, and so may

11Once again, this approach works equally well as a type-based model. I have focused on a topic-based model
solely for clarity of explanation. There is also no issue supporting multiple layers of brokers which forward events
amongst those hosting the same topic services on the way to subscribers.
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distribute the sensor data to remote subscribers, where present, and may receive

notifications from a remote publisher.

Example 11.2. Figure 11.6 shows a system graph fragment for part of the health-

care IoT system introduced in Example 11.1. For ease of exposition the figure has

been annotated with grey arrows indicating the intended direction of publish requests

(dashed lines) and subscribe requests (dotted lines). Specifically, two IoT bed sensors

publish data indicating whether the associated beds are occupied and the external dis-

play subscribes to this topic, and may thereby display the beds’ current occupancy

statuses. Given that none of these nodes is powerful from a processing perspec-

tive, the ward occupancy broker hosts the topic service (represented by a triangle)

for these sensors and the actuator. (It would also be the PDP and PEP for the

indicated requests.)

simple
external
display

so

ward
occupancy
broker

bed
sensor

1

bed
sensor

2
ward

Hosts

Assigned-to

Assigned-to

Assigned-to

Assigned-to

Figure 11.6: IoT healthcare system graph fragment 1 (annotated)

In this (simple) example I may choose to employ the principal-matching rules

({(subject, 𝑡𝑝𝑢𝑏) · Assigned-to ; Assigned-to ; Hosts · (object, 𝑡𝑠𝑟𝑣)}, none, 𝑝𝑝𝑢𝑏),

({(subject, 𝑡𝑠𝑢𝑏) · Assigned-to ; Assigned-to ; Hosts · (object, 𝑡𝑠𝑟𝑣)}, none, 𝑝𝑠𝑢𝑏),

and authorization rules

(𝑝𝑝𝑢𝑏, {𝑡𝑠𝑟𝑣}, {publish}, 1),

(𝑝𝑠𝑢𝑏, {𝑡𝑠𝑟𝑣}, {subscribe, unsubscribe}, 1).
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11.2.3 Processors

In contrast to brokers, processors may take a more active role in the IoT system

by performing some intermediate processing on topic data.12 No matter the specific

type of intermediate processing to be performed, I require that an active processor:

∙ Subscribes to service topics which provide its input – this involves subscribing

to one or more services which may each be hosted either by the processor in

question or by some other processor or broker.

∙ Publishes its outputs to relevant service topics – this involves publishing to one

or more services which, once again, may each be hosted either by the processor

in question or by some other processor or broker.

This approach offers a broad range of capability; I highlight the extremes to

illustrate this fact. In the simplest form, a constrained processor which does not

host any services itself will act much like a combination of a subscriber and publisher;

it performs intermediate processing on the events between receiving its registered

notifications and publishing its output.

In the most complex form, an unconstrained processor may host several services

itself; it subscribes to those services, and also to several services hosted by other

entities spread across the system graphs of a bridged system group. From these

subscriptions it receives numerous events which it uses as inputs to its intermediate

processing. This processing may generate multiple outputs which are published to

multiple services, several of which it hosts itself and others which are hosted by

other entities spread across the system graphs of the bridged system group.

Example 11.3. Returning to my healthcare example, consider the annotated system

graph fragment in Figure 11.7. This shows the pulsox device comprising a sensor

(publisher), core (processor) and UI (subscriber); services are, once again, repre-

sented by triangles. (As before, the solid arrows indicate the relationships, the dashed

arrows indicate the direction of publish requests, and the dotted arrows indicate the

direction of subscription requests.)

As I described in Example 11.1, at an abstract level the pulsox sensor takes light

absorption readings, the processor calculates peripheral oxygen saturation values from

these readings and the actuator displays those values to the user. This is achieved

by the pulsox sensor publishing the raw light absorption readings as events to the

pulsox core’s unprocessed input service su . The pulsox core is subscribed to this

12Processors are not required to perform intermediate processing, and may simply act as relays (in a similar
fashion to brokers).
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topic and processes the event readings, publishing the resulting peripheral oxygen

saturation values as events to its processed output service sp. The pulsox UI is

subscribed to this topic and receives these event notifications, displaying them to the

pulsox device’s user.

pulsox
device

pulsox
core

pulsox
sensor

pulsox
UI

su sp

Part-of
Part-of

Part-of

Hosts Hosts

Figure 11.7: IoT healthcare system graph fragment 2 (annotated)

In order for the relevant request to be authorized in this example, I may choose

to employ the principal-matching rules

({(subject, 𝑡𝑝𝑢𝑏) · Part-of ; Part-of ; Hosts · (object, 𝑡𝑠𝑟𝑣)}, none, 𝑝′𝑝𝑢𝑏),

({(subject, 𝑡𝑝𝑟𝑜) · Hosts · (object, 𝑡𝑠𝑟𝑣)}, none, 𝑝′𝑝𝑢𝑏),

({(subject, 𝑡𝑠𝑢𝑏) · Part-of ; Part-of ; Hosts · (object, 𝑡𝑠𝑟𝑣)}, none, 𝑝′𝑠𝑢𝑏),

({(subject, 𝑡𝑝𝑟𝑜) · Hosts · (object, 𝑡𝑠𝑟𝑣)}, none, 𝑝′𝑠𝑢𝑏),

and authorization rules

(𝑝′𝑝𝑢𝑏, {𝑡𝑠𝑟𝑣}, {publish}, 1),

(𝑝′𝑠𝑢𝑏, {𝑡𝑠𝑟𝑣}, {subscribe, unsubscribe}, 1).

Remark 11.2. To clarify, whilst there were no other subscribers present in Exam-

ple 11.3, when events were published to the pulsox core’s services, these events would

be forwarded to all subscribers, not just those which are part of the pulsox device.

It should be clear that there are similarities between brokers and processors, but

that processors may take on the actions of publishers and subscribers in order to

gain direct access to events which they are to perform intermediate processing on.

A complete comparison of brokers and processors is provided in Table 11.1.

Whilst Example 11.3 illustrated how a linear arrangement of nodes could make
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Brokers Processors

May Host Services Yes If unconstrained

Constrained Never Frequently

Mode Relay only Relay or intermediate processing

PDP/PEP Yes If unconstrained

May be a Hub for a
Bridge

Yes If unconstrained

May Issue
Authorization
Requests

No When performing intermediate
processing

Table 11.1: Comparison of brokers and processors in RPPM-IoT

use of intermediate processing to refine the raw sensor data for an actuator, in reality

more complex arrangements are likely useful. Through non-linear arrangements an

IoT system may provide a more robust handling of events and may support more

realistic operational environments. To this end, I return to the healthcare IoT

system illustrated in Figure 11.5 of Example 11.1. In this system I can envisage

that the simple external display is located at the nurse’s station outside of the ward.

Each bed sensor identifies whether the ward’s corresponding bed is occupied by a

patient13 and the events from these sensors are used to provide status indicators

on the nurse’s station display. Further, the pulse oximetry device may be used in

the ward as part of diagnostics performed by trainee nurses. Events containing

the peripheral oxygen saturation values may, therefore, be received by the ward

alerting node which is programmed with a threshold which triggers visual alerts on

the nurse’s station display; in this way supervising nurses may determine (even from

outside the ward) if there is a need to provide assistance.

Example 11.4. Figure 11.8 shows the annotated system graph of the healthcare

IoT system illustrated in Figure 11.5. The simple external display subscribes to the

bed occupancy topic provided by service 𝑠𝑜 hosted by the ward occupancy broker. It

also subscribes to the alerting topic provided by service 𝑠𝑎 hosted by the ward alert-

ing node and to the peripheral oxygen saturation topic provided by service 𝑠𝑝 hosted

by the pulsox core. I have already considered the function of the bed sensors (in

Example 11.2) and the pulsox device (in Example 11.3). The ward alerting node

subscribes to the peripheral oxygen saturation topic provided by service 𝑠𝑝 hosted by

the pulsox core and publishes alert events if the oxygen saturation values are below the

programmed threshold. These alert events are published via the ward alerting node’s

service 𝑠𝑎. (Note that, as a further example of the flexibility of processor nodes, the

ward alerting node gets its input data from a service hosted by another local entity,
13This may simply involve detecting a particular level of pressure, or it may involve a more robust indication using

an RFID tag built into the patient’s ID band (and thus able to identify the particular individual) or the detection
of a heartbeat using a sub-mattress sensor pad.
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Figure 11.8: IoT healthcare system graph (annotated)

but it publishes its output to a local service. In both cases, the events are forwarded

from those services to all registered subscribers.)

11.2.4 Administration

As has been identified, the need for context is particularly relevant to IoT sys-

tems as their component devices are expected to operate in and interact with their

(changing) environment. In some cases this involves devices moving from one IoT

system to another, for example as geographical location or system requirements

change. RPPM’s design enables it to support such a dynamic system architecture

through the addition and deletion of relationships, whether performed by a human
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administrator or automatically.

Depending on the IoT system being modelled it may be necessary for some, or

all, of the addRelEdge and deleteRelEdge administrative requests to also be issued

by roota (or another entity of type auto with appropriate relationships).14 I can

envisage, for example, that in such an application the proximity of a new device to

an existing IoT system may be used to trigger the addition of that device to the

system’s graph, through an addRelEdge request issued and evaluated by roota . Once

part of the system graph, subsequent authorization requests may be made within the

system by that device. In other IoT systems, such as my healthcare example, users

may interact with nodes and, thereby, trigger administrative requests. In these cases

I, once again, rely on roota to be the PDP; however, the requested administrative

action will have the user in question as the subject of the request.

As a device moves away from the system, it may be “removed” by the automated

deletion of its relationships after some threshold distance and duration.15 In some

cases an entity may lose connectivity and so not trigger any proximity-related pro-

cessing as it “leaves” the system. In systems where it is appropriate some form of

liveness test mechanism may be used and a lack of response to consecutive “heart-

beat” requests may be used as the trigger for automated deletion of the entity.

Obviously, should an entity leave an IoT system graph, any relationships it has

with other system entities (including caching edges) would be removed from the

system graph along with it. Any subscriptions associated with the entity would be

removed as part of the regular validation process, which may be triggered immedi-

ately to ensure the clean-up is performed promptly.

11.3 Summary

In this chapter I have introduced Internet of Things and presented RPPM-IoT,

a variant of the RPPM-PS model tailored to providing publish/subscribe access

control between IoT devices in light of the characteristics and constraints affecting

such architectures. In particular, the RPPM-IoT model makes use of processors

to provide a flexible means of performing intermediate processing between IoT’s

sensors and actuators. In order to avoid burdening constrained devices in an IoT

architecture, I limit unconstrained brokers and processors to performing the roles of

policy decision point and policy enforcement point.

14This is in addition to the administrative requests to add (and delete) caching edges and audit edges once requests
have been evaluated, as identified in Section 10.3.5.

15Note that, as per Chapter 8, the deletion of an entity’s last relationship edge results in the removal of the entity
itself from a system graph.
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Conclusions

In this thesis I have presented the RPPM model, a novel relationship-based access

control model designed for general computing applications. I have used a systematic

approach, commonly used in the field of access control [3, 49, 58, 144, 164, 165], and

presented a series of models:

∙ RPPM0 – the basic functional model able to evaluate authorization requests

based on relationships between concrete and logical entities.

∙ RPPM1a – a model containing request evaluation enhancements which enable

the support of conjunction and graph-based policies, as well as caching.

∙ RPPM1b – a model containing policy configuration enhancements which enable

the support of history-based policies and specific policy configurations.

∙ RPPM1c – a model containing a targeting enhancement which enables the eval-

uation of requests based upon paths between arbitrary entities within the mod-

elled system.

∙ ARPPM – a model containing administrative enhancements which enable the

configuration and ongoing administration of model instances.

∙ Inter-RPPM – a model containing inter-operation enhancements which enable

multiple systems to be connected and remote requests to be evaluated.

∙ RPPM3 – a model which consolidates the features of all of the previous models.

∙ RPPM-PS – a relationship-based publish/subscribe access control system.

∙ RPPM-IoT – a relationship-based publish/subscribe access control system tai-

lored to an Internet of Things.
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In this chapter I review the contributions of my thesis to the body of knowledge.

I first revisit my motivations and confirm that each of these has been met. I then

identify limitations of RPPM and highlight opportunities for future work.

12.1 Motivations

In Chapter 3 I detailed existing access control model issues and, thereby, my mo-

tivations for designing the RPPM model. In addition, in Chapters 8, 9 and 10 I

discussed motivations for specific enhancements to broaden the management and

applicability of RPPM in general computing scenarios. I now return to these moti-

vations as part of reviewing my novel contribution to logical access control through

the design of RPPM, which (as originally introduced in Section 1.3):

1. Is able to model a wide range of systems, including online social networks

which originally motivated relationship-based access control, due to its support

for any entity and relationship types required.

2. Can be configured to guarantee that a conclusive authorization decision (ap-

prove or deny) can be computed for any request.

3. Can control actions requested by any type of entity on any other type, such

that subjects may be users, autonomous entities, automated agents or even

inanimate objects if so desired.

4. Abstracts permission assignment away from subjects to principals, reducing

the administrative burden and enabling the system graph to be managed in

isolation to the policies.

5. Employs flexible policy rules which support the definition of policies covering

individual entities, multiple specific entities, all entities of one (or more) types,

or every entity in the system.

6. Can define set-based or graph-based policies comprising multiple rules, where

each can employ a required and forbidden path of relationships built with reg-

ular expression-like operators to support concatenation, disjunction, conjunc-

tion, Kleene plus, optional and Kleene star.

7. Is able to cache the result of principal-matching directly within the system

graph such that future requests between that subject and object (no matter

what action is requested) may be processed far faster.
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8. Is able to support useful policy configurations such as history-based access

control, separation of duty, binding of duty and Chinese Wall.

9. Can match principals based on paths of relationships between arbitrary entities,

thus enabling subgraph patterns to be used to evaluate requests.

10. Can be used to completely administer instances of itself without extra-model

authorization.

11. Can evaluate both local and remote requests, such that subjects may interact

with objects in the local security domain or a remote security domain to which

their system is connected.

12. Can implement a range of access control models not based on relationships,

specifically: multi-level security; RBAC; UNIX; and multi-level security’s

*-property.

13. Can consolidate all of these features to produce a robust model for access control

which can be further tailored to popular communication architectures.

List Management In Section 3.2.1 I identified the need for “an intuitive, easily

managed access control model” able to replace access control lists. I believe that

basing RPPM on relationships between entities offers that intuition. As I indicated

in Section 2.4.1, humans commonly employ relationships to comprehend and com-

municate our understanding of abstract ideas. As a species we view the world based

on how we relate to those around us, a fact that has been exploited (with positive

and negative repercussions) in the proliferation of social networking services in the

last decade (or so). I believe that the specification of security policy in respect of

those relationships is intuitive (to entities involved in those systems). What’s more,

I believe that (as demonstrated by social networks, company organograms and HR

systems) we are already capturing and managing these relationships in numerous

cases. This is a view held by others too, Barkley et al. also believe “relationship

information may already be kept as part of the information content associated with

the business process” [21]. Leveraging this information for access control enables an

easily managed model where the day-to-day administration focuses on the addition

and deletion of direct relationships, but where changes to these naturally impact

subsequent authorization decisions as defined by the policies.

Role Explosion I next identified the need for “an intuitive, context-aware access

control model” able to avoid the issues suffered by role-based access control in re-
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lation to role explosion. The fact that RPPM’s system model is able to include

arbitrary concrete and logical entities enables it to provide the necessary context.

What’s more, these entity types and their particular inter-relationships may be tai-

lored to the modelled system and, thereby, may be chosen so as to be intuitive and

appropriate to that system’s particular contextual requirements. The two specific is-

sues raised (wide-acting roles and conflicting roles) have been addressed in examples

throughout this thesis. It should be clear from these examples that an RPPM model

instance can employ logical entities and specific connecting relationships to clearly

distinguish “situations” where the access control policy should grant authorization

requests from those in which the policy should not.

Attribute Applicability Whilst it is clear that attribute-based access control also

offers great potential, this does not mean that it can achieve everything that

relationship-based access control models can. The recent comparison work by

Ahmed et al. has illustrated that generic models of both types have shown some

equivalences, but that other aspects and model variants are incomparable [3].

Ahmed et al. separately considered multiple axes of comparison (dynamics and

structure), highlighting the complexity of determining equivalences for generic mod-

els; determining equivalences for real-world ones is likely to be no less complex given

their specific nuances. In their taxonomy, the consolidated RPPM3 model may be

classified as a “node dynamic” ReBACBE model.1 Some of the ABAC generic models

are believed to be more expressive than such a model, but they require an infinite

attribute domain and structured entity attributes. It is unclear at this time the

impact such requirements may have on these models. Whilst it is clear that an

ABAC model may express policies from relationship-based access control by captur-

ing relations within entity attributes, such an approach is likely to be cumbersome.

Enumerating the presence (or not) of all paths of relationships in ABAC using “com-

posite attributes” quickly demands a cap on the depth of such paths and so make

this an undesirable option for general computing systems such as those that RPPM3

can support [3]. The alternative, “attribute composition or chaining” seems more

plausible [3], but will still likely present significant challenges from a storage space

perspective in large, highly connected systems.

Relationship Context Whilst a number of relationship-based access control models

existed prior to RPPM, each had limited applicability due to constraints in their

1ReBACBE models support node types, edge types and edge attributes. RPPM3 supports each of these, with
edge attributes present in the form of the tuple labels associated with caching and auditing edges when working
with inter-operation.
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support for:

∙ Types of entity – with several models only supporting users in social net-

works [41, 44, 82, 85], or only supporting users and their resources [43].

∙ Types of relationship – with several models only supporting ownership of non-

user entities [41, 44, 82, 85].

∙ Relationship use – with one model not supporting cycles in the relationship

graph [51, 52].

∙ Policy language expressiveness – with limitations on whether negative rules are

supported [41, 44, 51, 52, 82, 85] and the lengths of paths of relationships [44,

51, 52].

In contrast, RPPM does not suffer these limitations, as shown by the (updated)

comparisons in Table 12.1. RPPM is, therefore, a far more expressive and robust

model for relationship-based access control than the other existing models. From

its outset RPPM has been designed to support access control in generic computing

systems rather than just social networks, where relationship-based access control

originated. Further, RPPM is generic enough to implement various non-relationship-

based access control models as demonstrated in Sections 4.6.2, 5.2.2 and 6.2.2.

Administration In Chapter 8 I motivated the design of administrative enhance-

ments to RPPM on the need to control changes to model instances, with the under-

lying goal of avoiding type I (false negative) and type II (false positive) errors during

request evaluation. I subsequently identified administration requirements for any

administrative RPPM model; I based these requirements on best practice and desir-

able security and usability properties. The ARPPM model I presented meets each

of the identified requirements, thus enabling model instances to be completely self-

managed by one or more administrators without extra-model authorization. Whilst

several existing relationship-based access control models are able to satisfy three of

the five requirements, they both fall short of providing complete administration and

so also rely on some extra-model authorization for control of the remaining aspects.

Inter-Operation In Chapter 9 I motivated the design of inter-operation enhance-

ments to RPPM on two key drivers for inter-operation:

∙ Autonomy – where individual systems have distinct authorities which need

to maintain their control over their individual security domains. However, in-
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Social
Network
Model [44]

Semantic
Web [43]

ReBAC [41,
82, 85]

U2R [51, 52] RPPM3

Graph Entities Users Users and
resources

Users Users, objects,
policies and
sessions

⋆

Graph
Relations

⋆ ⋆ ⋆ ⋆ ⋆

Graph
Limitations

No resources None No resources No cycles None

Resource
Relations

Ownership ⋆ Ownership ⋆ ⋆

Path
Evaluation
Between
(Types)

Users and
Users

Users and
Resources

Users and
Users

Users and ⋆ ⋆ and ⋆

Path
Evaluation
Between
(Entities)

Requestor and
resource owner

Subject and
object

Requester and
resource owner

A pair from
requester,
target and
controlling
user

One or more
pairs of
arbitrary
entities

Multiple
Distinct
Relations in
Paths

No Yes Yes Yes Yes

Policy
Language

Conditions
over relation,
max length
and min
strength

Atoms over
type of
resource,
direct relation,
and same or
different entity

Propositions
over direct
relation,
variables and
nominals

Regular
expressions
over relations

Regular
expressions
over relations

Paths in Rules Positive
conjunction of
conditions

Positive
conjunction of
atoms

Positive and
negative,
conjunction
and
disjunction of
propositions

Positive and
negative,
conjunction
and
disjunction of
expressions

Positive and
negative,
conjunction
and
disjunction of
expressions

Rule Types Positive only Positive and
negative

Positive only Positive only Positive and
negative

Rule
Limitations

Single relation
within exact
path

Exact path via
pre-
determined
objects

Defined per
resource

Path length
limited by
hopcount

None

Evaluation
Basis

CWM
reasoner [29]

SweetRules
reasoner [92]

Depth-first
search model
checker

Depth-first
search with
limited depth

Regular
language
emptiness
evaluation

Key: The wild card character ⋆ is used in this table to indicate “anything” or “all”.

Table 12.1: Relationship-based access control model comparisons with RPPM3

creasing connectivity results in increasing demand for authorization over remote

actions on remote objects.

∙ Scalability – where large systems are likely to be impacted by increasing time

complexity of request evaluation, correlated with the number of nodes in the

system graph. The subdivision of such a large system both reduces the load of

evaluation in any one subgraph and (in the average case) reduces the percentage
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of the total entity space which must be considered when matching paths to

principals.

The bridged system group and bridges of Inter-RPPM enable distinct autonomous

systems to be brought together or large systems to be subdivided. The remote

requests (originating and incoming) then enable multiple distinct policies, from tra-

versed security domains, to contribute to the result of the ultimate authorization

decision.

Publish/subscribe In Chapter 10 I motivated the consolidation of RPPM’s features

into RPPM3 on demonstrating the manner in which the various enhancements may

coexist.2 I, similarly, motivated RPPM3’s application to the publish/subscribe com-

munication architecture (in the form of RPPM-PS) as part of demonstrating how

RPPM may be used to satisfy the requirements of wider data sharing approaches.

I chose publish/subscribe as it is a popular approach to information dissemina-

tion in large-scale, distributed applications [20, 68, 73]. Whilst other access control

models have previously been considered for the publish/subscribe approach (as dis-

cussed in Section 10.1.1), until RPPM relationship-based access control was unable

to be broadly applied to generic computing systems and architectures such as this.

The combination of RPPM3’s various capabilities enables it to easily support a pub-

lish/subscribe approach to information sharing, allowing subscribers to register their

interest in (potentially newly added) topics with (potentially remote) brokers which

receive events from (potentially remote) publishers.

Internet of Things Finally, in Chapter 11 I motivated the need to tailor RPPM-PS

for application in an Internet of Things on the specific characteristics and constraints

of this topical and important field. There is growing research and media interests

in Internet of Things, with the security of IoT devices and IoT networks regularly

called into question [87, 107, 146, 177, 188]. In fact numerous researchers have

identified some aspect of security as a key area for consideration [93, 148, 186]. The

introduction of a small number of refinements to RPPM-PS enables the RPPM-IoT

model to be tailored to an Internet of Things, in particular giving consideration

to the need for intermediate processing between sensors and actuators, and not

burdening constrained devices which are typical in IoT systems.

2In reality many of the features had already been shown to coexist through my systematic approach to model
development.
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12.2 Future Work

The introduction of RPPM has broadened the applicability of relationship-based ac-

cess control in the last four years and has, thereby, contributed to it being an active

area of research in the last decade. Like Ahmed et al., I believe that relationship-

based access control has “considerable applications in industry” and that it is “antic-

ipated to continue being important for the foreseeable future” (alongside ABAC) [3].

Moreover, I believe that RPPM is currently the most broadly applicable relationship-

based access control model, with the most expressive policy language and the widest

range of coexisting features. That said, there are potential limitations which high-

light areas requiring further investigation as well as many other areas offering op-

portunities for novel future work. I discuss a range of limitations and opportunities

here with the hope of stimulating further discussion in the research community.

12.2.1 Potential Limitations Requiring Further Investigation

Complexity Whilst Rizvi et al. have implemented the ReBAC model in an open

source medical records system [157], work is required to investigate the requirements

of large systems (from various domains) on the application of relationship-based ac-

cess control. Specifically, it is unclear how many relationships may actually be nec-

essary to usefully model various systems, including, for example, a modern computer

system, a multi-national company, or a hospital. (The computer on which I am writ-

ing this thesis contains 367,717 files spread amongst 67,487 folders, which leads to a

graph of 435,203 edges in the trivial case of a tree utilising solely a Contained-in rela-

tionship to model the filesystem hierarchy.) It is also unclear whether the algorithms

employed within RPPM will be efficient at the required scales, and whether the as-

sociated storage requirements will be sustainable. Modelling of “representative”

systems and an analysis of the storage and processing demands that result would

be helpful to alleviate concerns which some implementers may have. Such results

may identify a need for further optimisations, alternative approaches, or may simply

highlight the necessity of utilising those optimisations already introduced (such as

caching and inter-operation). It is worth noting that this is not a novel, intractable

problem; the Facebook social network was reported to have 1.39 billion active users

as of December 2014 with more than 400 billion edges [53]. Whilst processing on

graphs of this size requires significant computing power which is excessive for the

operation of a protection system, the scale of Facebook’s social network is very many

orders of magnitude greater than that required for access control (particularly when

inter-operation is taken into consideration).
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“Before the Fact” Audit As introduced in Section 2.1.3, the access matrix offers

simple “before the fact” auditing of policy from the perspectives of both the subject

and object. Answers to the questions “what can a specific subject do?” and “which

subjects can do things to a specific object?” can be easily determined by assessing

the access attributes in a particular row or column. Performing such an audit of

policy in relationship-based access control is more complicated as, at its crudest, it

requires searching for paths of relationships between all entities and a specific entity

(with the direction in or out of the specific entity identifying it as the object or

subject). Bennett et al. have performed some initial research into the automated

analysis of relationship-based policies, having translated their OSN-focused model

into unified modelling language (UML) [27]. As they indicate, a “lot of work re-

mains to be done” as part of investigating potential approaches to “before the fact”

auditing, particularly with the goal of aiding administrators in understanding the

repercussions that specific administrative changes will have so that they may avoid

misconfigurations. In the case of RPPM, my caching edges may be a useful aid

to such analysis; at the very least the results of any automated analysis may be

recorded in caching edges to optimise subsequent request evaluation. However, at

least some benefit may be gained by abstracting the subject-focused audit questions

to “what can a specific principal do?” and “which principals can do things to a

specific object?”.

12.2.2 Novel Opportunities

Visualisation Tools Whether as part of “before the fact” auditing or of aiding ad-

ministration more generally, I believe there is a need for graph and policy visualisa-

tion tools tailored to the administration of relationship-based access control. Graph

visualisation is a topic which has received previous attention, both generally and

with respect to access control [100, 175]. However, work is required to consider

the information useful to administrators during the specification and auditing of

relationship-based policies, and the potential approaches to presenting this in con-

junction with the critical relationship information contained in the system graph.

It may be that a suitable approach involves overlaying the graph with information

relevant to a selected policy or policy component; highlighting matching paths or

entities at the ends of matching paths may be particularly helpful, if achievable.

Certainly highlighting the different types of edges (caching, auditing, relationship),

types of entities and types of relationships will likely be useful to administrators.
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Caching Strategy Evaluation Whilst the introduction of caching edges in the RPPM

system graph has a clear benefit to the evaluation of future requests between the

same subject and object (as discussed in Section 5.1.3), practical investigation is

required to validate and tune the approach. Particularly, there is a need to determine

the likely performance improvement which may result for “representative” systems

through both direct assessment and an analysis of the proportion of requests which

may benefit during “normal” operation (i.e., which are between the same subject and

object).3 Practical investigation of purging and pre-emptive caching strategies is also

necessary to understand and propose optimal mechanisms for specific application

domains or the general case (within certain constraints). The storage and time

complexity of request evaluation will, obviously, be important considerations for the

tuning of any such strategies.

Stateful Entities Whilst RPPM supports history-based policies through the inclu-

sion of audit edges (as discussed in Section 6.1), I believe there is significant op-

portunity to extend the model through the inclusion of state information in entities

(most likely through the introduction of entity attributes). Cheng et al. previously

introduced node attributes into their OSN-focused relationship-based access control

model which employs user-to-user relationships [50]. However, I believe that such

attributes may be particularly useful in tailoring relationship-based access control

for workflow authorization. Whilst Khan and Fong consider a workflow specification

as a graph, with tasks as nodes and constraints as edges [114], I believe that tasks

are comparable to RPPM’s actions and that the constraints are comparable to a

pair of principal-matching rule targets. I, instead, envisage that entities may have

an associated state attribute, and that the entity conditions within extended path

conditions may themselves be extended to identify an endpoint for a path condition

by state (in addition to the existing variables and entity labels of Section 7.1.1). In

this way, an action may be authorized when participating entities are in particular

states, and part of the result of that authorization may be a change in one or more

entities’ state.

3Obviously which “representative” systems are evaluated and what constitutes “normal” operation will depend
on the specific application domain of interest.
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