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Abstract

Connected cars have Internet access and connectivity to supporting infrastructures

and other vehicles. This enables them to take advantage of smart applications (such

as crash alert and real-time location) that can be used in different phases of the car’s

life cycle. Automotive systems consist of a number of subsystems and networks that

operate a car. In this thesis, we analyse the security and privacy aspects of automotive

systems in connected cars. The analysis is performed through selected vehicular ap-

plications; the vehicular firmware update, forensics and maintenance logging systems.

The applications are selected to cover various aspects of security during the different

phases of the car’s life cycle. For each vehicular application, the process, challenges and

requirements are considered. Our analysis of the security and privacy requirements of

the automotive systems provides valuable insights into the overall reliability and safety

of connected cars.

Firstly, we looked into the firmware update application for vehicular systems as this

is crucial in ensuring the safety and reliability of the car. One of the main industrial

projects, the E-safety Vehicle Intrusion Protected Applications (EVITA) project, has

proposed a firmware update over-the-air protocol. We found some shortcomings in the

operations of this protocol and proposed an improvement, EVITA+, which provides

additional assurance by considering both security and general requirements to ensure

a successful update. Secondly, we propose a firmware update protocol using a mo-

bile device, with a mechanism that protects the intellectual property of the firmware

and ensures reliability during updates. Thirdly, in the forensics application, the main

consideration of the protocol is to protect data privacy while giving access to the car

owner. Finally, in the maintenance logging application, we give data access to the car

owner, while ensuring authenticity. The exploitation of mobile devices in the proposed

applications provides user flexibility as well as privacy protection, and differentiates

our solutions from current industrial implementations.

The proposed protocols are analysed using automated formal analysis tools, i.e.

CasperFDR and Scyther, and implemented to prove feasibility and determine perfor-

mance.
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Connected cars are cars that have communications capability; typically In-

ternet access. This allows them to be connected with supporting infrastruc-

ture and other connected vehicles. We begin the thesis with a brief intro-

duction to connected cars. The general motivations in exploring security

aspects in automotive systems, together with the challenges of connected

cars, are discussed. Next, our contributions to improve the security and

privacy aspects of the automotive systems are briefly described. Finally, we

outline the structure of the thesis.

14



1.1. Brief Introduction of Connected Cars 1. Introduction

1.1 Brief Introduction of Connected Cars

Connectivity provides the leverage for a wide range of applications accessible via the

car. The term connected vehicles refers to applications, services and technologies that

connect a vehicle to its surroundings [1]. Connected cars are different from traditional

cars in terms of their accessibility and communication with the outside world. Many

smart applications are associated with connected cars, providing a wide range of ap-

pealing features to car owners/drivers, especially in terms of safety applications. For

example, applications such as Advanced Driving Assistance Systems (ADAS) [2] could

improve driving performance, and thus decrease the possibility of accidents. Another

prominent application is the eCall system [3] which has been introduced to provide

emergency assistance. This will be compulsory in all new cars in Europe by 2018 [4].

In order for these applications to work, the car communicates with other vehicles

through Vehicle-to-Vehicle (V2V) communication, or with smart infrastructure through

Vehicle-to-Infrastructure (V2I) communication. The connectivity of a car to an external

entity (infrastructure, or another vehicle) is currently through IEEE 802.11p [5] and

cellular networks [1]. The car should be equipped with smart sensors and controllers

to be able to support the connected car features.

Car manufacturers are competing to provide the most appealing and the best fea-

tures for connected cars [6, 7, 8, 9]. Generally, most users are not aware of the se-

curity implications of these applications, including the privacy impact [10]. Security

researchers have shown how vulnerable the existing systems are [11, 12, 13, 14]. A more

detailed discussion of connected cars will be presented in the next chapter.

1.1.1 Definition of Terms Within the Scope of the Thesis

Security is required for automotive systems. This includes security for the in-vehicle

nodes and communications, security for the car’s external communication to supporting

infrastructure or other vehicles, and security with the actors in the overall ecosystems.

Security issues in automotive systems can impact the reliability and safety of the sys-

tems.

Automotive systems are divided into safety-critical and non-safety-related systems.

If any of the safety-critical systems are compromised, this could cause safety issues such

as controlling a car by braking remotely [15]; whereas compromise of the entertainment

system would not have a direct safety impact.

Reliability in automotive systems depends on the underlying systems performing

their required functions in all conditions. A reliable car usually means less maintenance

or repair is required. In automotive systems, reliability may impact safety; for example,
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1.2. Motivations and Challenges 1. Introduction

a sudden breakdown may cause an accident. In automotive forensics, reliability implies

availability of the data. A reliable forensic system would require the data to be available

for forensic investigation.

Privacy is the ability of a group or individual to seclude themselves, and to choose

to express/share selectively. In this context, the privacy of the car owner is her/his

ability to choose what data to share and with whom.

Confidentiality is the concealment of data from the ecosystem; only authorised

parties are permitted to access protected data.

Flexibility is the ease of use and user-friendliness of the applications in providing

data access and privacy protection to the car owner.

1.2 Motivations and Challenges

With the introduction of connected cars, security is seen as a critical aspect in ensuring

a safe and reliable system [12, 16]. Although smart applications are very beneficial to

the whole automotive ecosystem, especially car users, there are many vulnerabilities

associated with their introduction [17, 18].

In automotive systems, one of the main concerns is the reliability of the system [19].

Reliability is related to correctness of the data, and to safety. For example, for updates

or logging, the integrity of the stored data is vital; otherwise this could adversely affect

the safety of the car’s operations.

It is also a challenge to ensure the authenticity of the entities involved in a particular

communication since the automotive ecosystem contains a number of stakeholders (with

different interests), which will be discussed in the next chapter.

Confidentiality of data is another aspect to consider as it affects privacy, intellectual

property protection and safety.

Regardless of the stakeholders and their different interests, availability of data must

be ensured so that the system operates accordingly.

Data ownership is a challenge in many systems and automotive applications are no

exception. Having multiple stakeholders complicates this challenge; for example, the

car owner could possibly own data, but may not have access to it.

1.3 Contributions

In this thesis, we analyse the security and privacy aspects of automotive systems and

connected cars, which then relate to the safety and reliability of the cars. The automo-

tive industry has now realised the importance of security and is moving towards using
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security-enabled devices [20, 21, 22, 23]. Our work analyses the security of vehicular

applications in the existing implementations of the automotive industry and proposes

improvements to enhance security.

The analysis of security and privacy in automotive systems is performed through

three different vehicular applications: firmware updates, forensics, and maintenance

logging systems. In the first study, we considered one of the main industrial projects in

the automotive field; the E-safety Vehicle Intrusion Protected Applications (EVITA)

project [21]. We found some shortcomings in the operation of EVITA for firmware

updates.

Using the concept of the EVITA platform, we investigated integrating a mobile

device with automotive applications to provide flexibility for users. However, our over-

riding concern is to ensure that security and privacy are not compromised or violated.

We propose three protocols for the three applications mentioned above. These pro-

posed protocols use new architectures that provide flexibility to the users while at the

same time protecting their privacy and ensuring the systems’ security.

For firmware updates, while providing a user-friendly architecture, the intellectual

property of the firmware needs to be protected. The firmware intellectual property

copyright is held by the car manufacturer and is valuable to their business, especially

when they are providing a special feature for their brand. Furthermore, the reliability of

the updated firmware needs to be protected to ensure the safety of the overall systems.

Our proposed protocol considers all these requirements.

In vehicular forensics, while protecting the privacy of the user, the user himself/her-

self may need access to the data. However, access to the data is either limited or not

possible in current implementations. Our proposed protocol provides flexibility and

data access to the user, and also considers the security aspects of the overall systems,

especially in protecting the integrity of the data.

In the maintenance logging system, we want to make sure that users are given

flexibility and data access. At the same time, we want to ensure that the data is

correct and authentic. Using a mobile application, an automated maintenance logging

system is proposed.

The proposed protocols were formally analysed using CasperFDR and Scyther tools

and no known attacks have been found. The protocols were also implemented to

measure their performance, and thus show their feasibility.

1.4 Thesis Outline

This thesis is organised as follows:
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Chapter 2 and Chapter 3 introduce automotive systems and the three selected

vehicular applications. Chapter 2 introduces automotive systems, in-vehicle commu-

nications, automotive ecosystems and automotive security. Next, in Chapter 3, three

vehicular applications are described: firmware updates of the ECUs, vehicular foren-

sics, and the maintenance services logging system. For each vehicular application, the

process, challenges and requirements are discussed.

In Chapter 4, we discuss firmware updates for vehicular systems. We found some

shortcomings in the firmware update over-the-air protocol proposed in the EVITA

project. We then proposed an improved protocol, EVITA+, which provides additional

assurance by considering both security and general requirements to ensure a successful

update. These features can help to provide assurance on the reliability and safety of

the car.

Chapter 5 provides another contribution on vehicular firmware updates. Security

is the main consideration in the EVITA protocol, with limited reliability and flexibil-

ity considerations in the update process. Following on from our proposal to improve

the EVITA protocol’s reliability with regard to the update process, Chapter 5 looks

into providing flexibility in terms of the user-friendliness of the update process. We

consider the automotive components under careful control of the car manufacturer,

especially the firmware update process, to ensure a reliable, safe and secure car. At the

same time, we want to make sure the distribution of the firmware updates is flexible

and consumer-friendly. This chapter proposes a secure firmware update protocol for

automotive systems, using a mobile device.

Building on our idea of using a mobile device for automotive applications, Chapter

6 discusses a solution that uses a mobile device in vehicular forensics. Using a mobile

application as a logging platform for vehicle operation may improve the effectiveness

of forensic applications. Accuracy of forensic analysis can be further improved with a

wider range of parameters of the collected data. While ensuring secure data and user

privacy, a secure framework for vehicle forensics is proposed.

Chapter 7 describes our final contribution. A mobile application may provide an

automated logging system for car maintenance services. A secure protocol is proposed

to perform automated logging that can ensure the integrity of the records. The use of

a mobile device provides a user interface as well as connectivity for the car. Finally in

Chapter 8, we summarise all the contributions of the thesis.
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Chapter 2

Connected Cars

Contents
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This chapter introduces connected cars with a discussion of automotive sys-

tems and in-vehicle communications. The actors in the vehicular ecosystem,

who are the stakeholders that play different roles in the vehicular systems

and applications, are also discussed. Automotive security, which includes

the security challenges in automotive systems, is briefly explained.
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2.1 Introduction

Automotive systems have migrated from mechanically controlled to digitally controlled

systems. A smart car requires automation and connectivity. This introduces au-

tonomous vehicle applications and connected cars. The term “connected cars” refers

to applications, services and technologies that connect cars to their surroundings [1].

These applications work with either vehicle-to-vehicle or vehicle-to-infrastructure com-

munications. An example of such applications is the Advanced Driver Assistance Sys-

tems (ADAS) [24].

Automotive security is of great importance as it is critically related to the safety

and reliability of the vehicle. This includes the use of security modules and security

mechanisms to protect the security of the car. Security mechanisms include hardware

and software protection and secure communication within the vehicle [25]. The nodes,

networks and applications of automotive systems are introduced in this chapter to aid

understanding. A number of stakeholders in the automotive ecosystem have direct

and indirect relationships with the car (this will be discussed in Section 2.4). Each of

the stakeholders has different capabilities and intentions. The introduction of smart

applications in connected cars introduces a number of security issues. While prohibiting

cars from conducting external communications can reduce the attack vectors, such

smart applications are still useful, and they require the car to be connected to an

external entity such as diagnostic tools at workshops, and mobile devices.

Currently, car manufacturers, transport and road administrators, semiconductor

manufacturers, software design houses and even payment systems collaborate to provide

connected cars’ applications [26].

Chapter organisation Section 2.2 discusses the nodes in automotive embedded sys-

tems, i.e. the applications, requirements and the security platform. Next, Section 2.3

describes in-vehicle networks and their security aspects. The stakeholders in automo-

tive ecosystems and the trust model are discussed in Section 2.4. We then summarise

the general issues in connected cars in Section 2.5. The use of mobile devices and issues

related to their use are discussed in Section 2.6.

2.2 Electronic Control Unit

Electronic Control Units (ECUs) are microcontrollers that control the overall operation

of a car. In modern cars, depending on whether they are basic or luxury cars, there

are about seventy ECUs that operate the car’s functionalities [21]. Each ECU has

different functions and controls. These are divided into different types of operations;
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for example, for body control, engine control and telematics. Signals from sensors are

sent to the ECUs and the ECUs act accordingly as programmed and send appropriate

instructions to the actuators to carry out the operations. Communications between

ECUs are sent through different in-vehicle networks (to be discussed in Section 2.3)

depending on the application of the ECU. These ECUs are interconnected with each

other to perform different (collaborative) tasks. Therefore, if one or more ECUs are

not functioning properly, they could be detrimental to the overall operations, safety

and reliability of the vehicle.

2.2.1 Applications

An automotive system has four main subsystems: power train and engine; chassis

and safety; body control; and multimedia and entertainment. Power train subsys-

tems include engine management and transmission systems. The chassis and safety

subsystems include the Anti-locking Brake System (ABS), power steering and braking

systems. Body control subsystems are divided into comfort and safety. Comfort sys-

tems include heating and air conditioning, central locking, seat and mirror adjustment;

while safety systems include airbag and restraint systems. Multimedia and entertain-

ment subsystems include radio and phone systems [27]. These subsystems are now

being cooperatively used for autonomous driving applications such as forward collision

warning or braking and lane-keeping aids [28].

2.2.2 ECU Requirements

The ECU requirements are divided into hardware and software requirements. A coop-

eration between car manufacturers, suppliers, electronics and semiconductor providers

and software providers established Automotive Open System Architecture (AUTOSAR).

AUTOSAR provides a standardised open software architecture for automotive ECUs

[29]. The three layers of software architecture are the application layer, the Runtime

Environment (RTE), and the basic software layer. The basic software layer includes

standardised software modules for drivers and communication modules, and the mi-

crocontroller abstraction. For the hardware, the specifications stipulate that a set of

requirements must be met: secure storage, tamper resistance and a customised memory

size depending on the application of the ECU. To ensure secure application, the use

of a security module is required. The security module requires secure creation (which

makes it unclonable in terms of the key and content to prevent illegal copying), secure

integration, secure operation, secure storage, and a secure output channel [30].
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2.2.3 ECU Security Module Candidates

Table 2.1: Features of different security modules
Security features HIS-SHE EVITA HSM TPM

Full Medium Light Rich Thin

Algorithms

ECC #  # #   
RSA #  # #   
AES       
CMAC/HMAC       
SHA-1 #   #  #
SHA-256 # # # #   
WHIRLPOOL #   # # #
RNG PRNG TRNG TRNG PRNG TRNG TRNG

UTC Clock #    # #
Counter #   #   
Internal NVM    G# # #

Note: #:Not supported, G#:Optional,  :Supported

There are three different types of security modules available for automotive appli-

cations. Table 2.1 shows the different security modules and their features [31, 32, 33].

The comparison criteria include the different algorithms supported, and the availabil-

ity of a Random Number Generator (RNG) [34], Coordinated Universal Time (UTC)

clock, replay protection monotonic counter and Non-Volatile Memory (NVM) on the

different platforms. Algorithms supported are Elliptic Curve Cryptography (ECC)

[35], Rivest Shamir Adleman (RSA) [36], Advanced Encryption Standard (AES) [37],

Cipher-based Message Authentication Code (CMAC) [38], Hash-based Message Au-

thentication Code (HMAC) [39], Secure Hash Algorithms (SHA-1, SHA-256) [40] and

WHIRLPOOL (AES-based hash function) [41]. The three security modules are dis-

cussed as follows:

HIS-SHE Secure Hardware Extension (SHE) was introduced by Hersteller Initiative

Software (HIS) in 2009 [33]. The idea is to add a secure zone to the ECU, where

computation and data are protected. It has secure storage for cryptographic data

and hardware cryptographic engines. Examples of available ECUs with SHE include

microcontrollers by Infineon (TC1798 [42]) and Freescale (MPC5646 [43]). It was the

first technology to consider security zones for ECUs in automotive systems, and only

limited security algorithms were supported.
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EVITA Hardware Security Module (HSM) The EVITA project (2008-2011) [21]

proposed an architecture using Hardware Security Modules (HSMs). A range of HSM

levels are used for different security functions required by the various ECU modules

[44]. There are three types of HSMs: full HSM, medium HSM and light HSM. Full HSM

is used in the Central Communication Unit (CCU) module, which is the ECU module

responsible for Vehicle-to-X (V2X), and can be either Vehicle-to-Infrastructure (V2I)

or Vehicle-to-Vehicle (V2V) communications. Medium HSMs are used for advanced

ECUs (gateways, head unit, engine control) in in-vehicle networks (see Section 2.3).

Light HSMs are used in sensors and actuators.

The EVITA project proposed an integrated HSM within each ECU. The proposed

architecture was implemented in FPGA for proof of concept. At the time of writing,

only medium and light HSM-based ECUs are available in the market in Application

Specific Integrated Circuit (ASIC) solutions. A full HSM requires a high performance

solution (32-bit CPU core, with crypto accelerators) to be able to meet the automotive

requirements [?]. Examples of available ECUs with HSM include microcontrollers by

Infineon (TC297 [45]) and Freescale (MPC5748 [46]).

Trusted Platform Module (TPM) The Trusted Computing Group (TCG) pro-

posed the Automotive Thin and Rich TPM for automotive application in 2015 [47]. The

Auto TPM is not integrated within the ECU. Each ECU is connected to an Automotive

TPM. The Automotive TPM provides platform attestation and integrity reporting of

software [48]. The Automotive Rich TPM is similar to the Full EVITA HSM, where it is

used for the Head Unit or Central Communication Unit. Other nodes use Automotive

Thin. Automotive Rich has the conceptual specification to be the same specification

as TPM 2.0. To date, only Automotive Thin TPM specifications [32] are available

from TCG. TCG proposes two different architectures. In the first architecture, only

Automotive Thin TPMs are used for all the ECUs, including the CCU. In the second

architecture, the Automotive Rich TPM is used for the CCU and Automotive Thin

TPMs are used for all other ECUs. For Automotive Thin, the supported algorithms

are RSA2048 or ECC256, AES128, SHA256 and HMAC.

2.3 In-vehicle Communications

In-vehicle communications involve communications between the ECUs via the in-vehicle

networks.
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2.3.1 Central Communication Unit (CCU)

The Central Communication Unit (CCU), also known as the head unit, is the central

unit for all the ECUs in the in-vehicle networks. It is the first unit any external device

will need to communicate with in order to talk to other ECUs within the vehicle. It

stores all the identifications (ID), public keys (pk) and symmetric keys (k) for all the

ECUs.

2.3.2 In-vehicle Networks

There are a number of in-vehicle networks, which include the Controller Area Network

(CAN), Local Interconnect Network (LIN) [49], Media Oriented Systems Transport

(MOST) [50] and FlexRay [51]. Different networks are used for different applications

as shown in Table 2.2 [52].

All the in-vehicle networks (other than CAN) are interconnected through the CAN

bus. Since the CAN bus is the main in-vehicle communication network used in auto-

motive applications [21], our discussion will focus only on the CAN bus. A CAN bus is

a broadcast serial communication protocol where every node on the bus can transmit

and receive messages to and from the bus. In a car, the nodes are the ECUs. The CAN

bus can be a two-wire or single wire cable with all the nodes attached and a terminat-

ing node with a 120 Ohm resistor at each end. It was first introduced by Bosch. The

CAN physical signaling and data link layer protocols are standardised in ISO 11898-1

[53]. It is configurable to standard frame format (supports 11 bit length ID message)

or extended frame format (supports 29 bit length ID message). There are four types of

frame: data frame, remote frame, error frame and overload frame. It is a priority-based

message protocol where the message with higher priority gets transmitted first. The

priority of the message depends on the arbitration bit (the ID of the message). A lower

value of ID will win the arbitration and be transmitted first. The message with the

higher ID value will wait its turn. There are 2 different ranges of CAN frequencies:

high frequency CAN, which operates up to 1 Mbps and low frequency CAN, which

operates from 40 kbps up to 125 kbps.

For each network, there are local gateways. For the different networks to commu-

nicate, there is a node called the super gateway [52]. The super gateway operates on

a CAN bus network. As shown in Figure 2.1, the central ECU is called the Central

Communication Unit (CCU). This unit acts as a central node. It is accessible to allow

external devices to communicate with the in-vehicle ECUs.
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Figure 2.1: In-vehicle networks

Table 2.2: In-vehicle networks
Network Maximum data rate Applications

CAN 1 Mbps Power train and engine, Chassis and safety
LIN 20 kbps Body control
MOST 24 Mbps Multimedia and entertainment
FlexRay 10 Mbps Drive-by-X

2.3.3 Threats and Vulnerabilities

As shown in many studies (to be discussed later in this section), connected cars can

be attacked through physical and remote access. The vulnerabilities lie in the network

architecture and protocols, the ECU itself and the cyber physical applications [54].

Physical access gives a wide range of attack surfaces, especially if the attacker is able

to get access to the ECU(s) and/or network. Indirect physical access includes external

interfaces such as compact disc (CD) and On-Board Diagnostic (OBD) port, while

remote access is through wireless communication, whether short or long range [12, 13].

A modification attack is possible by modifying the content on the CAN bus; i.e.

by injecting unauthorised messages. For example, in [16] the researchers were able

to change the display on the instrument panel cluster. A masquerading attack is

possible by faking the identity of an authorised device to gain access or to communicate

with the in-vehicle network; for example, masquerading as an authorised diagnostic

tool. A man-in-the-middle attack could be performed using a piggy-back device on an

authorised ECU, and relaying and/or altering the content of messages in the network.

An eavesdropping attack is also possible by putting an additional ECU on the CAN

network to tap/listen to the CAN network. The attacker is then able to listen to all

the messages flowing through the network since it is a broadcast network where all the
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nodes on the network can listen to the messages. A replay attack is possible once an

attacker is able to eavesdrop and learn from the messages (and maybe reverse-engineer

them to understand what each message does). The attacker can then reuse the messages

to replay them. A DoS attack is also possible on a CAN network. Since CAN is serviced

based on the priority of its ID, an attacker can keep on sending messages with a high

priority to congest the network and deny service for other lower priority messages.

Potential attacks on vehicles were highlighted in 2010 when security researchers

proved that by injecting messages to the CAN bus, they were able to control a car

in several ways, including controlling the display on the radio and the speedometer,

and killing the engine [16]. The most prominent attacks on automotive systems were

performed by Charlie Miller and Chris Valasek. In 2013, based on other work that

showed the possibility of remote code execution via interfaces such as Bluetooth and

telematics units [16], they demonstrated the extension attacks that become possible

following a remote code execution attack. By using two car models, they produced

tools to conduct the attacks. They showed the different CAN messages used to con-

trol the different operations of the cars in the attack [11]. They were able to control

the steering, braking, acceleration and displays on the cars. In 2014, they analysed

the possibility of performing remote attacks on 20 car models. They quantified the

difficulty of performing the attack through remote attack surfaces, cyber physical fea-

tures and the car’s network architecture. They also proposed a number of defence

mechanisms, including secure remote endpoints, secure in-vehicle network, authentic

non-compromised parts and attack detection [54]. In 2015, they performed attacks on

a Cherokee jeep [55], as it had been found to be the most vulnerable car based on their

previous work [54]. They showed that it is possible to conduct an attack on the car

without physical access, and affect operations such as killing the engine and controlling

the steering. They implemented the attacks as proposed by [12] and documented each

step and the corresponding message/input file in performing the attacks. The attacks

were performed on almost all possible features of attack surfaces, including the telem-

atics system that provides connection to a cellular network. After they had gained

access remotely, they sent malicious CAN messages and were able to control the car.

Attacks can be conducted using the vulnerabilities of network architecture and

protocols, ECUs and cyber physical applications.

Network architecture and protocols: Since CAN bus operations involve reception

and transmission of messages through the CAN bus network, the risks are analysed from

the weaknesses in these operations that might be used by an attacker to cause failure

modes. For example, for message reception, an attacker can cause failure by making
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improper filtering of messages: under-filtering will cause acceptance of unwanted or

unnecessary messages, and over-filtering will cause loss of messages. Another weakness

of the CAN bus is the broadcast nature of the network, where every node on the

network can see the message. Limitation of the number of data bytes per message

transmission would cause performance issues when security data is to be included

in the message transmission. Priority bus-based arbitration can be manipulated by

sending higher priority messages to cause denial of service. Last but not least, there is

an unlimited number of nodes that can be connected to the CAN bus, with minimal or

no authorisation required. Manipulations through these weaknesses can cause severe

effects if they involve critical ECUs such as the electronic brake control module. The

CAN bus can be attacked in many ways, including the exposure of the CAN bus through

the OBD port [56], and during the ECU’s firmware update [30]. If an attacker is able

to access the CAN bus, he/she can sniff the messages, and later use reverse engineering

techniques to decode the messages. This could cause loss of intellectual property if

the firmware or the operations are obtained. If sensitive data is leaked or obtained, it

could generate privacy and confidentiality issues. If denial of service attacks and/or

integrity manipulation attacks are performed, the safety/reliability of the systems could

be affected.

ECU: Issues such as malware, which are common in the computer world, are now

emerging in automotive systems. In order to have access to ECUs, attackers are no

longer required to have direct physical access. They can get to an ECU through the

networks or even by remote access. The ECU can be attacked through a weakness in

design and implementation of its hardware, software or applications. Malware can be

injected through OBD ports, firmware updates and removable media ports [57].

Cyber physical applications: Tire Pressure Monitoring Systems (TPMS) that use

radio frequency signals to monitor the condition of the car tyres can be easily attacked

through eavesdropping and spoofing [17]. Such attacks can also cause privacy issues

as the car can be tracked. In order to solve the TPMS issues, Solomon et al. pro-

posed a solution for securing the TPMS using lightweight crypto such as SPECK and

PRESENT [58].

The Remote Keyless Entry (RKE) system for vehicle access is vulnerable to many

attacks [59]. The KeeLoq block cipher, which has been widely used for RKE systems,

has been found to have many vulnerabilities [60, 61]. A relay attack was demonstrated

to prove the vulnerability of the RKE system [62]. Vehicle immobilisers have also

been subjected to attacks. Implementation issues using proprietary algorithms such as
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Hitag2 were also proven to be an attack surface [63]. By eavesdropping and reverse

engineering, Verdult et al. [64] were able to prove that vulnerabilities exist in the

immobilisers that use Megamos crypto, a proprietary crypto algorithm. This work

showed that by not having a pseudo-random number generator in the transponder,

the authentication protocol was vulnerable to replay attacks. The internal state of the

cipher is only 56 bits, which is smaller than the 96 bit key. From the ciphered state

it is possible to compute the predecessor state. There are also implementation issues

that enable partial key update and weak key attacks.

2.3.4 Security Requirements of Automotive Systems

We divided the security requirements for automotive systems into two parts. They are

the security of the nodes (which are the ECUs) and the security of the communication

protocols.

Authentication: Is important in a CAN bus network because of the broadcast na-

ture of the communication. Since any node can transmit and receive messages across

the bus, an attacker may conduct his/her attack at any stage of a car’s life cycle, to any

ECU and affect the operation of the car. By having authentication as a requirement in

the network, only valid nodes are able to participate in the communication. Nodes are

considered valid if they possess the required cryptographic key. The keys are managed

by a valid authority, for example the car manufacturer. Authentication is a require-

ment for both the nodes and the communications. Entity authentication is a must for

the nodes to ensure that they are who they claim to be and are authorised to take part

in the communication. Data origin authentication or message authentication verifies

the integrity of the data and the source of the data. In a CAN bus, this property is

required in communications. It is a security requirement that a CAN bus can verify

that the message has not been modified in transit and the receiving parties (all nodes

on the CAN bus) can verify from where the data came from.

Integrity: Changing data in an ECU, unauthorised firmware updates and manipula-

tion of messages are all contributing factors to the integrity requirement for the security

of automotive systems. To ensure messages are not manipulated, the communication

protocol requires integrity. Secure firmware updates or changes and secure data stor-

age are required by the nodes. Therefore the nodes must have integrity as a security

requirement.
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Freshness: In order to avoid replay attacks, freshness is another security require-

ment to be considered in CAN bus communication. There is no point in having keys

to authenticate the nodes if any malicious attacker can carry out replay attacks by

replaying a valid message.

Non-repudiation: Another important security requirement in the CAN bus in order

to ensure that no ECUs are reflashed or updated without the consent and acknowl-

edgement of the authorised party. The update will be reflected and no fraud, such as

undeclared accidents or undeclared firmware updates, is possible. Once a message is

sent by an ECU node, the node cannot deny transmission of the message.

Availability: Any message loss or delay is critical to communication and thus to the

operation of the car. The nodes and data associated with them are also required to be

available to ensure reliable and complete operation.

Confidentiality: While the content of a node (firmware, key and data) needs to

be secured, its confidentiality is a critical requirement to ensure copyright protection

(firmware) and secure communication (key). For communication, depending on the

application, confidentiality is an option. If authentication is in place, and only an

authorised party can access the communication, confidentiality may not be required,

unless a party is able to get the messages transmitted across the bus without partici-

pating in the communication, for example by accessing a log file of the communications.

In this case, communication requires confidentiality to ensure messages are only trans-

mitted between authorised nodes. Confidentiality could also be considered for privacy

protection [65].

Authorisation: If a node on a CAN bus is authorised to send a message, then it

will be able to identify and authenticate itself during a communication. It will have

permission to participate in the communication, for example through a cryptographic

key. An unauthorised node will not have permission to send a message, or if it is able

to send a message, the message will be discarded/ignored.

Accountability: A node on a CAN bus should be accountable for the messages it

sends. The entities involved (for example a workshop) should also be accountable for

the communication they participate in. For example, if a workshop performs a service

and communicates with the car through its diagnostic tool, the workshop should be

responsible for this communication/operation.

The security requirements of automotive systems are as shown in Table 2.3.
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Table 2.3: Security requirements of automotive systems

Security requirements Node Communication protocol

Authentication X X
Integrity X X
Availability X X
Non-repudiation X
Freshness X
Confidentiality X
Authorisation X
Accountability X

2.4 Stakeholders in the Automotive Ecosystem

In the automotive ecosystem, there are a number of different entities involved, as shown

in Figure 2.2.

The stakeholders are either directly or indirectly involved with the vehicle. They

have different functions and interests during the different stages of the life cycle of the

vehicle.

OEM

Cars

Car parts

Diagnostic

tools

Service providers

Dealers

Workshops

Insurance
providers

Forensics

Hacking

Researchers

Technical

enthusiasts

Hobbyists

Thieves

Terrorists

OEM
competitors

Users

Car owners

Drivers

Figure 2.2: Stakeholders in the automotive ecosystem

2.4.1 Types of Stakeholders

Different stakeholders may have different interests and risks [66]. They are divided

into two types of accessibility: direct and indirect. The first type, which has a di-

rect relationship with the car or the car parts, includes suppliers, firmware developers,

technicians and mechanics at workshops, car agents and dealers, insurance providers,

car owners and users/drivers. The second type of entity, which has an indirect con-
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nection with the car, are those parties interested in car hacking. They include car

manufacturing competitors, hobbyists, researchers, technical enthusiasts, thieves and

terrorists.

Attack motivations We summarise four main objectives in performing an attack

on an automotive application. The objectives are financial benefit, knowledge gain,

satisfaction/recognition and legal benefit. An attacker could want to steal Intellectual

Property (IP) or provide/use counterfeit parts. An attacker could also be motivated to

compromise the privacy of a user by stealing the user’s information. An attacker could

want to increase a car’s price by conducting data manipulation in the related ECUs.

A car owner may want to improve car performance, get cheaper service rates, avoid

legal/criminal charges and/or activate after-sale features. Table 2.4 shows the different

potential attackers and their objectives.

Table 2.4: Potential attackers and their objectives
Attacker Objective

Financial Knowledge Satisfaction/recognition Legal
Part supplier X
Firmware developer X X X
Mechanic X X
Dealer X
Owner X X
Insurance agent X X
Competitor X X X
Hobbyist/researcher X X
Terrorist X
Criminal X X X

Attack methods There are various ways to attack a car, through either logical or

physical access. The attacker could perform an attack by impersonation of an autho-

rised entity/tool, manipulation of messages and data, a Denial of Service attack (DoS)

or by providing/using counterfeit hardware/software components. Through physical

access, an attacker can gain direct access to the in-vehicle networks and/or the ECUs.

A logical attack through remote access was seen as something impossible or very un-

likely to happen until [12] proved that it is feasible. The most recent and famous attack

was conducted through a telematics unit, where the “attackers” were able to control

driving operations remotely [15].
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Attackers’ capabilities Attacks could be performed depending on the capabilities

of the attacker. Four main criteria of capability are access level, technical knowledge,

technical resources and financial resources. Table 2.5 shows a range of different at-

tackers and their capabilites. The access level could involve physical access or remote

access, or the time frame of accessibility. Technical knowledge is the level of expertise

an attacker has, while technical resources are the equipment and hardware/software

tools that an attacker has. For example, there was an attack by a disgruntled car

dealer’s employee, who disabled more than 100 cars remotely [67].

Table 2.5: Potential attackers and their capabilities
Attacker Capabilities

Access level Technical knowledge Technical resources Financial resources
Part supplier Medium High High Medium
Mechanic Medium High High Medium
Dealer Medium High High Medium
Owner High Low Low Low
Insurance agent High Low Low Low
Competitor Low High High High
Hobbyist/researcher High High High High
Terrorist Medium High High High
Criminal Medium High High High

2.4.2 Trust Model in Automotive Applications

For automotive applications, there are three entities that are important in the trust

model. They are the Original Equipment Manufacturers (OEMs), the application/ser-

vice providers, and the car owners or drivers. For the security of the components and

platforms of the car, which include hardware and software, the OEM is the entity who

would want to ensure the security is in place. In terms of the security of services and

applications, application and service providers would be interested in ensuring the se-

curity and reliability of their systems. On the other hand, car owners and users/drivers

might be more concerned about the privacy of the data. Considering the ecosystem of

the automotive industry, the car manufacturer holds the most responsibility in terms

of the reliability of the car. With this in mind, our proposals consider the car manu-

facturer as the main entity in ensuring the security of the overall operations of a car

including the platform and applications. Explicit trust is given to the car manufactur-

ers. Based on their responsibility and the associated risks, they are given the highest

trust level.

Other stakeholders, such as the OEM of the car parts and diagnostic tools, are

given an implicit trust, with a medium level of trust. They are usually trusted by the

car manufacturer; however, they may have malicious intentions. The users, i.e. the car
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owners or drivers are given medium to high levels of trust, depending on the application.

For example, for a firmware update application, the car owner is given a medium level

of trust. He/she may perform the operation for good or malicious objectives. In terms

of privacy, the car owner may want to protect his/her privacy for good or even bad

reasons. For example, a good reason may be to protect his/her private data such as

driving habits; bad objectives may be to avoid being prosecuted/sued for his/her bad

driving behaviour.

Service providers such as dealers, workshops, insurance providers, forensic investi-

gators and other related authorities may be given medium and implicit trust. How-

ever, privacy is an important issue. A selective set of data, depending on the appli-

cation, should be given to the respective stakeholders to avoid sensitive data being

misused/leaked.

As discussed in [68], the trust model parameters are not only limited to security,

but also relate to usability, privacy, reliability and availability, audit and verification

mechanisms and user expectations.

2.5 Issues in Connected Cars

Although connected car technology is seen as beneficial, there are some issues that

require further consideration.

2.5.1 Data Ownership

There are five main stakeholders for data ownership. They are the car manufacturer,

service provider, legal officer, enforcement officer and the car owner. In current auto-

motive industrial practice, car manufacturers have the most access to the data. The

service provider, legal or enforcement officer have access to only application-related

data. On the other hand, the car owner has limited access to the data. Data access

authorisation is commonly related to the purpose of data access. However, this is quite

controversial, especially for the car owner.

2.5.2 Privacy

Privacy issues are directly related to the car owner and/or driver. Automotive data

such as driving style, location and contact information may disclose more Personally

Identifiable Information (PII) about the car owner or driver. Therefore, it is crucial to

protect these data.

34



2.6. Mobile Device Integration in Connected Cars 2. Connected Cars

2.5.3 Reliability of Operations and Data

For automotive systems, reliability of operations is directly related to safety. Therefore,

it is crucial to ensure that the operations are functioning appropriately. The data

provided by sensors and controllers need to be reliable to ensure safe operations.

2.5.4 Flexibility and Ease of Use

From the point of view of a user, flexibility and ease of use will ensure that the appli-

cation is easily acceptable.

2.5.5 Security Risks

There are many security risks due to the long life cycle of a car, and the accessibility

of the car. The threats and vulnerabilities are discussed in Section 2.3.3.

2.5.6 Control of Service Providers

Giving options for a wider range of service providers opens up a competitive market

and could improve the service itself. Car owners would not be tied to specific service

providers chosen by the car manufacturer. However, proper security controls must be

in place to ensure this flexibility does not introduce vulnerability, especially during the

implementation phase. The implementation phase is the critical phase where security

could be overlooked by service providers, especially if the guidelines are not specific

and ambiguous.

2.6 Mobile Device Integration in Connected Cars

As mobile devices are widely used in our daily lives, they are seen as useful devices in

vehicular applications, especially in providing connectivity to the car.

2.6.1 Advantages

Diewald et al. described the benefits of mobile device integration in automotive domains

[69]. One of the benefits is that users are more familiar with a mobile device compared

to a car infotainment system. The lifetime of a car compared to a mobile device and

applications is longer, hence it is easier to update applications and/or upgrade a mobile

device than to upgrade the infotainment systems. The integration of contacts and

related information to any vehicular applications may provide beneficial support, for

example for navigation systems. They also suggested additional uses such as preference
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profile setting/configuration for route and temperature or seat adjustments. Other than

that, the mobile device also provides internet connectivity to the vehicle and/or users

and passengers.

2.6.2 Network Interfaces

There are two types of connections from the mobile device to the vehicle; wired or

wireless.

Wired or wireless: The OBD-II port is a port that interfaces the outside world

with the in-vehicle networks [70]. The port can be interfaced with a Wi-Fi, Bluetooth

or serial connection using the ELM327 interface [71].

Wired: Mobile devices can be connected to the car through Universal Serial Bus

(USB) [72], Mobile High-Definition Link (MHL) [73], High-Definition Multimedia In-

terface (HDMI) [74], or through analogue audio input/output [69].

Wireless: Mobile devices can be connected to the car wirelessly through WLAN,

Bluetooth, NFC, mobile network, or charging ports (only limited support) [69].

2.6.3 Security Issues

Mobile devices are known for their security vulnerabilities [75]. Leinmuller et al. evalu-

ated the security of integrating a mobile device with Vehicle-to-X (V2X) communication

[76]. They proposed three different configurations of the integration, to manage secu-

rity at different levels. These functionalities are divided between the mobile device and

the on-board unit. They analysed the risk, assets and vulnerabilities of using a mobile

device in V2X applications. They concluded that authorisation for the application on

a mobile device is a must, regardless where the data is generated. A compromise be-

tween flexibility/extensibility and security could be possible, depending on the different

levels of security requirements for each different application. Bouard et al. considered

integrating a mobile device in the automotive networks with physical access to the car

[77]. The communication between the mobile device and the ECUs needs to go through

a security proxy. They implemented the proposal via two applications running on an

Android 3.2 tablet.

There is also a possibility for mobile devices to download malicious applications

[78]. A malicious application could disrupt a mobile device by spying, corrupting data

and/or interfering with its operations. In this scenario, the mitigation is to ensure

that the mobile device is secured in terms of its hardware protection, and that its
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application store has a certain security verification level to avoid downloading malicious

applications. A mobile device should also be protected with an anti-virus application so

it can detect unwanted viruses in downloaded applications. The mobile device should

also be able to authenticate the source of the applications to be downloaded to ensure

that the applications are authentic. Protection should be from hardware to software

levels to eliminate this threat.

The use of mobile devices could provide beneficial applications to automotive sys-

tems, despite the security issues. Furthermore, the introduction of a trusted execution

environment such as ARM TrustZone [79] and Intel SGX [80], could further help to

resolve the security issues.

2.6.4 Roles of Mobile Device

A mobile device can be the host to display the infotainment and head unit information,

or as the external device that acts as a remote control [69].

2.7 Summary

We discussed the nature of connected cars by introducing the related terms and tech-

nologies. Automotive systems were introduced by discussing ECUs and in-vehicle com-

munications. Vehicular applications involve the overall automotive ecosystem; therefore

the automotive ecosystem and its stakeholders were discussed in terms of their attack

capabilities and motivations. Finally, automotive security issues and requirements are

briefly explained.

After providing a basic understanding of the connected car, in the next chapter,

we will discuss selected vehicular applications and provide our insights regarding these

applications.
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Three vehicular applications are discussed: firmware updates of ECUs, ve-

hicular forensics and maintenance services logging systems. For each vehic-

ular application, the processes, challenges and requirements are discussed.
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3.1 Introduction

There are many vehicular applications for connected cars, consisting of V2V and V2I

applications, such as electronic toll collection, autonomous driving and road platoons

(groups of vehicles traveling closely together safely at high speed for example by

Volvo [81]), hard braking ahead warnings, traffic information and pedestrian detection.

A car’s life cycle starts at manufacturing, and is followed by selling, use by owner

(service/repair, on the road, insurance), reselling and forensics. In this thesis, we focus

on three vehicular applications, which are the firmware updates of ECUs, vehicular

forensics, and the maintenance services logging system. These three applications are

selected to cover different phases of the car life cycle. Firmware updates of ECUs are

critical applications in maintaining overall car safety and operation during the whole life

cycle of the vehicle. The vehicular forensics and maintenance services logging system

are applications that are important to the car owner, and particularly related to the

privacy of his/her data. Each application has its own challenges and requirements that

need to be addressed.

Chapter organisation The first section, Section 3.2 discusses automotive firmware

updates, including the processes, issues, requirements and methods. Next, Section

3.3 describes the automotive forensics in terms of use cases, storage and data retrieval.

The next section covers the maintenance services logging system, where types of logging

systems are discussed in Section 3.4. Finally, Section 3.5 describes the process, and

reasons, for choosing the particular protocol analysis tools for our formal protocol

analysis.

3.2 Vehicular Firmware Update

Firmware update is a common process in embedded systems [82, 83, 84, 85, 86]. To

implement secure firmware updates in vehicular applications, a specific approach has

to be considered, especially as these applications are directly related to safety.

Firmware is the combination of a hardware device and computer instructions and/or

computer data that in normal operation can be considered as residing in read-only

memory on the hardware device [87]. The software part of modern firmware is stored

in the Electrically Erasable Programmable Read-Only Memory (EEPROM) or flash,

as compared to old firmware architecture in which it was stored on the Read-Only

Memory (ROM). This enables the firmware manufacturer to update its firmware after

it is deployed.
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Firmware update or ECU reflashing is a potential channel for ECU attack [12, 14,

16, 55]. As mentioned in the previous chapter, ECUs can be attacked either through

physical access or via the network. For example, an attacker can replace an authentic

ECU with a non-authentic ECU or install malicious or unauthorised firmware to the

ECU through the CAN bus. The purpose of firmware updates in automotive applica-

tions is to enable car manufacturers to update ECUs for bug fixes, security patches, or

to provide performance improvement. Without a well-defined security framework it is

possible for a number of threats to be realised (installing malicious firmware or using

non-authentic ECUs), potentially with undesirable consequences.

In this section, we present the processes, potential failures, issues and challenges in

vehicular firmware update. We then discuss the general requirements and methods of

vehicular firmware updates.

3.2.1 Firmware Update Process

Below is a description of the firmware update process as described in [88]. See Fig. 3.2

for the firmware update process for different ECU architectures.

1. The ECU starts with the boot manager, which determines whether to be in

flashloader mode or application mode. If a valid application is available, the

boot manager will choose the application mode; alternatively it will go into sleep

mode. If there is an external request for reprogramming, the flashloader will be

initialised (the boot manager will choose the flashloader mode). The flashloader

will then load the flash driver once the authentication to unlock the ECU is

successful. Refer to Fig. 3.1.

2. In the flashloader mode, if there is an external request for reprogramming, the

flashloader will load the flashdriver. The flashdriver contains the routines for

erasing and writing to the flash.

(a) As most current ECUs contain a large flash memory (up to 2048 kB [89]),

they are divided into two sections, the data memory and the program mem-

ory as in Fig. 3.2(a) and 3.2(d). For these ECUs, the flash driver is loaded

into the data memory.

(b) For small-memory ECUs, there is only one section of flash memory for both

program and data memory. For these ECUs, the flash driver is loaded into

the Random Access Memory (RAM) as in Fig. 3.2(b), 3.2(c), 3.2(e) and

3.2(f).
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Figure 3.1: Initial state of ECU

(c) The flashdriver can either be loaded from the program memory (the flash-

driver is a part of the flashloader) as in Fig. 3.2(d), 3.2(e) and 3.2(f), or

loaded from an external device as in Fig. 3.2(a), 3.2(b) and 3.2(c).

(d) If the RAM is small (as low as 128 bytes [89]), the routines are conducted

in 2 phases (2a and 2b in Fig. 3.2(c) and 3.2(f).

3. An external programming device, usually known as a diagnostic tool in a work-

shop, will download and install the new firmware to the flash memory using the

flash driver.

3.2.2 Potential Failure

During the firmware update process, there are a number of potential events that might

cause the overall process to fail.

Network Disruption

During the download of firmware from the OEM server to the device, any network

disruption may cause the firmware update to fail. A retransmission of messages should

be in place to ensure complete and successful network communication.

Power Disruption

The device must be properly powered to ensure a successful firmware update. Any

power disruption during the update process may cause the process to fail. A failure
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Figure 3.2: Firmware update process
(a) external flash driver with 2 sections of flash memory, (b) external flash driver into RAM, (c)
external flash driver into small RAM, (d) internal flash driver with 2 sections of flash memory, (e)
internal flash driver into RAM, (f) internal flash driver into small RAM

during the update process may cause the device to be non-functioning and as useless

as a brick - hence the term “brick”.

Device Hardware Issues

Before the update process, it is necessary to check the compatibility of the update with

the target device; this is usually performed by a program. Among the items to be

checked are whether the code downloaded is compatible with the device and whether

there is enough memory to store the updated firmware. Ensuring the authenticity of

firmware from the OEM can further ensure the compatibility of hardware. OEM may

have a number of firmware versions and/or types of firmware but they are customised

for specific devices. A corrupted memory on the device could also cause the overall

process to fail.
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Deliberate Attacks

Any deliberate attacks aimed at causing disruption of the update process, such as

network, power or device disruption will cause the update process to fail.

3.2.3 Challenges in Vehicular Firmware Update

Compared to other embedded systems, the vehicular application is quite different in a

number of ways. There are multiple ECUs, which may be part of different networks

as there are multiple distributed networks in a vehicle. Furthermore, the ECUs are

subject to replacement during the life cycle of the vehicle. In addition, the vehicle may

be under the control of different entities depending on the stage of its life cycle. The long

life cycle of a vehicle must also be considered when proposing secure firmware update

solutions for vehicular applications, especially for cryptographic key management and

distribution.

Compatibility and Reliability

The compatibility of new firmware with the intended ECU needs to be verified in

terms of size, capability and functionality. In addition, all ECUs in the car have to be

compatible with each other. Compatibility of the updated ECU with other ECUs in

the vehicle is critical to ensure the safety and reliability of the car’s operations. If one

ECU is not functioning properly, it may affect the operation of other ECUs and thus

the operation of the entire car may be affected.

Key Management

Cryptographic key management is commonly handled by the owner of the application.

For firmware updates, the cryptographic keys are handled by the OEM of the ECUs.

Key management of ECUs needs to consider the life cycle of a vehicle, from manufac-

turing through to after-sales, which includes repair and upgrade, replacement of parts

and resale of the vehicle. The installation of firmware update keys can take place during

manufacturing.

Ownership

Ownership can be viewed as the ownership of the vehicle or the ownership of the parts

and components of the vehicle, which include the firmware. Although the owner of the

vehicle owns the vehicle, the parts and components of the vehicle are under the control
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of the OEM. Any parts replacements and firmware updates may need the consent of

the OEM.

Firmware Recovery

If an update process fails, a firmware recovery procedure needs to be in place to ensure

a working ECU, in order to have an operational and reliable vehicle. Updating firmware

requires security credentials, i.e. keys. If they are part of the firmware [11], recovery of

the keys is crucial. The keys should have proper protection and be able to be retrieved

for cryptographic operations. The keys may also reside in another part of non-volatile

memory (NVM); for example, a Trusted Platform Module (TPM) or Hardware Security

Module (HSM). Among the constraints that limit the firmware recovery process is the

memory limitation of the ECU. In addition, the firmware is potentially an intellectual

property of the OEM. Thus, it is a requirement by the OEM to be able to protect

the confidentiality of the firmware, both that already installed and that about to be

installed. There are several options for conducting a firmware recovery process.

1. The old working firmware is stored in a separate memory space within the ECU,

and if the process fails, the boot manager will select the last working firmware.

However, this option may not be possible due to the memory constraints of the

ECU [89, 90].

2. The old working firmware can be extracted and stored in an external device

while conducting the update. If the update process fails, the external device

will download and reinstall the previous working firmware. However, this option

needs adequate security implementation to ensure that the intellectual property

of the ECU firmware is protected. There is a possibility for an attacker to perform

a rollback attack to rollback to the previous firmware with vulnerability. There

should be a mechanism to ensure that re-installation of the old firmware (due to

rollback) is not possible during a security update. This is beyond the scope of

our work.

Accessibility

Vehicles are potentially easily accessible physically. Although the ECUs are encapsu-

lated in the body of a car, they are still accessible through the network interfaces [12]

as mentioned in Section 2.6.2. This makes ECUs vulnerable to attack. For example, a

car owner can conduct an update process without authorised access control [16]. An

adequate security implementation could limit the accessibility of the firmware update

process and thus protect the ECU and the car.

44



3.2. Vehicular Firmware Update 3. Vehicular Applications

3.2.4 General Requirements for Firmware Update Process

We conclude that there are several general requirements for the overall firmware update

process.

Request for Update (GR1)

The ECU receives an external request for reprogramming. A proper mechanism is

required to ensure that the request is transmitted from a valid entity (an authorised

diagnostic tool). A diagnostic tool is the interface tool used in the workshop in the

firmware update process. A malicious diagnostic tool may be used to steal the firmware,

to copy the authorisation keys to update the firmware, or to install malicious code. A

malicious diagnostic tool may be invalid and non-authentic, or valid and authentic but

with malicious intentions. Potential attacks include replay attacks, man-in-the-middle

attacks and eavesdropping.

Authentic Flash Driver (GR2)

It is necessary to ensure that the authorised diagnostic tool is the same entity sending

consecutive commands. After the authentication of the diagnostic tool, the subse-

quent commands, which include the loading of the flash driver into RAM or flash data

memory, must be guaranteed to originate from the same entity in the same process

transaction. If this is not properly checked, a malicious flash driver (code) can be

installed to be used in an attack.

Authorised Firmware (GR3)

Authorised firmware is required to ensure compatibility. This can ensure that the

updated firmware is able to work and is not malicious.

Authorised Parts (GR4)

Authorised parts, which include the diagnostic tool and ECU, are required to ensure a

secure firmware update process and thus the reliability of the car.

Rollback Mechanism (GR5)

If any failure occurs during the update process or the firmware does not work after the

update process, a proper rollback mechanism should be in place.
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3.2.5 Methods of Vehicular Firmware Update

There are two methods of vehicular firmware update: conventional or over-the-air.

Conventional Firmware Update

A conventional firmware update is performed directly from the OEM to the car through

a diagnostic tool as shown in Figure 3.3.

OEM Diagnostic tool Car

Figure 3.3: OEM trusts diagnostic tool

During the manufacturing of the car, all the ECUs are uploaded with the required

cryptographic keys. All the keys are controlled by the car manufacturer, i.e. the keys

are managed by an entity entrusted by the car manufacturer. The diagnostic tool at

a trusted workshop or dealer is also trusted by the OEM (either the tool is equipped

with HSM or the keys are distributed to the tool manually). The tool is then able to

communicate with the ECUs in the car and is able to conduct the firmware update

process.

Pros: Key distribution is securely managed. Only trusted dealers and workshops are

able to conduct the firmware update process.

Cons: Car owners are required to go to a (trusted) workshop to conduct the firmware

update process (less flexibility for car owners).

Over-The-Air Firmware Update

An over-the-air (OTA) firmware update is performed with the availability of an internet

connection to the car [91]. We divide OTA updates into two methods: direct from OEM

(as shown in Figure 3.4) or through a mobile device (as shown in Figure 3.5).

Direct update from OEM to car If ECUs have similar properties to a mobile

device, it may be possible to conduct the update OTA, from the server of the OEM to
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OEM Car

Figure 3.4: Direct update from OEM

the car. The infrastructure required includes the OEM server to generate, store and

release the update, and the network to distribute the update. The ECU should also

be able to receive the update OTA, i.e. have a network interface and the supporting

software to receive and conduct the update.

Pros: Direct connection between OEM and car, without additional interfaces.

Cons: The car is supposed to be online all the time to be able to get notifications

and to conduct the update. This increases the risk of being attacked. Furthermore,

car owners do not have control of the remote updates performed [92].

OEM Car
Mobile device

Figure 3.5: Update through mobile device

Update through a mobile device In this concept, the OEM’s trust is transferred

from the diagnostic tool to the mobile device, which requires a secure mechanism to

authenticate the mobile and the user conducting the operation.

Pros: a) Distribution of updates is easily accessible, whether to large workshops and

dealers, workshops and garages, or to individuals. b) The update can be distributed

through the mobile operator’s network. c) In the case of offline updates, the mobile

device can first download the update and later apply the update to the car. d) There is
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only a short-term connection between car and outside world, which reduces the attack

risk. e) An additional medium to conduct rollback.

Cons: A mobile is not a secure communication device, so there is potential for an

attack on the mobile device itself.

3.3 Forensics

In this section, another selected automotive application is discussed. Vehicle forensics

is becoming an important feature in a vehicle’s design and operational life cycle. In-

terested stakeholders include insurance claim investigators and law enforcement, who

are interested in crime and crash incident investigation. In recent years, the forensic

feature has been further used by insurance providers and companies providing vehicles

to their employees for business-related activities.

In 2002, Duri et al. proposed a new framework for automotive telematics that con-

sidered security and privacy for end users, service providers and application providers

[93]. This work contributed to the introduction of insurance black boxes. They ex-

tended the work to investigate the data protection challenges in using telematics in

automotive applications [94]. They proposed different levels of privacy policy manager

to protect the data, and users can choose which policy level they want for the selected

service provider.

The European Commission investigated the use of Event Data Recorders (EDRs) in

its projects, Vehicle Event Recording based On Intelligent Crash Assessment (VERON-

ICA), i.e. VERONICA I (2004-2006) and VERONICA II (2007-2009). The VERON-

ICA I project summarised the use of EDRs over the years, along with their requirements

and effects [95]. It concluded that EDRs should be further used and available to a wider

group of people, not limited to experts. The VERONICA II project evaluated the se-

curity issues of EDRs for automotive forensics. In its final report [96], it summarised

the security requirements of EDRs, which are confidentiality, integrity, availability and

authenticity. EDR stakeholders were divided into three main groups, each with its own

interests, which are private, public and joint interests.

Currently, for digital automotive forensics, the two main and most commonly used

features are the EDR [97] and the insurance black box that works together with the

telematics unit [98]. An EDR is used to store data that is relevant to a crash incident.

At least fifteen parameters are stored in order to be recovered during forensic investi-

gation [97], including speed, seat belt status and airbag deployment state. The data

is continuously stored and overwritten on the Random Access Memory (RAM) of the
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EDR. Data storage to persistent memory (either Electrically Erasable Programmable

Read Only Memory (EEPROM) or flash memory) is triggered by a crash-like reading,

for example a sudden change in speed. The retrieval of data during the investigation

is conducted by reading the content of the EDR, either through the OBD-II port or

by physical extraction of the data memory of the EDR. There is however, a possibility

that the data fails to be recorded due to electrical failure in the vehicle, which causes

insufficient power to write to the EEPROM or flash memory of the EDR. The second

possibility for storage failure is that the EDR module is defective. In contrast, an

insurance black box continuously transfers the relevant parameters to the insurance

company’s server through the telematics unit, to monitor driving style. Driving style

is used to determine the insurance policy premium rate. A better and safer driving

style will result in a lower premium rate. However, there are unresolved issues related

to insurance black boxes, which include false data being transmitted to the telematics

unit or the server and telematics data not being available.

3.3.1 Automotive Forensics Use Cases

Commonly, forensic data is used during crash incident investigations. However, there

are many other use cases where forensic evidence and data logging could be useful. As

an example, a current trend adopted by insurance companies is to set the insurance

premium rate depending on the driving style. A device called the insurance black box

is installed in the car. The device will read parameters such as average vehicle speed,

acceleration, braking and cornering behaviours, and time of driving. The driving style

of a driver is sent through a telematics unit to the insurance company’s server. In

another example, available technology such as the Emergency Call (e-Call) service [99]

is used during crash accidents, and can call emergency contacts. The service transmits

location and time of accident to ensure rapid assistance. For criminal investigations,

GPS information could be used [100] to determine the location of a suspect.

Data logging can also be useful for car rentals. For example, Bob goes to the car

rental company and is given a car. In the same way that physical body checks are

conducted, if Bob can use a diagnostic feature, he can verify the status of the ECUs,

and the car as a whole (i.e. digital check) using an application that can interpret the

diagnostic data. If the car is in good condition, then Bob agrees to rent it. Otherwise,

Bob should notify the company about the vehicle’s current condition and he has the

choice of whether to rent the car or choose a different car. If a crash or accident happens

later, both parties, Bob and the car rental company, will have the evidence to prove the

actual situation. Similar to the car rental use case, a potential buyer of a second-hand

car can conduct a diagnostic test to ensure that all the units are working correctly as
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suggested by the seller.

For network intrusion, as an example, an attacker is able to access the in-vehicle

network, via the CAN bus network. He injects malicious messages to the CAN bus to

cause denial of service (DoS), or to manipulate the operations of a car. The injection

of malicious messages into the CAN bus network may cause a change in the normal

frequency of messages [11, 54]. By having a data logging system, a driver/owner could

be notified about the intrusion. Another example would be a valeting application, where

the car key is left with the valet service. Users do not want the valet to compromise

their cars, either by trying to steal stored private information, or by trying to trace their

future locations by adding a malicious device (for example a USB stick or a malicious

ECU) or application to the car.

The final example use case is diagnostic data. If there is any problem with the car,

the car owner can conduct a first step diagnostic before visiting a workshop to get the

problem solved. This will give the car owner a brief idea of what should be fixed and

its estimated cost. Owners can also benefit from assessing their driving style from the

stored data, and perhaps modify their driving habits and styles to reduce service costs

and likelihood of accidents [101].

The focus of this thesis is the framework to enable the use of this diagnostic ap-

plication, which could be used to enforce privacy requirements. The application is not

the focus of the thesis. With the use of the application in this framework, the user is

able to choose which data to share with others.

3.3.2 Forensic Process

The two main processes in forensics are the storage and retrieval of data as discussed

below.

Storage of Forensic Data

The ECU could be the storage place for forensic data. However, in the case of total

disruption to the car (and/or its units) caused by an accident, the data may not be

retrievable. The data in the EDR could be corrupted or changed as a result of bad

retrieval techniques [101], or it could be tampered with before storage, e.g. by hacking

the CAN bus and injecting malicious data. The cloud or a remote server could be

a safe place to store forensic data, as long as the data is recoverable and protected

from unauthorised access. The vehicle user should have control of what data is shared

with third parties via the cloud or remote server. A mobile device could be another

potential place to store forensic data; however, there are concerns about the tamper-
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resistance of data since a mobile is easily accessible compared to an EDR. A mobile

device would be a potential solution for a non-intrusive retrieval method. Compared

to data retrieval directly from the car’s black box, retrieving data from a mobile device

or a cloud would only involve logical digital access rather than physical access. It is a

user-friendly method that can be used to provide a first-hand/first impression forensic

result, and it reduces the possibility of causing any changes to the actual ECU that

could invalidate the evidential data. The mobile could also be used as a backup or

complementary unit for the EDR, as there are known problems related to the black

box, including failure to record, software and cable faults, OBD port retrieval issues,

technical/training problems and permission issues [101]. Compared to an EDR, the

mobile, through its Graphical User Interface (GUI) application, can help ensure that

the data is readily accessible. The owner or driver can also protect his/her interests

by having access to the first-hand forensic data. Forensic data are usually difficult to

retrieve (requiring specialised tools and technical expertise if stored in the car). By

having the data in the mobile device, the owner or driver has easy access to the data:

however, the data must be protected from any malicious tampering.

Data Retrieval of Forensic Data

Parties interested in retrieving forensic data would include law enforcement, lawyers,

investigators (for insurance or police), and car manufacturers, as well as the vehicle

owner/user. Law enforcement may be interested in the data to determine causes of

accidents. Vehicle manufacturers may use this information in order to improve their

vehicle designs and performance, and where possible to avoid or minimise the causes of

accidents. State and highway officials may be interested in the data to evaluate road

conditions and safety. The driver or the car owner might be interested in the vehicle

data, but may also attempt to modify or corrupt this data to conceal wrongdoing.

Data stored in a black box can be retrieved in three possible ways: firstly, through

physical connection to the OBD-II port, then logically accessing the black box from the

CAN bus; secondly, through physical connection to the ECU, then logically accessing

the EEPROM or flash memory from the black box operating system and application;

and finally, data can also be accessed through physical connection to the ECU’s EEP-

ROM or flash memory and conducting a memory dump. If the data is stored on a

server, only authorised parties are able to retrieve the data.

3.3.3 Challenges in Automotive Forensics

The challenges in automotive forensics are as follows:
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Availability of data The collected data may not be sufficient for forensic analysis,

especially for event reconstruction. The limited space for storage [96] contributes to this

limited data. It is also necessary to consider technical and security issues. The retrieval

of data currently requires expensive specialised tools and expertise [101], although

anyone can attempt to access private data via the vehicle network, accessible through

the OBD-II port. The availability of data could be compromised if automotive forensics

only relies on the availability of the EDR data [97].

Integrity of the data As described in the VERONICA II project [96], there is a

window of opportunity for tampering with data. This is between the accident and

before the download of data by an authorised party. Integrity and correctness of the

stored data cannot be verified in the existing system.

Data ownership There are many stakeholders with an interest in the collected data,

including car manufacturers, researchers, insurance companies, legal authorities and

car owners. The main challenge is to decide on the ownership of the data. Data may

be misused by stakeholders; for example, by the car manufacturer or the insurance

company [102]. The access control authorisation for data should really be given to the

car owner although certain data is compulsory in order to obtain a service. There is a

campaign to try to establish this right [103]. The car owner also needs access to the

stored and transferred data to verify that it is correct.

Privacy The existing telematics unit provides connectivity to the car and sends foren-

sic data directly to a server (for example the insurance black box) without the owner

knowing what is transmitted; this may violate the privacy of the driver.

3.3.4 Requirements in Automotive Forensics

The requirements for ensuring the provision of a successful automotive forensic system

are as follows:

Data availability For forensic analysis, it is crucial for the data to be available.

The availability of more data may help to increase the accuracy of the analysis. The

retrieved data should be authentic and its integrity should be protected. The data re-

trieval process must be secured to prevent intentional or unintentional data tampering.

Privacy preserving framework Since automotive forensics may provide identifi-

able data, a framework that can protect the privacy of the users is required.
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3.4 Maintenance Services Logging System

This section discusses another automotive application, which is also related to log-

ging systems. A maintenance logging system allows the car owner to keep the car’s

maintenance services record updated and hence can reduce the cost of maintenance

by avoiding major car breakdowns. In addition, it can add value to the car when it

is resold. The potential buyer is assured that the car is in good condition as it is

well-maintained. Logging of maintenance services also shows the party who conducted

the services, for example, whether they have been conducted by a reliable and trusted

workshop or car dealer.

3.4.1 Manual Maintenance Services Logging System

A manual maintenance services logging system is where the process of uploading and

storing the records of the services are manual. The workshop will issue receipts to show

the list of services performed, or write this information in the car’s physical logbook.

In a manual maintenance logging system, a malicious entity can:

(i) Fake a signature to show that the service was conducted by a recognised dealer or

workshop. If the process is manual and uses a printed document, the document

is stamped as a proof of signature. The stamp can be forged.

(ii) Fake a record to show that a service has been conducted when it has not. Dates

can easily be changed or faked.

(iii) Change the list of maintenance services conducted.

With a manual logging system, manipulation can be conducted by the car dealer or

the car owner, in order to increase a car’s value when reselling it. The owner might

request a workshop to falsify the records. The car dealer might falsify the records. An

untrustworthy workshop might falsify their list of services, repairs or part replacements

to obtain a higher profit.

3.4.2 Automated Services Logging System

In this system, the process of recording and storing the log is automated, mainly

operated by the workshop or car dealer. Automated processing can ensure availability

of data and ease of use. In the automated logging system, the potential storage locations

are electronic data loggers, mobile devices or cloud servers. The electronic data logger

resides in the car and is connected to the CAN bus as one of the nodes. The mobile
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device is an external device (to the car), and it requires a connection to communicate

with the in-vehicle network. The log could also be stored on a cloud server.

3.4.3 Challenges in Maintenance Services Logging System

The challenges in maintenance services logging systems are as follows:

Availability of data Since the process of maintaining a logbook is an administrative

burden, the availability of the data may be compromised. The car owner normally does

not have access to the data, unless it is manually recorded in a log book that he/she

keeps.

Integrity of the data The records in a manual logbook can be easily changed if

the process is manual. There is a high motivation to change the content of the record,

especially when the car is resold.

Data reliability In current implementations, there is no way the user/car owner

can verify the correctness of the data about the maintenance/repair being conducted.

The car owner cannot validate the services being conducted, and can only trust the

information provided by the workshop through the receipts or documents provided.

Data authenticity A potential buyer does not have an assurance that the records in

the maintenance log and from the workshops who performed the services are authentic.

3.4.4 Requirements in Maintenance Services Logging System

Storage The process of storing the maintenance data can be improved if it is au-

tomated and the data can be verified. Possible storage media could be a dedicated

ECU or an external device that is able to retrieve the required data from the car. For

example, the data could be stored on a mobile device, and later on a cloud server.

Data security protection The data should be protected in terms of its authenticity

and integrity to ensure its correctness and reliability.

3.5 Choosing the formal analysis tools

There are many protocol analysis tools available, such as Tamarin, AVISPA, ProVerif,

Athena, CasperFDR and Scyther. Formal protocol analysis is not the main focus of

our research. It is for completeness to ensure that our proposed protocols are secure

54



3.6. Summary 3. Vehicular Applications

and correct. Based on our brief research on the tools [104, 105, 106], we decided to use

CasperFDR and Scyther, mainly because of their ease of use in terms of modeling the

protocol and providing scripts and visual output. For example, [106] shows that Scyther

is more user-friendly than ProVerif in terms of output (visual output) and usage. In

[105], it is shown that ProVerif is the best (compared to Scyther, CasperFDR and

AVISPA) in terms of performance, but modeling the protocol is time-consuming.

We chose to use two tools and compare the results obtained. Both tools model

security based on the Dolev-Yao adversary model in which the adversary can overhear,

intercept and synthesize messages. Although both tools show that the proposed pro-

tocols are secure and correct, Scyther provides additional security properties that can

be verified: authentication (synchronisation is an additional property in Scyther) and

confidentiality.

Furthermore, the output of the attack location and visualisation is shown in Scyther

but not in CasperFDR. Scyther is easy to use the process requires the user to create

a script and run the verification, then the results of attacks can be shown (and easily

understood) in diagrammatic form. Although both tools are popular and publicly

available, Scyther is much easier to use as it is easily installed and used on Windows

in comparison to CasperFDR, which requires a number of steps to install the GUI and

libraries to run on Linux OS.

3.6 Summary

This chapter discussed three of the main vehicular applications. Firmware updates

of ECUs could be conducted OTA, either with the need for the car’s presence in the

workshop, or could be performed at any convenient place with a specified capability.

Vehicular forensics and maintenance record systems are related to the car’s logging

system. For each vehicular application, the processes, challenges and requirements are

discussed.

The discussions of the three selected vehicular applications will be useful in the fol-

lowing chapters, where we will discuss the proposed protocols. The discussions provide

the rationale for our solutions to the issues mentioned.
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Firmware updates for vehicular systems are crucial in ensuring the safety

and reliability of the car. One of the main industrial projects, the E-

safety Vehicle Intrusion Protected Applications (EVITA) project, proposed

an over-the-air firmware update protocol. We found some shortcomings and

proposed an improved protocol, EVITA+. Our proposed protocol provides

additional assurance by considering both security and general requirements

to ensure a successful update. These features can help to provide assurance

about the reliability and safety of the car.
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4.1 Introduction

Secure and updated firmware for ECUs is crucial to the overall security and reliability

of the vehicle and its electronic system(s). Therefore, the life cycle of these controllers

should be carefully managed. In this chapter, we examine the vehicular firmware up-

dates process and the associated security issues. We analysed the firmware update

protocol proposed in the E-safety Vehicle Intrusion Protected Applications (EVITA)

project, referred to as the EVITA protocol, which is considered one of the primary

industrial efforts in this field and found some potential shortcomings. Based on the

analysis, in this chapter we suggest a number of improvements to the EVITA proto-

col, related with safety and security measures. The proposed improved protocol, also

referred to as the EVITA+ protocol, includes a rollback mechanism while preserving

the confidentiality of the firmware. The integrity and authenticity of the flash driver

are also considered in the EVITA+ protocol. The EVITA+ protocol is implemented

to measure its performance and formally analysed using CasperFDR and Scyther, with

no known attacks found.

Chapter organisation The first section, Section 4.2 discusses the motivation for

studying automotive firmware updates. Next, Section 4.3 describes the related work

on automotive firmware updates. The threat model for automotive firmware updates

follows in Section 4.4. With this background, we propose a set of security requirements

for firmware updates as discussed in Section 4.5. These are followed by our analysis of

the EVITA protocol, Section 4.6. Our contribution to improve the EVITA protocol,

which is called the EVITA+ protocol, is discussed in Section 4.7. Next, Section 4.8

describes the analysis of the EVITA+ protocol, which includes informal and formal

analysis, and our implementation of the protocol.

4.2 Motivations

The E-safety Vehicle Intrusion Protected Applications (EVITA) project proposed a

secure firmware update protocol for automotive systems [31]. After analysing the pro-

tocol, we found some shortcomings that may cause operational issues. In particular,

in a firmware update process, the main issues are the confidentiality, authenticity and

integrity of the old and new firmware and the security of the update process. The final

stage of the update process should not cause any part of the car to be non-functional

3.2.1 as this could potentially cause an operational and/or safety issue. Therefore, we

need a rollback mechanism in case a failure occurs during the firmware update process

3.2.4. We also need to ensure the confidentiality of both the old and new firmware to
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help safeguard the OEM’s (Original Equipment Manufacturer’s) intellectual property

and to hinder reverse engineering that may aid attackers. Last but not least, we need

to ensure the authenticity and integrity of the new firmware.

4.3 Related Work

There have been a number of studies examining firmware updates in vehicular appli-

cations.

Nilsson et al. identified the need to verify the content of flash memory after the

installation process to ensure integrity of the updated firmware [107]. They proposed

a protocol to verify the integrity of the new installed firmware. As the new firmware

is transferred into RAM, there could be an attack before the installation of the new

firmware into the flash. Using the hash chain of each block of firmware, the integrity

of the firmware can be verified. The work only considered authentication for external

communications, not on-board communications (communications within the vehicle).

Confidentiality of firmware in transit over an insecure network and freshness of the

communication were not considered in this work.

Adelsbach et al. proposed a secure software delivery and installation method using

automotive applications as a case study [108]. They identified the model in the software

update process and gave specific roles to entities based on their requirements. Their

proposal was a secure installation procedure based on public key broadcast encryption

and trusted computing. The focus was more on the secure software delivery and dis-

tribution with Digital Rights Management (DRM) in the automotive community. The

work only considered authentication for external communications, and did not exam-

ine in-vehicle communications. Freshness was considered as an assumed requirement

during implementation. In another work, they proposed a Trusted Computing Base

(TCB) protocol, with three design options [109]. The options were proposed to give

different levels of flexibility versus trust level. The three options are: independent

tamper-resistant ECU; central tamper-resistant ECU using secure storage; and central

tamper-resistant ECU using partially insecure storage.

Patsakis et al. investigated security for in-vehicle communication [110]. They pro-

posed extending the use of the immobiliser to authenticate all ECUs. The protocol

involved mutual authentication of ECUs with the immobiliser, module voting by ECUs

and ticket issuing. The work only considered authentication for on-board communica-

tions, not external communications. Secure storage was not considered in this work.
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4.4 Threat Model

Table 4.1 shows the different entities and their potential objectives during firmware

updates. While the main objectives of firmware updates are performance improvement

and bug fixes (including security vulnerabilities), there are also other malicious objec-

tives. These include attacks to prove that there is a vulnerability, to gain knowledge for

the hackers own advantage, or to install malicious or non-authentic firmware. These

attacks may be conducted for research, monetary benefit, crime, theft or as an act of

terrorism.

As shown in 4.1, parts suppliers, firmware developers and car manufacturers perform

firmware updates to improve the performance of their devices or to fix bugs in any of

the operations. A mechanic from a workshop, or a dealer, performs a firmware update

to improve the performance of the car; for example, to improve fuel efficiency. A

mechanic from a workshop may perform an update to install non-authentic firmware

for monetary benefit, which may be requested by the car owner. An insurance agent

may want to perform a malicious update to change the data in the ECU to hide actual

data that can be used as forensic evidence. A competitor may want to perform an

update to spy on the operations of the car, or to perform reverse engineering, or even

to cause a malicious operation that could tarnish the image of its competition. A

hobbyist/researcher may perform a firmware update for all three reasons, depending

on what area of research/interest he/she is exploring. A criminal might try to play

around with updates to steal a car or bypass its security, steal parts for use on other

cars and use fake or counterfeit parts for repairs. A terrorist might want to make the

vehicle unsafe (so someone crashes), or controllable, or be able to track the vehicle.

The owner might want to make the car go faster, or conceal the true mileage and/or

origin when selling the car.

As shown in Table 4.2, different entities may be able to conduct the firmware up-

date process depending on their different capabilities. For example, car owners may

have little knowledge (expertise) of firmware updates and lack the equipment to con-

duct the update. Therefore, their capability (combination of expertise and equipment

capabilities) is considered as low. The threats to firmware update processes are as

follows:

We devised our threat model by evaluating the potential risks related to firmware

updates. These risks, as mentioned above, may be related to the motivation for per-

forming the attack, the entities involved in the process and their capabilities.
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Table 4.1: Firmware update entities and their objectives
Entities Objective

Improve performance Fix bugs Malicious
Part supplier X X
Firmware developer X X
Car manufacturer X X
Mechanic X X
Dealer X
Owner X X
Insurance agent X
Competitor X
Hobbyist/ researcher X X X
Terrorist X
Criminal X

Table 4.2: Firmware update entities and their capabilities
Entities Constraints Capabilities

Expertise Equipment
Part supplier High High High
Firmware developer High Medium High
Car manufacturer High High High
Mechanic Medium High Medium
Dealer Medium High Medium
Owner Low Low Low
Insurance agent Low Low Low
Competitor High High High
Hobbyist/ researcher High High High
Terrorist High High High
Criminal High High High

Obtaining Firmware

Firmware is the main asset in the firmware update process. Without security, the

firmware can be easily obtained, either by connecting a Joint Test Action Group

(JTAG) [111], using an integrated circuit or circuit board debugging tool to read from

the ECU memory, or by reading the content of the new firmware obtained from the

OEM. By obtaining the firmware, an attacker is able to learn about the operations of

the ECU, and thus the car as a whole. Among interested entities are the car manufac-

turer’s competitors, hobbyists, researchers and criminals.
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Reverse Engineering

If an attacker is able to get the firmware image or the corresponding binaries, he might

attempt to reverse engineer the operations of the firmware. This is related to the

first threat. Therefore the interested entities are the car manufacturer’s competitors,

hobbyists, researchers and criminals.

Firmware Modification

Following firmware analysis an attacker might attempt to modify its content in order

to introduce unauthorised functionality. Motivated entities are the car manufacturer’s

competitors, hobbyists, researchers, terrorists and criminals.

Obtaining Access Authorisation

Recent versions of vehicles require an authentication of the external device prior to

communication with the on-board ECUs. This includes the communication of the

diagnostic tool to the vehicle’s ECUs. An attacker is motivated to obtain access autho-

risation in order to conduct further attacks such as a masquerading attack. Motivated

entities are car manufacturers’ competitors, hobbyists, researchers, terrorists and crim-

inals. Owners and mechanics would also be motivated to obtain access authorisation

to be able to modify the car’s parameters for performance improvement.

Installing Unauthorised Firmware

A malicious tool or even an authorised tool used with a bad intention may be used

to install unauthorised firmware in ECUs. An unauthorised firmware could be mali-

cious firmware to harm the ECU or the vehicle, or even stolen legitimate firmware.

A firmware update may be charged for by the car manufacturer, or not, depending

on the features of the firmware. A safety/security update may not be charged, while

introducing a paid feature in a firmware update may be charged. An attacker could be

motivated to steal legitimate firmware to obtain the paid features. Motivated entities

are hobbyists, researchers, criminals, terrorists, owners and mechanics.

Unauthorised Device

Using an unauthorised device, in this case a non-authentic ECU in a vehicle, means

that if an attacker is able to get the authentic firmware to operate on the non-authentic

ECU, this will cause a loss to the ECU manufacturer. It may also cause safety issues.
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4.5 Security Requirements

There are many security requirements for firmware update processes, but we discuss the

main security requirements based on the threat model and the potential risks related

to firmware updates. The security requirements for the firmware update process are as

follows:

Mutual authentication (SR1) is required for all the entities involved in the com-

munication. In the firmware update process, the entities involved are the OEM server,

the middle interface device (which could be a diagnostic tool or a mobile device) and the

ECU. Mutual authentication includes authentication for both external communications

and on-board communications.

Secure storage (SR2) is required in the ECU to ensure that the cryptographic keys

reside in a secure tamper-resistant device.

Confidentiality (SR3) of the end-to-end communication between the OEM server

and the ECU is required to help protect the OEM intellectual property inherent within

the firmware and to hinder reverse engineering.

Integrity (SR4) of the communication, especially the firmware, needs to be pro-

tected. The end-to-end communications between the OEM server and ECUs need to

have integrity protection.

Freshness (SR5) of every new protocol session needs to be in place to ensure that

no replay attacks are possible. For example, using a random number or time stamp

would provide freshness on every firmware update session. A diagnostic tool should

not be able to simply replay messages from previous update sessions.

These are the basic security requirements in the firmware update process. The list

is not exhaustive, but they are the main features. Other security requirements include

mutual key agreement, trust assurance and privacy.

4.6 OTA Firmware Update by EVITA Project

In this section, we analyse the security solution proposed in the EVITA project [21].

We then highlight the issues of the proposed EVITA protocol.
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4.6.1 Protocol Description

The protocol for the EVITA OTA firmware update is shown in Tables 4.4, 4.5 and

4.6, and the notation is defined in Table 4.3. The EVITA protocol uses a dedicated

architecture using the EVITA Hardware Security Modules (HSMs). A dedicated Key

Master node is configured to store all public and preshared keys of all other ECUs

in the vehicle [31]. A formal methodology for this OTA firmware update protocol is

described in [112] using AVATAR and ProVerif.

Table 4.3: EVITA protocol notation
OEM Original Equipment Manufacturer (part manufacturer)
DT Diagnostic Tool
CCU Central Communication Unit
ECU Electronic Control Unit
Mk Secret nonce
pkx Public key of x = DT, CCU or ECU
pskecu Preshared symmetric key between CCU and ECU
skx Private/secret key of x = CCU, ECU, DT or OEM
Na Seed
Smk F (Na, sk) is a function to compute key in HSM

sk is factory preshared symmetric key between ECU and OEM
SSK Secure Session Key (firmware encryption key)
Fdr Flash driver
{M}K Message M is encrypted using key K
Signskx{M} Sign message M using private/ secret key x
FrmA Old firmware
FrmB New firmware
MACx AES based Message Authentication Code using key x
ts Time stamp
Ack Acknowledgement
fw Firmware
σ̂Frmx Signed Frmx by the OEM
= Equals
a||b a is concatenated with b

Tables 4.4 and 4.5 and 4.6 show the original EVITA protocol. Referring to Table

4.6, ?? denotes the assumed protocol (the message was not shown in the original EVITA

protocol, but we assumed the existence of the message from the text).

In the protocol [31], the firmware update starts with a remote diagnosis process

(Table 4.4). The diagnostic tool (DT) in a workshop communicates with the ECU

through the CCU. The remote diagnosis process is to authenticate the DT to the

ECU, and to get the ECU information (i.e. version, type, etc.) to the DT. This
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Table 4.4: EVITA protocol for remote diagnosis
1. DT → CCU : M1||Signskdt{M1}

M1 = {Mk}pkccu ||ts1

2. CCU → ECU : M2||Signskccu{M2}
M2 = {Mk}pkecu ||ts2

3. ECU → CCU : M3||Signskecu{M3}
M3 = Ack||ts3

4. CCU → DT : M4||Signskccu{M4}
M4 = Ack||ts4

process will output a secret nonce (Mk) to be used for Message Authentication Code

(MAC) computation until the completion of the firmware update protocol. The DT

will generate the Mk, encrypt it with the CCU’s public key and concatenate it with

a time stamp. It will pass this message (M1) with DT’s signature to the CCU in the

form of a signature with appendix. The CCU will verify the DT’s signature, decrypt

the message Mk with its secret key and store Mk. It will then encrypt Mk with ECU’s

public key and concatenate it with a time stamp. It will pass this message (M2) with its

signature to the ECU. The ECU will verify the CCU’s signature, decrypt the message

Mk with its secret key and store Mk. The ECU will send a message to the CCU to

acknowledge (the completion of storing Mk). The CCU will verify the signature and

send a message to the DT to acknowledge completion of the storage of Mk).

Table 4.5: EVITA protocol for ECU reprogramming mode
5. DT → ECU : M5||MACMk{M5}

M5 = request seed||ts5

6. ECU → DT : M6||MACMk{M6}
M6 = {Na}Mk||ts6

7. DT → ECU : M7||MACMk{M7}
M7 = {Smk}Mk||ts7

8. ECU → DT : M8||MACMk{M8}
M8 = Ack||ts8

The second stage is to unlock the ECU into reprogramming mode (Table 4.5). The

ECU is unlocked into reprogramming mode if the Smk produced by the DT matches

the Smk of the ECU. The DT will send a message (M5) to the ECU to request seed,
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concatenated with the MAC. The ECU will verify the MAC, generate the seed Na and

send a message (M6) containing the encrypted seed (using Mk), time stamp and MAC.

The ECU will compute the Smk based on the generated seed. The DT will verify the

MAC, and generate the Smk based on the received seed Na. It will then send a message

(M7) containing the encrypted Smk (using Mk), time stamp and MAC. The ECU will

then verify the MAC, and then compare the precomputed Smk with the received Smk.

If they match, the ECU is unlocked to enable reprogramming. The ECU will send a

message (M8) to acknowledge the DT.

Table 4.6: EVITA protocol for firmware download
9. DT → OEM : M9||Signskdt{M9}

M9 = request fw encryption key||ts9

10. OEM → DT : M10||Signskoem{M10}
M10 = {SSK}pskecu ||ts10

11. ?? OEM → DT : M11||Signskoem{M11}
M11 = ̂{σFrmB

}SSK ||ts11

12. DT → ECU : M12||MACMk{M12}
M12 = {SSK}pskecu ||ts12

13. ECU → DT : M13||MACMk{M13}
M13 = Ack||ts13

14. DT → ECU : M14||MACMk{M14}
M14 = ̂{σFrmB

}SSK ||ts14

15. DT → ECU : M15||MACMk{M15}
M15 = request transfer exit||ts15

16. ECU → DT : M16||MACMk{M16}
M16 = Ack||ts16

The final stage is the download and install process (Table 4.6). The DT will re-

quest a (session) firmware encryption key (SSK) from the OEM. The message (M9)

is concatenated with its signature. The OEM will verify the DT’s signature, gener-

ate the session key (SSK), encrypt it with pskecu, and send message M10 with a time

stamp and the OEM’s signature. In the proposed EVITA protocol, M11 was not shown

clearly in the message. However, we assumed at this point the firmware is being trans-

ferred from the OEM to the DT. The DT will verify the OEM’s signature and get the
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encrypted SSK. The DT will send {SSK}pskecu to the ECU without being able to de-

crypt and get the clear text value of SSK. The ECU will verify the MAC, and having

the pskecu, it will be able to decrypt the SSK. It will then send an acknowledgement

to the DT to notify the success of importing the SSK. The DT will verify the MAC,

and start sending the encrypted firmware ̂{σFrmB
}SSK concatenated with time stamp

and MAC, block by block to the ECU. Since only the corresponding ECU has the key

pskecu, it will be able to decrypt SSK and finally decrypt the firmware to install it to

its memory. The ECU will update its ECU Configuration Register (ECR) value with

the updated hash chain upon the successful update of each completed block. The DT

will send requesttransferexit to denote the last block has been sent. The final hash

chain value in the ECR is compared with the expected hash chain value, which may

be part of the firmware itself. The ECU will send acknowledgement to the DT upon

successful completion of the update process.

4.6.2 Shortcomings

From our informal analysis, there is still a potential attack during the update process.

This is by “bricking” the ECU. The motive is to attack the car by disrupting its

operation or making it non-functional. “Bricking” of a module is possible by disrupting

the content of the ECU or by disrupting the communication between the ECU and the

DT while an update process is in progress, as discussed in Section 3.2.2. This issue

can be solved by having backup firmware (i.e. the previously working firmware) that

can be restored to the ECU if the latest firmware update process fails. However, the

confidentiality of the previously working firmware must be protected.

Rollback and Backup Mechanism

The Hersteller Initiative Software (HIS) specification [88] gives a detailed description

of a potential flash update process. In its flash driver specification [113], there are

5 routines: initialisation, deinitialisation, erase, write and read. The read routine,

however, if called during the update process, is returned with an error code. The HIS

specification [88] claims the read routine is not needed for the purposes of performing

an update.

Since the RAM of the ECU may be small and not able to store the entire content

of the flash driver, the routines can be separated into 2 stages. The first stage contains

the initialise and erase routines, and the second stage contains the write and deinitialise

routines. For this reason, a backup of the previously working firmware is required. If the

update process fails at a certain point in the update, this will cause the ECU to “brick”.
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For example, after all the blocks of the ECU flash program memory (containing the

application) have been erased, and during the writing of block n, the process fails. Since

the update has not been completed, the ECU will be locked to further programming

processes. Upon the next reset, if there is no request from the diagnostic tool, the ECU

is considered a “brick”. However, the process may repeat and retry the update. The

diagnostic tool will likely abort after a few attempts (as a security measure to avoid

attempted attacks, or for performance issues, to avoid taking a long time to repeat the

process). An update protocol error can occur in normal use; however, it can also be

evidence of attack, such as an attempt to load modified malicious firmware. The ECU

loader would therefore be expected to have defensive means to block updates after a

retry limit has been reached. In this protected state the ECU would need to revert to

the last safe operational firmware.

Before the update process takes place, the currently working firmware needs to be

stored as a backup in case the update process fails. However, [88] does not support or

allow the upload of firmware by reading the ECU content to ensure IP protection.

Flash Driver Security

The flash driver contains the routines for erasing and writing to the flash memory. It

is necessary to ensure that no other flash driver can replace the intended flash driver.

The flash driver can either be loaded from the flash loader (which is already in the

ECU), or from an external device as shown in Fig. 3.2. If the flash driver is a part

of the flash loader, platform attestation can ensure that the loaded flash driver is the

correct one. However, the flash driver is usually loaded into the RAM of the ECU

from an external programming device. This is where an attack can be conducted [16].

Although the final updated content of the firmware is verified, the flash driver content

is not. One solution is to have the hash value of the flash driver stored in the ECU

flash loader in the ECU Configuration Register (ECR). When the diagnostic tool loads

the flash driver, the ECR value is compared. If it matches, the process can proceed;

otherwise it will stop and the ECU will be locked. This solution is an alternative for

an ECU with a small memory (as low as 2 kB flash [89]). In an ECU with a large

memory, the flash driver is already contained in the flash loader. Apart from verifying

the integrity of the flash driver, it is also necessary to check that the flash driver is

loaded in the same transaction request for update. This will further protect against

any other potential attacks such as replay attacks. If the flash driver is used in another

transaction, a replay attack can be used as a means to upload malicious firmware.
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4.7 Proposed Solution: EVITA+ Protocol

There are a few assumptions and restrictions in the EVITA+ protocol. Firstly, a CCU

firmware upgrade is beyond the scope of this work. This is because in this proposal, the

CCU is used as the backup storage for the old firmware. For a CCU firmware update,

an external device is required to store the backup of the old firmware. Secondly, any

ECU replacement should follow the EVITA requirements for key distribution, i.e. there

is a central node that stores all the individual ECU’s pre-shared symmetric keys and

public keys.

In our EVITA+ protocol, we add a number of messages to overcome the shortcom-

ings discussed in the previous section. The EVITA+ protocol is shown in Tables 4.7

and 4.8. Comparing Table 4.6, 4.7 and 4.8, additional messages introduced in EVITA+

are denoted with ?.

Table 4.7: EVITA+ protocol for firmware download (part I)
DT → OEM : M9||Signskdt{M9}

M9 = request fw encryption key||ts9

OEM → DT : M10||Signskoem{M10}
M10 = {SSK}pskecu ||ts10

?? OEM → DT : M11||Signskoem{M11}
M11 = ̂{σFrmB

}SSK ||ts11

? DT → ECU : M12||MACMk{M12}
M12 = Fdr||ts12

? ECU → DT : M13||MACMk{M13}
M13 = Ack||ts13

After the DT requests a firmware encryption key from the OEM (in M9), the

OEM replies to the DT with a firmware encryption key (also named the Stakeholder

Symmetric Key (SSK)) in M10. The SSK is encrypted with the symmetric key of the

ECU shared with the CCU (pskecu). The DT is not able to get the SSK as the pskecu

is only shared between the OEM and the ECU. The OEM will then transfer its signed

new firmware encrypted with SSK (M11), concatenated with its signature. In M12,

the flashdriver is transferred from the DT to the intended ECU. It is concatenated

with a MAC using a secret nonce (Mk), obtained during the remote diagnosis from

the DT. This will ensure that it is in the same transaction request for update from
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an authorised DT. This will prevent a replay attack as the Mk is random for every

session. An unauthorised DT will not be able to introduce a malicious flashdriver as it

is not able to participate in the particular communication session. The ECU will verify

the MAC from M12 and reply with acknowledgement as in M13, concatenated with a

MAC.

Table 4.8: EVITA+ protocol for firmware download (part II)
DT → ECU : M14||MACMk{M14}

M14 = {SSK}pskecu ||ts14

ECU → DT : M15||MACMk{M15}
M15 := Ack||ts15

? ECU → CCU : M16||MACMk{M16}
M16 = ̂{σFrmA

}SSK ||ts16

? ECU → CCU : M17||MACMk{M17}
M17 = request transfer exit||ts17

? DT → CCU : M18||MACMk{M18}
M18 = ̂{σFrmB

}SSK ||ts18

? DT → CCU : M19||MACMk{M19}
M19 = request transfer exit||ts19

?CCU → ECU : M20||MACMk{M20}
M20 = ε ̂{σFrmB

}SSK ||ts20

? CCU → ECU : M21||MACMk{M21}
M21 = request transfer exit, ||ts21

ECU → DT : M22||MACMk{M22}
M22 = Ack||ts22

Referring to Table 4.8, M14 handles the transfer of the SSK to the intended ECU

from the DT. Once the ECU receives and decrypts the SSK, it will send an acknowl-

edgement to the CCU (M15).

In the EVITA+ protocol, the objective is to have a backup of the previously working

firmware stored in the flash of the CCU. The ECUs come with different memory sizes

(RAM, flash). In our proposal, the CCU, having a large memory capacity (up to

2048 kB flash [89]), will store an encrypted version of the last working firmware of

the ECU to be updated using SSK. The signed firmware (by ECU) is read out from
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Table 4.9: Meeting the general and security requirements of firmware updates
Requirements [107] [109] [110] EVITA EVITA+

GR1 # # #   
GR2 # # # #  
GR3      
GR4 # #    
GR5 # # # #  
SR1 G# G# G#   
SR2 #  #   
SR3 #     
SR4      
SR5 # G#    

Note: #:Not meet, G#:Half meet,  :Fully meet

the ECU in encrypted format (M16) to ensure the confidentiality of the firmware and

Intellectual Property (IP) protection. The IP contained within the firmware could be

very valuable, providing a product differentiator for safety, reliability, performance or

economy; and representing a significant investment in research and development by the

manufacturer. M16 is also concatenated with a MAC. This is followed by a request

transfer exit from ECU (M17) when the final block is transferred. The encrypted new

firmware is transferred from DT to the CCU (M18) with a MAC. This is again followed

by a request transfer exit to notify the transfer of the last block of firmware (M19).

From the CCU, the encrypted firmware is transferred to the intended ECU (M20) also

concatenated with a MAC, and followed with a request transfer exit (M21) to notify

the ECU of the last block of firmware. The ECU will receive and install the blocks of

firmware and send acknowledgement (M22) with a MAC to the DT upon completion

of installation.

If at any point in the update, the process fails, the ECU will be restored back to its

previous working firmware, thus avoiding any ECU “bricking”. Following a successful

update process, the flash of the ECU containing the encrypted backup copy of the

previously working firmware will be cleared.

The EVITA+ protocol has the advantage of being efficient in terms of memory,

storing the temporary back-up firmware in the CCU. This is more efficient compared

to each ECU having extra memory storage to store its own back-up firmware. For

example, if there were 10 ECUs that needed memory size X to work, an extra 10X

memory would be needed to allow for back-ups in each ECU, whereas EVITA+ protocol

only needs an extra X of storage in the CCU, as the upgrade is conducted one ECU at

a time.
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Table 4.9 shows the comparison between related work, EVITA and EVITA+ and

how these meet the requirements in Section 3.2.4 in the previous chapter and Section 4.5

in this chapter. Although most of the proposed protocols considered the main security

requirements, the general requirements to ensure a successful firmware update process

were not considered. The EVITA+ protocol considers all the security requirements,

SR1 to SR5, as well as the general requirements GR1 to GR5. The success of a firmware

update process depends not only on the security requirements (SR1-SR5) as mentioned

in Section 4.5, but also other general requirements (GR1-GR5) as mentioned in Section

3.2.4.

SR1 is mutual authentication. Half meet in SR1 indicates that only one-way au-

thentication (not mutual) is met. SR5 is freshness. In [109], the freshness property is

only an assumption.

4.8 Protocol Analysis

In this section, we analyse the proposed protocol in terms of security and performance.

4.8.1 Informal Analysis

The EVITA protocol is designed to prevent attacks as follows:

Obtaining firmware Firmware is the main asset in the firmware update process. By

obtaining the firmware, an attacker is able to learn about the operations. Among the

interested entities are the car manufacturer’s competitors, hobbyists, researchers and

criminals. The firmware can be obtained by eavesdropping during the communication

between the OEM and DT or during the installation from DT to the car’s ECU. In

order to prevent this attack, the firmware’s confidentiality is protected by encrypting it

with the pre-shared key, pskfek. Even if an attacker is able to get the firmware image,

any attempt to reverse engineer the operations of the firmware will not be successful.

Only the OEM and the ECU, having the pskfek, are able to encrypt and decrypt the

firmware.

Firmware modification Following the firmware analysis, an attacker might attempt

to modify the firmware content in order to introduce unauthorised functionality. Moti-

vated entities are car manufacturers’ competitors, hobbyists, researchers, terrorists and

criminals. If the attacker tries to modify the firmware after the download of firmware

from OEM to the DT, the ECU will terminate the process once it verifies the incorrect

OEM’s signature.
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Obtaining access authorisation Recent versions of vehicles require authentication

of any external device prior to communication with the on-board ECUs. This includes

communication of the diagnostic tool with the vehicles’ ECUs. An attacker is moti-

vated to obtain access authorisation in order to conduct further attacks such as a mas-

querading attack. Motivated entities are car manufacturers’ competitors, hobbyists,

researchers, terrorists and criminals. Owners and mechanics would also be motivated

to obtain access authorisation to be able to modify parameters for performance im-

provement. Since pskfek and pskunlock are pre-shared between OEM and the ECU,

they are not easily accessible as they are stored in HSMs. Only encrypted keys are

passed from the OEM to the DT.

Installing unauthorised firmware A malicious DT or even an authorised DT with

a bad intention may be used to install unauthorised firmware into the ECUs. An

unauthorised firmware could be a malicious firmware designed to harm the ECU or

the vehicle, or even a stolen legitimate firmware. Motivated entities are hobbyists,

researchers, criminals, terrorists, owners and mechanics. Since the DT is authenticated

before the start of the installation phase, it is less likely that an unauthorised DT can

participate in the protocol and even an authorised DT will not be able to change the

firmware as it is signed by the OEM.

Change of OEM server address In an OTA update, a change in the OEM server

address (for example Domain Name System (DNS) poisoning) may cause a Man-in-the-

Middle (MITM) attack or a Denial-of-Service (DoS) attack. If an attacker is able to

change the source address, and the firmware is not protected, the ECU may be updated

with malicious firmware or not be able to be updated at all. On the other hand, if the

attacker is able to gain access to the OEM server, he would be able to get the firmware

and able to conduct reverse engineering or even modify the firmware. Motivated entities

are hobbyists, researchers, criminals, terrorists, owners and mechanics. Authentication

of the OEM server by the diagnostic tool will prevent this from happening.

Using unauthorised ECU Unauthorised ECUs will not be able to be updated. The

OEM is always updated with the latest ECU information from the proposed update

process.

In addition, the EVITA+ protocol is designed to prevent attacks as follows:

Denial of service attack Bricking of the ECU by denial of service is prevented

by the rollback mechanism proposed in the protocol. If the update process fails, the
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rollback mechanism will ensure that the previous working firmware is re-installed and

running on the ECU. This will ensure that the operations of the car will not be affected

by a denial of service attack during the firmware update operation. The integrity of

the backup firmware is also protected.

Unauthorised flash driver The flash driver authenticity is verified in the protocol

to ensure that only an authorised flash driver is used in the firmware update process.

4.8.2 Formal Analysis

The proposed protocol is formally analysed using CasperFDR and Scyther tools to

verify its correctness. The main reason for performing formal analysis using CasperFDR

and Scyther in this thesis is for completeness. The EVITA+ protocol is formally

analysed using CasperFDR and Scyther tools to ensure the modified protocol does not

introduce any security vulnerability.

The CasperFDR tool takes a high-level description of the protocol with its security

requirements, and translates the description into the process algebra of Communication

Sequential Process (CSP). The CSP description is then verified using Failure Diver-

gence Refinement (FDR) [114]. Similarly, the Scyther tool is an automated tool for the

verification of security protocols [115]. It uses an unbounded model checking approach.

The protocol behaviour and security claims can be verified from the operational seman-

tics describing the protocol. The Scyther tool provides a graphical user interface that

incorporates the Scyther command line tool and a Python scripting interface. Brief

introductions to these tools can be found in the appendices (CasperFDR in Appendix

A.1, and Scyther in Appendix B.1).

In the EVITA project, the protocol’s security objectives are firmware confidentiality,

key confidentiality, internal (CCU-ECU) and external (OEM-DT-CCU) authentication.

From our CasperFDR and Scyther input scripts, the following security claims were

made and verified for the EVITA+ protocol:

1. Confidentiality of the old firmware (FrmA) during the backup process, the con-

fidentiality of the new firmware (FrmB) and the confidentiality of the crypto-

graphic keys. The key confidentiality included confidentiality of the secret nonce

(Mk, used as the session key for the whole firmware update process), firmware

encryption key (SSK), secret key to unlock the ECU (Smk) and all secret keys

(skoem, skdt, skccu, skecu).

2. Authenticity of all entities involved in the firmware update process (OEM, DT,

CCU and ECU as defined in [31]). This includes agreement and aliveness tests as
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defined in [116, 117]. In Scyther, an additional authentication property, i.e., syn-

chronisation, is also verified. Synchronisation considers the content and ordering

of the messages [117]. Authenticity properties, which include:

• Aliveness between OEM, DT, CCU and ECU.

• Agreement between DT and CCU of Mk, agreement between ECU and CCU

of Mk.

• Synchronisation between OEM, DT, CCU and ECU.

In this section, only the improved protocol is discussed using CasperFDR and Scyther

scripts. However, we also verified the overall protocol, which includes the remote

diagnosis and ECU reprogramming modes. For both tools, we divided the protocol

into two different files of input scripts. The scripts are provided in Appendix A.2 and

B.2.

Analysis Using CasperFDR

The full script can be found in Appendix A.2.2. The security properties verified are

secrecy, aliveness and agreement. The confidentiality property verifies the secrecy of the

Mk, FrmA, FrmB and SSK. The aliveness property verifies the aliveness between DT-

OEM, DT-CCU and CCU-ECU. The agreement property is to ensure the agreement of

Mk shared between DT and CCU andMk shared between CCU and ECU. The intruder

has knowledge of all the entities (OEM, DT, CCU and ECU) and their corresponding

public keys.

The script starts with #Free variables declaration, which declares all the variables

used in the protocol. It is followed by the #Protocol description. This describes

the messages being transmitted (in sequence) during the firmware download, which

starts from the request for SSK (i.e. 1.a ->s:request,ts,{request,ts}{SK(a)}). In 7.b

->c:{m1}{ssk}%frm1,ts, h({{m1}{ssk}%frm1,ts}{mk}), it shows that agent c is not

able to decrypt the message as it does not have the SSK. It will simply pass the

message received in the variable frm1. This means the CCU (agent c) is only able to

receive the encrypted version of the old firmware and not able to decrypt it. It is the

same in 9.s ->a:{m2}{ssk}%frm2,ts,

{{m2}{ssk}%frm2,ts}{SK1(s)} where DT is not able to decrypt the encrypted new

firmware from the OEM.

In the #Processes, all the involved entities in the protocol and their knowledge

are declared. For example INITIATOR(a,s,c,request,mk,requestexit,Fdr) knows PK,

SK(a), PK1, where a is the DT, s is the OEM server, c is the CCU.
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The #Specification section declares all the assertions made to verify the security

properties. The confidentiality of Mk, FrmA, FrmB, secret keys and SSK are de-

clared as Secret(a,mk,[b]), Secret(b,m1,[c]), Secret(s,m2,[b]), Secret(a,SK(a),[a]), Se-

cret(b,SK(b),[b]) and Secret(s,ssk,[b]). As an authentication verification, the aliveness

property between DT-OEM, DT-CCU and CCU-ECU, and the Agreement property

between DT-CCU and CCU-ECU are verified.

The #Actual variables section describes the names of the actual agents, servers

and the actual variables such as FDR (flashdriver), FrmA (old firmware) and FrmB

(new firmware). In the #Functions section all the public and secret keys are de-

clared (symbolic PK,SK,PK1,SK1,PK2,SK2). The #System section again declares

all the involved entities in the protocol and their knowledge, but with their actual

names. For example, INITIATOR(DT,OEM,CCU,Req,Mk,ReqExit,FDR). The #In-

truder Information section declares intruder X who has knowledge of all the entities

involved and their public keys, and its own public and secret keys, i.e. IntruderKnowl-

edge=DT,ECU,OEM,X,PK,SK(X),PK1,PK2.

All the specifications made were verified and no attack was found for any of the

assertions.

Analysis Using Scyther

The full script can be found in Appendix B.2.2. The security properties verified were

secrecy, non-injective synchronisation, non-injective agreement and aliveness [117]. The

secrecy property verifies the confidentiality of the Mk, FrmA, FrmB, secret keys and

SSK. The non-injective synchronisation property verifies that all parties (OEM, DT,

CCU and ECU) know who they are communicating with, and agree on the content

of the messages and the order of the messages. Non-injective agreement verifies that

all parties (OEM, DT, CCU and ECU) agree on the content of the variables (Mk).

The aliveness property verifies that the intended communication partner (DT-OEM,

DT-CCU and CCU-ECU) has executed some events.

The script starts with functions declarations. Then, we have macros of messages

to make the script neat and easy to follow. Next, the events and claims are made for

each role (DT, OEM, CCU and ECU).

For example, for OEM role, the events are recv 9(DT,OEM,m9), send 10(OEM,

DT,m10) and send 17(OEM,DT,m17), which means OEM receives the macro m9 from

DT and sends macro m10 to DT; later it will send macro m17 to DT. Claims are the se-

curity properties to be verified. For example, for the OEM role, claim x5(OEM,Secret,

SSK) and claim x6(OEM,Secret,sk(OEM) are for confidentiality. Authentication prop-

erties are verified through Agreement (such as claim x2(OEM,Weakagree), claim x4
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(OEM,Niagree)), Synchronisation (claim x3(OEM,Nisynch)), and Aliveness (claim x1

(OEM,Alive)).

The default verification setup was used (i.e. five as the maximum number of runs,

type matching and finding the best attack with a maximum of ten patterns per claim).

The results for all the claims made are verified as “Ok” in the “Status” and “No attacks

within bounds” in the “Comments”. This means that no attack was found within

the bounded statespace, but there could possibly be an attack outside the bounded

statespace [118].

We used two tools to compare the features of the tools, and compare the verification

results. After using the two tools, we realised that the Scyther tool has an additional

property that can be verified, which is the synchronisation property. The synchroni-

sation property is a stronger authentication property compared to agreement, as it is

not vulnerable to preplay attacks [119].

4.8.3 Implementation

In this section, we describe the implementation of the updated protocol, called EVITA+.

The purpose of implementation was to measure the performance of the protocol, specifi-

cally for the constrained devices, i.e., the CCU and ECU. The computation and commu-

nication on the server were not part of the implementation, as we were more concerned

with the performance of the protocol on the user’s side. Furthermore, the performance

of the server and communication varies depending on the implementation.

Implementation Platform

This section explains the chosen platform for implementing the protocol.

Rationale of chosen platform Table 4.10 shows the comparison of features be-

tween EVITA HSMs and our chosen platform. Although there are actual ECUs avail-

able for individual purchase, those supporting the cryptographic algorithms are still

very limited, and have very limited technical support. Therefore, we choose a generic

microcontroller that supported most of the cryptographic algorithms to implement the

proposed protocols. However, the chosen platform does not have an internal HSM, i.e.

no internal non-volatile memory and no separate internal processing unit for secure

operation and storage.

Our approach to implementation was to observe the computation time on nodes

separately from the communication time. This is because communication can occur on
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Table 4.10: Features comparison between EVITA HSMs and PIC32MZ
Security features HSM PIC32MZ

Full Medium Light

Algorithms
ECC  # #  
RSA  # #  
AES     
CMAC/HMAC     
SHA1   #  
SHA256 # # #  
WHIRLPOOL   # #
RNG TRNG TRNG PRNG PRNG

Clock    #
Counter   # #
Internal NVM   G# #

Note: #:Not supported, G#:Optional,  :Supported

Table 4.11: Application sizes on PIC32MZ microcontroller
Code size (kB)

Protocol part DT CCU ECU

Remote diagnostic 447.88 48.6 47.8
ECU unlock 64.8 7.5 65.8
Install 87.2 71.0 66.3

different interfaces, especially for external communication. For internal communication,

the DT, CCU, and ECU communicate via the CAN bus.

Nodes The DT, CCU and ECU were simulated using a microcontroller with all the

functions required to be an actual ECU with cryptographic engines.

PIC32MZ2048ECM144 [120] was chosen as the implementation platform for DT,

CCU and ECU. It is a 32 bit microcontroller with 2048 kB of flash and 512 kB of

SRAM, and operates at 200 MHz clock. It supports CAN bus communication, as

required in an ECU. The hardware cryptographic engines support the computation of

cryptographic algorithms to produce faster performance.

The application sizes on DT, CCU and ECU are as shown in Table 4.11.

Communication The communication time was calculated based on a single message

transmission time.
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CAN communication All nodes communicating through the CAN bus (DT, CCU,

ECU) were simulated using the same microcontroller as mentioned above, i.e. PIC32MZ.

In order to observe the communication through the bus, the Microchip CAN bus anal-

yser tool [121] was used. The CAN bus analyser tool decodes the messages through

the bus and these messages can be observed via a GUI on the PC.

Programming and Debugging Environment

PIC32MZ The programming language was C using MPLABX IDE from Microchip

[122]. It has a compiler, debugger, and programmer. The libraries, for example for

CAN and the cryptographic algorithms, are provided by Microchip. For PIC32, all

libraries are provided through MPLAB Harmony [123]. The computation performance

of the nodes was measured based on the number of cycle counts given by the MPLABX

debugger. One cycle count for a 200 MHz clock is equal to 5 ns.

CAN communication The CAN communication was observed through the Mi-

crochip CAN bus analyser tool GUI. It provides a GUI to observe the messages going

through the CAN, and the user can input data through the CAN. Communication

performance was measured using a LeCroy Waverunner oscilloscope [124].

Experiment Setup

1 2 4

5

1 PIC32MZ starter kit

2 Starter kit adapter board

3 I/O expansion board

5 CAN bus analyser

4 CAN PICtail daughter board

3

Figure 4.1: Lab setup for nodes communicating through CAN bus

Hardware setup For the CCU setup, the simulation of the messages from and to the

DT used the Microchip CAN bus analyser tool [121]. The tool can be used to observe
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the messages sent from the PIC32MZ microcontroller and also to send messages to it.

On the PIC32MZ part, the PIC32MZ2048ECM144 starter kit [125] was connected to

a CAN PICtail daughter board [126] through a starter kit adapter board [127] and an

I/O expansion board [128]. The CAN PICtail daughter board was then connected to

the CAN bus analyser. The setup is shown in Fig. 4.1.

Software setup The size of the flash driver and firmware was set at 160 bytes each

for this implementation. This was just an indicative size, whereas a real firmware

size could be up to kilobytes or Megabytes. However, performing an update may

only mean updating the differential portion that requires the update, not the whole

firmware [129]. For MAC computation, HMAC SHA256 was used. RSA1024 was used

for digital signatures and public key encryptions. Based on the protocol, the length of

a message was more than 8 bytes, hence each message needed to be divided into more

than one CAN message due to the limited number of bytes of data per CAN message

transmission.

Implementation Results

Table 4.12: EVITA+ protocol performance
Protocol (phase) Message Time (ms)

Computation Communication Total EVITA+ Total EVITA
DT CCU ECU

Remote diagnostics 1 53.553 53.262 54.081 160.896 160.896
2 53.313 53.333 3.543 110.189 110.189
3 13.938 39.672 1.825 55.436 55.436
4 13.958 39.757 37.387 91.103 91.103

Total 417.624 417.624
ECU unlock 5 0.097 0.176 0.078 49.734 50.085 50.085

6 0.123 0.295 0.172 53.907 54.496 54.496
7 0.116 0.255 0.139 53.907 54.418 54.418
8 0.078 0.162 0.084 49.734 50.057 50.057

Total 209.057 209.057
Install 9 39.262 39.262 39.262

10 13.909 13.909 13.909
11 14.054 14.054 14.054
12 0.142 0.260 0.117 91.468 91.987 -
13 0.077 0.157 0.080 49.734 50.048 -
14 0.102 0.219 0.117 53.907 54.346 54.346
15 0.078 0.161 0.084 49.734 50.056 50.056
16 0.161 0.139 2.684 2.984 -
17 0.077 0.088 0.537 0.703 -
18 0.138 0.155 45.734 46.027 -
19 0.089 0.077 24.867 25.033 -
20 0.138 0.150 2.684 2.973 -
21 0.088 0.077 0.537 0.702 -
22 0.077 0.156 0.079 24.867 25.180 25.180

Total 417.264 196.807
Total 1043.944 823.488
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The protocol performance is as shown in Table 4.12. The total time for the remote

diagnostic phase (M1-M4) was about 417 ms. This is the phase where the DT is

authenticated to the car. The second phase, which is the ECU reprogramming mode

(ECU is unlocked for reprogramming), took about 209 ms. In the third phase, the total

time was about 417 ms. This was the total time excluding the computation time on

the OEM server and communication between the server and the DT. This performance

will vary according to the size of the flash driver and firmware. Depending on the ECU

application, the size of the flash driver and firmware may vary. The communication

time can be further improved if CAN FD (Flexible Data-Rate) [130] is used, where

one message can contain up to 64 bytes of data, instead of just 8 bytes. CAN FD is a

new protocol, and it is not supported in our chosen platform. If CAN FD is used, one

message from the protocol; for example, message 1 (in the remote diagnostic phase)

can be sent in just 4 messages instead of 33 messages using the standard CAN. Using

the same platform, EVITA+ requires about 26% more time compared to the EVITA

protocol since EVITA+ has additional messages (messages 12, 13, 16-21).

4.9 Summary

The EVITA project proposed a security protocol for OTA firmware updates. Our

proposed protocol provides additional assurance through the rollback mechanism that

protects firmware confidentiality. It also ensures secure transfer of the flash driver for

ECUs with different memory capabilities. These features can help to provide assurance

on the reliability and safety of the car. We present our threat model and outline the

general and security requirements to ensure a successful firmware update process.
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FOTA Using Mobile Application
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Security is the main consideration in the EVITA protocol, with limited con-

sideration of the reliability and flexibility of the update process. As we have

proposed improvements on the EVITA protocol for reliability of the update

process in previous chapters, in this chapter, we investigate the flexibility of

the update process. We consider the automotive components under the con-

trol of the car manufacturer, especially for the firmware update process, to

ensure a reliable, safe and secure car. At the same time, we need to ensure

the distribution of firmware updates is flexible and consumer-friendly. This

chapter proposes a secure firmware update protocol for automotive systems

using a mobile device.
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5.1 Introduction

Over-the-Air (OTA) firmware updates are available in some systems, such as mobile

networks. Security plays a vital role in ensuring that the firmware update process is

successful despite possible threats against it. Therefore mobile devices may be useful to

support the OTA firmware update process for other devices such as those used for au-

tomotive applications. Using a mobile device as a tool can offer added security features

as well as giving flexibility to the process. Automotive security is of high importance

as it is critically related to the safety and reliability of the vehicle. We consider an

OTA firmware update that eliminates the need for a workshop. We propose a secure

Firmware Update OTA (FOTA) protocol to offer flexibility in the firmware update

process, while meeting the required security requirements. The proposed protocol is

implemented to measure the performance and formally analysed using CasperFDR and

Scyther, with no known attacks found.

Chapter organisation The first section, Section 5.2 discusses our motivations for

improving automotive firmware updates. Next, Section 5.3 describes the related work

on automotive firmware updates. The threat model for automotive firmware update

follows in Section 5.4. These discussions support our conclusions about security re-

quirements for firmware updates as discussed in Section 5.5. We then present our

second contribution, Section 5.6, which involves automotive firmware updates using a

mobile device. Section 5.7 describes the analysis of the FOTA protocol, which includes

informal and formal analysis, and our implementation of the protocol.

5.2 Motivations

Firmware updates of automotive subsystems are security-critical, but as yet there is

no secure solution that is accessible to all the involved entities. A secure solution with

flexibility in the process is important to ensure its usability, especially by car owners.

Car recalls due to software errors that could cause harm/discomfort to passengers

[131, 132], may be avoided if a more flexible way of performing the update is available.

Providing flexibility to vehicle users to avoid going to car dealers to conduct updates

also creates a small cost saving for users as they are not liable for fees for the services

provided by car dealers. Aside from the service charge, the trip and the waiting time

are also removed.
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5.3 Related Work

There are many lessons to be learnt from the firmware update processes in other em-

bedded systems such as smart TVs and set-top-boxes. For an OTA firmware update,

a reliable network connection is required between the OEM server and the device.

Unavailability of the server may cause the update process to fail [133]. There are a

number of ways to conduct firmware updates, both automatically and manually. In

a manual process, the user is required to manually check for available updates at a

specific website, and store the new firmware in a Universal Serial Bus (USB) to be

later installed to the device [134]. Apart from causing inconvenience to users, this

adds an unwanted step that might cause the update to fail. For example, as users

are not specialists, they might choose not to perform the update, or may not even

be aware of the available update for their device. It also leverages attackers to have

access to the firmware. However, currently, these devices have direct access to the web

server (provided they have an internet connection). This eliminates the manual step

of downloading the update onto a USB. The user can then choose whether to conduct

the firmware update manually or automatically. In a manual update selection, the user

has to manually check for available updates through the menu on the device and select

whether to conduct the update or not. In an automatic update selection, the update is

automatically pushed to the device [135]. A thorough testing of all versions of devices

available in the market needs to be conducted to ensure the update is compatible and

will not cause the device to become unresponsive [136].

Firmware Update Over-the-Air (FOTA) for ECUs in the EVITA project [31] uses

the diagnostic tool at a workshop. This process requires the car to be in the workshop

to initiate the update process.

Flach et al. proposed CARMA for personalised tuning [137]. CARMA is a mo-

bile application on Android operating systems that can be used to change some engine

parameters (on a single ECU) to improve a car’s performance. However, in this prelim-

inary proof-of-concept work, security requirements were not explicitly discussed. Our

second contribution extends this in terms of security, and we also consider updates to

the whole firmware, rather than only a limited number of parameters on a single ECU.

The efficiency of the update process has been analysed in a few studies [138, 139].

They suggest using delta (only update the part of the software in which changes have

been made, not the entire software); compression to minimise the update time; opti-

mised networks; and microcontroller hardware.

In the automotive industry, available FOTA solutions are provided through collab-

orations between security and update providers. One example is a solution by Novero
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and Escrypt [140]. There is a server that acts as the software generator and provides key

management solutions. The server communicates with the software installer, which is

in the gateway ECU. The security in the car is provided by a hardware security module

in the gateway.

5.4 Threat Model

The threats are the same as in Section 4.4. An additional threat for this type of

firmware update as opposed to conventional firmware updates, where the car does not

need to be in an accredited workshop, is:

Change of OEM Server Address

In an OTA update, a change in the OEM server address (for example DNS poisoning)

may cause a Man-in-the-Middle (MITM) attack or a Denial-of-Service (DoS) attack.

If an attacker is able to change the source address, the ECU can be updated with

malicious firmware or may not be able to be updated at all. On the other hand, if the

attacker is able to gain access to the OEM server, he can access the firmware and is

able to conduct reverse engineering or even modify the firmware. Motivated entities

are hobbyists, researchers, criminals, terrorists, owners and mechanics.

5.5 Security Requirements

The security requirements are the same as in Section 4.5. In the OTA process, the

diagnostic tool is optional, and therefore its authentication could be ignored if it is not

involved.

5.6 Proposed Solution

We decided to choose an architecture with a mobile device as an interface for the FOTA

process. In this section, the goals of the protocol are described. Later, the protocol

messages are explained in detail. The formal analysis is discussed at the end of this

section.

5.6.1 Goals

In this section, we consider the requirements for each entity involved in the FOTA

protocol. In a FOTA, there are three entities involved: the OEM, the mobile device
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and the ECU to be updated. Each entity is responsible for performing certain tasks

in the proposed protocol. The tasks ensure that all security requirements are satisfied.

For each of the entities, the goal of the protocol is as follows:

1. The OEM is required to

(a) distribute the updated firmware with confidentiality.

(b) store updated information related to the car; for example, versions of firmware,

parts IDs and associated cryptographic keys.

(c) ensure secure communication between the OEM and car via the mobile

device (including authentication).

2. The mobile device is required to

(a) pass the encrypted firmware from the OEM server to the car.

(b) authenticate the parties involved (OEM and car) in the update process.

(c) pass information from the car to the OEM server and vice versa.

(d) store the old encrypted firmware from the car as a backup.

3. The ECU is required to

(a) authenticate the OEM through the mobile device.

(b) pass an encrypted version of the old working firmware to the mobile device

prior to the installation of the update.

(c) receive the encrypted version of the new firmware from the OEM server

(through the mobile device), decrypt it and install it.

(d) inform the OEM server if any ECU has been replaced, via the mobile device.

5.6.2 Protocol Assumptions

In this section, we discuss the protocol notation (as shown in Table 5.1) and assump-

tions.

Assumptions

In order to perform the proposed protocol, there are a number of assumptions. We

thus limited the scope of our work based on these assumptions.
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Table 5.1: FOTA protocol notation
OEM Original Equipment Manufacturer
CCU Central Communication Unit
ECU Electronic Control Unit
MD Mobile Device
idx ID of entity x, x=OEM, mobile device, CCU or ECU
pkx Public key of entity x, x=OEM, mobile device, CCU or ECU
skx Private key of entity x, x=OEM, mobile device, CCU or ECU
KNb Session MAC key between MD-CCU-ECU
KNa Session MAC key between OEM-MD
{M}k Message M is encrypted with key k
signsk{m} Message m is signed with private key sk
MACK{m} MAC of message m using key K
ts Time stamp
pskecu Pre-shared symmetric key of ECU (shared between OEM and ECU)
pskfek Pre-shared firmware encryption key (shared between OEM and ECU)
pskunlock Pre-shared symmetric key to unlock the ECU into reprogramming mode

(shared between OEM and ECU)
Frmold Old working firmware
Frmnew New firmware (to be updated)
= Equals
a||b a is concatenated with b

1. Cryptographic keys between the OEM and cars (Central Communication Unit

(CCU) and ECUs) are preloaded during the manufacturing stage. The CCU is

the central unit that stores all the keys for all ECUs in the same network. All

external communications to the car must go through the CCU.

2. HSM-based ECUs are used, i.e. as proposed in the EVITA project.

3. A mobile application will be used to conduct all the mobile device’s functions for

the OTA firmware update protocol.

4. The mobile application is used for an individual car, i.e. one car per mobile

device. For fleet management, or car rental companies, a different registration

procedure is required.

5. All ECUs are known to the OEM, i.e. the cryptographic keys are pre-loaded

before the ECUs are distributed in the market for parts replacements.

6. Every car has a bar code that can be scanned to obtain the car’s details. It may

reside on the engine or the dashboard compartment.

87



5.6. Proposed Solution 5. FOTA Using Mobile Application

7. The ECUs and CCUs are tamper-resistant. They contain HSMs that can provide

a layer of security to prevent unauthorised access.

8. The communication channels between the entities are vulnerable to attacks.

9. The mobile device is registered with the car manufacturer. Even if a mali-

cious user uses an authorised mobile device, he would not be able to obtain

the firmware.

5.6.3 Protocol Description

The mobile device is seen as a tool to receive notification of available updates and the

firmware update itself. When an update is available, the car manufacturer notifies the

car owner through the mobile application. The car owner will download the updated

firmware into his mobile device. At a later, convenient time, he can download and

install the firmware into his car ECU from his mobile device.

Registration

First, we consider the registration process for all the involved parties. In this proposal,

we consider the car manufacturer is the trusted party maintaining the registration and

the application server for its firmware updates. This could be performed by a trusted

third party appointed by the car manufacturer. During the installation and registration,

the mobile device will obtain the cryptographic keys for further communications. The

required keys are the OEM server public key, the CCU public key and the ECU public

key (to verify the signatures of OEM, CCU and ECU respectively). The OEM server

and the car will obtain the mobile device’s public key. Whenever an ECU is replaced,

the mobile device will be updated with the new parameters (this will be discussed in

5.6.3).

1. Mobile device: Firstly, the mobile device needs to install the application, which

will be available from the application store. Once the application is installed into

the mobile device, the public key of the OEM is obtained.

2. OEM: The unique identification of the car (this could be the vehicle identification

number) will be obtained. From the car identification number, car parameters

such as the make, model and year of manufacture are obtained. These parameters

are important to be able to receive the correct update from the OEM server. This

can be done conveniently by scanning the bar code of the car using the mobile

device’s camera (this is outside the scope of this work). In this phase, the public
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key of the CCU and all ECUs’ identifications are obtained. The parameters are

stored in the mobile device to be later transported to the OEM in order to get

the relevant updates.

3. In the event of a change of ownership of the car or mobile device, a deregistration

is required. The owner has to notify the registration party.

Notification

This phase is required to ensure the ECU gets the correct update. There are two

options for obtaining the update. The mobile user can manually check whether any

update is available, or be automatically notified by the OEM.

Table 5.2: Protocol description: OEM-MD Download phase
1. MD → OEM : M1||signskmd

{M1}
M1 = idmd||{KNa}pkoem ||ts1

2. OEM → MD : M2||signskoem{M2}
M2 = idoem||ack||ts2

3. MD → OEM : M3||MACKNa
{M3}

M3 = idmd||RequestDL||idecu||ts3

4. OEM → MD : M4||MACKNa
{M4}

M4 = idoem||{pskunlock}pskecu ||ts4

5. MD → OEM : M5||MACKNa
{M5}

M5 = idmd||ack||ts5}

6. OEM → MD : M6||MACKNa
{M6}

M6 = idoem||{Frmnew}pskfek ||ts6

7. MD → OEM : M7||MACKNa
{M7}

M7 = idmd||ack||ts7

Download to Mobile Device

When a new firmware update is available, the update is downloaded into the mobile de-

vice in an encrypted version using a firmware encryption key (pskfek). The (encrypted)

key to unlock the ECU pskunlock is also transferred to the mobile device. Refer to Table

5.2.
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1. The OEM and mobile device will establish a secret session key, KNa. This session

key KNa is generated by the mobile device and securely shared with the OEM. It

will be used for MAC computations during the whole OEM-MD download phase.

The mobile device will sign the message of idmd, encrypted KNa and timestamp.

KNa is encrypted with the OEM public key, concatenated with a time stamp and

the mobile device’s signature. The signature is in the format of signature with

appendix.

2. The OEM will verify the signature, decrypt the KNa and store it and send an

acknowledgement.

3. The mobile device sends a request for the firmware download, RequestDL. It is

concatenated with the identification of the respective ECU (idecu), time stamp

and the MAC.

4. The OEM verifies the MAC and sends the key to unlock the ECU into repro-

gramming mode (pskunlock). The key is encrypted with a pre-shared key between

the OEM and ECU (pskecu).

5. The mobile device verifies the MAC, stores the encrypted {pskunlock}pskecu and

sends an acknowledgement.

6. The OEM then sends the firmware (Frmnew) encrypted with the pre-shared

firmware encryption key (pskfek).

7. The mobile device verifies the MAC, stores the encrypted firmware and sends an

acknowledgement.

Download and Install

Refer to Table 5.3 for this phase. Once the new firmware is downloaded in the mobile

device, the user can choose to conduct the update at a later convenient time. This is

an advantage if the car has no long-range wireless communications of its own.

1. The mobile device and the car will establish a session key KNb. This session key

KNb is generated by the mobile device and securely shared with the car (CCU

and ECU). It will be used for MAC computation during the whole MD-ECU

download and install phase. The mobile device will sign the message of idmd,

encrypted KNb and timestamp. The KNb is encrypted with the CCU’s public

key, concatenated with a time stamp and the mobile device’s signature.
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Table 5.3: Protocol description: MD-ECU Download and install phase
1. MD→CCU : M8||signskmd

{M8}
M8 = idmd||{KNb}pkccu ||ts8

2. CCU→ECU : M9||signskccu{M9}
M9 = idccu||{KNb}pkecu ||ts9

3. ECU→CCU : M10||signskecu{M10}
M10 = idecu||ack||ts10

4. CCU→MD : M11||signskccu{M11}
M11 = idccu||ack||ts11

5. MD→ECU : M12||MACKNb
{M12}

M12 = idmd||{pskunlock}pskecu ||ts12

6. ECU→MD : M13||MACKNb
{M13}

M13 = idecu||ack||ts13

7. ECU→MD : M14||MACKNb
{M14}

M14 = idecu||{Frmold}pskfek ||ts14

8. MD→ECU : M15||MACKNb
{M15}

M15 = idmd||ack||ts15

9. MD→ECU : M16||MACKNb
{M16}

M16 = idmd||{Frmnew}pskfek ||ts16

10. ECU→MD : M17||MACKNb
{M17}

M17 = idecu||ack||ts17

2. The CCU will verify the signature, decrypt the KNb and store it. It will then

encrypt KNb with the ECU’s public key, concatenated with a time stamp and

the CCU’s signature and send it to the ECU.

3. The ECU will verify the signature, decrypt the KNb and store it and send an

acknowledgement.

4. The CCU will verify the signature, decrypt the KNb and store it and send an

acknowledgement to the mobile device.

5. The mobile device transfers the encrypted unlock ECU key, ({pskunlock}pskecu) to

the ECU. It is the key that unlocks the ECU to enable it to enter the reprogram-
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ming mode.

6. The ECU has its own unlock key, which is only known to itself and the OEM.

The ECU will verify the MAC and decrypt {pskunlock}pskecu . If it is the correct

key, the ECU will switch to reprogramming mode. Otherwise, the process stops

here.

7. The ECU transfers the old firmware (Frmold) to the mobile device. This firmware

is encrypted using the pre-shared pskfek, concatenated with a time stamp and

MAC. The currently working firmware in the ECU (Frmold) is transferred to the

mobile device in an encrypted version to ensure its confidentiality. This will be

used as a backup for rollback if the installation of the new firmware fails.

8. The mobile device sends an acknowledgement to the ECU once all the blocks

of the encrypted Frmold are received. By transferring the old firmware to the

mobile device as a backup, it avoids doubling the memory size in all ECUs.

9. The mobile device sends the encrypted firmware update {Frmnew}pskfek to the

ECU.

10. The ECU receives the encrypted firmware update {Frmnew}pskfek from the mo-

bile device. After the MAC is verified, it decrypts the firmware and installs the

updated firmware to the flash of ECU block by block. The firmware is encrypted

with a pre-shared firmware encryption key. Only the ECU is able to decrypt the

firmware. For every block of installed firmware, the chain of hashes are computed

and verified. Any error will terminate the update process and the process will

restart again. After three trials, the ECU will roll back to its previous version. If

the rollback fails, an error message will be indicated on the mobile application.

A replacement of an ECU maybe suggested if there is any issue with memory

failure.

ECU Replacement

If any of the ECUs are replaced, the key update protocol needs to be established to

ensure further firmware updates on the ECUs are possible.

1. The mobile device (through the CCU) requests the new ECU information (Re-

questID).

2. The ECU gives its ID to the mobile device (through the CCU).
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Table 5.4: Update/ECU replacement phase (between OEM-MD-car)
1. MD→ECU : M1

M1 = idmd||RequestID||ts1

2. ECU→MD : M2
M2 = idecu||ts2

3. MD→OEM : M3||signskmd
{M3}

M3 = idmd||RequestV erifyID||idecu||ts3||

4. OEM→MD : M4||signskoem{idoem||{M4}
M4 = idoem||{rnd, pskecu, pkecu}pkccu ||ts4||

5. MD→CCU : M5||signskmd
{idmd||{rnd, pskecu, pkecu}pkccu ||ts5}

M5 = idmd||{rnd, pskecu, pkecu}pkccu ||ts5||

6. CCU→ECU : M6
M6 = idccu||rnd||pkccu||ts6

7. ECU→CCU : M7
M7 = idecu||{{rnd}pskecu}pkccu||ts7

8. CCU→MD : M8||signskccu{M8}
M8 = idccu||ack||ts8

3. The mobile device requests the OEM to verify the authenticity of the ECU (Re-

questVerifyID). It is concatenated with the idecu, time stamp and its signature.

4. The OEM will verify the ECU’s ID and will ask the CCU to conduct further

verification. It sends a random number (rnd), pskecu and pkecu, encrypted with

the CCU’s public key, to the mobile device.

5. The mobile device passes this message to the CCU.

6. The CCU decrypts the message to obtain the rnd, pskecu and pkecu. It then

passes rnd and its pkccu to the ECU.

7. If the ECU is authentic, it can produce the correct {rnd}pskecu and pass the value

(encrypted with the received pkccu) to the CCU. The CCU decrypts and verifies

the value sent by the ECU with the precomputed value.

8. The CCU acknowledges authenticity, and sends an acknowledgement to the mo-

bile device.
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5.7 Protocol Analysis

In this section, we analyse the proposed protocol in terms of security and performance.

5.7.1 Informal Analysis

The protocol provides the same features as in the previous chapter. It is designed to

prevent attacks such as obtaining firmware, firmware modification, obtaining access au-

thorisation, installing unauthorised firmware, changing the OEM server address, using

an unauthorised ECU and bricking the ECU (as discussed in Section 4.8.1). In this

protocol, the diagnostic tool is replaced by the mobile device.

5.7.2 Formal Analysis

The proposed protocol is formally analysed using CasperFDR and Scyther tools to

verify its correctness.

The protocol’s security objectives are key confidentiality and internal (CCU-ECU)

and external (OEM-MD and MD-CCU) authentication. From our CasperFDR and

Scyther input scripts, the following security claims are made and verified:

1. Confidentiality of the secret nonces (KNa and KNb: used as the MAC keys), sym-

metric preshared keys (pskfek, pskunlock and pskecu), the old and new firmware

(Frmold, Frmnew) and all secret keys (skoem, skmd, skccu and skecu).

2. Authentication properties, which include:

• Aliveness between OEM, MD, CCU and ECU.

• Agreement between OEM and ECU of pskfek, pskunlock and pskecu, agree-

ment between MD and ECU of KNb, agreement between OEM and MD of

KNa.

• Synchronisation between OEM and MD, synchronisation between MD, CCU

and ECU.

In this section, only the first part of the protocol is discussed using CasperFDR and

Scyther scripts. However, we also verified the overall protocol, which includes the ECU

replacement part. The scripts are provided in Appendix A.3 and B.3.

Formal Analysis Using CasperFDR

The full script can be found in Appendix A.3.1. The security properties verified are

secrecy, aliveness and agreement. The confidentiality property verifies the secrecy of
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the KNa, KNb, pskfek, pskunlock, pskecu, Frmold and Frmnew. The aliveness property

verifies the aliveness between MD-ECU and OEM-MD. The agreement property is to

ensure the agreement of KNb shared between MD and ECU, KNa shared between OEM

and MD and pskfek, pskunlock and pskecu shared between OEM and ECU. The intruder

has knowledge of all the entities (MD, OEM, CCU and ECU) and their corresponding

public keys.

The script starts with the #Free variables declaration, which declares all the vari-

ables used in the protocol. It is followed with the #Protocol description. This de-

scribes the messages being transmitted (in sequence) during the firmware download,

which starts with the MD sending a nonce encrypted with the OEM’s public key and

a signature is appended (i.e. 1.a → s:a,{kna}{PK1(s)}, ts, {a, {kna} {PK1(s)},ts}
{SK(a)}.

In 4.s→a: s, {pskunlock} {pskecu} % ssk, ts, h({s, {pskunlock}{pskecu}%ssk, ts}
{kna}), it can be seen that agent a is not able to decrypt the message as it does not

have the pskecu. It will simply pass the message received in the variable ssk. This

means that the MD (agent a) is only able to receive the encrypted pskunlock and

not able to decrypt it. It is the same in 8.s → a: s, {frmnew} {pskfek} % frm2,

ts, h({s, {frmnew}{pskfek}%frm2, ts} {kna}) where MD is not able to decrypt the

encrypted new firmware from the OEM.

In the #Processes, all the entities involved in the protocol and their knowledge are

declared. For example, INITIATOR(a,s,b,c, kna, requestdl, ack, knb) knows PK, PK1,

SK(a), where a is the MD, s is the OEM server, c is the CCU and b is the ECU. The

#Specification declares all the assertions made to verify the security properties. The

confidentiality of kna, knb, pskunlock, pskecu, pskfek, frmnew and frmold are declared

as Secret(a,kna,[a,s]), Secret(a,knb,[a,b]), Secret(s,pskunlock,[b]), Secret(s,pskecu,[b]),

Secret(s,pskfek,[b]), Secret(s,frmnew,[b]), and Secret(b,frmold,[b]). As an authentica-

tion verification, the aliveness property between MD-ECU and OEM-MD, and the

Agreement property between MD-ECU, OEM-MD and OEM-ECU are verified.

The #Actual variables section describes the names of the actual agents, server and

the actual variables such as frmold (old firmware) and frmnew (new firmware). In the

#Functions section, all the public and secret keys are declared (symbolic PK, SK, PK1,

SK1). The #System section again declares all the involved entities in the protocol and

their knowledge, but with their actual names; for example, INITIATOR(MD, OEM,

ECU, CCU, KNa, RequestDL, ACKs, KNb, RequestExit). The #Intruder Information

defines an intruder, X, who has knowledge of all the entities involved and their public

keys, and its own public and secret keys, i.e. IntruderKnowledge={MD, OEM, CCU,

ECU, X, PK, PK1, SK(X)}.
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All the specifications made were verified and no known attack was found for any of

the assertions.

Formal Analysis Using Scyther

The full script can be found in Appendix B.3.1. The security properties verified were

secrecy, non-injective synchronisation, non-injective agreement and aliveness [117]. The

secrecy property verifies the confidentiality of the KNa, KNb, pskecu, pskfek, pskunlock,

Frmold and Frmnew. The non-injective synchronisation property verifies that all par-

ties (MD, OEM, CCU and ECU) know who they are communicating with, and agree

on the content of the messages and the order of the messages. Non-injective agreement

verifies that all parties (MD, OEM, CCU and ECU) agree on the content of the vari-

ables (KNa and KNb). The aliveness property verifies that the intended communication

partner (MD-OEM, MD-CCU and CCU-ECU) has executed some events.

The script starts with function declarations. Then, we have macros of messages to

make the script neat and easily followed. Next, the events and claims are made for each

role (MD and OEM). The roles are the agents involved in the protocol. For example,

for the MD role, the first two events are send 1(md,oem,m1) and recv 2(oem,md,m2),

which means the MD starts by sending m1 to OEM and later receives m2 from the

OEM.

Claims are the security properties to be verified. The claims are based on the

agents’ local view of the state of the system. The protocol should ensure that some

properties of the global state of the system can be known to the agents based on this

local view. For example, for the MD role, claim a5 (md,Secret,pskFEK), claim a6

(md, Secret, frmnew), claim a7 (md, SKR, KNa), claim a8 (md, Secret, sk(md)) are

for confidentiality. This means that the pskFEK, frmnew, KNa, and sk(md) should be

secret (not known to the adversary) in every trace of the protocol if the mobile device

communicates with any non-compromised OEM [117].

In this script’s analysis, the following authentication properties are verified: Agree-

ment (claim a2 (md,Weakagree), claim a4 (md, Niagree)), Synchronisation (claim a3

(md, Nisynch)), and Aliveness (claim a1 (md,Alive)).

The default verification setup was used (i.e. five as the maximum number of runs,

type matching and finding the best attack with a maximum of ten patterns per claim).

The results for all the claims made are verified as “Ok” in the “Status” and “No

attacks within bounds” in the “Comments”. This means that no attack was found

within the bounded statespace, but there is the possibility of an attack outside the

bounded statespace [118].
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5.7.3 Implementation

In this section, we describe the implementation of the proposed protocol. The pur-

pose of implementation is to measure the performance of the protocol, specifically for

the constrained devices, i.e. the ECU and the mobile device. The computation and

communication on the server are not part of the implementation.

Implementation Platform

This section explains the chosen platform for implementing the protocol. Our approach

to implementation is to observe the computation time on nodes separately from the

communication time. This is because the communication can occur on different inter-

faces, especially for external communication. For internal communication, the CCU

and ECU communicate via the CAN bus.

Nodes Two platforms are used for the three communicating nodes. There is an

additional platform in this protocol compared to Section 4.8.3, which is the mobile

device.

CCU and ECU The same implementation platform was used for the CCU and

ECU as mentioned in Section 4.8.3.

Mobile device For the mobile device, the application protocol was loaded onto an

LG Nexus 5 with a Quad-core 2.3 GHz Krait 400 CPU running on Android 5.1. The

mobile device communicates with the CCU through Wi-Fi communication.

The application sizes on CCU and ECU are as shown in Table 5.5.

Table 5.5: Application sizes on PIC32MZ microcontroller
Code size (kB)

Protocol part CCU ECU

I MD-ECU download and install 33.6 85.4
II ECU replacement 46.9 42.6

Communication The communication time was calculated based on a single message

transmission time. Figure 5.1 shows the communication links between mobile device,

CCU and ECU.

CAN communication Communication from CCU to ECU and vice versa was

through the CAN bus as mentioned in Section 4.8.3.
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Wi-Fi communication For the Wi-Fi module on the CCU side, the Wi-Fi G

demo board [141] was used. There is a microcontroller (PIC32MX695F512H [142]) on

the Wi-Fi module (MRF24WG0MA [143]) that receives the Wi-Fi messages from the

mobile device and convert these messages into UART messages, and vice versa.

UART communication Since the Wi-Fi module uses a microcontroller which

does not support CAN bus communication, we had an interface module to translate

UART messages into CAN messages and vice versa. The PIC18F4580 was used for

this purpose. PIC18F4580 [144] is an 8 bit microcontroller with 32 kB of flash and 256

bytes of RAM. It operates with a 16 MHz clock and supports CAN bus and UART

communication. In order to observe communication through the UART, the interface

module was then connected to an MCP2200 breakout module [145]. The breakout

module decoded the messages through the bus and these messages could be observed

via RealTerm [146] GUI on the PC.

CCUInterface moduleWi-Fi

module (PIC18F) (PIC32MZ)

UART CAN

Figure 5.1: CCU’s setup for communication

Programming and Debugging Environment

PIC32MZ, PIC18, Wi-Fi module The same programming and debugging envi-

ronment mentioned in Section 4.8.3 was used for this implementation.

UART communication The UART communication was observed through a Real-

Term terminal installed on a Windows 7 machine. RealTerm provides a GUI to observe

the messages going through the UART, and the user is able to input data through the

UART. Communication performance was measured using a LeCroy Waverunner oscil-

loscope [124].

CAN communication As mentioned in Section 4.8.3.

Wi-Fi communication The Wi-Fi communication was observed through a web ap-

plication provided by Microchip library. It provides a GUI to observe the messages

going through the Wi-Fi, and the user can input data through the Wi-Fi. The per-

formance of Wi-Fi communication is measured using the “Inspector” feature from the

internet browser.
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Mobile applications The programming language for the Android applications was

Java. The compiler used was an Android Studio 1.5 with JDK 1.8.

Experiment Setup

This section describes the experimental setup, including the hardware and software

setups.

MCP2551

PIC18F4580

Figure 5.2: Lab setup for interface module CAN-UART communication

Hardware setup The same setup was used for the CCU and ECU using PIC32MZ

as mentioned in Section 4.8.3. For the interface module using the PIC18F4580, an

additional CAN transceiver, MCP2551 [147], was connected to the PIC18 as shown in

Figure 5.2. The interface module was then connected to an MCP2200 breakout module

[145] to observe the UART messages.

Software setup The sizes of the flash driver and firmware were set at 160 bytes each

for this implementation. For MAC computation, HMAC SHA256 was used. RSA1024

was used for digital signatures and public key encryptions. Based on the proposed

protocol, the length of a message was more than 8 bytes, hence each message needed

to be divided into more than one CAN message due to the limited number of bytes of

data per CAN message transmission.
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Table 5.6: FOTA protocol performance
Protocol (phase) Message Time (ms)

Computation Communication Total
MD CCU ECU

MD-ECU download and install 1 80.015 160.276 92.753 123.117 456.161
2 3.722 0.433 0.213 29.214 33.582
3 4.102 0.555 0.265 66.775 71.689
4 3.891 0.553 0.291 66.775 71.510

Total 632.951
ECU replacement 1 2.267 0.005 0.002 8.347 10.622

2 56.828 56.828
3 73.632 13.950 25.041 112.623
4 39.431 14.140 25.041 78.611
5 22.030 39.282 18.781 80.092

Total 338.776

Implementation Results

The protocol performance is shown in Table 5.6. As mentioned earlier in Section 5.7.3,

the first part of the protocol (OEM-MD download phase) was not implemented as it

involves the communication of the mobile device with the OEM server. There may be

different communication channels for this communication, and the server could be on

any platform. The performance for constrained devices was the main concern in this

implementation. The second part of the protocol, which is the download and install

phase between the mobile device, CCU and ECU, took about 633 ms. This performance

will vary according to the size of the flash driver and firmware of the ECU application.

Finally, the total time for ECU replacement phase was about 339 ms. There was an

additional time for the mobile device to communicate with the OEM server and some

computational time on the OEM server in this phase. Overall, the communication time

can be further improved if CAN FD [130] is used, where one message can contain up

to 64 bytes of data, instead of just 8 bytes. However, CAN FD is a new protocol that

has been recently introduced, and it was not supported in our chosen platform.

5.8 Summary

In the automotive industry, a secure firmware update process is crucial for safety rea-

sons. This chapter proposes a secure OTA firmware update protocol with the use of a

mobile application for the automotive systems. The proposed mobile application will

ensure the authentication of all parties involved in the update process and the confi-

dentiality of the firmware. Even if the mobile application is compromised, it cannot

reveal unencrypted firmware and associated secret/private keys. The different possi-

ble architectures for the OTA firmware update are discussed, and we determined the
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best architecture based on the security requirements and flexibility of use. The FOTA

protocol was analysed using Scyther and CasperFDR and no viable attacks were found.

In conclusion, the security of automotive components requires careful control by the

car manufacturer, especially for the firmware update process, to ensure a reliable, safe

and secure car. However, the distribution of firmware updates needs to be flexible and

consumer-friendly to ensure a high acceptance rate amongst car owners. This chapter

proposes a secure firmware update protocol for automotive systems using a mobile

device for the convenience of users.
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Limited features in vehicle forensic systems may lead to unavailability of

data or inaccuracy of forensic analysis. Accuracy of forensic analysis can

be further improved with a wider range of parameters for the collected data.

A secure framework for vehicle forensics is proposed, which still ensures

secure data and user privacy. This chapter proposes a secure diagnostic

protocol which could be used for vehicle forensics using a mobile device.
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6.1 Introduction

Digital forensics is becoming an important feature for many embedded devices [148]. In

automotive systems, digital forensics involves multiple Electronic Control Units (ECUs)

that are used to support the connected and intelligent vehicle’s technology. Digital

evidence from these ECUs can be used in forensic investigation and analysis. Such a

mechanism can potentially facilitate crash investigation, insurance claims and crime

investigation [149]. Issues related to forensics include the authenticity, integrity and

privacy of the data [150]. In this chapter, the security of the forensic process and

data in automotive systems is analysed. We propose an efficient, secure, privacy-

preserving and reliable mechanism to provide a forensics data collection and storage

process. A diagnostic application for smart phones, DiaLOG, is incorporated in the

proposed process, which uses a secure protocol to communicate the collected forensic

data to secure cloud storage. The proposed protocol for communicating forensic data is

implemented to measure performance results and formally analysed using CasperFDR

and Scyther, with no known attacks found.

Chapter organisation The first section, Section 6.2 discusses the motivations for

our attempt to improve automotive forensics. Next, Section 6.3 describes related work

on automotive forensics. The threat model for automotive forensics follows in Section

6.4. From this basis, we present the security requirements for automotive forensics as

discussed in Section 6.5. Our contribution to improving the existing implementation

of automotive forensics, which includes an Android application called DiaLOG and

a secure protocol, is discussed in Section 6.6. Next, Section 6.7 describes the anal-

ysis of the proposed protocol, which includes informal and formal analysis, and our

implementation of the protocol.

6.2 Motivations

Digital forensics requires reliable and tamper-protected data storage. Since more data

improves accuracy in any investigation, a secure and reliable forensics solution is re-

quired, which is able to store all the necessary data to support a forensic investigation

without sacrificing user privacy. The authorised user should have control over what

data is to be shared with a particular service provider or other third parties. Easy

retrieval of forensic data is also desirable, without sacrificing its integrity and accuracy.

In this chapter, we consider solutions to the following problems:

(i) The current use of Event Data Recorders (EDRs) and insurance black boxes in
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forensic evidence provides limited features [101, 151]. The EDR gives a restricted

number of parameters for analysis, whereas the insurance black box and telem-

atics units do not protect user privacy.

(ii) Although certain data is compulsory to obtain a service, users do not have control

of the transmitted data and cannot access it.

(iii) Users are therefore unable to verify the correctness of the data being transmit-

ted. Most forensic data need to be interpreted, using an application, for a non-

technical user to understand them.

There are a number of issues related to automotive forensics. One issue is the

privacy of data. The existing telematics unit provides connectivity to the car and sends

forensic data directly to a server (for example an insurance black box) without the car

owner knowing what is transmitted. The access control authorisation of data should

really be given to the car owner although certain data is compulsory to obtain a service.

The car owner would therefore have a choice in selecting the service provider. There

is a campaign to try to establish data ownership rights for car owners [103]. The car

owner also needs access to the data (stored and transferred) in order to verify that the

data being transferred is correct. For this purpose, the data should be interpreted for

the user to understand them, which could be achieved by means of an application. It is

also necessary to consider technical and security issues. The retrieval of data currently

requires expensive specialised tools and expertise [101], although anyone can attempt

to access private data via the vehicle network, accessible through the OBD-II port.

Additionally, the integrity and correctness of the stored data cannot be verified in the

existing systems. Finally, the availability of data could be compromised if automotive

forensics relies solely on the availability of EDR data [97].

6.3 Related Work

Nilsson et al. discussed performing forensics on in-vehicle networks [152]. They dis-

cussed an attacker model and requirements for detection, collection and event recon-

struction. According to them, features such as diagnostics, firmware update, Vehicle-to-

Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications are desirable and

could be achieved wirelessly, but these features introduced the potential for cyber-

attacks. In their forensic proposal design, their goals are: to detect events in the

vehicle (which require a device to detect, notify and store the forensic evidence); to

answer the required forensic questions (from the collected forensic data); and to obtain

the current state of the firmware version. In order to do this, a list of hashes of current
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firmware installed on all ECUs needs to be accessible. Their proposal described what

to do, without providing any practical implementation. During the presentation phase

in forensics, conclusions can be made from both the physical evidence from EDR data

and digital evidence through the network.

Hoppe et al. investigated route reconstruction forensics in a hit-and-run scenario

[153]. They proposed two methods, i.e. manual and semi-automated. Firstly, a Global

Positioning System (GPS) receiver is installed in the car and connected to the ECU

through the CAN bus. Any communication is logged in the data logger. The directions

for navigation are displayed on the instrument panel cluster for safety and comfort.

They propose using this feature to provide forensic evidence by enabling route recon-

struction. In the manual method, the data from the data logger is manually analysed,

and optimisation is conducted by filtering data that are potentially relevant to the inci-

dent. The semi-automated method involves connecting a probe to the navigation unit

and to a Graphical User Interface (GUI) to show the data read from the navigation

unit. It is an invasive method since a physical connection to the unit is required to

get the relevant data. In order to log all communications to the data logger, a large

memory space is required. For example, according to [154], there are 63 CAN IDs just

to identify the different operations of the car. A single operation is represented by a

single CAN ID. As an example, just for the sideways acceleration sensor, there are 35

frames per second. This would require a large memory size for logging (about 20 kB

per hour just for one operation). Furthermore, for a car without a navigation system

or a data logger, there may be costs for installation of additional equipment.

Kowalick discussed in detail the unaddressed issues regarding automotive EDRs

[150] as seen by the National Highway Traffic Safety Administration (NHTSA), which

is part of the US Department of Transportation. Among the issues are EDR data

ownership; authenticity; security at the time of the crash and the chain of custody after

the crash incident; tampering and manipulation; how data can be used for civil/criminal

proceedings; police access authorisation for the data; the possibility of developing EDR

into a driver-monitoring tool; and third party access authorisation.

In 2010, Al-Kuwari et al. investigated the feasibility of performing live forensics

using electronic components in the vehicle [149]. They considered the possibility of

collecting relevant forensic data via multiple ECUs with different functions, different

networks and buses, sensors and multiple applications (such as adaptive cruise control,

lane-keeping assist, parking assist, blind spot monitoring, head-up display and night

vision, telematics and multimedia, navigation, and occupant sensors). They proposed

that forensic data could be collected using devices called collectors. These collectors are

installed or attached to ECUs or other components to capture communication through
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the networks. In their proposal, they make the assumption that privacy is ensured by

legal enforcement officers following proper procedures.

6.4 Threat Model

As mentioned in the related work section (Section 6.3), we develop our threat model

to mitigate potential risks such as tampering with data and attacks on access privilege

and privacy. In automotive forensics, assets to protect include read and write access

authorisation and the authentication, integrity and privacy of data. Potential attackers

are untrustworthy workshops, car owners/users, investigators and hackers with financial

motivation.

A malicious entity:

(i) can access the CAN bus and manipulate the content before storage.

(ii) can access and manipulate the content after storage.

(iii) cannot break well-established cryptographic algorithms.

(iv) can corrupt data in transit and in storage.

A number of possible attacks on automotive forensics systems can be conducted, as

follows:

Denial of Service (DoS) attack: To cause availability issues, where data stored is

not able to be retrieved, or data is not able to be stored. Denying access to data to an

authorised party is also a method of DoS.

Impersonation attack: To impersonate an authorised party to conduct further at-

tacks; for example, an attacker impersonating an authorised person to access data

during an investigation to manipulate the content, or a device impersonating an au-

thorised tool to access data during storage (i.e. CAN bus manipulation).

Data manipulation attack: To change the content of the forensic data, by chang-

ing the data before or after storage, or during the retrieval process. Attacks can be

performed mechanically by simply destroying the black box and its data contents. At-

tacks might also be mounted electronically, which can cause disruption or change to

data. Attacks through malicious CAN bus messages could distract the driver, or hack

the engine or braking operation, or cause a crash and then erase all traces from the

black box.
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6.5 Security Requirements

Although there are many security requirements for forensics, we discuss the main secu-

rity requirements based on the threat model and the potential risks related to vehicle

forensics as discussed in Section 6.4. We determined these requirements based on the

focused work on the current limitations/vulnerabilities of EDR as discussed in Section

6.3.

Integrity: It is crucial to ensure that the data stored is not being tampered with or

corrupted.

Authenticity: Data must be authentic and the person handling the data (for exam-

ple a forensic investigator) is authorised.

Availability: Ensuring all the required data is available for investigation, and up-

dated regularly.

Reliability: Having a backup device for forensic data storage can increase the relia-

bility of the forensic system.

Privacy: It is important to protect the privacy of the car owner, especially when

handling privacy-related data such as driving habits.

6.6 Proposed Solution

Commonly, during vehicle forensic investigation, the EDR, the infotainment unit and

other ECUs are analysed [97]. In this proposal, the mobile application, DiaLOG, is the

backup data storage for the EDR and other related data that might be of interest for

forensics.

Our proposal considers using recent developments in car applications, which require

a security module for each ECU to conduct cryptographic operations [21] and thus

provide platform security. This suggests that any node communicating through the

CAN bus is required to have access authorisation in order to send or receive messages.

In our proposal, the mobile device acts as a communicating node through the CAN

bus, and so requires access authorisation.

To conduct a diagnostic on the car, the mobile device is connected to the OBD-II

port via Wi-Fi or Bluetooth. Once connected, the mobile device is authenticated, to

determine whether it is authorised to retrieve the requested data. Once authenticated,
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Cloud Mobile application Car

Figure 6.1: Architecture of the proposed forensic framework

the mobile device is connected to the CAN bus, and is able to access the required

data. The main idea of the DiaLOG application is to read the DTCs (Diagnostic

Transmission Codes) and log them securely. The DTCs can be read by the user of the

DiaLOG application, and from there, the user is aware of the car’s condition and state.

6.6.1 Assumptions

The proposed protocol relies a number of assumptions. We were thus able to limit

the scope of our work based on these assumptions. The mobile application is installed

on a mobile device. For an authorised car owner, the mobile device is available for

investigation. The data is always automatically transmitted to the phone whenever

connection is established, and later to the cloud. If data is not updated after a certain

time, the owner will be notified. Finally, the cloud is securely managed. A user is

authenticated to access the cloud server, and only authorised users have access to the

data. However, even if an attacker is able to get access to the data in the cloud, the

integrity and confidentiality of the data could not be compromised if using our protocol.

6.6.2 The DiaLOG Application

The architecture of the proposed framework with mobile application and cloud-based

backup storage is shown in Fig. 6.1. A mobile device with the DiaLOG application

can log the latest vehicle operations. Once connection between the mobile device and

the car’s CCU is authenticated, the mobile device will request the data from the CCU.

The CCU will get the relevant data from the expected ECU, and reply to the mobile

device. The data on the mobile device is then uploaded to the cloud when a suitable

network connection is available. From this framework, the forensic investigators have

the option to get the data from three different sources: the car EDR, the mobile device

or the cloud. The car owner (having the DiaLOG application and access to the forensic
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data) has control of what data to share with third parties. Certain data is compulsory

to obtain a service and the car owner will need to give access to the service provider.

However, he/she has access to the transmitted data and can verify the correctness of

data. The proposed architecture safeguards the privacy of the car owner/driver, in a

way that is not possible with the current system that transmits data via the telematics

unit. The keys for the mobile device are stored in a secure memory; for example on a

secure element, or the mobile device could be supported by TrustZone. The keys for

the CCU are stored in the HSM of the CCU.

Registration

First, we consider the registration process for all the involved parties. In this proposal,

we consider the car manufacturer is the trusted party maintaining the registration of the

car owner’s mobile device. This could be performed by a trusted third party appointed

by the car manufacturer. During installation and registration, the mobile device of

the car owner will obtain the cryptographic keys for further communications. The

mobile device and the CCU will share a set of keys/data. The required keys/data are

the symmetric key shared between the mobile device and the CCU, the identification

number of the CCU and the identification number of the mobile device. In the event

of change of ownership of the car, or the mobile device, the car owner is responsible for

performing the deregistration.

Authentication Phase

In order to use DiaLOG with a mobile device, the mobile device must be authorised.

Only an authenticated mobile device is given permission to access the data from the

car, and most importantly, to connect with the car’s internal network. Authorised

devices are divided into two different levels: basic or full authorisation. These levels

will be further explained in Section 6.6.3.

Diagnostic Phase

In this phase, the mobile device is connected to the vehicle through a Wi-Fi connection,

via an on-board router. The mobile device needs to be authenticated to the vehicle

to ensure only authorised mobile devices can acquire the vehicle’s diagnostic data. If

authentication is successful, the mobile device will send a diagnostic command to the

ECU, and the mobile will receive the resulting data. The application will interpret the

data. This way, the driver is always aware of his/her vehicle’s condition. In addition,

109



6.6. Proposed Solution 6. Vehicle Forensics Using Mobile Application

the consistency of data can be maintained between the mobile application and the

vehicle.

Data Logging

Data to be logged in the DiaLOG application are as follows:

(i) DTCs: are the error codes associated with the components in the vehicle. The

main function of a diagnostic is to read the DTCs and to resolve the associated

problems in the vehicle according to the codes.

(ii) ECU content is the firmware, application and data available in each ECU. To

retrieve all the data in all the ECUs would be time consuming and require a large

memory to store it all. The (concatenated) hashed value of each ECU can be

stored to provide an integrity check. Using the architecture as proposed in the

EVITA project [21], the master ECU contains all the hashed values of all the

ECUs. Any changes in the content of the ECUs, i.e. any write operation to the

flash, will change the hashed value stored in the master ECU. Hence, the master

ECU is also alerted to the changes. Changes in the master ECU are reported back

to the car manufacturer’s server. The DiaLOG application data is also updated

accordingly.

(iii) Interface connection: to the vehicle is logged in the DiaLOG application. The au-

thentication process from the interface connection will also be logged by DiaLOG

to obtain the identity of the entity involved. The identification, authentication

method, interface, time and location, which are related to communication events

(for example firmware updates) are among the relevant data to be logged.

(iv) Crash-like data: There are two different ways in which EDRs can record crash

incident data. The first option is by continuously recording and overwriting

the data on the EDR EEPROM/flash. The second option is by recording only

when there is crash-like data. Similar to an EDR, crash-like parameters such as a

sudden change in velocity could be a triggering factor for the DiaLOG application

to start recording the required parameters for crash incidents. Triggering uses

less mobile battery capacity than continuous polling of data. The crash-like data

will not be overwritten even if the driver keeps on driving after the accident. Once

the storage is triggered, the data will be stored permanently until retrieved.

(v) Change in the frequency of messages through the CAN bus: could be an indicator

of a potential remote attack being conducted. DiaLOG will record the normal
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frequency of messages and compare this to the current operational frequency. For

example, as explained earlier, the normal frequency of a sideways acceleration

sensor is 35 frames per second.

Storage to Cloud

The user can transfer the data from the mobile device to the cloud. For example, after

each driving cycle, all data is transferred to the cloud as a storage backup. At any

time, the data can be retrieved and analysed.

During Forensics

Requirements during forensics include availability of mobile application data; avail-

ability of ECU data; and authenticity, integrity and correctness of data. The latest

diagnostic data stored in the mobile device is read during data collection. The ECU

data, including the EDR, is also read. During the forensic analysis process, this data

is compared to ensure its consistency.

6.6.3 Protocols

There will be two levels of mobile device authorisation with different data access: basic

and full, as shown in Table 6.1. The protocol notation is shown in Table 6.2.

Table 6.1: Credentials for read access
Data User

Car owner Car rental Potential buyer Investigator

DTC 4 4 4 4

Hash chains 4 4 4 4

External device 4 8 8 4

Crash data 4 8 8 4

Bus attack 4 8 8 4

Crash history 4 4 4 4

Authorisation Full Basic Basic Full

Protocol Description

There are two protocols depending on the access authorisation.

Full authorisation: For a full authorisation, the intended entity (e.g. the car owner)

must be registered with the car manufacturer. After installation of the DiaLOG ap-

plication, a registration process is proposed. By registering, the mobile device, Mo,
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Table 6.2: DiaLOG protocol notation
CCU Central Communication Unit
Mo Mobile device of car owner (full authorisation)
Mt Mobile device for temporary access (basic authorisation)
kmc Symmetric key for CCU (shared between Mo and CCU)
ktemp Symmetric key shared between Mt and Mo
idMo Identification number of mobile device of car owner
idMt Identification number of mobile device for temporary access
idccu Identification number of CCU
ks Session key shared between mobile device and CCU
pkccu Public key of CCU used to verify signature
skccu Private key of CCU used to sign
nc, nMo, nMt Nonces
reqdtc Request to access DTC
dtc Diagnostic Transmission Code
ENC Encryption using AES128
sign Signature using RSA1024
= Equals
a||b a is concatenated with b

will have access to the car via a set of keys (kmc and pkccu) provided by the car man-

ufacturer. Car owners and law enforcement are given full authorisation provided they

are registered with the car manufacturer. The key is a symmetric key shared between

the mobile device and the car, kmc. The CCU is the central unit that interfaces com-

munication of the in-car ECUs with the outside world. The symmetric key, kmc, is a

medium-term key that requires an update from the car manufacturer. It will be used

to authenticate the mobile device to the car’s CCU. As shown in Table 6.3, the mobile

device Mo will start the protocol by sending its ID, concatenated with an encrypted

message using the pre-shared key kmc containing the ID of the CCU, a request to access

the data fullreq and a generated nonce nMo. The CCU will verify the request and

the ID of the CCU, and obtain nMo by decrypting the message received. It will then

reply with its ID, concatenated with an encrypted message using the pre-shared key

kmc containing the ID of the CCU, the nonce from Mo from the previous message, nMo

and a session key ks. After a mutual authentication and freshness verification (Step

1-2), the mobile device will request the DTC from the CCU. This message is encrypted

using the session key ks obtained from the previous message, to provide confidential-

ity. The encrypted dtc transmitted from the CCU will then be signed to ensure its

integrity. The signature is in the format of signature with appendix. The authorised

mobile device will be able to decrypt the message to obtain the dtc and also verify that

its integrity is protected by verifying the signature.
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Table 6.3: Full authorisation data access
1. Mo→ CCU : idMo||M1

M1 = ENCkmc{idccu||fullreq||nMo}

2. CCU →Mo : idccu||M2
M2 = ENCkmc{idMo||ks||nMo}

3. Mo→ CCU : idMo||M3
M3 = ENCks{idccu||reqdtc}

4. CCU →Mo : M4||signskccu{M4}
M4 = ENCks{idccu||dtc}

Basic authorisation: Entities included in this group include anyone interested in

renting a car from a company, or a potential buyer when a car is being resold. In order

to be given access authorisation, the person interested must acquire a key from the car

owner. The key is transmitted and stored in the mobile device of the interested party.

It is then used to authenticate the mobile device to the car. Basic authorisation only

gives limited data accessibility as described in Table 6.1. The key, ks is only valid per

transaction, i.e. once communication is disconnected, a new key is required to access

the data again.

Prior to the start of the protocol, both mobile devices (Mo and Mt) share a sym-

metric temporary key, ktemp and the public key of the CCU, pkccu. As illustrated in

Table 6.4, the temporary mobile device, Mt, will request access to the car from an

authorised mobile device (the car owner’s), Mo. Mt will send its ID, concatenated

with idMo, and an encrypted message using the preshared ktemp containing the CCU’s

ID, the request and a nonce, nMt. The car owner’s mobile device will decrypt the mes-

sage using the pre-shared ktemp to obtain the nonce generated by the Mt, nMt. It will

then send a message to notify the CCU about the temporary device’s request, which

contains its ID, the CCU’s ID concatenated with an encrypted message using kmc con-

taining the temporary mobile’s ID, the request, and nonces nMo and nMt. The CCU

will decrypt the message to verify that it is communicating with an authorised mobile

device, then acknowledge the request by sharing a session key ks and a generated nonce

nc to the owner’s mobile device. The message is encrypted using kmc. The owner’s

mobile device will then forward the session key and nonce to Mt by sending a message

with its ID and the temporary mobile’s ID, concatenated with an encrypted message

containing idMt, idccu, ks and all the nonces nc, nMo, nMt. Now, the temporary mobile

device can communicate with the CCU using the ks. It will request the DTC from the

CCU. The CCU will verify the freshness of the message and the authenticity of Mt.
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Table 6.4: Basic authorisation data access
1. Mt→Mo : idMt||idMo||M1

M1 = ENCktemp{idccu||basicreq||nMt}

2. Mo→ CCU : idMo||idccu||M2
M2 = ENCkmc{idMt||basicreq||nMo||nMt}

3. CCU →Mo : idccu||idMo||M3
M3 = ENCkmc{idMt||ks||nMo||nc||nMt}

4. Mo→Mt : idMo||idMt||M4
M4 = ENCktemp{idMt||idccu||ks||nc||nMo||nMt}

5. Mt→ CCU : idMt||idccu||M5
M5 = ENCks{idMt||idMo||idccu||nc||reqdtc}

6. CCU →Mt : M6||signskccu{M6}
M6 = ENCks{idccu||dtc}

The message freshness is checked by the nonce it provided for the session, while the

authenticity of Mt is through the ks. The CCU will reply with the encrypted dtc to

provide confidentiality plus a signature to ensure its integrity. The authorised mobile

device will be able to decrypt the message to obtain the dtc and also verify that its

integrity is protected by verifying the signature.

6.7 Protocol Analysis

In this section, we analyse the proposed protocol in terms of security and performance.

6.7.1 Informal Analysis

Based on the security requirements in Section 6.5, the proposal addresses them as

follows:

Integrity: The DTCs being transmitted and stored are signed by the CCU to ensure

that the DTCs are integrity protected.

Authenticity: The communicating parties are authenticated for every protocol trans-

action. They are given access depending on the level of permission prevailing.
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Availability: Data availability is ensured by the updating of data every time the

authorised mobile device is connected to the car. The data on the cloud will be auto-

matically updated once a connection is available, or whenever the owner is notified.

Reliability: The reliability of the forensic system is improved by having backup data

on the cloud as well as on the mobile phone. If the stored data in any of the three

different components does not match with the other sources, it shows that the data

might be corrupted.

Privacy: The car owner’s privacy and driving-related data is protected. The owner

has control over the data.

Based on the threat model in Section 6.4, the proposal addresses the threats as

follows:

Denial of service (DoS) attack: The data is always automatically transmitted to

the phone and later to the cloud. If data is not updated after a certain time, the owner

will be notified. Having a backup copy of the data can ensure that the data is available

for retrieval if the person is authorised. If the owner himself is the attacker (denying

access to the available data in the mobile phone or cloud), the data can always be

accessed (by an authorised investigator) directly through the car’s CCU or the EDR.

If the investigator has access to the mobile device or the cloud data, then the data

is always available for investigation. The data on the EDR, mobile device and cloud

should be consistent to ensure no data corruption occurs. If any of the data is not

consistent, this could indicate an attack. If a DoS occurs through signal jamming, the

data is always available on the EDR, since the CAN bus is protected using the proposed

security platform. The mobile application will also alert the car owner if the data has

not been stored for any particular driving cycle. Hence, the car owner would be alerted

if an attack is being carried out.

Impersonation attack: Data can be retrieved by any entity with the correct au-

thorisation, whether it is a full authorisation or a basic authorisation. Instead of using

specialised tools, a mobile application provides easy data access without sacrificing

authenticity of the person/tool in use.

Data manipulation attack: The content uploaded on the mobile device and cloud

are integrity-protected by the use of signatures by the CCU. Furthermore, since this

proposal uses a mobile device, the cloud and the ECU as storage devices, there are three

different components to verify the consistency of the data. All three components (ECU,
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mobile device and cloud) should contain the same data. However, if content is manip-

ulated by injecting malicious data through the CAN bus, all three components would

share the same falsified data. Our proposal is based on each ECU having a separate

security module, and communication through the CAN bus requires authentication.

Therefore, any nodes communicating through the CAN bus are authorised.

Insecurities of mobile device: The mobile device could be malicious, or authorised

but used with malicious intentions, or compromised. A malicious mobile device would

not be able to get access authorisation to retrieve the data. An authorised mobile

device with malicious intentions, or compromised, will be able to retrieve the data, but

not corrupt or manipulate it. This is because the data is signed by the CCU, and if

the mobile device tries to change the data, it would not be able to provide the correct

signature. The DiaLOG application may run on a trusted execution environment such

as TrustZone [79] and Intel SGX [80], which could further help to protect confidentiality

and integrity by providing a secure trusted execution environment.

6.7.2 Formal Analysis

The proposed protocol is formally analysed using CasperFDR and Scyther tools to

verify its correctness. For the full authorisation protocol, the required security require-

ments include:

1. Confidentiality of the secret keys, kmc and ks, and the secret nonces, nmo, and nc

2. Authentication properties, which include:

• Aliveness between Mo and CCU.

• Agreement between Mo and CCU of ks and kmc.

• Synchronisation between Mo and CCU.

For the basic authorisation protocol, the required security requirements include:

1. Confidentiality of the secret keys, ktemp, kmc and ks, and the secret nonces, nMo,

nMt and nc.

2. Authentication properties, which include:

• Aliveness between Mo and CCU, Mt and CCU, Mo and Mt.

• Agreement between Mt and CCU of ks and nc, agreement between Mo and

CCU of ks and kmc.
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• Synchronisation between Mt, Mo and CCU.

In this section, only the full authorisation protocol is discussed using CasperFDR script

and basic authorisation protocol is discussed using Scyther script. However, we also

verified full and basic authorisation protocols using both tools. The scripts are provided

in Appendix A.4 and B.4.

Analysis using CasperFDR For CasperFDR, the security properties verified are

secrecy, aliveness and agreement. The confidentiality property verifies the secrecy of

the kmc, ks and nMo, which are shared between the mobile device (Mo) and the CCU.

The aliveness property verifies the aliveness between the mobile device (Mo) and the

CCU. The agreement property is to ensure the agreement of kmc and ks shared between

mobile device (Mo) and CCU. The intruder has knowledge of all the entities (CCU and

Mo) and the request messages to access the data (fullreq and reqdtc).

As shown in Appendix A.4.1, the script starts with #Free variables declaration,

which declares all the variables used in the protocol. It is followed by the #Protocol

description. This describes the messages being transmitted (in sequence) during the

authentication and diagnostics, which start with a request from MD to the CCU (i.e.

1.a->b:a,{b,fullreq,nmo}{kab}). In 5.a->b:a,reqdtc,{b,reqdtc}{ks}, the MD requests the

dtc after being authenticated and verifies the freshness in messages 1-4.

In the #Processes, all the entities involved in the protocol and their knowledge are

declared. For example INITIATOR(a,b,kab,nmo,fullreq,reqdtc), where a is the MD, b

is the CCU and nmo is the random nonce generated by MD. MD knows kab which is

pre-shared between MD and CCU.

The #Specification declares all the assertions made to verify the security prop-

erties. The confidentiality of kmc and ks are declared as Secret(a,kab,[a,b]) and Se-

cret(b,ks,[a,b]). As an authentication verification, the aliveness property and the agree-

ment property between MD-CCU are verified.

The #Actual variables section describes the names of the actual agents, and the ac-

tual variables such as MD and CCU. Nothing is declared in the #Functions section. The

#System section again declares all the involved entities in the protocol and their knowl-

edge, but with their actual names. For example, INITIATOR(MD,CCU,KAB,Nmo,

FULLREQ,REQDTC). The #Intruder Information declares the intruder X who has

knowledge of all the entities involved (MD and CCU) and their corresponding public

keys.

All the specifications made were verified and no viable attack was found for any of

the assertions.

117



6.7. Protocol Analysis 6. Vehicle Forensics Using Mobile Application

Analysis using Scyther For Scyther, the security properties verified were non-

injective synchronisation, non-injective agreement, weak agreement, aliveness and se-

crecy. The secrecy property verifies the confidentiality of the ks (shared between Mt

and CCU, kmc (shared between Mo and CCU) and the confidentiality of ktemp that

is shared between the Mt and Mo. The non-injective synchronisation property is to

verify that parties (Mt, Mo and CCU) know who they are communicating with, agree

on the content of the messages and the order of the messages. The non-injective agree-

ment verifies that parties agree on the content of the variables (nMo, nMt, nc, ks, kmc

and ktemp). The aliveness property verifies that the intended communication partner

(Mt-Mo, Mo-CCU and Mt-CCU) has executed some events.

As shown in Appendix B.4.2, the script starts with functions declarations. Then,

we have macros of messages to make the script neat and easily followed. Next, the

events and claims are made for each role (starts with MT, followed by MO and CCU).

For example, for the MT role, the events are send 1 (mt,mo,m1), recv 4 (mo,mt,m4),

send 5 (mt,ccu,m5) and recv 6 (ccu,mt,m6), which means MT sends the macro m1 to

MO and later, receives macro m4 from MO and sends macro m5 to the CCU to then

receive macro m6 from the CCU. Claims are the security properties to be verified. For

example, for the MT role, claim R5 (mt, Secret, ks ), claim R6 (mt,Secret, k(mo,mt)),

claim R6 (mt,SKR, nmo, claim R6 (mt,SKR, nc and claim R6 (mt,SKR, nmt are

for confidentiality. Authentication properties are verified through Agreement (such

as claim x2 (mt, Weakagree), claim x4 (mt, Niagree)), Synchronisation (claim x3 (mt,

Nisynch)), and Aliveness (claim x1 (mt, Alive)).

The default verification setup was used (i.e. five as the maximum number of runs,

type matching and finding the best attack with a maximum of ten patterns per claim).

The results for all the claims made were verified as “Ok” in the “Status” with “Verified”

and “No attacks” in the “Comments”. This means that no attack was found within

the bounded or unbounded statespace; the security property was successfully verified

[118].

6.7.3 Implementation

The proposed protocol was then implemented on a PIC Microchip microcontroller

(PIC32MZ2048ECM144) and an Android device (LG Nexus 5) to obtain indicative

performance results.
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Implementation Platform

The implementation platform for the mobile device, CCU and ECU were the same as

mentioned in Section 5.7.3. The applications for basic and full authorisation protocols

on the CCU were 43.4 kB and 42.9 kB respectively.

Programming and Debugging Environment

The same programming and debugging environment mentioned in Section 5.7.3 was

used for this implementation.

Experiment Setup

Hardware setup The hardware setup for communication between mobile device,

CCU and ECU was the same as mentioned in Section 5.7.3.

Software setup RSA1024 was used for digital signatures and AES128 was used for

encryption. Based on the proposed protocol, the length of a message was more than

8 bytes; hence, each message needed to be divided into more than one CAN message

due to the limited number of bytes (8 bytes) of data per CAN message transmission.

Implementation Results

The computation and communication performance for full and basic authorisation pro-

tocols was as shown in Table 6.5. Communication includes the transfer of data from

the Wi-Fi module to the middle interface module (via UART) and from the middle

interface module to the CCU (via CAN). The communication time can be further im-

proved if CAN FD [130] is used, where one message can contain up to 64 bytes of data,

instead of just 8 bytes.

To the author’s knowledge, there is no existing related work on automotive forensics

that the current performance can be compared with. However, the total time for the

protocol to complete is only about 360 ms for full authorisation, and 434 ms for basic

authorisation. Basic authorisation takes a longer time to complete since there are

additional messages using the temporary mobile device. Although the computation

times for AES and HMAC are faster using PIC32MZ as compared to the Android

phone, the RSA computation is longer for PIC32MZ. This is because PIC32MZ has

cryptographic engines for AES and HMAC which compute the algorithms at hardware

level. Hence, this results in a faster computation time. The communication time is

longer for the third part of the protocol because the messages from the mobile device

need to go through WiFi, be converted to UART messages, then to CAN messages.
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Table 6.5: Full and basic authorisation protocol performance
Time(ms)

Computation Communication Total time
Protocol Message Mo Mt CCU

Full 1 1.972 - 0.055 57.605 59.632
2 0.506 - 0.082 57.991 58.579
3 0.458 - 0.037 42.423 42.918
4 1.068 - 39.447 157.676 198.391

Total 4.005 - 39.820 315.695 359.520

Basic 1 0.724 1.861 - 19.650 22.235
2 1.956 - 0.059 34.832 36.847
3 0.660 - 0.149 80.995 81.804
4 0.922 0.500 - 19.650 21.072
5 - 0.752 0.041 72.787 73.580
6 - 0.994 39.738 157.676 198.322

Total 4.262 4.107 39.900 385.590 433.859

It is the same for the communication from the CCU to the mobile device, where the

messages from the CCU are in CAN, then converted to UART, and later to WiFi.

The baud rates of communication are 9600 bps for UART and 1 Mbps for CAN. The

communication time can be further improved if CAN FD [130] is used, where one

message can contain up to 64 bytes of data, instead of just 8 bytes.

6.8 Summary

A secure framework for vehicle forensics is proposed to ensure the security of data and

at the same time protect users’ privacy. The DiaLOG application proposed uses a

new framework of automotive forensics, which provides usability and reliability. Our

proposal is based on the new ECU architecture where a security module is included

in or part of the ECU. By having a mobile application as a logging platform for the

vehicle operation, forensic investigation can be more effective. More data options can

be stored, thus increasing the accuracy of forensic analysis.
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A mobile application as a logging platform may provide an automated logging

system for car maintenance services. This system helps car owners to keep

track of their car maintenance history. A secure protocol to perform the

automated logging can ensure the integrity of the records. The use of a

mobile device gives a user interface as well as connectivity for the car.
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7.1 Introduction

A maintenance services logging system is a useful tool allowing car owners to keep track

of the car’s condition and can also increase the market value of the car. Logging systems

range from manual, paper-based methods to automated, cloud-based approaches. An

automated process provides ease of use and easy availability of the records. However,

a secure protocol is required to ensure that both service records and workshops are

authentic, and hence provide a reliable record. In this chapter, we propose a secure

protocol for automated maintenance services logging systems, through the use of a

mobile application called AutoLOG. The multiple Electronic Control Units (ECUs)

used to support the connected and intelligent vehicle’s technology are used to support

the digital automated logging system. The records are stored in an authorised mobile

device and uploaded onto a cloud server to ensure availability. The proposed protocol

is implemented to measure its performance and formally analysed using CasperFDR

and Scyther with no known attacks found.

Chapter organisation The first section, Section 7.2 discusses our motivations for

developing a maintenance services logging system. Next, Section 7.3 describes the re-

lated work on maintenance services logging systems. The threat model for maintenance

services logging systems follows in Section 7.4. This material provides the background

for the development of the security requirements as discussed in Section 7.5. Our con-

tribution, which is called the AutoLOG protocol, improves the existing implementation

of maintenance services logging systems, and is discussed in Section 7.6. Next, Section

7.7 describes the analysis of the AutoLOG protocol, which includes informal and formal

analysis, and our implementation of the protocol.

7.2 Motivations

The challenges in a maintenance services record system are to ensure the integrity,

authenticity and reliability of the data. Normally the car owner normally does not

have access to the data, unless it is manually recorded in a log book that he/she

keeps. The car owner cannot validate the services being provided, and can only trust

the information provided by the workshop through receipts or documents provided.

Furthermore, it is inconvenient to keep receipts and/or documents for all maintenance

services throughout a vehicle’s lifespan. Equally, a potential buyer does not have an

assurance that the records in the maintenance log, and the workshops who performed

the services, are authentic.
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7.3 Related Work

There are many mobile applications commercially available that provide maintenance

service logging systems [155, 156, 157, 158, 159]. However, these applications require

manual information to be input by the car owner. After a car is serviced or repaired,

the information can either be keyed in, or a photo captured to be stored. The data can

later be stored on the cloud, depending on the application feature. Some applications

require a manual upload to the cloud, while others will store the data automatically to

the chosen cloud server.

Another type of maintenance service logging system is the type provided by car

dealers [160, 161]. When a car is being serviced by a car dealer, details are uploaded

onto the car dealer’s server. When the next service date is approaching, the car owner

will be contacted by the car dealer as a reminder.

A recent development in car maintenance logging systems is “AUTObiography”

by Motoriety [162]. This service logs the maintenance services record onto the cloud.

Trusted workshops registered with Motoriety can use the service and will digitally sign

the services performed to be stored on the cloud. The data or the “biography” of the

car will then be available on the cloud, and can be passed from one owner to another.

All the records are managed by the service, can be retrieved by the car owners, and

owners receive reminders about the next service date.

In the above-mentioned works, trust is mainly given to the workshops. If an un-

trustworthy workshop fakes an item in the list of services conducted, it cannot be

proven. In addition, a trustworthy workshop might mistakenly insert an item as a

result of human error, since recording and keying in the data is done manually.

There are proposals for reminder notifications of the next service date [163, 164].

There is also a system proposed using a passive Radio Frequency Identification (RFID)

device to detect the repairs/services being conducted [165].

Suresh et al. proposed an Android application to perform vehicle diagnostics [166].

The Android application is installed on a mobile device, and is provided by the car

manufacturer. The mobile device is then connected to the car via USB or Bluetooth.

The data collected by the applications, which includes driving patterns and vehicle

condition, is then transmitted to the car manufacturer’s cloud server. This information

can help the car manufacturer to find any faults arising in the car. The driver will be

notified of any fault through voice alert.

Table 7.1 shows the added features of AutoLOG compared to other related sys-

tems, which include manual and automated systems. AutoLOG, AUTObiography and

a car dealer’s cloud server provide automation, but the mobile applications do not
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Table 7.1: Features of AutoLOG compared to other related works
Features AutoLOG AUTObiography Mobile Car dealer’s

applications cloud server

Automation 4 4 8 4

Data ownership 4 4 4 8

Data availability 4 4 4 4

Validation of services 4 8 8 8

Security 4 4 8 4

Options of workshops 4 4 4 8

[155, 156, 157, 158, 159]. Ownership of the data recorded belongs to the car owner

in AutoLOG, AUTObiography and the discussed mobile applications. However, own-

ership of the records in a car dealer’s cloud server belongs to the car dealer. Data

availability is supported by all the systems discussed, including AutoLOG. However,

since the uploading process is manual for these mobile applications, data availability

depends on this manual process. Unlike other related systems, our proposal considers

the capability of the ECUs to validate the services. Security is a feature provided by

all three automated systems. Car owners have the flexibility to choose from a range of

different workshops for AutoLOG, AUTObiography and the discussed mobile applica-

tions. However, in the car dealer’s cloud server system, workshop options are limited

to the ones appointed by the car manufacturers.

7.4 Threat Model

In a maintenance services logging system, assets to be protected are the read and

write access authorisation and the authentication and integrity of the data. Potential

attackers are untrustworthy workshops, owners and hackers with financial motivation,

and potential buyers attempting to reduce the selling price. Two of the most likely

threats are:

i) Dishonest mechanic charges owner for a full-service, but may have done lit-

tle/nothing.

ii) Owner changes service log to make the car more attractive to a buyer.

There are a number of possible attacks that could be performed in a digital main-

tenance logging system as follows:

Denial of Service (DoS) attack: To cause an availability issue, where data stored

is not able to be retrieved, or data cannot be stored. Denying access to data to an
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authorised party is also a method of DoS.

Impersonation attack: To impersonate an authorised party to conduct further at-

tacks; for example, an attacker impersonating an authorised workshop to log a record

showing that the service was conducted by a certain trusted workshop.

Data manipulation attack: To change the list of services, by changing the data

either before or after storage.

Replay attack: By replaying the same record of service to be stored on a differ-

ent date to fake a record. An additional assumption in the threat model in digital

automated systems is that the attacker cannot break well-established cryptographic

algorithms.

7.5 Security Requirements

Although there are many security requirements for this application, we discuss the

main security requirements based on the threat model and the potential risks related

to maintenance services logging as discussed in Section 7.4. In general, a maintenance

services logging system should satisfy the following security requirements:

Integrity: The data stored should not be able to be changed, modified or added to,

in order to ensure that the record of maintenance service is integrity protected.

Authentication: Data authentication and data origin authentication should be in

place. This is to ensure that the data comes from an authorised party (workshop and

car) and the data itself is authentic.

Non-repudiation: Assurance that the data stored by the workshop can be verified,

i.e. the workshop cannot deny that the data stored originated from its diagnostic tool

and services were conducted by the workshop or dealer.

Freshness: Assurance that no replay attack is possible. A record of services cannot

be logged if it is not actually performed. The records should not be linked to a car

owner’s Personally Identifiable Information (PII). Hence, privacy is not a concern in

the maintenance services record.
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Cloud

Mobile device (MD)

CarDiagnostic tool (DT)

Figure 7.1: Framework for the automated maintenance logging system

7.6 Proposed Solution

The framework is shown in Fig. 7.1. The mobile device provides both a graphical user

interface (GUI) and connectivity. The mobile application supporting our proposed

protocol is called AutoLOG. The process starts with the workshop updating (on the

car) the list of services conducted, the date the service was performed and the date of

next service. In order to communicate with the car, the workshop uses a diagnostic

tool (DT). The diagnostic tool will communicate with the car through its Central

Communication Unit (CCU). The CCU is a type of Electronic Control Unit (ECU). It

is the first node any external device will have to go through in order to communicate

with other ECUs. The related sensors and/or ECU(s) for the service will validate the

information given to the CCU by the DT. After validation, the CCU will store the

latest record of maintenance services. The mobile device will then retrieve this data

from the CCU and upload the data to the cloud. This way, the records are always

available in both the mobile device and the cloud. If the mobile device is lost, the data

is still always available on the cloud. In this proposal, the trust foundation is moved

from the workshop to the car’s sensors and ECU nodes. For the cloud server, there are

a few options, including being owned by user; a trusted third party; and a community

or government body. Cloud ownership is beyond the scope of this work.

Our proposal is based on the EVITA project [21], which proposed an embedded

Hardware Security Module (HSM) in the ECU to ensure secure communications for

on-board systems. As proposed in the EVITA project, each ECU has its own HSM.
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This suggests that any node communicating through the CAN bus is required to have

access authorisation in order to send or receive messages. In our proposal, the mobile

device and diagnostic tool act as communicating nodes through the CAN bus, and so

require access authorisation.

A car owner has to register his/her mobile device with the car manufacturer/trusted

third party appointed by the car manufacturer. Following registration, the mobile de-

vice and the car will obtain and share a set of data/keys such as a symmetric key shared

between the mobile device and the CCU, the identification number of the mobile device

and the identification number of the CCU. In the event of a change in ownership of the

car or the mobile device, the car owner is responsible for performing the deregistration.

Once registered, the mobile device can retrieve the data whenever maintenance services

are performed. The data from the car is bound by the CCU’s signature. Verification of

data can be performed by decrypting the signature using the public key of the CCU.

The reason for not choosing a Transport Layer Security (TLS) protocol for this

application is because it is too much for CCU/ECU devices to cope with. Furthermore,

a TLS protocol is bulky and has many implementation options, which can lead to

increased vulnerabilities. Our proposed protocol is very specific for this application,

eliminating additional vulnerabilities. The TLS protocol is also slower in performance

[167].

7.6.1 Protocol Goals

This section discusses the requirements of each party involved in an automated main-

tenance service log update.

Car: The car requires authentication of the diagnostic tool, authentication of the

mobile device and data integrity of the information transferred from the diagnostic

tool.

1. CCU: The CCU is the interface for the MD or DT to communicate with other

related ECUs.

2. ECU: Some cars are pre-set with ECUs that are able to detect any changes made,

such as changing the engine oil. We assume all ECUs will be able to do this in

the future.

Mobile device (MD): The mobile device requires authentication of the car (CCU)

and data integrity of the information transferred from the CCU.
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Diagnostic tool (DT): The diagnostic tool requires authentication of the car (CCU).

7.6.2 Protocol Assumptions and Preconditions

Assumptions and preconditions relating to the successful use of AutoLOG are as follows.

1. The mobile application is installed on a mobile device and the cloud server is

properly set up for the data to be stored.

2. The nonces generated (by DT, CCU and MD) should be random and not pre-

dictable.

3. The ECUs and sensors are equipped with the capability to validate the services

being provided. For example, the sensor can validate the parameters given by the

CCU, such as the serial ID of a new component. The proposal [165] uses RFID

tags attached to the required devices to track maintenance services activities

related to the particular devices. This proposal could be used for this purpose.

For a start, the firmware update status could be logged. Cars are now full of

electronic modules that may require firmware updates. As part of the normal

service, logging the status of all this firmware (which may then trigger updates)

could be useful. Consequently, when buying a second hand car, the potential

buyer not only knows it had a normal service on a particular date, but also

knows whether its IT/electronic systems have been serviced (kept up-to-date).

4. The cloud is securely managed. A user is authenticated to access the cloud server,

and only authorised users have access to the data. However, even if an attacker

is able to get access to the data in the cloud, the main concern is to protect the

integrity of the data, which is provided by our protocol.

5. The data is always automatically transmitted to the phone and later to the cloud.

If data is not updated after a certain time, the owner will be notified.

7.6.3 Protocol Key Distribution

Figure 7.2 shows the hierarchy for the key distribution. The hierarchy may be imple-

mented by a specific car manufacturer. A car manufacturer may have a list of trusted

workshops and diagnostic tool manufacturers. Each diagnostic tool in a workshop has

its own set of public and private keys, one set for signature and one set for encryption.

The digital certificates containing the public keys of the diagnostic tools that tie the

diagnostic tool to a workshop are available at a diagnostic tool manufacturer server,

which is under a trusted third party server. The cars and mobile devices are registered
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Trusted Third Party

DT manufacturer

DT - workshop

Car manufacturer

Car Mobile device

Figure 7.2: Hierarchy for the key distribution

under the car manufacturer, which is also under the same trusted third party server

of the diagnostic tool manufacturer. Each CCU has its own set of public and private

keys which are pre-installed during manufacturing. These keys are updated by the car

manufacturer. The mobile device needs to be registered to the car manufacturer in

order to communicate with the car. After the AutoLOG application is installed on

the mobile device, registration of the mobile device via the AutoLOG application will

enable the mobile device to communicate with the car. Based on the input parame-

ters during registration, which include the Vehicle Identification Number (VIN), the

car manufacturer will share a symmetric key, kccu−md for the CCU with the intended

mobile device. Similarly, the diagnostic tool will acquire the public key of the CCU

from the trusted third party. The CCU, which is the master ECU in the car, has the

records of all ECUs. The records of ECUs include their IDs, the hash content of the

firmware and their symmetric keys to communicate with the CCU, kccu−ecu. The keys

are stored in the HSM for the car (CCU and ECUs) and the diagnostic tool. For the

mobile device, the keys are stored in a secure memory, for example on a secure element.

The data is bound to a car through the car’s signature, i.e. the CCU of a car will

sign the message. The message can be verified to its origin based on the signature.

There may be issues related to having all devices registered with the car manufac-

turer, where cryptographic keys need to be loaded; i.e., it may cause control manage-

ment issues as the devices will need to be properly controlled by car manufacturers.

That would mean that any devices not registered with the car manufacturers would

not be able to work as they would not be authorised. Car manufacturers will need a

proper process for registering both new devices (to be installed during car manufactur-

ing, and also during part/device replacement), and second-hand devices. This would

solve the problem of unauthenticated devices being used. We envisage a government

agency associated with a road and transport authority (for example the Department for
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Transport (DFT) in the United Kingdom) will be the authority providing the trusted

third party service.

Table 7.2: AutoLOG protocol notation
DT Diagnostic tool
CCU Central Communication Unit
MD Mobile device
dt ID of DT
ccu ID of CCU
md ID of MD
pkx Public key of x, x= DT or CCU
skx Private key of x, x= DT or CCU
na, nb, nc, nd MAC keys
ne, nf AES keys
kccu−ecu Symmetric key shared between CCU and ECU
kccu−md Symmetric key shared between CCU and MD
ENC Encryption using RSA
enc Encryption using AES128
sign Sign using RSA
MAC HMAC using SHA256
mile Mileage
servicetype Type of service (basic, full or major)
servicedate Date of service
nextdate Next date of service
serviceupdate Command to conduct the log update
serviceupdatereq Command to obtain the log update
validateservice Command to validate service from CCU to ECU
serviceupdateready Response from CCU to acknowledge it is ready
ackready Response from ECU to acknowledge it is ready
ack Acknowledgement
s1, s2, s3 List of services, repairs or updates conducted
= Equals
a||b a is concatenated with b
a⊕ b a XOR b

Protocol Description

To communicate with the car, the mobile device is connected to the OBD-II port via

Wi-Fi or Bluetooth. Once connected, the mobile device is authenticated, to determine

whether it is authorised to retrieve the requested data. Once authenticated, the mobile

device is connected to the CAN bus and is able to access the required data. The protocol

notation is as shown in Table 7.2. The protocol, which is divided into three phases, is
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shown in Tables 7.3, 7.4 and 7.5. The first part (Table 7.3) shows the communication

between the DT and CCU.

1. In the first message, the DT sends its ID, concatenated with an update notifica-

tion, serviceupdate, and a nonce, na. These parameters are signed with the DT’s

private key and encrypted with the CCU’s public key. The digital signature uses

signature with message recovery to provide bandwidth efficiency. The signature

is then encrypted with the CCU’s public key. The objective is to protect the

secret nonce na, so that only the authorised CCU is able to obtain the value of

na. The CCU decrypts the message and verifies the signature of DT. From that,

it obtains the na, to be sent in the second message to the DT.

2. In the second message, the CCU sends its ID concatenated with the acknowl-

edgement receipt of service update command and nonce na. It is concatenated

with its own generated nonce, nb. This message is signed with its private key

and encrypted with the DT’s public key. This signature also uses signature with

message recovery and is then encrypted with the DT’s public key in order to

protect nb.

3. The DT then decrypts the message to get the nonce nb. The nonces na and

nb are used for MAC computation for the following messages between DT and

CCU. The DT then replies with all the required information, i.e. the type of

maintenance service conducted (either basic, full or major), the service date, the

next date of service, and the mileage reading, concatenated with the MAC of

all the parameters. The MAC is to ensure that the integrity of the data can be

verified by the CCU.

4. The CCU acknowledges receipt of these parameters and concatenates acknowl-

edgement with the MAC.

5. Upon receiving the acknowledgement, the DT sends the list of services, repairs

or updates conducted, in this example, they are s1, s2 and s3.

6. The next part is the communication between the CCU and the related ECU(s)

as shown in Table 7.4. The CCU validates the list of services, repairs and/or

updates claimed by the DT. The related ECUs, equipped with sensors to verify

the services/repairs/updates conducted, respond accordingly. The CCU sends a

command validateservice and a nonce nc, which is encrypted with kccu−ecu to

ensure only an authorised ECU can read the nonce.
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Table 7.3: DT-CCU update of services protocol
1. DT → CCU : dt||ENCpkccu{signskdt{M1}}

M1= ccu||serviceupdate||na

2. CCU → DT : ccu||ENCpkdt{signskccu{M2}}
M2=dt||ack||na||nb

3. DT→ CCU : dt||M3||MACna||nb{M3}
M3= ccu||servicetype||servicedate||nextdate||mile

4. CCU → DT : ccu||M4||MACna||nb{M4}
M4=dt||ack

5. DT→ CCU : dt||M5||MACna||nb{M5}
M5=s1||s2||s3

7. The ECU decrypts the message to obtain the nonce nc. It then sends a message

to acknowledge the receipt of nonce nc, advises that it is prepared for the valida-

tion process, and sends its own generated nonce nd. This message is encrypted

with the same kccu−ecu. The CCU then decrypts the message in order to obtain

the nonce nd. These nonces nc and nd are used for MAC computation for the

following messages between the CCU and the corresponding ECU.

8. The CCU sends the list of services/repairs/updates conducted, concatenated with

a MAC.

9. After verifying the MAC received from the CCU, the ECU validates each ser-

vice/repair through its related sensors. After validating the list, it sends an

acknowledgement whether or not the validation is successful, concatenated with

a MAC. If all items in the list are true, only the acknowledgement is sent with a

MAC. Otherwise, the failed item is included in the message.

10. The last part of the protocol is where the mobile device retrieves the list of

services/repairs/updates from the CCU. The mobile device sends a message con-

taining its ID concatenated with a command of serviceupdatereq and a nonce

ne, which is encrypted with a pre-shared symmetric key between mobile device

and CCU, k(ccu−md). The encryption is to ensure the confidentiality of the nonce

ne. Only the authorised CCU is able to decrypt the message and obtain ne. This

is required because ne is to be used as part of a key for AES computation.

11. The CCU decrypts the message to get the nonce ne and then replies with a
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Table 7.4: CCU-ECU validation of services protocol
6. CCU → ECU : ccu||enckccu−ecu{M6}

M6=ecu||validateservice||nc

7. ECU → CCU : ecu||enckccu−ecu{M7}
M7=ccu||ackready||nc||nd

8. CCU→ ECU : ccu||M8||MACnc||nd{M8}
M8=ecu||s1||s2||s3

9. ECU → CCU : ecu||M9||MACnc||nd{M9}
M9=ccu||ack

message stating that a new service is available. If the service has already been

retrieved, it sends a different message to inform the MD. The message contains

the ID of the mobile device, serviceupdate reply, concatenated with nonce ne and

its own generated nonce nf . They are encrypted with the pre-shared symmetric

key between the mobile device and the CCU, k(ccu−md). The nonces ne and nf

are used for AES computation for the messages between the CCU and the MD.

12. The MD then decrypts the message to obtain the nonce nf , and sends an ac-

knowledgement message to the CCU. This message is encrypted using the nonces

as the key. Using the nonces as the key can further provide freshness in the

key and ensure that every transaction is protected with a different set of keys.

Although it is not a good practice to mix cryptographic primitives, the protocol

ensures that the nonces are kept confidential throughout the transaction, hence

this use is safe.

13. The CCU then starts sending the required service information to the MD, i.e. the

type of maintenance service provided (either basic, full or major), the service date

and the date of the next scheduled service, the current mileage and the signature

of this message. The signature uses signature with appendix. The signature is

used to verify that the message originates from the CCU. The record transferred

to the mobile device cannot be changed because only the CCU has the private

key to sign the message.

14. The MD, upon receiving these data, can verify the origin of the message (i.e.

CCU) by verifying the signature. It then acknowledges receipt of this message,

in an encrypted message using AES128.

15. The CCU next sends the list of services/repairs/updates conducted. These are
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also appended with a signature for the same reason as in step 13, i.e. origin

authentication and integrity protection.

16. Finally, the MD, upon receiving and storing these data, sends an acknowledge-

ment encrypted using AES128 to the CCU. This notifies the CCU that the latest

maintenance services record has been retrieved.

Table 7.5: MD-CCU request for services update protocol
10. MD→ CCU : md||enck(ccu−md)

{M10}
M10=serviceupdatereq||ne

11. CCU → MD : ccu||enck(ccu−md)
{M11}

M11=md||serviceupdate||ne||nf

12. MD → CCU : md||ccu||enc(ne⊕nf){M12}
M12=ack

13. CCU → MD : ccu||enc(ne⊕nf){M13}||signskccu{enc(ne⊕nf){M13}}
M13=servicetype||servicedate||nextdate||mile

14. MD→ CCU : enc(ne⊕nf){M14}
M14=ccu||ack

15. CCU → MD : ccu||enc(ne⊕nf){M15}||signskccu{enc(ne⊕nf){M15}}
M15=s1||s2||s3

16. MD → CCU : enc(ne⊕nf){M16}
M16=md||ack

7.7 Protocol Analysis

In this section, we analyse the proposed protocol in terms of security and performance.

7.7.1 Informal Analysis

Based on the threat model discussed in the previous section, the protocol addresses

threats accordingly.

Denial of service attack (DoS): could be conducted:
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(i) by stealing the mobile device. If the mobile device is stolen, all the records are

still available on the server. A stolen mobile device would not be able to tamper

with the available stored data, because the data is signed by the car’s CCU.

(ii) by disabling connectivity between the mobile device and the CCU to disable

the update. Since the logging process is automated, once a mobile device is

authenticated to the CCU, it will ask for an update every time they are connected.

If the update is not conducted, the owner will be notified.

(iii) by introducing manual errors. However, the process may repeat and retry the

update. The diagnostic tool will likely abort after a few attempts. A notification

message will be prompted after a certain retry limit. An error could occur in

normal use; however, it could also be evidence of an attack. The data will always

be consistent as the mobile device will verify with the CCU whether the last data

has been retrieved. If not, the CCU will retain the last record.

(iv) by causing the related ECUs/sensors to malfunction. During the second phase,

i.e. the validation of the services, the ECU will acknowledge that the services

are being performed correctly as detailed by the DT to the CCU in the previous

phase. In this phase, all the related sensors will verify the correctness of the

provided data. If any of the sensors fail, this will be displayed on the diagnostic

transmission code (DTC, which is the error code) before the services are per-

formed. The faulty sensor should be fixed prior to updating the maintenance

services logging system.

Impersonation of recognised workshop or dealer: is prohibited with the use

of digital signatures to ensure only an authorised DT can carry out the storing of

information to the CCU.

Data manipulation attack: (change, deletion or insertion) could be conducted at

three different stages:

(i) From the DT side: A digital signature is used to ensure that only an authorised

DT can sign the message required. Therefore, the message is authentic and comes

from an authorised party, unless the private key is compromised.

(ii) After storing the information to the CCU, and during retrieval of data from

CCU to the MD: The CCU only stores the last record of maintenance service

performed. This information is important to the car owner. If an adversary

wanted to modify or manipulate this one record, he would need to have access to
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the CCU information, i.e. the key to read and/or write to the specific memory

address.

(iii) After storing the information in the mobile application or server: Fake records

could be inserted to increase the car’s resale value. With this protocol, this is not

possible because the record is validated by the relevant ECU and also protected

by the CCU’s signature to ensure its integrity. The mileage can also prove the

age of the car when the service is conducted.

Replay attack: is not possible through the use of random nonces for each transac-

tion.

The proposal also addresses all the security requirements discussed in Section 7.5

as follows:

Integrity: The data stored cannot be changed, modified or added. To ensure that

the record of maintenance service is integrity protected, MAC and digital signatures

are used.

Authentication: Data authentication and data origin authentication should be in

place. MAC is used to verify the data origin authentication.

Non-repudiation: Digital signatures are used to ensure that the workshop and the

car cannot deny their own data.

Freshness: Freshness is verified by using nonces and the mileage reading.

7.7.2 Formal Analysis

The proposed protocol is formally analysed using CasperFDR and Scyther tools to

verify its correctness. The protocol is modelled as follows. The DT knows the CCU,

but does not know the MD. The MD only communicates with the CCU and not with

the DT.

The protocol security objectives are key confidentiality and internal (CCU-ECU)

and external (DT-CCU and MD-CCU) authentication. From our CasperFDR and

Scyther input scripts, the following security claims are made and verified:

1. Confidentiality of the secret nonces (na, nb, nc and nd: used as the MAC keys,

and ne and nf : used as the AES keys), and all secret keys (kccu−ecu and kccu−md).

2. Authentication properties, which include:
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• Aliveness between DT and CCU, aliveness between CCU and ECU, and

aliveness between MD and CCU .

• Agreement between DT and CCU of na and nb, agreement between CCU

and ECU of nc and nd, and agreement between MD and CCU of ne and nf .

• Synchronisation between DT and CCU, synchronisation between CCU and

ECU, and synchronisation between MD and CCU.

The scripts are divided into three parts for the three different parts of the protocol. In

this section, only the first part of the protocol (DT-CCU) is discussed using CasperFDR

script and the last part of the protocol (MD-CCU) is discussed using Scyther script.

However, we also verified the overall protocol using both tools. The scripts are provided

in Appendix A.5 and B.5.

Analysis using CasperFDR The full script for the first part (DT-CCU) is provided

in Appendix A.5.1. The security properties verified were confidentiality, aliveness and

agreement. The confidentiality property verifies the secrecy of the nonces (na and

nb) that are used as keys for MAC computations. The aliveness property verifies the

aliveness between DT and CCU. The agreement property ensures the agreement of

variables shared between the DT and the CCU (na and nb). The threat model is

that the attacker knows all the entities involved, i.e. the DT and CCU, and their

corresponding public keys.

The script starts with #Free variables declaration, which declares all the variables

used in the protocol. It is followed by the #Protocol description. This describes the

messages being transmitted (in sequence) as the information passes from the DT to the

CCU, which starts from service update notification (i.e. 1.a ->c:a,{{c,serviceupdate,na}
{SK(a)}}{PK(c)}). In 3. a ->c:a,c,service,mile,h(a,c,service,mile,na,nb), the list of

services is passed from the DT to the CCU in clear text, but appended with the MAC

of the message. The same occurs in 5. a - >c:a,s1,s2,s3,h(s1,s2,s3,na,nb). Only the

DT and the CCU can compute the MACs and verify them based on the shared keys in

the previous message.

In the #Processes, all the entities involved in the protocol, and their knowledge, are

declared. For example INITIATOR(a,c,serviceupdate,na,service,mile,s1,s2,s3) knows

PK,SK(a), where a is the DT and c is the CCU.

The #Specification declares all the assertions made to verify the security properties.

The confidentiality of na and nb are declared as Secret(a,na,[c]) and Secret(c,nb,[c]).

As an authentication verification, the aliveness property between DT-CCU and the

agreement property between DT-CCU are verified.
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The #Actual variables section describes the names of the actual agents, servers

and the actual variables, such as agent a is DT and agent c is CCU. In the #Functions

section the public and secret keys are declared (symbolic PK,SK). The #System sec-

tion again declares all the involved entities in the protocol and their knowledge, but with

their actual names. For example, INITIATOR(DT,CCU,Serviceupdate,Na,Service,Mile,

S1,S2,S3). The #Intruder Information declares an intruder X, who has knowledge of

all the entities involved and their public keys, and its own public and secret keys, i.e.

IntruderKnowledge=DT,CCU,X,PK.

All the specifications made were verified and no attack was found for any of the

assertions.

Analysis using Scyther The full script for the third part of the protocol, i.e. be-

tween MD-CCU can be found in Appendix B.5.3. The security properties verified were

secrecy, non-injective synchronisation, non-injective agreement and aliveness [117]. The

secrecy property verifies the confidentiality of the nonces (ne and nf), which are used

as keys for AES computations. The non-injective synchronisation property verifies that

all parties (MD and CCU) know who they are communicating with, and agree on the

content of the messages and the order of the messages. Non-injective agreement verifies

that all parties (MD and CCU) agree on the content of the variables (ne and nf). The

aliveness property verifies that the intended communication partner (MD-CCU) has

executed some events.

The script starts with functions declarations. Then, we have macros of messages

to make the script neat and easily followed. Next, the events and claims are made for

each role (MD and CCU).

For example, for the MD role, examples of events are send 10(md,ccu,m10) and

recv 11(ccu,md,m11), which means MD sends macro m10 to CCU and later receives

macro m11 from CCU. Claims are the security properties to be verified. For example,

for the MD role, claim I5(md,SKR, ne) is for confidentiality. Authentication proper-

ties are verified through Agreement (claim I4 (md,Weakagree), claim I3(md,Niagree)),

Synchronisation (claim I2(md,Nisynch)), and Aliveness (claim I1(md,Alive)).

The default verification setup was used (i.e. five as the maximum number of runs,

type matching and finding the best attack with a maximum of ten patterns per claim).

The results for all the claims made were verified as “Ok” in “Status” with “Verified”

and “No attacks” in the “Comments”. This means that no attack was found within

the bounded or unbounded statespace; the security property was successfully verified

[118].
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Table 7.6: Application sizes on PIC32MZ microcontroller
Code size (kB)

Protocol part DT CCU ECU

I DT-CCU 70.7 70.9 -
II CCU-ECU - 63.2 63.0
III MD-CCU - 45.0 -

7.7.3 Implementation

The proposed protocol was then implemented on a PIC Microchip microcontroller

(PIC32MZ2048ECM144) and an Android device (LG Nexus 5) to obtain indicative

performance results.

Implementation Platform

The implementation platform for the mobile device was the same as that mentioned

in Section 5.7.3. DT, CCU and ECU used the same platform, which was the same as

that mentioned in Section 5.7.3. The application sizes for DT, CCU and ECU are as

shown in Table 7.6.

Programming and Debugging Environment

The same programming and debugging environment mentioned in Section 5.7.3 was

used for this implementation.

Experiment Setup

Hardware setup The hardware setup for communication between mobile device,

DT, CCU and ECU was the same as mentioned in Section 5.7.3.

Software setup RSA1024 was used for digital signatures and public key encryption.

A prefixed key of X.509 format was used for its certificate. AES128 was used for sym-

metric key encryption and HMAC SHA256 was used for MAC. Based on the proposed

protocol, the length of a message was more than 8 bytes; hence, each message needed

to be divided into more than one CAN message due to the limited number of bytes (8

bytes) of data per CAN message transmission.

Implementation Results

The computation and communication performance was as shown in Table 7.7. The

communication included the transfer of data from Wi-Fi module to the middle interface
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Table 7.7: AutoLOG protocol performance
Protocol part Message Time(ms)

Computation Communication Total time
A B

I 1 53.041 52.691 1.825 107.557
A=DT, B=CCU 2 52.680 53.012 1.825 107.517

3 0.102 0.086 0.859 1.046
4 0.084 0.079 0.752 0.915
5 0.077 0.086 0.752 0.914

II 6 0.099 0.050 0.537 0.686
A=CCU, B=ECU 7 0.039 0.083 0.537 0.659

8 0.103 0.083 0.859 1.045
9 0.083 0.078 0.537 0.697

III 10 0.605 0.049 57.627 58.280
A=MD, B=CCU 11 0.805 0.083 72.818 73.705

12 0.382 0.036 50.031 50.450
13 1.216 39.459 163.962 204.636
14 0.231 0.031 34.841 35.103
15 1.082 39.609 163.962 204.652
16 0.199 0.030 34.841 35.069

Total 882.933

module (via UART) and from the middle interface module to the CCU (via CAN). To

the author’s knowledge, there is no related work proposing an automated maintenance

services logging system to provide a comparison with the present work. However, the

total time for the protocol to complete was only about 883 ms. This shows that the

protocol is efficient and practical for implementation. Although the computation time

for AES and HMAC was faster using PIC32MZ as compared to the Android phone, the

RSA computation is longer for PIC32MZ. This is because PIC32MZ has cryptographic

engines for AES and HMAC, which compute the algorithms at hardware level, resulting

in a faster computation time. The communication time was longer for the third part

of the protocol because the messages from the mobile device needed to go through

WiFi, be converted to UART messages, then to CAN messages. It was the same for

the communication from the CCU to the mobile device, where the messages from the

CCU are in CAN, then converted to UART, and later to WiFi. The baud rates of

communication were 9600 bps for UART and 1 Mbps for CAN. The communication

time could be further improved if CAN FD [130] is used, where one message can contain

up to 64 bytes of data, instead of just 8 bytes.
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7.8 Summary

The automated logging of car maintenance services helps car owners to keep track of

their car’s maintenance record and avoid major breakdowns that can be very expensive.

Having a secure protocol to conduct the automated logging ensures that no records can

be faked or modified. This will not only help the owner during the ownership of the

car, but also during car resale by increasing the car’s price by showing that the car

has been well maintained. The use of a mobile device gives a user interface as well as

connectivity for the car, and thus helps the widespread use of this application since not

all cars have connectivity and/or user interfaces.
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8.1 Summary and Conclusions

This thesis describes research on the security and privacy aspects of vehicular applica-

tions in connected cars, with a focus on three selected applications. With the evolution

of the internet of things, automotive systems are an important area to be explored,

especially in terms of security. The security of automotive systems is particularly im-

portant as it involves the safety of vehicular operations. The aim of the thesis was to

analyse the current security and privacy aspects of automotive systems implementations

in the context of the selected applications. We proposed solutions or improvements to

ensure that security and privacy aspects are protected, especially from the point of

view of consumers, i.e. the car owners. Since there are many vehicular applications,

we choose three applications that represent different phases in the car life cycle. The

three applications involve different stakeholders and different processes and thus, they

have different requirements and challenges.

The thesis started with a brief introduction to the technical terms relating to con-

nected cars. Automotive systems were introduced by discussing ECUs and in-vehicle

communications. Vehicular applications involve the overall automotive ecosystem; the

automotive stakeholders were discussed, each with their attack capabilities and moti-

vations. Finally, automotive security issues and requirements were briefly explained.

After providing an understanding of the basics of connected cars, three selected

vehicular applications i.e. firmware update, forensics, and maintenance services logging

systems, were discussed. The processes, challenges and requirements of each application

were discussed. From these discussions, we identified opportunities for improvements.

For the first selected application, the vehicular firmware update, we discussed the

general requirements for ensuring a successful update. We also discussed the different

methods of performing updates of ECUs: conventional updates in workshops or OTA

updates. An OTA update can be performed either with the car present in a workshop,

or at any convenient place with a specified capability. For the second application,

vehicular forensics, the main concerns were the availability of the data during forensic

investigations and the privacy of the data from the point of view of the car owner. Full

and easy availability of data can improve the accuracy of forensic analysis. In the last

application, maintenance service logging systems, a discussion of the current process of

logging maintenance services records led us to improve the existing implementation.

In the second part of the thesis, we proposed security and/or reliability improve-

ments for the three selected applications. The proposed improvements not only pro-

vided flexibility to the users, but also ensured the security and privacy aspects of the

systems. We considered the automotive components under careful control of the car
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manufacturer to ensure a reliable, safe and secure car. Our proposals are based on the

new ECU architecture where a security module is included in the ECU.

For the firmware update application, security is a must to ensure a successful update

of a car’s ECU. One of the main industrial projects, the EVITA project, proposed a

firmware update over-the-air protocol. On examination of EVITA, we found some

shortcomings and proposed an improved protocol, EVITA+. Our proposed protocol

provided additional assurance by considering both security and general requirements

to ensure a successful update. These features can help to provide assurance on the

reliability and safety of the car. Our proposed protocol provides additional assurance

through the rollback mechanism that protects the firmware confidentiality. It also

ensures secure transfer of the flash driver for different memory capabilities of the ECUs.

These features can help to provide assurance on the reliability and safety of the car.

We presented our threat model and outlined the general and security requirements to

ensure a successful firmware update process.

The second contribution was also on the firmware update application, ensuring

the distribution of firmware updates is flexible and consumer-friendly. We proposed a

secure firmware update protocol for automotive systems using a mobile device. The

proposed mobile application ensures the authentication of all parties involved in the

update process and the confidentiality of the firmware. Even if the mobile application

is compromised, it cannot reveal unencrypted firmware and associated secret/private

keys. The different possible architectures for the OTA firmware update were discussed,

and we selected the best architecture based on security requirements and flexibility for

users.

The third contribution was on the subject of vehicular forensics. After our anal-

ysis, we concluded that the accuracy of forensic analysis could be improved with a

wider range of parameters for the collected data. Users’ privacy also needed to be

protected. While ensuring secure data and users’ privacy, a secure framework for vehi-

cle forensics was proposed. Having a mobile application as a logging platform for the

vehicle operation can make forensic investigations more effective, as more data options

can be stored, thus increasing the accuracy of forensic analysis. A secure framework

for vehicle forensics is proposed to ensure the security of data and at the same time

protect users’ privacy. The proposed DiaLOG application used a new framework for

automotive forensics, which provides usability and reliability.

Finally, in the automated maintenance services logging system, our main concern

was to ensure that records are always available to car owners. This helps car owners

to keep track of their car maintenance records and avoid major breakdowns that can

be very expensive. We proposed a secure protocol for automated logging to ensure the
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integrity of the records. It ensures no records can be faked or modified. This will not

only help the owner during the ownership of the car, but also when the car is resold,

by increasing the car’s price by showing that it has been well maintained.

While we were proposing a new protocol for each different application, the intro-

duction of the mobile device in the secure architecture showed that it could further

provide flexibility, usability and reliability. The mobile device provides connectivity

and a user interface for the car. This is especially useful for older cars that do not have

modern infotainment units that can provide connectivity and/or a user interface.

All the proposed protocols were implemented to measure their performance and to

show their feasibility. We used a generic microcontroller that has the capability of an

actual ECU to emulate the performance of an ECU in implementation. Our proposed

protocols were shown to be feasible to implement and showed adequate performance.

The applications on the Android device were specifically developed and implemented

for the proposed protocol (without other features), and are therefore very small.

In addition to informal analysis, these protocols were also subjected to formal anal-

ysis using automated tools, i.e. CasperFDR and Scyther. The tools helped to show

that the protocols are secure as they passed all the security requirements as listed in

the script specification. From the security analysis and implementation, our proposed

protocols were shown to be secure, and feasible to implement.

8.2 Future Work

We wanted to show that while providing flexibility to the users, the security aspects

of the applications would not be compromised. As car manufacturers are increasingly

aware of the security implications in connected cars, they are more inclined towards

using security-enabled platforms. However, they are still in the early stages of adopting

security. This is where security experts can play a role in providing a thorough security

and risk analysis for each new proposed application.

For a short-term piece of future work, the proposed applications can be implemented

in an actual ECU with a security platform, and its performance can be analysed to

prove its feasibility. On a mobile device, these applications could be implemented in a

trusted execution environment to provide secure execution. The Android applications

could be further developed to enhance their features. For example, for the forensic

system (AutoLOG), more data could be acquired for logging. As more stakeholders

will be interested in these applications and the data provided, security and privacy

must not be neglected. The management of data must be properly organised to ensure

its protection and ownership.
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Key management is another area to be explored. As car manufacturers have the

responsibility of ensuring secure and reliable systems, they might want a closed system

which is fully controlled by them. For example, they may want to ensure only approved

components or service providers are used for their cars. However, end users may prefer

more flexible systems where they have more choice. Providing flexibility and options

to the users while having a tightly controlled system will be a challenge.

There are many other vehicular applications that can be explored. As different

applications may involve different stakeholders, a thorough analysis of the security and

privacy implications needs to be performed.

As security implementations are still new in the automotive industry, the choices for

security modules would be a good area for exploration. Working to find the optimum

security platform for different applications may open up further research opportunities

and challenges.

The security of the mobile applications used in automotive systems could be an-

other potential area of research as it could have a high impact on the safety of the

vehicular operations. Finding which security solution provides the required properties

for designated vehicular applications would be a challenge in itself.

Autonomous vehicle security will be an important area to explore, as autonomous

implies that the vehicle is controlled by a system (probably comprising of both software

and hardware) which will communicate with the ECUs via the in-vehicle networks.

Human intervention will be minimal, hence the system security must be extremely

robust to ensure safe independent operation of the vehicle.

Lastly, a major generic area to be explored is the boundary between security, privacy

and flexibility, within the complex automotive ecosystem with its many stakeholders.
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A.1. CasperFDR Tool A. CasperFDR scripts

A.1 CasperFDR Tool

The CasperFDR tool analyses Communication Sequential Process (CSP) files using

a model checker Failure Divergence Refinement (FDR) [114]. CSP is a notation that

shows communicating agents and their corresponding messages in a system. CasperFDR

is only supported on Linux OS. FDR2.94 was used for our analysis. There are two ways

to use the tool: either use Casper and FDR separately; or use them in one tool which

combines the two, called CasperFDR.

Tool and language The input file is a .spdl file written using a text editor in Linux

OS. The file is then compiled using the Casper tool, which outputs a .csp file. The .csp

file is then verified using the FDR tool. In CasperFDR, the result will show whether

any attacks are found using the corresponding specifications. It will also show how an

attack could be conducted by an intruder, in a text format.

A.1.1 Input file

The manual for input files is described in [114]. The script starts with the #Free

variables declaration, which declares all the variables used in the protocol. It is fol-

lowed by the #Protocol description. This describes the messages being transmitted (in

sequence). In the #Processes, all the entities involved in the protocol, and their knowl-

edge, are declared. The #Specification declares all the assertions made to verify the

security properties. The #Actual variables section describes the names of the actual

agents, the server and the actual variables. In the #Functions section, all the public

and secret keys are declared. The #System section again declares all the involved enti-

ties in the protocol and their knowledge, but with their actual names. The #Intruder

Information declares an intruder X, with his knowledge.

A.1.2 Security properties

The security properties that can be verified using CasperFDR are confidentiality and

authentication properties. The confidentiality property is declared as Secret(a,datax,[a,b]),

where a and b are the agents, where datax is to be confidential between them. The au-

thentication properties include aliveness and agreement [116]. The aliveness property

is defined by Aliveness(a,b), where from agent a’s view, b is alive in the protocol. The

agreement property is defined as Agreement(a,b,[datax,datay]), where from agent a’s

view, he agrees on the datax and datay with agent b during the protocol.
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A.1.3 Verification Results

The result will be shown at the bottom of each assertion as “No attack found” or

“Attack found”.

A.2 Casper Scripts for EVITA+ Protocol

These scripts are for the protocol described in section 4.7.

A.2.1 EVITA+ Protocol Phase I

1 #Free v a r i a b l e s

2 a , b : Agent

3 c : Server

4 s : mainServer

5 mk, na : Nonce

6 ack : Data

7 t s : TimeStamp

8 PK: Agent−>PublicKey

9 SK: Agent−>SecretKey

10 PK1: Server−>PublicKey

11 SK1 : Server−>SecretKey

12

13 InverseKeys = (PK,SK) , (PK1, SK1) , (mk,mk) , ( ssk , s sk ) , ( ksb , ksb ) , (

kbc , kbc )

14 request seed , r eque s t : Message

15 h : HashFunction

16 ssk : presharedKey

17 ksb : presharedKey

18 kbc : presharedKey

19

20

21 #Protoco l d e s c r i p t i o n

22 0 . −>a : b

23 1 . a−>c :{mk}{PK1( c ) } , ts ,{{mk}{PK1( c ) } , t s }{SK( a ) }
24 2 . c−>b :{mk}{kbc } , ts ,{{mk}{kbc } , t s }{SK1( c ) }
25 3 . b−>c : ack , ts ,{ ack , t s }{kbc}
26 4 . c−>a : ack , ts ,{ ack , t s }{SK1( c ) }

149



A.2. Casper Scripts for EVITA+ Protocol A. CasperFDR scripts

27 5 . a−>b : reques t seed , ts , h ({ reques t seed , t s }{mk})

28 6 . b−>a :{ na}{mk} , ts , h ({{na}{mk} , t s }{mk})

29 7 . a−>b :{h( na , s sk ) }{mk} , ts , h ({{h( na , s sk ) }{mk} , t s }{mk})

30 8 . b−>a : ack , ts , h ({ ack , t s }{mk})

31

32 #Proce s s e s

33 INITIATOR( a , c , s ,mk, reques t seed , ssk , r eque s t ) knows PK,PK1,SK( a )

34 SERVER( c , b , kbc ) knows PK,PK1, SK1

35 RESPONDER(b , a , ack , na , ssk , ksb , kbc ) knows PK,PK1,SK(b)

36

37 #S p e c i f i c a t i o n

38 Sec r e t ( a ,mk , [ b , c ] )

39 Sec r e t ( a , na , [ b ] )

40 Sec r e t ( a , ssk , [ b ] )

41 Sec r e t ( a ,SK( a ) , [ a ] )

42 Sec r e t (b ,SK(b) , [ b ] )

43 Sec r e t ( a ,{ na}{ s sk } , [ b ] )

44 Sec r e t (b , kbc , [ c ] )

45 A l i vene s s ( a , b )

46 Al i vene s s ( a , c )

47 Agreement ( a , c , [ mk] )

48 Agreement (b , c , [ mk, kbc ] )

49

50 #Actual v a r i a b l e s

51 DT,ECU,X: Agent

52 CCU: Server

53 Mk: Nonce

54 ACKs: Data

55 TimeStamp =0. .0

56 MaxRunTime=0

57 RequestSeed , Request , SSK : Message

58 Na : Nonce

59 KAB,KSB,KBC: presharedKey

60 InverseKeys = (KAB,KAB) , (Mk,Mk) , (Na , Na) , (KSB,KSB) , (KBC,KBC)

61 OEM: mainServer

62

63 #Functions
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64 symbol ic PK,SK,PK1, SK1

65

66 #System

67 INITIATOR(DT,CCU,OEM,Mk, RequestSeed ,KAB, Request )

68 SERVER(CCU,ECU,KBC)

69 RESPONDER(ECU,DT,ACKs, Na ,KAB,KSB,KBC)

70

71 #Int ruder In format ion

72 Int ruder=X

73 IntruderKnowledge={DT,CCU,ECU,X,PK,PK1,SK(X) }

A.2.2 EVITA+ Protocol Phase II

1 #Free v a r i a b l e s

2 a , b : Agent

3 c : Server

4 s : OemServer

5 mk: SessionKey

6 r e q u e s t e x i t , request , ack : Message

7 ssk : Nonce

8 PK: Agent−>PublicKey

9 SK: Agent−>SecretKey

10 PK1: OemServer−>PublicKey

11 SK1 : OemServer−>SecretKey

12 PK2: Server−>PublicKey

13 SK2 : Server−>SecretKey

14 InverseKeys = (PK,SK) , (PK1, SK1) , (PK2, SK2) , (mk,mk) , ( ksb , ksb ) , (

ssk , s sk )

15 h : HashFunction

16 t s : TimeStamp

17 ksb : presharedKey

18 Fdr ,m1,m2: Data

19

20 #Protoco l d e s c r i p t i o n

21 0 . −>a : b

22 1 . a−>s : request , ts ,{ request , t s }{SK( a ) }
23 2 . s−>a :{ s sk }{ksb}%fek , ts ,{{ s sk }{ksb}%fek , t s }{SK1( s ) }
24 3 . s−>a :{m2}{ s sk}%frm2 , ts ,{{m2}{ s sk}%frm2 , t s }{SK1( s ) }
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25 4 . a−>b : Fdr , ts , h ({Fdr , t s }{mk})

26 5 . b−>a : ack , ts , h ({ ack , t s }{mk})

27 6 . a−>b : f ek%{s sk }{ksb } , ts , h ({ f ek%{s sk }{ksb } , t s }{mk})

28 7 . b−>a : ack , ts , h ({ ack , t s }{mk})

29 8 . b−>c :{m1}{ s sk}%frm1 , ts , h({{m1}{ s sk}%frm1 , t s }{mk})

30 9 . b−>c : r e q u e s t e x i t , ts , h ({ r e q u e s t e x i t , t s }{mk})

31 10 . a−>c : frm2%{m2}{ s sk } , ts , h ({ frm2%{m2}{ s sk } , t s }{mk})

32 11 . a−>c : r e q u e s t e x i t , ts , h ({ r e q u e s t e x i t , t s }{mk})

33 12 . c−>b :{m2}{ s sk } , ts , h ({{m2}{ s sk } , t s }{mk})

34 13 . c−>b : r e q u e s t e x i t , ts , h ({ r e q u e s t e x i t , t s }{mk})

35 14 . b−>a : ack , ts , h ({ ack , t s }{mk})

36

37

38 #Proce s s e s

39 INITIATOR( a , s , c , request ,mk, r e q u e s t e x i t , Fdr ) knows PK,SK( a ) ,PK1

40 RESPONDER(b , a , c , ack ,mk, ksb , ssk ,m1, r e q u e s t e x i t ) knows PK,SK(b) ,

PK1

41 OemSERVER( s , a , ssk , ksb ,m2, b) knows PK,PK1, SK1

42 SERVER( c , a , b , ssk ,m2, r e q u e s t e x i t ,mk) knows PK,PK1,PK2, SK2

43

44 #S p e c i f i c a t i o n

45 Sec r e t ( a ,mk , [ b ] )

46 Sec r e t (b ,m1 , [ c ] )

47 Sec r e t ( s ,m2 , [ b ] )

48 Sec r e t ( a ,SK( a ) , [ a ] )

49 Sec r e t (b ,SK(b) , [ b ] )

50 Sec r e t ( s , ssk , [ b ] )

51 Al i vene s s ( a , s )

52 Al i vene s s ( a , c )

53 Al i vene s s (b , c )

54 Agreement ( a , c , [ mk] )

55 Agreement (b , c , [ mk] )

56

57 #Actual v a r i a b l e s

58 DT,ECU,X: Agent

59 OEM: OemServer

60 CCU: Server
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61 Mk: SessionKey

62 SSK: Nonce

63 Req ,ACK, ReqExit : Message

64 TimeStamp =0. .0

65 MaxRunTime=0

66 KSB: presharedKey

67 InverseKeys=(Mk,Mk) , (KSB,KSB) , (SSK, SSK)

68 FDR,FrmA,FrmB,M2,M1: Data

69

70 #Functions

71 symbol ic PK,SK,PK1, SK1 ,PK2, SK2

72

73 #System

74 INITIATOR(DT,OEM,CCU, Req ,Mk, ReqExit ,FDR)

75 RESPONDER(ECU,DT,CCU,ACK,Mk,KSB, SSK,M1, ReqExit )

76 OemSERVER(OEM,DT, SSK,KSB,M2,ECU)

77 SERVER(CCU,DT,ECU, SSK,FrmB, ReqExit ,Mk)

78

79 #Int ruder In format ion

80 Int ruder=X

81 IntruderKnowledge={DT,CCU,ECU,OEM,X,PK,SK(X) ,PK1,PK2}

A.3 Casper Scripts for FOTA Protocol

These scripts are for the protocol described in section 5.6.

A.3.1 FOTA Protocol Phase I and II

1

2 #Free v a r i a b l e s

3 a , b , c : Agent

4 s : Server

5 knb , kna : Nonce

6 ack : Data

7 t s : TimeStamp

8 PK: Agent−>PublicKey

9 SK: Agent−>SecretKey

10 PK1: Server−>PublicKey
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11 SK1 : Server−>SecretKey

12 frmold , frmnew : Data

13 psk fek : sharedKey

14 InverseKeys = (PK,SK) , (PK1, SK1) , ( kna , kna ) , ( pskecu , pskecu ) , (

pskfek , psk fek ) , ( knb , knb )

15 reques td l , r e q u e s t t r a n s f e r e x i t : Message

16 h : HashFunction

17 pskecu , pskunlock : presharedKey

18 idecu : Data

19

20 #Protoco l d e s c r i p t i o n

21 0 . −>a : b

22 1 . a−>s : a ,{ kna}{PK1( s ) } , ts ,{ a ,{ kna}{PK1( s ) } , t s }{SK( a ) }
23 2 . s−>a : s , ack , ts ,{ s , ack , t s }{SK1( s ) }
24 3 . a−>s : a , r eques td l , idecu , ts , h ({a , r eques td l , idecu , t s }{kna })

25 4 . s−>a : s ,{ pskunlock }{pskecu}%ssk , ts , h ({ s ,{ pskunlock }{pskecu}%
ssk , t s }{kna })

26 5 . a−>s : a , ack , ts , h ({a , ack , t s }{kna })

27 6 . s−>a : s ,{ frmnew}{ pskfek}%frm2 , ts , h ({ s ,{ frmnew}{ pskfek}%frm2 ,

t s }{kna })

28 7 . a−>s : a , ack , ts , h ({a , ack , t s }{kna })

29 8 . a−>c :{ a , knb}{PK( c ) } , ts ,{{ a , knb}{PK( c ) } , t s }{SK( a ) }
30 9 . c−>b : c ,{ knb}{PK(b) } , ts ,{ c ,{ knb}{PK(b) } , t s }{SK( c ) }
31 10 . b−>c : b , ack , ts ,{b , ack , t s }{SK(b) }
32 11 . c−>a : c , ack , ts ,{ c , ack , t s }{SK( c ) }
33 12 . a−>b : a , s sk%{pskunlock }{pskecu } , ts , h ({a , s sk%{pskunlock }{

pskecu } , t s }{knb})

34 13 . b−>a : b , ack , ts , h ({b , ack , t s }{knb})

35 14 . b−>a : b ,{ f rmold }{ pskfek}%frm1 , ts , h ({b ,{ f rmold }{ pskfek}%frm1 ,

t s }{knb})

36 15 . a−>b : a , ack , ts , h ({a , ack , t s }{knb})

37 16 . a−>b : a , frm2%{frmnew}{ pskfek } , ts , h ({a , frm2%{frmnew}{ pskfek } ,

t s }{knb})

38 17 . b−>a : b , ack , ts , h ({b , ack , t s }{knb})

39

40 #Proce s s e s
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41 INITIATOR( a , s , b , c , idecu , kna , r eques td l , ack , knb ,

r e q u e s t t r a n s f e r e x i t ) knows PK,PK1,SK( a )

42 SERVER( s , a , b , c , idecu , pskecu , pskfek , pskunlock , frmnew , ack ,

r e q u e s t t r a n s f e r e x i t ) knows PK,PK1, SK1

43 RESPONDER(b , a , s , c , idecu , pskunlock , pskecu , ack , pskfek ,

r e q u e s t t r a n s f e r e x i t , frmold ) knows PK,PK1,SK(b)

44 SERVER2( c , a , b , s , idecu ) knows PK,PK1,SK( c )

45

46 #S p e c i f i c a t i o n

47 Sec r e t ( a , kna , [ a , s ] )

48 Sec r e t ( a , knb , [ a , b ] )

49 Sec r e t ( s , frmnew , [ s , b ] )

50 Sec r e t (b , frmold , [ b ] )

51 Sec r e t ( s , pskfek , [ s , b ] )

52 Sec r e t ( s , pskunlock , [ s , b ] )

53 Sec r e t ( s , pskecu , [ s , b ] )

54 Al i vene s s ( a , b )

55 Al i vene s s ( s , a )

56 Agreement ( a , b , [ knb ] )

57 Agreement ( s , a , [ kna ] )

58 Agreement ( s , b , [ pskecu , pskfek , pskunlock ] )

59

60 #Actual v a r i a b l e s

61 MD,ECU,CCU,X: Agent

62 OEM: Server

63 KNb,KNa: Nonce

64 ACKs: Data

65 TimeStamp =0. .0

66 MaxRunTime=0

67 RequestDL , RequestExit : Message

68 FRMOLD,FRMNEW: Data

69 PSKECU,PSKUNLOCK: presharedKey

70 PSKFEK: sharedKey

71 IDECU: Data

72 InverseKeys = (PSKECU,PSKECU) , (KNa,KNa) , (PSKFEK,PSKFEK) , (

PSKUNLOCK,PSKUNLOCK) , (KNb,KNb)

73
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74 #Functions

75 symbol ic PK,SK,PK1, SK1

76

77 #System

78 INITIATOR(MD,OEM,ECU,CCU,IDECU,KNa, RequestDL ,ACKs,KNb,

RequestExit )

79 SERVER(OEM,MD,ECU,CCU,IDECU,PSKECU,PSKFEK,PSKUNLOCK,FRMNEW,

ACKs, RequestExit )

80 RESPONDER(ECU,MD,OEM,CCU,IDECU,PSKUNLOCK,PSKECU,ACKs,PSKFEK,

RequestExit ,FRMOLD)

81 SERVER2(CCU,MD,ECU,OEM,IDECU)

82

83 #Int ruder In format ion

84 Int ruder=X

85 IntruderKnowledge={MD,OEM,CCU,ECU,X,PK,PK1,SK(X) }

A.3.2 FOTA Protocol Replacement Phase

1 #Free v a r i a b l e s

2 a , b , c : Agent

3 s : Server

4 ack , idb , idb1 : Data

5 t s : TimeStamp

6 PK: Agent−>PublicKey

7 SK: Agent−>SecretKey

8 PK1: Server−>PublicKey

9 SK1 : Server−>SecretKey

10 InverseKeys = (PK,SK) , (PK1, SK1) , ( pskecu , pskecu )

11 reques t id , r e q u e s t v e r i f y i d : Message

12 h : HashFunction

13 pskecu : Key

14 rnd : Nonce

15

16 #Protoco l d e s c r i p t i o n

17 0 . −>a : c

18 1 . a−>c : a , r eques t id , t s

19 2 . c−>b : c , r eques t id , t s

20 3 . b−>c : b , idb1 , t s
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21 4 . c−>a : c , idb1 , t s

22 5 . a−>s : a , r e q u e s t v e r i f y i d , idb1 , ts ,{ a , r e q u e s t v e r i f y i d , idb1 , t s }{
SK( a ) }

23 [ idb1==idb ]

24 6 . s−>a : s , ( { rnd , pskecu ,PK(b) }{PK( c ) })%v1 , ts ,{ s , ( { rnd , pskecu ,PK(

b) }{PK( c ) })%v1 , t s }{SK1( s ) }
25 7 . a−>c : a , v1%({rnd , pskecu ,PK(b) }{PK( c ) }) , ts ,{ s , v1%({rnd , pskecu ,

PK(b) }{PK( c ) }) , t s }{SK( a ) }
26 8 . c−>b : c , rnd ,PK( c ) , t s

27 9 . b−>c : b ,{{ rnd}{pskecu }}{PK( c ) } , t s

28 10 . c−>a : c , ack , ts ,{ c , ack , t s }{SK( c ) }
29

30 #Proce s s e s

31 INITIATOR( a , s , b , c , r eques t id , r e q u e s t v e r i f y i d ) knows PK,PK1,SK( a

)

32 SERVER( s , a , b , c , ack , idb , pskecu , rnd ) knows PK,PK1, SK1

33 RESPONDER(b , a , s , c , ack , idb1 , pskecu ) knows PK,PK1,SK(b)

34 SERVER2( c , a , b , s , ack ) knows PK,PK1,SK( c )

35

36 #S p e c i f i c a t i o n

37 Sec r e t ( a ,SK( a ) , [ a ] )

38 Sec r e t (b ,SK(b) , [ b ] )

39 Sec r e t ( c ,SK( c ) , [ c ] )

40 Sec r e t ( s , SK1( s ) , [ s ] )

41 Sec r e t (b , pskecu , [ s , b , c ] )

42 A l i vene s s ( a , b )

43 Al i vene s s ( a , c )

44 Al i vene s s ( s , a )

45 Agreement ( s , c , [ pskecu ] )

46

47

48 #Actual v a r i a b l e s

49 MD,ECU,CCU,X: Agent

50 OEM: Server

51 ACKs, ID : Data

52 TimeStamp =0. .0

53 MaxRunTime=0
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54 RequestID , RequestVeri fyID : Message

55 PSKECU: Key

56 RND: Nonce

57 InverseKeys = (PSKECU,PSKECU)

58

59 #Functions

60 symbol ic PK,SK,PK1, SK1

61

62 #System

63 INITIATOR(MD,OEM,ECU,CCU, RequestID , RequestVeri fyID )

64 SERVER(OEM,MD,ECU,CCU,ACKs, ID ,PSKECU,RND)

65 RESPONDER(ECU,MD,OEM,CCU,ACKs, ID ,PSKECU)

66 SERVER2(CCU,MD,ECU,OEM,ACKs)

67

68 #Int ruder In format ion

69 Int ruder=X

70 IntruderKnowledge={MD,OEM,CCU,ECU,X,PK,PK1,SK(X) }

A.4 Casper Scripts for DiaLOG Protocol

These scripts are for the protocol described in section 6.6.

A.4.1 DiaLOG Full Authorisation Protocol

1 #Free v a r i a b l e s

2 a , b : Agent

3 nmo : Nonce

4 ack : Data

5 t s : TimeStamp

6 dtc : Data

7 PK: Agent−>PublicKey

8 SK: Agent−>SecretKey

9 ks : sharedKey

10 kab : presharedKey

11 InverseKeys = (PK,SK) , ( kab , kab ) , ( ks , ks )

12 h : HashFunction

13 f u l l r e q , reqdtc : Message

14
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15 #Protoco l d e s c r i p t i o n

16 0 . −>a : b

17 1 . a−>b : a ,{b , f u l l r e q , nmo}{kab}
18 2 . b−>a : b ,{ a , ks , nmo}{kab}
19 3 . a−>b : a , reqdtc ,{b , reqdtc }{ ks}
20 4 . b−>a :{b , dtc }{ ks } ,{{b , dtc }{ ks }}{SK(b) }
21

22 #Proce s s e s

23 INITIATOR( a , b , kab , nmo, f u l l r e q , reqdtc ) knows PK,SK( a )

24 RESPONDER(b , a , kab , dtc , ks ) knows PK,SK(b)

25

26 #S p e c i f i c a t i o n

27 Sec r e t ( a , kab , [ a , b ] )

28 Sec r e t (b , ks , [ a , b ] )

29 Sec r e t ( a , nmo , [ a , b ] )

30 Al i vene s s ( a , b )

31 Al i vene s s (b , a )

32 Agreement ( a , b , [ ks , kab ] )

33 Agreement (b , a , [ ks , kab ] )

34

35 #Actual v a r i a b l e s

36 MD,CCU,X: Agent

37 Nmo: Nonce

38 ACKs: Data

39 TimeStamp =0. .0

40 MaxRunTime=0

41 DTC: Data

42 KAB: presharedKey

43 KS: sharedKey

44 FULLREQ,REQDTC: Message

45 InverseKeys = (KAB,KAB) , (KS,KS)

46

47 #Functions

48 symbol ic PK,SK

49

50 #System

51 INITIATOR(MD,CCU,KAB,Nmo,FULLREQ,REQDTC)
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52 RESPONDER(CCU,MD,KAB,DTC,KS)

53

54 #Int ruder In format ion

55 Int ruder=X

56 IntruderKnowledge={MD,CCU,X,FULLREQ,REQDTC,PK,SK(X) }

A.4.2 DiaLOG Basic Authorisation Protocol

1 #Free v a r i a b l e s

2 a , b , c : Agent

3 nmo, nc , nmt : Nonce

4 dtc : Data

5 PK: Agent−>PublicKey

6 SK: Agent−>SecretKey

7 ks : sharedKey

8 kac , kbc : presharedKey

9 InverseKeys = (PK,SK) , ( kac , kac ) , ( ks , ks ) , ( kbc , kbc )

10 bas i c req , reqdtc : Message

11

12 #Protoco l d e s c r i p t i o n

13 0 . −>a : b

14 1 . a−>c : a , c ,{b , bas i c r eq , nmt}{kac}
15 2 . c−>b : c , b ,{ a , bas i c r eq , nmt , nmo}{kbc}
16 3 . b−>c : b , c ,{ a , ks , nmo, nc , nmt}{kbc}
17 4 . c−>a : c , a ,{ a , b , ks , nmo, nc , nmt}{kac}
18 5 . a−>b : a , b ,{ a , c , b , nc , reqdtc }{ ks}
19 6 . b−>a :{b , dtc }{ ks } ,{{b , dtc }{ ks }}{SK(b) }
20

21 #Proce s s e s

22 INITIATOR( a , b , c , kac , nmt , bas i c r eq , reqdtc ) knows PK,SK( a )

23 RESPONDER(b , a , c , kbc , ks , nc , dtc ) knows PK,SK(b)

24 RESPONDER1( c , a , b , kbc , kac , nmo) knows PK,SK( c )

25

26 #S p e c i f i c a t i o n

27 Sec r e t ( a , kac , [ a , c ] )

28 Sec r e t (b , kbc , [ b , c ] )

29 Sec r e t (b , ks , [ a , b ] )

30 Al i vene s s ( a , b )
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31 Al i vene s s (b , a )

32 Al i vene s s ( a , c )

33 Al i vene s s ( c , a )

34 Al i vene s s ( c , b )

35 Al i vene s s (b , c )

36 Agreement ( a , b , [ ks , nc ] )

37 Agreement (b , a , [ ks , nc ] )

38

39 #Actual v a r i a b l e s

40 MO,CCU,MT,X: Agent

41 NMO,NC,NMT: Nonce

42 KS: sharedKey

43 KAC,KBC: presharedKey

44 BASICREQ,REQDTC: Message

45 InverseKeys = (KAC,KAC) , (KS,KS) , (KBC,KBC)

46 DTC: Data

47

48 #Functions

49 symbol ic PK,SK

50

51 #System

52 INITIATOR(MT,CCU,MO,KAC,NMT,BASICREQ,REQDTC)

53 RESPONDER(CCU,MT,MO,KBC,KS,NC,DTC)

54 RESPONDER1(MO,MT,CCU,KBC,KAC,NMO)

55

56 #Int ruder In format ion

57 Int ruder=X

58 IntruderKnowledge={MT,CCU,MO,X,BASICREQ,PK,SK(X) }

A.5 Casper Scripts for AutoLOG Protocol

These scripts are for the protocol described in section 7.6.

A.5.1 AutoLOG Protocol Phase I

1

2 #Free v a r i a b l e s

3 a , c : Agent
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4 na , nb : Nonce

5 PK: Agent−>PublicKey

6 SK: Agent−>SecretKey

7 InverseKeys = (PK,SK) , ( na , na ) , ( nb , nb )

8 se rv i ceupdate , r e q s e r v i c e t y p e : Message

9 h : HashFunction

10 ack : Message

11 s e r v i c e , mi le : Data

12 s1 , s2 , s3 : Data

13

14 #Protoco l d e s c r i p t i o n

15 0 . −>a : c

16 1 . a−>c : a ,{{ c , s e rv i ceupdate , na}{SK( a ) }}{PK( c ) }
17 2 . c−>a : c ,{{ a , ack , na , nb}{SK( c ) }}{PK( a ) }
18 3 . a−>c : a , c , s e r v i c e , mile , h ( a , c , s e r v i c e , mile , na , nb )

19 4 . c−>a : c , a , ack , h( a , ack , na , nb)

20 5 . a−>c : a , s1 , s2 , s3 , h ( s1 , s2 , s3 , na , nb)

21

22 #Proce s s e s

23 INITIATOR( a , c , s e rv i ceupdate , na , s e r v i c e , mile , s1 , s2 , s3 ) knows PK

,SK( a )

24 RESPONDER( c , a , nb , ack ) knows PK,SK( c )

25

26 #S p e c i f i c a t i o n

27 Sec r e t ( a , na , [ c ] )

28 Sec r e t ( c , nb , [ c ] )

29 A l i vene s s ( a , c )

30 Al i vene s s ( c , a )

31 Agreement ( a , c , [ na , nb ] )

32 Agreement ( c , a , [ na , nb ] )

33

34 #Actual v a r i a b l e s

35 DT,CCU,X: Agent

36 Na ,Nb: Nonce

37 InverseKeys = (Na , Na) , (Nb,Nb)

38 Serv iceupdate : Message

39 Ack : Message
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40 Serv i ce , Mile : Data

41 S1 , S2 , S3 : Data

42

43 #Functions

44 symbol ic PK,SK

45

46 #System

47 INITIATOR(DT,CCU, Serviceupdate , Na , Serv i ce , Mile , S1 , S2 , S3 )

48 RESPONDER(CCU,DT,Nb, Ack)

49

50 #Int ruder In format ion

51 Int ruder=X

52 IntruderKnowledge={DT,CCU,X,PK}

A.5.2 AutoLOG Protocol Phase II

1 #Free v a r i a b l e s

2 c , d : Agent

3 nc , nd : Nonce

4 kcd : presharedKey

5 InverseKeys =(kcd , kcd )

6 h : HashFunction

7 v a l i d a t e s e r v i c e , ackready , ack : Message

8 s1 , s2 , s3 : Data

9

10 #Protoco l d e s c r i p t i o n

11 0 . −>c : d

12 1 . c−>d : c ,{d , v a l i d a t e s e r v i c e , nc}{kcd}
13 2 . d−>c : d ,{ c , ackready , nc , nd}{kcd}
14 3 . c−>d : c , d , s1 , s2 , s3 , h (d , s1 , s2 , s3 , nc , nd )

15 4 . d−>c : d , c , ack , h( c , ack , nc , nd )

16

17 #Proce s s e s

18 INITIATOR( c , d , s1 , s2 , s3 , nc , kcd , v a l i d a t e s e r v i c e )

19 RESPONDER(d , c , nd , ack , kcd , ackready )

20

21 #S p e c i f i c a t i o n

22 Sec r e t ( c , nc , [ d ] )
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23 Sec r e t (d , nd , [ c ] )

24 Sec r e t ( c , kcd , [ d ] )

25 Sec r e t (d , kcd , [ c ] )

26 A l i vene s s ( c , d )

27 Al i vene s s (d , c )

28 Agreement ( c , d , [ nc , nd ] )

29 Agreement (d , c , [ nc , nd ] )

30

31 #Actual v a r i a b l e s

32 CCU,ECU,X: Agent

33 Nc ,Nd: Nonce

34 KCD: presharedKey

35 InverseKeys = (KCD,KCD)

36 Va l ida teSe rv i c e , AckReady , Ack : Message

37 S1 , S2 , S3 : Data

38

39 #Functions

40

41 #System

42 INITIATOR(CCU,ECU, S1 , S2 , S3 , Nc ,KCD, Va l i da t eS e r v i c e )

43 RESPONDER(ECU,CCU,Nd, Ack ,KCD, AckReady )

44

45 #Int ruder In format ion

46 Int ruder=X

47 IntruderKnowledge={CCU,ECU,X}

A.5.3 AutoLOG Protocol Phase III

1 #Free v a r i a b l e s

2 ne , nf : Nonce

3 b , c : Agent

4 PK: Agent−>PublicKey

5 SK: Agent−>SecretKey

6 kbc : presharedKey

7 InverseKeys = (PK,SK) , ( kbc , kbc ) , ( sk1 , sk1 )

8 serv i ceupdateready , s e rv i c eupdat e r eq : Message

9 sk1 : Nonce x Nonce −> sess ionKey

10 ack : Message
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11 s e r v i c e , mile , s1 , s2 , s3 : Data

12

13 #Protoco l d e s c r i p t i o n

14 0 . −>b : c

15 1 . b−>c : b ,{ s e rv i c eupdate req , ne}{kbc}
16 2 . c−>b : c ,{b , se rv iceupdateready , ne , nf }{kbc}
17 3 . b−>c : b , c ,{ ack}{ sk1 ( ne , nf ) }
18 4 . c−>b : c ,{ s e r v i c e , mi le }{ sk1 ( ne , nf ) } ,{{ s e r v i c e , mi le }{ sk1 ( ne , nf )

}}{SK( c ) }
19 5 . b−>c :{b , ack}{ sk1 ( ne , nf ) }
20 6 . c−>b : c ,{ s1 , s2 , s3 }{ sk1 ( ne , nf ) } ,{{ s1 , s2 , s3 }{ sk1 ( ne , nf ) }}{SK( c )

}
21 7 . b−>c :{b , ack}{ sk1 ( ne , nf ) }
22

23 #Proce s s e s

24 RESPONDER( c , b , nf , s e rv iceupdateready , ack , kbc , s e r v i c e , mile , s1 , s2

, s3 ) knows PK,SK( c ) , sk1 ( ne , nf )

25 INITIATOR(b , c , ne , s e rv i c eupdate req , kbc , ack ) knows PK,SK(b) , sk1 (

ne , nf )

26

27 #S p e c i f i c a t i o n

28 Sec r e t (b , ne , [ c ] )

29 Sec r e t ( c , nf , [ b ] )

30 Al i vene s s ( c , b )

31 Agreement ( c , b , [ ne , nf ] )

32

33 #Actual v a r i a b l e s

34 MD,CCU,X: Agent

35 Ne , Nf : Nonce

36 KBC: presharedKey

37 InverseKeys = (KBC,KBC)

38 ServiceUpdateReq , ServiceUpdateReady : Message

39 Ack : Message

40 Serv i ce , Mile : Data

41 S1 , S2 , S3 : Data

42

43 #Functions
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44 symbol ic sk1 ,PK,SK

45

46 #System

47 RESPONDER(CCU,MD, Nf , ServiceUpdateReady , Ack ,KBC, Serv ice , Mile , S1

, S2 , S3 )

48 INITIATOR(MD,CCU, Ne , ServiceUpdateReq ,KBC, Ack)

49

50 #Int ruder In format ion

51 Int ruder=X

52 IntruderKnowledge={MD,CCU,X,PK}
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B.1 Scyther Tool

Scyther performs an automatic analysis of security protocols in a Dolev-Yao style

model, for an unbounded number of instances [115].

B.1.1 Tool and language

Scyther is easily installed on a 64 bit Windows 8.1 Pro machine. The input file for the

tool is a .spdl file. There are three components on the menu bar, which are “File”,

“Verify” and “Help”. There are two tabs, i.e. protocol description and setting tabs.

In the verify menu, the user can choose to verify the protocol based on the security

properties defined in the input file using “Verify protocol”, or to check whether the roles

can complete the protocol using “Characterise role”, or to verify all claims, where the

security properties are automatically generated by the tool using “Verify automatic

claims”. There are two main tabs, i.e. “Protocol description” and “Setting”. The

“Protocol description” tab is to write in the input file. The “Setting” tab is to set

the verification parameters which include the maximum number of runs, and matching

type as type matching, find basic type flaw or find all type flaws. The default setting

is five runs and type matching. The advanced parameters are search pruning (find all

attacks, best attacks or first attacks) and a maximum number of patterns per claim.

The font size for the graph can also be set in the setting tab.

After the input file is written, “characterise role” is chosen. After ensuring that the

agents in the protocol can complete the protocol through the “reachable” status, the

“verify protocol” is chosen. An output window will pop out once the result is obtained

for all the claims made.

B.1.2 Input file

The script starts with function declarations. Then, we have macros of messages to

make the script neat and easily followed. Next, the events and claims are created for

each role. The roles are the agents involved in the protocol. Claims are the security

properties to be verified. The claims are based on the agents’ local view of the state of

the system. The protocol should ensure that some properties of the global state of the

system can be known to the agents based on this local view.

B.1.3 Security properties

In the Scyther tool, the authentication properties are verified through agreement, alive-

ness and synchronisation properties. Aliveness verifies the authentication of communi-
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cation partners. Synchronisation is a stronger authentication requirement that verifies

not only the communication partners, but also the sequence of exchanged messages

[119]. Agreement verifies the data exchanged between the agents [117].

For Scyther, the security properties verified are non-injective synchronisation, non-

injective agreement, weak agreement, aliveness and secrecy. The default verification

setup was used (i.e. five as the maximum number of runs, type matching and finding

the best attack with a maximum of ten patterns per claim). The secrecy property

verifies the confidentiality of the secret keys or data. The non-injective synchronisation

property verifies that parties know who they are communicating with, and agree on the

content of the messages and the order of the messages. The non-injective agreement

verifies that parties agree on the content of the variables. In Scyther, all the security

properties are modelled as role-based. Each entity is considered as one role. The

properties are viewed from the local view of each role.

B.1.4 Verification results

The default verification setup was used (i.e. five as the maximum number of runs,

type matching and finding the best attack with a maximum of ten patterns per claim).

If the results for all the claims made are verified as “Ok” in the “Status” and “No

attacks within bounds” in the “Comments”, this means that no attack was found

within the bounded statespace, but there may be an attack possible outside the bounded

statespace [118]. Otherwise, if the results for all the claims made are verified as “Ok” in

the “Status” with “Verified” and “No attacks” in the “Comments”, this means that no

attack was found within the bounded or unbounded statespace; the security property

has been successfully verified [118].

The results can also be falsified, which means there can be at least one attack

possible on the protocol. A potential attack is shown graphically in a separate window

if the user clicks the button to see how the attack is possibly conducted. The user can

see the potential attack in arrows and boxes representing events and claims.

B.2 Scyther Scripts for EVITA+ Protocol

These scripts are for the protocol described in section 4.7.

B.2.1 EVITA+ Protocol Phase I

1 hash funct ion h ;

2 func t i on f ;
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3 user type Timestamp ;

4

5 p ro to co l ev i t a1 ( dt , ccu , ecu ) {
6 const SSK ;

7 const pskC ;

8

9 macro m1 = {Mk}pk ( ccu ) , ts ,{{Mk}pk ( ccu ) , t s } sk ( dt ) ;

10 macro m2 = {Mk}k ( ccu , ecu ) , ts ,{{Mk}k ( ccu , ecu ) , t s } sk ( ccu ) ;

11 macro m3 = ack , ts ,{ ack , t s }k ( ecu , ccu ) ;

12 macro m4 = ack , ts ,{ ack , t s } sk ( ccu ) ;

13 macro m5 = Requestseed , ts , h ({Requestseed , t s }Mk) ;

14 macro m6 = {Na}Mk, ts , h({{Na}Mk, t s }Mk) ;

15 macro smk = f ( ssk , Na) ;

16 macro m7 = {smk}Mk, ts , h({{smk}Mk, t s }Mk) ;

17 macro m8 = ack , ts , h ({ ack , t s }Mk) ;

18

19 r o l e dt{
20 f r e s h Mk: Nonce ;

21 var ack : Data ;

22 f r e s h t s : Timestamp ;

23 const Requestseed : Data ;

24 var Na : Nonce ;

25 const s sk : Data ;

26

27 send 1 ( dt , ccu ,m1) ;

28 r e cv 4 ( ccu , dt ,m4) ;

29 send 5 ( dt , ecu ,m5) ;

30 r e cv 6 ( ecu , dt ,m6) ;

31 send 7 ( dt , ecu ,m7) ;

32 r e cv 8 ( ecu , dt ,m8) ;

33

34 c la im a1 ( dt , Al ive ) ;

35 c la im a2 ( dt , Weakagree ) ;

36 c la im a3 ( dt , Niagree ) ;

37 c la im a4 ( dt , Nisynch ) ;

38 c la im a5 ( dt ,SKR,Mk) ;

39 c la im a6 ( dt , Secret , sk ( dt ) ) ;
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40 c la im a7 ( dt , Secret , Na) ;

41 c la im a8 ( dt , Secret , s sk ) ;

42 c la im a9 ( dt , Secret , smk) ;

43 }
44

45 r o l e ccu{
46 var Mk: Nonce ;

47 var ack : Data ;

48 f r e s h t s : Timestamp ;

49 var FrmA;

50 var FrmB;

51 var r e q u e s t t r a n s f e r e x i t : Data ;

52

53 r e cv 1 ( dt , ccu ,m1) ;

54 send 2 ( ccu , ecu ,m2) ;

55 r e cv 3 ( ecu , ccu ,m3) ;

56 send 4 ( ccu , dt ,m4) ;

57

58 c la im b1 ( ccu , Al ive ) ;

59 c la im b2 ( ccu , Weakagree ) ;

60 c la im b3 ( ccu , Niagree ) ;

61 c la im b4 ( ccu , Nisynch ) ;

62 c la im b5 ( ccu ,SKR,Mk) ;

63 c la im b6 ( ccu , Secret , sk ( ccu ) ) ;

64 }
65

66 r o l e ecu{
67 var Mk: Nonce ;

68 const ack : Data ;

69 f r e s h t s : Timestamp ;

70 f r e s h Na : Nonce ;

71 var Requestseed : Data ;

72 const s sk : Data ;

73

74 r e cv 2 ( ccu , ecu ,m2) ;

75 send 3 ( ecu , ccu ,m3) ;

76 r e cv 5 ( dt , ecu ,m5) ;
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77 send 6 ( ecu , dt ,m6) ;

78 r e cv 7 ( dt , ecu ,m7) ;

79 send 8 ( ecu , dt ,m8) ;

80

81 c la im c1 ( ecu , Al ive ) ;

82 c la im c2 ( ecu , Weakagree ) ;

83 c la im c3 ( ecu , Niagree ) ;

84 c la im c4 ( ecu , Nisynch ) ;

85 c la im c5 ( ecu ,SKR,Mk) ;

86 c la im c6 ( ecu , Secret , Na) ;

87 c la im c7 ( ecu , Secret , s sk ) ;

88 c la im c8 ( ecu , Secret , smk) ;

89 c la im c9 ( ecu , Secret , sk ( ecu ) ) ;

90 }
91 }

B.2.2 EVITA+ Protocol Phase II

1 hash funct ion h ;

2 user type Timestamp ;

3

4 p ro to co l ev i t a1 ( dt , ccu , oem , ecu ) {
5 macro m9 = RequestSSK , ts ,{RequestSSK , t s } sk ( dt ) ;

6 macro m10={SSK}pskECU , ts ,{{SSK}pskECU , t s } sk (oem) ;

7 macro m11 ={FrmB}SSK, ts ,{{FrmB}SSK, t s } sk (oem) ;

8 macro m12=Fdr , ts , h ({Fdr , t s }Mk) ;

9 macro m13=ack , ts , h ({ ack , t s }Mk) ;

10 macro m14={SSK}pskECU , ts , h({{SSK}pskECU , t s }Mk) ;

11 macro m15=ack , ts , h ({ ack , t s }Mk) ;

12 macro m16= {FrmA}SSK, ts , h({{FrmA}SSK, t s }Mk) ;

13 macro m17=r e q u e s t t r a n s f e r e x i t , ts , h ({ r e q u e s t t r a n s f e r e x i t , t s }Mk)

;

14 macro m18 ={FrmB}SSK, ts , h({{FrmB}SSK, t s }Mk) ;

15 macro m19=r e q u e s t t r a n s f e r e x i t , ts , h ({ r e q u e s t t r a n s f e r e x i t , t s }Mk)

;

16 macro m20={FrmB}SSK, ts , h({{FrmB}SSK, t s }Mk) ;

17 macro m21=r e q u e s t t r a n s f e r e x i t , ts , h ({ r e q u e s t t r a n s f e r e x i t , t s }Mk)

;
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18 macro m22=ack , ts , h ({ ack , t s }Mk) ;

19

20 r o l e dt{
21 f r e s h t s : Timestamp ;

22 const RequestSSK : Data ;

23 var ack : Data ;

24 const Fdr ;

25 const FrmB;

26 const r e q u e s t t r a n s f e r e x i t : Data ;

27 f r e s h Mk;

28 var SSK ;

29 const pskECU ;

30

31 send 9 ( dt , oem ,m9) ;

32 recv 10 (oem , dt , m10) ;

33 recv 11 (oem , dt , m11) ;

34 send 12 ( dt , ecu , m12) ;

35 recv 13 ( ecu , dt , m13) ;

36 send 14 ( dt , ecu , m14) ;

37 recv 15 ( ecu , dt , m15) ;

38 send 18 ( dt , ccu , m18) ;

39 send 19 ( dt , ccu , m19) ;

40 recv 22 ( ecu , dt , m22) ;

41

42 c la im a1 ( dt , Al ive ) ;

43 c la im a2 ( dt , Weakagree ) ;

44 c la im a3 ( dt , Nisynch ) ;

45 c la im a4 ( dt , Niagree ) ;

46 c la im a5 ( dt ,SKR,Mk) ;

47 c la im a6 ( dt , Secret , SSK) ;

48 c la im a7 ( dt , Secret ,FrmB) ;

49 c la im a8 ( dt , Secret , sk ( dt ) ) ;

50 }
51

52 r o l e oem{
53 f r e s h t s : Timestamp ;

54 var RequestSSK : Data ;
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55 f r e s h SSK ;

56 const pskECU ;

57 f r e s h FrmB;

58

59 re cv 9 ( dt , oem ,m9) ;

60 send 10 (oem , dt , m10) ;

61 send 11 (oem , dt , m11) ;

62

63 c la im x1 (oem , Al ive ) ;

64 c la im x2 (oem , Weakagree ) ;

65 c la im x3 (oem , Nisynch ) ;

66 c la im x4 (oem , Niagree ) ;

67 c la im x5 (oem , Secret , SSK) ;

68 c la im x6 (oem , Secret , sk (oem) ) ;

69 }
70

71 r o l e ccu{
72 var FrmA;

73 var FrmB;

74 var r e q u e s t t r a n s f e r e x i t : Data ;

75 f r e s h t s : Timestamp ;

76 var Mk;

77 var SSK ;

78 const pskECU ;

79

80 recv 16 ( ecu , ccu , m16) ;

81 recv 17 ( ecu , ccu , m17) ;

82 recv 18 ( dt , ccu , m18) ;

83 recv 19 ( dt , ccu , m19) ;

84 send 20 ( ccu , ecu , m20) ;

85 send 21 ( ccu , ecu , m21) ;

86

87 c la im b1 ( ccu , Al ive ) ;

88 c la im b2 ( ccu , Weakagree ) ;

89 c la im b3 ( ccu , Nisynch ) ;

90 c la im b4 ( ccu , Niagree ) ;

91 c la im b5 ( ccu , Secret ,FrmA) ;
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92 c la im b6 ( ccu , Secret ,FrmB) ;

93 c la im b7 ( ccu ,SKR,Mk) ;

94 c la im b8 ( ccu , Secret , sk ( ccu ) ) ;

95 }
96

97 r o l e ecu{
98 f r e s h t s : Timestamp ;

99 const ack : Data ;

100 const FrmA;

101 var FrmB;

102 var Fdr ;

103 f r e s h r e q u e s t t r a n s f e r e x i t : Data ;

104 var Mk;

105 var SSK ;

106 const pskECU ;

107

108 recv 12 ( dt , ecu , m12) ;

109 send 13 ( ecu , dt , m13) ;

110 recv 14 ( dt , ecu , m14) ;

111 send 15 ( ecu , dt , m15) ;

112 send 16 ( ecu , ccu , m16) ;

113 send 17 ( ecu , ccu , m17) ;

114 recv 20 ( ccu , ecu , m20) ;

115 recv 21 ( ccu , ecu , m21) ;

116 send 22 ( ecu , dt , m22) ;

117

118 c la im c1 ( ecu , Al ive ) ;

119 c la im c2 ( ecu , Weakagree ) ;

120 c la im c3 ( ecu , Nisynch ) ;

121 c la im c4 ( ecu , Niagree ) ;

122 c la im c5 ( ecu , Secret ,FrmA) ;

123 c la im c6 ( ecu , Secret ,FrmB) ;

124 c la im c7 ( ecu ,SKR,Mk) ;

125 c la im c8 ( ecu , Secret , sk ( ecu ) ) ;

126 }
127 }
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B.3 Scyther Scripts for FOTA Protocol

These scripts are for the protocol described in section 5.6.

B.3.1 FOTA Protocol Phase I

1 hash funct ion h ;

2 user type Timestamp ;

3

4 p ro to co l FOTAdownload(md, oem) {
5 macro m1 = md,{KNa}pk (oem) , ts ,{md,{KNa}pk (oem) , t s } sk (md) ;

6 macro m2 = oem , ack , ts ,{oem , ack , t s } sk (oem) ;

7 macro m3 = md, RequestDL , idecu , ts , h({md, RequestDL , idecu , t s }KNa)

;

8 macro m4 = oem ,{pskUNLOCK}pskECU , ts , h({oem ,{pskUNLOCK}pskECU ,

t s }KNa) ;

9 macro m5 = md, ack , ts , h ({md, ack , t s }KNa) ;

10 macro m6 = oem ,{ frmnew}pskFEK , ts , h({oem ,{ frmnew}pskFEK , t s }KNa)

;

11 macro m7 = md, ack , ts , h ({md, ack , t s }KNa) ;

12

13 r o l e md{
14 f r e s h idecu : Data ;

15 f r e s h t s : Timestamp ;

16 f r e s h RequestDL : Data ;

17 var pskFEK ;

18 var pskUNLOCK;

19 var pskECU ;

20 var frmnew ;

21 const ack ;

22 f r e s h KNa;

23

24 send 1 (md, oem ,m1) ;

25 r e cv 2 (oem ,md,m2) ;

26 send 3 (md, oem ,m3) ;

27 r e cv 4 (oem ,md,m4) ;

28 send 5 (md, oem ,m5) ;

29 r e cv 6 (oem ,md,m6) ;
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30 send 7 (md, oem ,m7) ;

31

32 c la im a1 (md, Al ive ) ;

33 c la im a2 (md, Weakagree ) ;

34 c la im a3 (md, Nisynch ) ;

35 c la im a4 (md, Niagree ) ;

36 c la im a5 (md, Secret , pskFEK) ;

37 c la im a6 (md, Secret , frmnew ) ;

38 c la im a7 (md,SKR,KNa) ;

39 c la im a8 (md, Secret , sk (md) ) ;

40 }
41

42 r o l e oem{
43 var idecu : Data ;

44 f r e s h t s : Timestamp ;

45 var RequestDL : Data ;

46 f r e s h frmnew ;

47 const ack ;

48 f r e s h pskFEK ;

49 f r e s h pskECU ;

50 f r e s h pskUNLOCK;

51 var KNa;

52

53 re cv 1 (md, oem ,m1) ;

54 send 2 (oem ,md,m2) ;

55 r e cv 3 (md, oem ,m3) ;

56 send 4 (oem ,md,m4) ;

57 r e cv 5 (md, oem ,m5) ;

58 send 6 (oem ,md,m6) ;

59 r e cv 7 (md, oem ,m7) ;

60

61 c la im x1 (oem , Al ive ) ;

62 c la im x2 (oem , Weakagree ) ;

63 c la im x3 (oem , Nisynch ) ;

64 c la im x4 (oem , Niagree ) ;

65 c la im x5 (oem , Secret ,pskUNLOCK) ;

66 c la im x6 (oem , Secret ,KNa) ;
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67 c la im x7 (oem , Secret , pskFEK) ;

68 c la im x8 (oem , Secret , sk (oem) ) ;

69 }
70 }

B.3.2 FOTA Protocol Phase II

1 hash funct ion h ;

2 func t i on f ;

3 user type Timestamp ;

4

5 p ro to co l FOTAinstall (md, ccu , ecu ) {
6 macro m8 = md,{KNb}pk ( ccu ) , ts ,{md,{KNb}pk ( ccu ) , t s } sk (md) ;

7 macro m9 = ccu ,{KNb}pk ( ecu ) , ts ,{ ccu ,{KNb}pk ( ecu ) , t s } sk ( ccu ) ;

8 macro m10 = ecu , ack , ts , h ({ ecu , ack , t s }KNb) ;

9 macro m11 = ccu , ack , ts , h ({ ccu , ack , t s }KNb) ;

10 macro m12 = md,{pskUNLOCK}pskECU , ts , h({md,{pskUNLOCK}pskECU , t s

}KNb) ;

11 macro m13 = ecu , ack , ts , h ({ ecu , ack , t s }KNb) ;

12 macro m14 = ecu ,{ f rmold }pskFEK , ts , h({ ecu ,{ f rmold }pskFEK , t s }KNb

) ;

13 macro m15 = md, ack , ts , h (md, ack , t s ) ;

14 macro m16 = md,{ frmnew}pskFEK , ts , h({md,{ frmnew}pskFEK , t s }KNb) ;

15 macro m17 = ecu , ack , ts , h ({ ecu , ack , t s }KNb) ;

16

17 r o l e md{
18 f r e s h KNb: Nonce ;

19 var ack : Data ;

20 f r e s h t s : Timestamp ;

21 f r e s h pskECU ;

22 f r e s h pskUNLOCK;

23 f r e s h pskFEK ;

24 var frmold ;

25 f r e s h frmnew ;

26

27 send 8 (md, ccu ,m8) ;

28 recv 11 ( ccu ,md, m11) ;

29 send 12 (md, ecu , m12) ;
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30 recv 13 ( ecu ,md, m13) ;

31 recv 14 ( ecu ,md, m14) ;

32 send 15 (md, ecu , m15) ;

33 send 16 (md, ecu , m16) ;

34 recv 17 ( ecu ,md, m17) ;

35

36 c la im a1 (md, Al ive ) ;

37 c la im a2 (md, Weakagree ) ;

38 c la im a3 (md, Niagree ) ;

39 c la im a4 (md, Nisynch ) ;

40 c la im a5 (md,SKR,KNb) ;

41 c la im a6 (md, Secret , pskECU) ;

42 c la im a7 (md, Secret , pskFEK) ;

43 c la im a8 (md, Secret ,pskUNLOCK) ;

44 c la im a9 (md, Secret , frmold ) ;

45 c la im a10 (md, Secret , frmnew ) ;

46 c la im a11 (md, Secret , sk (md) ) ;

47 }
48

49 r o l e ccu{
50 var KNb: Nonce ;

51 var ack : Data ;

52 f r e s h t s : Timestamp ;

53

54 re cv 8 (md, ccu ,m8) ;

55 send 9 ( ccu , ecu ,m9) ;

56 recv 10 ( ecu , ccu , m10) ;

57 send 11 ( ccu ,md, m11) ;

58

59 c la im b1 ( ccu , Al ive ) ;

60 c la im b2 ( ccu , Weakagree ) ;

61 c la im b3 ( ccu , Niagree ) ;

62 c la im b4 ( ccu , Nisynch ) ;

63 c la im b5 ( ccu ,SKR,KNb) ;

64 c la im b6 ( ccu , Secret , sk ( ccu ) ) ;

65 }
66
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67 r o l e ecu{
68 var KNb: Nonce ;

69 const ack : Data ;

70 f r e s h t s : Timestamp ;

71 f r e s h pskECU ;

72 f r e s h pskUNLOCK;

73 f r e s h pskFEK ;

74 f r e s h frmold ;

75 var frmnew ;

76

77 re cv 9 ( ccu , ecu ,m9) ;

78 send 10 ( ecu , ccu , m10) ;

79 recv 12 (md, ecu , m12) ;

80 send 13 ( ecu ,md, m13) ;

81 send 14 ( ecu ,md, m14) ;

82 recv 15 (md, ecu , m15) ;

83 recv 16 (md, ecu , m16) ;

84 send 17 ( ecu ,md, m17) ;

85

86 c la im c1 ( ecu , Al ive ) ;

87 c la im c2 ( ecu , Weakagree ) ;

88 c la im c3 ( ecu , Niagree ) ;

89 c la im c4 ( ecu , Nisynch ) ;

90 c la im c5 ( ecu , Secret , pskECU) ;

91 c la im c6 ( ecu , Secret , pskFEK) ;

92 c la im c7 ( ecu , Secret ,pskUNLOCK) ;

93 c la im c8 ( ecu , Secret , frmold ) ;

94 c la im c9 ( ecu , Secret , frmnew ) ;

95 c la im c10 ( ecu ,SKR,KNb) ;

96 c la im c11 ( ecu , Secret , sk ( ecu ) ) ;

97 }
98 }

B.3.3 FOTA Protocol Replacement Phase

1 hash funct ion h ;

2 func t i on f ;

3 user type Timestamp ;
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4

5 p ro to co l FOTAupdate(md, ccu , ecu , oem) {
6 macro m1 = md, RequestID , ts ,{md, RequestID , t s } sk (md) ;

7 macro m2 = ccu , RequestID , t s ;

8 macro m3 = ecu , idecu , t s ;

9 macro m4 = ccu , idecu , t s ;

10 macro m5 = md, RequestVerifyID , idecu , ts ,{md, RequestVerifyID ,

idecu , t s } sk (md) ;

11 macro m6 = oem ,{ rnd , pskECU , pk ( ecu ) }pk ( ccu ) , ts ,{oem ,{ rnd , pskECU

, pk ( ecu ) }pk ( ccu ) , t s } sk (oem) ;

12 macro m7 = md,{ rnd , pskECU , pk ( ecu ) }pk ( ccu ) , ts ,{md,{ rnd , pskECU ,

pk ( ecu ) }pk ( ccu ) , t s } sk (md) ;

13 macro m8 = ccu , rnd , pk ( ccu ) , t s ;

14 macro m9 = ecu ,{{ rnd}pskECU}pk ( ccu ) , t s ;

15 macro m10 = ccu , ack , ts ,{ ccu , ack , t s } sk ( ccu ) ;

16

17 r o l e md{
18 var ack : Data ;

19 f r e s h t s : Timestamp ;

20 f r e s h RequestID , RequestVeri fyID : Data ;

21 var idecu : Data ;

22 var pskECU ;

23 var rnd ;

24

25 send 1 (md, ccu ,m1) ;

26 r e cv 4 ( ccu ,md,m4) ;

27 send 5 (md, oem ,m5) ;

28 r e cv 6 (oem ,md,m6) ;

29 send 7 (md, ccu ,m7) ;

30 recv 10 ( ccu ,md, m10) ;

31

32 c la im a1 (md, Al ive ) ;

33 c la im a2 (md, Weakagree ) ;

34 c la im a3 (md, Niagree ) ;

35 c la im a4 (md, Nisynch ) ;

36 c la im a5 (md, Secret , sk (md) ) ;

37 }
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38

39 r o l e ccu{
40 f r e s h ack : Data ;

41 f r e s h t s : Timestamp ;

42 var RequestID : Data ;

43 var idecu : Data ;

44 var pskECU ;

45 f r e s h pskCCU ;

46 var rnd ;

47

48 re cv 1 (md, ccu ,m1) ;

49 send 2 ( ccu , ecu ,m2) ;

50 r e cv 3 ( ecu , ccu ,m3) ;

51

52 send 4 ( ccu ,md,m4) ;

53 r e cv 7 (md, ccu ,m7) ;

54 send 8 ( ccu , ecu ,m8) ;

55 r e cv 9 ( ecu , ccu ,m9) ;

56 send 10 ( ccu ,md, m10) ;

57

58 c la im b1 ( ccu , Al ive ) ;

59 c la im b2 ( ccu , Weakagree ) ;

60 c la im b3 ( ccu , Niagree ) ;

61 c la im b4 ( ccu , Nisynch ) ;

62 c la im b5 ( ccu , Secret , pskECU) ;

63 c la im b6 ( ccu , Secret , sk ( ccu ) ) ;

64 }
65

66 r o l e ecu{
67 f r e s h ack : Data ;

68 f r e s h t s : Timestamp ;

69 var RequestID : Data ;

70 f r e s h idecu : Data ;

71 f r e s h pskECU ;

72 f r e s h pskCCU ;

73 var rnd ;

74
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75 re cv 2 ( ccu , ecu ,m2) ;

76 send 3 ( ecu , ccu ,m3) ;

77 r e cv 8 ( ccu , ecu ,m8) ;

78 send 9 ( ecu , ccu ,m9) ;

79

80 c la im c1 ( ecu , Al ive ) ;

81 c la im c2 ( ecu , Weakagree ) ;

82 c la im c3 ( ecu , Niagree ) ;

83 c la im c4 ( ecu , Nisynch ) ;

84 c la im c5 ( ecu , Secret , pskECU) ;

85 c la im c6 ( ecu , Secret , sk ( ecu ) ) ;

86 }
87

88 r o l e oem{
89 f r e s h ack : Data ;

90 f r e s h t s : Timestamp ;

91 var idecu : Data ;

92 var RequestVeri fyID : Data ;

93 f r e s h pskECU ;

94 f r e s h rnd ;

95

96 re cv 5 (md, oem ,m5) ;

97 send 6 (oem ,md,m6) ;

98

99 c la im d1 (oem , Al ive ) ;

100 c la im d2 (oem , Weakagree ) ;

101 c la im d3 (oem , Niagree ) ;

102 c la im d4 (oem , Nisynch ) ;

103 c la im d5 (oem , Secret , pskECU) ;

104 c la im d6 (oem , Secret , sk (md) ) ;

105 }
106 }

B.4 Scyther Scripts for DiaLOG Protocol

These scripts are for the protocol described in section 6.6.
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B.4.1 DiaLOG Full Authorisation Protocol

1 hash funct ion h ;

2 const f u l l r e q ;

3

4 p ro to co l DiaLOGFull (mo, ccu ) {
5 macro m1 = mo,{ ccu , f u l l r e q , nmo}k (mo, ccu ) ;

6 macro m2 = ccu ,{mo, ks , nmo}k (mo, ccu ) ;

7 macro m3 = mo,{ ccu , reqdtc }ks ;

8 macro m4 = {ccu , dtc }ks ,{{ ccu , dtc }ks} sk ( ccu ) ;

9

10 r o l e mo{
11 f r e s h nmo : Nonce ;

12 var ks : Sess ionKey ;

13 var dtc : Data ;

14 f r e s h reqdtc : Data ;

15

16 send 1 (mo, ccu ,m1) ;

17 r e cv 2 ( ccu ,mo,m2) ;

18 send 3 (mo, ccu ,m3) ;

19 r e cv 4 ( ccu ,mo,m4) ;

20

21 c la im a1 (mo, Al ive ) ;

22 c la im a2 (mo, Weakagree ) ;

23 c la im a3 (mo, Niagree ) ;

24 c la im a4 (mo, Nisynch ) ;

25 c la im a5 (mo,SKR,nmo) ;

26 c la im a6 (mo, Secret , ks ) ;

27 c la im a7 (mo, Secret , k (mo, ccu ) ) ;

28 }
29

30 r o l e ccu{
31 var nmo : Nonce ;

32 f r e s h ks : SessionKey ;

33 f r e s h dtc : Data ;

34 var reqdtc : Data ;

35
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36 re cv 1 (mo, ccu ,m1) ;

37 send 2 ( ccu ,mo,m2) ;

38 r e cv 3 (mo, ccu ,m3) ;

39 send 4 ( ccu ,mo,m4) ;

40

41 c la im b1 ( ccu , Al ive ) ;

42 c la im b2 ( ccu , Weakagree ) ;

43 c la im b3 ( ccu , Niagree ) ;

44 c la im b4 ( ccu , Nisynch ) ;

45 c la im b5 ( ccu ,SKR, nmo) ;

46 c la im b6 ( ccu , Secret , ks ) ;

47 c la im b7 ( ccu , Secret , k (mo, ccu ) ) ;

48 }
49 }

B.4.2 DiaLOG Basic Authorisation Protocol

1 hash funct ion h ;

2 const b a s i c r e q ;

3

4 p ro to co l basic1DiaLOG (mt ,mo, ccu )

5 {
6 macro m1 = mt ,mo,{ ccu , bas i c req , nmt}k (mo, mt) ;

7 macro m2 = mo, ccu ,{mt , bas i c req , nmo, nmt}k (mo, ccu ) ;

8 macro m3 = ccu ,mo,{mt , ks , nmo, nc , nmt}k (mo, ccu ) ;

9 macro m4 = mo, mt ,{mt , ccu , ks , nc , nmt , nmo}k (mo, mt) ;

10 macro m5 = mt , ccu ,{mt ,mo, ccu , nc , reqdtc }ks ;

11 macro m6 = {ccu , dtc }ks ,{{ ccu , dtc }ks} sk ( ccu ) ;

12

13 r o l e mt

14 {
15 f r e s h nmt : Nonce ;

16 var nmo : Nonce ;

17 var ks : Sess ionKey ;

18 var nc : Nonce ;

19 var dtc : Data ;

20 f r e s h reqdtc : Data ;

21
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22 send 1 (mt ,mo,m1) ;

23 r e cv 4 (mo, mt ,m4) ;

24 send 5 (mt , ccu ,m5) ;

25 r e cv 6 ( ccu , mt ,m6) ;

26 claim R1 (mt , Al ive ) ;

27 claim R2 (mt , Weakagree ) ;

28 claim R3 (mt , Nisynch ) ;

29 claim R4 (mt , Niagree ) ;

30 claim R5 (mt , Secret , ks ) ;

31 claim R6 (mt , Secret , k (mo, mt) ) ;

32 claim R7 (mt ,SKR, nmo) ;

33 claim R8 (mt ,SKR, nc ) ;

34 claim R9 (mt ,SKR, nmt) ;

35 }
36

37 r o l e mo

38 {
39 f r e s h nmo : Nonce ;

40 var nmt , nc : Nonce ;

41 var ks : Sess ionKey ;

42

43 re cv 1 (mt ,mo,m1) ;

44 send 2 (mo, ccu ,m2) ;

45 r e cv 3 ( ccu ,mo,m3) ;

46 send 4 (mo, mt ,m4) ;

47

48 c l a im I1 (mo, Al ive ) ;

49 c l a im I2 (mo, Weakagree ) ;

50 c l a im I3 (mo, Nisynch ) ;

51 c l a im I4 (mo, Niagree ) ;

52 c l a im I5 (mo, Secret , ks ) ;

53 c l a im I6 (mo, Secret , k (mo, mt) ) ;

54 c l a im I7 (mo, Secret , k (mo, ccu ) ) ;

55 c l a im I8 (mo,SKR, nmo) ;

56 c l a im I9 (mo,SKR, nc ) ;

57 c l a im I10 (mo,SKR, nmt) ;

58 }
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59

60 r o l e ccu

61 {
62 var nmo, nmt : Nonce ;

63 f r e s h nc : Nonce ;

64 f r e s h ks : SessionKey ;

65 f r e s h dtc : Data ;

66 var reqdtc : Data ;

67

68 r e cv 2 (mo, ccu ,m2) ;

69 send 3 ( ccu ,mo,m3) ;

70 r e cv 5 (mt , ccu ,m5) ;

71 send 6 ( ccu , mt ,m6) ;

72

73 claim C1 ( ccu , Al ive ) ;

74 claim C2 ( ccu , Weakagree ) ;

75 claim C3 ( ccu , Nisynch ) ;

76 claim C4 ( ccu , Niagree ) ;

77 claim C5 ( ccu , Secret , ks ) ;

78 claim C6 ( ccu , Secret , k (mo, ccu ) ) ;

79 claim C7 ( ccu ,SKR, nmo) ;

80 claim C8 ( ccu ,SKR, nc ) ;

81 claim C9 ( ccu ,SKR, nmt) ;

82 }
83 }

B.5 Scyther Scripts for AutoLOG Protocol

These scripts are for the protocol described in section 7.6.

B.5.1 AutoLOG Protocol Phase I

1 user type SessionKey ;

2 const Fresh : Function ;

3 hash funct ion MAC;

4 func t i on f ;

5 user type Timestamp ;

6
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7 p ro to co l AutoLOG1( dt , ccu ) {
8 macro m1 = dt ,{{ ccu , se rv i ceupdate , na} sk ( dt ) }pk ( ccu ) ;

9 macro m2 = ccu ,{{ dt , ack , na , nb} sk ( ccu ) }pk ( dt ) ;

10 macro m3 = dt , ccu , s e rv i c e type , s e rv i c eda t e , nextdate , ts ,MAC( f ( na

, nb) , ccu , s e rv i c e type , s e rv i c eda t e , nextdate , t s ) ;

11 macro m4 = ccu , dt , ack ,MAC( f ( na , nb) , dt , ack ) ;

12 macro m5 = dt , s1 , s2 , s3 ,MAC( f ( na , nb) , s1 , s2 , s3 ) ;

13

14 r o l e dt

15 {
16 f r e s h na : Nonce ;

17 var nb : Nonce ;

18 f r e s h s e rv i c e type , s e rv i c eda t e , nextdate : Data ;

19 var ack : Data ;

20 f r e s h s e rv i c eupdate : Data ;

21 f r e s h t s : Timestamp ;

22 f r e s h s1 , s2 , s3 : Data ;

23

24 send 1 ( dt , ccu ,m1) ;

25 r e cv 2 ( ccu , dt ,m2) ;

26 send 3 ( dt , ccu ,m3) ;

27 r e cv 4 ( ccu , dt ,m4) ;

28 send 5 ( dt , ccu ,m5) ;

29

30 c l a im I1 ( dt , Al ive ) ;

31 c l a im I2 ( dt , Weakagree ) ;

32 c l a im I3 ( dt , Nisynch ) ;

33 c l a im I4 ( dt , Niagree ) ;

34 c l a im I5 ( dt ,SKR, na ) ;

35 }
36

37 r o l e ccu

38 {
39 var na : Nonce ;

40 f r e s h nb : Nonce ;

41 var s e rv i c e type , s e rv i c eda t e , nextdate : Data ;

42 f r e s h ack : Data ;
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43 var s e rv i c eupdate : Data ;

44 var t s : Timestamp ;

45 var s1 , s2 , s3 : Data ;

46

47 r e cv 1 ( dt , ccu ,m1) ;

48 send 2 ( ccu , dt ,m2) ;

49 r e cv 3 ( dt , ccu ,m3) ;

50 send 4 ( ccu , dt ,m4) ;

51 r e cv 5 ( dt , ccu ,m5) ;

52

53 claim R4 ( ccu , Al ive ) ;

54 claim R6 ( ccu , Weakagree ) ;

55 claim R1 ( ccu , Nisynch ) ;

56 claim R2 ( ccu , Niagree ) ;

57 claim R3 ( ccu ,SKR, nb) ;

58 }
59 }

B.5.2 AutoLOG Protocol Phase II

1 hash funct ion MAC;

2 func t i on f ;

3

4 p ro to co l AutoLOG2( ccu , ecu ) {
5 macro m6 = ccu ,{ ecu , v a l i d a t e s e r v i c e , nc}k ( ccu , ecu ) ;

6 macro m7 = ecu ,{ ccu , ackready , nc , nd}k ( ccu , ecu ) ;

7 macro m8 = ccu , ecu , s1 , s2 , s3 ,MAC( f ( nc , nd ) , ecu , s1 , s2 , s3 ) ;

8 macro m9 = ecu , ccu , acke ,MAC( f ( nc , nd ) , ccu , acke ) ;

9

10 r o l e ccu

11 {
12 f r e s h s1 , s2 , s3 : Data ;

13 var acke , ackready : Data ;

14 f r e s h nc : Nonce ;

15 var nd : Nonce ;

16 f r e s h v a l i d a t e s e r v i c e : Data ;

17

18 send 6 ( ccu , ecu ,m6) ;
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19 re cv 7 ( ecu , ccu ,m7) ;

20 send 8 ( ccu , ecu ,m8) ;

21 r e cv 9 ( ecu , ccu ,m9) ;

22

23 claim R1 ( ccu , Al ive ) ;

24 claim R2 ( ccu , Weakagree ) ;

25 claim R3 ( ccu , Nisynch ) ;

26 claim R4 ( ccu , Niagree ) ;

27 claim R5 ( ccu ,SKR, nc ) ;

28 claim R6 ( ccu , Secret , k ( ccu , ecu ) ) ;

29 }
30

31 r o l e ecu

32 {
33 var s1 , s2 , s3 : Data ;

34 f r e s h ackready , acke : Data ;

35 var nc : Nonce ;

36 f r e s h nd : Nonce ;

37 var v a l i d a t e s e r v i c e : Data ;

38

39 r e cv 6 ( ccu , ecu ,m6) ;

40 send 7 ( ecu , ccu ,m7) ;

41 r e cv 8 ( ccu , ecu ,m8) ;

42 send 9 ( ecu , ccu ,m9) ;

43

44 claim E1 ( ecu , Al ive ) ;

45 claim E2 ( ecu , Weakagree ) ;

46 claim E3 ( ecu , Nisynch ) ;

47 claim E4 ( ecu , Niagree ) ;

48 claim E5 ( ecu ,SKR, nd) ;

49 claim E6 ( ecu , Secret , k ( ccu , ecu ) ) ;

50 }
51 }

B.5.3 AutoLOG Protocol Phase III

1 user type SessionKey ;

2 const Fresh : Function ;
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3 hash funct ion MAC;

4 func t i on f ;

5 user type Timestamp ;

6

7 p ro to co l AutoLOG3(md, ccu ) {
8 macro m10 = md,{ s e rv i c eupdate req , ne}k (md, ccu ) ;

9 macro m11 = ccu ,{md, serv i ceupdate , nf }k (md, ccu ) ;

10 macro m12 = md, ccu ,{ ack} f ( ne , nf ) ;

11 macro m13 = {ccu ,md, s e rv i c e type , s e rv i c eda t e , nextdate , t s } f ( ne ,

nf ) ,{{ ccu ,md, s e rv i c e type , s e rv i c eda t e , nextdate , t s } f ( ne , nf ) }
sk ( ccu ) ;

12 macro m14 = {md, ccu , ackm} f ( ne , nf ) ;

13 macro m15 = ccu ,{ s1 , s2 , s3 } f ( ne , nf ) ,{{ s1 , s2 , s3 } f ( ne , nf ) } sk ( ccu )

;

14 macro m16 = {md, ackm} f ( ne , nf ) ;

15

16 r o l e md

17 {
18 f r e s h ne : Nonce ;

19 var nf : Nonce ;

20 var s e rv i c e type , s e rv i c eda t e , nextdate : Data ;

21 f r e s h ackm , ack : Data ;

22 var s e rv i c eupdate : Data ;

23 var t s : Timestamp ;

24 f r e s h s e rv i c eupdat e r eq : Data ;

25 var s1 , s2 , s3 : Data ;

26

27 send 10 (md, ccu , m10) ;

28 recv 11 ( ccu ,md, m11) ;

29 send 12 (md, ccu , m12) ;

30 recv 13 ( ccu ,md, m13) ;

31 send 14 (md, ccu , m14) ;

32 recv 15 ( ccu ,md, m15) ;

33 send 16 (md, ccu , m16) ;

34

35 c l a im I1 (md, Al ive ) ;

36 c l a im I2 (md, Nisynch ) ;
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37 c l a im I3 (md, Niagree ) ;

38 c l a im I4 (md, Weakagree ) ;

39 c l a im I5 (md,SKR, ne ) ;

40 c l a im I6 (md, Secret , k (md, ccu ) ) ;

41 }
42

43 r o l e ccu

44 {
45 var ne : Nonce ;

46 f r e s h nf : Nonce ;

47 f r e s h s e rv i c e type , s e rv i c eda t e , nextdate : Data ;

48 var ack , ackm : Data ;

49 f r e s h s e rv i c eupdate : Data ;

50 f r e s h t s : Timestamp ;

51 var s e rv i c eupdat e r eq : Data ;

52 f r e s h s1 , s2 , s3 : Data ;

53

54 recv 10 (md, ccu , m10) ;

55 send 11 ( ccu ,md, m11) ;

56 recv 12 (md, ccu , m12) ;

57 send 13 ( ccu ,md, m13) ;

58 recv 14 (md, ccu , m14) ;

59 send 15 ( ccu ,md, m15) ;

60 recv 16 (md, ccu , m16) ;

61

62 claim R1 ( ccu , Al ive ) ;

63 claim R2 ( ccu , Weakagree ) ;

64 claim R3 ( ccu , Nisynch ) ;

65 claim R4 ( ccu , Niagree ) ;

66 claim R5 ( ccu ,SKR, nf ) ;

67 claim R6 ( ccu , Secret , k (md, ccu ) ) ;

68 }
69 }
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