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Abstract. At CRYPTO’16, Beierle et al. presented SKINNY, a family
of lightweight tweakable block ciphers intended to compete with the NSA
designs SIMON and SPECK. SKINNY can be implemented efficiently
in both soft- and hardware and supports block sizes of 64 and 128 bits as
well as tweakey sizes of 64, 128, 192 and 128, 256, 384 bits respectively.
This paper presents a related-tweakey impossible-differential attack on
up to 23 (out of 36) rounds of SKINNY-64/128 for different tweak sizes.
All our attacks can be trivially extended to SKINNY-128/128.

Keywords: Symmetric cryptography · cryptanalysis · tweakable block
cipher · impossible differential · lightweight cryptography.

1 Introduction

SKINNY is a family of lightweight tweakable block ciphers recently proposed
at CRYPTO 2016 by Beierle et al. [3]. Its goal was to design a cipher that
could be implemented highly efficiently on both soft- and hardware platforms,
with performance comparable or better than the SIMON and SPECK families of
block ciphers [1]. Like the NSA designs SIMON and SPECK, SKINNY supports
a wide range of block sizes and tweak/key sizes – however, in contrast to the
And-RX and Add-RX based NSA proposals, SKINNY is based on the better
understood Substitution-Permutation-Network approach.
SKINNY offers a large security margin within the number of rounds for each
member of the SKINNY family. The designers show that the currently best
known attacks approach close to half of the number of rounds of the cipher.
To motivate third-party cryptanalysis, the designers of SKINNY recently an-
nounced a cryptanalysis competition [2] for SKINNY-64/128 and SKINNY-
128/128 with the obvious challenge of attacking more rounds than the prelimi-
nary analysis, concerning both the single- and related-key models.
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Table 1: Summary of our attacks and comparison to existing cryptanalysis of
SKINNY-64/128.

Instance Rounds Attack Type Time Data Memory Ref

SKINNY-64/128 20 Impossible 2121.1 247.7 274.7 [9]

SKINNY-64/128 21 Rectangle 287.9 254.0 254.0 [7]

SKINNY-64/128 21 Impossible 271.4 271.4¶ 268.0 Sect. 3.1

SKINNY-64/128 22 Rectangle 2109.9 263.0 263.0 [7]

SKINNY-64/128 22 Impossible‖ 271.6 271.4¶ 264.0 Sect. 3.2

SKINNY-64/128 23 Impossible 2124.2 262.5 2124 [7]

SKINNY-64/128 23 Impossible‖ 279 271.4¶ 264.0 Sect. 3.3

Related Work. Recently and independent of our analysis Liu et al. [7] ana-
lyzed SKINNY in the related-tweakey model, showing impossible-differential
and rectangle attacks on 19, 23, and 27 rounds of SKINNY-n/n, SKINNY-
n/2n and SKINNY-n/3n, respectively. In [9], Tolba et al. showed impossible-
differential attacks for 18, 20, 22 rounds of SKINNY-n/n, SKINNY-n/2n and
SKINNY-n/3n, respectively. Additionally, Sadeghi et al. [8] studied related-
tweakey impossible- differential and zero-correlation linear characteristics. In
comparison to the other attacks, our 23-round related-tweakey impossible-
differential attack on SKINNY-64/128 has the lowest time complexity so
far. Table 1 summarizes our attacks and compares them to existing attacks on
SKINNY-64/128.

Contributions and Outline. In this paper, we propose an impossible-differential
attack on SKINNY-64/128 reduced to 23 rounds in the related-key model. The
attack uses an 11-round impossible differential trail, to which six and four rounds
can be added for obtaining a 21-round attack. Later, we show that another round
can be appended leading to a 22-round attack, and even a 23-round attack.
The paper is organized as follows. In Section 2, we give a brief introduction
to the SKINNY family of block ciphers. In Section 3, we detail the attack
on SKINNY and provide time and memory complexities. Finally, Section 4
concludes the paper.

¶ The data complexity of our 21-round attack is beyond codebook. Our attack is
more efficient than a full codebook attack in the case where SKINNY is used in a
tweak-updating mode (i.e. where the tweak changes every time, but the key stays
the same). This does not effect the 22/23 round attack as 48 bits of the tweakey
are public (i.e. data complexity for full codebook would be 264 from the state + 248

from the tweak).
‖ Our attack on 22/23 rounds uses the tweak against the recommendation of the
SKINNY designers but still conform to the specification in [3].
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Fig. 1: Round function of SKINNY.

2 Description of SKINNY

Each round of SKINNY consists of the operations SubCells, AddRoundCon-
stants, AddRoundTweakey, ShiftRows, and MixColumns. The round
operations are schematically illustrated in Fig. 1. A cell represents a 4-bit value
in SKINNY-64/* and an 8-bit value in SKINNY-128/*.
We concentrate on SKINNY-64/128, which has a 64-bit block size and a 128-bit
tweakey size. The data is arranged nibble-by-nibble in a row-wise fashion in a
4× 4-matrix. SKINNY-64/128 recommends 36 rounds.

SubCells (SC) substitutes each nibble x by S(x), which is given below.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

AddRoundConstants (AC) adds LFSR-based round constants to Cells 0,
4, and 8 of the state.

AddRoundTweakey (ART) adds the round tweakey to the first two state
rows.

ShiftRows (SR) rotates the ith row, for 0 ≤ i ≤ 3, by i positions to the
right.

MixColumns (MC) multiplies each column of the state by a matrix M :

M =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0



Tweakey Schedule. The tweakey schedule of SKINNY, as illustrated in Fig. 2,
follows the TWEAKEY framework [5]. In contrast to the previous TWEAKEY
designs Deoxys-BC and Joltik-BC, SKINNY employs a significantly more
lightweight strategy. In each round, only the two topmost rows of each tweakey
word are extracted and XORed to the state. An additional round-dependent
constant is also XORed to the state to prevent attacks from symmetry.
The 128-bit tweakey is arranged in two 64-bit tweakey words, represented by TK1

and TK2. In each round, the tweakey words are updated by a cell permutation
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Fig. 2: Tweakey schedule of SKINNY.

PT that ensures that the two bottom rows of a tweakey word in a certain round
are exchanged with the two top rows in the tweakey word in the subsequent
round. The permutation is given as:

PT = {9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7}

The permutation PT has a period of 16, as visualized in Fig. 7 in the appendix.
Moreover, each individual cell in the two topmost rows of TK2 is transformed
by a 4-bit LFSR to minimise the cancellation of differences from TK1 and TK2;
TK1 employs no LFSR transformation. The LFSR transformation L is given by

L(x3, x2, x1, x0) := (x2, x1, x0, x3 ⊕ x2),

where x3, x2, x1, x0 represent the individual bits of every tweakey nibble.

3 Related-Key Impossible-Differential Attack

Impossible-differential attacks were introduced independently by Biham et al. [4]
and Knudsen [6]. They are widely used as an important cryptanalytic technique.
The attack starts with finding an input difference that can never result in an
output difference. By adding rounds before and/or after the impossible differ-
ential, one can collect pairs with certain plaintext and ciphertext differences. If
there exists a pair that meets the input and output values of the impossible dif-
ferential under some subkey, these subkeys must be wrong. In this way, we filter
as many wrong keys as possible and exhaustively search the rest of the keys.

Notations. Let us state a few notations that are used in the attack description:

Kr represents the rth round key. This is equal to TKr
1 ⊕TKr

2 . Similarly, kr[i] =
tkr1[i]⊕ tkr2[i] represents the individual ith tweakey nibble in round r.

Ar represents the internal state before SC in round r.
Br represents the internal state after SC in round r.
Cr represents the internal state after AT in round r.
Dr represents the internal state after SR in round r.
Er represents the internal state after MC in round r. Furthermore, Er = Ar+1.
Lt represents the t-times composition of LFSR function L.
X represents the corresponding variable X in the related-key setting.
X[i] represents the ith nibble of the corresponding variable X.
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Fig. 3: Related-key impossible-differential trail over 11 rounds of SKINNY-64/128.

Impossible-Differential Trail. Fig. 3 presents the 11-round related-key dif-
ferential trail that we use. We introduce a nibble difference in Cell 8 of the
combined tweakey. Since the initial difference is in Cell 8, i.e. in one of the
bottom two rows in the tweakey, it does not affect the state in the first round,
and will be added to the state from the second round onwards. Similarly in the
backward trail, the difference in the 11th round-tweakey appears in Cell 11 (in
a bottom row), due to which we get an extra round in the backward direction.

Lemma 1. The equation S(x⊕∆i)⊕S(x) = ∆o has one solution x on average
for ∆i, ∆o 6= 0. Similar result holds for the inverse S-Box S−1.

Proof. The above fact can be deduced by analyzing the Differential-Distribution
Table (DDT ) of the S-box S as illustrated in Table 2 in the appendix. The
average can be calculated as 1

225 ·
∑
∆i,∆o 6=0DDT (∆i, ∆o) ≈ 1. A similar exercise

can be done for the inverse S-box yielding the same result.

Lemma 2. For random values of x and ∆i, ∆o 6= 0, the equation S(x ⊕∆i) ⊕
S(x) = ∆o holds with probability around 2−4.

Proof. The above fact can also be deduced by analyzing the Differential-Distribution
Table (DDT ) of the S-box S as illustrated in Table 2 in the appendix. The
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probability can be calculated as (let Pr[(x, δi, δo) denote the probablility that
the equation is satisfied for the triplet x, δi, δo)

Pr[(x,∆i, ∆o)] =
∑

δi,δo 6=0

Pr[(x, δi, δo)|∆i = δi, ∆o = δo]Pr[∆i = δi, ∆o = δo]

=
1

225
·
∑

∆i,∆o 6=0

DDT (∆i, ∆o) · 2−4 ≈ 2−4

Attack on 21 Rounds. The impossible differential trail described in Fig. 3
can be extended by six and four rounds in backward and forward direction as
will be explained in the following two lemmas.

Lemma 3. It is possible to find plaintext pairs P, P and related-tweakey pairs
K,K such that if the tweakey pairs differ only in nibble position 11, then there is
no difference in the internal state after executing six rounds of SKINNY-64/128
with the plaintext-tweakey pairs (P,K) and (P ,K).

Proof. We will show how the required plaintext and tweakey pairs are generated.
We choose the nibble at Position 11 to introduce the initial difference because
after completing six rounds, the difference is shuffled to Cell 8 of the round key,
which coincides with the beginning of the impossible- differential trail, shown in
Fig. 3. It can be seen that the AddRoundTweakey in the first round can be
pushed behind the MixColumns operation by changing the first round key to
Lin(K1) where Lin = MC ◦ SR represents the linear layer (refer to Fig. 4).

Lin(K1) =


k1[0] k1[1] k1[2] k1[3]

k1[0] k1[1] k1[2] k1[3]

k1[7] k1[4] k1[5] k1[6]

k1[0] k1[1] k1[2] k1[3]


Furthermore, the initial difference between K = TK1

1 ⊕ TK1
2 and K = TK1

1 ⊕
TK1

2 can be selected in a specific form, so that in Round 6, the tweakey difference
is zero. Let us denote δ1 = tk11[11]⊕tk11[11] and δ2 = tk12[11]⊕tk12[11]. In Round 6,
the difference will appear in Cell 0 of the round key and so we want:

k6[0]⊕ k6[0] = tk61[0]⊕ tk61[0] + tk62[0]⊕ tk62[0]

= tk11[11]⊕ tk11[11]⊕ L3
(
tk12[11]

)
⊕ L3

(
tk12[11]

)
= δ1 ⊕ L3 (δ2) = 0

So, if the attacker chooses δ1, δ2 satisfying the equation δ1 ⊕ L3(δ2) = 0, then
there is no difference introduced via the round-key addition in Round 6. The
attacker should therefore follow the steps:

1. Take any Plaintext P and compute the state after the first round Mix-
Columns, i.e. E1.
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Fig. 4: Trail for the six forward rounds (the values of active nibbles in red are functions
of δ1, δ2, the dark gray cell visualises the tweakey cancelation).
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2. Take any three-nibble difference ∆1, ∆3, ∆4 to construct E1 such that

E1 ⊕ E1 =


0 0 0 0

0 ∆1 0 ∆2

∆3 0 0 0

0 0 0 ∆4


The value of ∆2 will be determined shortly. The attacker can recover P by
inverting the MC, SR, AC and SC layers on E1.

3. The attacker chooses the difference α in Cell 14 of E2. She calculates then
k1[1], k1[3], k1[7] so that

B2 ⊕B2 = Lin−1(E2)⊕ Lin−1(E2) =


0 0 0 0

0 α 0 β

α 0 0 0

0 0 0 α

 .
For example, k1[1] is a solution of the equation:

S
(
E1[5]⊕ k1[1]

)
⊕ S

(
E1[5]⊕∆1 ⊕ k1[1]

)
= α.

Lemma 1 ensures that the equation above has one solution on average.

4. β needs to be equal to k2[7] ⊕ k2[7] = tk21[7] ⊕ tk22[7] ⊕ tk21[7] ⊕ tk22[7]. This
is equal to tk11[11] ⊕ L(tk12[11]) ⊕ tk11[11] ⊕ L(tk12[11]) = δ1 ⊕ L(δ2). So, the
attacker chooses δ1 and δ2 satisfying δ1 ⊕ L3(δ2) = 0 and calculates β =
δ1 ⊕ L(δ2). ∆2 can then be determined as a solution of the equation:

S
(
E1[7]⊕ k1[3]

)
⊕ S

(
E1[7]⊕∆2 ⊕ k1[3]

)
= β (1)

The attacker now has the values of ∆1, ∆2, ∆3, ∆4 and so, he can compute
E1, E1 and hence P, P .

5. However, the attacker still needs that in Round 4, the active nibble in B4[1]
is equal to δ1⊕L2(δ2) to make all the state cells inactive in C4, D4, and E4.

6. The attacker needs to guess three roundkey values in Round 1 (i.e. k1[2],
k1[4], k1[6]) and three roundkey values in Round 2 (i.e. k2[1] = tk11[15] ⊕
L(tk12[15]), k2[2] = tk11[8]⊕ L(tk12[8]), k2[6] = tk11[12]⊕ L(tk12[12])).
If the attacker can guess these values, then he knows the actual values
(marked with v) of the state cells for the plaintext pair P, P as opposed
to only differences (marked by 0) in both Fig. 4 and Fig. 5.

7. Guessing the tweakey nibbles mentioned above enables the attacker to cal-
culate the value of B3[1]. Then, she calculates k3[1] = tk11[7] ⊕ L(tk12[7]) as
follows. Since D3[1] = B3[1]⊕ k3[1] holds, we have:

S
(
D3[1]⊕D3[9]⊕D3[13]

)
⊕ S

(
D3[1]⊕D3[9]⊕D3[13]

)
= δ1 ⊕ L2(δ2).
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Since the knowledge of the guessed key nibbles already allows the attacker to
calculate D3[9], D3[13], and D3[13], k3[1] = tk11[7]⊕L(tk12[7]) is the solution
to the equation above. Again, Lemma 1 guarantees one solution on average.
Since the attacker has already determined k1[7] = tk11[7] ⊕ tk12[7], this also
determines the values of tk11[7] and tk12[7].

8. This guarantees that there are no more active nibbles after Round 4. The
key difference does not add to the state in Round 5, and due to the fact that
δ1 ⊕ L3(δ2) = 0, the tweak difference becomes 0 in Round 6.

Thus, by guessing six and calculating three key nibbles, we can construct P, P
and K,K so that the internal state after six rounds has no active nibbles.

Lemma 4. Given C,C as the two output ciphertexts after querying plaintext-
tweakey pairs (P,K) and (P ,K) to a 21-round SKINNY-64/128 encryption
oracle. Then for a fraction 2−40 of the ciphertext pairs, it is possible to construct
a backward trail for round 21 to round 18 by guessing intermediate tweakey
nibbles so that there are no active nibbles in the internal state at the end of
round 17.

Proof. The attacker starts working backward from the ciphertext pairs C,C and
proceeds as follows (illustrated in Fig. 5):

1. The attacker rejects ciphertext pairs which do not have seven inactive cells
in Cells 3, 4, 5, 8, 9, 11, and 14) after peeling off the final MixColumns
layer (i.e. D21). Thus, a fraction of 2−28 pairs are filtered after this stage.

2. Furthermore, the attacker rejects ciphertext pairs which do not have the
difference δ1 ⊕ L10(δ2) in Cell 13 of A21, i.e. reject if A21[13] ⊕ A21[13] 6=
δ1 ⊕ L10(δ2). Since calculating this cell does not require any key guess, she
can do this filtering instantly leaving a fraction of 2−4 pairs after this stage.

3. Since the two bottommost rows of the state are not affected by the tweakey
addition, and since tk11[7], tk12[7] are already known, the attacker can calculate
the actual values in Cells 0, 8, and 12 in A21 for the ciphertext pairs. These
have to be equal since they are the output of the 20th-round MixColumns
operation on the leftmost column which had only one active nibble in its
input. If the active Cells 8 and 12 are different, the attacker can reject the
pair. This adds another filter with probability 2−4.

4. Since the actual values in Cell 0 in A21 for the ciphertext pairs were already
calculated in the previous step, the attacker checks if the value of the active
Cell 0 is equal to that of Cells 8 and 12, and rejects the pair otherwise. This
adds another filter of probability 2−4.

5. The attacker determines k21[5] = tk11[4]⊕L10(tk12[4]) so that the active nibble
in Cell 5 of A21 is δ1 ⊕ L10(δ2). Since A21[5] = S−1

(
k21[5]⊕ C21[5]

)
, k21[5]

is a solution to the equation below:

S−1
(
k21[5]⊕ C21[5]

)
⊕ S−1

(
k21[5]⊕ C21[5]

)
= δ1 ⊕ L10(δ2).
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6. The attacker determines k21[2] = tk11[1] ⊕ L10(tk12[1]) and k21[6] = tk11[2] ⊕
L10(tk12[2]) so that the active nibble in Cell 2 and 6 of A21 are equal to the
active nibble in Cell 14. Again, this works since those cells are output of the
20th-round MixColumns operation on Column 2 which had only one active
nibble in its input.

7. Additionally, the attacker guesses k21[4] = tk11[0]⊕L10(tk12[0]). This enables
the attacker to compute the actual values for the entire leftmost column of
A21 and hence to compute the leftmost column of D20.

8. The value of the active nibble in cell 10 of A20 is given as:

A20[10]⊕A20[10] = S−1
(
B20[10]

)
⊕ S−1

(
B20[10]

)
= S−1

(
D20[8]

)
⊕ S−1

(
D20[8]

)
= η.

(2)

Since the leftmost column of D20 is known, the attacker can calculate η,
which must be equal to Cell 14 of A20 since they are output of the 19th-
round MixColumns operation with one active input nibble.

A20[14]⊕A20[14] = S−1
(
D20[13]

)
⊕ S−1

(
D20[13]

)
= S−1

(
A21[1]⊕A21[13]

)
⊕ S−1

(
A21[1]⊕A21[13]

)
.
(3)

It holds that A21[1] = S−1
(
C21[1]⊕ k21[1]

)
and A21[1] = S−1(C21[1] ⊕

k21[1]). By calculating Equations (2) and (3), the attacker can solve for
k21[1] = tk11[3] ⊕ L10(tk12[3]). One solution on average is guaranteed by
Lemma 1.

9. The values tk11[i] ⊕ tk12[i], for i = 1, 2, 3, 4, were already determined during
the calculation of the forward trail. So, using their values, the attacker can
determine the actual values tk11[i], tk12[i] for i = 1, 2, 3, 4.

10. The attacker calculates k20[2] = tk11[9]⊕L10(tk12[9]) so that the active nibble
in Cell 2 in A20 is equal to the active value η in Cells 10 and 14 since they
are output of the 19th-round MixColumns operation with one active input
nibble. This is done by solving

η = A20[2]⊕A20[2] = S−1
(
C20[2]⊕ k20[2]

)
⊕ S−1

(
C20[2]⊕ k20[2]

)
. (4)

11. The final condition to be satisfied is that the active nibble in Cell 8 of A19

has to be equal to δ1 ⊕ L9(δ2) = γ.

γ = S−1
(
D19[10]

)
⊕ S−1

(
D19[10]

)
= S−1

(
A20[6]⊕A20[14]

)
⊕ S−1

(
A20[6]⊕A20[14]

)
.

(5)

Note that A20[6] = S−1(C20[6]⊕ k20[6]). And since A20[6] = A20[6], solving
Equation (5) helps to determine k20[6] = tk11[10]⊕ L10(tk12[10]).

The result follows since in the Steps 1-4, a total of 2−28−4−4−4 = 2−40 ciphertext
pairs are filtered.
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3.1 First Attack

Now, we put together the findings of Lemma 3 and 4 into an attack procedure
(see Figure 8 in the appendix for details):

1. The attacker chooses the nibble values of the random base variable E1 in all
locations except Cells 5, 7, 8, and 15.

2. She chooses fixed differences δ1, δ2 satisfying δ1 = L3(δ2).

3. For each choice of (E1[5], E1[7], E1[8], E1[15]) (216 choices):
– Calculate P by inverting the first round.
– Query the 21-round encryption oracle for P,K and P,K.

So, for every choice of the base variable E1, we have 217 encryption calls. We can
pair related plaintext and tweakey pairs in the following way: For every plaintext
Pi, choose a plaintext Pj so that E1 for Pi and Pj have a non-zero difference in
all Cells 5, 7, 8, and 15. For every Pi, there exist (24 − 1)4 ≈ 215.6 such values
of Pj , and so 216+15.6 = 231.6 pairs to work with. The attack now proceeds as
follows. For each choice of Pi, Pj (231.6 choices):

– Denote P = Pi and P = Pj .
– The attacker can choose α and proceed with the steps of the above attack

with one exception: She can no longer choose ∆2 as in Step 4 of Lemma 3
since she has already chosen P, P ,K,K.

– With probability 2−4 (as per Lemma 2), the plaintext pair satisfies Equa-
tion (1) in Step 4 of Lemma 3 and proceeds; otherwise, she aborts.

– Request the ciphertext C for (P ,K) and the ciphertext C for (P,K).
– If C ⊕ C does not pass the 2−36 filter (Steps 1, 2, and 3 in Lemma 4), then

abort and start again.
– If they pass the filter, the attacker can guess seven tweakey cells (228 guesses)

and calculate 17 key/tweak cells as follows:

# Guessed Rnd Calculated Rnd

1 tk11[i]⊕ tk
1
2[i] for i = 2, 4, 6 1

2 tk11[i]⊕ L(tk
1
2[i]) for i = 8, 12, 15 2

3 tk11[i]⊕ L
10(tk12[i]) for i = 0 21

4 tk11[i], tk
1
2[i] for i = 7 3

5 tk11[i], tk
1
2[i] for i = 1, 2, 3, 4 21

6 tk11[i]⊕ L
10(tk12[i]) for i = 9, 10 20

The 17 tweakey nibbles used for elimination are therefore:

(a) tk11[i], tk12[i] for i = 1, 2, 3, 4, 7
(b) tk11[i]⊕ L10(tk12[i]) for i = 9, 10
(c) tk11[i]⊕ L10(tk12[i]) for i = 0

(d) tk11[i]⊕L(tk12[i]) for i = 8, 12, 15
(e) tk11[i]⊕ tk12[i] for i = 6

– A fraction of 2−4 tweakeys fulfills the condition required in Step 4 of Lemma 4.
– Therefore, the attacker has a set of 228−4 = 224 wrong key candidates.

The above procedure is repeated with 2x chosen plaintexts until a single key
solution remains for the 17 nibbles of the tweakey.
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Fig. 6: Trail for the five backward rounds (the values of active nibbles in red are
functions of δ1, δ2, grey cells are the key, white cells are the tweak).
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Complexity. For every base value of E1, the attacker makes 217 encryption
calls. Out of these, she has has 231.6 pairs to work with. For each pair, the
attacker can then choose α in 24 − 1 ways, which gives her around 235.6 initial
guesses for the forward key nibbles k1[1], k1[3], and k1[7], of which a fraction of
2−4 passes the filter in Equation (1). So, she has 231.6 pairs to work with. In fact,
for every pair (Pi, Pj) there is only one choice of α going forward on average.

Time complexity = max
{
2x+17 encryptions , 2x−4.4+24 guesses

}
= 2x+19.6.

The attacker gets wrong solutions for 2x−4.4+24 = 2x+19.6 incorrect solutions for
17 nibbles. To reduce the keyspace to 1 we need:

217×4 ·
(
1− 2−17×4

)2x+19.6

≈ 217×4e−2
x−48.4

= 1.

For this, we need x = 55. So, the total number of encryption calls to 21-round
SKINNY-64/128 is 255+17 = 272 and the total number of guesses is 274.6. We
also need 268 memory accesses, which are negligible in the total complexity. The
memory complexity is upper bounded by storing one bit per key candidate which
is therefore 268 bits. The memory for storing the approximately 2 ·217 plaintexts
and corresponding ciphertexts of a structure at each time is negligible.

3.2 22-Round Attack under Partially Known Tweak

The attack above can be extended to 22-round SKINNY-64/128 under the
assumption that 48 of the 128 bits in the tweakey are publicly known tweak (see
Figure 9 in the appendix for details). In particular, we assume that tk11[i], tk12[i]
for i = 8, 11, 12, 13, 14, 15 are reserved for the tweak. The remaining 80 bit
constitute the secret key.
In this case, the attacker can add a round at the end (see Fig. 6 for details).
Knowing six out of eight cells in the lower half of the tweakey blocks helps
in the following way. From the ciphertext (i.e., E22), one can revert the final
round to compute E21 if we guess k22[4, 5], i.e., tk11[9, 10]⊕ L11(tk12[9, 10]). The
attack is almost the same as the previous attack, except that the tweakey indices
i = 8, 11, 12, 13, 14, 15 and their functions are known and need not be guessed.

1. Generate 231.6 plaintext/ciphertext pairs from every base choice of E1 and
217 encryption calls.

2. For each choice of Pi, Pj (231.6 choices):
– Denote P = Pi and P = Pj .
– The attacker can choose α and calculate k1[1], k1[3], and k1[7] as per

Step 3 of Lemma 3.
– She can no longer choose ∆2 as in Step 4 of Lemma 3 since she has

already chosen P , P , K, K.
– With probability 2−4, the plaintext pair satisfies Equation (1) in Step 4

of Lemma 3 and proceeds; otherwise, she aborts.
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– The attacker doesn’t need to guess the Round 2 tweakey nibbles since
these are in the lower half of the tweakey blocks and therefore known.

– Retrieve the ciphertext C for (P ,K) and the ciphertext C for (P,K).
– Guess k22[4, 5] = tk11[9, 10]⊕ L11(tk12[9, 10]) to get E21.
– If E21 ⊕ E21 does not pass the 2−36 filter, then abort and restart.
– After determining k20[2] = tk11[9] ⊕ L10(tk12[9]) and k20[6] = tk11[10] ⊕
L10(tk12[10]) in Steps 10 and 11 of Lemma 4, the attacker can uniquely
determine tk11[9, 10] since tk11[9, 10]⊕ L11(tk12[9, 10]) is already guessed.

– If they pass the filter, the attacker can guess six tweakey cells (224
guesses) and calculate 16 key cells as follows:

# Guessed Rnd Calculated Rnd

1 tk11[i]⊕ tk
1
2[i] for i = 2, 4, 6 1

2 tk11[i]⊕ L
10(tk12[i]) for i = 0 21

3 tk11[i]⊕ L
11(tk12[i]) for i = 9, 10 22

4 tk11[i], tk
1
2[i] for i = 7 3

5 tk11[i], tk
1
2[i] for i = 1, 2, 3, 4 21

6 tk11[i], tk
1
2[i] for i = 9, 10 20

The 16 tweakey nibbles used for elimination are therefore:

(a) tk11[i], tk12[i] for i = 1, 2, 3, 4, 7, 9, 10.
(b) tk11[i]⊕ L10(tk12[i]) for i = 0.

(c) tk11[i]⊕ tk12[i] for i = 6.

– A fraction of 2−4 tweakeys fulfills the condition in Step 4 of Lemma 4.
– Therefore, the attacker has a set of 224−4 = 220 wrong key candidates.

The procedure above is repeated with 2x chosen plaintexts until a single key
solution remains for the 16 nibbles of the tweakey.

Complexity. For every base value of E1, the attacker makes 217 encryption
calls. Out of these, she has 231.6 pairs to work with. For each pair, the attacker
can choose then α in 24−1 ways, which gives her around 235.6 initial guesses for
the forward key nibbles k1[1], k1[3], k1[7], of which only a fraction of 2−4 passes
the filter in Equation (1). So, the attacker has 231.6 pairs to work with. In effect,
for every pair (Pi, Pj) there is only once choice of α going forward on average.

Time complexity = max
{
2x+17 encryptions, 2x−4.4+20 guesses

}
= 2x+17.

The attacker gets wrong solutions for 2x−4.4+20 = 2x+15.6 incorrect solutions for
16 nibbles. To reduce the keyspace to 1 we need:

216×4 ·
(
1− 2−16×4

)2x+15.6

≈ 216×4e−2
x−48.4

= 1.

For this, we need x = 54. So, the total number of encryption calls to 22-round
SKINNY-64/128 is 254+17 = 271. We also need 264 memory accesses, which are
negligible in the total complexity. The memory complexity is upper bounded by
storing one bit per key candidate which is therefore 264 bits. The memory for
storing the approximately 2 · 217 plaintexts and corresponding ciphertexts of a
structure at each time is negligible.
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3.3 23-Round Attack under Partially Known Tweak

We can extend the 22 round attack to a 23 round attack by prepending one
round at the beginning. In order to not disturb the notation, we denote the
additonal round prepended at the beginning as the 0-th round. That is, the 23
rounds are labelled as rounds 0 to 22, and the variables A0, B0 etc. are defined
as above. The plaintext is denoted by A0 and the ciphertext by E22. Note that,
from the base value of E1, the plaintext can be calculated if we guess k0[9, 10].
There are two principal differences to the 22-round attack.

1. When the attacker guesses k22[4, 5] which is tk11[9, 10] ⊕ L11(tk12[9, 10]) to
invert the final round to get E21, he uniquely determines tk11[9, 10] and
tk12[9, 10]. This is because at the beginning of the outer loop k0[9, 10] has
already been guessed by the attacker to invert the initial round.

2. As the attacker can no longer determine k20[2] = tk11[9] ⊕ L10(tk12[9]) and
k20[6] = tk11[10] ⊕ L10(tk12[10]) using Steps 10 and 11 of Lemma 4. The
probability that with the given values of tk11[9, 10] and tk12[9, 10], Equations
(4) and (5) are satisfied is 2−8. This decreases the probability of ciphertext
filter from 2−36 to 2−44.

For each initial guess of k0[9, 10], the guessed and calculated key bytes are:

# Guessed Rnd Calculated Rnd

1 tk11[i]⊕ tk
1
2[i] for i = 2, 4, 6 1

2 tk11[i]⊕ L
10(tk12[i]) for i = 0 21

3 tk11[i]⊕ L
11(tk12[i]) for i = 9, 10 22

4 tk11[i], tk
1
2[i] for i = 7 3

5 tk11[i], tk
1
2[i] for i = 1, 2, 3, 4 21

The 14 tweakey nibbles used for elimination are therefore:

(a) tk11[i], tk12[i] for i = 1, 2, 3, 4, 7.
(b) tk11[i]⊕ L10(tk12[i]) for i = 0.

(c) tk11[i]⊕ tk12[i] for i = 6.
(d) tk11[i]⊕ L11(tk12[i]) for i = 9, 10

As before, a fraction of 2−4 tweakeys fulfills the condition in Step 4 of Lemma 4.
Therefore, the attacker has a set of 224−4 = 220 wrong key candidates.

Complexity. For each iteration of the outer loop, the complexity is calculated
as follows: For every base value of E1, the attacker makes 217 encryption calls.
Out of those, she has 231.6 pairs to work with. For each pair, the attacker can
choose then α in 24− 1 ways, which gives her around 235.6 initial guesses for the
forward key nibbles k1[1], k1[3], k1[7], of which only a fraction of 2−4 passes the
filter in Equation (1). In effect, for every pair (Pi, Pj) there is only one choice of
α going forward on average.

Time complexity = max
{
2x+17 encryptions, 2x+31.6−44+20 guesses

}
= 2x+17.

The attacker gets 2x+31.6−44+20 = 2x+7.6 incorrect solutions for 14 nibbles. To
reduce the keyspace to 1 we need:
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214×4 ·
(
1− 2−14×4

)2x+7.6

≈ 214×4e−2
x−48.4

= 1.

We need x = 54 leaving the total number of encryption calls to 22-round
SKINNY-64/128 with 254+17 = 271. Multiplying this by 28 for the outer loop
gives a total complexity of 271+8 = 279 which is just short of exhaustive search
for the 80-bit key. We also need 256+8 = 264 memory accesses, which are negligi-
ble in the total complexity. The memory complexity is upper bounded by storing
one bit per key candidate which is therefore 264 bits. The memory for storing
the approximately 2 · 217 plaintexts and ciphertexts of a structure is negligible.

4 Conclusion

In this paper, we outline related-key impossible-differential attacks against 21-
round SKINNY-64/128 as well as attacks on 22 and 23 rounds under the as-
sumption of having 48 of the 128-bit tweakey as public tweak. Our attacks are
based on an 11-round impossible differential trail, to which we prepend six and
append five rounds before and after the trail, respectively, to obtain an attack
on 22 rounds. Finally, we can prepend a 23-rd round under similar assumptions.
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Table 2: Difference-Distribution Table
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 . . . . . . . . . . . . . . .

1 . . . . . . . . 4 4 4 4 . . . .

2 . 4 . 4 . 4 4 . . . . . . . . .

3 . . . . . . . . 2 2 2 2 2 2 2 2

4 . . 4 . . . 2 2 . . . 4 2 2 . .

5 . . 4 . . . 2 2 . . 4 . 2 2 . .

6 . 2 . 2 2 . . 2 2 . 2 . . 2 2 .

7 . 2 . 2 2 . . 2 . 2 . 2 2 . . 2

8 . . . . 4 4 . . . . . . 2 2 2 2

9 . . . . 4 4 . . . . . . 2 2 2 2

a . . . . . 4 4 . 2 2 2 2 . . . .

b . 4 . 4 . . . . . . . . 2 2 2 2

c . . 4 . . . 2 2 4 . . . . . 2 2

d . . 4 . . . 2 2 . 4 . . . . 2 2

e . 2 . 2 2 . . 2 . 2 . 2 . 2 2 .

f . 2 . 2 2 . . 2 2 . 2 . 2 . . 2
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Fig. 8: Related-key impossible differential attack on 21-round SKINNY 64/128 (the
dark gray cell visualises the cancelation of the tweakeys).
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cells are the key, white cells are the tweak, the dark gray cell visualises the cancelation
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