
Provisioning Software with Hardware-Software Binding

Robert P. Lee, Konstantinos Markantonakis, Raja Naeem Akram
robert.lee.2013@live.rhul.ac.uk,k.markantonakis@rhul.ac.uk,r.n.akram@rhul.ac.uk

ISG Smart Card and IoT Security Centre
Royal Holloway

UK

ABSTRACT
Smart cities are a concept of interest to many industrial, academic
and government organisations. However, smart cities present a
large attack surface to adversaries if every tra�c light, power relay
and water pipe are connected to the internet. This paper describes
the problem of distributing software in a smart city when strong
protection of device software, software installation and update
provision are required. A set of requirements for a secure software
provisioning system is presented and two models for the software
distribution are proposed. Three protocols for distributing software
are presented that meet the requirements stated. A formal analysis
using Tamarin Prover is described that proves the security of the
proposed protocols. Finally, an implementation has been developed
using a laptop and Raspberry Pi 3 to demonstrate the proposed
protocols in action and the performance of them.
ACM Reference format:
Robert P. Lee, Konstantinos Markantonakis, Raja Naeem Akram. . Provi-
sioning Software with Hardware-Software Binding. In Proceedings of , , ,
9 pages.
DOI:

1 INTRODUCTION
In this paper we are attempting to address the problem of securely
provisioning software to devices in a “Smart City”. “Smart Cities”
are a concept that of interest to many groups including local and na-
tional governments, political unions and academics [3, 4, 6]. Smart
cities are an approach to urban development that includes smart
concepts and technologies to provide more e�ective services to the
people who live or work in the city.

The UK department for Business Innovation and Skills (BIS)
lists the following services that they wish to enhance in smart
cities: Intelligent transport systems, Assisted or indepenent living,
Water Management, Smart grids or energy networks and Waste
Management [3]. These areas are all part of critical infrastructure
so their availability and security are vital. Frequently, government
systems such as healthcare, energy grids, water grids and other
critical infrastructure systems transmit sensitive information that
must be kept con�dential. Transport management systems must
also be secured because problems can cause signi�cant delays or
even physical harm to people. For example, interfering with tra�c
lights could easily cause an accident. With many risks in the smart
city setting it is highly important that the networkeed devices be
secured. In these settings it is critical devices behave as expected.
Protecting devices from software tampering ensures they behave
as designed. However, smart cities comprise many types of devices

,
. .
DOI:

in a wide area that require software and software updates to be
provisioned in the �eld instead of relying on secure manufacturing
to prevent software compromise. A further complication is that the
hardware may not be managed by the manufacturer of it but by
a third party contracted by the organisation that owns/manages
them.

The smart cities model can be abstracted into a theoretical model
that also applies to other scenarios. A smart city can be considered
as a wide network of computing devices that perform tasks and
regularly communicate with a central server/s. In many large net-
works it may be impractical to rely on physical access to devices to
change or update software. However, it is often important to ensure
software can only be loaded by authorised parties. Examples of
such networks include: industrial control systems, sensor networks
and vehicular networks.

1.1 Contributions
The main contributions of this paper are:

(1) Modelling the security of provisioning software to large
numbers of remote hardware devices (Section 2).

(2) Proposing a set of requirements for securing software pro-
visioning (Section 2.3).

(3) Discussing the di�erent potential models for managing the
security of software provisioning (Section 3).

(4) Proposing a protocol to solve the problem of software pro-
visioning (Section 5).

(5) Providing a security veri�cation of the proposed protocol
performed using Tamarin Prover (Section 6).

(6) Benchmarking the performance of the proposed schemes
to show the performance of the proposals (Section 7).

1.2 Paper Structure
The paper is structured as follows. Section 2 contains an overview
of the problem considered in this paper. Section 3 explores the
possible models that could be used for software provisioning and
draws the security requirements for a solution to the problem con-
sidered. Section 4 describes the related work in this area. Section 5
contains the solution proposed for securely provisioning software
and updates to a network of devices. Section 6 analyses the solution
proposed against the requirements set out in Section 3. Section 7 de-
scribes the implementations of the proposed protocols and includes
performance data. Section 8 concludes the paper and describes the
future work required in this area.

2 PROBLEM DESCRIPTION
This work considers how to securely provision software to devices
in a wide, smart city network. This work will consider a simpli�ed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/131177104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


, , Robert P. Lee, Konstantinos Markantonakis, Raja Naeem Akram

problem including just one entity attempting to install software
onto devices in a network belonging to a particular owner. This
section explores the motivations of the entities involved and de-
scribes the attacker who seeks to undermine the security of the
system. Finally, this section lists and describes the requirements
for solving the problem posed.

2.1 Entities and Motivations
Provisioning software to devices includes four individuals: the
Device (D), the Operator (O), the Manufacturer (M) and City Hall
(CH ). D wants access to an application provided byO . O is respons-
ible for operating the Devices and is interested in loading their
application onto them. However, O wants to control the spread
of their application. M is a manufacturer of Devices who wants
to create Ds able to securely receive and store software. CH is
the organisation that owns the Devices and has contracted their
operation to O .

The Device (D) is a generic Internet of Things (IoT) device that
runs applications. D may be a set of tra�c lights or a water valve
in a treatment system that is loaded with an application from the
operator/manager in order to let tra�c/water �ow. Alternatively,
D could provide information back to a central computer system
that is used to monitor �ow through the network of pipes, wires or
roads. D may be deployed in a public area that is considered to be
an insecure environment where attackers have physical access to
it.

The Operator (O) is a business or government agency that is con-
tracted with operating/managing some or all of the infrastructure
in the smart city such as the road or water network. To operate
D, O loads it with software that dictates its behaviour and commu-
nications. Producing the software has required a large investment
that O wishes to protect. Furthermore, as there is a risk to citizen
safety if D is interfered with, protecting device software from tam-
pering bene�ts O by preventing loss of revenue and any reputation
damage caused by incidents.

The Manufacturer (M), produces hardware devices that are in-
stalled in smart cities. Di�erent companies may need to manage
the devices over their lifetimes, therefore they need to be able to
be personalised by di�erent Operators. M wishes to ensure their
devices provide protection to the software installed and to provide
guarantees as to the security of the software provisioning. If mali-
cious parties replace the device software with their own this may
violate citizen privacy or lead to accidents, injuries or lives lost. It is
advantageous for M to produce devices that guarantee the security
of installed software because it will make them more desirable to
city planners.

Finally, City Hall (CH ) is the government agency or department
that holds overall responsibility for the smart city. This party is the
owner of the Devices and is contracting O with running some city
infrastructure. In practice, CH may be an IT department, a central-
ised organisation or an o�ce of the regional or local government.
However, for the context of this work the device owner is called
City Hall.

2.2 Attacker Model
This work considers an Attacker (Att ) that is attempting to interfere
with the Devices with two main goals. Atts �rst goal is to steal
the Software (SW ) installed on the Device, this may be later used
to produce duplicate Smart City devices without authorisation.
Secondly, the Attacker wishes to force the smart city devices to
execute their own (potentially malicious) software instead of that
installed by O .

As stated previously, the Devices in the network may be in public
places that Att has physical access to. This physical access allows
Att to read the contents ofDs long term storage and RAM. However,
Att is not able to read from any secure hardware present on D such
as a secure element, TPM or HSM.

Communication betweenCH , M orO and D uses either wired or
wireless connections. Therefore Att has the ability to eavesdrop on
communications between these parties and send messages to any
of these parties. Wireless communications can be easily overheard
and created by an attacker so it is reasonable for Att to send and
overhear messages to D. Furthermore, in the wired setting it is also
reasonable for Att to hear and send messages as they have physical
access to the device and so could tap any communication cabling.

2.3 Protocol Requirements
Based on the model described in Section 2.1 we propose the follow-
ing requirements for a secure software provisioning scheme.

R1) Entity Authentication: All parties who receive or send
applications must be authenticated to prevent application
leakage and installing applications from unknown developers.

R2) Replay Resistance: Preventing message replays is re-
quired to prevent application leakage via overheard au-
thentication messages.

R3) Perfect Forward Secrecy: Leakage of a session key must
not allow attackers to access, deduce or compromise any
sessions keys used in future protocol runs.

R4) Transferred Software Integrity: Guarantees will be provided
that ensure the correct transfer of the application.

R5) Transferred Software Con�dentiality: The application
must only be transferred encrypted to prevent leakage.

R6) Secure Software Binding: Software must be securely
bound to the device it is installed on to ensure it cannot be
transferred to other devices.

R7) Compulsory Software Personalisation: The Device must
only execute software provisioned be the authorised O .

R8) Secure Masking Agreement: Both the Device and Op-
erator will contribute to securely establishing keys for
application masking.

R9) Secure Key Establishment: Generation and use of ses-
sion keys will ensure message and application con�denti-
ality.

R10) Single Operator: Devices must only accept software from
the Operator currently authorised to manage the Device.

R11) Operator Handover: It must be possible for the Operator
of the Device to change.

Requirements R1, R2, R4 and R5 are concerned with ensuring
software con�dentiality and that D will only accept legitimate
software. Requirement R1 ensures O only transfers software to



Provisioning Software with Hardware-Software Binding , ,

legitimate devices and that D only accepts software from the au-
thorised O . Similarly, Requirement R2 ensures applications cannot
be leaked to Att using captured messages between D and O . Re-
quirement R5 prevents unauthorised installation of the software
onto other Ds by ensuring it is protected when transferred to D.
Finally, Requirement R4 allows the Device to check the software
has not been tampered with in transit.

Requirements R2, R3 and R9 ensure the security of the soft-
ware provisioning protocol. As stated in Section 2.2, Att is able to
eavesdrop on communication between D and O . Requirement R2
ensures old versions of software cannot be reinstalled onto D and
previous authentications cannot be reused by Att by replaying old
messages. As a critical infrastructure component, D has a long
lifetime including software updates, Perfect Forward Secrecy of
software provisioning is required to ensure old keys do not leak
latest software versions (Requirement R3). Requirement R9 ensures
attackers are unable to predict the keys used for securing protocol
messages and transferred software.

Requirements R6 to R8 protect the software stored on D. Se-
curely binding the software to D (Requirement R6 ensures it cannot
be transplanted from D onto di�erent hardware. Similarly, Re-
quirement R7 ensures that each device will require software to be
specially loaded onto it, preventing unauthorised parties from in-
stalling software onto Devices. Requirement R8 requires the secret
key protecting the software on D be agreed upon by D and the
software provider.

D will have only one manager at a time, therefore only one
entity should be able to provide software to D at any one time
(Requirement R10). However, during the lifetime of D, the Operator
may change so it must be possible for control of D to change from
one O to another (Requirement R11).

3 MODELS FOR SOFTWARE PROVISIONING
We propose two models for provisioning software bound to Devices:
Device-centric application provisioning and Authority-centric ap-
plication provisioning. The di�erence between the two models is
which party is responsible for generating the masking-keys and
securely transferring the masked software to D.

Section 2.1 describes the entities in the scenario this paper con-
siders. However, from this point we merge the Manufacturer and
City Hall into one entity: the Authority (A). The Authority is equi-
valent to M and CH because A will have the same motivation and
responsibilities as the entities it replaces. For example, M is in-
terested in producing Devices that can be securely provided with
software; CH also wishes for D to securely receive software from
O . To allow D and O to communicate, they may be provided with
certi�cates or pre-installed keys by M or CH . Whether M or CH is
responsible for key/certi�cate provisioning may be determined by
practicality/e�ciency reasons or by regulations out of the scope of
this work. Abstracting these roles into A will allow for any possible
division of labour between M and CH to be allowed in the model
proposed.

A

O

D

Figure 1: Device-centric application provisioning only re-
quires connection between O and D, however this requires
prior trust between D and A and between A and the O .

3.1 Device-centric Software Provisioning
This model divides almost all of the e�ort of provisioning software
to Devices between D and O . In this Device-centric model, A facil-
itates software provisioning by providing certi�cates to the parties
but does not take an active part in the protocol. It is assumed that
both O and D can perform public-key cryptography to verify their
identities. This model also assumes that O and D trust A; they are
willing to communicate due to mutual trust in A. This setting is
modelled in Figure 1; prior trust is shown with a dashed line and
software transfer with a solid arrow.

In the Device-centric model,O will need a software provisioning
certi�cate fromA. This will be a public key, and an expiry time value
signed by A. The expiry time value may be a start or �nish time
for the certi�cate depending on whether an O is always authorised
for �xed period of time or for varying time periods.

For O to load SW onto D it will begin the protocol by contacting
D. At the start of the protocol,O and D will perform a fresh mutual
authentication. D then checks the certi�cate provided by O to
ensure they are currently authorised to provide software to D.
Next,O and D establish a session key for the protocol run to ensure
message con�dentiality. Once a session key has been established, a
masking key is established, O then masks SW and transfers it to D.

3.2 Authority-centric Software Provisioning
Alternatively to the Device-centric model in Section 3.1 is the Au-
thority-centric software provisioning model. In this model, O is
prevented from directly communicating with D and instead trans-
fers the application to D via A. This model addresses the possibility
that O is trusted to provide software to D but is not permitted to
directly modify its software. This may be necessitated by regula-
tion preventing City Hall from granting complete control to O or
simply to allow easier auditing of Devices. The Authority-centric
approach comprises two main use-cases; the “Application-Relay”
and “Application-Broadcast” models.

The �rst model is the “Application-Relay” model shown in Fig-
ure 2. This model is similar to the Device-centric model however it
involvesO transferring the SW to D viaA instead of directly. In this
use case one D is provided with a software update or installation
fromO . Like in the previous model,O will establish communication



, , Robert P. Lee, Konstantinos Markantonakis, Raja Naeem Akram

A

O

D

Figure 2: The Application-Relay model allows an Authority
to monitor application provisioning from O to D.

with A, the parties will authenticate, establish a session key and the
application will be transferred. Next, A and D will communicate,
�rst authenticating themselves then establishing keys for commu-
nication and masking. Finally, A will mask the application before
transferring it to D.

The second model is the “Application-Broadcast” model depicted
in Figure 3. This use case is an extension on the “Application-Relay”
model and considers a set of identical Devices, D1...n , managed by
O . WhenO wishes to install or update software on the Devices then
they establish communication with A and transfer the software to
them as in the previous model. However, once A has received the
software, it establishes communication with all of the Devices and
transfers it to them. In practice, this setting could apply when a
smart city contains a number of the same model of tra�c lights or
a di�erent smart city device. O may need to update the software on
the Devices to update the communications protocol to a di�erent
cipher or to expand the data being sent fromD toO . In theA-centric
model, software transfers must be performed viaA, however if many
devices require the same software update it would be more e�cient
to allow A to receive the software once and then update the devices.
Once A has received the application they establish sessions and
masking keys with each of D1...n , masks the application for each
Device and transfers each version to D1...n .

An advantage of the manufacturer-centric model is that it is
compatible with less powerful devices. Low-end devices have less
computational power, sources of randomness and sometimes bat-
tery life than a server ran by A that is better equipped to generate
strong masking keys.

One argument against the Authority-centric models proposed is
that they both require O to transfer the unmasked application to A.
Initially, it may seem as if this requires an unreasonable amount of
trust in the Authority. However, as A is responsible for producing
the keys used by D and owns the devices so also has physical access
to them it is always in a position to extract the application. If A
would always be able to access the unmasked application via D
then it requires no more trust to be placed in A to transfer the
application to D via them than to use Authority-centric software
provisioning at all.

A

O

D

D

D

D

D

Figure 3: Application-Broadcast model considers the situ-
ation in which O is loading a large number of Devices with
a single application.

4 RELATEDWORK
This section describes previous work in the areas of securely binding
hardware and software (Section 4.1). Later, this section describes
two signi�cant industry approaches in software provisioning: MUL-
TOS (Section 4.2) and GlobalPlatform (Section 4.3).

4.1 Binding Hardware and Software
Binding hardware and software applies to various problems includ-
ing: Digital Rights Management, preventing product counterfeiting
and preventing unauthorised �rmware modi�cation [7, 8]. Hard-
ware/Software bindings can either be created bi-directionally or
uni-directionally. Krasinski and Rosner and Atallah et al. consider
binding hardware and software uni-directionally as ensuring a piece
of software requires a particular hardware device to execute [2, 7].
Alternatively, is the bi-directional approach taken by Lee et al. who
describe binding hardware and software as creating a bond that
ensures that both require the other for execution [8].

Due to the di�erent bonds formed, the binding schemes described
by Krasinski and Rosner, Atallah et al., and Lee et al. approach the
problem in di�erent ways. All three schemes make use of a device
speci�c item to bind software and hardware, however the use and
source of the items di�er. Krasinski and Rosner use a device speci�c
method for generating a key that is checked whenever the copy
protection software they are binding executes, however they are
not clear how the key is used [7]. Atallah et al. use a Physically
Unclonable Function to provide response data to bind an instanti-
ation of RSA to a particular hardware device that ensures it is being
executed on the intended hardware [2]. Both of the uni-directional
schemes are limited to checking the software has not been trans-
planted to a di�erent device, however the Lee et al. scheme also
ensures the hardware instance only executes software bound to it.
Lee et al. bind the hardware and software at an instruction level that
ensures that neither the hardware or application can be changed
[8].

Due to Requirement R6, a solution is required to prevent software
being transferred from one D to another by Att . Furthermore,
Requirement R7 states that D must only execute software that



Provisioning Software with Hardware-Software Binding , ,

has been provisioned to it by the authorised O . Therefore, the
binding scheme that provides the level of security required is that
of Lee et al. However, their proposed scheme only o�ers secure
binding between hardware and software and has no mechanism
for deploying the scheme in the real world. In their paper, Lee et al.
list updates as future work and assume that installation takes place
in a secure environment [8]. Therefore, their proposal requires an
extension before it can be applied to the problem considered in this
work.

4.2 MULTOS
MULTOS is an operating system for multi application devices de-
veloped and standardised by the MULTOS Consortium. Historic-
ally, it has been used in smart cards for payment, ID, passports and
transport ticketing [9]. MULTOS does not provide protection for
installed applications, however the speci�cation requires that de-
velopment of MULTOS devices be security tested to at least EAL4+
Common Criteria or C.A.S.T. standard [11].

The security of MULTOS is primarily constructed using pub-
lic key cryptography to provide secure communication channels
between Devices, Issuers and Application Providers. A mechan-
ism for securely provisioning software and �rmware updates to
devices is included in the MULTOS speci�cation. To install or up-
date an application on a MULTOS device an application provider
must work with the device Issuer to produce an Application Load
Unit (ALU) and an Application Load Certi�cate (ALC). The ALU
is a container object comprising the application, any application
personalisation data that is needed and a hash of the application
signed by the application provider. ALUs can be either public or
con�dential depending on the security required, con�dential ALUs
are protected using the public key installed during the enablement
of the MULTOS device [10]. The ALC is an authorisation certi�cate
generated by the device issuer containing the public key of the
Application Provider and the application header containing the ap-
plication ID, hash, and storage requirements. Before an application
can be installed on a device, the installation must be authorised
with an ALC.

MULTOS software provisioning considers a similar problem to
that described in this paper, however the solution does not address
several points of the problem we are interested in solving. Firstly,
MULTOS does not provide any solution to the problem of how to
protect applications installed on a MULTOS device. Instead, the
MULTOS speci�cation requires that installed software is protected
on the device but does not de�ne how it is to be protected. Therefore,
it does not meet with Requirements R6 and R7.

Secondly, it does not �t with either of the two models proposed
in Section 3 as it considers a model that is a combination of the
two proposed in this work. MULTOS software provisioning is most
similar to the Authority-centric model, however the issuer is not
aware of the application being installed on the device. In produ-
cing the ALC, the issuer approves installation of an application
matching the provided application header, but the actual applica-
tion is unknown. Mass updating of all managed Devices (Figure 3)
is not possible in MULTOS; each device must be contacted by the
application provider separately as no broadcast model is supported.

4.3 Global Platform
GlobalPlatform is a smart card speci�cation concerned with allow-
ing smart cards to run applications from multiple di�erent providers
in a secure manner. The standard has a very wide scope and covers
system, card and security architectures, life cycle models, card and
application management, and secure communications. Both the
secure provisioning of applications and how to protect them in
storage are included in the standard so GlobalPlatform [1] may
solve some of the problems considered in this work.

In GlobalPlatform, applications are protected using the GlobalPlatform
Runtime Environment. The Runtime Environment provides an API
for applications, secure storage and secure execution space for
applications that separates each applications code and data from
other applications. Finally, the Runtime Environment provides
communication between the card and o�-card entities [12].

GlobalPlatform provides a strong mechanism for secure applica-
tion installation, management and control via Security Domains.
Security Domains are on-card representatives of the Card Issuer
and the Application Providers and provide secure services such as
key storage, encryption, decryption and signing/verifying digital
signatures. Each GlobalPlatform device contains at least one Se-
curity Domain: the Issuer Security Domain. The Issuer Security
Domain can be responsible for all the security critical tasks listed
above or it can allow Application Providers their own on-device
space by authorising Application Provider Security Domains to
perform the listed tasks [1].

Security Domains allow application installation by verifying the
Data Authentication Patterns (DAP) that are provided in the Load
File Data Blocks used to transfer applications to GlobalPlatform
devices. If a Security Domain has the relevant permissions it is
able to accept applications that are accompanied by a DAP using a
shared symmetric or asymmetric key from the Application Provider.
Security Domains can be locked to prevent their use and their
permissions can be limited to ensure the Issuer retains overall
control of the device [1].

With the correct con�guration a GlobalPlatform based solution
could meet with almost all of the requirements described in Sec-
tion 2.3 and �t with the models in Section 3. The only requirements
that native GlobalPlatform does not meet are Requirements R6
and R7. Although as GlobalPlatform is hardware agnostic a hard-
ware using the system described in Section 4.1 could allow the
solution to meet all requirements. The hybrid provisioning re-
quired with hardware/software binding could be implemented us-
ing a custom protocol to include masking key establishment as
GlobalPlatform permits custom protocols.

However, while GlobalPlatform could be combined with a hard-
ware/software binding scheme to address the problem considered
in this work, any solution based on GlobalPlatform would almost
certainly be not optimal. GlobalPlatform is a large, complicated
speci�cation designed to apply to many di�erent scenarios and
using it in solving the problem described would introduce unneces-
sary complication to the system. A bespoke solution would o�er
more simplicity and e�ciency than using a large standard such as
GlobalPlatform for a small amount of the functionality o�ered.



, , Robert P. Lee, Konstantinos Markantonakis, Raja Naeem Akram

Table 1: Protocol Notation

nx A nonce with id x .
дx A Di�e-Hellman key share.
Enck (m) The encryption of the message m using the

key k .
O-cert The O-Cert of the Device Operator.
skX The signing key of X .
Sigk (mx ) The hash-based signature of a message x

produced using the key k .
H(m) The hash digest of a messagem.
Mk (App) The software App masked using a key k .
MACk (m) A Message Authentication Code calculated

for a messagem using a key k .

5 PROPOSED SOLUTION
As described in Section 4, no solution exists to solving the problem
of provisioning software to devices with hardware/software binding.
This section describes a new solution that draws on previous work
by Lee et al.

5.1 Overview of Solution
The scheme by Lee et al. is the only existing scheme providing
hardware/software binding compliant with Requirements R6 and R7.
Therefore it will be used to protect software installed on the Devices.

As stated in Section 4.3, a new protocol is required to provi-
sion software to the Devices in the network. A solution using a
bespoke protocol will be more e�cient than one based on a niche
con�guration of an existing standard and will also be easier to
analyse. However, the di�erent models of software provisioning
described in Section 3 will require separate protocols due to the
signi�cantly di�ering roles of A and O . The new protocols for the
di�erent software provisioning models are described in Section 5.2
and Section 5.3.

The notation used to denote the proposed protocols is listed in
Table 1.

5.2 Device-centric Software Provisioning
This section describes the protocol for provisioning software in
the Device-centric model presented in Section 3.1. The developed
protocol is presented in Table 2.

The D-centric protocol is a three message protocol that estab-
lishes freshness and authentication byO and D signing freshly gen-
erated nonces. This allows the protocol to meet Requirements R1
and R2.

Keys for the session and masking are established using Di�e-
Hellman key agreement. These are carried out by the exchanging of
дa , дb , дc , дd ; allowing the mutual agreement upon the session and
masking keys: дab and дcd . This generation and use of session and
masking keys for each protocol run ensures the scheme satis�es
Requirements R3, R5, R8 and R9.

Requirements R10 and R11 dictate that only one, authorised O
may install software on D at a time and that it must be possible for
oneO to cease provisioning SW and another to start. In the Device-
centric protocol this is achieved using the O-cert. The O-cert is a

Table 2: Device-centric Software Provisioning

Device-centric Protocol
1. O→D O ‖D‖n1‖дa ‖O-cert‖SigskO (m1)

2. D→O D‖O ‖n1‖n2‖дb ‖Encдab (д
c )‖certD ‖SigskD (m2)

3. O→D O ‖D‖n2‖Encдab (Mдcd (SW )‖H(SW )‖дd )

‖SigskO (m3)

certi�cate that is provided to O by A and includes pkO signed by
A’s public key as well as a certi�cate expiry time and information
describing the devices O is permitted to manage. Certi�cate expiry
times and only granting one valid O-cert at a time will ensure the
protocol meets Requirements R10 and R11. Alternatively, theO-cert
could contain a start time and always have a �xed lifetime, however
speci�c expiry times allow certi�cate expiry to more easily align
with trial periods/Operator contracts. The certi�cate of D in the
Device-centric protocol is a normal certi�cate containing the public
key of D signed by A.

Finally, the inclusion of the application signature ensures that
Requirement R4 is met by the protocol.

5.3 Authority-centric Software Provisioning
This section will describe the protocols for provisioning software
according to the Authority-centric software provisioning model
in Section 3.2. The main di�erence between the Authority-centric
and Device-centric protocols is that the former requires a two stage
process as the application must be transferred to D via A instead of
directly from O to D. Therefore, the Authority-centric approach is
longer and less e�cient than the Device-centric protocol proposed
in Section 5.2. The Authority-centric protocols proposed (Table 3)
is a two stage protocol consisting of transferring the application
from O to A (messages 1-3) and then from A to D (messages 4-
6). This allows for Application Relay as depicted in Figure 2 and
Application-Broadcast as depicted in Figure 3. The Application-
Broadcast would require running the latter half of the protocol
multiple times, once for each device.

The second half of the protocol in the A-centric model can be
approached in two ways depending on the relationship between
A and D: with public key cryptography to build trust or using pre-
existing trust. In D-centric software provisioning O makes contact
with D to install software. It is assumed that both parties are com-
municating based on their mutual trust in the Authority (A) rather
than an existing trust relationship. By contrast in the A-centric
model it is plausible that the existing trust relationship between D
and A may include having a pre-shared symmetric key. In such a
case D may not be required to do as many public key cryptographic
operations which is advantageous in resource-constrained settings.
Therefore a second A-centric protocol is proposed here that uses a
pre-shared key to replace some signatures with MACs (Table 4).

Requirements R1 to R3, R5, R8 and R9 are all achieved in the
Authority-centric protocols in the same manner as described in Sec-
tion 5.2 for the Device-centric protocol. However, Requirements R10
and R11 do not require a solution in the Authority-centric model
as A is able to trivially ensure by only accepting software from the
currently authorised O and no others. Finally, Requirement R4 is



Provisioning Software with Hardware-Software Binding , ,

Table 3: Authority-centric Software Provisioning (with
Asymmetric Cryptography capable Devices)

Authority-centric Provisioning
1. O→A O ‖A‖n1‖дa ‖O-cert‖SigskO (m1)
2. A→O A‖O ‖n1‖n2‖дb ‖certA‖SigskA (m2)
3. O→A O ‖A‖n2‖Encдab (SW ‖H(SW ))‖SigskO (m3)

4. A→D A‖D‖n3‖дc ‖SigskA (m4)

5. D→A D‖A‖n3‖n4‖дd ‖Encдcd (д
e )‖certD ‖SigskD (m5)

6. A→D A‖D‖n4‖Encдcd (Mдef (SW )‖H(SW )‖дf )

‖SigskA (m6)

Table 4: Authority-centric Software Provisioning (with Pre-
Shared Keys

Authority-centric Provisioning with Pre-Shared Keys
1. O→A O ‖A‖n1‖дa ‖O-cert‖SigskO (m1)
2. A→O A‖O ‖n1‖n2‖дb ‖certA‖SigskA (m2)
3. O→A O ‖A‖n2‖Encдab (SW ‖H(SW ))‖SigskO (m3)

4. A→D A‖D‖n3‖дc ‖MACPSK (m4)
5. D→A D‖A‖n3‖n4‖дd ‖Encдcd (д

e )‖MACPSK (m5)

6. A→D A‖D‖n4‖Encдcd (Mдef (SW )‖H(SW )‖дf )

‖MACPSK (m6)

met using digital signatures in the Public-Key scheme and by using
a MAC in the Pre-Shared Key protocol.

6 ANALYSIS
Further to the analyses of the proposed protocols in Sections 5.2
and 5.3 a formal, mechanical analysis of the protocols has been
carried out using Tamarin Prover [13]. This section describes the
protocol models, the analysis carried out and the security results
proven.

6.1 Description of Protocol Models
The protocol analysis was carried out using three models: one for
each protocol proposed. The models represent the protocols as
state machines that are progressed through as messages are sent
and received by the Device, Authority and Operator.

A digram of the state machine for analysing the D-centric pro-
tocol is included in Figure 4. This model contains two types of
transitions between the rules representing the states of the pro-
tocol: messages and entity-states. Both the correct message and
entity-state are required before a rule can be executed. The mes-
sages are the outputs of the D1, O1 and D2 rules that are sent
between the Operator and Device that are also sent to the attacker.

The entity-states are facts that store the information that a partic-
ular entity in the protocol run is aware of and needs to retain. These
states are created as private facts that the attacker is not shown and
are used to retain information such as Di�e-Hellman exponents.
This state machine representation of the protocol allows a legitim-
ate execution path to be represented with the rules evaluated in
the order: O1, D1, O2, D2. It also limits attacker behaviour to only
realistic attacks such as trying to forge a session with a legitimate

O1

O2

D1

D2

m1

m2

m3

s O1

s D1

Figure 4: Modelling Device-centric application provisioning
requires a statemachine of four stateswith �ve connections.

A for part or all of a protocol run. The attacker can also try to
break the scheme security by eavesdropping a legitimate protocol
run. This is reasonable as it ensures the attacker cannot start the
protocol by forgingm2; a legitimate Operator would notice thatm1
had not been sent.

Similar state models for the Authority-centric protocols were
developed to produce Tamarin models for the proposed protocols,
however they are omitted for brevity.

6.2 Scope of Mechanical Analysis
The Tamarin models prove the communication requirements of the
protocol. Therefore, rules and lemmas were included in the model
that tested Requirements R1 to R5 and R8 to R11. Requirements R6
and R7 were not included in the model and it was assumed that
installed software is securely stored.

The method for the analysis was to �rst prove that the protocols
satisfy Requirements R1 and R2. Intuitively, some requirements
(such as Requirements R8 and R9) rely on fresh authentication.
Therefore the Tamarin model �rst proves Requirements R1 and R2
and then uses those to verify that the other requirements tested
have been met.

To limit the complexity of the model it is assumed that an entity
in the model is either a Authority, Device or an Operator and they
do not switch roles. However, a result of this is that di�erent
messages in the protocol will only be created by certain entities
such as message 5 is only ever output by a Device.

6.3 Modelling Assumptions Required
To model the proposed protocols several assumptions were made.
Some assumptions were required to allow Tamarin Prover to reason
about the protocols. However, most assumptions were chosen
to limit model complexity without compromising its value. An
example is preventing entities from switching roles. This is not
unreasonable because a tra�c light in a city is not going to change
into a di�erent device or become an Authority or Operator during
its lifetime. This assumption did not weaken the security proven
by the model but did simplify the protocol veri�cation.



, , Robert P. Lee, Konstantinos Markantonakis, Raja Naeem Akram

Other assumptions were made to prevent Di�e-Hellman key-
exchange exponent edge cases that could theoretically lead to at-
tacks. Examples of these are assuming all parties will only generate
safe Di�e-Hellman shares. This includes excluding all shares or
share combinations that are equal to the generator as these would al-
low for a trivial break by the attacker. The chance of these scenarios
is negligible so preventing them by assumption is reasonable and al-
lows the model to prove the security properties without weakening
the result.

Another example of a simplifying assumption is to assume that
all generated nonces are unique. In practice, an implementation
would check that received nonces are fresh so this assumption is
reasonable as it removes the need to check nonce freshness from
the model.

6.4 Results of Analysis
When verifying the protocols met Requirement R10, the model
showed that implementations of this protocol will need to avoid
problems with O-Certs expiring between messages. Sending the
O-Cert in the initial message makes sense in terms of practicality:
D or A need not continue to communicate with O if they do not
have a valid O-Cert. However, the Tamarin model highlighted the
possibility of a time of check, time of attack vulnerability. Prevent-
ing this vulnerability simply requires implementations to check the
O-Cert is still valid at install time and has not expired since receipt.

After including extra O-Cert validity check the protocol mod-
els met all security requirements. Therefore, when implemented
correctly, the three protocols described in Section 5 will meet the
requirements described in Section 2.3.

One limitation of the analysis carried out is that it does not
consider the consequences of any compromised devices. The cur-
rent model assumes the parties are honest but communicating over
a channel controlled by the attacker. This allows the model to
cover any combination of honest cases but it does not consider if
individual devices are compromised. The security of the key estab-
lishment has been proven in the context of the attacker being able
to break some session keys. However, a malicious device can al-
ways leak the current key or even the application being transferred
so some requirements will not be able to be met by the current
scheme.

A further limitation to the analysis is that it is only interested
in full breaks or application leaks. If one version of a piece of
software is leaked to the attacker, this might be of use to an attacker
in guessing parts of the next version of the code. However, the
existing model has only considered proving the security of the
protocol against total software leakage and does not model partial
information leakage.

7 IMPLEMENTATION
This section describes the implementation developed to demon-
strate and evaluate the protocols proposed. All three protocols
were implemented and execution times for each entity involved
were recorded.

7.1 Test Setup
The protocols were implemented using a Raspberry Pi 3 Model B
as the Device and a laptop in place of the Operator and Authority.
The laptop is a 2013 Macbook Pro with a 2.5 GHz Intel Core i5
Processor and 8GB DDR3 RAM. The Raspberry Pi 3 has a 1.2GHz
Quad-Core ARM Cortex-A53 Processor, 1GB LPDDR2 RAM and
802.11 wireless LAN connectivity. The communication between
Raspberry Pi and laptop was carried by a normal WiFi network.
For the Authority-centric protocols, the laptop executed the code
for the Authority and Operator and the two communicated using
the loopback network interface.

The implementations of the protocols were written in Python
and the cryptographic functions were provided by the library cryp-
tography.io [14]. Several standardised cryptographic algorithms
were used including: AES-128 in CBC mode, SHA-256, ECDSA and
ECDHE using the SECP384r1 curve, PKCS7 padding. Encryption
and signing algorithms were chosen based on recommendations
made by various organisations compiled by Damien Giry [5].

7.2 Results
The protocols were ran multiple times to measure the execution
time of each entity in each protocol. Each protocol was executed ten
times and the results presented are the mean average and sample
standard deviation values for each set of protocol timings, the
results are provided in Table 5. The number of sample execution
times was low, however the low sample standard deviation values
suggest that the timings provided are indicative of the performance
of the protocols.

The results show the execution time of each protocol is very
low despite each involving the veri�cation of MACs and/or digital
signatures. By comparing the performance results for the Device-
centric protocol to those of the Authority-centric protocols it seems
that using the Raspberry Pi caused a delay. This is indicated by
the signi�cantly lower execution times of the Operator when it
only communicated with the Authority. However, it is not clear
as to if the delay is caused by a lack of computing power on the
Raspberry Pi or if the delay was due to the latency of the wireless
communications between systems.

One unexpected result is that the A-centric protocol using pre-
shared keys appears to be slightly slower than the more public
key reliant version. This was not expected as the pre-shared keys
protocol was proposed to be a more e�cient option. Messages m4
and m6 were the same length in both although m5 was much larger
in the public key reliant version. Therefore, the slower execution
cannot have been caused by the time for communication. It may
be possible that the cryptography.io library has an e�cient ECDSA
algorithm that allows it to execute more quickly than the HMAC
algorithm. However, this seems unlikely so further optimisation
and study is needed to explain this result.

8 CONCLUSION
In this paper we have presented a new problem setting for provision-
ing software to devices in smart cities. The new scenario applies to
the real world and includes the important issue of protecting the
software that is being installed on the devices.



Provisioning Software with Hardware-Software Binding , ,

Table 5: Performance Results

Protocol Execution Times (in seconds)
Device Operator Authority

µ σ µ σ µ σ
D-centric 0.187 0.00955 0.183 0.0103 - -
A-centric 0.115 0.0102 0.0197 0.00104 0.118 0.00623
A-centric
(with PSK)

0.135 0.0142 0.0189 0.00106 0.153 0.0121

Two models for distributing software to devices in a smart city
are described and protocols that solve the problems they present
have been suggested. The protocols have been proven to be secure
using a formal analysis tool that considers large numbers of possible
combinations of messages when looking for �aws.

The future work in this area would be to the community would
be to expand the analysis to check the security of the scheme
when some devices are compromised. The attacker described in
Section 2.2 has physical access to the Devices so could potentially
mount an attack to gain control over some Devices. Alternatively,
another area for future work would be examining the performance
cost of the proposed protocols by implementing them using various
microcontrollers. This would provide cost measurements in terms
of time and energy required to use the proposed scheme that would
allow for easier comparison with other protocols.

REFERENCES
[1] 2015. Global Platform Card Speci�cation. Version 2.3. GlobalPlatform.
[2] Mikhail J. Atallah, Eric D. Bryant, John T. Korb, and John R. Rice. 2008. Binding

Software to Speci�c Native Hardware in a VM Environment: The PUF Challenge
and Opportunity. In Proceedings of the 1st ACM Workshop on Virtual Machine
Security (VMSec ’08). ACM, New York, NY, USA, 45–48. DOI:http://dx.doi.org/
10.1145/1456482.1456490

[3] Department for Business Innovation and Skills. 2013. Smart Cities: Background
Paper. Technical Report. HMG.

[4] European Commission. 2015. Smart Cities. (2015). https://ec.europa.eu/
digital-single-market/en/smart-cities

[5] Damien Giry. 2017. Keylength - Cryptographic Key Length Recommendation.
(2017). https://www.keylength.com/en/

[6] IEEE. 2017. Readings on Smart Cities. (2017). www.smartcities.ieee.org/
articles-publications/ieee-xplore-readings-on-smart-cities.html

[7] R. Krasinski and M. Rosner. 2003. Method for binding a software data domain to
speci�c hardware. (May 2003).

[8] Robert P. Lee, Konstantinos Markantonakis, and Raja Naeem Akram. 2016. Bind-
ing Hardware and Software to Prevent Firmware Modi�cation and Device Coun-
terfeiting. In Proceedings of the 2nd ACM Workshop on Cyber-Physical System
Security, CPSS 2016, Xi’an, China, May 30, 2016, Jianying Zhou and Javier Lopez
(Eds.). ACM. DOI:http://dx.doi.org/10.1145/2899015.2899029

[9] MAOSCO Ltd. 2014. Securing Smart Meters with MULTOS - Technical Over-
view. (2014). https://www.multos.com/uploads/MULTOS_in_Smart_Meters_
Technical_Overview.pdf

[10] MAOSCO Ltd. 2015. Guide to Generating Application Load Units. (2015). https:
//www.multos.com/uploads/GALU.pdf

[11] MAOSCO Ltd. 2017. MULTOS Explained. (2017). http://www.multos.com/
multos_explained.htm

[12] Konstantinos Markantonakis and Keith Mayes. 2003. An overview of the
GlobalPlatform smart card speci�cation. Information Security Technical Report 8,
1 (2003), 17 – 29. DOI:http://dx.doi.org/10.1016/S1363-4127(03)00103-1

[13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. Springer Ber-
lin Heidelberg, Berlin, Heidelberg, 696–701. DOI:http://dx.doi.org/10.1007/
978-3-642-39799-8_48

[14] Python Cryptographic Authority. 2017. cryptography.io. (2017). https:
//cryptography.io/

http://dx.doi.org/10.1145/1456482.1456490
http://dx.doi.org/10.1145/1456482.1456490
https://ec.europa.eu/digital-single-market/en/smart-cities
https://ec.europa.eu/digital-single-market/en/smart-cities
https://www.keylength.com/en/
www.smartcities.ieee.org/articles-publications/ieee-xplore-readings-on-smart-cities.html
www.smartcities.ieee.org/articles-publications/ieee-xplore-readings-on-smart-cities.html
http://dx.doi.org/10.1145/2899015.2899029
https://www.multos.com/uploads/MULTOS_in_Smart_Meters_Technical_Overview.pdf
https://www.multos.com/uploads/MULTOS_in_Smart_Meters_Technical_Overview.pdf
https://www.multos.com/uploads/GALU.pdf
https://www.multos.com/uploads/GALU.pdf
http://www.multos.com/multos_explained.htm
http://www.multos.com/multos_explained.htm
http://dx.doi.org/10.1016/S1363-4127(03)00103-1
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48
https://cryptography.io/
https://cryptography.io/

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper Structure

	2 Problem Description
	2.1 Entities and Motivations
	2.2 Attacker Model
	2.3 Protocol Requirements

	3 Models for Software Provisioning
	3.1 Device-centric Software Provisioning
	3.2 Authority-centric Software Provisioning

	4 Related Work
	4.1 Binding Hardware and Software
	4.2 MULTOS
	4.3 Global Platform

	5 Proposed Solution
	5.1 Overview of Solution
	5.2 Device-centric Software Provisioning
	5.3 Authority-centric Software Provisioning

	6 Analysis
	6.1 Description of Protocol Models
	6.2 Scope of Mechanical Analysis
	6.3 Modelling Assumptions Required
	6.4 Results of Analysis

	7 Implementation
	7.1 Test Setup
	7.2 Results

	8 Conclusion
	References

