
Space Complexity of Fault-Tolerant Register Emulations

Gregory Chockler∗1 and Alexander Spiegelman†2

1Department of Computer Science, Royal Holloway, University of London, Egham, United
Kingdom, TW20 0EX, Gregory.Chockler@rhul.ac.uk

2Viterbi Department of Electrical Engineering, Technion, Haifa, Israel,
sashas@tx.technion.ac.il

Abstract

Driven by the rising popularity of cloud storage, the costs associated with implementing
reliable storage services from a collection of fault-prone servers have recently become an actively
studied question. The well-known ABD result shows that an f -tolerant register can be emulated
using a collection of 2f + 1 fault-prone servers each storing a single read-modify-write object,
which is known to be optimal. In this paper we generalize this bound: we investigate the
inherent space complexity of emulating reliable multi-writer registers as a function of the type
of the base objects exposed by the underlying servers, the number of writers to the emulated
register, the number of available servers, and the failure threshold.

We establish a sharp separation between registers, and both max-registers (the base object
type assumed by ABD) and CAS in terms of the resources (i.e., the number of base objects of
the respective types) required to support the emulation; we show that no such separation exists
between max-registers and CAS. Our main technical contribution is lower and upper bounds on
the resources required in case the underlying base objects are fault-prone read/write registers.
We show that the number of required registers is directly proportional to the number of writers
and inversely proportional to the number of servers.

1 Introduction

Reliable storage emulations seek to construct fault-tolerant shared objects, such as read/write
registers, using a collection of base objects hosted on failure-prone servers. Such emulations are
core enablers for many modern storage services and applications, including cloud-based online data
stores [15, 34, 33, 26, 32] and Storage-as-a-Service offerings [35, 38, 17, 40].

Most existing storage emulation algorithms are constructed from storage services capable of
supporting custom-built read-modify-write (RMW) primitives [5, 19, 19, 23, 16, 22, 3, 37, 31], and
perhaps the most famous one is ABD [5]. This algorithm emulates an f -tolerant atomic wait-free
register, accessed by an unbounded number of processes (readers and writers), on top of 2f + 1
servers, each of which stores a single RMW object. Since f -tolerant register emulation is impossible
with less than 2f + 1 servers [8, 30], the ABD algorithm’s space complexity is optimal.

∗Gregory Chockler is supported in part by Royal Society International Exchanges and Coleman-Cohen Exchange
Programme Grants.
†Alexander Spiegelman is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/131177098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table 1: The number of base objects used by f -tolerant register emulations with k writers and
n > 2f servers.

Base object
Lower bound Upper bound

(WS-Safe, obstruction-free) (WS-Regular, wait-free)

max-register 2f + 1 2f + 1
CAS 2f + 1 2f + 1

read/write register kf +
⌈

k
n−(f+1)

f

⌉
(f + 1) kf +

⌈
k⌊

n−(f+1)
f

⌋⌉(f + 1)

However, support for atomic RMW is not always available: the operations exposed by network-
attached disks are typically limited to basic reads and writes, and the interfaces exposed by
cloud storage services sometimes augment this with simple conditional update primitives simi-
lar to Compare-and-Swap (CAS). A natural question that arises is therefore how the ABD results
generalize when only weaker primitives (e.g., read/write registers) are available. More specifically,
we are interested whether reliable storage emulations are possible with weaker primitives, and if
so, what their space complexity is, and in particular, whether it depends on the number of writers
and the number of servers.

To answer these questions, we consider a collection of n fault-prone servers, each of which
stores base objects supporting the given primitives. The failure granularity is servers, meaning
that a server crash causes all base objects it stores to crash as well. We study three primitives:
read/write register, max-register [4], and CAS. For each primitive, we are interested in the number
of base objects required to emulate an f -tolerant register for k writers using n servers.

Table 1 summarizes our results. To strengthen our lower bounds, we prove them under weak
liveness and safety guarantees, namely, obstruction freedom and write-sequential safety (WS-Safety).
The latter is a weak generalization of Lamport’s notion of safety [29] to multi-writer registers,
which we define in Section 2. Since atomicity usually requires readers to write, which may induce
a dependency on the number of readers, we consider regularity for our upper bound; we define
in Section 2 write-sequential regularity (WS-Regularity), which is a weaker form of multi-writer
regularity defined in [37]. The lower bound of n > 2f of servers required for f -tolerant register
emulations [8, 30] can be easily generalized for WS-Safe obstruction-free emulations. Therefore, we
assume that n > 2f throughout the paper.

Interestingly, even though both read/write registers and max-registers have the lowest consensus
number of 1 in Herlihy’s hierarchy [24], we show that they are clearly separated with respect to
their power to support a reliable multi-writer register in a space-efficient fashion. On the other
hand, no such separation exists between CAS, which has an infinite consensus number, and max-
register. As an aside, we note that this separation has implications for the standard shared memory
model (without base object failures); for example, it implies that a k-writer max-register cannot be
implemented from less than k read/write registers (proven in Theorem 2) closing the gap between
the known lower and upper bounds of k − 1 [28] and k [4] respectively.

Results. Despite the fact that the original ABD emulation [5] assumes a general RMW base
object on every server, we observe that the code executed by each server in the multi-writer ABD
protocol [23, 37, 31] can be encapsulated into the write-max (for handling update messages) and

2

read-max (for handling read messages) primitives of max-register. Therefore, the upper bound of
n = 2f + 1 applies to max-registers as well. In Appendix A we show how to emulate a max-register
from a single CAS in a wait-free manner. Thus, the upper bound for max-register also applies to
CAS.

Our main technical contribution is a lower bound on the number of read/write registers required
to emulate an f -tolerant WS-Safe obstruction-free register for k clients using n servers. While the
ABD [5] space complexity does not depend on the number of writers or the number of servers,
we show in Section 3 (Theorem 1) that when servers support only read/write registers, the lower
bound increases linearly with the number of writers and decreases (up to a certain point) with the
number of available servers. In particular, our lower bound implies that at least kf+f+1 registers
are needed regardless of the number of available servers. We exploit asynchrony to construct a
write-sequential failure-free run in which each write completes while leaving f pending writes on
base registers, forcing the next write to use a different set of registers, and so on.

In Section 4, we present a new upper bound construction that closely matches our lower bound
(Theorem 6). Note that the two bounds are closely aligned, and in particular, coincide in the two
important cases of n = 2f + 1 and n ≥ kf + f + 1 where they are equal to kf + k(f + 1) and
kf + f + 1 respectively. An interesting open question is to close the remaining small gap.

Another open question is whether our lower bound is tight for stronger regularity definitions [37].
In the special case of n = 2f+1 servers and k writers, a matching upper bound of (2f+1)k registers
can be achieved by simply having each server implement a single k-writer max-register from k base
registers [4]. The question of the general case of n ≥ 2f + 1 remains open.

In the full paper [14], we prove the following three additional results implied by an extended
variant of our main lower bound construction: (1) a lower bound of k registers per server for
n = 2f+1 (Theorem 3); (2) a lower bound on the number of servers when the maximum number of
registers stored on each server is bounded by a known constant (Theorem 4); and (3) impossibility
of constructing fault-tolerant multi-writer register emulations adaptive to point contention [1, 7]
(Theorem 5).

Related work. The space complexity of fault-tolerant register emulations has been explored in
a number of prior works. Aguilera et al. [2] show that certain types of multi-writer registers cannot
be reliably emulated from a fixed number of fault-prone ones if the number of writers is not a priori
known. They however, do not provide precise bounds on the number of base registers as a function
of the number of writers and servers, and the failure threshold as we do in this paper. The space
complexity of reliable register emulations in terms of the amount of data stored on fault-prone
RMW servers was studied in [20, 13], and more recently in [39, 12, 11]. Since we are only interested
in the number of stored registers and not their sizes, these results are orthogonal to ours.

Basescu et al. [9] describe several fault-tolerant multi-writer register emulations from a collection
of fault-prone read/write data stores. Their algorithms incorporate a garbage-collection mechanism
that ensures that the storage cost is adaptive to the write concurrency, provided that the underlying
servers can be accessed in a synchronous fashion. Our results show that asynchrony has a profound
impact on storage consumption by exhibiting a sequential failure-free run where the number of
registers that need to be stored grows linearly with the number of writers.

The proof of our main result (see Lemma 1) further extends the adversarial framework of [39] to
exploit the notion of register covering (originally due to [10]) extended to fault-prone base registers
as in [2]. Covering arguments have been successfully applied to proving numerous space lower bound

3

results in the literature (see [6] for a survey) including the recent tight bounds for obstruction-free
consensus [21, 41, 18].

2 Preliminaries

2.1 Shared Objects

A shared object supports concurrent execution of operations performed by some set, C = {c1, c2, . . . },
of client processes. Each operation has an invocation and response. An object schedule is a se-
quence of the operation invocations and their responses. An invoked operation is complete in a
given schedule if the operation’s response is also present in the schedule, and pending otherwise.
For a schedule σ, ops(σ) denotes the set of all operations that were invoked in σ, and complete(σ)
(resp., pending(σ)) denotes the subset of ops(σ) consisting of all the complete (resp., pending)
operations. Also, for a set X of operations, we use σ|X to denote the subsequence of σ consisting
of all the invocation and responses of the operations in X.

An operation op precedes an operation op′ in a schedule σ, denoted op ≺σ op′, iff op′ is invoked
after op responds in σ. Operations op and op′ are concurrent in σ, if neither one precedes the
other. A schedule with no concurrent operations is sequential. Given a schedule σ, we use σ|i to
denote the subsequence of σ consisting of all the actions executed by the client ci. The schedule
is well-formed if σ|i is sequential for all i > 0. In the following, we will only consider well-formed
schedules.

The object’s sequential specification is a collection of the object’s sequential schedules in which
all operations are complete. For an object schedule σ, a linearization Lσ of σ is a sequential
schedule consisting of all operations in complete(σ) along with their responses and a subset of
pending(σ), each of which being assigned a matching response, so that Lσ satisfies both the σ’s
operation precedence relation (≺σ) and the object sequential specification.

Consistency conditions specify the shared object behaviour when accessed concurrently by the
clients. They are expressed as a set of schedules satisfying a desired property. A basic consistency
condition for the shared objects of any type is atomicity [25] defined formally as follows:

Definition 1 (Atomicity). A set of schedules C satisfies atomicity if for all schedules σ ∈ C, σ
has a linearization.

2.2 Object types

Registers. A read/write register object (or simply a register) supports two operations of the
form write(v), v ∈ V, and read() returning ack and v ∈ V respectively where V is the register value
domain. Its sequential specification consists of all sequential schedules in which every read returns
the value written by the last preceding write or an initial value v0 ∈ V if no such write exists.

A register is multi-writer (MW) (resp., multi-reader (MR)) if it can be written (resp., read) by
an unbounded number of clients. A k-writer register, or simply, k-register, is a register that can
be written by at most k > 0 distinct clients. A register is single-writer (SW) (resp., single-reader
(SR)) if only one process can write (resp., read) the register. For a register schedule σ, we write
writes(σ) (resp., reads(σ)) to denote the sets of all write (resp., read) operations invoked in σ. We
say that σ is write-sequential if no two writes in writes(σ) are concurrent.

Let C be a set of register schedules. The following weaker consistency conditions will be
considered for registers in addition to atomicity:

4

Definition 2 (Write-Sequential Regularity (WS-Regularity)). For all σ ∈ C, if σ is write-sequential,
then for each rd ∈ reads(σ) ∩ complete(σ) there is a linearization Lrd of σ|writes(σ) ∪ {rd}.

Definition 3 (Write-Sequential Safety (WS-Safety)). As WS-Regularity, but only required to hold
for complete reads that are not concurrent with any writes.

Max-registers. Given an ordered set of values V, a max-register [4] supports two operations:
write-max(v), v ∈ V, that returns ok, and read-max that returns v ∈ V. Its sequential specification
consists of all sequential schedules in which every read-max returns the highest value written by a
preceding write-max, or an initial value v0 ∈ V if no such write-max exists.

Compare-and-Swap (CAS) A CAS object supports a single operation C&S(v, v′), v, v′ ∈ V,
and returns v′′ ∈ V where V is a value domain. Its sequential specification consists of all sequential
schedules in which every C&S(v, v′) operation returns the current object value (which is initialized
to v0), and sets it to v′ if it equals v.

2.3 System Model

We consider an asynchronous fault-prone shared memory system [27] consisting of a set of shared
base objects B = {b1, b2, . . . }. The objects are accessed by a collection of clients in the set C =
{c1, c2, . . . }.

We consider a slight generalization of the model in [27] where the objects are mapped to a set
S = {s1, s2, . . . sn} of n servers via a function δ from B to S. For B ⊆ B, we will write δ(B) to
denote the image of B, i.e., δ(B) = {δ(b) : b ∈ B}. Conversely, for S ⊆ S, we will write δ−1(S) to
denote the pre-image of S, i.e., δ−1(S) = {b : δ(b) ∈ S}. Note that for all B ⊆ B, |δ(B)| ≤ |B|, and
conversely, for all S ⊆ S, |δ−1(S)| ≥ |S|. Both servers and clients can fail by crashing. A crash of
a server causes all objects mapped to that server to instantaneously crash (i.e.,, stop responding to
the client invocations)1.

Emulation algorithms. We study algorithms emulating a reliable k-register to a set of clients
from a collection of fault-prone atomic base objects. Clients interact with the emulated register
via high-level read and write operations. To distinguish the high-level emulated reads and writes
from low-level base object invocations, we refer to the former as read and write. We say that
high-level operations are invoked and return whereas low-level operations are triggered and respond.
A high-level operation consists of a series of trigger and respond actions on base objects, starting
with the operation’s invocation and ending with its return. Since base objects are crash-prone, we
assume that the clients can trigger several operations in a row without waiting for the previously
triggered operations to respond.

An emulation algorithm A defines the behaviour of clients as deterministic state machines where
state transitions are associated with actions, such as trigger/response of low-level operations. A
configuration is a mapping to states from system components, i.e., clients and base objects. An
initial configuration is one where all components are in their initial states.

1Note that the original faulty shared model of [27] can be derived from our model by choosing δ to be an injective
function.

5

Runs. A run of A is a (finite or infinite) sequence of alternating configurations and actions,
beginning with some initial configuration, such that configuration transitions occur according to
A. We use the notion of time t during a run r to refer to the configuration reached after the tth

action in r. A run fragment is a contiguous sub-sequence of a run. A run is write-only if it has no
invocations of the high-level read operations. We say that a base object, client, or server is faulty
in a run r if it crashes at some time in r, and correct, otherwise.

Fairness. A run is fair if (1) for every low-level operation triggered by a correct client on a correct
base object, there is eventually a matching response, and (2) every correct client gets infinitely many
opportunities to both trigger a low-level operation and execute the return actions.

2.4 Properties of Emulation Algorithms

Safety The emulation algorithm safety will be expressed in terms of the write-sequential consistency
conditions as given by Definitions 2 and 3. An emulation algorithm A satisfies a consistency
condition C if for all runs r of A, the subsequence of r consisting of the invocations and responses
of the high-level read and write operations is a schedule in C.
Liveness We consider the following liveness conditions that must be satisfied in fair runs of an em-
ulation algorithm. A wait-free object is one that guarantees that every high-level operation invoked
by a correct client eventually returns, regardless of the actions of other clients. An obstruction-free
object guarantees that every high-level operation invoked by a correct client that is not concurrent
to any other operation by a correct client eventually returns.
Fault-Tolerance The emulation algorithm is f -tolerant if it remains correct (in the sense of its
safety and liveness properties) as long as at most f servers crash for a fixed f > 0.
Complexity measures The resource consumption of an emulation algorithm A in a (finite) run
r is the number of base objects used by A in r. The resource complexity [27] of A is the maximum
resource consumption of A in all its runs.

3 Lower Bounds

We characterize the minimum resource complexity of the algorithms implementing an f -tolerant
obstruction-free WS-Safe k-register as a function of the number n of available servers. First, it
is easy to see that if n ≤ 2f , then no such algorithm can exist. This result is implied by an
extended statement of Lemma 1 (proven in the full paper [14]), and can also be shown directly by a
straightforward application of a partitioning argument as discussed in [30, 8]. For the case n > 2f ,
we prove the following main theorem:

Theorem 1. For all k > 0, f > 0, let A be an f -tolerant algorithm emulating an obstruction-free
WS-Safe k-register using a collection S of servers such that n ≥ 2f + 1. Then, A uses at least

kf +
⌈

kf
n−(f+1)

⌉
(f + 1) base registers (i.e., |δ−1(S)| ≥ kf +

⌈
kf

n−(f+1)

⌉
(f + 1)).

This result implies a new lower bound of k registers on the resource complexity of emulating a
single (i.e., non-fault-tolerant) max-register for k writers that tightens the previously known lower
bound of k − 1 [28]:

6

Theorem 2 (Resource Complexity of k-writer max-register). For all k > 0, any algorithm im-
plementing a wait-free k-writer max-register from a collection of wait-free MWMR atomic base
registers uses at least k base registers.

Proof (sketch). Observe that an f -tolerant obstruction-free WS-Safe k-register emulation A can be
obtained (using an ABD-style algorithm) from n = 2f+1 servers each storing a single max-register
object. It therefore, follows that A’s resource complexity using max-registers implemented from
< k registers will be < (2f + 1)k contradicting Theorem 1. The detailed proof appears in the full
paper [14].

Since a k-writer max-register can be implemented from k read/write registers [4], we have the
following

Corollary 1. k wait-free multi-writer atomic registers are necessary and sufficient to implement a
wait-free k-writer max-register in the standard shared memory model.

The following lower bounds are proven in the full paper [14]:

Theorem 3. Let n = 2f + 1. For all k > 0, f > 0, every f -tolerant algorithm emulating an
obstruction-free WS-Safe k-register stores at least k registers on each server in S.

Theorem 4. Let m > 0 be an upper bound on the number of registers mapped to each server in S
(i.e., ∀s ∈ S, |δ−1({s})| ≤ m). For all f > 0 and k > 0, every f -tolerant algorithm emulating an
obstruction-free WS-Safe k-register from a collection S of servers such that n > 2f + 1 uses at least
dkf/me+ f + 1 servers (i.e., n ≥ dkf/me+ f + 1).

Theorem 5. For any f > 0, there is no f -tolerant algorithm that emulates an WS-Safe obstruction-
free k-register with resource complexity adaptive to point contention [1, 7].

We now present the proof of our main result.

3.1 Proof of Theorem 1

Overview. Our proof exploits the fact that the environment is allowed to prevent a pending
low-level write from taking effect for arbitrarily long [2]. As a result, a client executing a high-level
write operation cannot reliably store the requested value in a base register that has a pending
write as this write may take effect at a later time thus erasing the stored value. At the same time,
the client cannot wait for all base registers on which it triggers low-level operations to respond,
since up to f of them may reside on faulty servers. It therefore must be able to complete a high-
level write without waiting for responses from up to f registers. Consequently, the next high-level
write (by a different client) cannot reliably use these registers (as they might have outstanding
low-level writes), and is therefore forced to use additional registers thus causing the total number
of registers grow with each subsequent write.

In our main lemma (Lemma 1), we formalize this intuition as follows: Starting from a run r0
consisting of an initial configuration, we build a sequence of consecutive extensions r1, . . . , rk so
that ri is obtained from ri−1 by having a new client invoke a high-level write Wi of some (not
previously used) value. We then let the environment behave in an adversarial fashion (Definition 6)
by blocking the responses from the writes triggered on at most f base registers as well as the prior
pending low-level writes. In Lemma 3, we show that Wi must terminate without waiting for these

7

responses to arrive. Furthermore, in Lemma 4, we show that Wi must invoke low-level writes on
at least 2f + 1 base registers (residing on ≥ 2f + 1 different servers) that do not have any prior
pending writes. This, combined with Lemma 3, implies that by the time Wi completes, there are
at least f more registers on at least f servers with pending writes after Wi completes. Thus, by
the time the kth high-level write completes, the total number of covered registers is at least kf
(see Lemma 1(a)).

To obtain a stronger bound, our construction is parameterized by an arbitrary subset F of
servers such that |F | = f + 1. We show that the extra storage available on these servers cannot
in fact, be utilized by an emulation (see Lemma 1(b)) forcing it to use at least kf registers on
the remaining S \ F servers to accommodate the same number k of writers. We use this result in
the proof of Theorem 1, to show that the number of base registers required for the emulation is a
function of k and n.

Detailed proof. For any time t (following the tth action) in a run r of the emulation algorithm
we define the following:

• Covering write: Let w be a low-level write triggered on a base register b at times ≤ t. We
will refer to w as covering at t, and to b as being covered by w at t if w is pending at t.

• C(t) ⊆ C: the set of all clients that have completed a high-level write operation at times
≤ t.

• Cov(t) ⊆ B: the set of all base registers being covered by some low-level write at time t.

• V (t) ⊆ V: the set of all values written by high-level writes at times ≤ t.

We first prove the following key lemma:

Lemma 1. For all k > 0, f > 0, let A be an f -tolerant algorithm that emulates a WS-Safe
obstruction-free k-register using a collection S of servers storing a collection B of wait-free MWMR
atomic registers. Then, for every F ⊆ S such that |F | = f + 1, there exist k + 1 failure-free runs
ri, 0 ≤ i ≤ k, of A such that (1) r0 is a run consisting of an initial configuration and t0 = 0 steps,
and (2) for all i ∈ [k], ri is a write-only sequential extension of ri−1 ending at time ti > 0 that
consists of i complete high-level writes of i distinct values v1, . . . , vi by i distinct clients c1, . . . , ci
such that:

a) |Cov(ti)| ≥ if b) δ(Cov(ti)) ∩ F = ∅

Fix arbitrary k > 0, f > 0, and a set F of servers such that |F | = f + 1. We proceed by
induction on i, 0 ≤ i ≤ k. Base: Trivially holds for the run r0 of A consisting of t0 = 0 steps.
Step: Assume that ri−1 exists for all i ∈ [k − 1]. We show how ri−1 can be extended up to time
ti > ti−1 so that the lemma holds for the resulting run ri. For the remainder of the Lemma 1’s
proof, we will limit our attention to the runs in which every low-level write operation is linearized
simultaneously with its respond step. In particular, this implies that no low-level write w that is
covering some register b at a time t in r will be observed by any low-level reads from b as having
taken effect until after w’s respond event occurs. Formally:

8

Assumption 1 (Write Linearization). For every extension r of ri−1 and a base object b ∈ B, let Lr|b
be a linearization of r|b. Then, Lr|b does not include any low-level write operations in pending(r|b),
and for any two low-level writes w1, w2 ∈ complete(r|b) such that respond(w1) ≺r|b respond(w2),
w1 ≺Lr|b w2.

Note that the above does not affect generality of our lower bound since the stipulated base
register behaviour is allowed by atomicity, and therefore, must be tolerated by every emulation
algorithm.

We proceed by introducing the following notation:

Definition 4. Let r be an extension of ri−1. For all times t ≥ ti−1 in r, let

1. Tri(t): the set of all base registers which have a low-level write triggered on between ti−1
and t.

2. Rri(t) ⊆ Tri(t) be the set of all base registers which had a low-level write triggered on and
responded (took effect) between ti−1 and t.

3. Covi(t) = Cov(t) \ Cov(ti−1) be the set of all base registers that have been newly covered
between ti−1 and t. Note that Covi(t) ⊆ Tri(t).

4. Qi(t) ⊆ S be the set of all servers such that Qi(t) = δ(Covi(t)) \ F if |δ(Covi(t)) \ F | ≤ f ,
and Qi(t) = Qi(t− 1), otherwise. In other words, Qi(t) is the set of the first f servers not in
F that have at least one register newly covered between ti−1 and t.

5. Fi(t) , {s ∈ F | δ−1({s}) ∩ Rri(t) 6= ∅}, i.e., Fi(t) is the set of all servers in F having a
register that responded to a low-level write invoked after ti−1.

6. Mi(t) , δ(Covi(t)) ∩ (F \ Fi(t)), i.e., Mi(t) is the set of all servers in F with at least one
register covered by a low-level write invoked after ti−1 and without registers that have responded
to the low-level writes invoked after ti−1.

7. Gi(t) ⊆ S be the set of all servers such that Gi(t) = Mi(t) if |Qi(t)| < |Fi(t)|, and Gi(t) = ∅,
otherwise.

Below we will introduce the adversary Adi, which causes A to gradually increase the number of
base registers covered after ti−1 by delaying the respond actions of some of the previously triggered
low-level writes.

Definition 5 (Blocked Writes). Let r be an extension of ri−1. For all times t ≥ ti−1 in r, let
BlockedWritesi(t) be the set of all low-level covering writes w satisfying either one of the following
two conditions:

1. w was triggered by a client in C(ti−1), or

2. w was triggered on a base register in δ−1(Qi(t) ∪Gi(t)).

We say that a pending low-level write w is blocked in an extension r of ri−1 if there exists a
time t ≥ ti−1 such that for all t′ > t in r, w ∈ BlockedWritesi(t

′). The following definition specifies
the set of the environment behaviours that are allowed by Adi in all extensions of ri−1:

9

Definition 6 (Adi). For an extension r of ri−1 we say that the environment behaves like Adi after
ri−1 in r if the following holds:

1. There are no failures after time ti−1 in r.

2. For all t ≥ ti−1 in r, if a low-level write
w ∈ BlockedWritesi(t), then w does not respond at t.

3. If r is infinite then:

(a) Every pending low-level read or write that is not blocked in r eventually responds.

(b) Every trigger or return action that is ready to be executed at a client c in r is eventually
executed.

For a finite extension r of ri−1, we will write 〈r,Adi〉 to denote the set of all extensions of r
in which the environment behaves like Adi after ri−1; and we will write 〈r,Adi, t〉 to denote the
subset of 〈r,Adi〉 consisting of all runs having exactly t steps. For X ∈ {Qi, Fi,Mi} and a run
r ∈ 〈ri−1, Adi, t〉, we say that X is stable after r if for all t′ ≥ t for all extensions r′ ∈ 〈r,Adi, t′〉,
X(t′) = X(t).

The following lemma asserts several facts implied directly by Definitions 4 and 6. The proof is
very technical and for space limitation appears in the full paper [14].

Lemma 2. For all t ≥ ti−1 and r ∈ 〈ri−1, Adi, t〉, all of the following holds at time t in r:

1. Qi(t) ⊆ δ(Covi(t)) \ F

2. Qi(t) ⊆ Qi(t+ 1)

3. Fi(t) ⊆ Fi(t+ 1)

4. |Fi(t)| − |Qi(t)| ≤ 1

5. |Qi(t)| ≤ f

6. |Fi(t)| ≤ f + 1

7. Fi(t) = Fi(t+ 1) =⇒ Mi(t) ⊆Mi(t+ 1)

8. |Mi(t)| ≤ f + 1

9. |δ(Covi(t)) \ F | ≥ f =⇒ |Qi(t)| ≥ f

10. |δ(Covi(t)) \ F | < f =⇒ δ(Rri(t)) \ F = ∅

11. (Qi(t) ∪Mi(t)) ∩ δ−1(Rri(t)) = ∅

The following corollary follows immediately from the claims 2–3 and 5–8 of Lemma 2.

Corollary 2. There exists a run r ∈ 〈ri−1, Adi〉 such that Fi, Qi, and Mi are all stable after r.

We first show that ri−1 can be extended with a complete high-level write Wi of a value
vi 6∈ V (ti−1) by a client ci 6∈ {c1, . . . , ci−1} such that the environment behaves like Adi until Wi

returns. Roughly, the reason for this is that Adi guarantees that after ri−1, ci would only miss
responses from the writes invoked on at most f servers (see Claim 1) as well as those that might
have been invoked in ri−1 by other clients {c1, . . . , ci−1}, which ci is unaware of. As a result,
the involved servers and clients would appear to ci as faulty after ri−1, and therefore, to ensure
obstruction freedom, it must complete Wi without waiting for the outstanding writes to respond.

10

Lemma 3. Let r ∈ 〈ri−1, Adi〉 be a run consisting of ri−1 followed by a high-level write invocation
Wi by client ci 6∈ C(ti−1). Then, there exists a run rr ∈ 〈r,Adi〉 in which Wi returns.

By Corollary 2, there exists an extension r′ ∈ 〈r,Adi, t′〉 where t′ > ti−1 such that Qi, Fi, and
Mi are all stable after r′. If Wi returns in r′, we are done. Otherwise, we will first bound the
number of servers |Qi(t′) ∪Mi(t

′)| controlled by Adi as follows:

Claim 1. Consider a time t > ti−1, and a run r ∈ 〈ri−1, Adi, t〉. If Mi is stable after r, then
|Qi(t) ∪Mi(t)| ≤ f .

Proof. By Lemma 2.5, |Qi(t)| ≤ f . Thus, if Mi(t) = ∅, then |Qi(t) ∪ Mi(t)| ≤ f as needed.
Otherwise (Mi(t) 6= ∅), we show that |Fi(t)| = |Qi(t)| + 1. Suppose to the contrary that |Fi(t)| 6=
|Qi(t)|+ 1. Since by Lemma 2.4, |Fi(t)| ≤ |Qi(t)|+ 1, the only possibility for |Fi(t)| 6= |Qi(t)|+ 1
is if |Fi(t)| ≤ |Qi(t)|. Thus, by Definition 4.7, Gi(t) = ∅, and hence, by Definition 5, no writes
on the registers in δ−1(Mi(t)) are blocked. However, since Mi(t) 6= ∅, at least one register in
δ−1(Mi(t)) must have an outstanding write. Therefore, by Definition 6.3(a), there exists time t′,
and an extension r′ ∈ 〈r,Adi, t′〉 such that one of the registers on some server s ∈Mi(t) responds at
time t′. Thus, s ∈ Fi(t′), and therefore, s 6∈Mi(t

′). Hence, Mi is not stable after r. A contradiction
to the assumption.

Since Fi(t) ⊆ F , |F \Fi(t)|+|Fi(t)| = |F | = f+1. Hence, |F \Fi(t)| = f+1−|Fi(t)| = f−|Qi(t)|.
Since by Definition 4.6, Mi(t) ⊆ (F \ Fi(t)), |Mi(t)| ≤ |F \ Fi(t)| = f − |Qi(t)|. Thus, we receive
|Qi(t) ∪Mi(t)| ≤ |Qi(t)|+ |Mi(t)| ≤ f as needed.

We are now ready to complete the proof of Lemma 3:

Proof of Lemma 3. By Claim 1, |Qi(t′) ∪Mi(t
′)| ≤ f , and by Lemma 2.11, no base registers on

servers in Qi(t
′)∪Mi(t

′) have ever responded to any low-level writes issued after ti−1. Thus, there
exists a finite run r′′, which is identical to r′ except all servers in Qi(t

′)∪Mi(t
′) crash immediately

after r and each client c1, . . . , ci−1 fails before any of its covering writes on registers in Cov(ti−1)
responds. By f -tolerance and obstruction freedom, there exists a fair extension r′′σ of r′′ (i.e.,
r′′σ /∈ 〈r′′, Adi〉) such that Wi returns in r′′σ. Since Qi ∪Mi is stable after r′, the set of registers
precluded by Adi from responding in r′ is identical to that in r′′, and by Assumption 1, no write
with a missing response is linearized, r′ is indistinguishable from r′′ to ci. Thus, r′σ ∈ 〈r,Adi〉, and
since σ includes the return event of Wi, r

′σ satisfies the lemma.

We next show that in order to guarantee safety in the face of the environment behaving like Adi,
Wi must trigger a low-level write on at least one non-covered register on each server in a set of
2f + 1 servers.

Lemma 4. Consider a run r ∈ 〈ri−1, Adi, tr〉 where tr > ti−1, consisting of ri−1 followed by a
complete high-level write invocation Wi = write(vi), vi 6∈ V (ti−1), by client ci 6∈ C(ti−1) that
returns at time tr. Then, |δ(Tri(tr) \ Cov(ti−1))| > 2f .

Proof. Denote X , δ(Tri(tr) \ Cov(ti−1)), and assume by contradiction that |X| ≤ 2f . Let
S1 = Fi(tr), S2 = Qi(tr), S3 = X ∩ (F \Fi(tr)) and S4 = X \ (S1∪S2∪S3). Note that S1, S2, S3, S4
are pairwise disjoint, and X = S1 ∪ S2 ∪ S3 ∪ S4.

We first show that |S1 + S4| ≤ f . By Lemma 2.6, |S1| ≤ f + 1. However, if |S1| = f + 1,
then by Lemma 2.4, |S1| − |S2| = f + 1 − |S2| ≤ 1, and therefore, |S1| + |S2| ≥ 2f + 1 violating

11

Figure 1: Construction for the proof of Lemma 4.

the assumption. Hence, |S1| ≤ f . By Lemma 2.5, |S2| ≤ f . If |S2| = f , then by assumption,
|S1 ∪ S3 ∪ S4| = |S1|+ |S3|+ |S4| ≤ f , and therefore, |S1 + S4| = |S1|+ |S4| ≤ f . And if |S2| < f ,
then by Definitions 4.4 and 6, |S4| = 0. Hence, |S1 + S4| = |S1|+ |S4| ≤ f .

The proof proceeds by applying the partitioning argument to the sets Si, i ∈ [4], as illustrated
in Figure 1. let r′ be a fair extension of ri−1 consisting of t′c steps in which ri−1 is followed by (1)
the crash events of all servers in S1∪S4, and (2) the respond steps of all the covering writes in ri−1
and (and no other steps). Extend r′ with an invocation of a high-level read operation R by client
crd 6= ci at time t′c. Since |S1 + S4| ≤ f , by obstruction freedom and f -tolerance, there exists time
trd > ti−1 at which R returns. Since r′ is write-sequential, by WS-Safety, R must return vi−1.

Next, let r′′ be an extension of r consisting of all steps in r up to the time tr followed by (1)
the crash events of all servers in the set S1 ∪ S4, and (2) the respond steps of all covering writes in
ri−1 (and no other steps). Let t′′c > tr be the number of steps in r′′. By Assumption 1, the values
that can be read from the base registers in Cov(ti−1) at time t′′c in r′′ are identical to those that
can be read at time t′c in r′. Furthermore, by definitions 4.5 and 6, low-level writes triggered on
registers in δ−1(S2∪S3) do not respond before tr in r. Thus, by Assumption 1, the values that can
be read from the base registers in δ−1(S2 ∪ S3) at time t′c in r′ are also the same as those that can
be read at time t′′c in r′′. Thus, all registers in non-faulty servers at time t′c in r′ will appear to the
subsequent reads as having the same content as at the time t′′c in r′′c .

We now extend r′′ by letting client crd invoke high-level read R at time t′′c . Since r′ is indis-
tinguishable from r′′ to crd, and R has no concurrent high-level operations, we get that R returns
vi−1 in r′′. However, since Wi is the last complete write preceding R in r′′, by WS-Safety, the R’s
return value must be vi 6= vi−1. A contradiction.

The following corollary follows immediately from Lemma 4, Definitions 4.4 and 6, and the choice
of |F | = f + 1:

Corollary 3. Consider a run r ∈ 〈ri−1, Adi, tr〉 where tr > ti−1, consisting of ri−1 followed by a
complete high-level write invocation Wi = write(vi), vi 6∈ V (ti−1), by client ci 6∈ C(ti−1) that
returns at time tr. Then, |Qi(tr)| = f .

We are now ready to complete the proof of the induction step of Lemma 1:

Proof of the induction step (Lemma 1).
By Lemma 3, there exists a run r ∈ 〈ri−1, Adi, tr〉, tr > ti−1, in which ri−1 is followed by a complete
high-level write invocation Wi by client ci 6= ci−1 writing a value vi 6∈ V (ti−1) and returning at
time tr. By Corollary 3, |Qi(tr)| = f , and therefore, by Lemma 2.4, |Fi(tr)| = f + 1. Since
Fi(tr) ⊆ F and |F | = f + 1, we conclude that Fi(tr) = F . Hence, by Definition 4.6, Mi(tr) = ∅,

12

which by Definition 4.7, implies that Gi = ∅. Thus, by Definition 5, no writes on the registers in
δ−1(F) triggered after ti−1 are blocked.

Hence, by Definition 6.3(a), there exists an extension r′ ∈ 〈r,Adi, t′〉, for some t′ ≥ tr, such that
δ(Covi(t

′)) ∩ F = ∅. We now show that ri = r′ and ti = t′ satisfy the lemma. By the induction
hypothesis and the construction of extension r′, r′ is a write-only failure-free sequential extension
of ri−1 ending at time t′ that consists of i complete high-level writes of i distinct values v1, . . . , vi
by i distinct clients c1, . . . , ci. It remains to show that the implications (a) and (b) hold for ti = t′:

a) |Cov(t′)| ≥ if : By the induction hypothesis |Cov(ti−1)| ≥ (i − 1)f , and by Definition 6,
Cov(ti−1) ⊆ Cov(t′). Therefore, we left to show that |Cov(t′) \ Cov(ti−1)| ≥ f . Since by Corol-
lary 3, |Qi(tr)| = f , and by Lemma 2.2, Qi(tr) ⊆ Qi(t

′), we get |Qi(t′)| = f . By Definition 4.4,
|Covi(t′)| ≥ |Qi(t′)|, and by Definition 4.3, |Cov(t′) \ Cov(ti−1)| = |Covi(t′)|. Therefore, we get
|Cov(t′) \ Cov(ti−1)| ≥ f .

b) δ(Cov(t′)) ∩ F = ∅: By the induction hypothesis we get that δ(Cov(ti−1)) ∩ F = ∅, and by
construction of r′ we get that δ(Covi(t

′))∩F = ∅. By Definition 4.3, Cov(t′) = Covi(t
′)∪Cov(ti−1).

Hence, δ(Cov(t′)) ∩ F = ∅.

We are now ready to prove the main theorem:

Proof of Theorem 1. Let G ⊆ S be the set consisting of all servers that store at least
⌈

kf
n−(f+1)

⌉
base registers (i.e., ∀s ∈ G, |δ−1({s})| ≥

⌈
kf

n−(f+1)

⌉
and ∀s ∈ S \ G, |δ−1({s})| <

⌈
kf

n−(f+1)

⌉
). We

first show that |G| ≥ f + 1. Suppose toward a contradiction that |G| < f + 1, and pick a set F ,
such that |F | = f + 1 and S ⊃ F ⊃ G. By Lemma 1, there exists a run r of A consisting of t
steps such that |Cov(t)| ≥ kf and δ(Cov(t))∩F = ∅. Thus, by the pigeonhole argument, and since

|S \F | = n− (f + 1), there is at least one server in S \F that stores at least
⌈

kf
n−(f+1)

⌉
. Therefore,

since F ⊃ G and the number of objects stored on a server is an integer, we get that there is at least

one server in S \G that stores at least
⌈

kf
n−(f+1)

⌉
base registers. A contradiction.

We get that |δ−1(G)| ≥
⌈

kf
n−(f+1)

⌉
(f + 1). Now, again by Lemma 1, there exists a run r′ of A

consisting of t′ steps such that |Cov(t′)| ≥ kf and δ(Cov(t′))∩G = ∅, meaning that |δ−1(S \G)| ≥
kf . Therefore, we get that |δ−1(S)| ≥ kf +

⌈
kf

n−(f+1)

⌉
(f + 1).

4 Upper Bound

In this section we present an f -tolerant construction emulating a wait-free WS-Regular k-register for
all combinations of values of the parameters k > 0, f > 0, and n where n > 2f . Our construction is
carefully crafted to deal with the adversarial behaviour (Definition 6) that was exploited in the proof
of Lemma 1 while minimizing the resource complexity. Similarly to multi-writer ABD [23, 36, 31],
our algorithm uses read and write quorums to read from and write to registers. However, since
RMW objects are replaced with read/write registers, and covering low-level writes belonging to old
writes can overwrite registers at any time, the quorums in our case must have a larger intersection.

13

Figure 2: A possible mapping from R to S for n = 6, k = 5, and f = 2.

Let z ,
⌊n−(f+1)

f

⌋
and y , zf + f + 1, we construct a collection R of m =

⌊
k
z

⌋
disjoint

sets R0, . . . , Rm−1, each of which consist of y registers, and if k/z is not an integer, then we add
to R another disjoint set Rm of (k −

⌊
k
z

⌋
z)f + f + 1 registers. Intuitively, z is the maximum

number of writers that can be supported by a single set of y registers as can be deduced from
Lemma 1’s argument. If z divides k, then exactly k/z such sets are needed to accommodate the
total of k writers. Otherwise, the remaining k mod z writers are moved to an overflow set Rm.
Note that for all Ri ∈ R, 2f + 1 ≤ |Ri| ≤ n. Then, we distribute the registers in each set Ri
on servers in S so that every register in Ri is mapped to a different server (i.e., |δ(Ri)| = |Ri|).
Figure 2 demonstrates a possible mapping from registers to servers. All in all, we use ΣRi∈R|Ri| =⌊
k
z

⌋
y+(k−

⌊
k
z

⌋
z)f+(f+1)(

⌈
k
z

⌉
−
⌊
k
z

⌋
) = · · · = kf+

⌊
k
z

⌋
(f+1) = kf+

⌈
k⌊

n−(f+1)
f

⌋⌉(f+1) registers.

The resulting layout is then used to derive the read and write quorums as follows: for every set
Ri ∈ R, any subset of Ri of size |Ri| − f is a write quorum for all writers cj such that i =

⌊ j
z

⌋
; and

any subset of registers consisting of all registers mapped to n − f servers is a read quorum (i.e.,
the set of the read quorums is {B ⊆ B : ∃S ∈ S s.t. |S| = 2f + 1 ∧ δ−1(S) = B}).

The construction pseudocode appears in Algorithm 1. The registers store values in V each of
which is associated with a unique timestamp. (Note that since safety is required only in write-
sequential runs, we do not need to use client identifiers for breaking ties.) To write a value v to the
emulated register, a client ci first accesses a read quorum (via collect() in lines 23–27) and selects
a new timestamp ts, which is higher than any other timestamp that has been returned. It then
proceeds to trigger low-level writes of 〈ts, v〉 on all registers in Rj such that j =

⌊
i
z

⌋
, so as to ensure

that (1) 〈ts, v〉 is stored in a write quorum wq (lines 9–12), and (2) no more than f registers in
Rj are left covered by writes that have been triggered by ci in the course of either the current or
one of the preceding write invocations. The latter is achieved by preventing ci from triggering a
new low-level write on every register that has not yet responded to the previously triggered one
(lines 10–11). To read a value, a client simply reads all registers in a read quorum, via collect(),
and returns the value having the highest timestamp.

Observe that by construction of R, for every set Ri ∈ R, (1) the number of clients mapped to

write quorums in Ri is
⌊ |Ri|−(f+1)

f

⌋
= |Ri|−(f+1)

f , and (2) any write quorum in Ri intersects with
any read quorum on at least |Ri| − f registers. This, along with the algorithm’s guarantee that no
more than f low-level writes remain pending upon completion of every high-level write, ensures
that in a write-sequential run, the latest value written by a high-level write is always available to
the subsequent reads. In addition, since the registers in every (read or write) quorum are mapped
to exactly n − f servers, each quorum access is guaranteed to terminate, and thus, the algorithm

14

Algorithm 1 f -tolerant k-register emulation from registers for all f > 0, k > 0, and n = |S| > 2f .

Types:
TSV al = N× V, with selectors ts and val.
States = TSV al × 2TSV al × 2B × 2B

with selectors tsVal, rdSet, wrSet and coverSet.

Base Objects and Servers:
∀b ∈ δ−1(S), b ∈ TSV al, initially, 〈0, v0〉.
Let z ,

⌊n−(f+1)
f

⌋
, y , zf + f + 1, and m ,

⌈
k
z

⌉
.

R = {R0, . . . , Rm−1} ⊂ 2δ
−1(S) s.t.

1. ∀i ∈ {0, . . . ,m− 2}, |Ri| = y. If
⌈
k
z

⌉
=

⌊
k
z

⌋
, then

|Rm−1| = y. Else, |Rm−1| = (k −
⌊
k
z

⌋
z)f + f + 1.

2. ∀Ri, Rj ∈ R, R1 ∩Rj = ∅.
3. ∀Ri ∈ R, |δ(Ri)| = |Ri|.

Clients states:
∀i ∈ [k], Statei ∈ States, initially,
〈〈〈0, 1〉, v0〉, ∅, Rj , ∅〉, where j =

⌊
i
z

⌋
.

Code for client ci, i ∈ [k]

1: operation write(v)
2: value← collect()
3: Statei.tsV al.val← v
4: Statei.tsV al.ts← value.ts+ 1
5: j ←

⌊
i
z

⌋
6: // do not handle responds between lines 7 to 11
7: Statei.coverSet← Rj \ Statei.wrSet
8: Statei.wrSet← ∅
9: || for each b ∈ Rj

10: if b /∈ Statei.coverSet
11: trigger b.write(Statei.tsV al)
12: wait until |Statei.wrSet| ≥ |Rj | − f
13: return ack

14: operation read()
15: value← collect()
16: return value.val

17: scan(s)
18: for each b ∈ δ−1(s) do

19: trigger b.read()
20: wait for the matching response

21: collect()
22: Statei.rdSet← ∅
23: || for each s ∈ S do
24: scan(s)
25: wait for n− f scans to complete
26: ts← max({ts′ | 〈ts′, ∗〉 ∈ Statei.rdSet})
27: return 〈v, ts′〉 ∈ Statei.rdSet : ts′ = ts

28: upon receiving b.read() respond res do
29: Statei.rdSet← Statei.rdSet ∪ {res}

30: upon receiving b.write(∗) respond do
31: if b ∈ Statei.coverSet then
32: Statei.coverSet← Statei.coverSet \ {b}
33: trigger b.write(Statei.tsV al)
34: else
35: Statei.wrSet← Statei.wrSet ∪ {b}

is wait-free. Thus, we have the following (see [14] for a full proof):

Theorem 6. For all k > 0, f > 0, and n > 2f , there exists an f -tolerant algorithm emulating
a wait-free WS-Regular k-register using a collection of n servers storing kf +

⌈
k
z

⌉
(f + 1) wait-free

z-writer/multi-reader atomic base registers where z =
⌊n−(f+1)

f

⌋
.

15

5 Discussion and Future Work

We studied space complexity of emulating an f -tolerant register from fault-prone base objects as a
function of the base object type, the number of writers k, the number of available servers n, and the
failure threshold f . For the three object types considered, we established a sharp separation (by
factor k) between registers and both max-registers and CAS in terms of the number of objects of
the respective types required to support the emulation; we showed that no such separation between
max-registers and CAS exists. Interestingly, these results shed light on the resource complexity
bounds in the standard shared memory model (i.e., without object failures) as evidenced by our
proof of a lower bound on the number of registers required for implementing a k-writer max-register.

Our main technical contribution comprises the lower bound of
⌈

k
n−(f+1)

f

⌉
(f +1)+kf and the upper

bound of
⌈

k

bn−(f+1)
f

c

⌉
(f + 1) + kf on the resource complexity of emulating an f -tolerant k-writer

register from n fault-prone servers storing read/write registers. To strengthen our lower bound, it
was proved for emulations satisfying weak liveness and safety properties.

Future directions. First, for some choices of k and n, our bounds leave a small gap that can be
closed. Second, an interesting question that arises is whether our lower bound is tight for stronger
properties. In the special case of n = 2f + 1 servers, emulation with stronger regularity [37] is
possible with (2f + 1)k registers (tight to our lower bound). However, the question of the general
case (n ≥ 2f + 1) remains open. In addition, since atomicity usually requires readers to write, it
is interesting to investigate whether the space complexity (assuming read/write registers) in this
case also linearly depends on the number of readers.

Our results suggest a new classification of the data types based on space complexity of fault-
tolerant emulations built from base objects of these types, which is fundamentally different from
those established by [24] and [18]. A promising future direction is to extend this classification
with additional types (e.g., multiple assignment), and potentially generalize it into a full-fledged
hierarchy of its own.

Another possible direction is to consider the time complexity of the emulations. For example, we
showed that although a max-register can be implemented from a single CAS, the time complexity
of the implementation is high. An interesting open question is to determine whether this tradeoff
is inherent.

Acknolwedgments

We are thankful to Idit Keidar for reading many drafts and helpful discussions, Dan Dobre and Alex
Shraer for their contribution to earlier versions of this paper, and PODC ’17 anonymous reviewers
for valuable feedback.

References

[1] Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-lived renaming
made adaptive. In PODC ’99, 1999.

16

[2] Marcos K. Aguilera, Burkhard Englert, and Eli Gafni. On using network attached disks as
shared memory. In PODC ’03, 2003.

[3] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and Alexander Shraer.
Reconfiguring replicated atomic storage: A tutorial. Bulletin of the EATCS, 102, 2010.

[4] James Aspnes, Hagit Attiya, and Keren Censor. Max-registers, counters, and monotone cir-
cuits. In PODC ’09, 2009.

[5] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1), 1995.

[6] Hagit Attiya and Faith Ellen. Impossibility results for distributed computing. Synthesis
Lectures on Distributed Computing Theory, 5(1), 2014.

[7] Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. J. ACM, 50(4), July
2003.

[8] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, chapter 10.4, page 234. Wiley, 2nd edition, 2004.

[9] Cristina Basescu, Christian Cachin, Ittay Eyal, Robert Haas, Alessandro Sorniotti, Marko
Vukolic, and Ido Zachevsky. Robust data sharing with key-value stores. In DSN ’12, pages
1–12, 2012.

[10] James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion. Inf.
Comput., 107(2), 1993.

[11] Viveck R. Cadambe, Nancy A. Lynch, Muriel Médard, and Peter M. Musial. A coded shared
atomic memory algorithm for message passing architectures. Distributed Computing, 30(1):49–
73, 2017.

[12] Viveck R. Cadambe, Zhiying Wang, and Nancy A. Lynch. Information-theoretic lower bounds
on the storage cost of shared memory emulation. In PODC ’16, 2016.

[13] Gregory Chockler, Rachid Guerraoui, and Idit Keidar. Amnesic distributed storage. In DISC
’07.

[14] Gregory Chockler and Alexander Spiegelman. Space complexity of fault-tolerant register em-
ulations, 2017.

[15] Brian F. Cooper et al. Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endowment,
1(2), 2008.

[16] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Marko Vukolic. Fast access to distributed
atomic memory. SIAM Journal on Computing, 39(8):3752–3783, 2010.

[17] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.

[18] Faith Ellen, Rati Gelashvili, Nir Shavit, and Leqi Zhu. A complexity-based hierarchy for
multiprocessor synchronization. In PODC ’16, 2016.

17

[19] Burkhard Englert and Alexander A. Shvartsman. Graceful quorum reconfiguration in a robust
emulation of shared memory. In ICDCS ’2000, 2000.

[20] Rui Fan and Nancy Lynch. Efficient replication of large data objects. In DISC ’03, 2003.

[21] Rati Gelashvili. On the optimal space complexity of consensus for anonymous processes. In
DISC ’15, 2015.

[22] Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. Fault-tolerant semifast
implementations of atomic read/write registers. Journal of Parallel Distributed Computing,
69(1):62–79, 2009.

[23] Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman. Rambo: a robust, reconfigurable
atomic memory service for dynamic networks. Distributed Computing, 23(4):225–272, 2010.

[24] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149, 1991.

[25] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concur-
rent objects. ACM Trans. Program. Lang. Syst., 12(3), 1990.

[26] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper: wait-free
coordination for internet-scale systems. In USENIX ATC ’10, 2010.

[27] Prasad Jayanti, Tushar Chandra, and Sam Toueg. Fault-tolerant wait-free shared objects.
Journal of the ACM, 45(3):451–500, 1998.

[28] Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for nonblocking
implementations. SIAM J. Comput., 30(2):438–456, April 2000.

[29] Leslie Lamport. On interprocess communication: Parts i and ii. Distributed computing, 1(2),
1986.

[30] Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[31] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, 1998.

[32] MongoDB. http://www.mongodb.org/.

[33] Jun Rao, Eugene J. Shekita, and Sandeep Tata. Using paxos to build a scalable, consistent,
and highly available datastore. PVLDB, 2011.

[34] Riak. http://basho.com/riak.

[35] Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/s3/.

[36] C. Shao, J. L. Welch, E. Pierce, and H. Lee. Multiwriter consistency conditions for shared
memory registers. SIAM Journal on Computing, 40(1), 2011.

[37] Cheng Shao, Jennifer L Welch, Evelyn Pierce, and Hyunyoung Lee. Multiwriter consistency
conditions for shared memory registers. SIAM Journal on Computing, 40(1), 2011.

18

[38] Amazon SimpleDB. http://aws.amazon.com/simpledb/.

[39] Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit Keidar. Space bounds for
reliable storage: Fundamental limits of coding. In PODC ’16, 2016.

[40] Microsoft Azure Storage. http://www.windowsazure.com/en-us/manage/services/

storage.

[41] Leqi Zhu. A tight space bound for consensus. In STOC ’16, 2016.

A Max-register from CAS

We present here a wait-free emulation of an atomic max-register on top of a single CAS object.
The pseudocode appears in Algorithm 2, and the correctness proof in the full paper [14].

Algorithm 2 max-register from a single CAS object

Types:
V: set of ordered values.

Base Objects:
b ∈ V, CAS object, initially v0.

Local variables:
tmp ∈ V, initially v0.

1: operation write-max(v)
2: while true do
3: tmp← b.C&S(v0, v0)
4: if tmp ≥ v then
5: return ok
6: b.C&S(tmp, v)

7: operation read-max()
8: tmp← b.C&S(v0, v0)
9: return tmp

19

