
Polynomial and FPT algorithms for
Chinese Postman, Packing and

Acyclicity

Bin Sheng

Supervisor: Prof. Gregory Gutin

Co-Supervisor: Dr Magnus Wahlström

Department of Computer Science
Royal Holloway, University of London

This dissertation is submitted for the degree of
Doctor of Philosophy

RHUL July 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/131177090?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I would like to dedicate this thesis to
my loving parents and my wife . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university.

Bin Sheng
July 2017

Acknowledgements

First of all, I would like to say thank you to my supervisors, Gregory Gutin and Magnus
Wahlström, who helped me enormously during the past four years. Gregory, you are spec-
tacular supervisor, always there to support me. I learned a lot from you, both on academic
and personal issues. And I would like to thank Magnus for always willing to answer my
questions patiently. I also want to thank my other coauthors, Mark Jones, Anders Yeo, and
Florian Barbero, it is a great joy working with you.

My thanks also go to my former teachers, who inspired and encouraged me to pursuit
this academic path. Among the others, I want to give my special thanks to my supervisor
in master degree Professor Changhong Lu, and Mr Ling Kong for helping me with the
application of the CSC Scholarship.

I would like to thank all my friends, in China and in UK. Special thanks go to my friends
for playing basketball, football, and badminton with me during my PhD.

I want to deliver my deep gratitude to my family, ever since middle school, I have
been studying away. Thanks to my brother and sisters for staying with our parents and
grandparents. In paticular, I want to say thank you to my wonderful wife, Jiping. Your
support and love means so much to me.

Finally, I would like to point out that my research is supported by China Scholarship
Council, and I am grateful for their support.

Abstract

Parameterized algorithms is a new approach to tackle NP-hard problems. Parameterized
complexity studies classic hard problems from a multivariate perspective. Apart from the
input instance size, it uses some other parameter reflecting useful problem structure. The main
purpose is to study how the additional structural information helps to solve the problem. In
classic complexity theory, we want to decide whether a problem can be solved in polynomial
time, likewise, in parameterized complexity research, we aim to provide fixed parameterized
algorithms. In this thesis, we study several problems in graphs for their fixed parameter
tractability or polynomial time solvability.

We first study several variants of the Chinese Postman Problem, in which we are asked to
find a minimum weight closed walk that traverses each edge or arc at least once. The variants
we study include the Directed k-Chinese Postman Problem and the Mixed Chinese Postman
Problem. We show that both problems are fixed parameter tractable with the corresponding
parameters.

Kernelization is an important subfield in the study of parameterized tractability. It asks
whether we can reduce a given problem instance into an equivalent instance of bounded size
with respect to the parameter. Polynomial size kernel is of particular interest, as they extract
exactly the small hard part of the problem.

In the second part of this thesis, we obtain some linear kernelization results. Let c,k be
two positive integers, given a graph G = (V,E), the c-LOAD COLORING problem asks
whether there is a c-coloring φ : V → [c] such that for every i ∈ [c], there are at least k
edges with both end-vertices colored i. We show that the c-LOAD COLORING problem
parameterized by k admits a fixed parameter algorithm, by giving both a linear-vertex and
a linear-edge kernel. For a related problem, the star packing problem, we show that it also
admits a linear kernel in graphs with no long induced paths. We also studied some problems
on edge colored graphs from classic algorithmic perspective, including Odd Properly Colored
Cycle detection, Chinese Postman Problem in edge colored graphs, cycles and acyclicity.

Table of contents

1 Introduction 1
1.1 Classical Complexity Theory . 1
1.2 Introduction to Parameterized Tractability 2

1.2.1 Fixed-Parameter Intractability . 4
1.3 Tools in Parameterized Tractability . 4

1.3.1 Kernelization . 5
1.3.2 Treewidth and Dynamic Programming 5

1.4 Terminology and Notation . 7
1.4.1 Graphs . 7
1.4.2 Directed Graphs . 8
1.4.3 Edge Colored Graphs . 9

1.5 Research Background . 9
1.6 Main Results and Structure of Thesis . 12

2 Chinese Postman Problem 15
2.1 k-DCPP . 15

2.1.1 Structural Results and Fixed-Parameter Algorithms 18
2.1.2 Proof of Theorem 2.1.3 . 21
2.1.3 Proofs of Theorems 2.1.1 and 2.1.2 27
2.1.4 k-DCPP in Planar Graphs . 28

2.2 Mixed k-arc CPP . 29
2.2.1 Further Terminology and Notation 32
2.2.2 Reduction to Balanced CPP . 33
2.2.3 Expressing Connectivity: t-roads and t-cuts 35
2.2.4 Tree Decomposition . 39
2.2.5 Dynamic Programming . 45

2.3 Chinese Postman Problem on Edge Colored Graphs 51
2.3.1 Preliminaries . 52

xii Table of contents

2.3.2 Main Result . 53

3 Kernelization results on undirected graphs 61
3.1 Generalized Load Coloring Problem . 61

3.1.1 Bounding Number of Vertices in Kernel 63
3.1.2 Bounding Number of Edges in Kernel 68
3.1.3 Approximation Algorithm . 72
3.1.4 Number of Edges in Kernel for c = 2 73

3.2 Linear Kernel for Star Packing on Graphs with No Long Induced Paths . . . 79
3.2.1 Proof of Theorem 3.2.1 . 80
3.2.2 Proof of Theorem 3.2.2 . 83
3.2.3 Proof of Theorem 3.2.3 . 85

4 Cycles and Acyclicity in edge colored graphs 89
4.1 Acyclicity in Edge-Colored Graphs . 89

4.1.1 Types of PC Acyclicity Edge-Colored Graphs 91
4.1.2 PC Paths and Separators . 97

4.2 Odd PC Cycle Detection . 101
4.2.1 Graph-Theoretical Approaches . 102
4.2.2 Algebraic Approach . 102

5 Conclusion and Open Problems 107

References 113

Chapter 1

Introduction

This thesis studies polynomial-time and fixed-parameter tractable algorithms. In section
1.1, we first give a sketchy overview of the classical complexity theory. In section 1.2, we
describe some of the key concepts in parameterized complexity. Section 1.3 introduces two
main tools we use to obtain fixed-parameter tractable algorithms in this thesis. And in section
1.6, we outline our main results and the structure of the rest of the thesis. Section 1.4 lists
most of the terminology and notation used in this thesis.

1.1 Classical Complexity Theory

This section is to briefly recall main concepts in classical complexity theory. For a more
systematic introduction to classical complexity theory, we refer the readers to the classic
book Computers and Intractability: A Guide to the Theory of NP-completeness by Garey
and Johnson [37].

Computational complexity theory is about classifying the hardness to solve a given
problem. Hardness measures the amount of time or memory resources that are required for
computation to solve the problem. One of the central topics in classical complexity theory, is
whether a problem can be solved in polynomial time with respect to the size of the problem
instance.

Turing machine is one of the most widely used mathematical computation model in
the study of computational complexity. Recall that a deterministic Turing machine is one
that for every possible configuration, there is at most one next configuration, while a non-
deterministic Turing machine can potentially have more than one next configuration for each
configuration.

Let Σ denote some finite alphabet set, and Σ∗ be the set of all finite strings over Σ. A
problem (or a language) is a subset L of Σ∗. We say a problem L is polynomial-time solvable,

2 Introduction

if there exists an algorithm A which takes a string X ∈ Σ∗ as an argument, such that running
the algorithm A on X takes at most |X |c steps for some constant c, and A(X) returns Yes if
and only if X ∈ L. The class of polynomial time solvable problems is denoted by P, i.e. those
problems that can be solved in polynomial time with a deterministic Turing machine.

Analogously, the class of problems that can be solved in polynomial time with a non-
deterministic Turing machine is denoted by NP. A problem L is NP-hard if for any problem
L′ ∈ NP, there is a polynomial reduction from L′ to L. A problem L is called NP-complete if
L is NP-hard and L ∈ NP.

The question whether P = NP remains to be the most important open problem in compu-
tational complexity theory. Although innumerable researchers have put great effort trying to
answer this question for the past decades, the problem has resisted all the attacks. Despite
the hardness of the problems, we have to accept the challenge, so what should we do if
the problem under consideration is NP-complete? Existing options include randomized
algorithms, approximation algorithms, heuristic algorithms and so on. Since the late 1980s,
we have one more alternative option: fixed-parameter tractable algorithms.

1.2 Introduction to Parameterized Tractability

Researchers showed that many problems are NP-complete. In classical complexity theory, all
NP-complete are regarded as "intractable" uniformly. The practical computational hardness of
these hard problems can actually be quite different. People succeeded in designing heuristic
algorithms that work rather well for some of them, regardless of their NP-hardness. In
practice, many real-world instances of NP-complete problems can be solved in a reasonable
running time.

This phenomenon not only indicates that the NP-hardness of a problem should not stop
us from trying to solve it, it also poses challenging and intriguing questions for algorithm
analysis. What makes an NP-complete problem easier to solve? Even further, what lies
behind the different layers of hardness for NP-hard problems?

A partial answer to this is that hardness results are based on worst-case analysis. The
practical success of the algorithms relies on the fact that the worst cases do not show up so
often in real life applications. But we also have to admit that the classical single dimensional
complexity characterization is rather coarse. It is reasonable to believe that if we take more
parameters (not merely the instance size) into consideration, we might be able to design more
efficient algorithms. This view motivates researchers to use multivariate algorithmic analysis,
with the hope that the parameter we introduce can provide us additional properties.

1.2 Introduction to Parameterized Tractability 3

This is the theoretic motivation to study hard problems in a multivariate framework, i.e.,
it enables us to give a more precise characterization of the hardness to solve the problem.

The multivariate analysis of the hard problems also has its gain over classical complexity
theory from the pragmatic perspective. For many NP-complete problems, real-life instances
often come with some inherent structures. It would be a great waste to ignore these structures
as we do in classical complexity research. This gives us another reason to study fixed-
parameter algorithms.

Both the theoretical and practical advantages over classical complexity theory motivate the
study of fixed-parameter tractability, in which the additional structure taken into consideration
is represented by some parameter k, which can be the sum of several parameters. This section
only gives a basic introduction to Parameterized Complexity. For a more detailed introduction,
we refer the readers to [29, 35, 70].

Roughly speaking, the goal to study a problem from parameterized perspective is to find
some algorithm which runs in time f (k)poly(|X |), where f (k) is some computable function
that only depends on k, and poly(|X |) is some polynomial function of |X |. Although function
f may be fast growing, the running time is still acceptable, if the parameter k we choose is
small.

Now we give the formal definition of fixed-parameter tractability.

Definition 1.2.1 A parameterized problem L ⊆ Σ∗×N is fixed-parameter tractable (FPT) if
there exists an algorithm which, for any instance (X ,k) ∈ Σ∗×N, decides whether (X ,k) ∈ L
in at most f (k)|X |c steps, for a constant c and a computable function f that only depends on
k.

In the above definition, the second element k of the problem instance is called the parameter.
Since its emergence in the late 1980s, the research in this field has been ever increasing

and there are already a lot of related papers published. The chart in Fig 1.1 was produced
by Bart M. P. Jansen, Eindhoven Univ of Technology in 2016. It shows the number of
publications on parameterized complexity and algorithms that Google Scholar recognizes
each year from 1995 to 2015. It clearly reveals a huge publication growth over the past
decade.

Although the study of FPT has seen a quite astonishing success, as pointed out in [29],
"Much remained to be explored!". For instance, the research in this field is mainly theoret-
ical analysis, actual implementation of the FPT algorithms seems to be left in a forgotten
corner. Gregory Gutin wrote an article1 discussing the importance of implementation of
fixed-parameter tractable algorithms and he further argued that "getting the hands dirty"

1The Parameterized Complexity Newsletter, 2015 December, Vol 11, no 2

4 Introduction

Fig. 1.1 Publication Growth for FPT papers

deserves more appreciation. Fortunately, the first Parameterized Algorithms & Computa-
tional Experiments Challenge has successfully been held in the year 2016. It is reasonable to
believe people will pay more attention to this line of research in the future.

1.2.1 Fixed-Parameter Intractability

We have seen success of designing fixed-parameterized algorithms for a lot of NP-hard
problems. We have also came across problems for which it is hard to design FPT algorithms.
Actually, there are good explanations for this difficulty. Similarly to classical complexity
theory, people have established hardness theory in the FPT area, that is, we can prove
some problems are not likely to be fixed-parameterized tractable, under the Exponential
Time Hypothesis and other complexity hypotheses. As there are not many results of fixed-
parameter intractability in this thesis, we do not go into detailed discussion of this topic,
interested reader can easily find related material in books like [29].

1.3 Tools in Parameterized Tractability

In this section, we give a brief introduction to two main techniques people use to obtain
positive results in FPT research.

1.3 Tools in Parameterized Tractability 5

1.3.1 Kernelization

Preprocessing is probably the first step to take in almost all real-world problem solving
strategies. In any scenario, one would always like to shrink off the unimportant part in the
problem to make the task smaller and easier.

This idea turns out to be also effective in the study of Parameterized Tractability. In FPT
community, this preprocessing procedure is named kernelization, i.e. the process of pinning
down the key part of the problem hardness. We give its formal mathematical definition here.

Definition 1.3.1 (kernelization) [29] Let L ⊆ Σ∗×N be a parameterized language. A reduc-
tion to a problem kernel, or kernelization, replaces an instance (I,k) by a reduced instance
(I′,k′), called a problem kernel, such that

1. k′ ≤ g′(k),

2. |I′| ≤ g(k), for some function g depending only on k, and

3. (I,k) ∈ L if and only if (I′,k′) ∈ L.

The reduction from (I,k) to (I′,k′) must be computable in time polynomial in |I|+ k.

It is well known that a parameterized problem is fixed-parameter tractable if and only if it
admits a kernelization. We measure the effectiveness of the preprocessing procedure by the
size of the kernel we get. In particular, we are interested in kernels of polynomially bounded
size with respect to the parameter.

In this thesis, we obtain some positive results on polynomial kernelization, see the two
sections in Chapter 3.

1.3.2 Treewidth and Dynamic Programming

The notion of tree decomposition and treewidth were first introduced by Robertson and
Seymour in [82].

Definition 1.3.2 Given an undirected graph G = (V,E), a tree decomposition of G is a pair
(T ,β), where T is a tree and β : V (T)→ 2V such that

1.
⋃

x∈V (T)β (x) =V ;

2. for each edge uv ∈ E, there exists a node x ∈V (T) such that u,v ∈ β (x); and

3. for each v ∈V , the set β−1(v) of nodes form a connected subgraph in T .

6 Introduction

The width of (T ,β) is maxx∈V (T)(|β (x)|−1). The treewidth of G (denoted tw(G)) is
the minimum width of all tree decompositions of G.

Treewidth is a measure of the similarity of a given graph with a tree. As trees are highly
structured graphs, many problems can be solved in polynomial time for them. The smaller
the treewidth of a graph, the higher similarity it has with a tree, and thus the easier to solve a
problem on it. According to the definition of tree decomposition, the vertices in each node
bag form a cut set of the original graph, thus to solve many problem, we may proceed the
node bags in the tree from leaf to root one by one, which confines the search space to a
function of the treewidth and of n. Thus many NP-hard decision or optimization problems are
fixed-parameter tractable on graphs that have bounded treewidth. There is a powerful theorem
due to Courcelle which explains this for all problems definable in Monadic Second-Order
logic2.

Theorem 1.3.1 (Courcelle’s Theorem) [35] The following problem is fixed parameter tractable:

p∗-TW-MC(MSO)
Instance: a structure A and an MSO-setence φ .
Parameter: tw(A)+ |φ |.
Output: Decide whether A |= φ

Moreover, there is a computable function f and an algorithm that solves it in time
f (k, l)|A|+O(|A|), where k := tw(A) and l = |φ |.

We know that tree decomposition is a very useful structure for algorithm design, to make
use of it, we need a way to find such good tree decompositions. But computing an optimal
tree decomposition and deciding the treewidth turns out to be NP-complete [6]. The good
news is it has been proved to be fixed-parameter tractable parameterized with the treewidth
in [16].

Theorem 1.3.2 (Bodlaender’s Theorem) [16] There is a polynomial p and an algorithm
that, given a graph G = (V,E), computes a tree decomposition of G of width k := tw(G) in
time at most 2p(k)n, where n is the number of vertices in G.

There is a faster approximation algorithm of calculating the treewidth.

Theorem 1.3.3 [35] There is an algorithm that, given a graph G = (V,E), computes a tree
decomposition of G of width at most 4tw(G)+ 1 in time 2O(k)n2, where k := tw(G) and
n = |V |.

In Chapter 2, we obtained two FPT results using Dynamic Programming based on
bounded treewidth and cutwidth.

2we refer interested reader for logic complexity to the book [35]

1.4 Terminology and Notation 7

1.4 Terminology and Notation

1.4.1 Graphs

We provide here most of the common terminology and notation used in this thesis. For most
of the concepts in undirected graphs, we follow the definitions in the book Modern Graph
Theory by B. Bolobás [18].

An undirected graph is denoted by an ordered pair G = (V,E), where E is a set of
unordered pairs of elements in V . The elements of V are the vertices of G and the elements
of E are the edges of G. Two vertices u,v ∈V are adjacent if {u,v} ∈ E, i.e. there is an edge
between u and v. An edge {u,v} is normally written uv for short, thus u,v are adjacent if
and only if uv ∈ E. And in this case we say vertex u is incident with the edge uv, the vertices
u and v are referred to as the endpoints of the edge uv. An edge uu ∈ E(G) would be called a
loop. A graph is a multigraph if there is more than one copy of edges between some pair of
vertices. A graph G is called simple if it is not a multigraph and there is no loop in it. In this
thesis, when we say a graph we mean a simple undirected graph, unless otherwise stated.

A graph H = (V ′,E ′) is a subgraph of G if V ′ ⊆V and E ′ ⊆ E. H = (V ′,E ′) is an induced
subgraph of G if V ′ ⊆V and E ′ is the restriction of E to V ′, i.e. E ′ = {uv∈ E : u∈V ′,v∈V ′}.
For a set of vertices X ⊆V (G), we use G[X] to denote the induced subgraph of G with vertex
set X . E(X) = E(G[X]) and E(X ,Y) = {xy ∈ E(G) : x ∈ X ,y ∈ Y}.

Given a vertex u and a subgraph H of G, we define NH(u) = {v ∈ V (H) : uv ∈ E(H)}
and NH [u] = NH(u)∪u. For a set of vertices X , we define NH [X] = ∪u∈X NH [u] and NH(X) =

∪u∈X NH(u)\X .
For a vertex u in a graph G, we define N(u) = NG(u) and N[u] = NG[u], and call N(u)

the open neighborhood and N[u] the closed neighborhood of u. For a set of vertices X , the
open neighborhood N(X) and closed neighborhood N[X] of X are defined similarly. When
we refer to a neighborhood, we mean the open neighborhood unless otherwise specified. We
define the degree of u to be the integer d(u) = |N(u)|, that is the number of edges incident
with vertex u. We use ∆(G) to denote the maximum degree of G and n its number of vertices.

A walk in a multigraph is a sequence W = v1e1v2 . . .vp−1ep−1vp of alternating vertices
and edges such that vertices vi and vi+1 are end-vertices of edge ei for every i ∈ [p−1]. A
walk W is closed (open, respectively) if v1 = vp (v1 ̸= vp, respectively). A trail is a walk in
which all edges are distinct, a path is a non-closed walk in which all vertices are distinct, and
a cycle is a closed walk where all vertices apart from the first and last ones are distinct. The
length of a path (cycle) is the number of edges in it.

A non-empty graph G is called connected if there is a path between any two of its vertices.
A forest is a graph which contains no cycles. A tree is a connected forest. A vertex in a tree

8 Introduction

with degree 1 is called a leaf. An r-star is a tree with r+1 vertices and r leaves, denoted by
K1,r.

For two graphs G1 = (V1,E1) and G2 = (V2,E2), the disjoint union of G1 and G2 is the
graph with vertex set V1 ∪V2 and edge set E1 ∪E2. An undirected graph is Eulerian if and
only if it is connected and every vertex has even degree.

An edge uv ∈ E(G) is called a bridge if G− uv contains more connected components
than G.

1.4.2 Directed Graphs

For notation and terminology in directed graphs, we follow the book [9]. A directed graph is
an ordered pair D= (V,A), where A is a set of ordered pairs of elements from V . The elements
of V are the vertices of D and the elements of A are the arcs of D. Similar to undirected
graphs, we will use V (D) and A(D) to denote the vertices and arcs of D, respectively. We say
an arc (u,v) is an arc from u to v and we normally write it uv. The notions of subgraph and
induced subgraph are defined analogously to the undirected case. The underlying graph of D
is the undirected graph G, where V (G) =V (D), and there is an edge between two vertices
u,v in G if and only if uv ∈ A(D) or vu ∈ A(D).

The open (closed) neighborhood of a vertex u in D is the neighborhood of u in the
underlying graph, and the open (closed) neighborhood of a set of vertices in D is defined
similarly. The degree of a vertex u is the degree of u in the underlying graph. The out-
neighborhood of u is N+(u) = {v ∈ V : uv ∈ A} and its in-neighborhood if N−(u) = {v ∈
V : vu ∈ A}. The out-degree of u is d+(u) = |N+(u)| and the in-degree is d−(u) = |N−(u)|.
For a set S of vertices in D, N+(S) = (∪u∈SN+(u))\S and N−(S) = (∪u∈SN−(u))\S. We
say there is a directed path from a to b in D if D contains a subgraph with vertices {a =

u1, . . . ,ur+1 = b} and arcs {uiui+1 : 1 ≤ i ≤ r}. We say D has a directed cycle if D contains
a subgraph with vertices {u1, . . . ,ur+1} and arcs {uiui+1 : 1 ≤ i ≤ r}∪{ur+1u1}. A directed
graph is acyclic if it does not have a directed cycle.

A directed graph is connected if its underlying graph is connected. A directed graph is
strongly connected if for every pair of vertices u,v, there is a directed path from u to v.

Let D be a digraph. For a vertex ordering θ = v1,v2, . . . ,vn of V (D), the cutwidth of θ

is the maximum number of arcs between {v1, . . . ,vi} and {vi+1, . . .vn} over all i ∈ [n]. The
cutwidth of D is the minimum cutwidth of all vertex orderings of V (D).

In this thesis, all walks and cycles in directed multigraphs are directed. When we say
an integer i is positive, we mean it is i > 0. For a positive integer p, [p] will denote the set
{1,2, . . . , p}. For integers a ≤ b, [a,b] will denote the set {a,a+1, . . . ,b}. Given a directed
graph D, a feedback vertex set for D is a set S of vertices such that D−S contains no directed

1.5 Research Background 9

cycles. A feedback arc set for D is a set F of arcs such that D−F contains no directed
cycles. A vertex v of a digraph is balanced if the in-degree of v equals its out-degree. We
call im(u) = d+(u)−d−(u) the imbalance of u. A digraph D is balanced if every vertex of
D is balanced. A directed graph is Eulerian if and only if it is connected and balanced [9].

For a directed multigraph D, let µD(xy) denote the multiplicity of an arc xy of D, which
is the number of appearances of it in D. The multiplicity of D (denoted by µ(D)) is the
maximum of the multiplicities of its arcs.

In this thesis, we also consider mixed graphs, in which we allow both undirected and
directed edges. The degree of a vertex in a mixed graph is the number of undirected and
directed edges it is adjacent to.

1.4.3 Edge Colored Graphs

A multigraph G is edge-colored if each edge of G is assigned a color, and G is called k-edge-
colored if only colors from [k] := {1,2, . . . ,k} are used in the edge coloring of G. Note the
edge colorings we consider in this thesis can be arbitrary, not necessarily proper.

A cycle C in an edge-colored graph is properly colored (PC) if no pair of incident edges
of C have the same color. A walk W = v1e1v2 . . .vp−1ep−1vp in an edge-colored multigraph
is called properly colored (PC) if edges ei and ei+1 in W have different colors for every
i ∈ [p− 2], and edges e1 and ep−1 have the same color if v1 = vp. An Euler trail in a
multigraph G is a closed walk which traverses each edge of G exactly once. And so a PC
Euler trail in a multigraph G is a properly colored Euler trail.

A vertex v in an edge-colored graph G is called G-monochromatic, if all edges incident
to v in G are of the same color. Clearly, a PC closed walk has no G-monochromatic vertex.

1.5 Research Background

In this section, we provide some background knowledge for the problems we solve in this
thesis.

In Chapter 2, we include several new results related to the classical combinatorial opti-
mization problem, Chinese Postman problem. The Chinese Postman Problem, as suggested
by its name, asks to find a best way for a mailman to accomplish his job. It was first raised by
the Chinese mathematician MeiGu Guan in [40] around 1960. This problem can be modeled
as an optimization problem in graph theory, in the following way.

10 Introduction

CHINESE POSTMAN PROBLEM (CPP)
Input: A connected edge weighted graph G = (V,E).
Task: Find a closed walk W of minimum total weight

on G such that every edge of G is contained in W .

Since its emergence, this problem has attracted a lot of attention, as it captures a lot of real
life situations where the objective is to find the most efficient way of travelling through some
network. There are already many papers and theses devoted to postman related problems. In
this thesis, we provide three additional results we obtained for it.

The Chinese Postman Problem was shown to be polynomial time solvable, for both
undirected and directed graphs [30] (see also [14, 23, 56, 108]).

To solve the Chinese Postman Problem on directed graphs, we can make use of the
following minimum-cost circulation problem, which can be solved in polynomial time [96].

MINIMUM-COST CIRCULATION PROBLEM

Instance: A flow network G = (V,E), with vertex set V , edge set E; a lower bound
l(u,v) on flow from u to v, a upper bound u(u,v) on flow from u to v, cost c(u,v)
per unit flow from u to v.
Output: A flow assignment which minimizes Σ(u,v)∈Ec(u,v) f (u,v) such that
l(u,v)≤ f (u,v)≤ u(u,v) and Σv∈V (G) f (uv) = Σv∈V (G) f (vu), for any u ∈V (G).

For a given arc weighted directed multigraph G, we construct a flow network N by
assigning lower bound 1, upper bound ∞ and cost ω(uv) to each arc uv, where ω(uv) is the
weight of uv in G. A minimum-cost circulation in N viewed as an Euler directed multigraph
corresponds to a CPP solution and vice versa.

For an undirected multigraph G, we construct an edge-weighted complete graph H whose
vertices are the odd degree vertices of G and the weight of an edge xy in H equals the
minimum weight path between x and y in G. Now find a minimum-weight perfect matching
M in H and add to G a minimum-weight path of G between x and y for each edge xy of M.
The resulting Euler multigraph corresponds to a CPP solution on G and vice versa. Note that
in the case when there is no odd vertex in G, G itself is the optimal solution for CPP on G.

Although the Chinese Postman Problem is polynomial time solvable for both undirected
and directed graphs, we are not as fortunate for mixed graphs. It was proved by Papadimitriou
([72]) in 1976 that Chinese Postman Problem in mixed graphs (MCPP) is NP-hard. In the
same paper, Papadimitriou further showed that the NP-completeness holds even for planar
graphs in which each vertex has degree at most 3 and each edge or arc has weight at most 1.
Interestingly, for mixed graph in which every vertex has even degree, the Chinese Postman

1.5 Research Background 11

Problem can be solved in polynomial time, this result was obtained by Edmonds and Johnson
[30].

There are many other variants of the Chinese Postman Problem, most of which turn out
to be NP-hard. For instance, a natural generalization of Chinese Postman Problem arises
when we consider asymmetric costs of traversing a street via two different directions, which
models the case of blowing wind or a slope. Minieka proposed the Windy Postman Problem
modeling for this situation in [68]. The Windy Postman Problem contains MCPP as a special
case, so itself is also NP-hard.

The hard variants of Chinese Postman Problem have been studied extensively by approx-
imation or heuristics, there is also a few parameterized complexity study of them. In this
thesis, we add two more positive FPT results to this realm, presented in section 2.1 and 2.2.
separately.

In Chapter 3, we study two graph packing flavor problems in undirected graphs which
were known to be FPT previously. We continue the study mainly from the kernelization
perspective, and our goal is to find the smallest possible kernel size.

For a fixed graph H, the problem of deciding whether a graph G has k vertex-disjoint
copies of H is called H-PACKING. This problem has many applications (see, e.g., [10,
13, 53]), but unfortunately it is almost always intractable. Indeed, Kirkpatrick and Hell
[53] proved that if H contains a component with at least three vertices then H-PACKING is
NP-complete. Thus, many approximation, parameterized, and exponential algorithms have
been studied for H-PACKING when H is a fixed graph, see, e.g., [10, 32, 33, 80, 104]. The
NP-hardness of these problems provides us a good opptunity to apply the techniques in FPT
theory. We obtain two linear kernel results for two packing problems on undirected graphs,
presented in section 3.1 and 3.2.

Chapter 4 presents the last research theme in this thesis which focuses on the structural
properties in edge colored graphs.

In the study of edge colored graphs, many research are conducted under the important
notion properly colored. Recall that a walk W in an edge-colored multigraph is called
properly colored if no two consecutive edges of W have the same color.

PC walks are of interest in many graph theory applications, e.g., in genetic and molecular
biology [75, 94, 93], in design of printed circuit and wiring boards [98], and in channel
assignment in wireless networks [4, 85]. They are also of interest in graph theory themselves
as generalizations of walks in undirected and directed graphs. Indeed, if we assign different
colors to all edges of an undirected multigraph, every walk not traversing the same edge
twice becomes PC. Also, consider the standard transformation from a directed graph D into a
2-edge-colored graph G by replacing every arc uv of D by a path with a blue edge uwuv and a

12 Introduction

red edge wuvv, where wuv is a new vertex [9]. Clearly, every directed walk in D corresponds
to a PC walk in G (with end-vertices in V (G)) and vice versa. There is an extensive literature
on PC walks: for a detailed survey of pre-2009 publications, see Chapter 16 of [9], more
recent papers include [1, 36, 58–60].

Edge colored graphs are generalization of undirected and directed graphs. We wonder
whether existing results on undirected and directed graphs can be extended to edge colored
graphs. In Section 2.3, we solved the Chinese Postman Problem on edge colored graphs. In
Chapter 4, we continue the study on edge colored graphs. A large portion of current study
focus on the existence and detection of certain structure in a given edge colored graph.

Bang-Jensen and Gutin [7] introduced cyclic connectivity as follows. Let P= {H1, . . . ,Hp}
be a set of subgraphs of an edge colored multigraph G. The intersection graph Ω(P) of P
has the vertex set P and the edge set {HiH j : V (Hi)∩V (H j) ̸= /0,1 ≤ i < j ≤ p}. A pair
x,y of vertices in an edge-colored multigraph H is cyclic connected if H has a collection
of PC cycles P = {C1, . . . ,Cp} such that x and y belong to some cycles in P and Ω(P) is a
connected graph. A maximum cyclic connected induced subgraph of G is called a cyclic
connected component of G. Note that cyclic connected components partition the vertices of
G. Also note that cyclic connectivity for digraphs, where dicycles are considered instead of
PC cycles, coincides with strong connectivity.

Aiming for a better understanding of PC connectivity and cycles in edge colored graphs,
we introduce 5 types of PC acyclicity, and check whether the Menger’s theorem in classic
graph theory can be generalized to edge colored graphs.

Theorem 1.5.1 (Menger’s Theorem) [67] Let D be a directed multigraph and let u,v ∈
V (D) be a pair of distinct vertices. If the arc uv ̸∈ A(D), then the maximum number of
internally vertex disjoint (u,v)-paths equals the minimum number of vertices (not including
u and v) whose deletion separates u from v.

1.6 Main Results and Structure of Thesis

We now give a brief introduction to the structure and contents of this thesis. Most of the
results in this thesis have been published as conference or journal articles.

In Chapter 2, we study several variants of the classic Chinese Postman Problem.
Section 2.1 based on the paper [43], is devoted to Directed k-Chinese Postman Problem

(k-DCPP). In k-DCPP, we are given a connected weighted digraph G = (V,A) and an integer
k, and need to find a set of exactly k non-empty closed directed walks (with minimum total
weight) such that every arc of G is contained in at least one of the walks. We show that the
k-DCPP is fixed-parameter tractable with parameter k.

1.6 Main Results and Structure of Thesis 13

Section 2.2 which is based on the paper [42], studies the Mixed Chinese Postman Problem
(MCPP). In the Mixed Chinese Postman Problem, given an edge-weighted mixed graph G (G
may have both edges and arcs), our aim is to find a minimum weight closed walk traversing
each edge and arc at least once. The MCPP parameterized with the number of edges was
known to be fixed-parameter tractable using a simple argument. Solving an open question
raised by van Bevern et al.[102], we prove that the MCPP parameterized with the number of
arcs is also fixed-parameter tractable.

Section 2.3 based on the paper [45], considers the Chinese Postman Problem on edge
colored graphs. It is well-known that the Chinese Postman Problem is polynomial-time
solvable on both undirected and directed graphs. We extend this result to edge-colored
multigraphs. Our result is in sharp contrast to the fact that Chinese Postman Problem on
mixed graphs is NP-hard.

In Chapter 3, we study two problems on undirected graphs from kernelization perspective,
both of them have some kind of "graph packing" flavor.

In section 3.1 which is based on the paper [11], we study the c-LOAD COLORING

problem. Let c,k be two positive integers, given a graph G = (V,E), the c-LOAD COLORING

problem asks whether there is a c-coloring ϕ : V → [c] such that for every i ∈ [c], there are at
least k edges with both end-vertices colored i. Gutin and Jones studied this problem with
c = 2 in [41]. They proved 2-LOAD COLORING to be fixed-parameter tractable (FPT) with
parameter k by obtaining a kernel with at most 7k vertices. We extended the result to any
fixed c by giving both a linear-vertex and a linear-edge kernel. In the particular case of c = 2,
we obtain a kernel with less than 4k vertices and less than 6k+(3+

√
2)
√

k+4 edges. These
results imply that for any fixed c ≥ 2, c-LOAD COLORING is FPT and it allows us to design
an approximation algorithm with a constant ratio for the optimization version of c-LOAD

COLORING (where k is to be maximized).
Section 3.2 based on the paper [12], studies the star packing problem. Let integers r ≥ 2

and d ≥ 3 be fixed. Let Gd be the set of graphs with no induced path on d vertices. We
study the problem of packing k (k ≥ 2) vertex-disjoint copies of K1,r into a graph G from
parameterized preprocessing, i.e., kernelization, point of view. We show that every graph
G ∈ Gd can be reduced, in polynomial time, to a graph G′ ∈ Gd with O(k) vertices such that
G has at least k vertex-disjoint copies of K1,r if and only if G′ does.

In Chapter 4, we discuss about Properly Colored (PC) cycles and acyclicity in edge
colored graphs.

In section 4.1, which is based on the paper [44], we introduce and study five types of
PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper
superset of graphs of acyclicity of type i+1, i = 1,2,3,4. The first three types are equivalent

14 Introduction

to the absence of PC cycles, PC closed trails, and PC closed walks, respectively. While
graphs of types 1, 2 and 3 can be recognized in polynomial time, the problem of recognizing
graphs of type 4 is, somewhat surprisingly, NP-hard even for 2-edge-colored graphs (i.e.,
when only two colors are used). The same problem with respect to type 5 is polynomial-time
solvable for all edge-colored graphs. Using the five types, we investigate the border between
intractability and tractability for the problems of finding the maximum number of internally
vertex-disjoint PC paths between two vertices and the minimum number of vertices to meet
all PC paths between two vertices.

Section 4.2 is based on the paper [50], in which we consider the problem of detecting odd
properly colored cycles in edge colored graphs. It is well-known that an undirected graph has
no odd cycle if and only if it is bipartite. A less obvious, but similar result holds for directed
graphs: a strongly connected digraph has no odd directed cycle if and only if it is bipartite.
We study this problem and show how to decide if there exists an odd PC cycle in a given
edge-colored graph. As a by-product, we show how to detect if there is a perfect matching in
a graph with even (or odd) number of edges in a given edge set.

Chapter 2

Chinese Postman Problem

2.1 k-DCPP

Let G = (V,A) be a connected digraph, where each arc a ∈ A is assigned a non-negative
integer weight ω(a) (G is a weighted digraph). As we already mentioned, the DIRECTED

CHINESE POSTMAN PROBLEM is a well-studied polynomial-time solvable problem in
combinatorial optimization [9, 30, 108].

DIRECTED CHINESE POSTMAN PROBLEM (DCPP)
Input: A connected weighted digraph G = (V,A).
Task: Find a closed directed walk T of minimum total weight

on G such that every arc of G is contained in T .

In this section, we will investigate the following generalization of DCPP.

DIRECTED k-CHINESE POSTMAN PROBLEM (k-DCPP)
Input: A connected weighted digraph G = (V,A) and an integer k.
Task: Find a set of exactly k non-empty closed directed walks with

minimum total weight such that every arc of G is contained in
at least one of the walks.

Note that the k-DCPP can be extended to directed multigraphs (that may include parallel
arcs but no loops), but the extended version could be reduced to the one on digraphs by
subdividing parallel arcs and adjusting weights appropriately. Since it is more convenient,
we consider the k-DCPP for digraphs only.

In the literature, the undirected version of k-DCPP, abbreviated k-UCPP, has also been
studied. The k-UCPP was formulated to model the scenario with k vehicles, which cooperate
to accomplish to task of traversing each edge or arc at least once. If a vertex v of G is part of

16 Chinese Postman Problem

the input and we require that each of the k walks contains v then the k-DCPP and k-UCPP are
polynomial-time solvable [73, 111]. We just need to add k−dGT (v) copies of a minimum
weight cycle through v, where GT is an optimal solution for DCPP on G. However, in general
the k-DCCP is NP-complete [48], as is the k-UCPP [48, 97].

Lately research in parameterized algorithms and complexity for the CPP and its gener-
alizations was summarized in [102] and reported in [90]. Several recent results described
there are of Niedermeier’s group who identified a number of practically useful parameters
for the CPP and its generalizations, obtained several interesting results and posed some open
problems, see, e.g. [28, 91, 92]. Sorge [90] and van Bevern et al. [102] suggested to study
the k-UCPP as a parameterized problem with parameter k and asked whether the k-UCPP is
fixed-parameter tractable, i.e. can be solved by an algorithm of running time O(f (k)nO(1)),
where f is a function of k only and n = |V |.

Theorem 2.1.1 The k-DCPP is fixed-parameter tractable.

Our proof is very different from that in Gutin et al. [48] for the k-UCPP. While the latter
was based on a simple reduction to a polynomial-size kernel, we give a fixed-parameter algo-
rithm directly using significantly more powerful tools. In particular, we use an approximation
algorithm of Grohe and Grüber [38] for the problem of finding the maximum number ν0(D)

of vertex-disjoint directed cycles in a digraph D. Their algorithm is based on the celebrated
paper by Reed et al. [81] on bounding ν0(D) by a function of τ0(D), the minimum size of a
feedback vertex set of D. We also use the well-known fixed-parameter algorithm of Chen et
al. [22] for the feedback vertex set problem on digraphs.

We also consider the following well-known problem related to the k-DCPP.

k-ARC-DISJOINT CYCLES PROBLEM (k-ADCP)
Input: A digraph D and an integer k.
Task: Decide whether D has k arc-disjoint directed cycles.

Crucially, we are interested in the k-ADCP because it is related to k-DCPP. Since if we
are given a set of k arc-disjoint cycles, we can solve the k-DCPP in polynomial time (see
Lemma 2.1.5). However, k-ADCP is important in its own right.

The problem is NP-hard in general but polynomial-time solvable for planar digraphs [64].
In fact, for planar digraphs the maximum number of arc-disjoint directed cycles equals the
minimum size of a feedback arc set [9]. It is natural to consider k as the parameter for the
k-ADCP. It follows easily from the results of Slivkins [89] that the k-ADCP is W[1]-hard.
It remains W[1]-hard for quite restricted classes of directed multigraphs, e.g., for directed
multigraphs which become acyclic after deleting two sets of parallel arcs [89]. Here we

2.1 k-DCPP 17

show that the k-ADCP-EULER, the k-ADCP on Euler digraphs, is fixed-parameter tractable,
generalizing a result in [89] (Theorem 3.1). k-ADCP-EULER was shown to be NP-hard by
Vygen [103].

Theorem 2.1.2 The k-ADCP-EULER is fixed-parameter tractable.

Interestingly, the problem of deciding whether a digraph has k vertex-disjoint directed
cycles, which is W[1]-hard (also easily follows from the results of Slivkins [89]), remains
W[1]-hard on Euler digraphs. Indeed, consider a non-Euler digraph D and let ν0(D) denote
the maximum number of vertex-disjoint directed cycles in D. Construct a new digraph H
from D by adding two new vertices x and y, arcs xy and yx and the following extra arcs
between x and the vertices of D: for each v ∈V (D) add max{d−(v)−d+(v),0} parallel arcs
vx and max{d+(v)− d−(v),0} parallel arcs xv, where d−(v) and d+(v) are the in-degree
and out-degree of v, respectively. To eliminate parallel arcs, it remains to subdivide all arcs
between x and V (D). Now it is sufficient to observe that H is Euler and ν0(H) = ν0(D)+1.

To prove Theorems 2.1.1 and 2.1.2, we study the following problem that generalizes the
k-DCPP (in the case when an optimal solution exists in which the number of times each arc
visited by each closed walk is restricted) and k-ADCP. Let b ≤ c be non-negative integers.

DIRECTED k-WALK [b,c]-COVERING PROBLEM (k[b,c]-DWCP)
Input: A connected weighted digraph G = (V,A) and

an integer k.
Task: Find a set of k non-empty closed directed walks with

minimum total weight in which every arc of G appears
between b and c times in total.

In Section 2.1.2 we will prove the following theorem.

Theorem 2.1.3 Let (G,k) be an instance of k[b,c]-DWCP and suppose we are given a vertex
ordering θ = (v1,v2, . . . ,vn) of G with cutwidth at most p. Then, in time O∗((c2k)p2k), we
can solve (G,k) and find an optimal feasible solution if one exists.

In this thesis, the O∗ notation omits polynomial function of n. Note that when c and p
are upper-bounded by functions of k, the algorithm of this theorem is fixed parameterized.

The contents are organised as follows. In Section 2.1.1, we prove six lemmas providing
structural results for the k-DCPP and k-ADCP-EULER, which will later be used to reduce
these problems to k[b,c]-DWCP. In Section 2.1.2, we prove Theorem 2.1.3. In Section 2.1.3,
we put the results of the previous two sections together to prove Theorems 2.1.1 and 2.1.2.

18 Chinese Postman Problem

The key results of Section 2.1.1 are as follows. Lemma 2.1.3 shows that, given an Euler
directed graph, we can either find k arc-disjoint cycles or a vertex ordering with cutwidth
bounded by a function of k. This allows us to either solve the k-ADCP-EULER directly or
reduce it to the k[0,1]-DWCP on a graph of bounded cutwidth, allowing us to apply Theorem
2.1.3. Lemmas 2.1.5 and 2.1.6 study the Eulerian graph GT derived from a solution T to the
DCPP on G. Lemma 2.1.5 shows that given k arc-disjoint cycles in GT , we can solve the
k-DCPP on G in polynomial time. Lemma 2.1.6 shows that if no arc appears in GT more
than k times (in particular if there are fewer than k arc-disjoint cycles in GT), there is an
optimal solution for the k-DCPP such that no arc is visited more than k times in total by the k
walks of the solution. This allows us to reduce the k-DCPP to the k[1,k]-DWCP, and Lemma
2.1.3 allows us to bound the cutdwidth of the graph. Thus, in this case we can again apply
Theorem 2.1.3.

2.1.1 Structural Results and Fixed-Parameter Algorithms

The next lemma is a simple sufficient condition for an Euler digraph to contain k arc-disjoint
cycles.

Lemma 2.1.1 Every balanced digraph D having a vertex of out-degree at least k ≥ 1,
contains k arc-disjoint cycles that can be found in polynomial time.

Proof For k = 1, it is true as D has a cycle that can be found in polynomial time. Let
k ≥ 2 and let C be a cycle in D. Observe that after deleting the arcs of C, D has a vertex of
out-degree at least k−1 and we are done by induction hypothesis.

It follows from Reed et al. [81] and Propositions 13.3.1 and 15.3.1 in [9] that there is a
function f : N→ N such that for every k, if a digraph D does not have k arc-disjoint cycles,
then it has a feedback arc set with at most f (k) arcs. This result can be easily extended to
directed multigraphs; we reduce multigraphs to graphs by subdividing parallel arcs. Using
this result, Grohe and Grüber [38] showed that there is a non-decreasing and unbounded
function h : N→ N and a fixed-parameter algorithm that returns at least h(k) arc-disjoint
cycles for a digraph D if D has at least k arc-disjoint cycles (k is the parameter).

Let h−1 : N→N be defined by h−1(q) = min{p : h(p)≥ q}. Since h is a non-decreasing
and unbounded function, h−1 is a non-decreasing and unbounded function. Combining the
above results, we find that for every digraph D, either the algorithm of Grohe and Grüber
returns at least k arc-disjoint cycles, or D has a feedback arc set of size at most f (h−1(k)).

Chen et al. [22] designed a fixed-parameter algorithm that decides whether a digraph
D contains a feedback vertex set of size k (k is the parameter). As this is an iterative

2.1 k-DCPP 19

compression algorithm, it can be easily modified to an algorithm for finding a minimum
feedback vertex set in D (the running time of the latter algorithm is q(τ0(D))nO(1), where
τ0(D) is the minimum size of a feedback vertex set in D, n = |V (D)| and q(k) = 4kk!). The
modified algorithm can be used for finding a minimum feedback arc set in D as the line
graph of D, denoted by H = L(D), can be constructed in polynomial time, such that D has a
feedback arc set of size k if and only if H has a feedback vertex set of size k, see , e.g., [9]
(Proposition 15.3.1).

Lemma 2.1.2 There is a function g : N→ N and a fixed-parameter algorithm such that for
a directed multigraph D, the algorithm returns either k arc-disjoint cycles or a feedback arc
set of size at most g(k) (here k is the parameter).

Proof By subdividing arcs, we may assume that D is a digraph, i.e. D has no parallel
arcs. Let κ := k−1 and perform the following loop: for κ := κ +1 run both Grohe-Grüber
algorithm and Chen et al. algorithm on D with parameter κ until we get either at least k
arc-disjoint cycles or a feedback arc set of size at most κ . Note that by [81], the loop will
be completed for κ ≤ f (h−1(k)). Thus, our procedure is a fixed-parameter algorithm with
respect to parameter k and we may set g(k) = f (h−1(k)).

Lemma 2.1.3 Let g : N→ N be the function in Lemma 2.1.2. Let D be an Euler directed
multigraph. We can obtain either k arc-disjoint cycles of D or a vertex ordering of cutwidth
at most 2g(k).

Proof Let us run the procedure of Lemma 2.1.2 for D and k. If we get k arc-disjoint cycles,
we are done. Otherwise, we get a feedback arc set F of D such that |F | ≤ g(k). Then
D′ = D−F is an acyclic directed multigraph. We let θ = (v1, . . . ,vn) be an acyclic ordering
of D′, i.e., D′ has no arc of the form viv j, i > j, (it is well-known that such an ordering
exists [9]). Now θ is a vertex ordering for D with at most |F | arcs from {vi+1, . . . ,vn}
to {v1, . . . ,vi} for each i ∈ [n− 1], and because D is Euler there are the same number of
arcs from {v1, . . . ,vi} to {vi+1, . . . ,vn} [9, Corollary 1.7.3]. So θ is a vertex ordering with
cutwidth at most 2g(k).

In the rest of this section, G = (V,A) is a connected weighted directed graph. For a
solution T = {T1, . . . ,Tk} to the k-DCPP on G (k ≥ 1), let GT = (V,AT), where AT is a
multiset containing all arcs of A, each as many times as it is traversed in total by T1 ∪·· ·∪Tk.

Lemmas 2.1.4 and 2.1.5 are similar to two simple results obtained for the k-UCPP in
[48]. Note that given k closed walks which cover all the arcs of a digraph, their union forms
a closed walk covering all the arcs and, therefore, it is a solution for the DCPP. Hence, the
following proposition holds.

20 Chinese Postman Problem

Lemma 2.1.4 The weight of an optimal solution for the k-DCPP on G is not smaller than
the weight of an optimal solution for the DCPP on G.

Lemma 2.1.5 Let T be an optimal solution for the DCPP on G. If GT contains at least k
arc-disjoint cycles, then the weight of an optimal solution for the k-DCPP on G is equal to
the weight of an optimal solution of the DCPP on G. Furthermore if k arc-disjoint cycles in
GT are given, then an optimal solution for the k-DCPP can be found in polynomial time.

Proof Note that GT is an Euler directed multigraph and so every vertex of GT is balanced.
Let C be any collection of k arc-disjoint cycles in GT . Delete all arcs of C from GT and
observe that every vertex in the remaining directed multigraph G′ is balanced. Find an
optimal DCPP solution for every connected component of G′ and append each such solution
F to a cycle in C which has a common vertex with F . As a result, in polynomial time, we
obtain a collection Q of k closed walks for the k-DCPP on G of the same weight as T . So Q
is optimal by Lemma 2.1.4.

Thus, Lemmas 2.1.1 and 2.1.5 implies that if the multiplicity (recall we defined it in ??)
µ(GT)≥ k for any optimal solution T of the DCPP on G, then there is an optimal solution
of the k-DCPP on G with weight equal to the weight of GT . The next lemma helps us in the
case that µ(GT)≤ k−1.

Lemma 2.1.6 Let T be an optimal solution of the DCPP on G such that µ(GT) ≤ k− 1.
Then there is an optimal solution W for the k-DCPP on G such that µ(GW)≤ k.

Proof Let T be an optimal solution of DCPP on G and let µ(GT) ≤ k− 1. Suppose that
there is an optimal solution W of the k-DCPP on G such that µ(GW)> k.

Let δ (xy) = µGW (xy)−µGT (xy) for each arc xy of G. Consider a directed multigraph H ′

with the same vertex set as G and in which xy is an arc of multiplicity |δ (xy)| if it is an arc in
G and δ (xy) ̸= 0. We say that an arc xy of H ′ is positive (negative) if δ (xy)> 0 (δ (xy)< 0).

For a digraph D and its vertex x, let N+
D (x) and N−

D (x) denote the sets of out-neighbors
and in-neighbors of x, respectively. As GW and GT are both Euler graphs, we have that

∑
y∈N+

H′(x)

δ (xy)− ∑
y∈N−

H′(x)

δ (yx)

= ∑
y∈N+

G (x)

(µGW (xy)−µGT (xy)) − ∑
y∈N−

G (x)

(µGW (yx)−µGT (yx)) = 0

for each vertex x in G. Now create the directed multigraph H by reversing every negative
arc of H ′ (i.e., replace every negative arc uv by the negative arc vu, keeping the weight of the
arcs the same), and observe that H is balanced.

2.1 k-DCPP 21

Thus, the arcs of H can be decomposed into a collection C = {C1, . . . ,Ct} of cycles. We
define the weight ω(Ci) of a cycle Ci of C as the sum of the weights of its positive arcs minus
the sum of the weights of its negative arcs, and assume that ω(C1)≤ ·· · ≤ ω(Ct).

Set F0 = GT and for i ∈ [t], construct Fi from Fi−1 as follows: for each arc xy of Ci, if xy
is a positive arc in H add a copy of xy to Fi−1 and if xy is a negative arc in H remove a copy of
yx from Fi−1. Thus F0,F1, . . . ,Ft is a sequence of graphs with F0 = GT ,Ft = GW , and Fi is an
Euler graph for each i ∈ [t]. Furthermore, the multiplicity of each arc xy changes by at most
1 between Fi−1 and Fi for each i ∈ [t], and no arc will have its multiplicity both increase and
decrease over the course of F0,F1, . . . ,Ft . Therefore, every arc uv has multiplicity between
µGT (uv) and µGW (uv) in each Fi, and so each Fi is a feasible solution for DCPP on G.

Since T is optimal, ω(F0) ≤ ω(F1) = ω(F0)+ω(C1) and so ω(C1) ≥ 0. Due to the
ordering of cycles of C according to their weights, ω(Ci) ≥ 0 for i ∈ [t] and so ω(Fi) ≥
ω(Fi−1) for i ∈ [t].

Since µ(F0)≤ k−1 and µ(Ft)> k, and as the multiplicity of each arc changes by at most
1 each time, there is an index j such that µ(Fj) = k. Then the out-degree of some vertex
of Fj is at least k and so by Lemma 2.1.1, Fj has k arc-disjoint cycles. Similarly to Lemma
2.1.5, it is not hard to show that there is a solution U of k-DCPP on G of weight ω(Fj). Since
W is optimal and ω(Fj)≤ ω(Ft) = ω(GW), U is also optimal and we are done.

2.1.2 Proof of Theorem 2.1.3

Theorem 2.1.3 is proved by providing a dynamic programming (DP) algorithm of required
complexity. We first make an observation to simplify the DP algorithm.

Lemma 2.1.7 Let G = (V,A) define an instance of k[b,c]-DWCP. The instance has a solution
of weight at most ρ if and only if there exist (not necessarily connected) non-empty directed
multigraphs G1, . . . ,Gk with the following properties:

• All multigraphs G1, . . . ,Gk use only arcs of G (each, possibly, multiple times);

• G1 is a balanced multigraph;

• For 2 ≤ i ≤ k, Gi is a balanced digraph (with no parallel arcs);

• Each arc a ∈ A occurs between b and c times in the multigraph1 G1 ∪·· ·∪Gk, and the
total weight of this multigraph is at most ρ .

1Here, as in the proof, the union of multigraphs means that the multiplicity of an arc in the union equals the
sum of multiplicities of this arc in the multigraphs of the union.

22 Chinese Postman Problem

Proof On the one hand, let W1, . . . ,Wk be a solution to the k[b,c]-DWCP instance of weight
at most ρ , where each Wi is a closed directed walk. For each i ∈ [k], let Qi be the directed
multigraph whose vertices are the vertices visited by Wi and which contains an arc uv of
multiplicity µ if uv is traversed exactly µ times by Wi. For each i ≥ 2, if Qi has parallel arcs,
let Gi be a cycle in Qi and let Q′

i = Qi \A(Gi) and, otherwise (i.e., Qi has no parallel arcs),
let Gi = Qi and let Q′

i be empty. Now let G1 = Q1∪Q′
2∪·· ·∪Q′

k. Observe that all properties
of the lemma are satisfied.

On the other hand, consider directed multigraphs G1, . . . ,Gk satisfying the properties of
the lemma. If all multigraphs Gi are connected, then they are all Euler. Therefore we can find
an Euler tour Wi for each graph Gi, which forms the solution to the k[b,c]-DWCP instance.
If b = 0, then we may replace each graph Gi with a cycle Ci contained in Gi, and produce a
solution to k[b,c]-DWCP that consists of k (not necessarily pairwise arc-disjoint) cycles.

Finally, if not all multigraphs are connected and b > 0, we proceed as follows. First,
select for each multigraph Gi, i > 1 an arbitrary connected component Hi, and move all other
components of Gi to G1, increasing arc multiplicity as appropriate. Next, as long as G1

remains unconnected, let H be an arbitrary connected component of G1. As b > 0 and G
is connected, some component Hi, i > 1 must intersect a vertex of H; we may move H to
the multigraph Gi and maintain that Gi is connected. Repeat this until G1 (and hence each
multigraph Gi) is connected. Note that this does not change the arc multiplicity or the weight
of the solution. Now each multigraph Gi is Euler, and again we can find a solution.

Our DP algorithm will calculate a function Φ : A(G)× [k]→ [0,c] corresponding to an
optimal solution to the k[b,c]-DWCP on G. More precisely, Φ(a, j) will be the number of
copies of arc a in walk number j, for each a ∈ A(G), j ∈ [k]. The following definitions and
the next lemma allow us to express the result of Lemma 2.1.7 in terms of this function.

Given a set of arcs M and a function φ : M× [k]→ [0,c], we say that φ is valid if for each
arc a ∈ M, we have that ∑ j∈[k]φ(a, j) ∈ [b,c], and φ(a, j)≤ 1 for 2 ≤ j ≤ k.

Given a vertex v, we say φ is balanced for v if for each j ∈ [k],

∑
uv∈M

φ(uv, j) = ∑
vu∈M

φ(vu, j)

that is, v is a balanced vertex in the directed mulitgraph containing φ(a, j) copies of each
arc a.

Lemma 2.1.8 Let G = (V,A) define an instance of k[b,c]-DWCP. The instance has a solution
of weight at most ρ if and only if there exists a function Φ : A× [k]→ [0,c] such that

1. Φ is valid;

2.1 k-DCPP 23

v1 v2 vi vn

Ei \Ei−1

Ei−1 \Ei

Ei−1 ∩Ei

Fig. 2.1 Ei \Ei−1, Ei−1 \Ei and Ei−1 ∩Ei

2. Φ is balanced for each vertex in V ;

3. ∑a∈A Φ(a, j)> 0 for each j ∈ [k]; and

4. ∑ j∈[k]∑a∈A Φ(a, j) ·ω(a)≤ ρ .

Proof Suppose first there is a solution of weight at most ρ , and let G1, . . . ,Gk be the directed
multigraphs given by Lemma 2.1.7. Let φ : A× [k]→ [0,c] be the function such that φ(a, j)
is the number of copies of an arc a in the graph G j. As each arc appears between b and c
times in G1 ∪·· ·∪Gk and G j has no parallel arcs for j ≥ 2, we have that φ is valid. As each
multigraph G j is balanced, we have that φ is balanced for each vertex. As each multigraph is
non-empty, we have that ∑a∈A φ(a, j)> 0 for each j ∈ [k]. Finally, ∑ j∈[k]∑a∈A φ(a, j) ·ω(a)
is exactly the total weight of G1 ∪ ·· · ∪Gk, which is at most ρ . Therefore, φ satisfies the
conditions of the lemma.

Conversely, let φ : A× [k]→ [0,c] be a function satisfying the conditions of the lemma,
and for each j ∈ [k], let G j be the directed multigraph containing φ(a, j) copies of each arc a.
As ∑a∈A φ(a, j)> 0, each multigraph G j is non-empty. By construction, each multigraph G j

uses only arcs of G. As φ is balanced for each vertex, we have that each multigraph G j is
balanced. As φ is valid, we have that G j has no parallel arcs for j ≥ 2, and each arc a ∈ A
occurs between b and c times in G1 ∪ ·· ·∪Gk. Finally, the total weight of G1 ∪ ·· ·∪Gk is

∑ j∈[k]∑a∈A φ(a, j) ·ω(a)≤ ρ . So by Lemma 2.1.7 there is a solution to the k[b,c]-DWCP
instance of weight at most ρ .

Let θ = (v1,v2, . . . ,vn) be a vertex ordering of a digraph G of cutwidth at most p. For
each i ∈ [n−1], let Ei be the set of arcs of the form v jvh or vhv j, where j ≤ i and h > i. In
addition let E0 = /0 and En = /0. As θ has cutwidth at most p, |Ei| ≤ p for each i. We refer to
E0,E1, . . . ,En as the arc bags of θ . For each i ∈ {0,1, . . . ,n}, let E≤i =

⋃
0≤ j≤i E j. We give

an illustration of the difference between Ei−1 and Ei in Fig 2.1.

24 Chinese Postman Problem

We now give an intuitive description of the DP algorithm before giving technical details.
Our DP algorithm will process each arc bag of θ in turn, from E0 to En. For each arc bag
Ei, we store the weights of a range of partial solutions. A function φ is used to represent
how many times each arc in the bag Ei is used by each walk in the solution. Finally, a set S
provides a guarantee that certain walks are non-empty. This is to ensure we don’t produce a
solution which uses less than k non-empty walks.

Given i ∈ [n], a valid function φ : Ei × [k] → [0,c] and a subset S of [k], we define
χ(Ei,φ ,S) to be the minimum integer ρ for which there exists a function Φ : E≤i× [k]→ [0,c]
satisfying the following conditions:

1. Φ is valid;

2. Φ extends φ , i.e. Φ(a, j) = φ(a, j) for each a ∈ Ei, j ∈ [k];

3. For each h ≤ i, Φ is balanced for vh;

4. ∑a∈E≤i Φ(a, j)> 0 for each j ∈ S; and

5. ∑ j∈[k]∑a∈E≤i Φ(a, j) ·ω(a)≤ ρ .

If no such integer ρ exists, then we let χ(Ei,φ ,S) = ∞.
Observe that if Φ is a function satisfying the above conditions, then χ(Ei,φ ,S)≤ ρ . In

such a case we will call Φ a witness for χ(Ei,φ ,S)≤ ρ . Thus, χ(Ei,φ ,S) is the minimum ρ

such that there exists a witness for χ(Ei,φ ,S)≤ ρ .
Note that if Φ is a witness for χ(Ei,φ ,S)≤ ρ , it may be the case that ∑a∈E≤i Φ(a, j)>

0 for some j /∈ S. In particular, any witness for χ(Ei,φ ,S) ≤ ρ is also a witness for
χ(Ei,φ ,S′) ≤ ρ , for any S′ ⊆ S. This allows us to simplify the recursion step in Lemma
2.1.10.

The next lemma follows from Lemma 2.1.8 and the fact that En = /0 and E≤n = A(G).

Lemma 2.1.9 Let φ : En × [k]→ [b,c] be the empty function. Then there is a solution for
the k[b,c]-DCPP on G of weight at most ρ if and only if χ(En,φ , [k])≤ ρ .

Lemma 2.1.10 Consider an arc bag Ei, for i ≥ 1. Let E∗
i = Ei \ Ei−1. For any valid

φ : Ei × [k] → [0,c] and S ⊆ [k], let Y = ∑ j∈S ∑a∈E∗
i

φ(a, j) ·ω(a), and let S′ = { j ∈ S :

∑a∈E∗
i

φ(a, j) = 0}.
Then the following recursion holds:

χ(Ei,φ ,S) = Y +min
φ ′

χ(Ei−1,φ
′,S′)

2.1 k-DCPP 25

where the minimum is taken over all valid φ ′ : Ei−1 × [k]→ [0,c] satisfying the following
conditions:

• For all a ∈ Ei ∩Ei−1 and all j ∈ [k], φ ′(a, j) = φ(a, j); and

• The function φ ∪φ ′ is balanced for vi.

If there is no φ ′ satisfying these conditions, then χ(Ei,φ ,S) = ∞.
Furthermore, if there exists φ ′ satisfying the above conditions and we are given a witness

Φ′ for χ(Ei−1,φ
′,S′) ≤ ρ ′, then we can construct a witness for χ(Ei,φ ,S) ≤ Y + ρ ′ in

polynomial time.

Proof It will be useful to note that for each h ≤ i, all arcs incident to vh are contained in E≤i,
and that all arcs incident to vi are contained in Ei−1 ∪Ei.

We first show that χ(Ei,φ ,S)≥ Y +minφ ′ χ(Ei−1,φ
′,S′). Suppose that χ(Ei,φ ,S) = ρ

and ρ ̸= ∞, and let Φ : E≤i × [k] → [0,c] be a witness for χ(Ei,φ ,S) ≤ ρ . Let Φ′ be Φ

restricted to E≤i−1 and let φ ′ be Φ restricted to Ei−1. Let ρ ′ = ∑ j∈[k]∑a∈E≤i−1 Φ(a, j).
As Φ is valid, so are Φ′ and φ ′. Consider a vertex vh, h ≤ i− 1. As Φ is balanced

for vh, and all arcs incident to vh are contained in E≤h ⊆ E≤i−1, we have that Φ′ is also
balanced for vh. As ∑a∈E≤i Φ(a, j)> 0 and ∑a∈E∗

i
φ(a, j) = 0 for each j ∈ S′, we have that

∑a∈E≤i−1 Φ′(a, j) > 0 for each j ∈ S′. Therefore Φ′ is a witness for χ(Ei−1,φ
′,S′) ≤ ρ ′.

As E≤i is the disjoint union of E≤i−1 and E∗
i , we have that ρ = ∑i∈[k]∑a∈E≤i Φ(a, j) =

∑i∈[k]∑a∈E≤i−1 Φ′(a, j)+∑ j∈[k]∑a∈E∗
i

φ(a, j) = ρ ′+Y ≥ χ(Ei−1,φ
′,S′)+Y .

It remains to show that φ ′ satisfies the conditions of the recursion. As φ and φ ′ are both
restrictions of Φ, we have that φ ′(a, j) = φ(a, j) for all a ∈ Ei ∩Ei−1 and all j ∈ [k]. Finally,
as Φ is balanced for vi and all arcs adjacent to vi are contained in Ei−1 ∪Ei, we have that
φ ∪φ ′ is balanced for vi.

We now show that χ(Ei,φ ,S) ≤ Y +minφ ′ χ(Ei−1,φ
′,S′). Let φ ′ : Ei−1 × [k] → [0,c]

and be chosen such that the conditions of the recursion are satisfied and χ(Ei−1,φ
′,S′) is

minimized. Let ρ ′ = χ(Ei−1,φ
′,S′) and suppose that ρ ′ ̸= ∞.

Let Φ′ be a witness for χ(Ei−1,φ
′,S′) ≤ ρ ′. As φ ′ agrees with φ , and as E≤i−1 ∩Ei =

Ei−1 ∩Ei, we have that Φ′ agrees with φ . Therefore the function Φ = Φ′∪φ is well-defined.
It is easy to see that Φ is valid, that Φ extends φ , that ∑a∈E≤i Φ(a, j)> 0 for each j ∈ S, and
that ∑ j∈[k]∑a∈E≤i Φ(a, j) · ω(a) = ∑ j∈[k]∑a∈E≤i−1 Φ′(a, j) +∑ j∈[k]∑a∈E∗

i
φ(a, j) ≤ ρ ′ +Y .

Finally, as all arcs incident to vh are in E≤i−1 for h ≤ i− 1 and Φ′ is balanced for all
vh,h ≤ i−1, we have that Φ is balanced for all vh,h ≤ i−1, and as all arcs incident to vi are
in Ei−1 ∪Ei and φ ∪φ ′ is balanced for vi, we have that Φ is balanced for vi.

26 Chinese Postman Problem

Note that in the above lemma, we do not need to guess the set S′, as any witness Φ for
χ(Ei,φ ,S)≤ ρ must have ∑a∈E≤i−1 Φ(a, j)> 0 for each j in S′ as defined in the lemma, and
if a function is a witness for χ(Ei−1,φ

′,S′′) = ρ ′ for any S′′ ⊇ S′ then it is also a witness for
χ(Ei−1,φ

′,S′) = ρ ′.
We are now ready to prove Theorem 2.1.3.

Theorem 2.1.3 Let (G,k) be an instance of k[b,c]-DWCP and suppose we are given a vertex
ordering θ = (v1,v2, . . . ,vn) of G with cutwidth at most p. Then, in time O∗((c2k)p2k), we
can solve (G,k) and find an optimal feasible solution if one exists.

Proof Our DP algorithm calculates all values χ(Ei,φ ,S) with φ(·, j) ≤ 1 for j > 1 in a
bottom-up manner, that is, we only calculate values χ(Ei, ·, ·) after all values χ(E j, ·, ·) have
been calculated for 0 ≤ j < i (we use the recursion of Lemma 2.1.10).

Each arc bag Ei of θ contains at most p arcs. For each arc a, there are c+1 options for
φ(a,1) and 2 options for φ(a, j) for each j > 1, i.e., (c+1)2k−1 ≤ c2k options per arc. Thus
there are at most (c2k)p valid choices for φ : Ei × [k]→ [0,c]. As there are 2k choices for a
set S ⊆ [k], the total size of each DP table is O((c2k)p2k).

Since E0 = /0, the only function φ : E0× [k]→ [0,c] is the empty function. It is easy to see
that χ(E0,φ ,S) = 0 if S = /0, and ∞ otherwise. To speed up the application of Lemma 2.1.10
for Ei, 1≤ i≤ n, we form an intermediate data structure (e.g. a hash table) T from the data for
bag Ei−1. Call two entries χ(Ei,φ ,S) and χ(Ei−1,φ

′,S′) compatible when the conditions in
Lemma 2.1.10 are met (i.e., χ(Ei−1,φ

′,S′) is one of the entries included in the minimization
for χ(Ei,φ ,S)). Let the signature of entry χ(Ei−1,φ

′,S′) be (φ ′′,d1, . . . ,dk,S′), where φ ′′ is
φ ′ restricted to arcs Ei−1∩Ei, and where d j = ∑a∈A+(vi)∩Ei−1 φ ′(a, j)−∑a∈A−(vi)∩Ei−1 φ ′(a, j)
(i.e d j is the imbalance at vi in walk number j). Observe that whether an entry χ(Ei−1,φ

′,S′)
is compatible with the entry χ(Ei,φ ,S) can be determined from the signature alone, and
that for each χ(Ei,φ ,S) there is at most one compatible signature. Thus, for every occuring
signature (φ ′′,d1, . . . ,dk,S′) we let T (φ ′′,d1, . . . ,dk,S′) contain the minimum value over all
entries χ(Ei−1, ·, ·) with matching signature; this can be computed in a single loop over the
entries χ(Ei−1, ·, ·). Then, for every entry χ(Ei,φ ,S) of the new table, we look in T for the
value associated with the compatible signature (and add Y to it, by Lemma 2.1.10). Note
that the size of the intermediate table T is immaterial; the time taken consists of first one
loop through χ(Ei−1, ·, ·), then a single query to T for each entry in χ(Ei, ·, ·). Thus, the
entries χ(Ei, ·, ·) can all be computed in total time O∗((c2k)p2k). As En = /0 there is only one
function φ : En × [k]→ [b,c]. By Lemma 2.1.9, χ(En,φ , [k]) is the minimum total weight of
a solution for k[b,c]-DCPP, and ∞ if there is no such solution. Thus to solve k[b,c]-DCPP it
suffices to check the value of χ(En,φ , [k]).

Thus the algorithm finds the value ρ in time O∗((c2k)p2k).

2.1 k-DCPP 27

Using the method of Lemma 2.1.10, we can easily find an optimal solution to k[b,c]-
DCPP For each arc bag Ei,φ : Ei × [k]→ [0,c],S ⊆ [k], in addition to calculating the value
χ(Ei,φ ,S) = ρ , we also calculate a witness for χ(Ei,φ ,S)≤ ρ , in the cases where ρ ̸= ∞.
Just as we can calculate the values of all χ(Ei, ·, ·) given the values of all χ(Ei−1, ·, ·), we may
construct witnesses for all χ(Ei, ·, ·) given witnesses for all χ(Ei−1, ·, ·), using an intermediate
table T as before. (Note that when φ : E0 × [k]→ [0,c] is the empty function, φ is itself a
witness for χ(E0,φ , /0) ≤ 0. This gives us the base case in our construction of witnesses.)
Given a witness Φ for χ(En,φ , [k])≤ ρ , Φ satisfies the conditions of Lemma 2.1.8. Lemma
2.1.8 shows how to construct a solution to k[b,c]-DCPP on G of weight at most ρ from this
witness.

2.1.3 Proofs of Theorems 2.1.1 and 2.1.2

Theorem 2.1.2 The k-ADCP-EULER is fixed-parameter tractable.

Proof Let D be an Euler digraph. We may assume that D has no vertex of out-degree at least
k as otherwise we are done by Lemma 2.1.1. By Lemma 2.1.3, for D we can either obtain
k arc-disjoint cycles or a vertex ordering θ of cutwidth at most 2g(k) for some function
g : N→ N. Note that D is a positive instance of the k-ADCP-EULER if and only if (D,k)
has a finite solution for k[0,1]-DWCP (as every closed walk contains a cycle). It remains to
observe that the algorithm of Theorem 2.1.3 for the k[0,1]-DWCP is fixed-parameter when
the out-degree of every vertex of D is upper-bounded by k and the cutwidth of θ is bounded
by a function of k.

Theorem 2.1.1 The k-DCPP admits a fixed-parameter algorithm.

Proof Let G = (V,A) be a digraph and let T be an optimal solution of DCPP on G which we
can obtain in polynomial time. Using Lemma 2.1.3, we can obtain either k arc-disjoint cycles
of D or a vertex ordering of cutwidth bounded by a function of k. If we get a collection C of
k arc-disjoint cycles in GT , then using C , by Lemma 2.1.5, we can solve the k-DCPP on G
in (additional) polynomial time. So now assume we have a vertex ordering of GT of bounded
cutwidth. We may assume that every vertex of GT is of out-degree at most k−1 (otherwise
by Lemma 2.1.1, GT has a collection of k arc-disjoint cycles). Since every vertex of GT is of
out-degree at most k−1, the multiplicity of GT is at most k−1. Now Lemma 2.1.6 implies
that there is an optimal solution W for the k-DCPP on G such that the multiplicity of GW is
at most k. Thus, we may treat the k-DCPP on G as an instance (G,k) of k[1,k]-DWCP. It
remains to observe that the algorithm of Theorem 2.1.3 to solve the k[1,k]-DWCP on G will
be fixed-parameter.

28 Chinese Postman Problem

2.1.4 k-DCPP in Planar Graphs

We would like to point out that for planar graphs, the algorithm for k-DCPP can be greatly
improved. In the planar case, we don’t need the procedure of running the algorithm by Grohe
and Gruber as we know f (k) = k by Corollary 15.3.10 in [9]. The cutwidth would be at most
2k. The algorithm would be single exponential.

Theorem 2.1.4 The k-DCPP in planar graphs admits a fixed-parameter algorithm which
runs in time O∗(4k2

(2k2)k).

Proof Let G = (V,A) be a digraph and let T be an optimal solution of DCPP on G.
Using Lemma 2.1.3, we can obtain either k arc-disjoint cycles of T or a vertex ordering

of cutwidth at most 2k of G. If we get a collection C of k arc-disjoint cycles in GT , then
using C , by Lemma 2.1.5, we can solve the k-DCPP on G in (additional) polynomial time.
So now assume we have a vertex ordering of GT of cutwidth at most 2k. We may assume
that every vertex of GT is of out-degree at most k−1 (otherwise by Lemma 2.1.1, GT has a
collection of k arc-disjoint cycles). Since every vertex of GT is of out-degree at most k−1,
the multiplicity of GT is at most k−1. Now Lemma 2.1.6 implies that there is an optimal
solution W for the k-DCPP on G such that the multiplicity of GW is at most k. Thus, we
may treat the k-DCPP on G as an instance (G,k) of k[1,k]-DWCP. It remains to observe that
the algorithm of Theorem 2.1.3 to solve the k[1,k]-DWCP on G runs in time O∗(4k2

(2k2)k).

2.2 Mixed k-arc CPP 29

2.2 Mixed k-arc CPP

A mixed graph is a graph that may contain both edges and arcs (i.e., directed edges). A
mixed graph G is strongly connected if for each ordered pair x,y of vertices in G there is a
path from x to y that traverses each arc in its direction.

In this section, we will study the following problem.

MIXED CHINESE POSTMAN PROBLEM (MCPP)
Instance: A strongly connected mixed graph G = (V,E∪A), with vertex set V , edge
set E and arc set A; a weight function w : E ∪A → N0.
Output: A closed walk of G that traverses each edge and arc at least once, of
minimum weight.

There is numerous literature on various algorithms and heuristics for MCPP; for infor-
mative surveys, see [102, 21, 31, 68, 74]. We call the problem the UNDIRECTED CHINESE

POSTMAN PROBLEM (UCPP) when A = /0, and the DIRECTED CHINESE POSTMAN PROB-
LEM (DCPP) when E = /0. It is well-known that UCPP is polynomial-time solvable [30] and
so is DCPP [14, 23, 30], but MCPP is NP-complete, even when G is planar with each vertex
having total degree 3 and all edges and arcs having weight 1 [72]. It is therefore reasonable
to believe that MCPP may become easier as it gets closer to UCPP or DCPP.

van Bevern et al. [102] considered two natural parameters for MCPP: the number of
edges and the number of arcs. They showed that MCPP is fixed-parameter tractable (FPT)
when parameterized with the number k of edges. That is, MCPP can be solved in time
f (k)nO(1), where f is a function only depending on k, and n is the number of vertices in
G. For background and terminology on parameterized complexity we refer the reader to
the monographs [29, 35, 70]. van Bevern et al.’s algorithm is as follows. Replace every
undirected edge uv by either the arc −→uv or arc −→vu or the pair −→uv and −→vu (all arcs have the same
weight as uv) and solve the resulting DCPP. Thus, the MCPP can be solved in time O(3kn3),
where n is the number of the number of vertices in G.

We describe a faster algorithm here. We will build circulation instances from G with
varying lower bounds of the flow for some arcs. Replace every undirected edge uv by the arc
pair −→uv and −→vu. Now construct a network N from the resulting digraph D as follows: the cost
of every arc of G is the same as its weight, and the cost of every arc −→xy in D, which is not in
G, is the weight the undirected edge xy of G. The lower bound of every arc of G is 1, and for
each pair −→uv and −→vu of arcs that replaced an undirected edge uv, we assign lower bound 0 to
one of the arcs and 1 to the other. All upper bounds are ∞. Find a minimum-cost circulation
(i.e., a flow of value 0) in N. This will correspond to a closed walk in D in which all arcs
of G are traversed at least once and at least one of the arcs −→uv and −→vu corresponding to an

30 Chinese Postman Problem

undirected edge uv of G is traversed at least once (the arc whose lower bound is 1 in N). As
there are 2k ways to assign lower bounds to the pairs of arcs in N, we obtain a running time
of O(2kn3).

van Bevern et al. [102] and Sorge [90] left it as an open question whether the MCPP is
fixed-parameter tractable when parameterized with the number of arcs. This is the parameter-
ization we consider in this paper.

k-ARC CHINESE POSTMAN PROBLEM (k-ARC CPP)
Instance: A strongly connected weighted mixed graph G = (V,E ∪A), with vertex
set V , edge set E and arc set A; a weight function w : E ∪A → N0.
Parameter: k = |A|.
Output: A closed walk of G that traverses each edge and arc at least once, of
minimum weight.

This parameterized problem is of practical interest, for example, if we view the mixed
graph as a network of streets in a city: while edges represent two-way streets, arcs are for
one-way streets. Many cities have a relatively small number of one-way streets and so the
number of arcs appears to be a good parameter for optimizing, say, police patrol in such
cities [102].

We will assume for convenience that the input G of k-ARC CPP is a simple graph,
i.e. there is at most one edge or one arc (but not both) between any pair of vertices. The
multigraph version of the problem may be reduced to the simple graph version by subdividing
arcs and edges. As the number of arcs and edges is at most doubled by this reduction, this
does not affect the parameterized complexity of the problem.

We will show that k-ARC CPP is fixed-parameter tractable. Our proof is significantly
more complicated than the ones described above for the MCPP parameterized with the
number of edges. For that problem, as we saw, we can replace the undirected edges with arcs.
However a similar approach for MCPP parameterized with the number of arcs (replacing arcs
with edges) does not work. Instead, in FPT time, we reduce the problem to the BALANCED

CHINESE POSTMAN PROBLEM (BCPP), in which there are no arcs, but instead a demand
function on the imbalance of the vertices is introduced (the parameter for the BCPP is based
on the values of the demand function). This reduction is only the first step of our proof, as
unfortunately the BCPP is still NP-hard, unlike the DCPP.

The BCPP turns out to be polynomial time solvable as long as a certain connectivity
property holds. Solving the problem in general requires making some guesses on the edges
in certain small cuts in the graph. To keep the running time fixed-parameter, we require a
structure on the graph that allows us to only consider a few edges from small cuts at a time.

2.2 Mixed k-arc CPP 31

To achieve this, we make use of a recent result of Marx, O’Sullivan and Razgon [66] on the
treewidth of torso graphs with respect to small separators.

Marx, O’Sullivan and Razgon [66] use the following notion of a graph torso. Let
G = (V,E) be a graph and S ⊆V. The graph torso(G,S) has vertex set S and vertices a,b ∈ S
are connected by an edge ab if ab ∈ E or there is a path in G connecting a and b whose
internal vertices are not in S.

Marx et al. [66] show that for a number of graph separation problems, it is possible
to derive a graph closely related to a torso graph, which has the same separators as the
original input graph. The separation problem can then be solved on this new graph, which
has bounded treewidth. By contrast, we use the torso graph as a tool to construct a tree
decomposition of the original graph, which does not have bounded width, but has enough
other structural restrictions to make a dynamic programming algorithm possible. So, our
application of Marx et al.’s result is quite different from its use in [66], and we believe it may
be used for designing fixed-parameter algorithms for other problems on graphs. Note that
Marx et al. are interested in small separators (i.e. sets of vertices whose removal disconnects
a graph), whereas we are interested in small cuts (sets of edges whose removal disconnects a
graph). We therefore prove an analog of Marx et al.’s result for cuts.

The rest of the section is organized as follows. The next subsection contains further
terminology and notation. In subsection 2.2.2, we reduce k-ARC CPP to BALANCED

CHINESE POSTMAN PROBLEM (BCPP). In subsection 2.2.3, we introduce and study two
key notions that we use to solve BCPP: t-roads, which witness a connectivity property of
the graph that makes the BCPP easy to solve; and small t-cuts, which witness the fact that
a t-road does not exist. In subsection 2.2.4, we investigate a special tree decomposition of
the input graph of BCPP. This decomposition is used in a dynamic programming algorithm
given in Section 2.2.5.

Note that our algorithm for k-arc CPP can be easily extend to Windy Postman Problem,
just guess for each windy edge the directions we are going to traverse through it. There
would be at most 3k guesses, after which, it remains to solve BCPP. As far as we know, this
is the first FPT result for Windy Postman problem. There are not many positive results for
windy postman problem, except the fact that it is polynomial time solvable in Euler graphs
[106].

32 Chinese Postman Problem

WINDY POSTMAN PROBLEM (WPP)
Instance: A connected, undirected graph G = (V,E), with two nonnegative cost
value c(uv),c(vu) for every edge uv ∈ E.
Parameter: k = |{uv : c(uv) ̸= c(vu)}|.
Output: An Eulerian multigraph of minimum weight that contains at least one copy
of every edge in E.

2.2.1 Further Terminology and Notation

To avoid confusion, we denote an edge between two vertices u,v as uv, and an arc from u to
v as −→uv.

Although we will shortly reduce the the k-ARC CPP to a problem on undirected graphs,
we will still be interested in directed graphs as a way of expressing solutions. For example, a
walk which is a solution to an instance of the k-ARC CPP can be represented by a directed
multigraph, with one copy of an arc uv for each time the walk passes from u to v. This
motivates the following definitions.

For a mixed multigraph G, µG(
−→uv) denotes the number of arcs of the form −→uv in G, and

µG(uv) denotes the number of edges of the form uv. For a mixed multigraph G, let D be
a directed multigraph derived from G by replacing each arc −→uv of G with multiple copies
of −→uv (at least one), and replacing each edge uv in G with multiple copies of the arcs −→uv
and −→vu (such that there is at least one copy of −→uv or at least one copy of −→vu). Then we
say D is a multi-orientation of G. If D is a multi-orientation of G and µD(

−→uv)+µD(
−→vu) =

µG(
−→uv)+µG(uv)+µG(

−→vu) for each u,v ∈V (i.e. D is derived from G by keeping every arc
of G and replacing every edge of G with a single arc), we say D is an orientation of G. If D
is an orientation of G and G is undirected, we say that G is the undirected version of D. The
underlying graph G of an undirected multigraph H can be obtained from H by deleting all
but one edge among all edges between u and v for every pair u,v of vertices of H.

For a simple weighted graph G and a multi-orientation D of G, the weight of D is the
sum of the weights of all its arcs, where the weight of an arc in D is the weight of the
corresponding edge or arc in G.

For a directed multigraph D = (V,A) and v ∈V , d+
D (v) and d−

D (v) denote the out-degree
and in-degree of v in D, respectively. Let t : V → Z be a function and V+

t = {u ∈V, t(u)>
0},V−

t = {u∈V, t(u)< 0}. We say that a vertex u in D is t-balanced if d+
D (u)−d−

D (u) = t(u).
We say that D is t-balanced if every vertex is t-balanced. Note that if D is t-balanced then

∑v∈V t(v) = 0. We say that a vertex u in D is balanced if d+
D (u) = d−

D (u), and we say that D
is balanced if every vertex is balanced. Note that D is balanced if and only if it is t0-balanced,
where t0(v) = 0 for all v ∈ 0.

2.2 Mixed k-arc CPP 33

In directed multigraphs, all walks (in particular, paths and cycles) that we consider are
directed. A directed multigraph D is Eulerian if there is a closed walk of D traversing every
arc exactly once. It is well-known that a directed multigraph D is Eulerian if and only if D is
balanced and the undirected version of D is connected [9].

For an undirected graph G= (V,E), and two vertex sets X ,Y ⊆V (G), an (X ,Y)-separator
((X ,Y)-cut, respectively) is a set S ⊆V \ (X ∪Y) (a set S ⊆ E, respectively) such that there
is no path between vertices in X and Y in graph G− S. When X = {x} and Y = {y}, we
speak of (x,y)-separators and (x,y)-cuts.

Observe that the following is an equivalent formulation of the k-ARC CPP.

k-ARC CHINESE POSTMAN PROBLEM (k-ARC CPP)
Instance: A strongly connected mixed graph G = (V,E∪A), with vertex set V , edge
set E and arc set A; weight function w : E ∪A → N0.
Parameter: k = |A|.
Output: A directed multigraph D of minimum weight such that D is a multi-
orientation of G and D is Eulerian.

2.2.2 Reduction to Balanced CPP

Our first step is to reduce k-ARC CPP to a problem on a graph without arcs. Essentially,
given a graph G = (V,E ∪A) we will “guess” the number of times each arc in A is traversed
in an optimal solution. This then leaves us with a problem on G′ = (V,E). Rather than trying
to find an Eulerian multi-orientation of G, we now try to find a multi-orientation of G′ in
which the imbalance between the in- and out-degrees of each vertex depends on the guesses
for the arcs in A incident with that vertex.

More formally, we will provide a Turing reduction to the following problem:

BALANCED CHINESE POSTMAN PROBLEM (BCPP)
Instance: An undirected graph G = (V,E); a weight function w : E → N0; a
demand function t : V → Z such that ∑v∈V t(v) = 0. Parameter: p = ∑v∈V+

t
t(v).

Output: A minimum weight t-balanced multi-orientation D of G.

Henceforth, any demand function t : V → Z will be such that ∑v∈V t(v) = 0.
Observe that when t(v) = 0 for all v ∈ V , BCPP is equivalent to UCPP. BCPP was

studied by Zaragoza Martínez [110] who proved that the problem is NP-hard. We will reduce
k-ARC CPP to BCPP by guessing the number of times each arc is traversed. In order to
ensure a fixed-parameter algorithm, we need a bound (in terms of |A|) on the number of
guesses. We will do this by bounding the total number of times any arc can be traversed in
an optimal solution.

34 Chinese Postman Problem

Lemma 2.2.1 Let G = (V,A∪E) be a mixed graph, and let k = |A|. Then for any optimal
solution D to k-ARC CPP on G with minimal number of arcs, we have that ∑−→uv∈A µD(

−→uv)≤
k2/2+2k.

Proof Let A = A1 ∪A2 where A1 = {−→uv : −→uv ∈ A and µD(
−→uv) ≥ 3} and A2 = A \A1. Let

A3 = {−→uv ∈ A(D) : uv ∈ E(G)}. Let |A1|= p and |A2|= k− p = q.
Consider an arc −→uv ∈ A. Since D is balanced, it follows that D has µD(

−→uv) arc-disjoint
directed cycles and each of these cycle contains exactly one copy of −→uv. We claim that each
such cycle must contain at least one copy of an arc in A2. Indeed, otherwise, there is a cycle
C containing −→uv that does not contain any arc in A2, which means that C consists of arcs in
A1 and arcs in A3. We may construct a directed multigraph D′ as follows: Remove from D
two copies of each arc in A1 that appears in C, and reverse the arcs in A3∩C. Observe that D′

is Eulerian and is also a multi-orientation of G, and so D′ is a solution with smaller weight
than D or an optimal solution with fewer arcs than D, contradicting the minimality of D.

So each of the µD(
−→uv) cycles contains at least one copy of an arc in A2. Observe that D

has at most 2q copies of arcs in A2, and so µD(
−→uv) ≤ 2q. Thus, we have ∑−→uv∈A µD(

−→uv) =

∑−→uv∈A1
µD(

−→uv)+∑−→uv∈A2
µD(

−→uv)≤ p ·2q+2q ≤ 2 · (p+q
2)2 +2k = k2/2+2k.

Now we may prove the following:

Lemma 2.2.2 Suppose that there exists an algorithm which finds the optimal solution to
an instance of BCPP on (G′,w′, t ′) with parameter p in time f (p)|V (G′)|O(1). Then there
exists an algorithm which finds the optimal solution to an instance of k-ARC CPP on
(G = (V,A∪E),w) with parameter k, which runs in time

(⌊k2/2+2k⌋
k

)
· f (⌊k2/2+2k⌋) · |V |O(1).

Thus, if BCPP is FPT then so is k-ARC CPP.

Proof Let (G = (V,A∪E),w) be an instance of k-ARC CPP, and let k = |A|. Let κ =

⌊k2/2+2k⌋. By Lemma 2.2.1, ∑−→uv∈A µD(
−→uv)≤ κ for any optimal solution D to k-ARC CPP

on (G,w) with minimal number of arcs.
Let G′ = (V,E) and let w′ be w restricted to E. Given a function φ : A → [κ] such

that ∑−→uv∈A φ(−→uv)≤ κ , let tφ : V → [−κ,κ] be the function such that tφ (v) = ∑−→uv∈A φ(−→uv)−
∑−→vu∈A φ(−→vu) for all v ∈V . Observe that ∑v∈V+

tφ
tφ (v)≤ ∑−→uv∈A φ(−→uv)≤ κ , and thus BCPP on

(G′,w′, tφ) has parameter pφ ≤ κ .
Observe that for any given solution Dφ to BCPP on (G′,w′, tφ), Dφ is tφ -balanced,

thus d+
Dφ
(u)− d−

Dφ
(u) = tφ (u). If we add φ(−→uv) copies of each arc −→uv ∈ A to Dφ , and

denote the resulting graph with D, then graph D is balanced. Indeed for any vertex v ∈
V (G), d+

D (v)= d+
Dφ
(v)+ ∑−→vu∈A φ(−→vu), d−

D (v)= d−
Dφ
(v)+∑−→uv∈A φ(−→uv), thus d+

D (v)−d−
D (v)=

d+
Dφ
(v)− d−

Dφ
(v) +∑−→vu∈A φ(−→vu) −∑−→uv∈A φ(−→uv) = tφ (v)− tφ (v) = 0. So D is a connected

2.2 Mixed k-arc CPP 35

balanced graph (and thus Eulerian) which is also a multi-orientation of G, and thus is a
solution to k-ARC CPP on (G,w) with weight w′(Dφ)+∑−→uv∈A φ(−→uv)w(−→uv).

Furthermore for any solution D to k-ARC CPP on (G,w), we know that D is balanced,
so for any vertex v ∈ V (G), d+

D (v) = d−
D (v). Let φ(−→uv) = µD(

−→uv) for each −→uv ∈ A and let
Dφ be D restricted to E. For any vertex v ∈V (G), we have d+

Dφ
(v) = d+

D (v)−∑−→vu∈A φ(−→vu),
d−

Dφ
(v) = d−

D (v)−∑−→uv∈A φ(−→uv), therefore, d+
Dφ
(v)−d−

Dφ
(v) = ∑−→uv∈A φ(−→uv)−∑−→vu∈A φ(−→vu) =

tφ (v). So Dφ is a tφ -balanced multi-orientation of G′ and thus a solution to BCPP on
(G′,w′, tφ) and D has weight w′(Dφ)+∑−→uv∈A φ(−→uv)w(−→uv).

There are at most
(q

k

)
ways of choosing positive integers x1, . . . ,xk such that ∑i∈[k] xi ≤ q.

Indeed, for each i ∈ [k] let yi = ∑
i
j=1 x j. Then yi < y j for i < j and yi ∈ [q] for all i, and for

any such choice of y1, . . . ,yk there is corresponding choice of x1, . . . ,xk satisfying ∑
k
i=1 xi ≤ q.

Therefore the number of valid choices for x1, . . . ,xk is the number of ways of choosing
y1, . . . ,yk, which is the number of ways of choosing k elements from a set of q elements.

Therefore there are at most
(

κ

k

)
choices for a function φ : A→ [κ] such that ∑−→uv∈A φ(−→uv)≤

κ . Each choice leads to an instance of BCPP with parameter at most κ . Therefore in time(
κ

k

)
f (κ) · |V |O(1) we can find, for every valid choice of φ , the optimal solution Dφ to BCPP

on (G′,w′, tφ).
It then remains to choose the function φ that minimizes w′(Dφ)+∑−→uv∈A φ(−→uv)w(−→uv),

and return the graph Dφ together with φ(−→uv) copies of each arc −→uv ∈ A.

Due to Lemma 2.2.2, we may now focus on BCPP.

2.2.3 Expressing Connectivity: t-roads and t-cuts

Although we will not need the result until later, now is a good time to prove a bound for
BCPP somewhat similar to that in Lemma 2.2.1.

Lemma 2.2.3 Let (G,w, t) be an instance of BCPP, with p = ∑v∈V+
t

t(v). Then for any
optimal solution D to BCPP on (G,w, t) with minimal number of arcs, we have that µD(

−→uv)+
µD(

−→vu)≤ max{p,2} for each edge uv in G.

Proof Suppose that µD(
−→uv)+µD(

−→vu)> max{p,2} for some edge uv in G. Observe that if
µD(

−→uv)≥ 1 and µD(
−→vu)≥ 1, then by removing one copy of −→uv and one copy of −→vu, we obtain

a solution to BCPP on (G,w, t) with weight at most that of D but with fewer arcs. (Note that
µD(

−→uv)−1+µD(
−→vu)−1 > 2−2 = 0, and so we still have a solution). Therefore, we may

assume that µD(
−→uv)> max{p,2} and µD(

−→vu) = 0.
We now show that there must exist a cycle in D containing a copy of −→uv.

36 Chinese Postman Problem

Modify D by adding a new vertex x, with t(v) arcs from x to v for each v ∈V+
t , and −t(v)

arcs from v to x for each v ∈V−
t . Let D∗ be the resulting directed graph. Then observe that

D∗ is balanced, and therefore D∗ has µD(
−→uv) arc-disjoint cycles, each containing exactly one

copy of −→uv. At most p of these cycles can pass through x. Therefore there is at least one
cycle containing −→uv which is a cycle in D.

So now let v = v1,v2, . . . ,vl = u be a sequence of vertices such that µD(
−−−→vivi+1)≥ 1 for

each i ∈ [l − 1]. Replace one copy of each arc −−−→vivi+1 with a copy of −−−→vi+1vi and remove 2
copies of −→uv. Observe that the resulting graph covers every edge of G, and the imbalance
of each vertex is the same as in D. Therefore, we have a solution to BCPP on (G,w, t) with
weight at most that of D but with fewer arcs. This contradiction proves the lemma.

In order to solve the BCPP on a graph G, we first add copies of edges to G to produce
a multigraph H, and then find an orientation of H which is a solution to the BCPP on G.
Thus, H is the undirected version of a solution to the BCPP on G. The lemma below gives
a connectivity condition which must be satisfied by any undirected version of a solution.
Furthermore, any multigraph that satisfies this condition has an orientation which is a solution
to BCPP, and such a solution can be found in polynomial time. We will then be able to solve
the BCPP on G by searching for the minimum weight graph H that satisfies this condition.

Definition 2.2.1 Let H = (V,E) be an undirected multigraph and t a demand function
V → Z. A t-road is a directed multigraph T with vertex set V such that for each vertex v ∈V ,
d+

T (v)−d−
T (v) = t(v). We say H has a t-road T if there is a subgraph H ′ of H such that T is

an orientation of H ′.

For an instance (G,w, t) of the BCPP with parameter p, it may be useful to think of a
t-road as a set of p arc-disjoint paths from vertices in V+

t to vertices in V−
t , although a t-road

does not necessarily have to have such a simple structure. Indeed, a t-road may also contain
several closed walks. In particular, we note that any solution to the BCPP on (G,w, t) is
itself a t-road.

The following lemma and corollary show the relevance of t-roads to the BCPP. Formally
an input of BCPP is a simple graph, but to show Corollary 2.2.1 we will abuse this formality
and allow multigraphs.

Lemma 2.2.4 Let H be an undirected multigraph and let (H,w, t) be an instance of the
BCPP. Then (H,w, t) has a solution which is an orientation of H (which is necessarily an
optimal solution) if and only if H has a t-road and for every vertex v of H, dH(v)− t(v) is
even. Furthermore, such a solution can be found in polynomial time.

2.2 Mixed k-arc CPP 37

Proof Suppose first that (H,w, t) has a solution of weight w(H). Then there is a directed
multigraph D with vertex set V (H) such that D is an orientation of H, and d+

D (v)−d−
D (v) =

t(v) for every vertex v ∈ V (H). Thus, D itself is a t-road which is an orientation of a
subgraph of H, and so H has a t-road. Furthermore, for every vertex v of H, dH(v)− t(v) =
d+

D (v)+d−
D (v)− t(v) = d+

D (v)−d−
D (v)− t(v)+2d−

D (v) = 2d−
D (v), which is even.

Conversely, suppose that H has a t-road and for every vertex v of H, dH(v)− t(v) is even.
Let T be a t-road in H. Delete the edges corresponding to T from H, and observe that in
the remaining graph every vertex v has degree dH(v)− d+

T (v)− d−
T (v) = dH(v)− d+

T (v)+
d−

T (v)−2d−
T (v) = dH(v)− t(v)−2d−

T (v), which is even. Thus in this remaining graph every
vertex is of even degree, and so we may decompose the remaining edges into cycles. Orient
each of these cycles arbitrarily, and finally add the arcs of T . Let D be the resulting digraph.
Then for each vertex v ∈ V (H), d+

D (v)− d−
D (v) = 0+ d+

T (v)− d−
T (v) = t(v). Thus D is

t-balanced and is an orientation of H, as required.

By letting H be the undirected version of an optimal solution to an instance (G,w, t), we
get the following corollary.

Corollary 2.2.1 Given an instance (G,w, t) of the BCPP, let H be an undirected multigraph
of minimum weight, such that the underlying graph of H is G, H has a t-road, and dH(v)−t(v)
is even for every vertex v. Then there exists an optimal solution to (G,w, t) which is an
orientation of H, which can be found in polynomial time.

Suppose that G has a t-road. Then by the above corollary, it is enough to find a minimum
weight multigraph H with underlying graph G, such that dH(v)− t(v) is even for every vertex
v. This can be done in polynomial time as follows.

Given a graph G = (V,E) and set X ⊆V of vertices, an X-join is a set J ⊆ E such that
|J(v)| is odd if and only if v ∈ X , where J(v)⊆ J is the set of edges incident to v. Let X be
the set of vertices such that dH(v)− t(v) is odd. Note that if J is an X-join of minimum
weight, the mutigraph H = (V,E ∪J) is a minimum weight multigraph with underlying graph
G, such that dH(v)− t(v) is even for every vertex v.

Thus, to solve the BCPP on (G,w, t), where G has a t-road, it is enough to find a minimum
weight X-join. This problem is known as the MINIMUM WEIGHT X -JOIN PROBLEM

(traditionally, it is called the MINIMUM WEIGHT T -JOIN PROBLEM, but we use T for
t-roads) and can be solved in polynomial time:

Lemma 2.2.5 [30] The MINIMUM WEIGHT X-JOIN PROBLEM can be solved in time O(n3).

Let us briefly recall the proof of Lemma 2.2.5. Create a graph with vertex set X . For any
two vertices u,v ∈ X , create an edge uv of weight equal to the minimum weight of a path

38 Chinese Postman Problem

between u and v in G. Find the minimum weight perfect matching in this graph. Then the
weight of this matching is the weight of an X-join, and an X-join can be found by taking the
paths corresponding to edges in the matching.

The above remark shows that if G has a t-road, then we can solve the BCPP in polynomial
time. In general, G may not have a t-road. However, given a solution D to the BCPP on
(G,w, t), the undirected version of D must have a t-road (indeed, D itself is a t-road).
Therefore if we can correctly guess the part of a solution corresponding to a t-road, and
amend G using this partial solution, the rest of the problem becomes easy. The following
definition and lemmas allow us to restrict such a guess to the places where there are small
cuts that prevent a t-road from existing.

Definition 2.2.2 Let H = (V,E(H)) be an undirected multigraph and t : V → Z a demand
function such that ∑v∈V t(v) = 0. Let p = ∑v∈V+

t
t(v). Then a small t-cut of H is a minimal

(V+
t ,V−

t)-cut F such that |F |< p.

A t-road in H, if one exists, can be found in polynomial time by computing a flow of
value p from a to b in the unit capacity network N with underlying multigraph H∗, where H∗

is the multigraph derived from H by creating two new vertices a,b, with t(v) edges between
a and v for each v ∈V+

t , and −t(v) edges between b and v for each v ∈V−
t . The next lemma

follows from the well-known max-flow-min-cut theorem for N.

Lemma 2.2.6 An undirected multigraph H has a t-road if and only if H does not have a
small t-cut.

The next lemma shows that if we want to decide where to duplicate edges to get a t-road,
we can restrict our attention to the edges in small t-cuts.

Definition 2.2.3 Let G = (V,E) be an undirected graph and t : V → Z a demand function.
Let F(G) be the union of all small t-cuts in G. Then a directed multigraph T is well-(G, t)-
behaved if µT (

−→uv) = 0 for all uv /∈ E and µT (
−→uv)+µT (

−→vu)≤ 1 for all uv ∈ E \F(G).

Lemma 2.2.7 Let D be an optimal solution to BCPP on (G = (V (G),E(G)),w, t), and let
H be the underlying graph of D. Then H has a well-(G, t)-behaved t-road.

Proof Let F(G) ⊆ E(G) be the union of all small t-cuts in G. Let J be the undirected
multigraph derived from H by removing all but one copy of every edge in E(G)\F(G). Note
that V (G) =V (H) =V (J), E(G)⊆ E(J)⊆ E(H), moreover, H and J have the same weight
function w as G. Observe that every (well-(G, t)-behaved) t-road in J is also a (well-(G, t)-
behaved) t-road in H and every t-road in J is well-(G, t)-behaved. So, it is sufficient to show
that J has a t-road.

2.2 Mixed k-arc CPP 39

Note that if J does not have a t-road, then by Lemma 2.2.6, J has a small t-cut. Note also
that by construction, D is a t-road, thus H has a t-road and therefore does not have a small
t-cut. Consider a small t-cut S in J and suppose that every edge in S is a copy of an edge in
F(G). As J contains the same number of copies of each edge in F(G) as H does, it follows
that any path from u ∈ V+

t to v ∈ V−
t in H \S is also a path from u to v in J \S. But as H

does not have a small t-cut, such a path must exist, contradicting the assumption that S is a
small t-cut in J. Therefore every small t-cut in J contains a copy of an edge not in F(G). If
J has a small t-cut, then as G is a subgraph of J, every small t-cut in J is also a small t-cut in
G, it follows that there is a small t-cut in G containing edges not in F . This is a contradiction
by definition of F . Therefore we may conclude that J does not have a small t-cut, and so J
has a t-road, as required.

If |F(G)|, the number of edges of G in small t-cuts, is bounded by a function on p
then, using Lemma 2.2.3 and Lemma 2.2.7 we can solve BCPP in FPT time by guessing
the multiplicities of each edge in F for an optimal solution D. Unfortunately, |F(G)| may
be larger than any function of p in general. It is also possible to solve the problem on
graphs of bounded treewidth using dynamic programming techniques, but in general the
treewidth may be unbounded. In Section 2.2.4 we give a tree decomposition of G in which
the number of edges from F(G) in each bag is bounded by a function of p. This allows us
to combine both techniques. In Section 2.2.5 we give a dynamic programming algorithm
utilizing Lemma 2.2.7 that runs in FPT time.

2.2.4 Tree Decomposition

Definition 2.2.4 Given an undirected graph G = (V,E), a tree decomposition of G is a pair
(T ,β), where T is a tree and β : V (T)→ 2V such that

1.
⋃

x∈V (T)β (x) =V ;

2. for each edge uv ∈ E, there exists a node x ∈V (T) such that u,v ∈ β (x); and

3. for each v ∈V , the set β−1(v) of nodes form a connected subgraph in T .

The width of (T ,β) is maxx∈V (T)(|β (x)|−1). The treewidth of G (denoted tw(G)) is the
minimum width of all tree decompositions of G.

In this section, we provide a tree decomposition of G which we will use for our dynamic
programming algorithm. The tree decomposition does not have bounded treewidth (i.e. the
bags do not have bounded size), but the intersection between bags is small, and each bag has

40 Chinese Postman Problem

a bounded number of vertices from small t-cuts. This will turn out to be enough to develop a
fixed-parameter algorithm, as in some sense the hardness of BCPP comes from the small
t-cuts.

Our tree decomposition is based on a result by Marx, O’Sullivan and Razgon [66], in
which they show that the minimal small separators of a graph “live in a part of the graph that
has bounded treewidth”[66].

Definition 2.2.5 Let G be a graph and C ⊆ V (G). The graph torso(G,C) has vertex set
C and vertices a,b ∈ C are connected by an edge if ab ∈ E(G) or there is a path P in G
connecting a and b whose internal vertices are not in C.

Lemma 2.2.8 [66, Lemma 2.11] Let a,b be vertices of a graph G = (V,E) and let l be
the minimum size of an (a,b)-separator. For some e ≥ 0, let S be the union of all minimal
(a,b)-separators of size at most l + e. Then there is an f (l,e) · (|E|+ |V |) time algorithm
that returns a set S′ ⊇ S disjoint from {a,b} such that tw(torso(G,S′)) ≤ g(l,e), for some
functions f and g depending only on l and e.

Marx et al.’s result concerns small separators (i.e. sets of vertices whose removal dis-
connects a graph), whereas we are interested in small cuts (sets of edges whose removal
disconnects a graph). For this reason, we prove the “edge version” of Marx et al.’s result,
which follows directly from their version.

Lemma 2.2.9 Let a,b be vertices of a graph G = (V,E) and let l be the minimum size of an
(a,b)-cut. For some e ≥ 0, let D be the union of all minimal (a,b)-cuts of size at most l + e,
and let C =V (D)\{a,b}. Then there is an f (l,e) · (|E|+ |V |) time algorithm that returns a
set C′ ⊇C disjoint from {a,b} such that tw(torso(G,C′))≤ g(l,e), for some functions f and
g depending only on l and e.

Proof We may assume that ab /∈ E, as otherwise all minimal (a,b)-cuts must contain ab and
deleting ab from G will not change the set C as it is disjoint from {a,b}.

The main idea is to augment G to produce a graph G∗ such that every vertex in C is part
of a minimal (a,b)-separator in G∗. We then apply Lemma 2.2.8 to get a set S′ ⊇C and tree
decomposition of torso(G∗,S′) of bounded width, and then use this to produce a set C′ ⊇C
and tree decomposition of torso(G,C′) of bounded width.

We first produce the graph G∗ by subdividing each edge f in G with a new vertex v f .
Let S be the union of all minimal (a,b)-separators in G∗ of size at most l + e. Let l′ be the
minimum size of an (a,b)-separator in G∗ (note that l′ may be different from l).

Observe that for any minimal (a,b)-cut F of size at most l + e in G, the set {v f : f ∈ F}
is a minimal (a,b)-separator in G∗. This implies that l′ ≤ l. Furthermore, given any edge

2.2 Mixed k-arc CPP 41

f ′ = uv such that f ′ ∈ F , assuming u /∈ {a,b}, the set ({v f : f ∈ F}\{v f ′})∪{u} is an (a,b)-
separator in G∗ and {v f : f ∈ F}\{v f ′} is not. So, X ∪{u} is a minimal (a,b)-separator in
G∗ for some X ⊆ {v f : f ∈ F}\{v f ′}. Therefore, u is in a minimal (a,b)-separator in G∗ of
size less than l + e. A similar argument holds for v. It follows that {u,v}\{a,b} ⊆ S for any
edge uv ∈ D, and so C ⊆ S.

Let e′ = (l − l′)+ e, so we have l′+ e′ = l + e. Now apply Lemma 2.2.8 to get a set S′

disjoint from {a,b} such that S ⊆ S′, and a tree decomposition (T ,β ′) of torso(G∗,S′) with
treewidth at most g(l′,e′). As l′ ≤ l and e′ ≤ l + e, this treewidth is bounded by a function
depending only on l and e.

Define a function h : S′ →V (G) as follows. For each edge f ∈ E(G) such that v f ∈ S′,
if a or b is an endpoint of f , set h(v f) to be the other endpoint, and otherwise let h(v f) be
an arbitrary endpoint of f . For every other v ∈ S, let h(v) = v. Now let C′ = {h(v) : v ∈ S′}.
Observe that C ⊆ S′∩V (G)⊆C′.

We produce a tree decomposition of torso(G,C′) as follows. Given the tree decomposition
(T ,β ′) of torso(G∗,S′), define β : V (T)→C′ by β (x) = h(β ′(x)) = {h(v) : v ∈ β ′(x)}. We
now show that (T ,β) is indeed a tree decomposition of torso(G,C′).

It follows from construction that
⋃

x∈V (T)β (x) =C′ =V (torso(G,C′)).
Now consider an edge uw in torso(G,C′). We will show that there is an edge st in

torso(G∗,S′) with h(s) = u,h(t) = w. It follows that s, t ∈ β ′(x) for some node x ∈ V (T),
and consequently u,w ∈ β (x) for the same node x. This satisfies the second condition of the
tree decomposition.

As u,w are adjacent in torso(G,C′), there must be a path between them which has no
internal vertices in C′. By subdividing each edge f in this path with the vertex v f , we get a
path P between u and w in G∗ which has no internal vertices in C′. Suppose P contains an
internal vertex v with v ∈ S′. Observe that P must also contain h(v) (if h(v) = v then this is
obvious, and otherwise v has only two neighbours, both of which must be in P and one of
which is h(v)). If h(v) ̸= u and h(v) ̸= w, then h(v) is also an internal vertex of P, and P has
an internal vertex in C′, a contradiction. Therefore the only internal vertices v of P which are
in S′ are those for which h(v) = u or h(v) = w.

If P does not have any vertices in h−1(u) (which may happen if u /∈ S′), then u must have
a neighbour v f with h(v f) = u. Then by adding such a neighbour to P, we may assume that
P contains at least one vertex in h−1(u). Similarly we may assume P contains at least one
vertex in h−1(w). By considering the shortest subpath of P containing vertices in both h−1(u)
and h−1(w), we have that there is a path in G∗ with endpoints s, t ∈ S′, with no internal
vertices in S′, such that h(s) = u,h(t) = w. It follows that s, t are adjacent in torso(G∗,S′).

42 Chinese Postman Problem

Now consider β−1(u) for some vertex u ∈ C′. We wish to show that β−1(u) forms a
connected subgraph in T . As β−1(u) =

⋃
{β ′−1(v) : v ∈ h−1(u)}, each β ′−1(v) forms a

connected subgraph in T , and β ′−1(v1)∩β ′−1(v2) ̸= /0 for adjacent v1,v2 in torso(G∗,S′),
it will be sufficient to show that h−1(u) induces a connected subgraph in torso(G∗,S′). If
u ∈ S′, then all vertices in h−1(u) \ {u} are adjacent to u in torso(G∗,S∗), and therefore
h−1(u) induces a graph that contains a star rooted at u as a subgraph. On the other hand if
u /∈ S′, then for any v1,v2 ∈ h−1(u), there is a path v1uv2 in G∗, which contains no internal
vertices in S′, and so v1,v2 are adjacent in torso(G∗,S′). Therefore h−1(u) induces a clique
in torso(G∗,S′). In either case, h−1(u) induces a connected subgraph in torso(G∗,S′). This
satisfies the third condition of the tree decomposition, which completes the proof that (T ,β)

is a tree decomposition of torso(G,C′).
Finally, note that by construction maxx∈V (T)(|β (x)|−1)≤ maxx∈V (T)(|β ′(x)|−1), and

so (T ,β) has width at most g(l′,e′), which as previously discussed is bounded by a function
depending only on l and e.

It remains to analyse the running time. Construction of G∗ can be done in linear time as
we need to process each edge of G once. G∗ has 2|E(G)| edges and |V (G)|+ |E(G)| vertices,
and therefore the algorithm of Lemma 2.2.8 takes time f (l′,e′) · (|E(G∗)|+ |V (G∗)|) ≤
f (l, l + e) · (3|E(G)|+ |V (G)|)≤ 3 f (l, l + e) · (|E(G)|+ |V (G)|). Finally, transforming the
decomposition (T ,β ′) into (T ,β) takes time O(|V (T)| ·maxx∈V (T) |β (x)|= O(|V (T)| ·
g(l, l + e), and we may assume |V (T)| is linear in |E(G)|+ |V (G)| as it took linear time to
construct. Therefore the total running time is linear in |E(G)|+ |V (G)|.

We will now use the treewidth result on torso graphs to construct a tree decomposition
of the original graph, in which the width may not be bounded, but the intersection between
bags and the number of edges in small cuts in each bag is bounded by a function of p. In
order to make our dynamic programming simpler, it is useful to place further restrictions on
the structure of a tree decomposition. The notion of a nice tree decomposition is often used
in dynamic programming, as it can impose a simple structure and can be found whenever we
have a tree decomposition.

Definition 2.2.6 Given an undirected graph G = (V,E), a nice tree decomposition (T ,β)

is a tree decomposition such that T is a rooted tree, and each of the nodes x ∈V (T) falls
under one of the following classes:

• x is a Leaf node: Then x has no children in T ;

• x is an Introduce node: Then x has a single child y in T , and there exists a vertex
v /∈ β (y) such that β (x) = β (y)∪{v};

2.2 Mixed k-arc CPP 43

• x is a Forget node: Then x has a single child y in T , and there exists a vertex v ∈ β (y)
such that β (x) = β (y)\{v};

• x is a Join node: Then x has two children y and z, and β (x) = β (y) = β (z).

(Note that sometimes it is also required that |β (x)|= 1 for every leaf node x, but for our
purposes we allow β (x) to be unbounded.)

It is well-known that given a tree decomposition of a graph, it can be transformed into a
nice tree decomposition of the same width in polynomial time [54].

Lemma 2.2.10 (Lemma 13.1.3, [54]) For constant k, given a tree decomposition of a graph
G of width k and O(n) nodes, where n is the number of vertices of G, one can find a nice tree
decomposition of G of width k and with at most 4n nodes in O(n) time.

It is also known that a tree decomposition of a graph can be found in fixed-parameter
time.

Lemma 2.2.11 [16] There exists an algorithm that, given an n-vertex graph G and integer
k, runs in time kO(k3) ·n and either constructs a tree decomposition of G of width at most k,
or concludes that G has treewidth greater than k.

Observe that as the running time in Lemma 2.2.11 is kO(k3) ·n, we may assume the tree
decomposition has at most kO(k3) · n nodes. Then applying Lemma 2.2.10, we have that
for any graph G with treewdith k, we can find a nice tree decomposition of G with at most
4|V (G)| nodes in time fixed-parameter with respect to k.

Our tree decomposition will be similar but not identical to a nice tree decomposition. We
are now ready to give our tree decomposition, which is the main result of this section.

We believe this lemma may be useful for other problems in which the "difficult" parts of
a graph are the small cuts or separators.

Lemma 2.2.12 Let a,b be vertices of a graph G = (V,E) and let l be the minimum size of
an (a,b)-cut (respectively, let l be the minimum size of an (a,b)-separator). For some e ≥ 0,
let D be the union of all minimal (a,b)-cuts of size at most l + e, and let C =V (D)\ (a,b)
(respectively, let C be the union of all minimal (a,b)-separators of size at most l + e).

Then there is an f (l,e) · (|E|+ |V |) time algorithm that returns a set C′ disjoint from
{a,b} and a (binary) tree decomposition (T ,β) of G such that:

1. C ⊆C′;

44 Chinese Postman Problem

2. β (x)⊆C′ for any node x in T which is not a leaf node (in particular, the intersection
between any two bags of adjacent nodes of T is contained in C′);

3. For any node x in T , |β (x)∩C′| ≤ g(l,e);

4. (T ,β) restricted to C′ (i.e. (T ,β ′), where β ′(x) = β (x)∩C′) is a nice tree decompo-
sition;

for some functions f and g depending only on l and e.

Proof If C is the union of all vertices appearing in the set D of all minimal (a,b)-cuts of size
at most l + e, then apply Lemma 2.2.9. If C is the union of all minimal (a,b)-separators of
size at most l + e, then apply Lemma 2.2.8. In either case, we get a set C′ ⊇C disjoint from
{a,b} such that tw(torso(G,C′))≤ g(l,e), for a function g depending only on l and e. From
here on the proof is identical for the two cases.

Using Lemmas 2.2.10 and 2.2.11, we may find a nice tree decomposition of torso(G,C′)

of width at most g(l,e) in time f (g(l,e)) · (|E|+ |V |), for some function f depending only
on g(l,e). Let (T ′,β ′) be the resulting tree decomposition of torso(G,C′).

We now add the vertices of G which are not in C′ to this decomposition. Consider any
component X of G−C′. Then N(X)⊆C′. Furthermore, by definition of torso(G,C′), any
pair of vertices in N(X) are adjacent in torso(G,C′). It is well-known that the vertices of a
clique in a graph are fully contained in a single bag in any tree decomposition of the graph.
Therefore, N(X)⊆ β ′(x) for some node x in T .

If x is a Leaf node then modify β ′(x) by adding X to it. Otherwise, modify (T ′,β ′) by
inserting (in the edge of T between x and its parent) a new Join node y as the parent of x,
with another child node z of y, such that β ′(y) = β ′(x), and β ′(z) = β ′(x)∪X . Thus, X is
still added to a Leaf node.

Let (T ,β) be the resulting tree decomposition. As every component of G−C′ was
added to a bag in a tree decomposition of torso(G,C′),

⋃
x∈V (T)β (x) =V (G). Every edge

between vertices in C′ is in a bag due to the tree decomposition of torso(G,C′), and for every
v /∈ C′, N(v) is contained in the same bag as v. Therefore for every edge uv in G, u and v
appear in the same bag. For any vertex v, β−1(v) consists of a single node if v /∈ C′, and
otherwise β−1(v) is connected by the tree decomposition of torso(G,C′). Thus, (T ,β) is a
tree decomposition of G.

Furthermore, by construction β (x)⊆C′ for every non-leaf node x, |β (x)∩C′| ≤ g(l,e)
for every node x, and (T ,β) restricted to C′ is a nice tree decomposition.

We now modify this approach slightly to get the desired tree decomposition when C is
the union of all edges in small t-cuts.

2.2 Mixed k-arc CPP 45

Lemma 2.2.13 Let (G = (V,E),w, t) be an instance of BCPP, let C be the non-empty set of
vertices appearing in edges in small t-cuts. Then there is an f (p) · (|E|+ |V |) time algorithm
that returns a set C′ and a (binary) tree decomposition (T ,β) of G such that:

1. C ⊆C′;

2. β (x)⊆C′ for any node x in T which is not a leaf node (in particular, the intersection
between any two bags of adjacent nodes of T is contained in C′);

3. For any node x in T , |β (x)∩C′| ≤ g(p);

4. (T ,β) restricted to C′ (i.e. (T ,β ′), where β ′(x) = β (x)∩C′) is a nice tree decompo-
sition;

for some functions f and g depending only on p.

Proof First construct the multigraph G∗ from G by creating two new vertices a,b, with t(v)
edges between a and v for each v ∈V+

t , and −t(v) edges between b and v for each v ∈V−
t .

Then by definition, C is the set of vertices appearing in an edge e ∈ E(G) such that e is part
of a minimal (a,b)-cut in G∗ of size less than p.

Now apply Lemma 2.2.12 to get a set C′ disjoint from {a,b} such that C ⊆C′ and a tree
decomposition of torso(G∗,C′) with treewidth at most g(l,e), where l + e = p− 1 and so
g(l,e) is bounded by a function of p. It follows from the definition of a torso graph that
torso(G∗ \{a,b},C′) is a subgraph of torso(G∗,C′)\{a,b} [66, Lemma 2.6], and so we can
get a tree decomposition (T ,β) of torso(G,C′) by removing a and b from every bag in the
tree decomposition of torso(G∗,C′). As a,b /∈C′, the resulting tree decomposition is still a
nice tree decomposition when restricted to C′.

2.2.5 Dynamic Programming

Let (G,w, t) be an instance of BCPP. Let (T ,β) be the tree decomposition of G and C′ the
set of vertices containing all vertices of every small t-cut given by Lemma 2.2.13. In this
section we give a dynamic programming algorithm based on this decomposition.

Before describing the algorithm, we give some notation that we use in this section.
Let α(x) = β (x)∩C′. Thus β (x)∩β (y) ⊆ α(x) for all nodes x ̸= y, and α(x) = β (x) for
every non-leaf x. Furthermore, for any Join node x with two children y and z, we have that
α(x) = α(y) = α(z), even if one or both of the children of x is a Leaf node whose bag
contains vertices not in C′. Let γ(x) be the union of the bags of all descendants of x including
x itself. Thus, if r is the root node of T , then γ(r) =V (G).

46 Chinese Postman Problem

Let h : V (G)→ {ODD,EVEN} be the function such that h(v) = ODD if t(v) is odd and
h(v) = EVEN if t(v) is even. Observe that in the undirected version of any solution to BCPP
on (G,w, t), each vertex v will have odd degree if and only if h(v) = ODD. Thus, h and
similar functions will be used to tell us whether a vertex should have odd or even degree.

To simplify some expressions, we adopt the convention that ODD+ODD = EVEN,EVEN+

EVEN = EVEN, and ODD+EVEN = ODD. We say a vertex v is h-balanced if it has odd degree
if and only if h(v) = ODD. An undirected multigraph H is h-balanced if every vertex is
h-balanced.

We now give an outline of our algorithm.
By Corollary 2.2.1, in order to solve an instance (G,w, t) of the BCPP, it is enough to

find an undirected multigraph H of minimum weight, such that the underlying graph of
H is G, H has a t-road, and dH(v)− t(v) is even for every vertex v. Our algorithm will
therefore focus on solving this problem, rather than finding an optimal multi-orientation of
G directly. By Lemma 2.2.7, we may assume H has a well-(G, t)-behaved t-road T . Our
dynamic programming algorithm will give a way to find H and T .

For each node x in T , our dynamic programming algorithm will calculate a value
ψ(x,H ′,T ′, t ′,h′), for a particular range of graphs H ′ and T ′ and functions t ′ and h′. Infor-
mally, ψ(x,H ′,T ′, t ′,h′) denotes a potential solution of minimum weight, restricted to γ(x).
Let H denote this restricted solution and T its “t-road”, similarly restricted to γ(x). The
subgraph H ′ tells us how H should look when restricted to α(x), and similarly T ′ tells us
how T should look when restricted to α(x). The function t ′ tells us what the imbalance of
each vertex should be within T . Roughly speaking, it is the function for which T is a t ′-road.
(Note that T will not necessarily be a t-road itself, as it is only a restriction of a potential
t-road to γ(x).) In a similar way, the function h′, which maps vertices to either ODD or EVEN,
tells us whether the degree of each vertex within H should be odd or even. (We note that in a
full solution, the parity of the degree of each vertex v will be defined by h(v), but as H is
only a partial solution it may be that h′(v) ̸= h(v) for some v.)

More formally, let x be a node of T , let H ′ be an undirected multigraph with under-
lying graph G[α(x)], such that µH ′(uv)≤ max{p,2} for all edges uv. Let T ′ be a directed
graph with vertex set α(x), such that µT ′(−→uv)+ µT ′(−→vu) ≤ µH ′(uv) for all edges uv. Let
t ′ be a function α(x) → [−p, p] and let h′ be a function α(x) → {ODD,EVEN}. Then let
ψ(x,H ′,T ′, t ′,h′) be an undirected multigraph H with underlying graph G[γ(x)], of minimum
weight such that

1. H[α(x)] = H ′.

2.2 Mixed k-arc CPP 47

2. H has a well-(G, t)-behaved t∗-road T such that T restricted to α(x) is T ′, where
t∗ : γ(x)→ [−p, p] is the function such that t∗(v) = t ′(v) for v ∈ α(x) and t∗(v) = t(v),
otherwise.

3. H is h∗-balanced, where h∗ : γ(x)→ {ODD,EVEN} is the function such that h∗(v) =
h′(v) if v ∈ α(x) and h∗(v) = h(v), otherwise.

If no such H exists, let ψ(x,H ′,T ′, t ′,h′) = null.
The following lemma shows that to solve the BCPP, it is enough to calculate ψ(x,H ′,T ′, t ′,h′)

for every choice of x,H ′,T ′, t ′,h′.

Lemma 2.2.14 Let r be the root node of T . Let t ′ be t restricted to α(r), and let h′ be h
restricted to α(r). Let H ′ and T ′ be chosen such that the weight of H = ψ(r,H ′,T ′, t ′,h′) is
minimized. Then the weight of H is the weight of an optimal solution to the BCPP on (G,w, t),
and given H we may construct an optimal solution to BCPP on (G,w, t) in polynomial time.

Proof Observe that by construction of t ′ and h′, t∗ and h∗ in the definition of ψ(r,H ′,T ′, t ′,h′)
are t and h, respectively. Also observe that for a graph H, d∗

H(v)− t(v) is even for each vertex
v if and only if H is h-balanced.

Let D be an optimal solution to the BCPP on (G,w, t), and let H be the undirected version
of D. By Lemma 2.2.4, H is h-balanced and has a t-road. Furthermore by Lemma 2.2.7, H has
a well-(G, t)-behaved t-road T . By Lemma 2.2.3, we may assume that µH(uv)≤ max{p,2}
for each edge uv. H clearly has underlying graph G = γ(r). So by letting H ′ be H[α(r)] and
letting T ′ be T [α(r)], we have that H satisfies all the conditions of ψ(x,H ′,T ′, t ′,h′) (except
possibly for minimality).

On the other hand, suppose H satisfies all these conditions. Then in particular, H has
underlying graph γ(r) = G, H is h-balanced, and H has a t-road. It follows by Lemma 2.2.4
that there exists a solution to the BCPP on (G,w, t) which is an orientation of H.

It follows that the minimum weight solution to the BCPP on (G,w, t) has the same weight
as H = ψ(r,H ′,T ′, t ′,h′), when H ′ and T ′ are chosen such that the weight of H is minimized.

When using dynamic programming algorithms based on tree decompositions, the most
commonly used approach is to consider the restriction of possible solutions to each bag, and
combine information about the possible restrictions on each bag to construct a full solution.
However this approach only works when the tree decomposition is of bounded width, as the
number of restrictions to consider on each bag is bounded. In our case, some of the bags
in the decomposition may be arbitrarily large, so we cannot consider all possible solutions

48 Chinese Postman Problem

on a bag. However, we do have that each bag contains a bounded number of vertices from
C′, where C′ contains all vertices that appear in edges in small t-cuts. It will turn out to be
enough to make a guess based on the edges between vertices in C′, after which the rest of the
problem can be solved efficiently.

Finally, we show how to calculate ψ(x,H ′,T ′, t ′,h′) for every choice of x,H ′,T ′, t ′,h′.

Lemma 2.2.15 ψ(x,H ′,T ′, t ′,h′) can be calculated in FPT time, for all choices of x,H ′,T ′, t ′,h′.

Proof Consider some node x, and assume that we have already calculated ψ(y,H ′′,T ′′, t ′′,h′′),
for all descendants y of x and all choices of H ′′,T ′′, t ′′,h′′. We consider the possible types of
nodes separately.

x is a Leaf node: Consider the multigraph Gx with vertex set β (x) = γ(x) such that
Gx[α(x)] = H ′, and Gx has exactly one copy of each edge in G[β (x)] not contained in α(x).
Note that Gx is necessarily a subgraph of H = ψ(x,H ′,T ′, t ′,h′). Moreover, as every edge
from G[β (x)] in a small t-cut of G is contained in α(x), any well-(G, t)-behaved t∗-road in
H is also a well-(G, t)-behaved t∗-road in Gx.

It follows that if there exists any H satisfying the first two conditions of ψ(x,H ′,T ′, t ′,h′)
then Gx has a well-(G, t)-behaved t∗-road. So we first check whether Gx has a t∗-road (we
note that any t∗-road in Gx is well-(G, t)-behaved by construction of Gx).

If Gx has a t∗-road, it remains to find a minimum weight (multi)set of edges to add to
Gx to make it h∗-balanced. This can be done by solving the MINIMUM WEIGHT X -JOIN

PROBLEM, where X is the set of all vertices in β (x) that are not h∗-balanced in Gx. By
Lemma 2.2.5, this can be done in polynomial time.

x is an Introduce node:
Let y be the child node of x, and let v be the single vertex in β (x) \α(y). Then no

vertices in γ(x) are adjacent with v, except for those in α(x). In particular for any H =

ψ(x,H ′,T ′, t ′,h′), the only edges of H incident with v are those in H ′. Thus, if v is not
h′-balanced in H ′, then ψ(x,H ′,T ′, t ′,h′) = NULL. Similarly, if v is not t ′-balanced in T ′,
then ψ(x,H ′,T ′, t ′,h′) = NULL.

Otherwise, suppose that H = ψ(x,H ′,T ′, t ′,h′), and let H∗ be H restricted to γ(y). We
now construct the values H ′′,T ′′, t ′′,h′′ for which H∗ = ψ(y,H ′′,T ′′, t ′′,h′′) must hold. Ob-
serve that H∗[α(y)] = H[α(y)] = H ′[α(y)]. Thus we will set H ′′ = H ′[α(y)]. For the
well-(G, t)-behaved t ′-road T that H must have, let T ∗ be T restricted to γ(y), and observe
that T ∗[α(y)] = T [α(y)] = T ′[α(y)]. Thus we will set T ′′ = T ′[α(y)]. As T ∗ is equal to
T with the arcs incident to u removed, we have that the imbalance of a vertex u ∈ α(y)
in T ∗ is t ′(u)− µT ′(−→uv)+ µT ′(−→vu). (Note also that for u ∈ γ(y)\α(u), the imbalance of u
remains unchanged i.e. is still t(u).) Thus we let t ′′ : α(y)→ [−p, p] be the function such

2.2 Mixed k-arc CPP 49

that t ′′(u) = t ′(u)− µT ′(−→uv)+ µT ′(−→vu). By a similar argument, the parity of the degree of
any vertex u ∈ α(y) in H∗ is equal to h′′(u), where h′′ : α(y)→ {ODD,EVEN} is such that
if µH ′(uv) is odd then h′′(u) = h′(u)+ ODD, and otherwise h′′(u) = h′(u). Thus, we have
that H∗ = ψ(y,H ′′,T ′′, t ′′,h′′) (where the minimality property follows from the fact that any
improvement on H∗ would give a corresponding improvement on H),

Thus, we may set ψ(x,H ′,T ′, t ′,h′) to be ψ(y,H ′′,T ′′, t ′′,h′′) together with the edges of
H ′ incident with v.

x is a Forget node:
Let y be the child node of x, and let v be the single vertex in α(y) \ β (x). Note that

γ(y) = γ(x). Let t ′′ : α(y)→ [−p, p] be the function t∗ restricted to α(y) (i.e. t ′′ extends t ′

and assigns v to t(v)). Let h′′ : α(y)→{ODD,EVEN} be the function h∗ restricted to α(y) (i.e.
extends h′ and assigns v to h(v)). If H = ψ(x,H ′,T ′, t ′,h′) then by construction of t ′′ and h′′,
we also have H = ψ(y,H ′′,T ′′, t ′′,h′′), for some values of H ′′ and T ′′. Note that the possible
values of H ′′ are those for which H ′′[α(x)] = H ′, and so the only choice is the multiplicity of
each edge in H ′′ incident with v. By Lemma 2.2.3 we may assume the multiplicity of each
such edge is at most p, and therefore we have at most (p+1)|α(x)| ≤ (p+1)g(p) possible
values of H ′′. Similarly, we have at most (p+1)|α(x)| ≤ (p+1)2g(p) possible values of T ′′.

We therefore may set ψ(x,H ′,T ′, t ′,h′) to be the minimum weight ψ(y,H ′′,T ′′, t ′′,h′′)
over all possible values of H ′′ and T ′′.

x is a Join node:
Let y and z be the children of x, and recall that α(x) = α(y) = α(z), and furthermore

γ(x) = γ(y)∪ γ(z) and γ(y)∩ γ(z) = α(x).
Suppose that H = ψ(x,H ′,T ′, t ′,h′), and consider the graphs Hy = H[γ(y)] and Hz =

H[γ(z)].
Observe that the weight of H is equal to w(Hy)+w(Hz)−w(H ′) (as the only edges

contained in both Hy and Hz are those in H ′). Since α(x) = α(y), it must be the case that
Hy = ψ(y,H ′,T ′, t ′′,h′′) for some choice of t ′′ and h′′. Similarly Hz = ψ(z,H ′,T ′, t ′′′,h′′′) for
some choice of t ′′′ and h′′′. It remains to determine the possible choices of t ′′,h′′, t ′′′,h′′′.

Consider a well-(G, t)-behaved directed multigraph T , and let Ty = T [γ(y)] and Tz =

T [γ(z)]. Let t∗′′ be the function such that Ty is a t∗′′-road, and let t∗′′′ be the function such
that Tz is a t∗′′′-road. For any v ∈ α(x), the imbalance of v in T is equal to t∗′′(v)+ t∗′′′(v)−
∑u∈α(x) µT ′(−→vu)+∑u∈α(x) µT ′(−→uv) (where the last two terms come from the fact that arcs in
T ′ are counted twice in t∗′′(v)+ t∗′′′(v)). Thus, v is t∗-balanced in T if and only if t∗(v) =
t∗′′(v)+ t∗′′′(v)−∑u∈α(x) µT ′(−→vu)+∑u∈α(x) µT ′(−→uv). We also note that for v ∈ γ(y)\α(x), v
is t∗-balanced in T if and only if t∗′′(v) = t∗(v) = t(v), and for v∈ γ(z)\α(x), v is t∗-balanced
in T if and only if t∗′′′(v) = t∗(v) = t(v).

50 Chinese Postman Problem

Let h∗′′ : γ(y) → {ODD,EVEN} be the function such that Hy is h∗′′-balanced, and let
h∗′′′ : γ(z)→{ODD,EVEN} be the function such that Hz is h∗′′′-balanced. Then by a similar
argument, a vertex v ∈ α(x) is h∗-balanced in H if and only if h∗(v) = h∗′′(v)+h∗′′′(v)+ c,
where c = EVEN if v has even degree in H, and c = ODD otherwise.

The above implies that ψ(x,H ′,T ′, t ′,h′) is the union of ψ(y,H ′,T ′, t ′′,h′′) and ψ(z,H ′,T ′, t ′′′,h′′),
where t ′′,h′′, t ′′′,h′′′ are chosen to minimize the the total weight of ψ(y,H ′,T ′, t ′′,h′′) and
ψ(z,H ′,T ′, t ′′′,h′′) and such that

1. t ′′(v), t ′′′(v) ∈ [−p, p] for all v ∈ α(x);

2. t ′(v) = t ′′(v)+ t ′′′(v)−∑u∈α(x) µT ′(−→vu)+∑u∈α(x) µT ′(−→uv) for all v ∈ α(v);

3. h′(v) = h′′(v)+ h′′′(v) if v has even degree in H, and h′(v) = ODD + h′′(v)+ h′′′(v)
otherwise.

Observe that in the case of a Join node, there is only one possible choice of t ′′′ for each
choice of t ′′ and only one possible choice of h′′′ for each choice of h′′. Therefore there
are at most [2(2p+ 1)]g(p) possible choices for t ′′, t ′′′,h′′,h′′′. Therefore it is possible to
calculate ψ(x,H ′,T ′, t ′,h′) in fixed-parameter time, as long as we have already calculated
ψ(y,H ′′,T ′′, t ′′,h′′), for all descendants y of x and all choices of H ′′,T ′′, t ′′,h′′.

It remains to show that the number of graphs ψ(x,H ′,T ′, t ′,h′) to calculate is bounded by
a function of p times a polynomial in |V (G)|. We may assume the number of nodes x in T is
bounded by |V (G)|. As |α(x)| is bounded by a function of p, and H ′ has at most max{p,2}
edges for each edge within α(x), and T ′ has at most max{p,2} arcs for each edge within
α(x), the number of possible graphs H ′ and T ′ is bounded by a function of p. Finally, as
|α(x)| is bounded by a function of p, the number of possible functions t : α(x)→ [−p, p]
and h′ : α(x)→{ODD,EVEN} is also bounded by a function of p.

Lemmas 2.2.14 and 2.2.15 imply the following:

Theorem 2.2.1 BCPP is fixed-parameter tractable.

Theorem 2.2.1 and Lemma 2.2.2 imply the following:

Theorem 2.2.2 k-ARC CPP is fixed-parameter tractable.

2.3 Chinese Postman Problem on Edge Colored Graphs 51

2.3 Chinese Postman Problem on Edge Colored Graphs

Recall that a PC Euler trail in a multigraph G is a properly colored closed walk which
traverses each edge of G exactly once. PC Euler trails were one of the first types of PC walks
studied in the literature and the first papers that studied PC Euler trails were motivated by
theoretical questions [34, 57] as well as questions in molecular biology [76]. To formulate a
characterization of edge-colored graphs with PC Euler trails by Kotzig [57], we introduce
some additional terminology. A vertex in an edge-colored multigraph is balanced if no color
appears on more than half of the edges incident with the vertex, and even if it is of even
degree. We say that an edge-colored graph is PC Eulerian if it contains a PC Euler trail.

Theorem 2.3.1 An edge-colored multigraph G is PC Eulerian if and only if G is connected
and every vertex of G is balanced and even.

Benkouar et al. [15] described a polynomial-time algorithm to find a PC Euler trail in an
edge-colored multigraph, if it contains one. Studying DNA physical mapping, Pevzner [77]
came up with a simpler polynomial-time algorithm solving the same problem.

In this section, we consider the Chinese Postman Problem on edge-colored graphs (CPP-
ECG) defined as following. Note that the weight of a walk is the sum of the weights of its
edges.

CHINESE POSTMAN PROBLEM ON EDGE-COLORED GRAPHS (CPP-ECG)
Instance: A connected edge colored graph G = (V,E), with vertex set V , edge set
E; a weight function w : E → N0.
Output: A PC closed walk in G which traverses all edges of G at least once and has
the minimum weight among such walks.

Observe that to solve CPP-ECG, it suffices to find a PC Eulerian edge-colored multigraph
G∗ of minimum weight such that V (G∗) =V (G) and for every pair of distinct vertices u,v
and color i, G∗ has p∗ > 0 parallel edges between vertices u and v of color i if and only if G
has at least one and at most p∗ edges of color i between u and v. (To find the actual walk, we
can use the algorithm from [15] or [76].)

CPP-ECG is a generalization of the PC Euler trail problem as an instance G has a PC
Euler trail if and only if G∗ = G. CPP-ECG is also a generalization of the Chinese Postman
Problem (CPP) on both undirected and directed multigraphs (the arguments are the same as
for PC walks above). However, while CPP on both undirected and directed multigraphs has
a solution on every connected multigraph G, it is not the case for CPP-ECG. Indeed, there is
no solution on any connected edge-colored multigraph containing a vertex incident to edges
of only one color.

52 Chinese Postman Problem

As we mentioned earlier in subsection 1.5, there are polynomial time algorithms for the
Chinese Postman problem on both undirected and directed multigraphs. We will prove that
CPP-ECG is polynomial-time solvable as well. Note that our proof is significantly more
complicated than that for CPP on undirected and directed graphs. As in the undirected case,
we construct an auxiliary edge-weighted complete graph H and seek a minimum-weight
perfect matching M in it. However, the construction of H and the arguments justifying the
appropriate use of M are significantly more complicated. This can partially be explained by
the fact that CPP-ECG has no solution on many edge-colored multigraphs.

Note that there is another generalization of CPP on both undirected and directed multi-
graphs, namely, CPP on mixed multigraphs, i.e., multigraphs that may have both edges and
arcs. However, CPP on mixed multigraphs is NP-hard [72]. It is fixed-parameter tractable
when parameterized with both the number of edges and arcs [102, 42] and W[1]-hard when
parameterized with pathwidth [46].

2.3.1 Preliminaries

For technical reasons we will consider walks with fixed end vertices and call them fixed
end-vertex (FEV) walks. Note that an open walk is necessarily an FEV walk since the
end-vertices are predetermined, whereas any vertex in a closed walk can be viewed as its two
end-vertices and thus fixing such a vertex is somewhat similar to assigning a root vertex in a
tree. An FEV walk W = v1e1v2 . . .vp−1ep−1vp is PC in an edge-colored graph if the colors
of ei and ei+1 are different for every i ∈ [p−2]. Note that we do not require that colors of
ep−1 and e1 are different even if v1 = vp. Thus, a PC FEV walk might not be a PC walk if
v1 = vp.

Let e = xy be an edge in an edge-colored multigraph G. The operation of double
subdivision of e replaces e with an (x,y)-path Pe with three edges such that the weight of Pe

equals that of edge e.
It is easy to see that in our study of PC walks, we may restrict ourselves to graphs

rather than multigraphs. Indeed, it suffices to double subdivide every parallel edge e and as-
sign the original color of e to the first and third edges of Pe and a new color to the middle edge.

Finding PC FEV walks. Let R+ denote the set of non-negative real numbers. To give our
polynomial-time algorithm for CPP-ECG, we will use the following lemma:

Lemma 2.3.1 Let G = (V,E) be a k-edge-colored graph and ω : E →R+ a weight function.
Let vertices u,v ∈V and edge colors c1,c2 be given, where we may have u = v. In polynomial

2.3 Chinese Postman Problem on Edge Colored Graphs 53

time we can find a minimum-weight PC FEV walk from u to v in G whose first edge has color
c1 and whose last edge has color c2, or conclude that there is no such PC FEV walk in G.

Proof Define an auxiliary digraph H as follows. Let the vertex set of H be {(u,0)}∪{(x, i) :
x ∈V, i ∈ [k]}. For every edge xy ∈ E, of color i, we add to H all arcs (x, j)(y, i) and (y, j)(x, i)
where j ∈ [k], j ̸= i. We also add an arc from (u,0) to (z,c1) for every edge uz ∈ E of color
c1. Every arc in H retains the weight of the corresponding edge in G. We claim that the
minimum-weight PC FEV walk we seek in G corresponds to a minimum-weight directed
path from (u,0) to (v,c2) in H, which can be found in polynomial time, e.g., using Dijkstra’s
algorithm.

On the one hand, let (x1,d1)(x2,d2) . . .(xℓ,dℓ) be a directed path in H such that (x1,d1) =

(u,0) and (xℓ,dℓ) = (v,c2). Note that in our construction of H, if there is an arc from (x, i) to
(y, j), then i ̸= j, moreover, it implies there is an edge between x and y in G of color j. Then
by construction, x1e2x2 . . .eℓxℓ, where ei is an edge between xi−1 and xi of color di, is a PC
FEV walk in G with required properties. On the other hand, consider a minimum-weight PC
FEV walk W in G with the properties requested. Orient the edges of the walk away from
u. We may assume that no vertex has two in-coming directed edges in the walk of the same
color, as the walk could otherwise be shortened. As above it is not hard to verify that the
walk corresponds to a directed path P in H from (u,0) to (v,c2). By construction, the weight
of P equals that of W . It remains to observe that P is a minimum-weight directed path from
(u,0) to (v,c2), as otherwise there is a PC FEV walk between u and v with required edge
colors of weight smaller than W , a contradiction.

Finally, we observe that the construction works without modification if u = v.

2.3.2 Main Result

We are now ready to prove our main result.

Theorem 2.3.2 There is a polynomial time algorithm for CPP-ECG.

Proof Let G be a connected k-edge-colored graph with at least one edge. We consider
CPP-ECG on G. We may assume that there is no vertex of G that is incident with edges of a
single color only (As there is no PC closed walks G passing through such vertices). We may
also assume that k ≥ 2 is odd (if not, we double subdivide an edge e of G and assign a new
color to the middle edge of Pe and the original color of e to the other two edges).

For a vertex u ∈V (G) and color i ∈ [k], let di(u) be the number of edges incident with u
of color i. Let d(u) (= ∑

k
i=1 di(u)) be the degree of u in G. We say that color i is dominant

54 Chinese Postman Problem

u4 u3

u1 u2

color 1

color 3

color 2

Fig. 2.2 3-edge-colored graph G

X(u4) X3(u3)

X2(u3)

X2(u1)

X3(u1) X(u2)

Y (u1)

Y (u3)

artificial edge

non-artificial edge

Fig. 2.3 Constructed graph H from the graph of Figure 2.2. Some edges, including artificial
edges within X(u2) and X(u4), are omitted for clarity.

2.3 Chinese Postman Problem on Edge Colored Graphs 55

for u in G if 2di(u)> d(u); note that a vertex has at most one dominant color, and is balanced
if and only if it has no dominant color.

We now show how to construct, in polynomial time, an undirected graph H such that H
has a perfect matching if and only if G has a PC closed walk traversing all edges of G, and
the minimum weight of a perfect matching in H is equal to the minimum weight of such a
walk in G minus the weight of G. As computing a minimum-weight perfect matching can be
done in polynomial time, the claim follows. An example is shown in Figures 2.2 and 2.3.

We will build the undirected graph H as follows. Define θi(u) as follows:

θi(u) = max{0,d(u)−2di(u)}.

Let Xi(u) be a set of independent vertices of size θi(u) and let X(u) =
⋃k

i=1 Xi(u). We
now consider the cases when u is balanced and when u is not balanced, separately.

Case 1: u is not balanced. Let Y (u) be a set of (k−2)d(u) independent vertices and add
all possible edges between Y (u) and X(u) and all possible edges within Y (u). Let the weight
of all these edges be zero and let us call them artificial edges. Let Z(u) = X(u)∪Y (u).

Case 2: u is balanced. Add all possible edges within X(u). Let the weight of all these
edges be zero and let call them artificial edges. Let Z(u) = X(u).

For every pair a ∈ Xi(u) and b ∈ X j(v) of distinct vertices such that ab is not an artificial
edge, i, j ∈ [k] and u,v ∈V (G) (we may have i = j and/or u = v), add an edge between a and
b with the weight equal to that of a minimum-weight PC FEV walk from u to v in G, starting
in color i and ending in color j if one exists, otherwise add no edge ab; this can be computed
in polynomial time by Lemma 2.3.1. This completes the description of H.

Assume that H has a perfect matching and M is a minimum-weight perfect matching in
H. We will show that the weight of M plus the weight of all edges in G is the weight of an
optimal solution to the CPP-ECG instance.

We begin with an observation about the structure of M.

Claim 2.3.1 We say that a vertex a ∈ X(u) for some u ∈V (G) is affected by M if a is incident
with a non-artificial edge in M. Then M has the following properties.

1. If u is unbalanced with dominant color i ∈ [k], then at least 2di(u)−d(u) vertices of
X(u) are affected by M. Furthermore Xi(u) = /0.

2. If d(u) is odd, then an odd number of vertices of X(u) are affected by M.

3. If d(u) is even, then an even number of vertices of X(u) are affected by M.

56 Chinese Postman Problem

Furthermore, for any matching M0 in H with no artificial edges that has the above properties,
M0 can be completed to a perfect matching by adding artificial edges.

Proof 1. Assume that u is unbalanced with dominant color i, i.e., 2di(u) > d(u), i ∈ [k].
Then necessarily, 2d j(u)< d(u) for every other color j ∈ [k], hence θ j(u) = d(u)−2d j(u)
if i ̸= j, whereas θi(u) = 0. Thus

|X(u)|= ∑
j ̸=i

(d(u)−2d j(u)) = (k−2)d(u)+(2di(u)−d(u)),

where the last equality uses ∑ j ̸=i d(u) = (k−1)d(u) and ∑ j ̸=i d j(u) = d(u)−di(u). Artificial
edges on X(u) can only match vertices of X(u) against Y (u). Since |Y (u)|= (k−2)d(u)<
|X(u)|, this leaves at least |X(u)|− |Y (u)|= 2di(u)−d(u) vertices in X(u) which must be
affected by M. Finally, Xi(u) = /0 since θi(u) = 0.

2 and 3. Assume first that u is unbalanced, so there is a set of vertices Y (u). Since k is
odd, the parity of |Y (u)| matches the parity of d(u), hence an odd (resp. even) number of
vertices of X(u) are matched against Y (u) if and only if d(u) is odd (resp. even). Now, as
calculated in the previous paragraph, |X(u)|= (k−3)d(u)+2di(u), which is always even.
Furthermore, the affected vertices of X(u) are exactly those not matched against Y (u). The
claim follows.

Finally, if u is balanced, then |X(u)| = ∑ j(d(u)− 2d j(u)) = (k− 2)d(u), which again
has the same parity as d(u). Since every artificial edge matches two vertices of X(u), and the
remaining vertices are exactly the affected vertices in X(u), the claim follows.

Completing a non-perfect matching. Let M0 be a matching in H such that for every vertex
u, (1) if u has a dominant color i, then at least 2di(u)−d(u) vertices of X(u) are affected
by M0, and (2) an odd number of vertices of X(u) are affected by M0 if and only if d(u) is
odd. By the above, the second point here implies that the number of unmatched vertices of
Z(u) is even for every vertex u. If u is balanced, then Z(u) = X(u) is a clique and we can
add artificial edges from the clique. If u is unbalanced, then Y (u) is entirely unmatched, and
by the first point here, the number of unmatched vertices in X(u) is at most |Y (u)|. Hence
the completion is possible.

Let u and v be vertices of G and let i and j be colors. Let e = ab be an arbitrary non-
artificial edge in H, with a ∈ Xi(u) and b ∈ X j(v), where we may have u = v and/or i = j. An
e-walk is a PC FEV walk in G, starting at u with an edge of color i, and ending at v with an
edge of color j.

We will show the theorem in two parts. First, we will show that for any perfect matching
M′ of H, if we add an e-walk to G for every non-artificial edge e ∈ M′, then the resulting

2.3 Chinese Postman Problem on Edge Colored Graphs 57

multigraph G′ is PC Euler. Here, to add an e-walk to G means to duplicate every edge along
the walk, duplicating an edge multiple times if it occurs in the walk multiple times. Second,
we show that for any PC Euler graph G′ = (V,E ∪W), obtained by duplicating edges in E,
there exists a perfect matching M′ of H such that W can be decomposed into a set F of
e-walks, where there is an e-walk in F if and only if e is a non-artificial edge in M′. This
will settle the result.

We need an observation about the effect of adding an e-walk to a graph.

Claim 2.3.2 Let e ∈ H be a non-artificial edge. Adding an e-walk F to G has the following
effects.

1. For any vertex u, the parity of d(u) changes if and only if F is open and u is either its
first or last vertex.

2. If u ∈V (G) is neither the first nor the last vertex of the walk, then for every i ∈ [k], the
value of d(u)−2di(u) is non-decreasing in the process.

3. If F is closed, let u be its end-vertex, and let i (j, respectively) be the colors of its first
(last, respectively) edges. Then for any c ∈ [k], the value of d(u)−2dc(u) increases
by at least 2 if c /∈ {i, j}; is non-increasing if c ∈ {i, j} and i ̸= j; and decreases by at
most 2 if i = j = c.

4. If F is open, let u be an end-vertex of F, without loss of generality, the first one. Let i
be the color of the first edge. Then for any j ∈ [k], the value of d(u)−2d j(u) decreases
by at most one if j = i, and increases by at least one, otherwise.

Proof The first item is easy. For the second item, we just observe that a single transition
through u increases d(u) by 2 and di(u) by at most 1. Since the graph has no loops, the local
effect on u of duplicating F decomposes into transitions, hence the second item holds. By
the same argument, if u is an endpoint of F , then all visits to u except the first and/or last one
decompose into transitions. This leaves only the first and last edges of F , and their effects
on the end-vertices of F , to consider. The claims in items 3 and 4 follow by considering all
possibilities for these two edges.

We are now ready to show the first part of the theorem, as announced above. Let M′ be an
arbitrary perfect matching in H, and let G′ be the result of adding an arbitrary e-walk, which
has the same weight as edge e, to G for every non-artificial edge e ∈ M′. We will show that
G′ is PC Euler. By Theorem 2.3.1, we need to show three conditions: G′ is connected, every
vertex in G′ is even, and every vertex in G′ is balanced. The first condition follows since G

58 Chinese Postman Problem

is connected; the second condition follows from Claim 2.3.1(2–3) and Claim 2.3.2(1). It
remains to show that every vertex is balanced in G′, i.e., for every u ∈V (G) and every i ∈ [k],
it holds in G′ that d(u)≥ 2di(u). We break this down into two cases.

Case 1: i is the dominant color for u in G. In this case, d(u)−2di(u)< 0 in G, and we
need to show that this value is nonnegative in G′. By Claim 2.3.1(1), at least 2di(u)−d(u)
vertices of X(u) are affected by M′, and since Xi(u) = /0, Claim 2.3.2 gives that the value
of d(u)− 2di(u) increases by at least 1 for every such vertex, and never decreases. Thus
d(u)≥ 2di(u) in G′.

Case 2: i is not a dominant color for u in G. In this case, |Xi(u)| = d(u)−2di(u) ≥ 0,
and we need to show that this value is nonnegative in G′. By Claim 2.3.2, the value of
d(u)−2di(u) decreases by at most as much as the number of vertices in Xi(u) affected by
M′, in the sense of the term used in Claim 2.3.1. Since there are only d(u)− 2di(u) such
vertices, we see that d(u)≥ 2di(u) also in G′.

Hence we conclude that d(u)≥ 2di(u) in G′ for every u ∈V (G) and every i ∈ [k], hence
every vertex is balanced. This concludes the proof that G′ has a PC Euler trail. Clearly, the
weight of this trail is equal to the total weight of E(G) plus the sum of the weight of the
added e-walks, where the latter part is exactly the weight of M′.

Now assume that CPP-ECG on G has a solution, a PC closed walk Q in G, and let G′ be
the graph obtained from G by replacing every edge e = xy by qe parallel edges with vertices
x and y, where qe is the number of times Q traverses e. Let W = E(G′)\E(G), i.e., W are
the edges that are added to G in order to get the PC Euler multigraph G′. We will find a
perfect matching in H with total weight at most the sum of the weights of edges in W . This
will complete the proof.

We initially define a set W ′ of walks as the set of one-edge walks xey, where e = xy ∈W .
We will merge walks in W ′ until we can map the remaining walks W ′ to a matching M0 in
H meeting the requirements of Claim 2.3.1, at which point we will be done. Here to merge
two walks is to replace the walks u1e1u2 . . .eℓ−1uℓ and v1 f1v2 . . . fh−1vh, where uℓ = v1 = u,
with the walk u1e1u2 . . .eℓ−1u f1v2 . . . fh−1vh. For u ∈V (G) and i ∈ [k], let wi(u) denote the
number of times that u is an end-vertex of a walk in W ′ and that walk ends in u with color i.
Here we do not assume a fixed “first” and “last" vertex, and thus the walks u1e1u2 . . .el−1ul

and ulel−1ul−1 . . .e1u1 are the same. Note that we will allow walks in W ′ to start and end in
the same vertex, in which case one walk may contribute to wi(u) twice.

By Claim 2.3.1, we need to ensure that

1. wi(u) ≤ θi(u) = |Xi(u)| for every u ∈ V (G) and i ∈ [k] (so that W ′ corresponds to a
matching);

2.3 Chinese Postman Problem on Edge Colored Graphs 59

2. ∑ j∈[k]\{i}w j(u)≥ 2di(u)−d(u) for every vertex u with a dominant color i in G; and

3. the parity condition is met for every vertex u.

Because G′ has a PC closed walk traversing all edges, and by Theorem 2.3.1, we have
that initially W ′ satisfies the following:

4. ∑ j∈[k]w j(u)+d(u)≥ 2wi(u)+2di(u) for every vertex u ∈V (G) and integer i (since
G′ is balanced);

5. ∑ j∈[k]w j(u) is even, if and only if d(u) is even i.e. the parity condition is met (since
G′ is even, and hence d(u)+∑ j∈[k]w j(u) is even).

We note that Condition 4 implies Condition 2 and Condition 5 implies Condition 3. As
long as Condition 1 is not satisfied, we will modify W ′ by merging walks in such a way that
Condition 4 and Condition 5 are still satisfied. As each merging reduces the number of walks
in W ′, we must eventually stop with a set of walks W ′ satisfying Condition 1, Condition 2
and Condition 3.

So now assume that Condition 1 is not satisfied and let u ∈ V (G) be a vertex such
that wi(u) > θi(u) for some i ∈ [k]. If wi(u) > d(u)− 2di(u), then we must have that
wc(u)> 0 for some c ̸= i, as otherwise 2wi(u)+2di(u)>wi(u)+d(u) =∑ j∈[k]w j(u)+d(u),
a contradiction to Condition 4. Thus there are at least two colors c with wc(u)> 0.

We will choose two colors h, j, with wh(u)> 0,w j(u)> 0,h ̸= j (i is not necessarily in
{ j,h}), and merge a walk ending at u with color h with a walk ending at u with color j. (If
this makes us merge both end-vertices of the same walk, we may simply remove the walk).
It is clear that the new walk is still PC, and this operation reduces the number of walks in W ′.
As we have reduced wh(u) and w j(u) by 1, and the other values are unaffected, it is clear that
Condition 5 is still satisfied. We now show how to choose h, j in such a way that Condition 4
is still satisfied.

Let us call a color c at risk if ∑ j∈[k]w j(u)+d(u)≤ 2wc(u)+2dc(u)+1 (informally, a
color is “at risk” if removing two edges of other colors would lead that color to dominate u).
As ∑ j∈[k]w j(u)+d(u) is necessarily even and ∑ j∈[k]w j(u)+d(u)≥ 2wc(u)+2dc(u) , we
have that in fact ∑ j∈[k]w j(u)+d(u) = 2wc(u)+2dc(u) for any at risk color c. Furthermore,
we note that at most two colors in [k] can be at risk. Indeed, suppose that distinct colors
c1,c2,c3 ∈ [k] are at risk. Then 2wc1(u)+2dc1(u)+2wc2(u)+2dc2(u)+2wc3(u)+2dc3(u) =
3(∑ j∈[k]w j(u) + d(u)) > 2(∑ j∈[k]w j(u) + d(u)) ≥ 2(wc1(u) + wc2(u) + wc3(u) + dc1(u) +
dc2(u)+dc3(u)), a contradiction.

Next, suppose for a contradiction that wc(u) = 0 for an at risk color c. Then 2dc(u) =
d(u)+∑ j∈[k]w j(u) and so 2di(u) ≤ 2d(u)− 2dc(u) = d(u)−∑ j∈[k]w j(u). Then wi(u) >

60 Chinese Postman Problem

θi(u)≥ d(u)−2di(u)≥ d(u)−d(u)+∑k∈[k]w j(u)≥wi(u), a contradiction. Thus, wc(u)> 0
for any at risk color c.

We now know that there at least two colors c with wc(u)> 0, there are at most 2 at risk
colors, and if color c is at risk then wc(u)> 0. We can therefore select two distinct colors h, j
with wh(u)> 0,w j(u)> 0, such that any at risk color is contained in {h, j}. We now merge
a walk ending with color h at u and a walk ending with color j at u, as described above.
This has the effect of reducing each of wh(u) and w j(u) by 1, and leaving wc(u) unchanged
for c ∈ [k]\{h, j}. We now show that we still have ∑ j∈[k]w j(u)+d(u) ≥ 2wc(u)+2dc(u)
for any c ∈ [k]. If c ∈ {h, j}, then both ∑ j∈[k]w j(u)+d(u) and 2wc(u)+2dc(u) are reduced
by 2, so the condition still holds. If c /∈ {h, j}, then as c was not at risk we originally had

∑ j∈[k]w j(u)+d(u)≥ 2wc(u)+2dc(u)+2. As ∑ j∈[k]w j(u)+d(u) is reduced by 2, we will
still have ∑ j∈[k]w j(u)+d(u)≥ 2wc(u)+2dc(u), as required.

We continue the above process until there is no u ∈V (G), i ∈ [k] for which Condition 1
fails. We therefore have that Conditions 1, 4 and 3 hold, which in turn implies Conditions 2
and 3 hold. Convert W ′ to a matching M0 in H by adding for every walk F an edge e to
M0 such that F is an e-walk. This is possible since wi(u)≤ θi(u) = |Xi(u)| for every i ∈ [k],
u ∈V (G). The weight of M0 is at most the weight of W , since every edge e added to M0 this
way has a weight corresponding to a minimum-weight e-walk where F is just one possible
e-walk. By Claim 2.3.1 we can complete M0 to a perfect matching M′ by adding artificial
edges, which does not increase the weight. Hence H admits a perfect matching whose weight
is at most the weight of W .

So in all cases we can find a perfect matching in H with weight exactly the weight of
all the (non-closed) walks in W ′. As we have already shown that a perfect matching in H
gives rise to a solution to CPP-ECG on G where duplicated edges add the same weight as the
weight of the matching, we are done.

Chapter 3

Kernelization results on undirected
graphs

3.1 Generalized Load Coloring Problem

Given a graph G = (V,E) and an integer k, the 2-LOAD COLORING problem introduced
in [3], asks whether there is a coloring ϕ : V → {1,2} such that for i = 1 and 2, there
are at least k edges with both end-vertices colored i. The coloring needs not be proper.
This problem was first proved to be NP-complete in [3], then Gutin and Jones studied its
parameterized tractability with parameter k in [41]. They proved that 2-LOAD COLORING

is fixed-parameter tractable by obtaining a kernel with at most 7k vertices. It is natural to
extend 2-LOAD COLORING to c-LOAD COLORING as follows. Recall that, for a positive
integer p, [p] = {1,2, . . . , p}.

c-LOAD COLORING ((c,k)-LC)
Instance: A graph G = (V,E) and two positive integers c and k.
Output: Decide whether there is a c-coloring ϕ : V → [c] such that for every i ∈ [c],
there are at least k edges with both end-vertices colored i.

If such a coloring ϕ exists, we call ϕ a (c,k)-coloring of G and we write G ∈ (c,k)-LC.
The c-LOAD COLORING problem can be viewed as a subgraph packing problem [61]:

decide whether a graph G contains c vertex-disjoint k-edge subgraphs. Hence, G ∈ (1,k)-LC
if and only if |E(G)| ≥ k. In this chapter, we consider c-LOAD COLORING parameterized
with k for every fixed c ≥ 2. Note that c-LOAD COLORING is NP-complete for every fixed
c ≥ 2. Indeed, we can reduce 2-LOAD COLORING to c-LOAD COLORING with c > 2 by
taking the disjoint union of G with c−2 stars K1,k. Thus, G is a Yes-instance for 2-LOAD

62 Kernelization results on undirected graphs

COLORING if and only if the new graph is a Yes-instance for c-LOAD COLORING

We prove that the c-LOAD COLORING problem admits a kernel with less than 2ck
vertices. Thus, for c = 2 we improve the kernel result of [41]. To show our result, we
introduce reduction rules, which are new even for c = 2. We prove that the reduction rules
can run in polynomial time and that an irreducible graph with at least 2ck vertices is in
(c,k)-LC.

While there are many parameterized graph problems which admit kernels linear in the
number of vertices, usually it is problems on classes of sparse graphs admit kernels linear in
the number of edges (since in such graphs the number of edges is linear in the number of
vertices), see, e.g., [17, 29, 62]. Only a few problems for general graphs are found to admit
O(k)-edge kernels, see [49, 51, 79]. Our result is in the same category: c-LOAD COLORING

admits a kernel with O(k) edges for every fixed c ≥ 2. Namely, the kernel has less than
6.25c2k edges when c ≥ 2 and, moreover, less than 6k+(3+

√
2)
√

k+4 edges when c = 2.
The optimization version of c-LOAD COLORING, called the MAX c-LOAD COLORING

problem, is defined as follows.

MAX c-LOAD COLORING

Instance: A graph G = (V,E) and a positive integer c.
Output: Decide the maximum integer k such that G ∈ (c,k)-LC.

Using the above bound on the number of edges in a kernel for c ≥ 2, we show that MAX

c-LOAD COLORING admits constant ratio approximation algorithms for any fixed c.
This section is organized as follows. After providing some additional terminology and

notation in the remainder of this section, we show that the problem admits a kernel with less
than 2ck vertices in section 3.1.1. Then, in section 3.1.2, we prove the upper bound on the
number of edges in a kernel for every c ≥ 2 and, in section 3.1.3, we show the constant ratio
approximation result for MAX c-LOAD COLORING. We improve our bound for c = 2 in
Section 3.1.4. We complete the topic with some discussions in Chapter 5.

Graphs. Following [3, 41], we consider graphs without loops or multiple edges (Actually,
our results generalize to graphs with loops and multiple edges, see Chapter 5). Considering
the property of the edge coloring we are dealing with, we may also assume without loss
of generality that the graphs under consideration do not have isolated vertices. A vertex u
with degree 0 (1, respectively) is an isolated vertex (a leaf-neighbor of v, where uv ∈ E(G),
respectively). For a coloring ϕ , we say that an edge uv is colored i, for some i ∈ [c], if
ϕ(u) = ϕ(v) = i, otherwise we say that it is uncolored. Let ϕ(X) = {i ∈ [c] : ϕ(u) = i,u ∈V}
be the set of colors used for coloring of X .

3.1 Generalized Load Coloring Problem 63

3.1.1 Bounding Number of Vertices in Kernel

In this section, we show that c-LOAD COLORING admits a kernel with less than 2ck vertices.
The fact that (ck − 1)K2 is a No-instance suggests that this kernel bound is likely to be
optimal. The kernelization can be carried out in time O((cn)2).

For any integer i ≥ 1 and τ ∈ {<,≤,=,>,≥}, K1,τi denotes a star K1, j such that j τ i
and j ≥ 1. For instance, K1,≤p is a star with q edges, q ∈ [p]. Then, a K1,τi-graph is a forest
in which every component is a star K1,τi, and a K1,τi-cover of G is a spanning subgraph of G
which is a K1,τi-graph. We call any K1,τi-graph a star graph and any K1,τi-cover a star cover.

We first prove the bound for star graphs with small maximum degree.

Lemma 3.1.1 If G is a K1,<2k-graph with n ≥ 2ck, then G ∈ (c,k)-LC.

Proof Let G be a K1,<2k-graph with n ≥ 2ck. We prove the lemma by induction on c. The
base case of c = 1 holds since a K1,<2k-graph has no isolated vertices: this property implies
G has at least |V (G)|

2 ≥ k edges.
Since all components of G are trees, for each one the number of vertices is one more than

the number of edges. If there is a component C, with k ≤ |E(C)|< 2k, we may color V (C)

with one color. Since we only used |V (C)| ≤ 2k vertices, H = G−V (C) has at least 2(c−1)k
vertices and so H ∈ (c−1,k)-LC by the induction hypothesis. Thus, G ∈ (c,k)-LC.

We may assume that every component has less than k edges and let C1, . . . ,Ct be the
components of G. Let b be the minimum nonnegative integer for which there exists I ⊆ [t]
such that Σi∈I|E(Ci)| = k+ b ≥ k. Since there is no isolated vertex in a star graph, m ≥
n
2 ≥ ck, and thus such a set I exists. Observe that for any i ∈ I, |E(Ci)| > b, as otherwise
Σ j∈I\{i}|E(C j)| = k+ b−|E(Ci)| ≥ k, a contradiction to the minimality of b. Since every
component has less than k edges, b ≤ k−2.

For a star (V,E), the ratio |V |
|E| increases when |E| decreases. Thus, we have Σ j∈I|V (C j)| ≤

Σ j∈I|E(C j)|maxh∈I(
|V (Ch)|
|E(Ch)|

) ≤ (k + b)b+2
b+1 . But 2k − (k + b)b+2

b+1 = (k−2−b)b
b+1 ≥ 0, and so

Σ j∈I|V (C j)| ≤ 2k. We may color the components Ci, i ∈ I, by the same color. Again, we
have that H = G−V (

⋃
i∈I Ci) has at least 2(c−1)k vertices and so H ∈ (c−1,k)-LC by the

induction hypothesis. Thus, G ∈ (c,k)-LC.

For any star graph S and τ ∈ {<,≤,=,>,≥}, let C(S) (L(S), respectively) be the centers
(leaves, respectively) of stars in S (for the case of isolated edges in S, assign one vertex to
C(S) and one vertex to L(S) arbitrarily). Let Sτ be the subgraph of S consisting of all stars
whose centers v satisfy d(v) τ 2k−1.

Corollary 3.1.1 If |C(S≥)|+ |V (S<)|
2k ≥ c, then S ∈ (c,k)-LC.

64 Kernelization results on undirected graphs

Proof Clearly, S≥ ∈ (|C(S≥)|,k)-LC. We also have S< ∈ (⌊ |V (S<)|
2k ⌋,k)-LC by Lemma 3.1.1.

Thus, S ∈ (|C(S≥)|+ ⌊ |V (S<)|
2k ⌋,k)-LC.

We now introduce a family (Oi,k)i,k∈N of overloads.

G′

u1

u2

u3

|Vu1 | ≥ 2

|V1|= 3

Fig. 3.1 An overload from O3,2

Definition 3.1.1 We call a pair (V1,V2) of disjoint vertex sets an overload from Oi,k if |V1|= i,
N(v)⊆V1 for all v ∈V2, and for every u ∈V1 there is a set Vu ⊆ NV2(u) such that |Vu| ≥ k
and for every pair u,v of distinct vertices of V1, Vu ∩Vv = /0 (see Fig. 3.1).

Note that V2 in Definition 3.1.1 is an independent set in the graph G−V1.
If a graph G has an overload (V1, V2) from Oi,k, then G[V1 ∪V2] ∈ (i,k)-LC: for each

u ∈V1, color Vu ∪{u} with one color. From this observation, we deduce the following set of
reduction rules:

Reduction rule Ri,k. If an instance G of c-LOAD COLORING contains an overload (V1,V2)∈
Oi, j, j ≥ k, delete the vertices of V1 ∪V2 from G and decrease c by i.

Since the existence of an overload from Oi, j for i ≥ c and j ≥ k, in a graph G implies
G ∈ (c,k)-LC, we only consider Ri,k for i < c. If it is not possible to apply any rule Ri,k, i < c,
to a graph G, we say that G is irreducible for (c,k)-LC, otherwise we apply the reduction
rule and say that the resulting graph is reduced from G using (V1,V2).

Observe that Ri,k may create isolated vertices, however, we will show in the following
that we only use Ri,k in cases that do not produce isolated vertices.

Let G′ be a graph reduced from G using (V1,V2) ∈ Oi, j, i < c.

Proposition 1 If G′ ∈ (c− i,k)-LC then G ∈ (c,min{ j,k})-LC.

3.1 Generalized Load Coloring Problem 65

Proof Any (i, j)-coloring of the overload (V1,V2) ∈ Oi, j is an (i,min{ j,k})-coloring of
it. Any (c− i,k)-coloring of G′ of it. Merging the two coloring together, we obtain a
(c,min{ j,k})-coloring of G.

Proposition 2 If G ∈ (c,k)-LC then G′ ∈ (c− i,k)-LC.

Proof Let us call an edge uncolored, if the color of its endvertices are different. In whatever
(c,k)-coloring ϕ of G, any edge incident to V1 is colored with a color in ϕ(V1) or is uncolored.
Thus, there are at least c−|V1| colors for which all edges of that color are in E(G−V1). And
by the definition of an overload, any vertex in V2 is isolated in G−V1. So, these colored
edges are in E(G− (V1 ∪V2)) = E(G′). We conclude that G′ ∈ (c−|V1|,k)-LC.

These two propositions imply that the reduction rules are safe.

Lemma 3.1.2 Let G′ be reduced from G using (V1,V2) ∈ Oi, j, i < c, j ≥ k. Then G ∈ (c,k)-
LC if and only if G′ ∈ (c− i,k)-LC.

We now describe our polynomial reduction algorithm.

Theorem 3.1.1 Given two positive integers c,k > 1 and a graph G with n ≥ 2ck vertices,
there exists an algorithm running in time O((cn)2) which decides G ∈ (c,k)-LC or outputs
an instance (G′,c′) reduced from (G,c) using an overload from Oc−c′,2k−1, where c′ ∈ [c−1],
|V (G′)|< 2c′k.

Proof We first show that G has a star cover. Recall that we assume G has no isolated vertex.
By choosing a spanning tree of each component of G, we obtain a forest F . If a tree in F is
not a star, it has an edge between two non-leaves. As long as F contains such an edge, delete
it from F . Observe that F becomes a star cover of G.

Let S be a star cover of G. If S ∈ (c,k)-LC, then G ∈ (c,k)-LC since S is a subgraph of
G. So, if |C(S≥)|+ |V (S<)|

2k ≥ c, then the algorithm may decide G ∈ (c,k)-LC by Corollary
3.1.1. On the other hand, if S> is empty, G ∈ (c,k)-LC by Lemma 3.1.1. We may assume
these two properties do not hold and thus |C(S≥)| ∈ [c−1].

From star cover S, we will try to find some overload (V1,V2) such that we can apply the
reduction rule. Our main idea is to regard centers of “big” stars as candidates for V1 and their
leaves as candidates for V2, in the hope of finding big stars whose leaves have no neighbors
outside of V1. If, unfortunately, the leaf has neighbor outside of V1, we will improve the star
cover, such that we decrease the number of vertices in S> and put more vertices into S≤, until
we find an overload or we can conclude that the graph is a Yes-instance.

We will now show that we may modify the star cover S until one of the above properties
holds or G contains an overload (V1,V2) ∈ Oc−c′,2k−1. In particular, we will show that the

66 Kernelization results on undirected graphs

S<S=S>
x

y

x

⊆ S′

Fig. 3.2 k = 2, the dashed edges are in S, and will be deleted from it; the dotted edges are
what we are looking for, and will be put into S.

modification can be done in time O(c2n) and it strictly decreases |V (S>)|. Thus, the process
may be applied at most n times and the resulting algorithm’s running time is indeed O((cn)2).

We maintain a star graph S′: initially, let S′ = S> and while there is an edge uv ∈
E(G)\E(S) such that u ∈ L(S′) and v ∈C(S= \S′), add the star centered at v to S′. Observe
that this first construction runs in time O(c2n). Indeed, since |C(S≥)|< c, such an edge can
be found in time O(cn) and there are at most c steps in this while loop. As S′ is a subgraph
of the S, S′ is a star graph.

Claim 1 At any step of the construction of S′ and for any leaf y ∈ L(S′), there exists an
alternating path P from x to y such that V (P)⊆ S′, x ∈C(S>), the odd edges are in E(S) and
go from a center to a leaf, and the even edges are in E(G)\E(S) and go from a leaf to a
center (see Fig. 3.2).

We prove this claim by induction on the number of steps in the while loop. Initially, for
any leaf y, the neighbor x of y is in C(S>), thus the desired path is {xy}. At any step, we
add a vertex v ∈ C(S=) to S′ because there exists an edge uv ∈ E(G) \E(S) such that u is
a leaf introduced into S′ before v. By induction hypothesis, there is a desired alternating
path P from x to u such that V (P)∩NS[v] = /0. Thus the desired alternating path for any
leaf-neighbor y of v is P∪{uv,vy}.

We say that we reverse an alternating path from x to y in S if we remove the odd edges
from E(S) and add the even edges into E(S). This operation decreases the size of the star
centered at x by 1, does not change the size of the transitional stars and isolates y. Since the
length of a path is bounded by 2|C(S′)|< 2c, we may save these paths during the construction
of S′, and thus a reversal costs constant time.

Now we show how to handle the remaining problematic edges, i.e. edges uv∈E(G)\E(S)
such that u ∈ L(S′) and v ∈ V (G) \C(S′) (see Fig. 3.2). Recall that v ̸∈ C(S≥) by the
construction of S′ and there is an alternating path P from a vertex x ∈C(S>) to u by Claim

3.1 Generalized Load Coloring Problem 67

1. In any of the following cases, we show how to modify S such that |V (S>)| decreases (by
reversing a path) and such that the resulting graph remains a star cover :

• v ∈C(S<) or v is the leaf of a single-leaf star in S : we reverse P in S and add uv to
E(S). Despite the reversal, the vertex u is not isolated in the resulting graph because of
uv and v does not become the center of a star of size greater than 2k−1.

• v ∈ L(S) and v is not the leaf of a single-leaf star in S. Let y be the neighbor of v in S.

– vy ̸∈ E(P): we reverse P in S, add uv to E(S) and remove vy from it. Observe
that the vertices u and v do not become isolated. The vertex y is not isolated
either. Indeed, if x ̸= y, y loses only one neighbor but it was not the center of a
single-leaf star in S, and otherwise, it loses two neighbors but since y = x ∈C(S>)
and k > 1, dS(y)−2 > 2k−3 ≥ 1.

– P = P′∪{yv}∪P′′: let w be the neighbor of u in S, we reverse P′∪{yv} in S, add
vu and remove uw from E(S). Again, u and v do not become isolated because of
uv. Also, as w ̸= x (since they are different vertices of a path), w loses only one
neighbor. We have dS(w)−1 = 2k−2 ≥ 2 and w does not become isolated.

So, we may assume there is no edge uv ∈ E(G) \E(S) such that u ∈ L(S′) and v ∈
V (G) \C(S′). Then any vertex in L(S′) is isolated in G−C(S′). Thus, for any u ∈ L(S′),
we have N(u)⊆C(S′), and for each v ∈C(S′), we can define Vv to be the leaves of the star
centered at v, for which we have |Vv| ≥ 2k−1. These two observations imply (C(S′),L(S′))
is an overload from O|C(S′)|,2k−1. Since the reductions are safe, the algorithm may output
(G′,c′) = (G−V (S′),c−|C(S′)|). Note that |V (G′)| = 2k|C(S= \ S′)|+ |V (S<)| < 2k(c−
|C(S′)|) = 2c′k by the first assumption of the second paragraph of this proof. Since C(S>)⊆
C(S′)⊆C(S≥), we have |C(S′)| ∈ [c−1] (by the second paragraph of this proof) and therefore
c′ = c−|C(S′)| ∈ [c−1]. Observe moreover that the reduced graph G′ contains the star cover
S−V (S′) and thus has no isolated vertices.

We finally discuss how to find such an edge in at most O(c2n) time if it exists. We may
assume we initially computed the degree of each vertex of G once (in time O(n2)) and we
can make copies of this information in time O(n). Then, we may compute the degree of each
vertex of the graph G−C(S′) in O(cn) time since |C(S′)|< c. We only need to know if there
is a vertex u ∈ L(S′) such that dV\C(S′)(u)> 0. If so, u is not isolated in G−C(S′) and

Theorem 3.1.2 For any fixed c ≥ 2 and for any positive integer k, c-LOAD COLORING

admits a kernel with less than 2ck vertices.

68 Kernelization results on undirected graphs

Proof Observe first that G ∈ (c,1)-LC if and only if G has a matching with at least c edges.
Since this property can be decided in polynomial time, we just need to consider the case
when k > 1 and the input G has at least n ≥ 2ck vertices. Thus, the algorithm of Theorem
3.1.1 may decide whether G ∈ (c,k)-LC or obtains an instance (G′,c′) reduced from (G,c)
such that |V (G′)|< 2c′k.

3.1.2 Bounding Number of Edges in Kernel

Let S(c) be the integer sequence defined by induction by S(1) = 1, S(2c) = 4S(c) and S(2c+
1) = 2S(c)+2S(c+1). This sequence is known as A073121 in the Online Encyclopedia of
Integer Sequences [88] (see also [5]). We will use the following technical result.

Proposition 3 If c is even, S(c)≤ 9c2−4
8 , and for any c, S(c)≤ 9c2−1

8 .

Proof It is easy to check the base cases: S(1) = 1 = 9(1)2−1
8 , S(2) = 4 = 9(2)2−4

8 and S(3) =

10 = 9(3)2−1
8 . We now assume the claim holds for every c ≤ 2c′−1 and we will prove it for

c = 2c′ and c = 2c′+1.
For even value, we have:

S(2c) = 4S(c)≤ 4
9c2 −1

8
=

9(2c)2 −4
8

.

For odd value, we have:

S(2c+1) = 2(S(c)+S(c+1))

≤ 2
9c2 +9(c+1)2 −1−4

8
=

9(2c+1)2 −1
8

.

By using the kernel in the previous section, we show that c-LOAD COLORING admits a
kernel with less than (2S(c)+4c2 −5c)k edges. Because of the upper bound on S(c) given
by Proposition 3, the number of edges in a kernel may be bounded by 6.25c2k. We first prove
a smaller bound for bipartite graphs.

Lemma 3.1.3 Let b(c,k,n) = S(c)k+(c− 1)n. For every positive integer c and bipartite
graph G with n vertices, if m ≥ b(c,k,n) then G ∈ (c,k)-LC.

Proof We prove the lemma by induction on c. For the base case, observe that any graph
with at least k = b(1,k,n) edges is in (1,k)-LC for every k and n. We now assume the claim
holds for every c ≤ 2c′−1 and we will prove it for c = 2c′ and c = 2c′+1.

3.1 Generalized Load Coloring Problem 69

Suppose that G = (A∪B,E) is a bipartite graph with n vertices and at least b(c,k,n)
edges, but G ̸∈ (c,k)-LC. Let B2 be a maximal subset of B such that

|E(A,B2)|< b(c− c′,k, |A|+ |B2|)+b(c− c′,k, |B2|) (3.1)

So, for any vertex u ∈ B \B2, the set B2 ∪{u} does not satisfy (3.1). Such a set B2 exists
since the empty set satisfies (3.1). Moreover, for any partition (A1,A2) of A, we know there
exists i ∈ {1,2} such that

|E(Ai,B2 ∪{u})| ≥ b(c− c′,k, |Ai|+ |B2 ∪{u}|) (3.2)

as otherwise, the linearity in n of b(c,k,n) implies a contradiction with the maximality of B2:

|E(A,B2 ∪{u})| = |E(A1,B2 ∪{u})|+ |E(A2,B2 ∪{u})|
< b(c− c′,k, |A1|+ |B2 ∪{u}|)+b(c− c′,k, |A2|+ |B2 ∪{u}|)
= b(c− c′,k, |A|+ |B2 ∪{u}|)+b(c− c′,k, |B2 ∪{u}|).

Let B1 = B\B2, A1 = A and A2 = /0. We define the following inequalities.

|E(A1,B1)| < b(c′,k, |A1|+ |B1|)+ |A1| (3.3)

|E(A2,B1)| < b(c′,k, |A2|+ |B1|)+ |A2|. (3.4)

While (3.3) does not hold and (3.4) holds, we move an arbitrary vertex from A1 to A2.
Suppose eventually (3.3) and (3.4) are both false and let u be an arbitrary vertex in B1. We
deduce for both i = 1 and i = 2 that

|E(Ai,B1 \{u})| ≥ b(c′,k, |Ai|+ |B1|).

Thus, there exist disjoint vertex sets X and Y such that |E(X)| ≥ b(c′,k, |X |) and |E(Y)| ≥
b(c− c′,k, |Y |) (either X = A1 ∪B1 \{u} and Y = A2 ∪B2 ∪{u}, or X = A2 ∪B1 \{u} and
Y = A1 ∪B2 ∪{u}, depending on whether (3.2) holds for i = 1 or i = 2). By taking a (c′,k)-
coloring of X and a (c− c′,k)-coloring of Y , we have that G ∈ (c,k)-LC, a contradiction.

70 Kernelization results on undirected graphs

So, we may assume (3.3) eventually holds. If A2 = /0, then |E(A2,B1)|= 0. Otherwise,
let v be the last vertex moved from A1 to A2. Observe that

|E(A2,B1)| ≤ |E(A2 \{v},B1)|+ |B1|
< b(c′,k, |A2 \{v}|+ |B1|)+ |A2 \{v}|+ |B1| (by (3.4)).

< b(c′,k, |A2|+ |B1|)+ |A2|+ |B1|. (3.5)

In both cases, (3.5) holds and we can bound the number of edges in G:

|E(G)| = |E(A,B2)|+ |E(A1,B1)|+ |E(A2,B1)|
< b(c− c′,k, |A|+ |B2|)+b(c− c′,k, |B2|)
+ b(c′,k, |A1|+ |B1|)+ |A1|
+ b(c′,k, |A2|+ |B1|)+ |A2|+ |B1|

(by inequalities (3.1),(3.3),(3.5)).

If c = 2c′, we have c− c′ = c′ and

|E(G)|< 4S(c′)k+2(c′−1)n+n = b(c,k,n).

Otherwise, c = 2c′+1 and then c− c′ = c′+1. Thus,

|E(G)| < 2S(c′)k+2S(c′+1)k+2(c′−1)n

+|A|+2|B2|+ |A1|+ |A2|+ |B1|
≤ S(2c′+1)k+2c′n = b(c,k,n).

Thus, for c = 2c′ and c = 2c′+1, we have |E(G)|< b(c,k,n), a contradiction. So, there is
no bipartite graph with n vertices and at least b(c,k,n) edges such that G ̸∈ (c,k)-LC.

We now generalize this lemma for any graph. We would like to find a partition (A,B) of
V such that |E(A)|+ |E(B)| is bounded, since |E(A,B)| is bounded.

Lemma 3.1.4 Let f (c,k,n) = (2S(c)− c)k+ 2(c− 1)n. For every positive integer c and
every graph G with n vertices, if m ≥ f (c,k,n) then G ∈ (c,k)-LC.

Proof We prove the lemma by induction on c. For the base case, observe that any graph
with at least k = f (1,k,n) edges is in (1,k)-LC for every k and n. We now assume the claim
holds for every c ≤ 2c′−1 and we will prove it for c = 2c′ and c = 2c′+1.

Consider a graph G with n vertices and at least f (c′,k,n) edges, such that G ̸∈ (c,k)-
LC. We will first show that there exists a set A ⊆ V (G) such that f (c′,k, |A|) ≤ |E(A)| ≤

3.1 Generalized Load Coloring Problem 71

f (c′,k, |A|)+ |A| (and thus G[A]∈ (c′,k)-LC). We may construct the set A as follows: initially
A = /0 and while |E(A)|< f (c′,k, |A|), add an arbitrary vertex of V (G)\A to A. Let u be the
last added vertex. Then

|E(A)| ≤ |E(A\{u})|+ |A\{u}|< f (c′,k, |A\{u}|)+ |A\{u}|< f (c′,k, |A|)+ |A|.

Let B =V (G)\A. If G[B] ∈ (c− c′,k)-LC, then G ∈ (c,k)-LC, a contradiction. So |E(B)|<
f (c− c′,k, |B|). Furthermore, |E(A,B)|< b(c,k,n) by Lemma 3.1.3. Finally, we may bound
|E(G)|. If c = 2c′, we have c− c′ = c′

|E(G)| < f (c′,k, |A|)+ f (c′,k, |B|)+b(2c′,k,n)+ |A|
= (2S(c′)− c′)k+2(c′−1)|A|+(2S(c′)− c′)k+2(c′−1)|B|

+S(2c′)k+(2c′−1)n+ |A|
≤ (2S(2c′)−2c′)k+(4c′−2)n = f (c,k,n).

Otherwise, c = 2c′+1 and c− c′ = c′+1. Thus,

|E(G)| < f (c′,k, |A|)+ f (c′+1,k, |B|)+b(2c′+1,k,n)+ |A|
= (2S(c′)− c′)k+2(c′−1)|A|+(2S(c′+1)− (c′+1))k+2c′|B|

+S(2c′+1)k+2c′n+ |A|
≤ (2S(2c′+1)− (2c′+1))k+4c′n = f (c,k,n).

Thus, in both cases |E(G)|< f (c,k,n), as required.

Recall that Proposition 3 implies f (c,k,2ck)< 6.25c2k. Thus Lemma 3.1.4 implies the
following

Corollary 3.1.2 For every graph G with less than 2ck vertices, if m≥ 6.25c2k then G∈ (c,k)-
LC.

Theorem 3.1.2 and Corollary 3.1.2 imply the following.

Theorem 3.1.3 The c-LOAD COLORING Problem admits a kernel with less than f (c,k,2ck)<
6.25c2k edges.

The size of this kernel may be optimal up to a constant factor. Indeed, the complete
bipartite graph Kc,ck−1 is an irreducible graph for (c,k)-LC with c2k− c = O(c2k) edges, but
Kc,ck−1 ̸∈ (c,k)-LC. We can increase this lower bound by joining all c vertices on the smaller
side of Kc,ck−1. The resulting graph is not in (c,k)-LC either, and it has c2k+ c(c−3)

2 edges.

72 Kernelization results on undirected graphs

3.1.3 Approximation Algorithm

We consider an approximation algorithm for the MAX c-LOAD COLORING problem. Given a
graph G and integer c, we wish to determine kopt(G,c), the maximum k for which G ∈ (c,k)-
LC. Given an approximation algorithm, we define the approximation ratio as kopt(G,c)

k , where
k is the output of the approximation algorithm.

Note that kopt(G,c)≤ ⌊ |E(G)|
c ⌋ by the pigeonhole principle. Let K(c)k be an upper bound

of the number of edges in a kernel for c-LOAD COLORING. By Theorem 3.1.3, we may have
K(c) = 6.25c2.

Theorem 3.1.4 Given a graph G and a positive integer c, there exists an algorithm running
in time O(c3n2) which outputs k such that G ∈ (c,k)-LC and kopt(G,c)

k+1 < K(c)
c = 6.25c.

Proof We prove the claim by induction on c. If c = 1, the algorithm trivially outputs |E(G)|.
We assume the claim holds for any i < c, and want to prove it for c.

Let k = ⌊ |E(G)|
K(c) ⌋. Note that k+1 > |E(G)|

K(c) ≥ ckopt(G,c)
K(c) , thus K(c)

c >
kopt(G,c)

k+1 . We also have
K(c)

c >
kopt(G,c)

2k−1 if k > 1.
If k ≤ 1, since G ∈ (c,1)-LC if and only if G has a matching with at least c edges, the

algorithm may decide whether G ∈ (c,1)-LC in time O(c2n) using any matching algorithm.
Depending on the answer, the algorithm outputs kopt(G,c) = k = 0 or k = 1. Therefore we
may assume k > 1.

If n< 2ck, and as we choose k such that m≥K(c)k, Corollary 3.1.2 implies G∈ (c,k)-LC.
Thus, the algorithm may output k. Otherwise, we may give G as input of Theorem 3.1.1’s
algorithm for c-LOAD COLORING. Again, if the answer is G ∈ (c,k)-LC, our approximation
algorithm may output k. Otherwise the algorithm of Theorem 3.1.1 returns a graph G′

reduced from G using an overload from Oc−c′,2k−1, where c′ ∈ [c−1].
So now assume we have such a G′. Since G∈ (c,kopt(G,c))-LC, we have G′ ∈ (c′,kopt(G,c))-

LC by Proposition 2. Thus kopt(G,c)≤ kopt(G′,c′) and by induction hypothesis, we may find
an integer k′ such that G′ ∈ (c′,k′)-LC and 6.25c > 6.25c′ > kopt(G′,c′)

k′+1 ≥ kopt(G,c)
k′+1 . As we also

have G ∈ (c,min{2k−1,k′})-LC by Proposition 1, let the algorithm output min{2k−1,k′}.
The time complexity of the algorithm follows from the complexity of the algorithm of

Theorem 3.1.1 and the fact that any step of the induction needs to use the reduction algorithm
only once and this strictly decreases c.

Note that Theorem 3.1.4 does not technically give us a K(c)
c = 6.25c approximation, as

we only have kopt
k+1 < K(c)

c rather than kopt
k < K(c)

c . However, the following holds:

Corollary 3.1.3 There is a 12.5c approximation algorithm for MAX c-LOAD COLORING.

3.1 Generalized Load Coloring Problem 73

Proof By construction, if the approximation algorithm outputs k = 0, then kopt(G,c) = 0.
Otherwise, k ≥ 1 and then kopt

k ≤ 2kopt
k+1 < 2K(c)

c = 12.5c.

3.1.4 Number of Edges in Kernel for c = 2

In this section, we look into the edge kernel problem for the special case when c = 2. By
doing a refined analysis, we will give a kernel with less than 6k+(3+

√
2)
√

k+4 edges for
2-LOAD COLORING, which is a better bound than the general one.

Lemma 3.1.5 If a graph G is irreducible for (2,k)-LC and ∆(G)≥ 3k, then G ∈ (2,k)-LC.

Proof Let u be one of the vertices with degree ∆ and N(u) its neighbors. Since G is reduced
by Reduction Rule R1,k, u has at least 2k neighbors which are not leaves. Thus, these vertices
are incident to at least k edges not incident with u. Arbitrarily color k of them with color
1. By construction, there are at most 2k colored vertices. So there are at least ∆−2k ≥ k
uncolored vertices in N(u). We color them and u with 2. Thus, G ∈ (2,k)-LC.

We first establish a bound of the number of edges in a particular kind of minimal vertex
subsets.

Lemma 3.1.6 Let k be a positive integer. For any V ′ ⊆V (G) such that |E(V ′)|= k+d ≥ k
and V ′ contains at most one vertex u with dV ′(u)≤ d, we have d <

√
2k.

Proof Since |E(V ′)| ≥ k > 0, V ′ has at least two vertices, and thus there exists a vertex
v ∈V ′ such that d < dV ′(v)≤ |V ′|−1. This implies

2(k+d) = 2|E(V ′)|= ∑
v∈V ′

dV ′(v)≥ (d +1)(|V ′|−1)≥ (d +1)2.

Thus, 2k ≥ d2 +1 implying d <
√

2k.

The following lemmas and corollaries bound sizes of some sets of edges in a partition of
V (G) in three sets.

Lemma 3.1.7 Let G have a partition V (G) = A∪B1∪B2 and let s = min
i∈[2]

|Bi|. If |E(A,Bi)|+

2|E(Bi)| ≥ 2k+ s for i ∈ [2], then G ∈ (2,k)-LC.

Proof For any 2-coloring of G, any i ∈ [2] and any disjoint vertex sets X ,Y , we denote by
Ei(X) (Ei(X ,Y), respectively) the set of edges colored i from E(X) (E(X,Y), respectively).
Throughout the proof, all vertices of Bi, i∈ [2], will be colored i, and therefore Ei(Bi) =E(Bi).

74 Kernelization results on undirected graphs

Let B = B1 ∪B2, and for each B′ ⊆ B, let A[B′] = {u ∈ A : NB(u) = B′}. Also, let Ai[B′] be
the set of vertices from A[B′] colored i.

Let us color vertices of A as follows.

If there is a set B′ = B′
1 ∪B′

2, such that B′
1 ⊆ B1, B′

2 ⊆ B2, and |A[B′]| is even, then we
assign half of the vertices of A[B′] color 1, and the other half color 2. We have

|Ei(A[B′],Bi)|= |Ai[B′]| |B′
i|=

|A[B′]|
2

|B′
i| for both i ∈ [2].

If there are two sets B′ = B′
1 ∪B′

2 and B′′ = B′′
1 ∪B′′

2 , such that |A[B′]| and |A[B′′]| are odd,
B′

1,B
′′
1 ⊆ B1, B′

2,B
′′
2 ⊆ B2, and |B′

1| ≥ |B′′
1|, |B′

2| ≤ |B′′
2|, then assign |A[B′]|+1

2 vertices of A[B′]

and |A[B′′]|−1
2 vertices of A[B′′] color 1, and |A[B′]|−1

2 vertices of A[B′] and |A[B′′]|+1
2 vertices of

A[B′′] color 2. We have

|E1(A[B′],B1)|+ |E1(A[B′′],B1)|=
(|A[B′]|+1)

2
|B′

1|+
(|A[B′′]|−1)

2
|B′′

1|

≥ |A[B′]|
2

|B′
1|+

|A[B′′]|
2

|B′′
1|.

and, similarly, |E2(A[B′]∪A[B′′],B2)| ≥ |A[B′]|
2 |B′

2|+
|A[B′′]|

2 |B′′
2|.

Let us denote by B1,B2,. . . ,Bt the remaining subsets for which A[B j] is uncolored, and for
i ∈ [2] and j ∈ [t], define B j

i = B j ∩Bi. Since for every pair of uncolored sets B j,Bh, we have
that either |B j

1| > |Bh
1| and |B j

2| > |Bh
2|, or |B j

1| < |Bh
1| and |B j

2| < |Bh
2|, we may order these

sets such that for all j,h, 0 < j < h ≤ t, we have |B j
1|> |Bh

1| and |B j
2|> |Bh

2|. Without loss of
generality, let us assume |B1| ≤ |B2|.

For each j ∈ [t], assign |A[B j]|+1
2 vertices of A[B j] color 1 if j is even, and assign |A[B j]|−1

2
vertices of A[B j] color 1, otherwise. Assign the remaining vertices of A[B j] color 2. Then we
have that

t

∑
j=1

|E2(A[B j],B2)|=
t

∑
j=1

(
|A[B j]|

2
|B j

2|)+ ∑
j odd

|B j
2|

2
− ∑

j even

|B j
2|

2

≥
t

∑
j=1

(
|A[B j]|

2
|B j

1|)+
⌊t/2⌋

∑
j=1

|B2 j−1
1 |− |B2 j

1 |
2

≥
t

∑
j=1

(
|A[B j]|

2
|B j

1|)2.

3.1 Generalized Load Coloring Problem 75

We also have that

t

∑
j=1

|E1(A[B j],B1)|=
t

∑
j=1

(
|A[B j]|

2
|B j

1|)− ∑
j odd

|B j
1|

2
+ ∑

j even

|B j
1|

2

≥
t

∑
j=1

(
|A[B j]|

2
|B j

1|)−
|B1

1|
2

+
⌊(t−1)/2⌋

∑
j=1

|B2 j
1 |− |B2 j+1

1 |
2

≥
t

∑
j=1

(
|A[B j]|

2
|B j

1|)−
s
2
.

Observe that we have colored all the vertices. Since all the sets A[B′] are disjoint, we may
sum up all the inequalities we have so far for both i ∈ [2] to obtain:

2|Ei(V (G))| ≥ 2|Ei(Bi)|+2|Ei(A,Bi)|
= 2|E(Bi)|+2 ∑

B′⊆B
|Ei(A[B′],Bi)|

≥ 2|E(Bi)|+ ∑
B′⊆B

|A[B′]| |B′
i|− s

= 2|E(Bi)|+ |E(A,Bi)|− s ≥ 2k,

which means |Ei(V (G))| ≥ k for both i ∈ [2], and so G ∈ (2,k)-LC.

Corollary 3.1.4 Let k and s be two positive integers and V>= {u∈V (G) : d(u)≥ 2k
s +s+1}.

If |V>| ≥ 2s then G ∈ (2,k)-LC.

Proof Let B1 and B2 two disjoint arbitrary subsets of V> such that |B1|= |B2|= s and let
A =V (G)\(B1∪B2). Observe that for both i ∈ [2], every vertex u ∈ Bi has at most |B3−i|= s
neighbors in |B3−i|, thus dA∪Bi(u) = dV (G)\B3−i

(u)≥ 2k
s +1. We deduce

|E(A,Bi)|+2|E(Bi)|= ∑
u∈Bi

dA∪Bi(u)≥ |Bi|(
2k
s
+1) = 2k+ s.

So, by Lemma 3.1.7, G ∈ (2,k)-LC.

Corollary 3.1.5 Let k be a positive integer and V> = {u ∈ V (G) : d(u) ≥ 3
√

k + 4}. If
|V>| ≥ 2⌊

√
k⌋ then G ∈ (2,k)-LC.

Proof Let s = ⌊
√

k⌋ ≥ 1 and e =
√

k− s < 1. Corollary 3.1.4 applies since

2k
s
+ s+1 =

2(s+ e)2

s
+ s+1 = 3s+4e+

2e2

s
+1 = 3

√
k+ e+

2e2

s
+1 < 3

√
k+4.

76 Kernelization results on undirected graphs

If |B1|= 1, we may obtain a better result than Lemma 3.1.7.

Lemma 3.1.8 Let G have a partition V (G)=A∪{u}∪B2 such that dA(u)≥ 2k. If |E(A,B2)|+
|E(B2)| ≥ k, then G ∈ (2,k)-LC.

Proof Choose a minimal set A′ ⊆ A, such that |E(A′,B2)|+ |E(B2)| ≥ k. Observe that for all
v ∈ A′, dB2(v)≥ 1, as otherwise, such a vertex would not contribute to |E(A′,B2)|+ |E(B2)|
and we may delete it, a contradiction with the minimality of A′. Then we have |A′| ≤ k, and
thus dA\A′(u) ≥ dA(u)−|A′| ≥ k. We may color A′∪B2 with one color and (A \A′)∪{u}
with another, which implies that G ∈ (2,k)-LC.

Corollary 3.1.6 Let G ̸∈ (2,k)-LC. Then there exists at most one vertex such that d(v)> 2k.

Proof Suppose there are at least two vertices u and v with degree greater than 2k and let
A = V (G) \ {u,v}. We have dA(u) ≥ 2k and dA(v) ≥ 2k, then Lemma 3.1.8 applies and
G ∈ (2,k)-LC, a contradiction.

With these observations, we may prove the main lemma of this section.

Lemma 3.1.9 Let ∆(G)< 3k and |E(G)| ≥ 6k+(3+
√

2)
√

k+4. Then G ∈ (2,k)-LC.

Proof Let G be a graph with at least 6k+(3+
√

2)
√

k+4 edges and ∆ = ∆(G) < 3k, but
G ̸∈ (2,k)-LC. Let t = 3

√
k+4, V> = {x ∈V (G) : d(x)≥ t} and A =V (G)\V>. Let u be a

vertex of degree ∆. By Corollary 3.1.5, for every v ∈V (G)\{u}, d(v)≤ 2k.
As t = 2k√

k
+
√

k, we have |V>|< 2
√

k, as otherwise, G ∈ (2,k)-LCP by Corollary 3.1.4,
a contradiction. Thus, for any partition X , Y of V> we have

|E(X ,Y)| ≤ |X ||Y |< |X |(2
√

k−|X |)≤ k (3.6)

We will now show that there exists a partition V (G) = A′∪B1 ∪B2 such that |E(A′)|=
k+d < k+

√
2k, |E(B1 ∪B2)|< k and |E(A′,Bi)| ≥ 2k, for both i ∈ [2]. Let us consider the

following two cases.

Case 1: dA(u)≥ 2k. Let B1 = {u} and B2 =V> \B1. By Lemma 3.1.8, we have |E(A,B2)|+
|E(B2)|< k. If |E(A)|< k then |E(G)|= |E(A)|+ |E(A,B2)|+ |E(B2)|+d(u)< k+k+∆ <

5k, a contradiction. Thus, we may assume |E(A)| ≥ k. We take a minimal set A′ ⊆ A, such
that k ≤ |E(A′)| = k+d. Observe that if there is any vertex v ∈ A′ with |N′

A(v)| ≤ d, then

3.1 Generalized Load Coloring Problem 77

A′′ = A′ \{v} is a smaller vertex set such that |E(A′′)| ≥ k, a contradiction to the minimality
of A′. Thus, by Lemma 3.1.6 we have d <

√
2k. Let B′ = A \ A′. Note that we have

|E(B1 ∪B2 ∪B′)|< k as otherwise G ∈ (2,k)-LC since |E(A′)| ≥ k.
Suppose |E(A′,{u})| ≥ 2k. Then |E(A′,B2 ∪B′)|+ |E(B2 ∪B′)| ≥ k implies G ∈ (2,k)-

LC by Lemma 3.1.8. So we have |E(G)|= |E(A′)|+ |E(A′,B2∪B′)|+ |E(B2∪B′)|+d(u)<
k+d + k+∆ < 5k+d, a contradiction.

So, we may assume |E(A′,B1)|< 2k. While this inequality holds, push a vertex from B′ to
B1. Observe that after any move |E(A′,B1)|< 2k+ t since max{d(v) : v ∈ B′} ≤ t. Suppose
that B′ is empty but |E(A′,B1)|< 2k. Then |E(A′,B2)| ≤ |E(A,B2)|+ |E(B2)|< k by Lemma
3.1.8, and |E(G)|= |E(A′)|+ |E(A′,B1)|+ |E(A′,B2)|+ |E(B1∪B2)|< k+d+2k+k+k =
5k+ d, a contradiction. Thus, |E(A′,B1)| ≥ 2k and we will put the remaining vertices of
B′ to B2. We also have |E(A′,B2)| ≥ 2k as otherwise |E(G)|= |E(A′)|+ |E(A′,B1 ∪B2)|+
|E(B1 ∪B2)|< (k+d)+(4k+ t)+ k = 6k+d + t, a contradiction. So, we have the desired
partition.

Case 2: dA(u)< 2k. Recall that |V>| ≤ 2
√

k. Choose first a maximal set B1 ⊆V>, such that
u ∈ B1, |E(A,B1)|+2|E(B1)|< 2k+

√
k. Then choose a maximal set B2 ⊆V> \B1, such that

|E(A,B2)|+2|E(B2)| < 2k+
√

k. Let R = V> \ (B1 ∪B2). If |R| ≥ 2, put one vertex in B1

and one in B2, and then for both i ∈ [2], the maximality of Bi implies |E(A,Bi)|+2|E(Bi)| ≥
2k+

√
k, and so G ∈ (2,k)-LC by Lemma 3.1.7, a contradiction.

Thus, we may assume that R is empty or has one vertex. If R is not empty, let R = {r}
and recall that d(r) ≤ 2k. Suppose that |E(A∪R)| < k. By (3.6), |E(B1,B2)| < k. Thus,
|E(G)|= |E(A∪R)|+ |E(A,B1)|+ |E(B1)|+ |E(A,B2)|+ |E(B2)|+ |E(B1,B2)|+ |E(R,B1∪
B2)|< k+4k+2

√
k+ k+ |B1 ∪B2|< 6k+4

√
k, a contradiction.

Thus, we may assume that |E(A∪R)| ≥ k. Let A′ be a minimal subset of A∪R such that
R ⊆ A′ and k ≤ |E(A′)|= k+d. There is no v ∈ A′ \R with |N′

A(v)| ≤ d, and so by Lemma
3.1.6 we have d <

√
2k. Let B′ = A\A′ and observe that |E(B1 ∪B2 ∪B′)|< k as otherwise

G ∈ (2,k)-LC since |E(A′)| ≥ k.
If |E(A′,B1)| ≥ 2k, we still have |E(A′,B1)| ≤ |E(A,B1)|< 2k+

√
k < 2k+ t. Otherwise,

while |E(A′,B1)| < 2k holds, push a vertex from B′ to B1. Observe that after any move
|E(A′,B1)|< 2k+ t. In any case, |E(A′,B1)|< 2k+ t. Suppose that B′ becomes empty while
|E(A′,B1)|< 2k. Then |E(A′,B2)| ≤ |E(A,B2)|+2|E(B2)|+ |E(R,B2)|< 2k+

√
k+2

√
k =

2k+ t and we have the bound |E(G)|= |E(A′)|+ |E(A′,B1)|+ |E(A′,B2)|+ |E(B1 ∪B2)|<
(k+d)+2k+(2k+ t)+ k = 6k+ t +d, a contradiction. So |E(A′,B1)| ≥ 2k and we move
the remaining vertices of B′ to B2. Suppose |E(A′,B2)| < 2k, we also have the bound
|E(G)|< 6k+ t +d, a contradiction. Thus, for both i ∈ [2], we have |E(A′,Bi)| ≥ 2k. So, we

78 Kernelization results on undirected graphs

have the desired partition.

Let us consider such a partition. If there is a set T ⊆ A′, such that |E(T,B1)| > k
and |E(T,B2)| ≤ k (thus |E(A′ \T,B2)| ≥ k) or symmetrically, |E(T,B1)| ≤ k (thus E(A′ \
T,B1)≥ k) and |E(T,B2)|> k, then G ∈ (2,k)-LC, a contradiction. So, for any set T ⊆ A′,
we have either max{|E(T,B1)|, |E(T,B2)|} ≤ k or min{|E(T,B1)|, |E(T,B2)|}> k. Select a
maximal subset A1 of A′ such that |E(A1,Bi)| ≤ k for i ∈ [2]. Observe that by construction
in the two cases, A′ contains at most one vertex r such that d(r) > t, and such a vertex
has d(r) ≤ 2k. In the construction of A1, we may assume that r is the first element added
to A1 (note that |E({r},Bi)| ≤ k for i ∈ [2], as otherwise |E({r},Bi)| > k for i ∈ [2] and
d(r)> 2k, a contradiction). Thus, we may assume that d(v)≤ t for every v ∈ A′ \A1. Let
A2 = A′ \(A1∪{v}), where v is an arbitrary vertex in A′ \A1, and observe that |E(A2,Bi)|< k
for i ∈ [2] or G ∈ (2,k)-LC. The partition A′ = A1∪A2∪{v} satisfies max{|E(Ai,B j)| : i, j ∈
[2]} ≤ k. Thus, |E(A′,B1 ∪B2)| < 4k+ dB1∪B2(v) ≤ 4k+ t, and so |E(G)| < 6k+ t + d, a
contradiction.

Lemmas 3.1.5 and 3.1.9 imply the following:

Theorem 3.1.5 If G is irreducible for (2,k)-LC and has at least 6k+(3+
√

2)
√

k+4 edges,
then G ∈ (2,k)-LC. Thus, 2-LOAD COLORING admits a kernel with less than 6k +(3+√

2)
√

k+4 edges.

3.2 Linear Kernel for Star Packing on Graphs with No Long Induced Paths 79

3.2 Linear Kernel for Star Packing on Graphs with No
Long Induced Paths

In this section, we will consider H-PACKING when H = K1,r and study K1,r-PACKING from
parameterized preprocessing, i.e., kernelization, point of view.

K1,r-PACKING

Instance: A connected graph G = (V,E), two positive integers k and r.
Parameter: k.
Output: Decide if there are k vertex disjoint copies of K1,r in G.

As a parameterized problem, K1,r-PACKING was first considered by Prieto and Sloper
[80], who obtained an O(k2)-vertex kernel for each r ≥ 2 and a kernel with at most 15k
vertices for r = 2. Since the case r = 1, which is equivalent to computing the maximum
matching, is polynomial-time solvable, we may restrict the discussion to r ≥ 2. Fellows et al.
[33] proved the same result for r = 2 and it later was improved to 7k by Wang et al. [104].

Fellows et al. [33] point out that, using their approach, the bound of [80] on the number
of vertices in a kernel for any r ≥ 3 can likely be improved to subquadratic. We believe that,
in fact, there is a linear-vertex kernel for every r ≥ 3, and we prove it on graphs with no long
induced paths to support our conjecture. A path P in a graph G, is called induced if it is
an induced subgraph of G. For an integer d ≥ 3, let Gd denote the set of all graphs with no
induced path on d vertices.

Theorem 3.2.1 Let r ≥ 2 and d ≥ 3 be given integers. Then the K1,r-PACKING problem
restricted to graphs in Gd admits a kernel with O(k) vertices.

As d can be any arbitrary integer larger than two, Gd contains an ever increasing class of
graphs which, in the "limit", coincides with all graphs. To show that Theorem 3.2.1 is an
optimal1 result, in a sense, we prove that K1,r-PACKING restricted to graphs in Gd is NP-hard
already for d = 5 and every fixed r ≥ 3:

Theorem 3.2.2 Let r ≥ 3. It is NP-hard to decide if the vertex set of a graph in G5 can be
partitioned into vertex-disjoint copies of K1,r.

We cannot replace G5 by G4 (unless NP = P) due to the following assertion.

Theorem 3.2.3 Given graph G ∈ G4 and integer r ≥ 3. We can compute the maximum
number of vertex-disjoint copies of K1,r in G in polynomial time.

1If K1,r-PACKING was polynomial time solvable, then it would have a kernel with O(1) vertices.

80 Kernelization results on undirected graphs

We give some terminology and notation exclusively for section 3.2 here. We say a star
intersects a vertex set if the star uses a vertex in the set. We use (G,k,r) to denote an instance
of the r-star packing problem. If there are k vertex-disjoint r-stars in G, we say (G,k,r) is a
YES-instance, and we write G ∈ ⋆(k,r). Given disjoint vertex sets S,T and integers s,r, we
say that S has s r-stars in T if there are s copies of vertex-disjoint r-stars with centers in S
and leaves in T .

3.2.1 Proof of Theorem 3.2.1

Note that the 1-star packing problem is the classic maximum matching problem and if k = 1,
the r-star packing problem is equivalent to deciding whether the maximum degree in G
∆(G)≥ r. Both of these problems can be solved in polynomial time. Henceforth, we assume
r > 1 and k > 1.

A vertex u is called a small vertex if max{d(v) : v ∈ N[u]}< r. A graph without a small
vertex is a simplified graph.

We now give two reduction rules for an instance (G,k,r) of K1,r-PACKING.

Reduction Rule 1 If graph G contains a small vertex v, then return the instance (G−v,k,r).

It is easy to observe that Reduction Rule 1 can be applied in polynomial time.

Reduction Rule 2 Let G = (V,E) be a graph and let C,L be two vertex-disjoint subsets of V .
The pair (C,L) is called a constellation if G[C∪L] ∈ ⋆(|C|,r) and every vertex in L is small
in the graph G[V \C]. If (C,L) is a constellation, return the instance (G[V \ (C∪L)],k−|C|).

It is easy to observe that Reduction Rule 2 can be applied in polynomial time, provided
we are given a suitable constellation. Also note that in our definition of a constellation, we
allow C = L = /0. In this case, we call it a trivial constellation, otherwise, we say it is a
non-trivial constellation.

Lemma 3.2.1 Reduction Rules 1 and 2 are safe.

Proof Clearly, there is no r-star that uses the small vertex v. Therefore Reduction Rule 1 is
safe as there are the same number of r-stars in G and G− v.

To see that Reduction Rule 2 is safe, it is sufficient to show that G ∈ ⋆(k,r) if and only if
G[V \ (C∪L)] ∈ ⋆(k−|C|,r). On the one hand, G[V \ (C∪L)] ∈ ⋆(k−|C|,r) together with
the hypothesis G[C∪L] ∈ ⋆(|C|,r) implies G ∈ ⋆(k,r). On the other hand, there are at most
|C| vertex-disjoint stars intersecting C. But by the definition of a constellation, every star
intersecting L also intersects C. We know that there are at most |C| stars intersecting C∪L,

3.2 Linear Kernel for Star Packing on Graphs with No Long Induced Paths 81

and so if G ∈ ⋆(k,r), there are at least k−|C| stars inside G[V − (C∪L)]: G[V \ (C∪L)] ∈
⋆(k−|C|,r).

Note that as both reduction rules modify a graph by deleting vertices, any graph G′ that
is derived from a graph G ∈ Gd by an application of Reduction Rules 1 or 2 is still in Gd .

Recall the Expansion Lemma, which is a generalization of the well-known Hall’s theorem.

Lemma 3.2.2 (Expansion Lemma)[32] Let r be a positive integer, and let m be the size of
the maximum matching in a bipartite graph G with vertex bipartition X ∪Y . If |Y |> rm, and
there are no isolated vertices in Y, then there exist nonempty vertex sets S ⊆ X ,T ⊆ Y such
that S has |S| r-stars in T and no vertex in T has a neighbor outside S. Furthermore, the sets
S,T can be found in polynomial time in the size of G.

We now provide a modified version of the Expansion Lemma. We will make use of it in
our kernelization algorithm.

Lemma 3.2.3 (Modified Expansion Lemma) Let r be a positive integer and let G be a
bipartite graph with vertex bipartition X ∪Y . If |Y |> r|X | and there are no isolated vertices
in Y, then there exists a polynomial algorithm(in the size of G) which returns a partition
X =A1∪B1, Y =A2∪B2, such that B1 has |B1| r-stars in B2, E(A1,B2) = /0, and |A2| ≤ r|A1|.

Proof If |Y | ≤ r|X |, then we may return A1 = X , A2 = Y , B1 = B2 = /0. Otherwise, apply
the Expansion Lemma to get nonempty vertex sets S ⊆ X ,T ⊆ Y such that S has |S| r-stars
in T and no vertex in T has a neighbor in Y outside S. Let X ′ = X \ S and Y ′ = Y \T . If
G[X ′∪Y ′] has isolated vertices in Y ′, move all of them from Y ′ to T . If |Y ′| ≤ r|X ′|, we may
return A1 = X ′, A2 = Y ′, B1 = S, and B2 = T .

So now assume |Y ′|> r|X ′|. In this case, apply the algorithm recursively on G[X ′∪Y ′]

to get a partition X ′ = A′
1 ∪B′

1,Y
′ = A′

2 ∪B′
2, such that B′

1 has |B′
1| stars in B′

2, E(A′
1,B

′
2) = /0,

and |A′
2| ≤ r|A′

1|. Then return A1 = A′
1, B1 = B′

1 ∪S, A2 = A′
2, B2 = B′

2 ∪T . Observe that B1

has |B′
1|+ |S|= |B1| stars in B2, E(A1,B2)⊆ E(A′

1,B
′
2)∪E(X \S,T) = /0, and |A2|= |A′

2| ≤
r|A′

1|= r|A1|, as required. As each iteration reduces |X | by at least 1, we will have to apply
less than |X |+ |Y | iterations, each of which uses at most one application of the Expansion
Lemma, and so the algorithm runs in polynomial time.

Proof of Theorem 3.2.1. By exhaustively applying Reduction Rule 1, we may assume we
have a simplified graph. Let G be a simplified graph in Gd . Now find a maximal r-star
packing of G with q stars. We may assume q < k as otherwise we have a trivial YES-instance.
Let S be the set of vertices in this r-star packing, and let D =V (G)\S.

82 Kernelization results on undirected graphs

For any u ∈ D, let D[u] be the set of vertices v ∈ D for which there is a path from v
to u using only vertices in D - that is, D[u] is the the set of vertices in the component
of G[D] containing u. As our star-packing is maximal, dD(v) < r for every v ∈ D. As
G ∈ Gd , every v ∈ D[u] has a path to u in G[D] with at most d −1 vertices (as otherwise the
shortest path in G[D] from v to u is an induced path on at least d vertices). It follows that
|D[u]| ≤ 1+ r+ r2 + · · ·+ rd−1 ≤ rd . It means that each component in G[D] has bounded
number of vertices, and we also have |S| ≤ (r+1)(k−1). So to bound the number of vertices
in G, we just need to bound the number of components in G[D].

Recursively, we put all vertices in S that has less than r edges to D into a set Small(S), and
put all components adjacent to such vertices into B(D), the size bounded part in D. Following
this idea, we show how to find a partition of S into Big(S)∪Small(S), and D into B(D)∪
U(D), such that |B(D)| ≤ rd+1|Small(S)|, and |U(D)∩N(Big(S))| ≤ r|Big(S)|. Note that in
our partition, (Big(S),U(D)) is a constellation. If (Big(S),U(D)) is a trivial constellation,
i.e. Big(S) = U(D) = /0, then as |Small(S)| ≤ |S| ≤ (r + 1)k, it follows that |V (G)| ≤
(r+1)k+(r+1)rd+1k. Otherwise we can apply Reduction Rule 2 on (Big(S),U(D)).

We will construct Big(S),Small(S),B(D),U(D) algorithmically in a way described below.
Throughout, we will preserve the following

Property 1: |B(D)| ≤ |Small(S)|rd+1,

Property 2: U(D) has no neighbors in Small(S)∪B(D).

Set Big(S) = S,U(D) = D,Small(S) = B(D) = /0 initially,.
While |U(D)∩N(Big(S))|> r|Big(S)|, do the following steps.
If there is a vertex u ∈ Big(S) such that |N(u)∩U(D)|< r, let X =

⋃
{D[v] : v ∈ N(u)∩

U(D)}. Observe that as |D[v]| ≤ rd for all v∈D, |X |< rd+1. Now set Small(S) = Small(S)∪
{u}, Big(S) = Big(S)\{u}, B(D) = B(D)∪X , U(D) =U(D)\X . It follows that Property 1
is preserved. Note that no vertex in the new U(D) has a neighbor in X (as all neighbors of X
in D lie in X). Similarly no vertex in the new U(D) is adjacent to u (as such a vertex would
be in the old U(D) and so would have been added to X). Therefore there are still no edges
between the new U(D) and the new Small(S)∪B(D), and so Property 2 is also preserved.

Otherwise (if every vertex u ∈ Big(S) has |N(u)∩U(D)| ≥ r), let H denote the maximal
bipartite subgraph of G with vertex partition Big(S)∪ (U(D)∩N(Big(S)), and apply the
Modified Expansion Lemma to H. We will get a partition Big(S) = A1 ∪B1 and U(D)∩
N(Big(S)) = A2 ∪B2 such that E(A1,B2) = /0, |A2| ≤ r|A1| and B1 has |B1| r-stars in B2.

If the Modified Expansion Lemma returns A1 = /0, then we claim that (Big(S),U(D)) is
a non-trivial constellation. To see this, firstly note that |Big(S)| has |Big(S)| r-stars in U(D).
Secondly, note that since we chose the vertices of a maximal star packing for S, there is no

3.2 Linear Kernel for Star Packing on Graphs with No Long Induced Paths 83

r-star contained in G[U(D)]. As U(D) has no neighbors in Small(S)∪B(D), it follows that
there is no r-star intersecting U(D) in G\Big(S). Thus (Big(S),U(D)) is a constellation, in
this case, apply Reduction Rule 2 using (Big(S),U(D)). This gives us a partition in which
Big(S) =U(D) = /0. Thus, we have that |U(D)∩N(Big(S))| ≤ r|Big(S)|.

So now assume that the Modified Expansion Lemma returns Big(S) = A1 ∪B1 with
A1 ̸= /0. Let X =

⋃
{D[v] : v ∈ N(A1)∩U(D)}. Note that as E(A1,B2) = /0 and |A2| ≤ r|A1|,

we have |X | ≤ |
⋃
{D[v] : v ∈ A2}| ≤ |A2|rd ≤ |A1|rd+1. Then let Small(S) = Small(S)∪A1,

Big(S) =Big(S)\A1, B(D) =B(D)∪X , U(D) =U(D)\X . Note that after this move, we still
have that |B(D)| ≤ |Small(S)|rd+1, and U(D) has no neighbors in Small(S)∪B(D). Observe
that in this case, |Big(S)| strictly decreases, so the algorithm must eventually terminate.

Thus we have found the partition of S into Big(S)∪Small(S), and D into B(D)∪U(D),
such that |B(D)| ≤ rd+1|Small(S)|, and |U(D)∩N(Big(S))| ≤ r|Big(S)|. Note that every
vertex u ∈U(D) is in D[v] for some v ∈ N(S) (as otherwise, either max{d(v) : v ∈ N[u]}< r
or G[D] contains an r-star, a contradiction in either case). Moreover such a v must be in
U(D)∩N(Big(S)), as there are no edges between U(D) and Small(S)∪B(D). Thus |U(D)| ≤
rd|U(D)∩N(Big(S))| ≤ rd+1|Big(S)|. Then we have |V (G)| = |S|+ |U(D)|+ |B(D)| ≤
|S|+ rd+1|Big(S)|+ rd+1|Small(S)| ≤ (rd+1 +1)|S| ≤ (k−1)(r+1)(rd+1 +1) = O(k).

3.2.2 Proof of Theorem 3.2.2

A split graph is a graph where the vertex set can be partitioned into a clique and an indepen-
dent set.

An instance of the well-known NP-hard problem 3-DIMENSIONAL MATCHING contains
a vertex set that can be partitioned into three equally large sets V1,V2,V3 (also called partite
sets). Let k denote the size of each of V1,V2,V3. It furthermore contains a number of 3-sets
containing exactly one vertex from each Vi, i = 1,2,3. The problem is to decide if there exists
a set of k vertex disjoint 3-sets (which would then cover all vertices). Such a set of k vertex
disjoint 3-sets is called a perfect matching. The 3-sets are also called edges (or hyperedges).

Theorem 3.2.4 Let r ≥ 3. It is NP-hard to decide if the vertex set of a split graph can be
partitioned into vertex disjoint copies of K1,r.

Proof We will provide a reduction from 3-DIMENSIONAL MATCHING. Let I be an instance
of 3-dimensional matching. Let V1,V2,V3 denote the three partite sets of I and let E denote
the set of edges in I . Let m = |E| and k = |V1| = |V2| = |V3|. We will build a split graph
GI as follows. Let V =V1 ∪V2 ∪V3 be the vertices of I . Let X1 be a set of m vertices and
X2 be a set of m− k vertices and let X = X1 ∪X2. Let Y be a set of (m− k)(r−1) vertices

84 Kernelization results on undirected graphs

and let W be a set of k(r−3) vertices (if r = 3 then W is empty). Let the vertex set of GI

be V ∪X ∪Y ∪W .
Add edges such that X becomes a clique in GI . Let each vertex in X1 correspond to

a distinct edge in E and connect that vertex with the 3 vertices in V which belongs to the
corresponding edge in E. Furthermore add all edges from X1 to W . Finally, for each vertex
in X2 add r−1 edges to Y in such a way that each vertex in Y ends up with degree one in
GI . This completes the construction of GI .

Clearly GI is a split graph as X is a clique and V ∪Y ∪W is an independent set. We will
now show that the vertex set of GI can be partitioned into vertex disjoint copies of K1,r if
and only if I has a perfect matching.

First assume that I has a perfect matching. Let E ′ ⊆ E denote the edges of the perfect
matching. For the vertices in X1 that correspond to the edges in E ′ we include the three edges
from each such vertex to V as well as r−3 edges to W . This can be done such that we obtain
k vertex disjoint copies of K1,r covering all of V and W as well as k vertices from X1. Now
for each vertex in X2 include the r−1 edges to Y as well as one edge to an unused vertex in
X1. This can be done such that we obtain an additional m− k vertex disjoint copies of K1,r.
We have now constructed m vertex disjoint copies of K1,r which covers all the vertices in
GI , as required.

Now assume that the vertex set of GI can be partitioned into vertex disjoint copies of
K1,r. As |V ∪W ∪Y ∪X |= m(r+1) we note that we have m vertex disjoint copies of K1,r,
which we will denote by K . As all vertices in Y need to be included in such copies we note
that every vertex of X2 is the center vertex of a K1,r. Let K ′ denote these m−k copies of K1,r.
Each K1,r in K ′ must include 1 edge from X2 to X1. These m− k edges form a matching,
implying that m− k vertices of X1 also belong to the copies of K1,r in K ′. This leaves k
vertices in X1 that are uncovered and rk vertices in V ∪W that are uncovered. Furthermore,
as V ∪W is an independent set, each copy of K1,r in K \K ′ must contain a vertex of X1. As
|K \K ′|= k we note that the k copies of K1,r in K \K ′ must include exactly one vertex
from X1. Also as each vertex in X1 has exactly three neighbours in V , each such K1,r also
contains 3 vertices from V (as V needs to be covered) and therefore r−3 vertices form W .
Therefore the k vertices in X1 that belong to copies of K1,r in K \K ′ correspond to k edges
in E which form a perfect matching in GI .

This completes the proof as we have shown that GI can be partitioned into vertex disjoint
copies of K1,r if and only if I has a perfect matching.

The following lemma is known. We give the simple proof for completeness.

Lemma 3.2.4 No split graph contains an induced path on 5 vertices.

3.2 Linear Kernel for Star Packing on Graphs with No Long Induced Paths 85

Proof Assume G is a split graph where V (G) is partitioned into an independent set I and
a clique C. For the sake of contradiction assume that P = p0 p1 p2 p3 p4 is an induced P5 in
G. As I is independent we note that {p0, p1}∩C ̸= /0 and {p3, p4}∩C ̸= /0. As C is a clique
there is therefore an edge from a vertex in {p0, p1} to a vertex in {p3, p4}. This edge implies
that P is not an induced P5 in G, a contradiction.

Proof of Theorem 3.2.2. By Lemma 3.2.4, G5 contains all split graphs. The result now
follows immediately from Theorem 3.2.4.

3.2.3 Proof of Theorem 3.2.3

Note that G4 is the family of cographs [19]. It is well-known [19] that any non-trivial (i.e.,
with at least two vertices) cograph G is either disconnected or its complement is disconnected.
Below let n denote the order of G and let m denote the size of G. The following lemma is
well-known.

Lemma 3.2.5 For any graph G, we can in time O(n2) find the connected components of G
and the connected components of the complement of G.

Lemma 3.2.6 For any G ∈ G4 and any s ≥ 1 we can in time O(n2) find a set of s vertices,
say S, in G such that |N[S]| is maximum possible.

Proof Let C1,C2, . . . ,Cl be the connected components of G (l ≥ 1). Assume first that all the
components are non-trivial. As any induced subgraph of a cograph is also a cograph we
note that the complement of each Ci is disconnected. Therefore for each i = 1,2, . . . , l there
exists a non-trivial (each part is non-empty) partition (Xi,Yi) of V (Ci) such that all edges exist
between Xi and Yi in G. Let mi be maximum degree of a vertex in Ci for each i = 1,2, . . . , l.

The maximum number of vertices we can add to N[S] by adding one vertex from Ci is
mi +1 and the maximum number of vertices added to N[S] by adding two vertices from Ci is
|V (Ci)| as we can add a vertex from Xi and one from Yi. Therefore the maximum possible
|N[S]| is the sum of the s largest numbers in the set m1 + 1,m2 + 1, . . . ,ms + 1,(|V (C1)|−
m1 −1),(|V (C2)|−m2 −1), . . . ,(|V (Cl)|−ml −1). Furthermore it is easy to find the actual
set S.
It is not hard to modify the proof above for the case when some Ci’s are trivial.

Now we are ready to prove the main result of this appendix.

Proof of Theorem 3.2.3: Let G ∈ G4 and let r ≥ 3 be arbitrary. First assume that G is
connected, which implies that the complement of G is disconnected. Let X and Y partition

86 Kernelization results on undirected graphs

V (G) such that all edges exist between X and Y in G. We now consider two cases.

Case 1: |X |> r|Y | or |Y |> r|X |. Without loss of generality, assume that |X |> r|Y |. In this
case we recursively find the maximum number of r-stars we can pack into G[X]. Let mx be the
maximum number of r-stars in G[X]. If (r+1)mx +(r+1)|Y | ≤ n, then the optimal answer
is that we can pack mx + |Y | r-stars into G as we can always find |Y | r-stars with centers in Y
and not touching the mx r-stars we already found in G[X]. If (r+1)mx +(r+1)|Y |> n, then
the optimal solution is ⌊n/(r+1)⌋ r-stars as we can pick |Y | r-stars touching as few of the
mx r-stars in G[X] as possible and then pick as many of the mx r-stars that are left untouched.
This completes this case.

Case 2: |X | ≤ r|Y | and |Y | ≤ r|X |. Let x = |X | and y = |Y | and define a and b as follows:

a =
ry− x
r2 −1

and b =
rx− y
r2 −1

Let a′ = ⌊a⌋= a− εa and b′ = ⌊b⌋= b− εb. We will first show that we can find a′+b′

r-stars such that a′ of the r-stars have the center in X and all leaves in Y and b′ of the r-stars
have the center in Y and all leaves in X . This is possible due to the following:

a′r+b′ = (a− εa)r+(b− εb)

= r ry−x
r2−1 +

rx−y
r2−1 − (rεa + εb)

= y− (rεa + εb)

And, analogously,

b′r+a′ = x− (rεb + εa)

As 0 ≤ εa < 1 and 0 ≤ εb < 1 we note that we cover all vertices in G except rεa + εb +

rεb + εa = (r+1)(εa + εb). Therefore the number of vertices we cannot cover by the r-stars
above is strictly less than 2(r + 1). If (r + 1)(εa + εb) < r + 1 then we have an optimal
solution (covering all vertices except at most r), so assume that (r+1)(εa + εb)≥ r+1.

Clearly the optimal solution is either a′+b′ or a′+b′+1. As we already have a solution
with a′+b′ r-stars we will now determine if there is a solution with a′+b′+1 r-stars.

If some vertex, say wx, in X has degree at least r in G[X], then there is indeed a solution
with a′+b′+1 r-stars, because of the following. As (r+1)(εa + εb)≥ r+1 we must have
εa > 0 and εb > 0, which implies that we can pick an r-star with center in wx ∈ X and with
at most rεb + εa −1 leaves in X and at most rεa + εb leaves in Y . Once this r-star has been
picked it is not difficult to pick an additional a′ r-stars with centers in X (and leaves in Y) and

3.2 Linear Kernel for Star Packing on Graphs with No Long Induced Paths 87

b′ r-stars with centers in Y (and leaves in X), due to the above. Therefore we may assume no
vertex in X has degree at least r in G[X]. Analogously we may assume that no vertex in Y
has degree at least r in G[Y].

If there exists a′+1 vertices SX in X such that |N[SX]∩X | ≥ a′+1+ r− (rεa +εb), then
proceed as follows. We can create a′+1 stars in G[X] such that they together have exactly
r− (rεa + εb) non-centers. By the above each star has less than r leaves, so we can expand
these a′+ 1 stars to r-stars by adding leaves from Y . This uses up a′+ 1+ r− (rεa + εb)

vertices from X and (a′+1)r−(r−(rεa+εb)) vertices from Y . Adding an additional b′ stars
with the center in Y and all leaves in X uses up b′ vertices from Y and rb′ vertices from X .
Therefore we have used b′+a′r+(rεa + εb) = y vertices from Y and the following number
of vertices from X ,

a′+rb′+1+r−(rεa+εb) = x−(rεb+εa)+1+r−(rεa+εb) = x+1+r−(r+1)(εa+εb)

As (r+1)(εa + εb)≥ r+1 we note that we use at most x vertices from X and we have a
solution with a′+b′+1 r-stars. Analogously if there exists b′+1 vertices SY in Y such that
|N[SY]∩Y | ≥ b′+1+ r− (rεb+εa), we obtain a′+b′+1 r-stars. By applying Lemma 3.2.6
to G[X] and G[Y] we can decide the above in polynomial time.

We may therefore assume that no such SX or SY exist. We will now show that a′+ b′

is the optimal solution. For the sake of contradiction assume that we have a∗ r-stars with
centers in X and b∗ r-stars with centers in Y , such that they are vertex disjoint and a∗+b∗ =
a′+b′+1. Without loss of generality we may assume that a∗ ≥ a′+1. The a∗ r-stars with
centers in X all have at least one leaf in Y as the maximum degree in G[X] is less than
r. Furthermore by the above (SX does not exist) any a′+ 1 r-stars with centers in X have
more than r(a′+1)− (r− (rεa + εb)) leaves in Y . Therefore we use strictly more than the
following number of vertices in Y .

r(a′+1)− (r− (rεa + εb))+(a∗+b∗− (a′+1)) = ra′+ rεa + εb +b′ = y

This contradiction implies that the optimal solution is a′+b′ in this case. This completes
the case when G is connected.

Finally assume that G is disconnected. In this case we recursively solve the problem for
each connected component, which can be added together to get an optimal solution for G. It
is not difficult to see that the above can be done in polynomial time.

Chapter 4

Cycles and Acyclicity in edge colored
graphs

4.1 Acyclicity in Edge-Colored Graphs

It is well-known and trivial to prove the fact that every undirected and directed graph with no
cycles has no closed walks either. Surprisingly, it turns out that this is not the case for PC
cycles and PC walks. In fact, the properties of having no PC cycles, having no PC closed
trails, and having no PC closed walks, are all different from each other.

In this section, we introduce five types of PC acyclicity, in order to better understand the
structure of PC acyclic edge-colored graphs. The different types of PC acyclicity are defined
as follows.

Definition 4.1.1 Let G be a c-edge-colored undirected graph with c ≥ 2. An ordering
v1,v2, . . . ,vn of vertices in G is of

Type 1: if for every i ∈ [n], all edges from vi to all vertices in each connected component of
G[{vi+1,vi+2, . . . ,vn}] have the same color;

Type 2: if for every i ∈ [n], all edges from vi to {vi+1,vi+2, . . . ,vn} which are not bridges
of G[{vi,vi+1, . . . ,vn}] have the same color;

Type 3: if for every i ∈ [n], all edges from vi to {vi+1,vi+2, . . . ,vn} have the same color;

Type 4: if for every i ∈ [n], all edges from vi to {vi+1,vi+2, . . . ,vn} have the same color and
all edges from vi to {v1,v2, . . . ,vi−1} have the same color;

90 Cycles and Acyclicity in edge colored graphs

Type 5: if for every i ∈ [n], all edges from vi to {vi+1,vi+2, . . . ,vn} have the same color and
all edges from vi to {v1,v2, . . . ,vi−1} have the same color but different from the color
of edges from vi to {vi+1,vi+2, . . . ,vn}.

Definition 4.1.2 Let i∈ [5]. G is PC acyclic of type iii if it has an vertex ordering v1,v2, . . . ,vn

of type i.

It is easy to observe that by definition, the class of c-edge-colored acyclic graphs of
type i contains the class of c-edge-colored acyclic graphs of type i+ 1, i ∈ [4]. We will
show that the containments are proper in this chapter. We prove that graphs of the first two
types are exactly those edge-colored graphs without PC cycles and without PC closed trails,
respectively. These two classes of edge-colored graphs were well characterized by Yeo [109]
and Abouelaoualim et al. [2], respectively. We will prove that graphs of PC acyclicity of
type 3 are edge-colored graphs without PC walks. We do not have a “nice” characterization
of edge-colored graphs of type 4. In fact, we show that it is NP-hard to recognize graphs of
this type, which is somewhat surprising as we prove that recognition of all other types can be
done in polynomial-time. We will prove that an edge-colored graph is acyclic of type 5 if and
only if every vertex is incident to edges of at most two colors and every cycle C has a positive
even number of vertices incident, in C, to edges of the same color. For 2-edge-colored graphs
this is equivalent to being bipartite with no PC cycle. Therefore, for 2-edge-colored graphs,
being PC acyclic of type 5 is equivalent to being bipartite and PC acyclic of type 1.

Using the five types of PC acyclicity, we further investigate the border between in-
tractability and tractability for the problems of finding the maximum number of internally
vertex-disjoint PC paths between two vertices and of deciding the minimum number of
vertices to eliminate all PC paths between two vertices. We show that both problems are
NP-hard for 2-edge-colored graphs of PC acyclicity of type 3 (and thus of types 1 and 2),
but polynomial time solvable for edge-colored graphs of PC acyclicity of type 4 (and of
type 5). We will also show that while Menger’s theorem does not hold in general, even on
2-edge-colored graphs of PC acyclicity of type 3 (or 1 or 2), it holds on edge-colored graphs
of PC acyclicity of type 4 (and 5).

The rest of the section is organized in the following way. In Section 4.1.1, we study
the five types of acyclicity in edge-colored graphs. Section 4.1.2 is devoted to PC paths
and separators in edge-colored graphs. We raise an open problem from FPT perspective in
Chapter 5.

4.1 Acyclicity in Edge-Colored Graphs 91

4.1.1 Types of PC Acyclicity Edge-Colored Graphs

In this section, we give good characterizations of the five types of PC acyclicity introduced
in the previous section.

The fact that a c-edge-colored graph G is PC acyclic of type 1 if and only if G has no
PC cycle follows immediately from a theorem by Yeo [109] below (a special case of Yeo’s
theorem for c = 2 was obtained by Grossman and Häggkvist [39]).

Theorem 4.1.1 If a c-edge-colored graph G has no PC cycle then G has a vertex z such that
every connected component of G− z is joined to z by edges of the same color.

Theorem 4.1.1 easily implies the following corollary.

Corollary 4.1.1 A c-edge-colored graph G is PC acyclic of type 1 if and only if there is no
PC cycle in G.

Proof Let G be a c-edge-colored graph which is PC acyclic of type 1 and it has a PC cycle
C. Just take an acyclic ordering θ of V (G) of type 1. Let x be the vertex on C with lowest
subscript in the acyclic ordering θ . Observe that C− x must belong to the same component
in G− x and all vertices of C− x have bigger subscript than x in θ . Thus, in the cycle C, the
two incident edges of x must have the same color, a contradiction to the fact that C is PC.

Now suppose G has no PC cycle. By Theorem 4.1.1, there is a vertex z in G such that
every connected component of G− z is joined to z by edges of the same color. Set v1 = z and
consider G− z recursively to obtain v2, . . . ,vn. Clearly, the resulting ordering is PC acyclic
of type 1.

Theorem 4.1.1 implies that checking PC acyclicity of type 1 can be done in polynomial
time. Indeed, to decide if G has no PC cycle, we just need to check if G has a vertex z such
that every connected component of G− z is joined to z by edges of the same color and G− z
has no PC cycle.

Using the next theorem, similarly to proving Corollary 4.1.1, we can show that a c-edge-
colored graph G is PC acyclic of type 2 if and only if G has no PC closed trail.

Theorem 4.1.2 (Abouelaoualim et al. [2]) Let G be a c-edge-colored graph, such that ev-
ery vertex of G is incident with at least two edges of different colors. Then either G has a
bridge or G has a PC closed trail.

Theorem 4.1.2 implies that to check whether G contains a PC closed trail, it suffices to
recursively delete all bridges and all G-monochromatic vertices. Observe that G has a PC

92 Cycles and Acyclicity in edge colored graphs

v2

v1

x

u2

u1

red edge

blue edge

Fig. 4.1 Graph G of type 1 not type 2

trail if and only if the resulting graph is non-empty. This implies that checking PC acyclicity
of type 2 can also be done in polynomial time.

To see that containment is proper between acyclicities of type 1 and type 2, consider a
graph G (Fig 4.1) with vertex set {v1,v2,x,u1,u2} and edge set {v1v2,v1x,v2x, u1u2,u1x,u2x},
where v1v2,u1x,u2x are colored red, u1u2,v1x,v2x are colored blue. Clearly, this 2-edge-
colored graph G has no PC cycle, but it has a PC closed trail. Thus, G is acyclic of type 1 but
not acyclic of type 2.

It seems that c-edge-colored graphs without PC closed walks have not been studied in
the literature. Here is a counterpart of Theorem 4.1.1 for such graphs.

Theorem 4.1.3 If a c-edge-colored graph G has no PC closed walk, then G has a G-
monochromatic vertex.

Proof For a given c-edge-colored graph G, we construct a c-edge-colored graph H which is
called an extension of G. H is obtained from G by replacing every vertex u with a set Iu of
independent vertices which have the same adjacencies and edge colors as u. Observe that
G has no PC closed walk if and only if no extension of G, in which Iu is sufficiently large,
has a PC cycle. Now apply Theorem 4.1.1 to an extension H of a connected c-edge-colored
graph G in which |Iu|> 1 for each u ∈V (G), and note that for every vertex z ∈V (H), H − z
is connected.

Using Theorem 4.1.3, similarly to proving Corollary 4.1.1, we can show that a c-edge-
colored graph G is PC acyclic of type 3 if and only if G has no PC closed walk. Theorem
4.1.3 implies that G has no PC closed walk if and only if G has a vertex z incident with edges
of the same color and G− z has no PC closed walk. Thus, checking PC acyclicity of type 3
can be done in polynomial time.

To see that containment is proper between acyclicities of type 2 and type 3, consider
the following graph G (Fig 4.2) with V (G) = {a1,a2,a3,b1,b2,b3}, with blue edges a1b1,
a2b2 and a3b3 and red edges a1a2, b1a2, a3b2 and b3b2. In G, we have a PC closed walk
a1a2b2b3a3b2a2b1a1. This walk uses the edge a2b2 twice. There is no PC closed trail in G:

4.1 Acyclicity in Edge-Colored Graphs 93

b1

a1 a3

b3

b2a2

red edge

blue edge

Fig. 4.2 Graph G of type 2 not type 3

as a2b2 is a bridge, it does not belong to a closed trail and removing a2b2 makes it obvious
that there is no PC closed trail in the remainder.

There is unlikely a "nice" characterization of c-edge-colored graphs of type 4 due to the
following somewhat surprising result.

Theorem 4.1.4 It is NP-complete to decide whether a 2-edge-colored graph is acyclic of
type 4.

Proof It is easy to see that our problem is in NP, since given any vertex ordering of the graph,
it is trivial to check whether it is acyclic of type 4.

To prove NP-hardness, we reduce from the following BETWEENNESS problem.

BETWEENNESS

Instance: A set of distinct ordered triples of elements from a universe U .
Output: Decide whether there exists a linear ordering of elements in U, such that
for every triple (x,y,z) of distinct elements of U in the input, either x ≻ y ≻ z or
z ≻ y ≻ x in the ordering i.e., y must appear between x and z.

The BETWEENNESS problem was proved to be NP-complete [71].
In the rest of the proof, it will be convenient for us to write an ordering v1,v2, . . . ,vp of

some vertices in a graph as v1 ≻ v2 ≻ ·· · ≻ vp.
Given an instance of BETWEENNESS, we produce a 2-edge-colored graph G as follows.

We add each element in U as a vertex of G. (These vertices will all be incident only to
blue edges in the final graph.) For each triple (x,y,z), we create a gadget with vertices
x,y,z and new vertices a(x,y),b(x,y),b(z,y), a(z,y). Add blue edges xa(x,y), b(x,y)b(z,y),
za(z,y), yb(x,y) and yb(z,y), and red edges a(x,y)b(x,y), b(z,y)a(z,y), see Figure 4.3. This
concludes the construction of G.

Now suppose G is acyclic of type 4 and consider the ordering within the gadget for a triple
(x,y,z). As xa(x,y)b(x,y)b(z,y)a(z,y)z is a PC path, any acyclic ordering of type 4 must
have either x ≻ a(x,y) ≻ b(x,y) ≻ b(z,y) ≻ a(z,y) ≻ z or z ≻ a(z,y) ≻ b(z,y) ≻ b(x,y) ≻
a(x,y)≻ x. Suppose the former. Then y cannot appear before b(x,y) because of the red edge

94 Cycles and Acyclicity in edge colored graphs

z
a(z,y)

y
b(z,y)

b(x,y)
x

a(x,y)

red edge

blue edge

Fig. 4.3 (x,y,z)-gadget

a(x,y)b(x,y), and it cannot appear after b(z,y) because of the red edge b(z,y)a(z,y). Thus y
must appear between b(x,y) and b(z,y), and in particular y must appear between x and z. A
similar argument holds when z ≻ a(z,y)≻ b(z,y)≻ b(x,y)≻ a(x,y)≻ x.

Thus, if G is acyclic of type 4, then there is an ordering such that for every input triple
(x,y,z), y appears between x and z, and so our Betweenness instance is a Yes-instance.

Conversely, suppose our Betweenness instance is a Yes-instance, consider an ordering of
U satisfying every triple of the instance. We extend this to an ordering of V (G). For each triple
(x,y,z), if x ≻ y ≻ z, then we set x ≻ a(x,y)≻ b(x,y)≻ y ≻ b(z,y)≻ a(z,y)≻ z. If z ≻ y ≻ x,
then we set z ≻ a(z,y)≻ b(z,y)≻ y ≻ b(x,y)≻ a(x,y)≻ x. As a(x,y),b(x,y),b(z,y),a(z,y)
are involved only in the (x,y,z)-gadget, there is an ordering of V (G) that satisfies all the
above orderings. It is easy to check that each of a(x,y),b(x,y),b(z,y),a(z,y) is satisfied (in
the sense of having all edges to earlier vertices the same color, and all edges to later vertices
the same color). As all vertices from U are only incident to blue edges, they are satisfied by
this ordering as well. Thus we have that G is acyclic of type 4, as required.

To see that containment is proper between acyclicities of type 3 and type 4, consider a
complete graph on three vertices with two blue edges and one red edge. It is easy to find a
PC acyclic ordering of type 3 and to see that there is no PC acyclic ordering of type 4.

The following procedure provides an easy way to check whether a connected edge-colored
graph G is acyclic of type 5.

Procedure 1 First check that for each vertex in the graph, its incident edges are colored
with at most two colors, as otherwise, G cannot be acyclic of type 5. Choose an arbitrary
vertex x and orient edges of one color out of x and edges of the other color towards x. Then
for every vertex y for which there is an arc towards (out of, respectively) y which was an edge
of color i, mark y and orient all edges of color i incident to y towards (out of, respectively) y
and all other edges incident to y out of y (towards y, respectively). Stop the procedure if
orienting edges incident to y leads to one of the following conflicts for another vertex z:

4.1 Acyclicity in Edge-Colored Graphs 95

(a) z will have two arcs of different color oriented into it or two arcs of different color
oriented out of it;

(b) z will have an arc into it and an arc out of it of the same color.

Theorem 4.1.5 will show that if this procedure is completed (without conflicts (a) and
(b)) and the obtained digraph is acyclic then G is acyclic of type 5, and otherwise it is not.
Note that Procedure 1 always finishes in polynomial time.

Here is a characterization of acyclic edge-colored graphs of type 5. Recall that a vertex
v in an edge-colored graph G is G-monochromatic if all edges incident to v in G are of the
same color.

Theorem 4.1.5 Let G be an edge-colored graph. The following are equivalent.

1. G is PC acyclic of type 5.

2. Procedure 1 completes and the resulting digraph is acyclic.

3. Every vertex is incident to edges of at most two colors, and every cycle C in G has a
positive even number of C-monochromatic vertices.

Proof We will show that the implications 3 ⇒ 2 ⇒ 1 ⇒ 3 hold.
First we will show that 2 ⇒ 1. Assume that Procedure 1 completes and the resulting

digraph, D, is acyclic. Let v1,v2,v3, . . . ,vn be an acyclic ordering of D (that is, if viv j is an
arc of D then i < j). By the construction of D, we note that all arcs into a vertex vi have the
same color and all arcs out of vi also have the same color, which is different from the arcs
entering vi. As this holds for all vi we note that the ordering v1,v2,v3, . . . ,vn is a PC acyclic
ordering of type 5 in G, which proves 2 ⇒ 1.

We will now show that 1 ⇒ 3, so assume that O = v1,v2,v3, . . . ,vn is a PC acyclic
ordering of type 5 in G. By the definition of PC acyclic ordering of type 5, every vertex
is incident to edges of at most two colors. Let C be any cycle in G. Let A1 contain the
vertices, vi, of C where both neighbors of vi on C lie after vi in the ordering O . Let A2 contain
the vertices, vi, of C where both neighbors of vi on C lie before vi in the ordering O . Let
B =V (C)\ (A1 ∪A2). That is, B contains the vertices, vi, of C where one neighbors of vi lies
after vi in the ordering O and the other lies before. Note that |A1|= |A2|, as the cycle changes
from going "forward" to "backward" |A2| times and changes from going "backward" to
"forward" |A1| times. Furthermore |A1|> 0 (and |A2|> 0) as the vertex of C with minimum
index in O belongs to A1. As the C-monochromatic vertices on C are exactly A1 ∪A2, we
note that this is an even positive number (= 2|A1|= 2|A2|). This proves 1 ⇒ 3.

96 Cycles and Acyclicity in edge colored graphs

We will now show that 3 ⇒ 2. We will prove this by showing that if 2 is false, then 3 is
false. So assume that Procedure 1 either does not complete or the resulting digraph, D, is not
acyclic. First assume that it does complete, but the resulting digraph, D, is not acyclic and
let C be a directed cycle in D. Note that in G there is no C-monochromatic vertices, which
implies that 3 is false.

We may thus assume that Procedure 1 does not complete. Let v1,v2,v3, . . . be the order
in which the vertices are considered by the procedure. Let vr be the first vertex (that is r is
smallest possible) such that when orienting all edges incident to vr, some other vertex, vk,
will have one of the two conflicts in Procedure 1:

(a) vk will have two arcs of different color oriented into it or two arcs of different color
oriented out of it;

(b) vk will have an arc into it and an arc out of it of the same color.

Note that k > r, since otherwise we already considered all edges incident with vk and
when considering vr, it will not orient any edges in an opposite direction to what it is already
oriented (by the minimality of r). Note that when we consider some vi, it has an arc to
or from a vertex in {v1,v2, . . . ,vi−1} for all i. Therefore G[v1,v2, . . . ,vr] is connected. By
(a) or (b), vk has two edges that have already been oriented after considering the vertices
v1,v2, . . . ,vr (and form a conflict as in (a) or (b)), namely vrvk and v jvk for some j < r. For
a path P between vr and v j in G[v1,v2, . . . ,vr], let C be the cycle obtained by adding the
edges vrvk and vkv j to P. Let A1 be all vertices on C, where both edges in C are oriented
into the vertex and let A2 be all vertices on C, where both edges in C are oriented out the
vertex. Note that all vertices in V (C)\{vk} are C-monochromatic if and only if they belong
to A1 ∪A2. Furthermore, vk is C-monochromatic if and only if it does not belong to A1 ∪A2.
Observe that |A1|= |A2|, so |A1 ∪A2| is even, which implies that there are an odd number of
C-monochromatic vertices on C, and so 3 does not hold. Therefore 3 ⇒ 2.

Theorem 4.1.5 implies the following simpler characterization for the case c = 2.

Corollary 4.1.2 A 2-edge-colored graph G is PC acyclic of type 5 if and only if it is bipartite
and has no PC cycle.

Proof Observe that every cycle C in a 2-edge-colored graph has an even number of C-non-
monochromatic vertices, since the edge color must change an even number of times as we
go around the cycle back to the starting point. Therefore a 2-edge-colored graph contains
an odd cycle if and only if it contains a cycle C with an odd number of C-monochromatic
vertices. The result now follows by Theorem 4.1.5.

4.1 Acyclicity in Edge-Colored Graphs 97

To see that containment is proper between acyclicities of type 4 and type 5, consider any
non-bipartite 2-edge-colored graph with all edges being blue.

4.1.2 PC Paths and Separators

This section will be devoted to separators and PC paths in edge-colored graphs. We consider
two problems. Let a c-edge-colored graph G and distinct vertices x,y ∈V (G) be given.

MINIMUM PC SEPARATOR

Instance: An edge colored graph G = (V,E), and two vertices x,y ∈V (G).
Output: A minimum-size set S⊆V (G)\{x,y} such that there is no PC path between
x and y in G−S.

PC PATH PACKING

Instance: An edge colored graph G = (V,E), and two vertices x,y ∈V (G).
Output: The maximum number of internally vertex-disjoint PC paths between x
and y in G.

We will see that both the MINIMUM PC SEPARATOR problem and the PC PATH PACKING

problem are NP-hard on graphs G that are PC acyclic of types 1, 2 or 3, even for c = 2. We
also find that Menger’s theorem fails to hold for these graphs.

On the other hand, we show that the analogue of Menger’s theorem does hold for graphs G
that are PC acyclic of type 4, and that both the minimum PC separator problem and the PC
path packing problem are in P on these graphs, even if no acyclic ordering of type 4 is given.
These results hold for arbitrary c.

We begin with the hardness results.

Theorem 4.1.6 The minimum PC separator problem is NP-hard for 2-edge-colored graphs
which are acyclic of type 3.

Proof We give a reduction from the vertex cover problem which is to find a minimum size
vertex cover of a given graph. Given an instance H of the vertex cover problem, we construct
a 2-edge colored graph G which is PC acyclic of type 3, and two distinct vertices x,y, such
that a set S of vertices is a vertex cover of H if and only if there is no PC path between x and
y in G−S.

Let V (G) =V (H)∪{x,y} and E(G) = E(H)∪{xu : u ∈V (H)}∪{vy : v ∈V (H)}, and
let us color all edges in E(H) red and all the edges incident to x or y blue. It is easy to see
that graph G is PC acyclic of type 3, just put x and y in the beginning of the vertex ordering.

98 Cycles and Acyclicity in edge colored graphs

qSpS

x uk

ui v j

vl
y

uk vl

ui v j

Edge in E2

Edge in E1

Fig. 4.4 Construction of H

Observe that for any vertex set S ⊆V (H) =V (G)\{x,y}, there is a PC path between x
and y in graph G−S if and only if there is at least one edge in the graph H −S. Thus a vertex
set S is a vertex cover of H if and only if there is no PC path between x and y in G−S. Thus
we have given a polynomial reduction from the vertex cover problem to our problem, which
implies the NP-completeness.

Theorem 4.1.7 The PC path packing problem is NP-hard for 2-edge-colored graphs which
are acyclic of type 3.

Proof We will give a reduction from the following problem called the restricted bipartite
perfect matching problem: Given a bipartite graph G and a partition of its edges into sets of
size at most 2, decide whether G has a perfect matching containing at most one edge from
each partition set (we will call such a perfect matching restricted). This problem was proved
to be NP-complete by Plaisted and Zaks [78].

Let (G,S) be an instance of the restricted bipartite perfect matching problem, where
G = (V1 ∪V2,E) is a bipartite graph with |V1|= |V2|, and S is the collection of partite sets
of size 2. Note that we may require that for every size-2 set {ei,e j} ∈ S that ei and e j are
vertex-disjoint; if not, we may split {ei,e j} into two sets {ei},{e j} of size 1, as no matching
can use both edges simultaneously.

We construct a PC acyclic 2-edge colored graph H of type 3 in the following way. Let
E1 and E2 denote the sets of blue and red edges of H, respectively. Introduce two new
vertices x,y, add all edges from {xu : u ∈ V1}∪ {vy : v ∈ V2} to E1. For each edge uv of
E which is not in any 2-size set of S, we add uv to E2. For any 2-size set S = {uiv j,ukvl}
of S , where {ui,uk} ⊆ V1, {v j,vl} ⊆ V2, we add new vertices pS,qS to V (H), add edges
ui pS,vl pS,ukqS,v jqS to E2, and add edge pSqS to E1; see Figure 4.4. This completes the
construction of H. Observe that any ordering of V (H) starting with x and y then containing
all vertices of G and finally having all other vertices, is PC acyclic of type 3.

Now we prove that there is a restricted perfect matching in G if and only if there are |V1|
internally vertex-disjoint PC paths between x and y.

4.1 Acyclicity in Edge-Colored Graphs 99

Firstly, if there is a restricted perfect matching in G, we can easily get |V1| internally
vertex-disjoint alternating paths between x and y in H, by constructing a PC path for each
edge in the perfect matching. For each edge uiv j in the perfect matching, forming a 2-size set
S of S with some edge ukvl , we obtain a PC path xui pSqSv jy or xuiqS pSv jy between x and y.
For each other edge uv in the perfect matching, we have a PC path xuvy between x and y.

Secondly, if there are |V1| internally vertex-disjoint PC paths in H between x and y, there
must be a restricted perfect matching in G. Observe that all the PC paths are of length 3 or
5 as all vertices in V (G) are adjacent to only color 2 edges in H −{x,y}. For each PC path
we put an edge into the matching of graph G. Any PC path of length 3 must be of the form
xuvy, so we put edge uv into the matching. For any edge pSqS, there is at most one internally
disjoint PC path passing through it, thus, if there is one such path xui pSqSv jy (xukqS pSvly,
respectively), we put edge uiv j (ukvl , respectively) into the matching. Since we will put at
most one edge from each set S of S into the matching, the matching is a restricted matching.
Since there are |V1| internally vertex-disjoint PC paths between x and y, we will put |V1|
non-adjacent edges into the matching, thus we obtain a perfect matching.

The same hardness results also hold if we consider edge-disjoint PC paths instead of
vertex-disjoint ones, by a simple reduction. Namely, let G be a 2-edge-colored graph. We
split every vertex v ∈V (G) into two copies v′ and v′′, where v′ is incident with all red edges
incident with v, and v′′ with all blue edges. We also add a third vertex v0, a blue edge v′v0

and a red edge v0v′′. It is easy to see that applying this transformation to every vertex in G
describes a reduction from the problems described above to their edge separator, respectively
edge-disjoint path packing variants.

We now show our positive result.

Theorem 4.1.8 Let G be a c-edge-colored graph which is PC acyclic of type 4, and let x,y
be arbitrary distinct vertices of G. The minimum PC separator problem and the PC path
packing problem for G are both in P, even if no acyclic ordering for G is given. Furthermore,
let s be the minimum size of a subset of V (G)\{x,y} whose removal eliminates all PC paths
between x and y and let t be the maximum number of internally vertex-disjoint PC paths
between x and y in G. Then s = t.

Proof The solution to both problems, and the proof of the Menger’s theorem analogue, will
follow the same basic pattern. Observe that we may delete from G every monochromatic
vertex distinct from x and y, since such a vertex cannot be an internal vertex of any PC path.
This leaves a graph, say H, where every vertex except x and y is incident to edges of two
colors. We show that H is PC acyclic of type 5, and that the first and last vertices of any
corresponding vertex ordering are x and y (or y and x), respectively.

100 Cycles and Acyclicity in edge colored graphs

v4

v5

x = v1
v3

v2 v6

v7

v8 = y

Edge in E2

Edge in E1

Fig. 4.5 Menger’s theorem fails on G

For this, we first note that x and y are both monochromatic in H. Indeed, by assumption G
is PC acyclic of type 4, which shows that there exists an induced type 4 ordering for H. The
first and last vertices of this ordering must be monochromatic in H; hence these vertices are
equal to x and y. Furthermore, it is easy to see that for a graph with only two monochromatic
vertices, the notions of being PC acyclic of type 4 and 5 coincide. Thus H is PC acyclic of
type 5.

We now proceed as follows. Compute a PC acyclic ordering for H of type 5, and if
necessary reverse it so that it begins with the vertex x and ends with y. Note that every PC
path from x to y uses the edges of H in the forward direction of the ordering only. Hence we
may transform H into a digraph D by orienting every edge of H from its lower-index vertex
to its higher-index vertex in the ordering, and solve the corresponding problem on D using
well-known polynomial-time algorithms [9]. Menger’s theorem also follows from this same
reduction.

Finally, we note that Menger’s theorem fails to hold if G is only PC acyclic of type 3,
even for c = 2. Consider the following 2-edge-colored graph G, see Figure 4.5. Let V (D) =

{v1, . . . ,v8}, E1 = {v2v3,v4v5,v6v7}, E2 = {v1v2,v1v3,v1v5,v2v6,v3v4,v4v6,v5v8,v7v8}. We
color edges in E1 blue and edges in E2 red. It is easy to check that the ordering v8v7v6v1v2v3v4v5

of V (G) is PC acyclic of type 3.
Let x = v1,y = v8, note that any PC path between x and y uses at least two blue edges,

thus there is at most one internally vertex-disjoint PC path between x and y. However, after
deleting any vertex apart from {x,y} the remaining graph will still have a PC path between x
and y: after deleting v2 or v3, we have PC path xv5v4v6v7y; after deleting v4 or v5, we have
PC path xv3v2v6v7y; after deleting v6 or v7, we have PC path xv2v3v4v5y. Thus s > t.

4.2 Odd PC Cycle Detection 101

4.2 Odd PC Cycle Detection

One of the central topics in graph theory is the existence of certain kinds of cycles in graphs.
In digraphs, it is not hard to decide the existence of any dicycle by simply checking whether a
given digraph is acyclic [9]. The problem of existence of PC cycles in edge-colored graphs is
less trivial. To solve the problem, we may use Yeo’s theorem [109]: if an edge-colored graph
G has no PC cycle then G contains a vertex z such that no connected component of G− z is
joined to z with edges of more than one color. Thus, we can recursively find such vertices z
and delete them from G; if we end up with a trivial graph (containing just one vertex) then
G has no PC cycles; otherwise G has a PC cycle. Clearly, the recursive algorithm runs in
polynomial time. There is another approach to decide whether there is a PC cycle in a given
edge colored graph, which can even find a PC cycle in polynomial time.

Theorem 4.2.1 ([7], Theorem 3.8) One can construct a maximum cycle subgraph in a c-
edge-coloured multigraph G on n vertices in time O(n3).

One of the next natural questions is to decide whether a digraph has an odd (even,
respectively) dicycle, i.e. a dicycle of odd (even) length, respectively. For odd dicycles
we can employ the following well-known result (see, e.g., [9, 52]): A strongly connected
digraph is bipartite if and only if it has no odd dicycle. (Note that the result does not hold for
non-strongly connected digraphs.) Thus, to decide whether a digraph D has an odd cycle, we
can find strongly connected components of D and check whether all components are bipartite.
This leads to a simple polynomial-time algorithm. The question of whether we can decide
in polynomial time whether a digraph has an even dicycle, is much harder and was an open
problem for quite some time till it was solved, in affirmative, independently by McCuaig,
and Robertson, Seymour and Thomas (see [83]) who found highly non-trivial proofs.

ODD PC CYCLE DETECTION

Instance: A connected edge colored graph G = (V,E).
Output: Decide if there is an odd PC cycle in G.

In this section we consider the ODD PC CYCLE DETECTION problem. We show
that while a natural extension of the odd dicycle solution does not work, an algebraic
approach using Tutte matrices and the Schwartz-Zippel lemma allows us to prove that there
is a randomized polynomial-time algorithm for solving the problem. The existence of a
deterministic polynomial-time algorithm for the odd PC cycle problem remains an open
question, as does the existence of a polynomial-time algorithm for the even PC cycle problem.

In this section, we allow our graphs to have multiple edges (but no loops) and call them,
for clarity, multigraphs. In edge-colored multigraphs, we allow parallel edges of different

102 Cycles and Acyclicity in edge colored graphs

v3

v1 v2

v4

v5

v6

colour 1

colour 2

colour 3

Fig. 4.6 Non-bipartite cyclic connected graph with no odd PC cycle

colors (there is no need to consider parallel edges of the same color). For an edge xy and
a vertex v, we use χ(xy) and χ(v) to denote the color of xy and the set of colors of edges
incident to v, respectively. For any other terminology and notation not provided here, we
refer the readers to [9].

4.2.1 Graph-Theoretical Approaches

Recall that to solve the odd dicycle problem, in the previous section, we used the following
result: A strongly connected digraph is bipartite if and only if it has no odd dicycle. It is
not straightforward to generalize strong connectivity to edge-colored multigraphs. We are
aware of two types of connectivity in edge colored graphs. The notion color-connectivity1,
introduced by Saad [84] under another name, does not appear to be useful to us as, in general,
it does not partition vertices into components. One could wonder whether every non-bipartite
cyclic connected edge-colored graph has an odd PC cycle. Unfortunately, it is not true, see a
graph H in Fig. 4.6. It is not hard to check that H is not bipartite and cyclic connected. It has
even PC cycles, such as v1v2v5v3v1, but no odd PC cycles.

Another natural idea is to find some odd PC closed walk first, and hope to find an odd PC
cycle in it. Unfortunately, we cannot generate all possible PC closed walks in polynomial
time, and moreover a PC closed walk does not necessarily contain an odd PC cycle, see the
graph in Figure 4.7. It contains an odd PC walk, but not an odd PC cycle.

4.2.2 Algebraic Approach

In an edge-colored multigraph G, a vertex v is monochromatic if |χ(v)|= 1. Let G′ be the
multigraph obtained from G by recursively deleting monochromatic vertices such that G′ has

1An edge colored graph G is color connected if any two vertices x and y in G are joined by two PEC paths
xx′...y′y and xu...vy such that c(xx′) ̸= c(xu) and c(y′y) ̸= c(vy)

4.2 Odd PC Cycle Detection 103

v1 v2

v5

v3 v4

v0

v6
v7 v8 v9

colour 1

colour 2

colour 3

Fig. 4.7 An odd PC closed walk

no monochromatic vertex. Following [95], let Gx, x ∈V (G′) denote a graph with vertex set

{xi,x′i : i ∈ χ(x)}∪{x′′a,x
′′
b} and edge set

{x′′ax′′b,x
′
ix
′′
a,x

′
ix
′′
b,xix′i : i ∈ χ(x)}.

Let G∗ denote a graph with vertex set
⋃

x∈V (G′)V (Gx) and edge set E1 ∪E2, where E1 =⋃
x∈V (G′)E(Gx) and E2 = {yqzq : yz ∈ E(G′),χ(yz) = q}. Let c = max{χ(x) : x ∈ V (G)}.

Note that
|V (G∗)|= O(c|V (G)|) (4.1)

A subgraph of an edge-colored multigraph is called a PC cycle subgraph if it consists of
vertex-disjoint PC cycles. We will use the following result of [47].

Theorem 4.2.2 Let G be a connected edge-colored multigraph such that G′ is non-empty
and G∗ constructed as above. Then G has a PC cycle subgraph with r edges if and only if G∗

has a perfect matching with exactly r edges in E2.

Using Theorem 4.2.2, the problem of deciding if there exists an odd PC cycle in G
reduces to that of deciding if there is a perfect matching with an odd number of edges from
E2 in the graph G∗ (indeed, G∗ has an odd PC cycle subgraph if and only if it has an odd PC
cycle).

We use the properties of Tutte matrices to solve the reduced problem. For a graph
G = (V,E) with V = {v1,v2, ...,vn}, the Tutte matrix AG is the n×n multivariate polynomial
matrix with entries

AG(i, j) =

xi j if viv j ∈ E and i < j

−x ji if viv j ∈ E and i > j
0 otherwise,

(4.2)

where xi j are distinct variables. Tutte [100] proved that a graph G has a perfect matching if
and only if detAG is not identically 0.

104 Cycles and Acyclicity in edge colored graphs

We say that a matrix A is skew symmetric if A+AT = 0. Note that the Tutte matrix is
skew symmetric. In our argument, we will use the notion of Pfaffian of a skew symmetric
matrix. Let A = [ai j] be a 2n×2n skew symmetric matrix. The Pfaffian of A is defined as
follows.

pfA = ∑
σ

sgn(σ)
n

∏
i=1

aσ(2i−1),σ(2i), (4.3)

where sgn(σ) is the signature of σ and the summation is over all permutations σ such
that σ(2i− 1) < σ(2i) for each 1 ≤ i ≤ n, and σ(2i) < σ(2i+ 2) for each 1 ≤ i < n (i.e.,
each partition of the set {1, . . . ,2n} into pairs is included in the sum exactly once). Note in
particular that for a graph G, this formula for pfAG enumerates every perfect matching of G
exactly once.

Observe that, if we regard ai j as indeterminate, pfA is a multi-linear polynomial. For an
odd skew symmetric matrix A, the Pfaffian is defined to be zero. We will use the following
well-known relation between Pfaffian and determinants of skew symmetric matrices (see,
e.g., [63]).

Theorem 4.2.3 If A is a skew symmetric matrix, then detA = (pfA)2.

Given a graph G = (V,E) and a subset of edges E0 ⊆ E(G), we now define another skew
symmetric matrix AG,E0 whose entries are

AG,E0(i, j) =

{
−AG(i, j) if viv j ∈ E0

AG(i, j) if viv j /∈ E0
(4.4)

It is easy to see that AG,E0 is also a skew symmetric matrix, thus by Theorem 4.2.3, detAG,E0 =

(pfAG,E0)
2. Note that AG and AG,E0 only differ at entries corresponding to edges in E0. We

call a perfect matching M in a graph G E0-odd (E0-even, respectively) if |M ∩E0| is odd
(even, respectively). Here is our key result.

Lemma 4.2.1 Given a graph G with even number of vertices and an edge subset E0 ⊆ E(G),
let AG and AG,E0 be defined as in (4.2) and (4.4). Then detAG,E0 = detAG if and only if all
the perfect matchings of G are of same E0-parity.

Proof As both AG and AG,E0 are skew symmetric, by Theorem 4.2.3,

detAG = (pfAG)
2 and detAG,E0 = (pfAG,E0)

2.

Thus detAG,E0 = detAG if and only if pfAG,E0 = pfAG or pfAG,E0 =−pfAG. By (4.3), pfAG

and pfAG,E0 both enumerate perfect matchings of G, and by the definitions of AG and AG,E0 ,

4.2 Odd PC Cycle Detection 105

for each such matching M its contributions to pfAG and pfAG,E0 differ (by a sign term) if and
only if M is E0-odd. Hence pfAG,E0 = pfAG (pfAG,E0 =−pfAG, respectively) if and only if
each perfect matching in G is E0-even (E0-odd, respectively).

For G = G∗ and E0 = E2 ⊆ E(G∗), by Lemma 4.2.1, if detA∗
G,E2 ̸= detA∗

G, then G∗ has
a E2-odd perfect matching and a E2-even perfect matching. If detA∗

G,E2 = detA∗
G, then every

perfect matching of G∗ is either E0-even or E0-odd. In such a case, we can find a perfect
matching M of the graph G∗ in polynomial time, and decide the parity of M ∩E2. So we
have an algorithm for deciding if G∗ has a perfect matching with even or odd number of
edges in E2. Unfortunately, we do not know whether this algorithm is polynomial or not as
there is no polynomial algorithm to decide whether a multivariate polynomial is identically
zero. Fortunately, we can have a polynomial randomized algorithm due to the following
well-known lemma, called the Schwartz-Zippel lemma.2

Lemma 4.2.2 Let P(x1,x2, . . . ,xn) be a multivariate polynomial of total degree at most d
over a field F, and assume that P is not identically zero. Pick r1,r2, . . . ,rn uniformly at
random from a finite set S of values where S ⊂ F. Then the probability P(P(r1,r2, . . . ,rn) =

0)≤ d
|S| .

Now it is not hard to prove the following:

Theorem 4.2.4 Let G be an edge-colored multigraph with n vertices and let c = max{χ(v) :
v ∈V (G)}. There is a randomized algorithm running in time O((cn)ω), where ω < 2.3729,
that decides if there is an odd PC cycle in G, with false negative probability less than 1/4.

Proof As f (x) = detA∗
G,E2

− detA∗
G is a multivariate polynomial of degree at most n, we

may choose a set S of real values, such that |S| > 4n, and use Lemma 4.2.2 to decide if
detA∗

G,E2 ̸= detA∗
G in polynomial time, with false negative less than 1/4. To see that the

running time is O((cn)ω), recall (4.1) and observe that computing the determinants of A∗
G,E2

and A∗
G will take time O((cn)ω), where ω < 2.3729, by the algorithm in [105]. Finally, for

the case that f (x) ≡ 0, we can use the algorithm of Mucha and Sankowski [69] to find a
perfect matching in time O((cn)ω), and then decide its E0-parity.

2It was independently discovered by several authors: Schwartz [86], Zippel [112], DeMillo and Lipton [27].

Chapter 5

Conclusion and Open Problems

In this thesis, we have provided several new results in the area of Parameterized Tractability
and in one of its important subfield, kernelization. We conclude the thesis with a list
of interesting problems that arise naturally from our results, or to which the techniques
developed here might be amenable.

1. in Section 2.1, we obtain an FPT algorithm for k-DCPP. Our algorithms for solving
both k-DCPP and k-ADCP have very large running time bounds, mainly because the
size bound f (h−1(k)) of the minimum feedback arc set is very large. Function f (k)
obtained in [81] is a multiply iterated exponential, where the number of iterations is
also a multiply iterated exponential and, as a result, h−1(k) grows very quickly. So if
we can obtain a significantly smaller upper bound for f (k) on Euler digraphs would
significantly reduce h−1(k) as well and is of certain interest itself. In particular, we
would like to know whether it is true that f (k) = O(kO(1)) for Euler digraphs? Note
that for planar digraphs, f (k) = k [9, Corollary 15.3.10] and Seymour [87] proved
the same result for a wide family of Euler digraphs. Utilizing this property, we can
design a much faster FPT algorithm for k-DCPP on planar graph, see 2.1.4. A natural
question would be can we provide a polynomial size kernel for k-DCPP, at least on
planar graphs. If one succeeds in this, it would be interesting to further check whether
the k-DCPP and k-ADCP admits a polynomial size kernel on general directed graphs.

2. in Section 2.2, we solve an open problem asked in [102] by showing that MCPP
parameterized with the number of arcs is fixed-parameter tractable. To prove this
result we reduce MCPP to BCPP, a generalization of UCPP, and apply a very useful
lemma of Marx et al. [66], which bounds the treewidth of the torso graph with respect
to small separators. Note that our application of the lemma is significantly different

108 Conclusion and Open Problems

from those in [66] and we believe that our approach will be of interest in designing
fixed-parameter algorithms for other problems.

van Bevern et al. [102] mentioned two other parameterizations of MCPP. One of
them is by the treewidth of the given graph G. This question was answered by Gutin
et al. in [46] by proving this parameterization (even with pathwidth) of MCPP is
W[1]-hard. They also showed that MCPP parameterized with treedepth is FPT. They
further suggested other parameters to study, like distance to linear forest. A vertex v of
G is called even, if the number of arcs and edges incident to v is even. Edmonds and
Johnson [30] proved that if all vertices of G are even, then MCPP is polynomial time
solvable on G. So, the number of odd (not even) vertices is a natural parameter. It is
still open whether MCPP parameterized with the number of odd vertices is FPT [102].

3. in Section 2.3, we consider the Chinese Postman Problem on edge-colored graphs
(CPP-ECG). This problem generalizes the Chinese Postman Problem on undirected
and directed graphs and the properly colored Euler trail problem on edge-colored
graphs, all of which can be solved in polynomial time. We proved that CPP-ECG is
still polynomial time solvable, enhancing our understanding of the Chinese Postman
Problem.

It is well-known that the number of Euler trails on digraphs can be calculated in
polynomial time using the so-called BEST theorem [99, 101], named after de Bruijn,
van Aardenne-Ehrenfest, Smith and Tutte. However, the problem turns out to be
much harder on undirected graphs as it is provd to be #P-complete [20]. Our simple
transformation from directed walks to PC walks described in the beginning of Section
2.3, shows that the problem of counting PC Euler trails on 2-edge-colored graphs
generalizes that of counting the number of Euler trails on digraphs. Assigning each
edge of an undirected graph a distinct color, shows that the problem of counting PC
Euler trails on k-edge-colored graphs is #P-complete when k is unbounded. So it would
be interesting to determine the complexity of the problem of counting PC Euler trails
on a k-edge-colored graphs when k is bounded, in particular when k = 2.

4. in Section 3.1, we study the c-LOAD COLORING problem. We believe that our
bound on the number of vertices in a kernel is optimal, but the bound on the number
of edges may not be optimal even for c = 2. We conjecture that the optimal bound is
c2k+O(1). Here is an example showing its tightness. Consider the complete bipartite
graph Kc,ck−1 and add all possible edges between vertices of the partite set of size c.
The resulting digraph is a reduced No-instance with c2k+ c(c−3)/2 edges.

109

Our linear-vertex kernel result implies an O∗(c2ck)-time algorithm for c-LOAD COL-
ORING, which simply tests all the c-colorings of the kernel. It is however possible that
the problem admits much better FPT algorithms, since the complement of c-LOAD

COLORING, NO c-LOAD COLORING, has small, but not constant, forbidden minors
and is minor-bidimensional (see [25, 26] for more information on forbidden minors
and bidimensionality).

Let pw(G) and tw(G) denote the pathwidth and the treewidth of G. Since the path
Pc(k+1) is one of the forbidden minors for NO c-LOAD COLORING, it is easy to decide
whether G ∈ (c,k)-LC or G has a path-decomposition of size bounded by c(k+ 1).
Indeed, if G ̸∈ (c,k)-LC, any DFS on the connected components of G gives a Tremaux
tree with depth bounded by c(k+1) that we may transform into path decomposition of
size bounded by c(k+1) in polynomial time. Since the O∗(2tw(G))-time algorithm for
2-LOAD COLORING from [41] can be generalized to an O∗(ctw(G))-time algorithm for
c-LOAD COLORING, there exists a O∗(cck)-time algorithm for this problem.

For c = 2, the running time O∗(4k) (first obtained in [41]) can be improved using the
result by Kneis et al. [55] that a graph with m edges and n vertices has treewidth at
most m/5.769+O(logn). Thus, by Theorem 3.1.3 in polynomial time we can reduce
a graph G to a graph G′ with tw(G′)≤ 1.0401k+O(

√
k). Therefore, the O∗(2tw(G))

algorithm for 2-LOAD COLORING has running time O∗(2.0564k).

If we require that the input G is H-minor-free for some fixed graph H, then tw(G) =

O(
√

n) by [25, 26], and our linear-vertex kernel leads to an O∗(cO(
√

ck))-time algorithm.
Unfortunately, there is no constant forbidden minor for NO c-LOAD COLORING as
membership in (c,k)-LC requires at least ck edges.

Nevertheless, by Theorem 4.12 of [25], and since branchwidth is linked to the treewidth
up to a constant factor, any graph G contains an (Ω(tw(G)

gen(G))×Ω(tw(G)
gen(G)))-grid as a

minor, where gen(G) is the genus of G. Since the (r× r)-grid is a forbidden minor for
NO c-LOAD COLORING when r ≥ ⌈

√
(c+1)k ⌉, we have tw(G) = O(

√
ck gen(G)).

Thus, we obtain an O∗(cO(
√

ck gen(G)))-time algorithm to solve c-LOAD COLORING,
which is subexponential for graphs of bounded genus. Note also that the complete
graph Kc⌈

√
2k+1⌉ is also one of the forbidden minors. Thus, the Hadwiger number h(G)

of G is bounded by c⌈
√

2k+1⌉. For any family with treewidth bounded by o(h(G)2),
there is a subexponential algorithm. For instance, there is an O∗(c

√
ck)-time algorithm

for chordal graphs.

Let us discuss extensions of our results to graphs that may have loops and multiple
edges. Let us start with isolated vertices and loops. Since the isolated vertices do not

110 Conclusion and Open Problems

involve any edges, it is safe to delete them. Observe that loops are always colored with
the color of their vertex. But a leaf has also to be colored with the color of its neighbor,
as otherwise the edge between them is uncolored. Thus, any loop can be replaced by a
pendant edge.

It remains to consider the multiple edges. Since multiple edges can be colored with
at most one color, it is safe to reduce any multigraph with multiplicity greater than
k to its maximal induced subgraph with multiplicity k. It is not hard to show that
the overloads from Definition 3.1.1 can be generalized just by requiring that for all
u ∈ V1, |E({u},Vu)| ≥ k. Thus, the reductions are also safe for multigraphs. As the
maximal induced (simple) graph of any multigraph has the same number of vertices
and the same connectivity, our bound on the number of vertices in a kernel holds
for multigraphs, too. The bounds on the number of edges in a kernel has to be
slightly changed. Let t be the maximal multiplicity of an edge in the multigraph under
consideration. Then the bound of the number of edges in a kernel (for any c) will be
6.25c2tk and thus we will have an approximation algorithm of ratio 12.5ct.

5. In Section 3.2, we discuss the problem of packing stars into a graph. We obtain a
linear kernel for the problem on graphs with no long induced paths. This result was
later improved by Mingyu Xiao [107], who obtained a linear kernel for the problem on
general graphs.

6. in Section 4.1, we introduce and study five types of PC acyclicity in edge-colored
graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of
acyclicity of type i+1, i = 1,2,3,4. Using the five types, we investigate the border
between intractability and tractability for the problems of finding the maximum number
of internally vertex-disjoint PC paths between two vertices and the minimum number of
vertices to meet all PC paths between two vertices. Consider the problem of deleting as
few vertices as possible from a 2-edge-colored graph to get a subgraph of PC acyclicity
of type 5. We will show that this problem generalizes both the directed feedback vertex
set problem in digraphs and the bipartization problem. In the directed feedback vertex
set problem, given a digraph D, we want to find a minimum size vertex set S such
that D− S has no directed cycle. In the bipartization problem, given an undirected
graph G, one is asked to find a minimum size vertex set S such that G−S is bipartite.
Both directed feedback vertex problem and bipartization problem are NP-hard but
fixed-parameter tractable with respect to the parameter |S| [24, 29]. Thus, the problem
of vertex deletion to a PC acyclic 2-edge-colored graph of type 5, is NP-hard, but we

111

do not know whether it is fixed-parameter tractable with respect to the minimum size
of a solution.

For a digraph D, let G be the 2-edge-colored graph obtained by duplicating every
vertex v ∈ D, to v′ and v′′ and adding a red edge between v′ and v′′. Then for every arc
uv in D we add the blue edge u′′v′ to G. This completes the description of G. Clearly
G is bipartite. If S is a minimum vertex set of G such that G−S is PC acyclic of type 5,
then by Theorem 4.1.2 G−S has no PC cycle. By Theorem 4.1.2 and the minimality
of S we may assume that S ⊆V (D)′ := {v′ : v ∈V (D)} (if v′′ ∈ S we can take v′ and
not v′′). This implies that D−S has no directed cycle (if it did we would have a PC
cycle in G−S). Conversely, if T is a minimum feedback vertex set in D, then D−T
has no directed cycle and it is not difficult to see that G−T ′ has no PC cycle. As
G−T ′ is bipartite and has no PC cycle, by Corollary 4.1.2 it is of type 5. Thus, our
problem generalizes the directed feedback vertex set problem in digraphs.

If G is a graph, then let the edge-colored graph G′ be equal to G, where all edges have
same color. If G− S is bipartite then G′− S is bipartite and has no PC cycle (as all
edges have the same color) and therefore G′−S is PC acyclic of type 5. Conversely, if
G′−S is PC acyclic of type 5, then G′−S is bipartite and G−S is bipartite. Thus, our
problem generalizes the bipartization problem.

Moreover, our problem is more general, as there are many 2-edge-colored graphs
that do not arise from directed graphs using the standard transformation given in the
beginning of Chapter 4.

7. In Section 4.2, we provide a randomized polynomial time algorithm for the odd PC
cycle problem. A naturally following question is whether this problem can be solved
in (deterministic) polynomial time. We believe that the answer to the question is
positive, like with some other problems. For example, Yannis Manoussakis [65] asked
whether there is a polynomial-time algorithm to find a longest alternating cycle in 2-
edge-colored complete graphs. Saad [84] first designed a randomized polynomial-time
algorithm for the problem and later Bang-Jensen and Gutin [8] answered the question
of Manoussakis in affirmative.

Another interesting problem to study is whether one can decide the existence of an
even PC cycle in polynomial time.

It was proved in [44] that if an edge-colored graph G has no PC closed walk then G
has a monochromatic vertex. This can be viewed as a characterization of edge-colored
graphs with no PC closed walk and it implies that deciding whether G has a PC closed
walk is polynomial-time solvable. We are unware of a precise characterization of

112 Conclusion and Open Problems

edge-colored graphs with no odd PC walk, since they differ from graphs with no odd
PC cycle, following the discussion in Section 4.2.2. We leave open the problem of
deciding whether an edge-colored graph has an odd PC walk.

References

[1] Abouelaoualim, A., Das, K. C., de la Vega, W. F., Karpinski, M., Manoussakis, Y.,
Martinhon, C., and Saad, R. (2010). Cycles and paths in edge-colored graphs with given
degrees. Journal of Graph Theory, 64(1):63–86.

[2] Abouelaoualim, A., Das, K. C., Faria, L., Manoussakis, Y., Martinhon, C., and Saad, R.
(2008). Paths and trails in edge-colored graphs. Theoretical computer science, 409(3):497–
510.

[3] Ahuja, N., Baltz, A., Doerr, B., Přívětivỳ, A., and Srivastav, A. (2005). On the minimum
load coloring problem. In Approximation and Online Algorithms, pages 15–26. Springer.

[4] Ahuja, S. K. (2010). Algorithms for routing and channel assignment in wireless infras-
tructure networks.

[5] Allouche, J.-P. and Shallit, J. (1992). The ring of k-regular sequences. Theoretical
Computer Science, 98(2):163–197.

[6] Arnborg, S., Corneil, D. G., and Proskurowski, A. (1987). Complexity of finding
embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284.

[7] Bang-Jensen, J. and Gutin, G. (1997). Alternating cycles and paths in edge-coloured
multigraphs: a survey. Discrete Mathematics, 165:39–60.

[8] Bang-Jensen, J. and Gutin, G. (1998). Alternating cycles and trails in 2-edge-coloured
complete multigraphs. Discrete Mathematics, 188(1):61–72.

[9] Bang-Jensen, J. and Gutin, G. Z. (2009). Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2 edition.

[10] Bar-Yehuda, R., Halldórsson, M. M., Naor, J., Shachnai, H., and Shapira, I. (2006).
Scheduling split intervals. SIAM Journal on Computing, 36(1):1–15.

[11] Barbero, F., Gutin, G., Jones, M., and Sheng, B. (2015). Parameterized and Approxi-
mation Algorithms for the Load Coloring Problem. In Husfeldt, T. and Kanj, I., editors,
10th International Symposium on Parameterized and Exact Computation (IPEC 2015),
volume 43 of Leibniz International Proceedings in Informatics (LIPIcs), pages 43–54.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[12] Barbero, F., Gutin, G., Jones, M., Sheng, B., and Yeo, A. (2016). Linear-vertex kernel
for the problem of packing r-stars into a graph without long induced paths. Information
Processing Letters, 116(6):433–436.

114 References

[13] Bejar, R., Krishnamachari, B., Gomes, C., and Selman, B. (2001). Distributed constraint
satisfaction in a wireless sensor tracking system. In Workshop on Distributed Constraint
Reasoning, International Joint Conference on Artificial Intelligence, volume 4.

[14] Beltrami, E. J. and Bodin, L. D. (1974). Networks and vehicle routing for municipal
waste collection. Networks, 4(1):65–94.

[15] Benkouar, A., Manoussakis, Y., Paschos, V. T., and Saad, R. (1991). On the com-
plexity of some hamiltonian and eulerian problems in edge-colored complete graphs. In
International Symposium on Algorithms, pages 190–198. Springer.

[16] Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on computing, 25(6):1305–1317.

[17] Bodlaender, H. L., Fomin, F. V., Lokshtanov, D., Penninkx, E., Saurabh, S., and
Thilikos, D. M. (2009). (meta) kernelization. In Foundations of Computer Science, 2009.
FOCS’09. 50th Annual IEEE Symposium on, pages 629–638. IEEE.

[18] Bollobás, B. (2013). Modern graph theory, volume 184. Springer Science & Business
Media.

[19] Brandstädt, A., Le, V. B., and Spinrad, J. P. (1999). Graph classes: a survey. SIAM.

[20] Brightwell, G. R. and Winkler, P. (2004). Note on counting eulerian circuits. lanl. arXiv.
org.

[21] Brucker, P. (1981). The chinese postman problem for mixed graphs. ingraphtheoretic
concepts in computer science (pp. 354-366).

[22] Chen, J., Liu, Y., Lu, S., O’sullivan, B., and Razgon, I. (2008). A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of the ACM (JACM),
55(5):21.

[23] Christofides, N. (1973). The optimum traversal of a graph. Omega, 1(6):719–732.

[24] Cygan, M., Fomin, F. V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., and Saurabh, S. (2015). Parameterized Algorithms, volume 4. Springer.

[25] Demaine, E. D., Fomin, F. V., Hajiaghayi, M., and Thilikos, D. M. (2005). Subexponen-
tial parameterized algorithms on bounded-genus graphs and h-minor-free graphs. Journal
of the ACM (JACM), 52(6):866–893.

[26] Demaine, E. D. and Hajiaghayi, M. (2008). The bidimensionality theory and its
algorithmic applications. The Computer Journal, 51(3):292–302.

[27] DeMillo, R. A. and Lipton, R. J. (1978). A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195.

[28] Dorn, F., Moser, H., Niedermeier, R., and Weller, M. (2013). Efficient algorithms for
eulerian extension and rural postman. SIAM Journal on Discrete Mathematics, 27(1):75–
94.

References 115

[29] Downey, R. G. and Fellows, M. R. (2013). Fundamentals of parameterized complexity,
volume 4. Springer.

[30] Edmonds, J. and Johnson, E. L. (1973). Matching, euler tours and the chinese postman.
Mathematical programming, 5(1):88–124.

[31] Eiselt, H. A., Gendreau, M., and Laporte, G. (1995). Arc routing problems, part i: The
chinese postman problem. Operations Research, 43(2):231–242.

[32] Fellows, M., Heggernes, P., Rosamond, F., Sloper, C., and Telle, J. A. (2004). Finding
k disjoint triangles in an arbitrary graph. In International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 235–244. Springer.

[33] Fellows, M. R., Guo, J., Moser, H., and Niedermeier, R. (2011). A generalization of
nemhauser and trotters local optimization theorem. Journal of Computer and System
Sciences, 77(6):1141–1158.

[34] Fleischner, H., Sabidussi, G., and Wenger, E. (1992). Transforming eulerian trails.
Discrete mathematics, 109(1-3):103–116.

[35] Flum, J. and Grohe, M. (2006). Parameterized complexity theory, volume xiv of texts
in theoretical computer science. an eatcs series.

[36] Fujita, S. and Magnant, C. (2011). Properly colored paths and cycles. Discrete Applied
Mathematics, 159(14):1391–1397.

[37] Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

[38] Grohe, M. and Grüber, M. (2007). Parameterized approximability of the disjoint cycle
problem. In International Colloquium on Automata, Languages, and Programming, pages
363–374. Springer.

[39] Grossman, J. W. and Häggkvist, R. (1983). Alternating cycles in edge-partitioned
graphs. Journal of Combinatorial Theory, Series B, 34(1):77–81.

[40] GUAN, M. (1962). Graphic programming using odd or even points. Chinese Mathe-
matics, 1:237–277.

[41] Gutin, G. and Jones, M. (2014). Parameterized algorithms for load coloring problem.
Information Processing Letters, 114(8):446–449.

[42] Gutin, G., Jones, M., and Sheng, B. (2014a). Parameterized complexity of the k-
arc chinese postman problem. In European Symposium on Algorithms, pages 530–541.
Springer.

[43] Gutin, G., Jones, M., Sheng, B., and Wahlström, M. (2014b). Parameterized directed
k-chinese postman problem and k arc-disjoint cycles problem on euler digraphs. In
International Workshop on Graph-Theoretic Concepts in Computer Science, pages 250–
262. Springer.

[44] Gutin, G., Jones, M., Sheng, B., Wahlström, M., and Yeo, A. (2017a). Acyclicity in
edge-colored graphs. Discrete Mathematics, 340(2):1–8.

116 References

[45] Gutin, G., Jones, M., Sheng, B., Wahlström, M., and Yeo, A. (2017b). Chinese postman
problem on edge-colored multigraphs. Discrete Applied Mathematics, 217:196–202.

[46] Gutin, G., Jones, M., and Wahlström, M. (2015). Structural parameterizations of the
mixed chinese postman problem. In Algorithms-ESA 2015, pages 668–679. Springer.

[47] Gutin, G. and Kim, E. J. (2009). Properly coloured cycles and paths: results and open
problems. In Graph theory, computational intelligence and thought, pages 200–208.
Springer.

[48] Gutin, G., Muciaccia, G., and Yeo, A. (2013). Parameterized complexity of k-chinese
postman problem. Theoretical Computer Science, 513:124–128.

[49] Gutin, G., Rafiey, A., Szeider, S., and Yeo, A. (2007). The linear arrangement problem
parameterized above guaranteed value. Theory of Computing Systems, 41(3):521–538.

[50] Gutin, G., Sheng, B., and Wahlström, M. (2016). Odd properly colored cycles in
edge-colored graphs. Discrete Mathematics.

[51] Gutin, G., Szeider, S., and Yeo, A. (2008). Fixed-parameter complexity of minimum
profile problems. Algorithmica, 52(2):133–152.

[52] Harary, F., Norman, R., and Cartwright, D. (1965). Structural models: An introduction
to the theory of directed graphs. john willey & sons. Inc., New York. MATH.

[53] Kirkpatrick, D. G. and Hell, P. (1978). On the completeness of a generalized matching
problem. In Proceedings of the tenth annual ACM symposium on Theory of computing,
pages 240–245. ACM.

[54] Kloks, T. (1994). Treewidth: computations and approximations, volume 842. Springer
Science & Business Media.

[55] Kneis, J., Mölle, D., Richter, S., and Rossmanith, P. (2009). A bound on the path-
width of sparse graphs with applications to exact algorithms. SIAM Journal on Discrete
Mathematics, 23(1):407–427.

[56] Korte, B. and Vygen, J. (2005). Combinatorial optimization. theory and algorithms.
2000. Cited on, page 84.

[57] Kotzig, A. (1968). Moves without forbidden transitions in a graph. Matematickỳ
časopis, 18(1):76–80.

[58] Lo, A. (2012). Properly coloured hamiltonian cycles in edge-coloured complete graphs.
Combinatorica, pages 1–22.

[59] Lo, A. (2014a). A dirac type condition for properly coloured paths and cycles. Journal
of Graph Theory, 76(1):60–87.

[60] Lo, A. (2014b). An edge-colored version of dirac’s theorem. SIAM Journal on Discrete
Mathematics, 28(1):18–36.

[61] Loebl, M. and Poljak, S. (1990). Subgraph packing—a survey. In Topics in Combina-
torics and Graph Theory, pages 491–503. Springer.

References 117

[62] Lokshtanov, D., Misra, N., and Saurabh, S. (2012). Kernelization-preprocessing with
a guarantee. In The Multivariate Algorithmic Revolution and Beyond, pages 129–161.
Springer.

[63] Lovász, L. and Plummer, M. D. (2009). Matching theory, volume 367. American
Mathematical Soc.

[64] Lucchesi, C. and Younger, D. (1978). A minimax theorem for directed graphs. J.
London Math. Soc.(2), 17(3):369–374.

[65] Manoussakis, Y. (1990). On the complexity of finding alternating paths in edge coloured
complete graphs. Technical report, University of Paris.

[66] Marx, D., O’sullivan, B., and Razgon, I. (2013). Finding small separators in linear time
via treewidth reduction. ACM Transactions on Algorithms (TALG), 9(4):30.

[67] Menger, K. (1927). Zur allgemeinen kurventheorie. Fundamenta Mathematicae,
10(1):96–115.

[68] Minieka, E. (1979). The chinese postman problem for mixed networks. Management
Science, 25(7):643–648.

[69] Mucha, M. and Sankowski, P. (2004). Maximum matchings via gaussian elimination.
In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium
on, pages 248–255. IEEE.

[70] Niedermeier, R. (2006). Invitation to fixed-parameter algorithms.

[71] Opatrny, J. (1979). Total ordering problem. SIAM Journal on Computing, 8(1):111–114.

[72] Papadimitriou, C. H. (1976). On the complexity of edge traversing. Journal of the ACM
(JACM), 23(3):544–554.

[73] Pearn, W. L. (1994). Solvable cases of the k-person chinese postman problem. Opera-
tions Research Letters, 16(4):241–244.

[74] Peng, Y. (1989). Approximation algorithms for some postman problems over mixed
graphs. Chinese J. Oper. Res, 8(1):76–80.

[75] Pevzner, P. (2000a). Computational molecular biology: an algorithmic approach.
Cambridge, Mass.: MIT Press, 18(3):1.

[76] Pevzner, P. (2000b). Computational molecular biology: an algorithmic approach. MIT
press.

[77] Pevzner, P. A. (1995). Dna physical mapping and alternating eulerian cycles in colored
graphs. Algorithmica, 13(1-2):77–105.

[78] Plaisted, D. A. and Zaks, S. (1980). An np-complete matching problem. Discrete
Applied Mathematics, 2(1):65–72.

118 References

[79] Prieto, E. (2005). The method of extremal structure on the k-maximum cut problem.
In Proceedings of the 2005 Australasian symposium on Theory of computing-Volume 41,
pages 119–126. Australian Computer Society, Inc.

[80] Prieto, E. and Sloper, C. (2006). Looking at the stars. Theoretical Computer Science,
351(3):437–445.

[81] Reed, B., Robertson, N., Seymour, P., and Thomas, R. (1996). Packing directed circuits.
Combinatorica, 16(4):535–554.

[82] Robertson, N. and Seymour, P. D. (1986). Graph minors. ii. algorithmic aspects of
tree-width. Journal of algorithms, 7(3):309–322.

[83] Robertson, N., Seymour, P. D., and Thomas, R. (1999). Permanents, pfaffian orienta-
tions, and even directed circuits. Annals of Mathematics, 150(3):929–975.

[84] Saad, R. (1996). Finding a longest alternating cycle in a 2-edge-coloured complete
graph is in rp. Combinatorics, Probability and Computing, 5(03):297–306.

[85] Sankararaman, S., Efrat, A., Ramasubramanian, S., and Agarwal, P. K. (2014). On
channel-discontinuity-constraint routing in wireless networks. Ad hoc networks, 13:153–
169.

[86] Schwartz, J. T. (1980). Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM (JACM), 27(4):701–717.

[87] Seymour, P. D. (1996). Packing circuits in eulerian digraphs. Combinatorica, 16(2):223–
231.

[88] Shallit, J. (2002). Title of citation. http://oeis.org/A073121.

[89] Slivkins, A. (2010). Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM Journal on Discrete Mathematics, 24(1):146–157.

[90] Sorge, M. (2013). Some algorithmic challenges in arc routing. In Talk at NII Shonan
Seminar, volume 18.

[91] Sorge, M., Van Bevern, R., Niedermeier, R., and Weller, M. (2011). From few compo-
nents to an eulerian graph by adding arcs. In International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 307–318. Springer.

[92] Sorge, M., Van Bevern, R., Niedermeier, R., and Weller, M. (2012). A new view on
rural postman based on eulerian extension and matching. Journal of Discrete Algorithms,
16:12–33.

[93] Szachniuk, M., De Cola, M. C., Felici, G., and Blazewicz, J. (2014). The orderly colored
longest path problem-a survey of applications and new algorithms. RAIRO-Operations
Research, 48(1):25–51.

[94] Szachniuk, M., Popenda, M., Adamiak, R. W., and Blazewicz, J. (2009). An assignment
walk through 3d nmr spectrum. In Computational Intelligence in Bioinformatics and
Computational Biology, 2009. CIBCB’09. IEEE Symposium on, pages 215–219. IEEE.

http://oeis.org/A073121

References 119

[95] Szeider, S. (2003). Finding paths in graphs avoiding forbidden transitions. Discrete
Applied Mathematics, 126(2):261–273.

[96] Tardos, É. (1985). A strongly polynomial minimum cost circulation algorithm. Combi-
natorica, 5(3):247–255.

[97] Thomassen, C. (1997). On the complexity of finding a minimum cycle cover of a graph.
SIAM Journal on Computing, 26(3):675–677.

[98] Tseng, I.-L., Chen, H.-W., and Lee, C.-I. (2010). Obstacle-aware longest-path routing
with parallel milp solvers. In World Congress on Engineering and Computer Science
(WCECS), volume 2. Citeseer.

[99] Tutte, W. and Smith, C. (1941). On unicursal paths in a network of degree 4. The
American Mathematical Monthly, 48(4):233–237.

[100] Tutte, W. T. (1947). The factorization of linear graphs. Journal of the London
Mathematical Society, 1(2):107–111.

[101] van Aardenne-Ehrenfest, T. and de Bruijn, N. G. (2009). Circuits and trees in oriented
linear graphs. In Classic papers in combinatorics, pages 149–163. Springer.

[102] van Bevern, R., Niedermeier, R., Sorge, M., and Weller, M. (2014). Complexity of arc
routing problems. Arc Routing: Problems, Methods, and Applications, 20:19.

[103] Vygen, J. (1995). Np-completeness of some edge-disjoint paths problems. Discrete
Applied Mathematics, 61(1):83–90.

[104] Wang, J., Ning, D., Feng, Q., and Chen, J. (2008). An improved parameterized
algorithm for a generalized matching problem. In International Conference on Theory
and Applications of Models of Computation, pages 212–222. Springer.

[105] Williams, V. V. (2014). Multiplying matrices in o (n2. 373) time. preprint.

[106] Win, Z. (1989). On the windy postman problem on eulerian graphs. Mathematical
Programming, 44(1):97–112.

[107] Xiao, M. (2017). On a generalization of nemhauser and trotter’s local optimization
theorem. Journal of Computer and System Sciences, 84:97–106.

[108] Yaxiong, L. and Yongchang, Z. (1988). A new algorithm for the directed chinese
postman problem. Computers & operations research, 15(6):577–584.

[109] Yeo, A. (1997). A note on alternating cycles in edge-coloured graphs. Journal of
Combinatorial Theory, Series B, 69(2):222–225.

[110] Zaragoza Martinez, F. J. (2003). Postman problems on mixed graphs.

[111] Zhang, L. (1992). Polynomial algorithms for the k-chinese postman problem. In Pro-
ceedings of the IFIP 12th World Computer Congress on Algorithms, Software, Architecture-
Information Processing’92, Volume 1-Volume I, pages 430–435. North-Holland Publishing
Co.

[112] Zippel, R. (1979). Probabilistic algorithms for sparse polynomials. Springer.

	Table of contents
	1 Introduction
	1.1 Classical Complexity Theory
	1.2 Introduction to Parameterized Tractability
	1.2.1 Fixed-Parameter Intractability

	1.3 Tools in Parameterized Tractability
	1.3.1 Kernelization
	1.3.2 Treewidth and Dynamic Programming

	1.4 Terminology and Notation
	1.4.1 Graphs
	1.4.2 Directed Graphs
	1.4.3 Edge Colored Graphs

	1.5 Research Background
	1.6 Main Results and Structure of Thesis

	2 Chinese Postman Problem
	2.1 k-DCPP
	2.1.1 Structural Results and Fixed-Parameter Algorithms
	2.1.2 Proof of Theorem 2.1.3
	2.1.3 Proofs of Theorems 2.1.1 and 2.1.2
	2.1.4 k-DCPP in Planar Graphs

	2.2 Mixed k-arc CPP
	2.2.1 Further Terminology and Notation
	2.2.2 Reduction to Balanced CPP
	2.2.3 Expressing Connectivity: t-roads and t-cuts
	2.2.4 Tree Decomposition
	2.2.5 Dynamic Programming

	2.3 Chinese Postman Problem on Edge Colored Graphs
	2.3.1 Preliminaries
	2.3.2 Main Result

	3 Kernelization results on undirected graphs
	3.1 Generalized Load Coloring Problem
	3.1.1 Bounding Number of Vertices in Kernel
	3.1.2 Bounding Number of Edges in Kernel
	3.1.3 Approximation Algorithm
	3.1.4 Number of Edges in Kernel for c = 2

	3.2 Linear Kernel for Star Packing on Graphs with No Long Induced Paths
	3.2.1 Proof of Theorem 3.2.1
	3.2.2 Proof of Theorem 3.2.2
	3.2.3 Proof of Theorem 3.2.3

	4 Cycles and Acyclicity in edge colored graphs
	4.1 Acyclicity in Edge-Colored Graphs
	4.1.1 Types of PC Acyclicity Edge-Colored Graphs
	4.1.2 PC Paths and Separators

	4.2 Odd PC Cycle Detection
	4.2.1 Graph-Theoretical Approaches
	4.2.2 Algebraic Approach

	5 Conclusion and Open Problems
	References

