
Tightly Secure Ring-LWE Based Key
Encapsulation with Short Ciphertexts

Martin R. Albrecht1, Emmanuela Orsini2, Kenneth G. Paterson1, Guy Peer3,
and Nigel P. Smart2

1 Royal Holloway, University of London
2 University of Bristol

3 Dyadic Security

Abstract. We provide a tight security proof for an IND-CCA Ring-
LWE based Key Encapsulation Mechanism that is derived from a generic
construction of Dent (IMA Cryptography and Coding, 2003). Such a
tight reduction is not known for the generic construction. The resulting
scheme has shorter ciphertexts than can be achieved with other generic
constructions of Dent or by using the well-known Fujisaki-Okamoto con-
structions (PKC 1999, Crypto 1999). Our tight security proof is obtained
by reducing to the security of the underlying Ring-LWE problem, avoid-
ing an intermediate reduction to a CPA-secure encryption scheme. The
proof technique maybe of interest for other schemes based on LWE and
Ring-LWE.

1 Introduction

The possible advent of a quantum computer would immediately render insecure
the vast majority of currently deployed public key cryptography. Hence, over
the last few years, there has been considerably effort in trying to establish new
public key encryption and signature schemes which are presumably resistant to
the threat of quantum computers. Indeed, the US standards body NIST last
year launched a Post Quantum Crypto (PQC) Project and published a call for
submissions of quantum-resistant public-key cryptographic algorithms [NIS17].

Among the leading candidates for post-quantum public key encryption (PKE)
schemes are those based on the Learning with Errors (LWE) problem and its
ring equivalent (Ring-LWE). Starting with the seminal work of Regev [Reg05],
there has been considerable work on various aspects of designing public key en-
cryption schemes based on LWE and Ring-LWE [LPR13, CHK+17], research
into implementation aspects [LSR+15, RRVV15, RVM+14, CMV+15, DB16],
research into attacks [LP11, BG14, KF15, APS15, KMW16, Alb17], and var-
ious applications to advanced cryptographic constructions such as Somewhat
Homomorphic Encryption [BV11b, BV11a, GSW13].

Much existing work has, however, concentrated on producing encryption
schemes meeting only a basic level of security, namely IND-CPA security. The
development of schemes achieving the much stronger IND-CCA security notion
has received less attention. Of course, given an IND-CPA scheme, we can apply
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a standard off-the-shelf transform to obtain an IND-CCA scheme. For exam-
ple, the Fujisaki-Okamoto transform in [FO99a] constructs an IND-CCA secure
public-key encryption scheme (PKE) from an IND-CPA (or even one-way se-
cure) secure PKE, if it is also γ-uniform (see Definition 2). This reduction is
tight but comes at the cost of also encrypting, under the IND-CPA PKE, the
concaternation of the message and a random seed of λ bits, where λ is the
security parameter.4

Since public key encryption is not well-suited to the transmission of long mes-
sages, public key encryption is often used to transmit a symmetric key, which
is then used in a one-time-secure Authenticated Encryption (AE) scheme to
encrypt the actual message. This methodology is often called the KEM-DEM
paradigm [CS03]. It only requires the construction of a key encapsulation mech-
anism (KEM) rather than a full PKE scheme, and this is usually somewhat
easier or leads to more efficient solutions than designing or repurposing a PKE
scheme. It turns out that there are general constructions for obtaining IND-CCA
secure KEMs from weaker primitives.

In the context of producing a KEM, the Fujisaki-Okamoto transform can be
applied by setting the “primary message” to be the random KEM key of size
λ bits. Thus one obtains a total message size of 2λ bits to encrypt under the
IND-CPA encryption scheme. However, in LWE schemes the underlying message
size directly impacts on the overall ciphertext size and the additional λ bits of
random seed produce a ciphertext expansion of at least λ bits.

Dent [Den03] provides a veritable smörg̊asbord of techniques for constructing
KEMs from weakly secure PKE schemes, giving five constructions of IND-CCA
secure KEMs in total. His constructions in Tables 1–3 require strong properties
from an underlying IND-CPA secure PKE scheme. The construction in Table 4
of [Den03] requires OW-CPA security for a starting deterministic PKE scheme.
This transformation is attractive, since the reduction given in [Den03, Theo-
rem 8] is tight. On the other hand, ciphertexts are slightly expanded compared
to the starting scheme, since they require the inclusion of an extra hash value
(whose size must be at least twice the security parameter). It is possible to
de-randomise any IND-CPA secure PKE scheme having large message space to
achieve OW-CPA security, e.g. by setting the randomness r used during encryp-
tion as r = H(m) for some random oracle H(·). The proof is a simple exercise.
Thus Dent’s Table 4 construction can be used with an LWE-style PKE scheme
as a starting point, though again with a cost of some ciphertext expansion.

The construction in Table 5 of [Den03] and analysed in Theorems 5 and 9 for
building IND-CCA secure KEMs is of more interest to us. The construction starts
with an OW-CPA secure scheme, but a probabilistic one, and does not introduce
any ciphertext overhead. On the other hand, it has a non-tight reduction: the
security bound degrades by a factor qD + qH + qK where qD is the number
of decryption oracle queries and qK resp. qH is the number of key derivation
resp. hash function queries (both modelled as a random oracle).

4 In a post-quantum scheme the reader should have λ = 256 in mind.



In the spirit of a KEM-DEM construction is a second generic transform of
Fujisaki and Okamoto, given in [FO99b, FO13] (see [Pei14] for an application
in the context of LWE-based public-key encryption). This yields a hybrid en-
cryption scheme, but it is not in the true KEM-DEM paradigm (since the KEM
part depends on the message m). The underlying symmetric cipher need not
be an AE scheme, but can simply be a one-time pad encryption of the message
and the message is used to produce the required randomness for the KEM-like
part. The method of [FO99b, FO13] has two advantages over [FO99a]: firstly a
one-time pad is more space efficient than an AE scheme; secondly the public key
component does not suffer from the ciphertext expansion noted above for LWE
based schemes. However, these benefits come at a cost, because the associated
security reduction is not tight. In particular, the security bound degrades by a
factor of qH , the number of queries made to a hash function H, modelled as
a random oracle. We note that a tight reduction can be achieved [GMMV03],
either by making stronger assumptions about the underlying primitives or when
the underlying primitive permits plaintext checking.

Having a tight security reduction is a very desirable property in practice-
oriented cryptographic primitives. Essentially, the tightness of a reduction de-
termines the strength of the security guarantees provided by the security proof;
in concrete security terms, a tight reduction shows that an algorithm breaking
the security of the scheme can be used to solve an assumed-to-be-hard problem
without any significant increase in the running time or loss in success probabil-
ity. A tight proof thus ensures that breaking the scheme (within the respective
adversarial model) is at least as hard as breaking the alleged hard computational
problem. On the other hand, a non-tight reduction can only provide much weaker
guarantees, giving rise to the argument that the primitive should be instantiated
with larger security parameters in order to account for the non-tightness of the
proof.

This discussion and the preceding analysis of Dent’s constructions raises the
natural question: is it possible to build an IND-CCA secure KEM from simpler
primitives with a tight security reduction, and without introducing any cipher-
text overhead beyond that of the DEM? In this paper, we provide a positive
solution to this question.

To answer the question, we produce a new security analysis for Dent’s second
construction (as shown in [Den03, Table 5]) in Section 3. The analysis applies
to the case where the underlying OW-CPA scheme is instantiated using a spe-
cific construction based on lattices associated to polynomial rings, and which
is secure under a natural variant of the Ring-LWE assumption. We name the
resulting IND-CCA secure KEM as LIMA (for LattIce MAthematics), cf. Sec-
tion 2 for details. In contrast to the generic case handled in [Den03], our security
reduction for the specific scheme is tight. Our proof exploits some weakly homo-
morphic properties enjoyed by the underlying encryption scheme. Because it is
based on applying Dent’s second construction to a simpler scheme, LIMA has no
ciphertext overhead beyond that simpler scheme. Thus, we find that tightness
can be maintained, whilst still using a generic construction which at first sight



appears to be non-tight. Given the increased interest in LWE-based encryption
our proof technique may be of interest in other schemes.

In concurrent and independent work, Hofheinz et al. [HHK17] have shown
that, amongst other things, Dent’s second construction can be proven to achieve
IND-CCA security in a tight manner, for any starting scheme that is IND-CPA
secure (rather than OW-CPA secure as in Dent’s original analysis).

We overview the construction of LIMA here. We start from standard Ring-
LWE encryption going back to [LPR10], based on a polynomial ring of dimension
N , reduced with respect to a modulus q. The encryption consists of an Ring-
LWE sample, consisting of two ring elements c0, c1, and thus has ciphertexts of
bitsize 2 · N · dlog2 qe. For reference, the reader may think of N = 1024 and
dlog2 qe = 17. Assuming one bit can be encoded per polynomial coefficient, this
size can be reduced to N ·dlog2 qe+`·dlog2 qe for `-bit messages by truncating c0.
Thus, to transport a λ-bit key, a minimum of (N +λ) · dlog2 qe bits of ciphertext
need to be sent.5

In Table 1, we compare the tightness and ciphertext expansion of the various
constructions mentioned above, as well as in this work. We let |AE(m)| denote
the ciphertext size of a one-time AE encryption of a message m, which is roughly
|m|+ λ′ where λ′ is the space needed for a post-quantum secure authentication
code. For the [FO99a] scheme we assume that |m| is too large to be encrypted
directly under the transform, and thus the scheme needs to be used in a hybrid
format.

Class Construction Ciphertext Size Tightness

PKE [FO99a] (N + 2 · λ) · `q + |AE(m)| ε+ . . .
PKE [FO99b, FO13] (N + λ) · `q + |m| qH · ε
KEM [Den03, Table 4] (N + λ) · `q + 2λ+ |AE(m)| ε+ . . .
KEM [Den03, Table 5] (N + λ) · `q + |AE(m)| (qD + qH + qK) · ε
KEM This work (non-generic) (N + λ) · `q + |AE(m)| ε+ . . .

Table 1. Ring-LWE ciphertext sizes for various IND-CCA transforms. We write `q for
dlog2 qe.

Note that our security analysis, like all the prior mentioned works, is in
the Random Oracle Model (ROM). To fully assess post-quantum security, one
should instead analyse security in the Quantum ROM (QROM), as introduced
in [BDF+11]. In this model, an adversary can make superposition queries to the
Random Oracle, possibly giving it much greater power, and invalidating certain
classical ROM proof techniques. One way to achieve QROM security for PKE
and KEMs is to add extra hash values to ciphertexts, cf. [TU16] which does this
in the context of the FO transform. This of course increases the ciphertext size

5 More bits can be saved by suppressing the least significant bits of c1 resp., in this
specific case of transmitting a key, by reconciliation [DXL12, Pei14].



and, currently, results in non-tight reductions. It is an important open question
whether one can achieve QROM security for a Dent-like KEM construction with
a tight reduction and without suffering any ciphertext overhead.

Finally, achieving IND-CCA security also requires handling decryption errors
of genuine encryptions. In Ring-LWE systems a validly generated ciphertext may
not decrypt correctly if the initial “error term” used to generate the ciphertext
is so large that it produces a wrap-around with respect to the modulus q. There
are two ways around this issue; either select q so large that the probability of
this occuring is vanishingly small, i.e. 2−λ, or by truncating the distribution
used to produce the error term. We note, though, that these two modifications
are orthogonal to the refined security proof of Dent’s construction given in this
work, since in Dent’s construction the decryption algorithm actually re-encrypts
the ciphertext as part of its operation and so can detect whether such an issue
occurs.

2 Ring-LWE Key Encapsulation

Our basic scheme is defined over a global ring R = Z[X]/(Φm(X)) for some cy-
clotomic polynomial Φm(X), and essentially follows the construction in [LPR13].
We will let Rq denote the reduction of this ring modulo the integer q, i.e.
Rq = Zq[X]/(Φm(X)). We let N = φ(m) denote the degree of this ring. On
the set Zq we define the distribution χσ which selects an integer with proba-
bility approximated by a discrete Gaussian with standard deviation σ centred
on 0. The parameters (N, q, σ) will heavily influence the security of the scheme,
and so are functions of a security parameter λ. In this paper, we assume suitable
choices of the parameters can be selected for given values of λ. As noted in the
introduction, the reader may think of N = 1024 and dlog2 qe = 17, while σ will
be a small constant ≈ 3.2.

The distribution χσ can be extended to all of Rq by generating N values
from χσ independently and then assigning these values to the coefficients of an
element from Rq, in which case we write a← χNσ . If we wish to select an element
in Rq uniformly at random we will write a← Rq. If we want to be precise about
what random coins we use then we write a←r Rq.

To aid bandwidth efficiency we sometimes truncate a ring element to a vector
of integers modulo q of smaller size. Given a ring element a ∈ Rq, representing
the element

a = a0 + a1 ·X + · · ·+ aN−1 ·XN−1

we define, for 1 ≤ T ≤ N ,

Trunc(a, T ) = a0 + a1 ·X + · · ·+ aT−1 ·XT−1.

This is encoded, for transmission and storage, as the vector of T integers

a0‖a1 . . . ‖aT−1.



2.1 IND-CPA Secure PKE

To define our KEM we first define a basic PKE scheme which is only IND-CPA
secure. We give this as a tuple of algorithms (KeyGen,Enc-CPA,Dec-CPA).

KeyGen: Key generation proceeds as follows

1. a← Rq.
2. s← χNσ .
3. e′ ← χNσ .
4. b← a · s+ e′.
5. sk← s.
6. pk← (a, b).
7. Return (pk, sk).

Enc-CPA(m, pk, r): The encryption mechanism takes as input the public key

pk = (a, b), a message m ∈ {0, 1}`, and random coins r. We assume that ` =
|m| ≤ N . We map this bit string (interpreted as a bit-vector) to a ring element
(with binary coefficients) via the function BV-2-RE(m), and perform the inverse
mapping via a function RE-2-BV(µ). The function BV-2-RE takes a bit string of
length ` and maps it to a polynomial whose first ` coefficients are the associated
bits, and all other coefficients are zero. (Here we identify bit values with 0 and
1 mod q.)

1. µ← BV-2-RE(m).
2. v, e, d←r χ

N
σ .

3. x← d+∆q · µ (mod q). (Here, ∆q = bq/2c.)
4. t← b · v + x.
5. c0 ← Trunc(t, `).
6. c1 ← a · v + e.
7. Return c = (c0, c1).

Note that c0 is the ring element b ·v+d+∆q ·m truncated to ` coefficients, thus
the bit-size of a ciphertext is equal to (N + `) · dlog2 qe = (N + |m|) · dlog2 qe.

Dec-CPA(c, sk): On input of a ciphertext c = (c0, c1), and a secret key sk = s
the decryption is performed as follows:

1. Define ` to be the length of c0, i.e. the number of field elements used to
represent c0.

2. v ← s · c1.
3. t← Trunc(v, `).
4. f ← c0 − t.
5. Convert f into centered-representation. That is, let f = (f0, . . . , f`−1) where

each fi ∈ Zq. For each i, if 0 ≤ fi ≤ q−1
2 then leave it unchanged. Else, if

q
2 < fi ≤ q − 1, then set fi ← fi − q (over the integers).



6. µ←
∣∣∣⌊ 2
q f
⌉∣∣∣ (i.e., round component-wise to the nearest integer and take the

absolute value; the result will be a binary vector).
7. m← RE-2-BV(µ).
8. Return m.

We will prove that this PKE scheme is IND-CPA secure under an LWE-style
assumption in Section 3.

2.2 IND-CCA Secure PKE

Before proceeding to define our KEM, we explain how to use the above IND-
CPA-secure PKE scheme to obtain an IND-CCA secure PKE scheme using the
Fujisaki—Okamoto transform of [FO99a]. This is for later comparison with our
proposed IND-CCA secure KEM.

We take the tuple of algorithms (KeyGen,Enc-CPA,Dec-CPA) and produce
a new tuple (KeyGen, Enc-CCA, Dec-CCA). The key generation algorithm stays
the same and we do not repeat it.

The original encryption scheme (KeyGen,Enc-CPA,Dec-CPA) can encrypt N -
bit messages, while the IND-CCA scheme encrypts messages that are N −λ bits
in length. The encryption scheme makes use of a hash function H to produce
the random coins r for the underlying IND-CPA secure scheme; we model H as
a Random Oracle in the security analysis.

Enc-CCA(m, pk):

1. u← {0, 1}λ.
2. µ←m‖u.
3. r ← H(µ).
4. (c0, c1)← Enc-CPA(µ, pk, r).
5. Return c = (c0, c1).

Dec-CCA(c, sk):

1. µ← Dec-CPA(c, sk).
2. m‖u← µ, where u is λ bits long.
3. r ← H(µ).
4. c′ ← Enc-CPA(µ, pk, r).
5. If c 6= c′ then return ⊥.
6. Return m.

Note for this scheme the bit-size of a ciphertext is equal to (N+|m|+λ)·dlog2 qe,
since we require N elements to represent c1, and |m|+ λ elements to represent
c0, as the message for the underlying CPA scheme is equal to the actual message
plus λ bits of randomness. We provide a security theorem establishing the IND-
CCA security of this PKE scheme in Section 3. This is based on the results
of [FO99a].



2.3 LIMA: A CCA-Secure Key Encapsulation Mechanism

One could use the above encryption scheme directly as a KEM by simply using
it to encrypt one-time ` ≤ N − λ bit keys, with a resulting ciphertext size of
(N + ` + λ) · dlog2 qe bits. However, the following scheme (which we call LIMA
and which follows the generic construction methodology of [Den03, Table 5]),
enables us to transmit a key with ` bits of entropy using a ciphertext of bit-
size (N + `) · dlog2 qe, thus reducing by λ · dlog2 qe the number of bits needed
to represent a ciphertext. The method makes use not only of a random oracle
H to produce the randomness needed for the encryption function, but also a
key derivation function K(`′) (also modelled as a random oracle) to produce the
actual encapsulated key (which can be of any length `′). Again the scheme is
presented as a tuple of algorithms LIMA = (KeyGen,Encap-CCA,Decap-CCA) in
which KeyGen is as for the basic encryption scheme above.

Encap-CCA(`, `′, pk): This takes as input a public key pk and two bit lengths

`, `′, and outputs an encapsulation c = (c0, c1) and the key k ∈ {0, 1}`′ it
encapsulates. The bit length ` controls the ciphertext size and the associated
entropy in the output key k.

1. x← {0, 1}`.
2. r ← H(x).
3. (c0, c1)← Enc-CPA(x, pk, r).
4. k← K(`′)(x).
5. Return (c = (c0, c1),k).

Decap-CCA(c, sk): This takes as input a secret key key sk and an encapsulation
c = (c0, c1), and outputs the key k it encapsulates.

1. x← Dec-CPA(c, sk).
2. r ← H(x).
3. c′ ← Enc-CPA(x, pk, r).
4. If c 6= c′ then return ⊥.
5. k← K(`′)(x).
6. Return k.

The IND-CCA security of this KEM is established in the next section, with a
tight reduction to an LWE-style hardness assumption.

3 Security Proofs

In this section we present the hard problem on which the security of our scheme
LIMA rests, survey prior security results on the Fujisaki-Okamoto transform and
Dent’s construction, and finally present our tight proof of security for LIMA.



3.1 Hard Problems

We recall the definition of Ring-LWE problem in normal form [LPR10, MR09,
ACPS09]. In the definition below we directly consider all elements in Rq instead
of the appropriate dual and canonical spaces associated to with it.

Definition 1 (Ring-LWE). Let χσ denote the distribution defined earlier. Con-
sider the following experiment: a challenger picks s ∈ χNσ ⊂ Rq and a bit
β ∈ {0, 1}. The adversary A is given an oracle which on empty input returns a
pair (a, b) ∈ R2

q, where if β = 0 the two elements are chosen uniformly at ran-
dom, and if β = 1 the value a is chosen uniformly at random and b is selected
such that b = a · s + e where e ∈ χNσ ⊂ Rq. At the end of the experiment the
adversary outputs its guess β′ as to the hidden bit β. For an adversary which
makes nQ calls to its oracle and running in time t, we define

AdvLWE(A, nQ, t) = 2 ·
∣∣∣Pr[β = β′]− 1

2

∣∣∣.
We conjecture that AdvLWE(A, nQ, t) is negligible for all adversaries.

Conjecture 1. For suitable choices of σ,N and q (which depend on the security
parameter λ) we conjecture that ε = AdvLWE(A,nQ, t) is a negligible function in
the security parameter λ. In particular, for all adversaries running in time t we
have t/ε2 ≥ 2λ.

We note that in the conjecture above we normalize the running time by success
probability as 1/ε2 — instead of the more customary 1/ε — because we are
considering a decision problem.

3.2 Provable Security of the Basic Encryption Scheme

The IND-CPA security of our basic encryption scheme (KeyGen,Enc-CPA,Dec-CPA)
is established in the following theorem.

Theorem 1. In the random oracle model, if the LWE problem is hard, then
the scheme (KeyGen, Enc-CPA, Dec-CPA) is IND-CPA secure. In particular, if
there is an adversary A against the IND-CPA security of (KeyGen, Enc-CPA,
Dec-CPA) in the random oracle model, then there are adversaries B and D such
that

AdvIND-CPA(A) ≤ 2 · AdvLWE(B, 1, t) + 2 · AdvLWE(D, 2, t).

We provide a proof of this theorem in the full version of this work.

3.3 Provable Security of our IND-CCA Secure PKE scheme

Our construction of an IND-CCA secure encryption scheme uses the Fujisaki-
Okamoto transform [FO99a] applied to our basic scheme. Before we can apply
this transform, we first need to establish its γ-uniformity.



Definition 2 (γ-Uniformity). Consider an IND-CPA encryption scheme given
by the tuple of algorithms (KeyGen, Enc-CPA, Dec-CPA) with Enc-CPA : M×
R −→ C being the encryption function mapping messages and randomness to ci-
phertexts. Such a scheme is said to be γ-uniform if for all public keys pk output
by KeyGen, all m ∈M and all c ∈ C we have γ(pk,m, c) ≤ γ,6 where

γ(pk,m, c) = Pr[r ∈ R : c = Enc-CPA(m, pk, r)].

The lemma below establishes that Ring-LWE-based encryption has low γ-uniformity.

Lemma 1. Let (KeyGen,Enc-CPA,Dec-CPA) with parameters N,χσ, q be the ba-
sic PKE scheme described in Section 2.1 and let σ such that Pr[X = x | X ←r

χσ] ≤ 1/2 for any x, then this scheme is γ-uniform with γ ≤ 2−N .

Proof. For simplicity, we consider the case of encryption without truncation,
where we will prove a stronger bound. Our argument extends easily to the case
of truncated ciphertexts. Recall that encryption can be written as

c = (c0, c1) = (b · v + e, a · v + d+∆q · µ (mod q)).

Here µ is a deterministic encoding of the message m. Recall also that v, e, d←r

χNσ . We see that for fixed m, and fixed c = (c0, c1), if v is also fixed, then d
and e are determined (by solving a simple linear system of equations). Thus
we can write (for a fixed public key) d = f1(v) and e = f2(v) for functions
f1, f2 that depend on m and c. Letting V,E,D denote random variables that
are distributed as χNσ , and letting 1g denote an indicator function for a predicate
g, it follows that

γ(pk,m, c) = Pr[(v, e, d)←r (χNσ )3 : c = Enc-CPA(m, pk, (v, e, d))]

=
∑
v,e,d

1c=Enc-CPA(m,pk,(v,e,d)) · Pr[(V,E,D) = (v, e, d)]

=
∑
v,e,d

1c=Enc-CPA(m,pk,(v,e,d)) · Pr[V = v] · Pr[E = e] · Pr[D = d]

≤ 2−2N
∑
v,e,d

1c=Enc-CPA(m,pk,(v,e,d)) · Pr[V = v]

= 2−2N
∑
v

1c=Enc-CPA(m,pk,(v,f2(v),f1(v))) · Pr[V = v]

≤ 2−2N
∑
v

1 · Pr[V = v]

= 2−2N .

Here, we first used the independence of the random variables V,E,D to simplify.
Then, we used that if X ∼ χNσ , then Pr[X = x] ≤ 2−N for any value x by our
assumption for each coordinate and the independence of the coordinates. After

6 We let γ(·) denote a function and γ denote a constant.



that, we used the fact that if v is fixed, then e and d are determined as functions
of v to simplify the sum to one over a single variable v. Finally, we used the fact
that the sum over a distribution’s probabilities equals 1. ut

Note that in our construction the condition ∀x,Pr[X = x | X ←r χ
N
σ ] ≤ 1/2

is always satisfied by picking σ > 1. Also note that if we truncate c0 to `
components then the above bound becomes 2−(N+`) by considering d truncated
to ` components directly as being sampled from χ`σ.

Applying the main result (Theorem 3) of Fujisaki and Okamoto [FO99a], we
obtain the following:7

Theorem 2. Suppose that (KeyGen,Enc-CPA,Dec-CPA) is (t′, ε′) IND-CPA se-
cure and γ-uniform. For any qH , qD, the scheme (KeyGen, Enc-CCA, Dec-CCA),
derived from (KeyGen, Enc-CPA, Dec-CPA) as in Section 2.2, is (t, ε) IND-CCA
secure for any adversary making at most qH queries to H (modelled as a random
oracle) and at most qD queries to the decryption oracle, where

t = t′ − qH · (TEnc + v ·N),

ε = ε′ · (1− γ)−qD + qH · 2−λ+1,

where TEnc is the running time of the encryption function and v is a constant.

3.4 Provable Security of LIMA

As remarked earlier our KEM construction LIMA is obtained by applying the
construction of Dent [Den03, Table 5]. This builds an IND-CCA secure KEM
from a OW-CPA secure PKE scheme. By Theorem 1, we know that our under-
lying encryption scheme is IND-CPA secure. It also has large message space. It
follows that it is OW-CPA secure. Directly applying the generic result [Den03,
Theorem 5], we would obtain the following security theorem for LIMA.

Theorem 3. Suppose there is an adversary A which breaks the IND-CCA se-
curity of LIMA in the random oracle model, with advantage ε, running in time t
making at most qD decapsulation queries, qH queries to the random oracle im-
plementing the PRG function and qK queries to the random oracle implementing
the KDF. Then there is an adversary B breaking the OW-CPA security of the
underlying encryption scheme running in time essentially t, with advantage ε′

such that
ε ≤ (qD + qH + qK) · ε′ + qD

2`
+ γ · qD

where ` is the size of the message being encrypted in the underlying encryption
scheme, i.e. the size of x in our construction.,

The problem with this result is that it does not give a very tight reduction.
We thus present a new tight proof of our construction, which is not generic,
i.e. we make explicit use of the Ring-LWE based construction of the underlying
encryption scheme.

7 Using k = N and k0 = 256 in Theorem 3 of [FO99a].



Theorem 4. In the random oracle model, if the LWE problem is hard then
LIMA is an IND-CCA secure KEM. In particular if A is an adversary against
the IND-CCA security of LIMA running in time t, then there are adversaries B
and D such that

ε ≤ 2 ·
(
ε′ + ε′′ +

qH + qK
2`

+ γ · qD
)
,

where ε = AdvIND-CCA(A, t), ε′ = AdvLWE(B, 1, t) and ε′′ = AdvLWE(D, 2, t).

Proof. Consider the game G0, defined in Figure 1, defining IND-CCA security
of our KEM construction. As this is run in the Random Oracle model we model
the PRG by a random oracle H, and the KDF by a random oracle K, each of
which are maintained by the challenger as lists (H-List and K-List) of pairs of
input/output values. We define the advantage in the usual way in this game

Game G0: IND-CCA Security of our KEM

1. a← Rq
2. s, e′ ← χNσ
3. b← a · s+ e′.
4. x← {0, 1}`
5. (v, e, d)← H(x).
6. µ← BV-2-RE(x).
7. a′ ← a · v + e.
8. b′ ← b · v + d.
9. t← b′ +∆q · µ.

10. c∗0 ← Trunc(t, `).
11. c∗1 ← a′.
12. β ← {0, 1}.
13. If β = 0 then k← {0, 1}`

′

14. Else k← K(x).
15. β′ ← A((a, b), (c∗0 , c

∗
1),k).

– If A calls decapsulation oracle on a pair c = (c0, c1) 6= (c∗0 , c
∗
1) then

(a) x′ ← Dec-CPA(c, s).
(b) (v′, e′, d′)← H(x′).
(c) µ′ ← BV-2-RE(x′).
(d) a′′ ← a · v′ + e′.
(e) b′′ ← b · v′ + d′.
(f) t′ ← b′′ +∆q · µ′.
(g) c′0 ← Trunc(t, `).
(h) c′1 ← a′′.
(i) If c 6= c′ = (c′0, c

′
1) then return ⊥.

(j) Return k′ ← K(x′).
16. Output 1 if and only if β = β′.

Figure 1. Game G0: IND-CCA Security of our KEM

ε = AdvIND-CCA(A, t) = 2 ·
∣∣∣Pr[β = β′]− 1

2

∣∣∣ = 2 ·
∣∣∣Pr[A wins game G0]− 1

2

∣∣∣.
We now make a game hop as follows. We replace the real decapsulation algo-
rithm used in Game G0 to one which operates as in Figure 2. Note that as



written the oracle takes time O(qH) to execute. However, by also storing the
associated (c′0, c

′
1) in the H-List, we can obtain a logarithmic cost to evaluate

the oracle. The game with this new decapsulation oracle is called G1. Clearly
G0 and G1 are identical except when the adversary submits an encapsulation to
the decapsulation oracle for which it has not queried the random oracle H on
the underlying message x.

Decapsulation oracle in Game G1

1. For all tuples (x′, v′, e′, d′) on the H-List execute
(a) µ′ ← BV-2-RE(x′).
(b) a′′ ← a · v′ + e′.
(c) b′′ ← b · v′ + d′.
(d) t′ ← b′′ +∆q · µ′.
(e) c′0 ← Trunc(t, `).
(f) c′1 ← a′′.
(g) If c = c′ = (c′0, c

′
1) then return k′ ← K(x′).

2. Return ⊥.

Figure 2. Decapsulation oracle in Game G1

Let E denote the event that decapsulation of a ciphertext in Game G0 is correctly
handled, but it is not correctly handled in Game G1. We have

Pr[A wins game G0] = Pr[A wins game G0|E] · Pr[E]

+ Pr[A wins game G0|¬E] · Pr[¬E]

≤ Pr[E] + Pr[A wins game G0|¬E]

≤ γ · qD + Pr[A wins game G1].

Here we apply a union bound across each of the qD decapsulation queries and use
the fact that, for each decapsulation query, the probability of event E is bounded
by γ, relating to the uniformity of the encryption scheme. This is because E
occurs only if the value of x underlying the query c has not been queried to H,
in which case the random value used to encrypt x is still uniformly random from
the adversary’s perspective; hence the probability that x actually encapsulates
to c is bounded by γ.

We now make a game hop to the game in which instead of picking b = a·s+e′

we select b ∈ Rq uniformly at random. We call this game G2 and define it in
Figure 3. If is then clear that if the adversary can distinguish playing G1 from
G2 then it can solve the LWE problem. Thus we have, for some adversary B,

ε′ = AdvLWE(B, 1, t) =
∣∣∣Pr[A wins game G1]− Pr[A wins game G2]

∣∣∣.
At this point in the proof of IND-CPA security for the basic PKE scheme we
made a game hop to a game in which a′ and b′ are chosen uniformly at random,



Game G2

1. a, b← Rq
2. x← {0, 1}`
3. (v, e, d)← H(x).
4. µ← BV-2-RE(x).
5. a′ ← a · v + e.
6. b′ ← b · v + d.
7. t← b′ +∆q · µ.
8. c∗0 ← Trunc(t, `).
9. c∗1 ← a′.

10. β ← {0, 1}.
11. If β = 0 then k← {0, 1}`

′

12. Else k← K(x).
13. β′ ← A((a, b), (c∗0 , c

∗
1),k).

– If A calls it decapsulation oracle on a pair c = (c0, c1) 6= (c∗0 , c
∗
1) then respond using

the method from Game G1 above.
14. Output 1 if and only if β = β′.

Figure 3. Game G2

and then remarked that if the adversary can spot this hop then we can turn the
adversary into an algorithm which attacks the LWE problem with two samples.
The same direct approach cannot be used here, as the input to the random oracle
H depends on the message. Thus an adversary could distinguish which game it
is in, if it was able to recover the message x in some way.

Instead of performing a game hop at this point we construct an adversary
D, given in Figure 4, which uses the adversary A in game G2 to solve the same
LWE problem. The algorithm D is given as input (obtained via two calls to the
LWE oracle) a tuple (a, b, a′, b′), where a, b are chosen uniformly random in Rq,
and is asked to distinguish whether (a′, b′) are also selected uniformly at random
or whether a′ = a · v + e and b′ = b · v + d for some values v, e, d ∈ χσ.

Adversary D breaking LWE

1. x← {0, 1}`
2. µ← BV-2-RE(x).
3. t← b′ +∆q · µ.
4. c∗0 ← Trunc(t, `).
5. c∗1 ← a′.

6. k← {0, 1}`
′

7. β′ ← A((a, b), (c∗0 , c
∗
1),k).

– If A calls it decapsulation oracle on a pair c = (c0, c1) 6= (c∗0 , c
∗
1) then respond using

the method from Game G1 above.
– IfA calls the random oracleH or the random oracleK on the value x then D terminates

and outputs 1, i.e. (a, b, a′, b′) is an LWE pair of samples.
8. If A terminates without making the random oracle calls above then D outputs zero.

Figure 4. Adversary D breaking LWE



First note that the encapsulation which is passed to A by D is not a valid
encapsulation of any key, irrespective of what D’s input is. This is because, even
if D’s input was a pair of LWE samples the randomness used to produce the
samples did not come from applying H to the encoded message x.

Let F denote the event that the adversary A queries the random oracle H
on the value x, and let G denote the event that A queries the random oracle K
on x. If neither F nor G occurs then A has no advantage in winning the Game
G2, so we have

Pr[A wins game G2] (1)

= Pr[A wins game G2|F ∨G] · Pr[F ∨G in game G2]

+ Pr[A wins game G2|¬(F ∨G)] · Pr[¬(F ∨G) in game G2]

≤ Pr[F ∨G in game G2]

+ Pr[A wins game G2|¬F ∧ ¬G in game G2]

= Pr[F ∨G in game G2] +
1

2
. (2)

We examine the behaviour of D when it is given the two different inputs.

– If the input to D is a uniformly random tuple then the target encapsulation
(c∗0, c

∗
1) contains no information about x. Thus the probability that F or G

happens is essentially (qH + qK) · 2−`, where qH is the number of queries to
H made by A and qK is the number of queries made to K. So we have

Pr[D wins its game| Input is random] =

(
1− qH + qK

2`

)
.

– If the input to D is a pair of LWE samples then A is running in a perfect
simulation of the game G2, until (and if) event F or G happens. If F or G
happens then D wins its game, otherwise D loses its game. So we have

Pr[D wins its game| Input is an LWE sample] = Pr[F ∨G in game G2].

Putting this all together we have

Pr[D wins its game]

= Pr[D wins its game| Input is random] · Pr[Input is random]

+ Pr[D wins its game| Input is LWE sample]

· Pr[ Input is LWE sample]

=

(
1− qH + qK

2`

)
· 1

2
+ Pr[F ∨G in game G2] · 1

2

Now, combining this with equation 2 we obtain

Pr[A wins game G2] ≤ Pr[F ∨G in game G2] +
1

2

= 2 · Pr[D wins its game]−
(

1− qH + qK
2`

)
+

1

2



Thus we have a bound on the total advantage of A in game G0 of

ε ≤ 2 ·
∣∣∣Pr[A wins game G0]− 1

2

∣∣∣
≤ 2 ·

∣∣∣γ · qD + Pr[A wins game G1]− 1

2

∣∣∣
= 2 ·

∣∣∣γ · qD + Pr[A wins game G1]

− Pr[A wins game G2] + Pr[A wins game G2]− 1

2

∣∣∣
≤ 2 · γ · qD + 2 · ε′ + 2 ·

∣∣∣Pr[A wins game G2]− 1

2

∣∣∣
≤ 2 · γ · qD + 2 · ε′ + 2 ·

∣∣∣2 · Pr[D wins its game]− 1 +
qH + qK

2`

∣∣∣
≤ 2 · γ · qD + 2 · ε′ + 4 ·

∣∣∣Pr[D wins its game]− 1

2

∣∣∣+ 2 · qH + qK
2`

≤ 2 · γ · qD + 2 · ε′ + 2 · ε′′ + 2 · qH + qK
2`

.

This completes the proof of Theorem 4.
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