
Uniform, Integral and Efficient Proofs for the
Determinant Identities

(Extended Abstract)

Iddo Tzameret
Department of Computer Science

Royal Holloway, University of London
Iddo.Tzameret@rhul.ac.uk

Stephen A. Cook
Department of Computer Science

University of Toronto
sacook@cs.toronto.edu

Abstract—We give a uniform and integral version of the short
propositional proofs for the determinant identities demonstrated
over GF (2) in Hrubeš-Tzameret [9]. Specifically, we show that
the multiplicativity of the determinant function over the integers
is provable in the bounded arithmetic theory VNC2, which
is a first-order theory corresponding to the complexity class
NC2. This also establishes the existence of uniform polynomial-
size and O(log2 n)-depth Circuit-Frege (equivalently, Extended
Frege) proofs over the integers, of the basic determinant identities
(previous proofs hold only over GF (2)).

In doing so, we give uniform NC2-algorithms for homogenizing
algebraic circuits, balancing algebraic circuits (given as input
an upper bound on the syntactic-degree of the circuit), and
converting circuits with divisions into circuits with a single
division gate—all (ΣB

1 -) definable in VNC2. This also implies an
NC2-algorithm for evaluating algebraic circuits of any depth.1

I. INTRODUCTION

This work fills a basic gap in our understanding of weak
formal theories of arithmetic, namely, bounded arithmetic.
The complexity of linear algebraic operations such as ma-
trix inverse and the determinant is well studied [5]. The
importance of linear algebra in bounded arithmetic and proof
complexity has also been identified in many works, and it
has been conjectured for quite a long time (cf. [14], [15],
[4], [6], as well as [2], [1]) that the determinant identities,
and specifically the multiplicativity of the determinant function
DET(A)∙DET(B) = DET(AB), for two matrices A,B, can be
proved in a formal theory that, loosely speaking, reasons with
NC2 concepts. Here, NC2 is the complexity class consisting
of all languages that can be decided by families of O(log2 n)-
depth and polynomial-size circuits, and is apparently the
smallest circuit class in the NC hierarchy that can compute
the determinant.2 This conjecture is aligned with the intuition
that basic properties of many constructions and functions of a
given complexity class can be proved in logical theories using
only concepts from the same class.

1Our NC2 evaluation algorithm is different from the previously known one
by Miller et al. [12]. Our algorithm also requires as input an upper bound on
the syntactic-degree of the circuit, while Miller et al.’s does not.

2Formally, the conjectural smallest circuit class computing integer determi-
nants is the class denoted DET (cf. [6]).

Currently, the weakest theory known to prove the determi-
nant identities is PV (which corresponds to polynomial time
reasoning, by Soltys and Cook [15]). Quite recently, Hrubeš
and Tzameret [9] showed that at least in the propositional case,
the determinant identities expressing the multiplicativity of
the determinant over GF (2) can be proved with polynomial-
size propositional proofs operating with NC2-circuits (and
quasipolynomial size Frege proofs). However, this does not
lend itself immediately to the uniform framework of bounded
arithmetic. For example, a short propositional proof may be
shown to exist, but with no way of determining whether it
could be constructed uniformly and in a restricted compu-
tational model such as uniform-NC2 algorithms—making it
thus impossible to carry out directly in bounded arithmetic.
Further, [9] crucially used in their construction elimination of
division gates from algebraic circuits, which we do not know
how to achieve using uniform weak computational models
like uniform-NC2 (since for standard division elimination one
needs to find field assignments that do not nullify a given
polynomial [16]).

The main goal of this work is to prove the determinant
identities in the theory VNC2 (corresponding to “NC2-
reasoning”; i.e., reasoning with concepts definable in the
complexity class NC2). We will show that similar reasoning
as in [9] can be carried over, with further complications
imposed by uniformity and parallelism, to VNC2. As a result
of working in bounded arithmetic it will also become relatively
simpler to conclude the proofs over the integers (while the
previous propositional proofs considered only GF (2)).

a) Organization: The preliminaries for this work are
quite long. For this reason we begin with a high-level overview
of the results and their proofs in Sec. II (readers who are
unfamiliar with some of the concepts in the overview can
consult the preliminaries section for those). The preliminaries
themselves are given in Sec. III, consisting of basic defini-
tions from bounded arithmetic, the complexity class NC2,
the corresponding theory VNC2 [4], basic definitions of
algebraic circuits, and proof systems operating with algebraic
circuits establishing polynomial identities (PI-proofs [8], [9]).
In Sec. IV we give a much more detailed guide to the proof
of the determinant identities in the theory, while still leaving978-1-5090-3018-7/17/$31.00 c©2017 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/131177024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

out many of the technical details and proofs. In Sec. V we
discuss some of the parallel (uniform-NC2) algorithms we
construct: division-gates normal forms (moving division gates
to the root of circuits) and balancing of algebraic circuits. As
a result of these algorithms we obtain a parallel algorithm for
evaluating algebraic circuits (of any depth). Sec. VI explains
in some detail how we encode certain algebraic circuits in the
theory.

II. OVERVIEW

Our aim is to prove the determinant identities inside VNC2

(for VNC2 and the logical setting see Sec. III). Specifically,
we want to have a ΣB

1 -definable in VNC2 function DET(∙)
whose input is a matrix over the integers, such that VNC2

proves:
DET(A) ∙ DET(B) = DET(AB) (1)

and
DET(C) = c11 ∙ ∙ ∙ cnn, (2)

for any n × n integer matrices A,B, and any C an n × n
triangular integer matrix.

Note that these two identities can be considered as the
defining identities of the determinant polynomial, in the sense
that every polynomial for which these two identities hold is the
determinant polynomial. (One way of seeing this is to observe
that every square matrix is equal to a product of upper and
lower triangular matrices.)

Some clarification on how we represent integers and matri-
ces in the theory is due: integer numbers are presented in
binary as strings, where the least significant bit (lsb) is 0
(resp. 1) when the integer is positive (resp. negative), and
where the rest of the string is the binary representation of
the absolute value of the integer. An n × n matrix over Z is
usually encoded as a two-dimensional string (cf. [6]).

It is not hard to show that we can prove simple facts about
matrices, such as the definability of matrix product AB, the
statement expressing associativity and commutativity of matrix
products A(BC) = (AB)C and A + B = B + A, resp., and
so forth (see, e.g., [15], [4] and Lemma 28 in [9] about these
basic identities that can be proved already in VNC1).

All circuit classes discussed in this work (except when
otherwise stated) are assumed to be uniform circuit classes
(formally, we require uniformity in the sense that the extended
connection language of the circuit family is in FO; see [4] and
Sec. III-B).

Let us now sketch briefly how we define the determinant
function in the theory and how we prove its defining identities
in the theory.

b) Defining the determinant function in the theory: Given
a matrix over the integers of dimension n × n, the ΣB

1 -
definable string function (recall that we encode integers as
strings) in VNC2 for the determinant is defined roughly as
follows: first, construct an O(log2 n)-depth algebraic circuit
computing the determinant of n×n integer matrices, and then
evaluate the circuit under the input assignment.

More specifically, the determinant function in the theory
first constructs a recursive algebraic circuit (or equivalently,
a straight-line program) computing the symbolic n × n de-
terminant with division gates (“symbolic” here means that
the algebraic circuit computes the determinant as the formal
polynomial over n2 distinct variables). This is done using
the standard recursive formula of the block-wise determinant
(using “Schur complement”), simulating in a sense Gaussian
elimination (similar to [9]). Then, eliminate the division gates
in the determinant circuit using, among other conversions,
substitutions of power series in the circuit. Then, homogenize
the circuit getting rid of high degrees, balance the circuit to
achieve the squared logarithmic depth, and finally evaluate the
result under the input integer matrix.

The function that evaluates a balanced algebraic circuit
in itself consists of several steps, as follows: given as an
input a balanced algebraic circuit, the function: (i) converts
it into a layered circuit (namely, a circuit in which each
node connects only to the subsequent layer); (ii) transforms
it into a Boolean circuit computing the same polynomial over
the integers (coded as bit-strings) while taking care that the
negations appear only in the bottom layer; and finally (iii)
evaluates the Boolean circuit using the fact that the NC2-
CIRCUIT EVALUATION PROBLEM is NC2-complete (under
AC0 reductions [4]).

Since we show that the determinant function as defined
above is ΣB

1 -definable in VNC2, by [4] it means that this
function is in uniform-NC2.

c) Proving the determinant equalities in the theory:
Informally, the basic argument formalized in the theory is
that there exists a balanced PI-proof (for Polynomial Identity
proof), in symbols, a Pc(Z)-proof (as in [9]; see Section III-E),
of these identities. Thus, by soundness of balanced Pc(Z)-
proofs, which we show is provable in VNC2, these identities
must be true.

More precisely, we demonstrate a ΣB
1 -definable function in

VNC2 that given an input n in unary, outputs a Pc(Z)-proof of
identities (1) and (2). In this Pc(Z)-proof every proof-line is an
equation between depth-O(log2(n)) algebraic circuits (without
division gates) of a polynomial syntactic-degree. To conclude
the argument, we use the soundness of depth-O(log2(n))
Pc(Z)-proofs: using induction on proof-length we argue that
for every assignment of integers, equations (1) and (2) must
hold.

A. Contributions and Technical Challenges

Showing that the long and nontrivial constructions from [9]
can be carried out in VNC2 and thus proving the determinant
identities, requires quite a lot of work. The main technical
obstacles that we face are parallelism and uniformity as we
explain in what follows.

Parallelism here means that the construction of the original
propositional proofs from [9] must be done by itself in NC2.
The construction in [9] is quite involved, and to make it
parallel we need to devise several NC2-algorithms, all ΣB

1 -
definable in VNC2, as follows.

2

(i) Parallel division normalization: converting algebraic cir-
cuits with division gates into circuits with a single division
gate at the output gate; (ii) Converting algebraic circuits C
into the sum of their homogeneous components, given as
input an upper bound on the syntactic-degree of C; i.e., each
summand C(i) is a homogeneous circuit computing the degree
i homogeneous component of C; (iii) Balancing an algebraic
circuit of size s and depth d into a poly(s, d)-size algebraic
circuit of depth O(log s ∙ log d + log2 d), given as input an
upper bound on the syntactic-degree of C.

By first balancing an input circuit and then evaluating it
(both in NC2) our results give rise to: (iv) an NC2 evaluation
procedure for algebraic circuits of any depth (given as input an
upper bound on their syntactic-degree in unary) that is different
from the previously known algorithm by Miller et al. [12]
(their algorithm does not require the syntactic-degree as input).

The algorithm for (i) above is somewhat nontrivial, while
the algorithm for (ii) follows by observing that the standard
Strassen [16] homogenization procedure is parallel in nature
(assuming one knows the syntactic-degree of the circuit). The
algorithm for (iii) follows by a combination of the original
balancing procedure by Valiant et al. [17] with ideas from
[12]. For (iv) we need again to combine ideas from [12] and
other results and observations.

Proving parallel algorithms for structural results on alge-
braic circuits is however not enough. We moreover need to
show that corresponding constructions also apply on proofs,
in order to conclude that VNC2 proves the existence of a
(uniform NC2) function that constructs the (low depth PI-)
proofs of the determinant identities. This requires more work.

Uniformity here means that we need the whole proof to
be constructible in uniform-NC2. For instance, we need
to eliminate division gates from certain algebraic circuits
uniformly. To eliminate division gates like u/v (for two nodes
u, v), one needs to find an assignment to the variables in which
the polynomial computed at node v is nonzero. In general we
do not know how to do this in the theory. Nevertheless, we
show that for our purposes it is enough to eliminate only those
division gates that occur in some specific circuits. In order
to eliminate division gates we will also need to find ‘inverse
elements’ in the ring of integers, and hence we will show that
for our purpose it is enough to consider only the inverse of 1
in Z.

Apart from uniformity and parallelism, working in bounded
arithmetic allows us to work more easily over the integers,
where previously short NC2-Frege proofs of the determinant
identities were known only over GF (2) [9].

III. PRELIMINARIES

In this section we present some of the necessary log-
ical setting from bounded arithmetic and algebraic circuit
complexity. Specifically, we describe the two-sorted bounded
arithmetic theory VNC2 as developed by Cook and Nguyen
[4] and show how to define the evaluation of arithmetic circuits
over the integers in the theory, and then define algebraic
circuits computing formal polynomials and proof systems for

polynomial identities [8], [9] (cf. [13] for a survey). We start
with an exposition of bounded arithmetic.

Bounded arithmetic is a general name for weak systems
of arithmetic, namely, fragments of Peano Arithmetic. The
bounded arithmetic theories we use are first-order two-sorted
theories, having a first-sort for natural numbers and a second-
sort for finite sets of numbers, representing bit-strings via their
characteristic functions (for the original single-sort treatment
of theories of bounded arithmetic see also [3], [7], [11]). The
theory V0 corresponds to the complexity class uniform AC0,
and VNC2 corresponds to uniform-NC2. The complexity
classes AC0, NC2, and their corresponding function classes
FAC0 and FNC2 are also defined using a two-sorted universe
(specifically, the first-ordered sort [numbers] are given to the
machines in unary representation and the second-sort as binary
strings).

Definition 1 (Language of two-sorted arithmetic L2
A). The

language of two-sorted arithmetic, denoted L2
A, consists of

the following relation, function and constant symbols:

{+, ∙,≤, 0, 1, | |, =1, =2,∈}.

We describe the intended meaning of the symbols by consid-
ering the standard model N2 of two-sorted Peano Arithmetic.
It consists of a first-sort universe U1 = N and a second-sort
universe U2 of all finite subsets of N. The constants 0 and
1 are interpreted in N2 as the appropriate natural numbers
zero and one, respectively. The functions + and ∙ are the
usual addition and multiplication on the universe of natural
numbers, respectively. The relation ≤ is the appropriate “less
or equal than” relation on the first-sort universe. The function
| ∙ | maps a finite set of numbers to its largest element plus one.
The relation =1 is interpreted as equality between numbers,
=2 is interpreted as equality between finite sets of numbers.
The relation n ∈ N holds for a number n and a finite set of
numbers N if and only if n is an element of N .

We denote the first-sort (number) variables by lower-case
letters x, y, z, . . ., and the second-sort (string) variables by
capital letters X,Y, Z, We build formulas in the usual way,
using two sorts of quantifiers: number quantifiers and string
quantifiers. A number quantifier is said to be bounded if it is
of the form ∃x(x ≤ t∧ . . .) or ∀x(x ≤ t → . . .), respectively,
for some number term t that does not contain x. We abbreviate
∃x(x ≤ t∧ . . .) and ∀x(x ≤ t → . . .) by ∃x ≤ t and ∀x ≤ t,
respectively. A string quantifier is said to be bounded if it is
of the form ∃X(|X| ≤ t ∧ . . .) or ∀X(|X| ≤ t → . . .) for
some number term t that does not contain X . We abbreviate
∃X(|X| ≤ t ∧ . . .) and ∀X(|X| ≤ t → . . .) by ∃X ≤ t and
∀X ≤ t, respectively.

A formula is in the class of formulas ΣB
0 or ΠB

0 if it uses
no string quantifiers and all number quantifiers are bounded.
A formula is in ΣB

i+1 or ΠB
i+1 if it is of the form ∃X1 ≤

t1 . . . ∃Xm ≤ tmψ or ∀X1 ≤ t1 . . . ∀Xm ≤ tmψ, where ψ ∈
ΠB

i and ψ ∈ ΣB
i , respectively, and ti does not contain Xi,

for all i = 1, . . . ,m. We write ∀ΣB
0 to denote the universal

closure of ΣB
0 (i.e., the class of ΣB

0 -formulas that possibly

3

have [not necessarily bounded] universal quantifiers on their
front [left]). We usually write T (t) to abbreviate t ∈ T , for a
number term t and a string term T .

As mentioned before, a finite set of natural numbers N
represents a finite string SN = S0

N . . . S
|N |−1
N such that Si

N =
1 if and only if i ∈ N . We will abuse notation and identify
N and SN .

A. The Theory V0

The base theory V0, which corresponds to the com-
putational class AC0, consists of the following axioms:

Basic 1. x + 1 6= 0 Basic 2. x + 1 = y + 1 → x = y

Basic 3. x + 0 = x Basic 4. x + (y + 1) = (x + y) + 1

Basic 5. x ∙ 0 = 0 Basic 6. x ∙ (y + 1) = (x ∙ y) + x

Basic 7. (x ≤ y ∧ y ≤ x) → x = y Basic 8. x ≤ x + y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1

Basic 12. x 6= 0 → ∃y ≤ x(y + 1 = x)

L1. X(y) → y < |X| L2. y + 1 = |X| → X(y)

SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i) ↔ Y (i))) → X = Y

ΣB
0 -COMP. ∃X ≤ y∀z < y (X(z) ↔ ϕ(z)) , for all ϕ ∈ ΣB

0

where X does not occur freely in ϕ .

Here, the axioms Basic 1 through Basic 12 are the usual
axioms used to define Peano Arithmetic without induction
(PA−), which settle the basic properties of addition, multipli-
cation, ordering, and of the constants 0 and 1. The Axiom L1
says that the length of a string coding a finite set is an upper
bound to the size of its elements. L2 says that |X| gives the
largest element of X plus 1. SE is the extensionality axiom for
strings which states that two strings are equal if they code the
same sets. Finally, ΣB

0 -COMP is the comprehension axiom
scheme for ΣB

0 -formulas (i.e., it is an axiom for each such
formula) and implies the existence of all sets which contain
exactly the elements that fulfill any given ΣB

0 property.

Proposition 1 (Corollary V.1.8. [4]). The theory V0 proves
the (number) induction axiom scheme for ΣB

0 -formulas Φ:

(Φ(0) ∧ ∀x (Φ(x) → Φ(x + 1))) → ∀z Φ(z).

In the above induction axiom, x is a number variable and
Φ can have additional free variables of both sorts.

We seek to define the determinant function in (some) theory
via a ΣB

1 -formula, where a function is said to be defined in
a theory if the theory can prove that given an input to the
function there exists a unique output.

B. The Complexity Class NC2

The uniform complexity class NC2 is defined using an
alternating time-space (nondeterministic) Turing machine.

d) Alternating Turing machines: An alternating Turing
machine is a nondeterministic Turing machine in which every
state, except the halting states, is either an existential state
or a universal state. A computation in such a machine can
be viewed as an (unbounded fan-in) tree of configurations as
follows. A configuration is said to be existential (resp. univer-
sal) if its state is existential (resp. universal). In a computation
tree of an alternating Turing machine every existential config-
uration has one or more children, such that each child is a
configuration reachable in one step from the configuration in
the parent node; and every universal configuration has as its set
of children all configurations reachable in one step from the
configuration on the parent in node. We say that a computation
of an alternating Turing machine is accepting when all the
leaves of the computation tree are accepting configurations.
We say that an alternating Turing machine accepts an input
x if there exists an accepting computation tree whose root is
the initial configuration with the input x.

A computation tree is said to have k alternations if the
number of alternations between existential and universal states
in every branch of the tree is at most k. An alternating Turing
machine is said to work in f(n) alternations if for every input
x of length n the number of alternations in every computation
tree of x is at most f(n). A computation tree is said to have
space s if the working space used in every configuration of
the tree is at most s. An alternating Turing machine is said to
work in space g(n) if for every input x of length n the space
of every computation tree of x is at most g(n).

Definition 2 (Uniform NC2). The uniform complexity class
NC2 is defined to be the class of languages that can be
decided by alternating Turing machines with O(log n) space
and O(log2 n) time.

We define the function class FNC2 as the function class
containing all number functions f(~x, ~X) and string functions
F (~x, ~X), where ~x and ~X are number and string variables,
respectively, such that the relation of the function is defined
(resp. bit-defined) in NC2 (a binary relation R is defined
in NC2 if the language containing the set of pairs in R is
decidable in NC2).

e) NC2 Boolean circuit families: Let {Cn}∞n=1 be a
family of Boolean circuits (with fan-in at most two ∨,∧,¬
gates). We say that this family is an NC2 circuit family if
every circuit Cn in the family has depth O(log2 n) and size
nO(n). A circuit taken from a given Boolean NC2 circuit
family is said to be an NC2-circuit. It is known that the
NC2 circuit value problem is complete under AC0-reductions
for the class NC2 (Definition 2). We say that {Cn}∞n=1 is
a uniform NC2-circuit family if its extended connection
language is in FO (we refer the reader to [4, page 455] for
the definitions). This definition coincides with Definition 2.

For the definition of uniform NC1 (and AC1) we refer the
reader to [4].

4

C. The Theory VNC2

Here we define the theory VNC2 as developed in [4].
It is an extension of AC0 over the language L2

A where we
add the axiom stating the existence of a sequence of values
that represent the evaluation of monotone Boolean circuits of
O(log2(n)) depth. It is known (cf. [4]) that the Monotone
Boolean Circuit Value problem for circuits of O(log2(n))-
depth is complete under AC0 reduction for NC2.

The NC2 CIRCUIT VALUE PROBLEM is the problem that
determines the value computed by a Boolean NC2-circuit,
given a 0-1 assignment to its input variables. An input circuit
to the problem is encoded as a layered circuit with d+1 layers,
namely, a circuit in which every node in layer j is connected
only to zero or more nodes in layer j+1. The actual evaluation
of such an (NC2) circuit within the class NC2 is done in
stages, where we start from layer 0 and “compute” (using
alternations and nondeterminism) the values of every node in
every layer. Formally, we define this evaluation process as
follows (see also [4, Chap. IX.5.6]).

The layered monotone Boolean circuit with d + 1 layers is
encoded with a string variable I , with |I| ≤ n, which defines
the (Boolean) input gates to the circuit. Then we have a string
variable G such that G(x, y), for x ∈ [d], holds iff the yth gate
in layer x is ∧, and is ∨ otherwise. Also the wires of C are
encoded by a three-dimensional array, namely a string variable
E such that E(z, x, y) holds iff the output of gate x on layer z
is connected to the input of gate y on layer z +1. To compute
the value of each of the gates in the circuit C on input I ,
simply compute the values of the gates in each layer, starting
from the input layer, in d + 1 stages, using the values of the
previous layer. The formula δLMCV (n, d,E,G, I, Y) below
formalises this evaluation procedure (where LMCV stands for
“layered monotone circuit value”). The two-dimensional array
Y stores the result of computation: for 1 ≤ z ≤ d, row Y [z]

contains the gates on layer z that output 1.

δLMCV (n, d,E,G, I, Y) ≡

∀x < n∀z < d
(
(Y (0, x) ↔ I(x))∧

(
Y (z + 1, x) ↔

(
G(z + 1, x) ∧ ∀u < n,E(z, u, x) →

Y (z, u)
)
∨(¬G(z + 1, x) ∧ ∃u < n,E(z, u, x) ∧ Y (z, u))

))
.
(3)

The following formula states that the circuit with underlying
graph (n, d,E) has fan-in two:

Fanin2(n, d,E) ≡

∀z < d ∀x < n∃u1 < n∃u2 < n∃v < n(E(z, v, x) →

(v = u1 ∨ v = u2)
)
. (4)

Finally, we arrive at the definition of VNC2:

Definition 3 (VNC2). The theory VNC2 has vocabulary L2
A

and is axiomatized by V0 and the axiom:

Fanin2(n, |n|2, E) →

∃Y ≤ 〈|n|2 + 1, n〉δLMCV (n, |n|2, E,G, I, Y). (5)

Theorem 2. ([4, Corollary IX.5.31]) A function is ΣB
1 -

definable in VNC2 iff it is in FNC2.

D. Polynomials and Algebraic Circuits

Let G be a ring. Denote by G[X] the ring of (commutative)
polynomials with coefficients from G and variables X :=
{x1, x2, . . . }. A polynomial is a formal linear combination
of monomials, where a monomial is a product of variables.
Two polynomials are identical if all their monomials have the
same coefficients. The degree of a polynomial is the maximal
total degree of a monomial in it.

Algebraic circuits and formulas over the ring G compute
polynomials in G[X] via addition and multiplication gates,
starting from the input variables and constants from the field.
More precisely, an algebraic circuit C is a finite directed
acyclic graph (DAG) with input nodes (i.e., nodes of in-degree
zero) and a single output node (i.e., a node of out-degree
zero). Input nodes are labeled with either a variable or a field
element in F. All the other nodes have in-degree two (unless
otherwise stated) and are labeled by either an addition gate
+ or a product gate ×. An input node is said to compute the
variable or scalar that labels itself. A + (or ×) gate is said
to compute the addition (product, resp.) of the (commutative)
polynomials computed by its incoming nodes. An algebraic
circuit is called a formula, if the underlying directed acyclic
graph is a tree (that is, every node has at most one outgoing
edge). The size of a circuit C is the number of nodes in it,
denoted |C|, and the depth of a circuit is the length of the
longest directed path in it.

We say that a polynomial is homogeneous whenever every
monomial in it has the same (total) degree.

Definition 4 (Syntactic-degree deg(∙)). Let C be a circuit and
v a node in C. The syntactic-degree deg(v) of v is defined as
follows:

1) If v is a field element or a variable, then deg(v) := 0
and deg(v) := 1, respectively;

2) If v = u + w then deg(v) := max{deg(u), deg(w)};
3) If v = u ∙ w then deg(v) := deg(u) + deg(w).

An algebraic circuit is said to be syntactic-homogeneous if
for every plus gate u + v, deg(u) = deg(v).

For an algebraic circuit F we denote by F̂ the polynomial
computed by F . We say that two algebraic circuits F, F ′ are
similar if F and F ′ are syntactically identical when both are
un-winded into formulas (a circuit is un-winded into a formula
by duplicating every node in the directed acyclic graph that has
a fan-out bigger than one, obtaining a tree instead of a DAG).
The similarity relation can be decided in polynomial time
(cf. [10]). For example, the following two circuits are similar,
since the formula to the left is obtained by “un-winding” the
circuit to the right into a formula (cf. [9]):

1�
�

+
@@x5

��×
A
AAx5 1�

�
+
@@x5

��×

�
�

5

E. Polynomial Identities (PI) Proofs

In this section we give the necessary background on the
PI proof system Pc. This proof was first introduced in [8]
(under the name “arithmetic proofs” and for algebraic formulas
instead of algebraic circuits), and was subsequently studied in
[9].

PI-proofs, as originally introduced in [8], denoted Pc (and
Pc(G) when we wish to be explicit about the ring G), are
sound and complete proof systems for the set of polynomial
identities of G, written as equations between algebraic circuits.
A PI-proof starts from axioms like associativity, commuta-
tivity of addition and product, distributivity of product over
addition, unit element axioms, etc., and derives new equations
between algebraic circuits F = G using rules for adding
and multiplying two previous identities. The axioms of Pc

express reflexivity of equality, commutativity and associativity
of addition and product, distributivity, zero element, unit
element, and true identities in the field.

Algebraic circuits in PI proofs are treated as purely syntactic
objects (similar to the way a propositional formula is a syntac-
tic object in propositional proofs). Thus, simple computations
such as multiplying out brackets, are done explicitly, step by
step.

Definition 5 (PI-proofs; System Pc(G), [8], [9]). The system
Pc(G) proves equations of the form F = G over the ring G,
where F,G are algebraic circuits over G. The inference rules
of Pc are (with F,G,H ranging over all algebraic circuits,
and where an equation below a line can be inferred from the
one above the line):

R1
F = G

G = F
R2

F = G G = H

F = H

R3
F1 = G1 F2 = G2

F1 + F2 = G1 + G2
R4

F1 = G1 F2 = G2

F1 ∙ F2 = G1 ∙ G2
.

The axioms are equations of the following form, with F,G,H
formulas:

A1 F = F
A2 F + G = G + F
A3 F + (G + H) = (F + G) + H
A4 F ∙ G = G ∙ F
A5 F ∙ (G ∙ H) = (F ∙ G) ∙ H
A6 F ∙ (G + H) = F ∙ G + F ∙ H
A7 F + 0 = F
A8 F ∙ 0 = 0
A9 F ∙ 1 = F
A10 a = b + c , a′ = b′ ∙ c′ (if a, b, c, a′, b′, c′ ∈ G,

are such that the equations hold in G);
A11 F = F ′ (when F, F ′ are similar circuits).

A Pc proof is a sequence of equations, called proof-lines,
F1 = G1, F2 = G2, . . . , Fk = Gk, with Fi, Gi circuits, such
that every equation is either an axiom or was obtained from
previous equations by one of the inference rules. The size of
a proof is the total size of all circuits appearing in the proof.

The number of steps in a proof is the number of proof-lines
in it.

A PI-proof can be easily verified for correctness in deter-
ministic polynomial-time (assuming the field (or ring) has
efficient representation; e.g., the field of rational numbers
or the the ring Z), simply by syntactically checking that
each proof line is derived from previous lines by one of the
inference rules.

F. Circuits and Proofs with Division

We denote by G(X) the field of formal rational functions in
the variables X, where a formal rational fraction is a fraction
of two formal polynomials with coefficients from G. In this
work we will consider G to be the ring of integers Z. We
will not be interested in ‘inverse elements’ in Z (excluding
the element 1), nor in the completeness or soundness of proof
systems for rational functions (like P−1

c (Z) described below),
because the theory will only prove syntactical properties of
these proof systems (hence, no actual ‘division’ is performed
over the integers.

It is possible to extend the notion of a circuit so that it
computes rational functions in G(X) ([9]). This is done in the
following way: a circuit with division F is an algebraic circuit
which may contain an additional type of gate with fan-in 1,
called an inverse or a division gate, denoted (∙)−1. A division
gate v−1 (i.e., a division gate whose incoming circuit is v)
computes the rational function 1/v̂ ∈ G(X), assuming v does
not compute the zero polynomial. If the circuit with division
F contains some division gate v−1 such that v computes the
zero polynomial, then we say that the circuit F is not well-
defined, and otherwise is well-defined. Note, for instance, that
the circuit (x2+x)−1 over GF (2) is well-defined, since x2+x
is not the zero rational function (although it vanishes as a
function over GF (2)).

We define the system P−1
c (G), operating with equations

F = G where F and G are circuits with division [9], as
follows: first, we extend the axioms of Pc(G) to apply to well-
defined circuits with division. Second, we add the following
new axiom:

D F ∙ F−1 = 1 , provided that F−1 is well-defined.

IV. CARRYING THE PROOF IN THE THEORY

Here we describe in details how to prove the determinant
identities in the theory, as highlighted before in Section II. We
also explain where our construction in the theory differs from
[9].

We assume all polynomials are over the ring of integers
Z. We reason inside VNC2 about P−1

c (Z)- and Pc(Z)-proofs
(Definition 5 and Sec. III-F). We use the following reflection
principle, stating that if an equation has a proof then the
equation is true:

Theorem 3 (Pc(Z)-reflection principle; In VNC2). Let π be
an O(log2 n)-depth Pc(Z)-proof of the equation F = G. Then
F = G is true in Z (that is, the O(log2 n)-depth algebraic
circuits F and G compute the same function over the integers).

6

Theorem 3 is proved as follows. We define the evalua-
tion function for O(log2 n)-depth algebraic circuits over Z
as the function that receives an integer assignment A and
an O(log2 n)-depth algebraic circuit C. The algorithm then
converts C into a Boolean NC2 circuit, where the inputs
are the bit-strings corresponding to A. And then evaluates
the Boolean circuit using evaluation of NC2 circuits (ΣB

1 -
definable in VNC2), and finally outputs the result.

We also need to show in VNC2 that the rules and axioms
of O(log2 n)-depth Pc(Z) are sound with respect to the above
evaluation function. This is proved by inspection of each of
the axioms and rules.

f) The determinant function DET (in the theory): The
(uniform-NC2) determinant function DET is defined in the
theory via the algorithm below. Each step in the algorithm
corresponds to a (more involved) step in the algorithm that
constructs the final PI-proof of the determinant identities in
the theory. We will defer the more detailed explanation of
each step in the algorithm to the sequel, in which we explain
the corresponding steps of the PI-proof construction.

Algorithm DET (in VNC2)
Input: an n × n integer matrix A.

Output: z ∈ Z, where z is the determinant of A.

1) Write down an unbalanced algebraic circuit Detcirc−1(X)
with division gates that computes the symbolic n ×
n determinant polynomial, over the variables X =
{xij}i,j∈[n]. This circuit captures the standard recursive
block-wise formula for computing the determinant of
matrices, using “Schur complement” (intuitively, it cap-
tures the Gaussian elimination procedure). For details see
Sec. VI-A.

2) Consider the circuit Detcirc−1(In + zX) as computing a
univariate polynomial in the new variable z. Using this
circuit, construct a new circuit DetTaylor(X) computing
the nth term of the Taylor expansion of Detcirc−1(In +
zX) around z = 0.

3) Convert the circuit DetTaylor(X) into a circuit that has
a syntactic-degree n, denoted Det′Taylor(X).

4) Convert Det′Taylor into a circuit with a single division
gate at the top, denoted Det′′Taylor .

5) Eliminate the division gate u−1 from Det′′Taylor by sub-
stituting u with a truncated power series of u−1 around
a point defined by the identity matrix. Denote the new
circuit by Detcirc.

6) Balance Detcirc via the (uniform) balancing algorithm.
Denote by Detbalanced the resulting O(log2 n)-depth and
poly(n)-size circuit.

7) Evaluate the circuit Detbalanced with the input assignment
A, using the evaluation function as defined above.

Since we show that all the constructions above are ΣB
1 -

definable functions in VNC2, the determinant function as

defined above is ΣB
1 -definable in the theory (namely, totally

recursive).

Given the function DET we now sketch the proof in VNC2

of the two equations (1), (2) above.

Existence of proofs with division gates P−1
c (Z). We show

in VNC2 the existence of a function (i.e., a ΣB
1 -definable

function) that given a number n in unary outputs a P−1
c (Z)-

proof π0 of equations (1) and (2) (these are equations be-
tween algebraic circuits over Z). This is a proof in which
circuits have exponential syntactic-degrees (though the theory
cannot express this fact). The circuits in the proof are not
necessarily homogeneous, and have division gates. Note that
Detcirc−1(X) computes the determinant as a rational function
(and not as a polynomial).

The determinant as a polynomial. Let DetTaylor(X) be
the circuit computing the nth term of the Taylor expansion
of Detcirc−1(In + zX) around z = 0. We argue that the
(“inverse”) ring element needed to be used for this Taylor
expansion is the element 1 (and thus it has an inverse in Z).

The circuit DetTaylor(X) thus computes the determinant
function (intuitively, since z multiplies every variable xij),
and by construction it will have no division gates. Hence, it
computes the determinant as a polynomial. We show that
VNC2 proves the existence of a function that given a number
n in unary outputs a P−1

c (Z)-proof of DetTaylor(X) =
Detcirc−1(X). Thus, combined with the previous part, VNC2

proves the existence of a P−1
c (Z)-proof, denoted π1, of the

determinant identities (1), (2), where the determinant DET is
now replaced by DetTaylor in the identities.

Reducing the syntactic-degree of the determinant poly-
nomial. The circuit DetTaylor(X) has exponential syntactic-
degree3. However, for the next step, we need DetTaylor(X)
to have a polynomial syntactic-degree. We show in VNC2,
that there exists a P−1

c (Z)-proof of DetTaylor(X) =
Det′Taylor(X), where Det′Taylor(X) has syntactic-degree n.

Thus, by previous parts, VNC2 proves the existence of a
P−1

c (Z)-proof of the determinant identities (1), (2), where the
determinant DET is now replaced by Det′Taylor which is an
algebraic circuit with no division gates and of syntactic-degree
n. Denote this proof by π2.

Bringing division gates to the top (Shown in details below;
Sec. V-A). We say that a circuit C has a division at the
top whenever C is of the form F ∙ (G)−1 or (G)−1 ∙ F , for
two circuits F,G. If F,G do not have division gates we say
that C has a single division gate at the top. We need our
circuits to have such a structure, because if we have circuits
with nested divisions we cannot replace division gates by an
“approximating” power series in the next step.

We devise an NC2 algorithm that takes an algebraic circuit
with division, of any depth, and outputs an algebraic circuit

3Here, we shall differ from [9], since we do not know how to formulate
an NC2-algorithm for eliminating 0 nodes in general algebraic circuits.

7

computing the same rational function that has a single division
gate at the top of the circuit, i.e., the root (this is a slight abuse
of notation; see Sec. V-A).

This algorithm is not entirely trivial due to the need to
work in NC2. We moreover show that this algorithm is ΣB

1 -
definable in VNC2.

Then, using this algorithm, we show in VNC2 how to
convert the P−1

c (Z)-proof π2 into a proof in which every
circuit has a single division gate at the top. Denote the resulted
proof by π3

Eliminating division gates. We now wish to eliminate the
division gates from the P−1

c (Z)-proofs, to obtain Pc(Z)-proofs
without divisions. Standard division elimination by Strassen
[16] requires finding a (total) assignment to the variables,
such that no division gate in the circuit equals zero under this
assignment. However, we do not know how to uniformly find
such assignments, and so we do not know how to uniformly
eliminate division gates from general algebraic circuits in
VNC2. Our division elimination will work only for those
circuits in π3.

First, we show that the assignment of identity matrices to the
(matrix) variables A = {aij}, B = {bij}, C = {cij} (i, j ∈
[n]), in the proof π3 of equations (1), (2) does not nullify any
division gate in π3 (though this statement is not expressed in
the theory).

Assuming for simplicity that wi (for i ∈ J) are all the
variables in π3 and let b be the assignment of identity matrices
to the variables in π3. Then, substitute in π3 the term (bi −
yi) for each wi (for all i ∈ J) denoting the obtained proof
by π′

3. Then the all zero assignment 0 to the yi variables in
π′

3 does not nullify any division gate in π′
3. Furthermore, we

show that under this assignment every division gate computes
the polynomial 1 (and thus has an inverse in Z). Therefore,
in the theory, we simply construct this (substitution instance)
P−1

c (Z)-proof π′
3 (though, again, we do not express in the

theory the argument just discussed).
Let Invk(H) be the truncated power series of H−1 over

the point determined by the identity matrix (loosely speaking,
serving as the inverse polynomial of H “up to the kth power”).
Specifically, Ĥ ∙ ̂Invk(H) = 1 + [terms of degree > k].4

For every circuit C with a top division gate H−1, VNC2

proves there exists a corresponding division-free circuit C ′,
obtained by replacing the division gate H−1 in C by Invk(H).

Let π4 be the corresponding division-free proof-sequence
obtained from π′

3 by replacing every circuit with the corre-
sponding division-free circuit as above. By itself π4 is not
a legal Pc(Z)-proof, since the axiom of division in P−1

c (Z)
does not translate into an axiom in Pc(Z). In other words,
the axiom of division D, F ∙ F−1 = 1 (provided that F−1

is defined5; see Definition 5), translates into F ∙ Invn(F) =
1+ [terms of degree > n]. We fix this problem in the next step.

4Though, again, VNC2 cannot prove this equality, since general evaluation
of (unrestricted depth) algebraic circuits is not known to be defined in the
theory.

5F−1 is defined whenever the polynomial computed by any division gate
is nonzero.

Eliminating high degrees. Here we eliminate the high
syntactic-degrees (> n) parts in the circuits appearing in π4.
This is done by homogenizing the proof π4. Specifically, we
show in VNC2 the existence of a function that receives an
algebraic circuit G of syntactic-degree k and converts it into a
sum of k+1 syntactic-homogeneous circuits

∑k
i=0 G(i) (com-

puting the same polynomial), where G(i) denotes a syntactic-
homogeneous circuit of syntactic-degree i computing the sum
of all degree i monomials in G.

Moreover, we show that VNC2 can prove the existence of
a function that given a Pc(Z)-proof of a syntactic-degree n
equation F = G, decomposes the proof into n + 1 Pc(Z)-
proofs of F (i) = G(i), for i = 0, . . . , n, each proof having
syntactic-degree at most i. Combining these proofs gives a
low syntactic-degree version of π4.

This also fixes the problem caused by division elimination
described at end of the previous step. We thus obtain a Pc(Z)-
proof, denoted π5, of (the degree n syntactic-homogeneous
parts of) equations (1) and (2).

Balancing algebraic circuits is definable in the theory. This
follows the algorithm discussed in Sec. V-B. Moreover we
show in VNC2 the existence of a function that receives a
Pc(Z)-proof of F = G with syntactic-degree d, and outputs a
Pc(Z)-proof of [F] = [G] in which every circuit is of depth-
O(log s ∙ log d+log2 d) and the size of the proof is poly(s, d).

Applying this function to π5, we obtain a ΣB
1 -definable

function in VNC2, that given n in unary outputs a depth-
O(log2 n) Pc(F)-proof π6 of the determinant identities (1),
(2) (where DET is replaced by the appropriate balanced circuit
computing the determinant, denoted Detbalanced) .

Applying the reflection principle. We now reason in VNC2

as follows: for every n and every pair of matrices A,B
over Z of dimension n × n, by the definition of DET,
DET(AB), DET(A) and DET(B) equals the value of applying
the evaluation function to the circuit Detbalanced with the input
assignment AB,A,B, resp. (where the matrix product AB is
definable in VNC2; cf. [6]).

By the arguments above, there exists a depth-O(log2 n)
Pc(Z)-proof of Detbalanced(XY) = Detbalanced(X) ∙
Detbalanced(Y) for the two symbolic matrices X,Y of di-
mension n × n. But by Theorem 3 this means that for every
input matrices over Z, Detbalanced(AB) = Detbalanced(A) ∙
Detbalanced(B). Therefore, by the above, DET(AB) =
DET(A) ∙ DET(B). Similar reasoning applies to the proof of
determinant identity (2).

V. THE UNIFORM NC2 ALGORITHMS

Here we describe some of the uniform NC2-algorithms we
develop for the construction of the PI-proofs in the theory
and for proving the soundness of PI-proofs in the theory. In
particular, we focus on division normalization of both circuits
and proofs—namely, converting an algebraic circuit (PI-proof,
resp.) with division gates into a circuit with only one division
gate at the top, i.e., at the output gate (PI-proof in which
every circuit has division only at the top, resp.). One reason we

8

focus on this construction here, is that both homogenization of
proofs (and circuits) and balancing of proofs (and circuits) in
the theory follows to a certain extent the division normalization
scheme we describe here. We then describe in general terms
the NC2-algorithms for balancing circuits.

Further NC2-constructions that we skip due to lack of space
are breaking circuits (and proofs) into their homogeneous
components (the standard Strassen’s [16] algorithm lends itself
quite immediately to a parallel execution, but constructing
the homogenized proofs needs some care), and the NC2-
algorithm for the algebraic-NC2 circuit evaluation problem
(over Z).

A. Parallel Division Normalization of Circuits and Proofs

Here we show the parallel algorithm that receives an al-
gebraic circuit with division gates and normalizes it, that is,
converts it into a circuit with a single division gate at the top
(i.e., output gate), and similarly for P−1

c -proofs. For simplicity,
we shall sometimes abuse notation and assume in this section
that the division gates has fan-in two, so that a circuit with a
division gate at the top can be written as F ÷ G, where ÷ is
a division gate.

For every node v in a circuit F with division introduce two
nodes Den(v) and Num(v) that will compute the numerator
and denominator of the rational function computed by v,
respectively, as follows:

1) If v is an input node of F , let Num(v) := v and
Den(v) := 1.

2) If v = u−1, let Num(v) := Den(u) and Den(v) :=
Num(u).

3) If v = u1 ∙ u2, let Num(v) := Num(v1) ∙ Num(v2) and
Den(v) := Den(v1) ∙ Den(v2).

4) If v = u1 + u2, let Num(v) := Num(u1) ∙ Den(u2) +
Num(u2) ∙ Den(u1) and Den(v) := Den(u1) ∙ Den(u2).

Let Num(F) and Den(F) be the circuits with the output
node Num(w) and Den(w), respectively, where w is the output
node of F . We want to show the following:

Theorem 4 (in VNC2). (i) If F is a circuit with division, then
F = Num(F) ∙ Den(F)−1 has a P−1

c (F) proof. (ii) Let F,G
be circuits with division. Assume that F = G has a P−1

c (F)
proof. Then Num(F) ∙ Den(F)−1 = Num(G) ∙ Den(G)−1 has
a P−1

c (F) such that every division gate in every circuit in the
proof occurs only at the top.

We prove only part (i), that exemplifies the main idea. To
prove this we first describe the NC2-algorithm that normalizes
circuits with divisions, as follows (we ignore encoding issues):

NC2-Algorithm for Normalizing Circuits with Divisions

Input: C an algebraic circuit with division gates.
Output: An algebraic circuit computing Ĉ with a single divi-

sion gate at the top.

1) Convert C into a layered algebraic circuit C ′. This can
be done in NC1 (we skip this procedure due to lack of
space).

2) (Sequentially) For every i = dlog(d)e, . . . , 2, 1, where d
is the depth of C (starting with i = dlog(d)e), do:

a) Consider the (layered) circuit as divided into 2i blocks.
(A block thus contains all the subcircuits whose roots
are at the top of the block and leaves are at the bottom
of the block.)
In parallel, for each pair of consecutive blocks, do:

= (At this stage, each block possibly contains division
gates only at its top.) Move all division gates in the
top of the lower block to the top of the upper block.

Step (a) in the algorithm above ends with all division gates
occurring at the top of the upper block of each of the pairs
considered.

Since the above algorithm has O(log d) steps, to conclude
that the above algorithm is in NC2, it suffices to show that
step = can be implemented in NC1:

NC1-algorithm for moving all division gates in the top of
a lower block to the top of an upper block

Input: C a layered algebraic circuit with division gates, parti-
tioned into two halves: an upper block consisting of the
layers in the upper half and a lower block consisting of
the layers in the lower half, where division gates may
occur only in the top layer of each block.

Output: An algebraic circuit with division computing Ĉ with
all division gates at the top of the upper block.

1) Syntactically multiply all nodes in C (in both blocks) by
the product α of all denominators αj occurring in the top
level of the lower block (as βj ÷ αj , for some βj).

2) Cancel accordingly the denominators of all top-layer
nodes in the lower block, so that now all gates in lower
and upper blocks have no denominators, except for the
top layer nodes in the upper block.

3) Add a denominator α (i.e., syntactically divide by the
sub-circuit α) to all the gates in the top layer of the upper
block. It is easy to check that the new circuit we get
computes Ĉ.

Notes on the above algorithm: when adding products like α
we just add edges to a single sub-circuit computing α. When
we add edges in the above algorithm we always preserve the
circuit being layered (so we may need to add sufficiently many
dummy edges to preserve the “layerness” of the circuit).

We now turn to the proof of Theorem 4 (i).

Proof sketch of Theorem 4 (i). In the “NC2-Algorithm for
Normalizing Circuits with Divisions” we had dlog de steps,
for d the depth of the input circuit. Similarly, we describe
an NC2-algorithm for constructing the P−1

c (Z)-proof of F =
Num(F) ÷ Den(F).

In each step i = dlog de, . . . , 2, 1, where d is the depth of F ,
we construct (in parallel) a P−1

c (Z)-proof for the correctness
of step =, for every pair of consecutive blocks in F , using:

Claim 5 (in VNC2; in fact in VNC1). Let C,C ′ be two
layered circuits with division gates, of depth k each. Assume

9

that C ′ is the result of applying step = in the division
normalization above on circuit C. Then there is a P−1

c (Z)-
proof of C = C ′.

We omit the proof of this claim.

B. Balancing Algebraic Circuits (and Proofs) in Uniform-
NC2 and in VNC2

Here we provide some overview of the NC2-algorithm for
constructing the balanced circuit, given as an input an upper
bound (in unary) on the syntactic-degree of the input circuit.
Due to lack of space we focus only on some of the differences
between our algorithm and the standard Valiant et al. [17]
algorithm.

NC2-algorithm for balancing circuits (overview)

Input: C, d where C is a syntactic-homogeneous circuit and
d is the syntactic-degree of C in unary (we can as-
sume that C is a syntactic-homogeneous circuit because
we can transform in parallel a circuit into a syntactic-
homogeneous circuit; we can also assume that we get d
as an input because of this homogenization algorithm).

Output: A balanced circuit [C] computing the polynomial
Ĉ. That is, if C has size s, then the depth of [C] is
O(log s log d + log2 d) and the size of [C] is poly(s, d).

Algorithm: The algorithm proceeds via the general scheme
of [17] in dlog de stages, combining it with a case of the
Miller et al. [12] algorithm (the Miller et al. algorithm is an
NC2-algorithm for evaluating an algebraic circuit under an
assignment).

We list some of the specific features of our NC2 balancing
algorithm:

1) The notion of degree in the original construction [17]
is replaced in our algorithm with that of a syntactic-degree.
Because neither syntactic-degrees (nor degrees) can be com-
puted (apparently) in NC2, we need to supply it as an input to
the algorithm; the syntactic-degree d is used in the algorithm,
because we balance the circuit in dlog de stages.

2) Another difference between our construction and [17]
is implied by the need to evaluate unbalanced constant alge-
braic circuits (i.e., circuits with no variables) in the original
construction. Specifically, in the base case of our construction,
when we are given a circuit computing a linear form we need
to compute the coefficients of the linear form. However, we
cannot directly compute these coefficients since the (variable-
free) circuit computing the linear form may be a circuit beyond
NC2 (e.g., a circuit of linear depth) and so it may not be
possible to directly evaluate it within NC2.

One way of solving this problem is to replace each field
element c ∈ Z that occurs in the circuit with a new variable xc,
and by that making sure that all sub-circuits computing linear
forms will contain only variables; and hence, there will remain
no unbalanced variable-free sub-circuits in the circuit (when
we balance all syntactic-degree 1 sub-circuits in the circuit).
For this replacement to be useful we need to make sure that the

syntactic-degree of the circuits obtained after the replacement
of ring elements by new variables is still polynomial in n.

When we compute circuits of syntactic-degree 1 in the base
case of the construction, there will be no scalars in the circuits
(since we replaced scalars by variables in advance), namely,
circuits of syntactic-degree 1 will contain only plus gates.
We thus need to evaluate arithmetic circuits with only plus
gates (note that the circuits are not necessarily balanced). As
mentioned above, to do this in NC2 we follow a similar
approach to that in [12].

VI. ENCODING CIRCUITS AND PROOFS: THE

DETERMINANT CIRCUIT IN THE THEORY

Here we give some details on how to encode and construct
the required circuits (and proofs) in VNC2. We focus on the
already non-trivial construction of the determinant circuit with
division Detcirc−1 in the theory; encoding and constructing
proofs in the theory follow similar lines.

A. Circuit with Division for the Determinant

First we need to define the determinant circuit with division
denoted Detcirc−1 . Similar to [9], this is done using block-
wise inversion: by considering the symbolic matrix X =
{xij}i,j∈[n], consisting of n2 distinct variables, defining the
matrix inverse X−1 of X and then, by partitioning X into
blocks, we formulate a recursive definition of the determinant,
using matrix inverse. This definition can be viewed as a
formulation of Gaussian elimination.

Specifically, we define an n×n matrix X−1 whose entries
are circuits with divisions, computing the inverse of X , as
follows:

1) If n = 1, let X−1 := (x−1
11).

2) If n > 1, write X as follows:

X =

(
X1 vt

1

v2 xnn

)

, (6)

where X1 = {xij}i,j∈[n−1], v1 = (x1n, . . . , x(n−1)n)
and v2 = (xn1, . . . , xn(n−1)). Assuming we have con-
structed X−1

1 , let
δ(X) := xnn − v2X

−1
1 vt

1 . (7)

δ(X) computes a single non-zero rational function and
so δ(X)−1 is well-defined. Finally, let

X−1 :=
(

X−1
1

(
In−1 + δ(X)−1vt

1v2X
−1
1

)
−δ(X)−1X−1

1 vt
1

−δ(X)−1v2X
−1
1 δ(X)−1

)

(8)
The circuit Detcirc−1(X) is defined as follows (using

“Schur complement”):

1) If n = 1, let Detcirc−1(X) := x11.
2) If n > 1, partition X as in (6) and let δ(X) be as in (7).

Let Detcirc−1(X) :=

Detcirc−1(X1)∙δ(X) = Detcirc−1(X1)∙(xnn−v2X
−1
1 vt

1) .

10

The definition in (8) should be understood as a circuit
with n2 outputs which takes X−1

1 , v1, v2, xnn as inputs and
moreover, such that the inputs from X−1

1 occur exactly once.
Altogether, we obtain a polynomial-size circuit for X−1 and
the determinant function of X . The circuits obtained are un-
balanced, have division gates and are of exponential syntactic-
degree (see Definition 4). The fact that Detcirc−1(X) indeed
computes the determinant (as a rational function) stems, e.g.,
from the fact (shown in this work, or in [9]) that P−1

c (Z)
can prove the two identities that characterize the determinant.
That X−1 computes the matrix inverse is also proved in the
theory.

B. Constructing the Circuit Detcirc−1 in V0

Here we show a ΣB
0 -definable string function in VNC2

(in fact in V0), denoted writeX−1 , that outputs the multi-
output circuit X−1 ((8) above) given as input a unary integer
n (among other parameters).

Unlike (8), the function writeX−1 is not recursive, as the
circuit is of depth Ω(n) and we do not have in V0, nor in
VNC2, the induction axiom for ΣB

1 -formulas. Fortunately,
we need the theory only to construct the circuit syntactically.

The circuit for X−1 is encoded as follows. It is a multi-
output circuit. The string V encodes the nodes in the circuit.
For every layer d = 1, . . . , n in the inductive definition of
X−1, we have a set of nodes (d, (i, j), `) ∈ V , where (i, j),
for i, j ∈ [d], is an entry in a d × d matrix, meaning that the
node (d, (i, j), `) is part of a sub-circuit of X−1 that computes
the (i, j)th entry in the dth inductive-step; ` is the running
index of the nodes in that part, where ` = 0 iff the node is
what we consider an output node of the given d and the given
entry (i, j). Nodes of the form (0, (i, j), 0) stand for the input
variable xij of the matrix X; therefore, these are the input
variables of the circuit X−1.

For example, (1, (1, 1), 0) is the node computing x−1
11 ,

because the first coordinate d = 1 refers to the “recursive”
level 1 in (8) above, the second is (1, 1), meaning the (1, 1)-
entry from the circuit computing the inverse of x11, and the
last coordinate is 0, meaning this is the output node of the
inverse of x11.

Additionally, we have a string G encoding the gate-type of
each node in V , excluding the input nodes (0, (i, j), 0). That
is, (d, (i, j), `, g) ∈ G means that node (d, (i, j), `) ∈ V is of
type + if g = 0, × if g = 1 and division ÷ if g = 2, and
an input variable xij if g = (i, j), where (∙, ∙) is the pairing
function (note that the pairing function is monotone increasing
and that (1, 1) > 2, so we can distinguish between the case
of an arithmetic gate and an input gate). Finally, the string
E encodes the edges between nodes in the circuit. That is,
(d, (i, j), `, d′, (i′, j′), `′) means that there is a directed edge
from node (d, (i, j), `) to node (d′, (i′, j′), `′).

Using the above encoding scheme it is possible now to bit-
define the string function writeX−1 as a ΣB

0 -definable function
in VNC2. We only need to construct, given some fixed
d, (i, j), the sub-circuits whose nodes will be (d, (i, j), `), for

some `, according to the definition in (8). We will use the
following notation and functions in the theory.

Notations and basic functions for constructing sub-circuits
Let F be some “simple” arithmetic function, such as inner
product of two n-element vectors over the integers, or one of
the functions in (8) used to define a minor or the matrix inverse
X−1, such as δ(X)−1. We will denote by writeF (n, d, `, I, O)
the following string function: the inputs are I , serving as the
input nodes to the circuit and O the output nodes of the circuit
for F , d is the index “level” (used to record the recursive
level of recursive circuit constructions as in (8)) and ` is the
“running” index of a node in a given level d, and n stands
for the “dimension” of the operation defined by F (e.g., inner
product of vectors of size n, or matrix product of two n × n
matrices has dimension n). The output is a string, but we abuse
notation and assume it is three separate strings encoding the
(output) circuit, for simplicity, as follows: E, V,G as described
above.

More formally, we define writeF (n, d, `, I, O) = (E, V,G)
as follows (similar to the above notation). V is a string
describing the vertices in an algebraic circuit. E is a string
describing the edges between vertices in V . G is a string
describing the gate-types of vertices in V . Every vertex is of
the form (d, (i, j), `) with d the recursive level in the definition
of X−1 in (8), (i, j) means that the node is in the (i, j)’s part
of the definition of X−1, and ` is the running index of nodes
in the same level d and same part (i, j), where ` = 0 iff the
node is an output node of that level d (it is not necessarily
the output node of the whole circuit). Assume that F (I) is
some algebraic function with m0 integer inputs I and m1

integer outputs O. Then, we supply writeF (n, d, `, I, O) with
the nodes indices (as encoded in V) to be used as input nodes
and output nodes for the (sub-)circuit computing F .

Example: Consider F1 := X−1
1 (In−1 + δ(X)−1vt

1v2X
−1
1)

from (8). This is a recursive function in the sense that it uses
the output X−1

1 which is computed in the previous recursive
level d − 1 as input, together with the “new” nodes in row
d and column d in X . Therefore, the inputs of F1 are the
following nodes: (d−1)2 input nodes for X−1

1 , 2(d−1) input
nodes for vt

1 and v2, and finally one input node xdd (needed
for computing δ(X)−1), which sums up to d2 input nodes.
The number of output nodes for F1 is (d − 1)2, as it defines
a (d − 1) × (d − 1) minor of X−1. Thus, in our encoding
scheme, the input nodes (viewed as a d × d matrix) are:

(d − 1, (1, 1), 0) . . . (d − 1, (1, d − 1), 0) (0, (1, d), 0)
...

. . .
...

(d − 1, (d − 1, 1), 0) . . . (d − 1, (d − 1, d − 1), 0) (0, (d − 1, d), 0)
(0, (d, 1), 0) . . . (0, (d, d − 1), 0) (0, (d, d), 0)

and the output nodes (viewed as a (d − 1) × (d − 1) matrix)
are:

(d, (1, 1), 0) . . . (d, (1, d − 1), 0)
...

. . .
...

(d, (d − 1, 1), 0) . . . (d, (d − 1, d − 1), 0)

 .

Let F1, F3, F4 be the other three functions used in the

11

definition of X−1 (8) (for the other three minors). We can
define similarly writeFi functions for these Fi’s.

To actually show that writeX−1 is a ΣB
0 -definable function

in V0 we need to show, e.g., how to bit-define writev∙u using
a ΣB

0 -formula, given two n-element vectors of integers v, u
representing nodes in the circuit. This is quite easy to show:
simply output a binary tree with the correct plus and products
nodes, and plug the input nodes v, u to the leaves accordingly.

Similarly, we have ΣB
0 -formulas for constructing other

formulas like writevA and writeAvt , given the input nodes for
an n × n matrix A, and the input nodes for an n-elements
vector v. Similarly, given a node z it is trivial to output a
circuit computing z−1 or −z, and given two matrices A,B
(i.e., 2n2 nodes) it is trivial to ΣB

0 -define writeA+B in V0.

Now that we set up the notation and the functions for
constructing sub-circuits, we can ΣB

0 -define writeX−1 in V0

as follows. First, for i = 1, . . . , 4, define InpFi
(d) and

OutFi
(d) as the string functions that output the sequence of

input- (output-, respectively) nodes of the dth recursive level
of X−1 for each of the Fi’s, as shown for F1 in the example
above. They are all definable string-functions in VNC2. We
can now bit-define writeX−1 as follows:

writeX−1(n, `, I, O)(i) ≡

∃2 ≤ d ≤ n
(
writelevel(X−1)

(
n, d, 1, InpFi

(d), OutFi(d)
)
(i)
)
∧

writex−1
11

(n, 1, 0, ((0, (1, 1), 0)), ((1, (1, 1), 0))) (i)
)
,

where writelevel(X−1)(n, d, `, I, O) outputs (E, V,G) encoding
a (sub-)circuit that is the dth inductive level of X−1, and
writex−1

11

(
n, 1, 0, ((0, (1, 1), 0)), ((1, (1, 1), 0))

)
is the string

function that outputs the encoding of the circuit “x−1
11 ”.

VII. CONCLUSIONS

We establish a uniform proof, in what may be considered the
weakest logical theory possible, of the basic determinant iden-
tities. This answers an open question of, e.g., [4]. We achieve
this by formalizing in the theory VNC2 the construction of
the propositional proofs from Hrubeš-Tzameret [9], and using
a reflection principle for PI-proofs in the theory, devising along
the way parallel (NC2) algorithms for basic algebraic-circuit
constructions, provably total in VNC2. Due to the central role
of linear algebra and the determinant function, these results
are expected to be relevant to further basic work in bounded
arithmetic.

As for the VNC2-provability of the Cayley-Hamilton theo-
rem and the co-factor expansion of the determinant, we believe
that these should follow relatively easy from our results.

ACKNOWLEDGEMENTS

We thank Pavel Hrubeš for useful discussions related to [9].

REFERENCES

[1] Paul Beame and Toniann Pitassi. Propositional proof complexity: past,
present, and future. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS,
(65):66–89, 1998.

[2] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there
hard examples for Frege systems? In Feasible mathematics, II (Ithaca,
NY, 1992), volume 13 of Progr. Comput. Sci. Appl. Logic, pages 30–56.
Birkhäuser Boston, Boston, MA, 1995.

[3] Samuel R. Buss. Bounded Arithmetic, volume 3 of Studies in Proof
Theory. Bibliopolis, 1986.

[4] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof
Complexity. ASL Perspectives in Logic. Cambridge University Press,
2010.

[5] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms.
Information and Control, 64(1-3):2–21, 1985.

[6] Stephen A. Cook and Lila Fontes. Formal theories for linear algebra. In
24th International Workshop on Computer Science Logic, pages 245–
259, 2010.

[7] P. Hájek and P. Pudlák. Metamathematics of First-order Arithmetic.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1993.

[8] Pavel Hrubeš and Iddo Tzameret. The proof complexity of polynomial
identities. In Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009,
pages 41–51, 2009.

[9] Pavel Hrubeš and Iddo Tzameret. Short proofs for the determinant
identities. SIAM J. Comput., 44(2):340–383, 2015. (A preliminary
version appeared in Proceedings of the 44th Annual ACM Symposium
on the Theory of Computing (STOC’12)).

[10] Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and
derandomization. Ann. Pure Appl. Logic, 129(1-3):1–37, 2004.

[11] Jan Krajı́ček. Bounded arithmetic, propositional logic, and complexity
theory, volume 60 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, 1995.

[12] Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen. Efficient
parallel evaluation of straight-line code and arithmetic circuits. SIAM J.
Comput., 17(4):687–695, 1988.

[13] Tonnian Pitassi and Iddo Tzameret. Algebraic proof complexity:
Progress, frontiers and challenges. ACM SIGLOG News, 3(3), 2016.

[14] Michael Soltys. The complexity of derivations of matrix identities. PhD
thesis, University of Toronto, Toronto, Canada, 2001.

[15] Michael Soltys and Stephen Cook. The proof complexity of linear
algebra. Ann. Pure Appl. Logic, 130(1-3):277–323, 2004.

[16] Volker Strassen. Vermeidung von divisionen. J. Reine Angew. Math.,
264:182–202, 1973. (in German).

[17] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast
parallel computation of polynomials using few processors. SIAM J.
Comput., 12(4):641–644, 1983.

12

