
Transcend: Detecting Concept Drift in Malware Classification Models

Roberto Jordaney+, Kumar Sharad ∗§, Santanu Kumar Dash ∗‡, Zhi Wang ∗†, Davide Papini ∗•,
Ilia Nouretdinov+, and Lorenzo Cavallaro+

+Royal Holloway, University of London
§NEC Laboratories Europe

‡University College London
†Nankai University
•Elettronica S.p.A.

Abstract
Building machine learning models of malware behav-
ior is widely accepted as a panacea towards effective
malware classification. A crucial requirement for build-
ing sustainable learning models, though, is to train on a
wide variety of malware samples. Unfortunately, mal-
ware evolves rapidly and it thus becomes hard—if not
impossible—to generalize learning models to reflect fu-
ture, previously-unseen behaviors. Consequently, most
malware classifiers become unsustainable in the long
run, becoming rapidly antiquated as malware contin-
ues to evolve. In this work, we propose Transcend, a
framework to identify aging classification models in vivo
during deployment, much before the machine learning
model’s performance starts to degrade. This is a signifi-
cant departure from conventional approaches that retrain
aging models retrospectively when poor performance is
observed. Our approach uses a statistical comparison
of samples seen during deployment with those used to
train the model, thereby building metrics for prediction
quality. We show how Transcend can be used to iden-
tify concept drift based on two separate case studies on
Android and Windows malware, raising a red flag before
the model starts making consistently poor decisions due
to out-of-date training.

1 Introduction

Building sustainable classification models for classify-
ing malware is hard. Malware is mercurial and mod-
eling its behavior is difficult. Codebases of commer-
cial significance, such as Android, are frequently patched
against vulnerabilities and malware attacking such sys-
tems evolve rapidly to exploit new attack surfaces. Con-
sequently, models that are built through training on older
malware often make poor and ambiguous decisions when

∗Research carried out entirely while Post-Doctoral Researchers at
Royal Holloway, University of London.

faced with modern malware—a phenomenon commonly
known as concept drift. In order to build sustainable
models for malware classification, it is important to iden-
tify when the model shows signs of aging whereby it fails
to recognize new malware.

Existing solutions [12, 15, 23] aim to periodically re-
train the model. However, if the model is retrained too
frequently, there will be little novelty in the information
obtained to enrich the classifier. On the other hand, a
loose retraining frequency leads to periods of time where
the model performance cannot be trusted. Regardless,
the retraining process requires manual labeling of all the
processed samples, which is constrained by available re-
sources. Once the label is acquired, traditional metrics
such as precision and recall are used to retrospectively
indicate the model performance. However, these metrics
do not assess the decision of the classifier. For exam-
ple, hyperplane-based learning models (e.g., SVM) only
check the side of the hyperplane where the object lies
while ignoring its distance from the hyperplane. This is
a crucial piece of evidence to assess non-stationary test
objects that eventually lead to concept drift.

A well known approach for qualitative assessment of
decisions of a learning model is the probability of fit of
test object in a candidate class. Previous work has re-
lied on using fixed probability thresholds to identify best
matches [19]. Standard algorithms compute the proba-
bility of a sample fitting into a class as a by-product of the
classification process. However, since probabilities need
to sum up to 1.0, it is likely that for previously unseen
test objects which do not belong to any of the classes,
the probability may be artificially skewed. To mitigate
this issue, Deo et al. propose ad-hoc metrics derived from
the two probabilities output by Venn-Abers Predictors
(VAP) [5], one of which is perfectly calibrated. Although
promising, the approach is unfortunately still in its in-
fancy and does not reliably identify drifting objects (as
further elaborated in § 6).

The machine learning community has developed tech-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/131177011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

niques that look at objects statistically rather than prob-
abilistically. For example, Conformal Predictor [20]
makes predictions with statistical evidence. However, as
discussed by Fern and Dietterich1, this method is not tai-
lored to be used in presence of concept drift.

Nevertheless, statistical assessments seem to over-
come the limitations of probabilistic approaches, as out-
lined in § 2. Still, there are two key issues that need to
be addressed before statistical assessments can be used
to detect concept drift. First, the assessments have to
be agnostic to the algorithm used to build the learn-
ing model. This is non-trivial as different algorithms
can have different underlying classification mechanisms.
Any assessment has to abstract away from the algorithm
and identify a universal criteria that treats the underly-
ing algorithm as a black box. Second, and more impor-
tantly, auto-computation of thresholds to identify an ag-
ing model from an abstract assessment criteria requires a
brute force search among scores for the training objects.

In this work, we address both these issues by propos-
ing both meaningful and sufficiently abstract assessment
metrics as well as an assessment criteria for interpret-
ing the metrics in an automated fashion. We propose
Transcend—a fully parametric statistical framework for
assessing decisions made by the classifier to identify con-
cept drift. Central to our contribution, is the translation
of the decision assessment problem to a constraint opti-
mization problem which enables Transcend to be para-
metric with diverse operational goals. It can be boot-
strapped with pre-specified parameters that tune its sen-
sitivity to varying levels of concept drift. For example,
in applications of critical importance, Transcend can be
pre-configured to adopt a strict filtering policy for poor
and unreliable classification decisions. While previous
work has looked at decision assessment [4, 19], this is
the first work that looks at identifying untrustworthy pre-
dictions using decision assessment techniques. Thereby,
Transcend can be deployed in existing detection systems
with the aim of identifying aging models and ameliorat-
ing performance in the face of concept drift.

In a nutshell, we make the following contributions:

• We propose conformal evaluator (CE), an evalua-
tion framework to assess the quality of machine
learning tasks (§ 2). At the core of CE is the def-
inition of non-conformity measure derived from the
ML algorithm under evaluation (AUE) and feature
set (§ 2.1). This measure builds statistical metrics
to quantify the AUE quality and statistically support
goodness of fit of a data point into a class according
to the AUE (§ 2.4).

1A. Fern and T. Dietterich. “Toward Explainable Uncertainty”.
https://intelligence.org/files/csrbai/fern-slides-1.pdf

• We build assessments on top of CE’s statistical met-
rics to evaluate the AUE design and understand sta-
tistical distribution of data to better capture AUE’s
generalization and class separations (§ 3).

• We present Transcend, a fully tunable classification
system that can be tailored to be resilient against
concept drift to varying degrees depending on user
specifications. This versatility enables Transcend to
be used in a wide variety of deployment environ-
ments where the cost of manual analysis is central
to classification strategies. (§ 3.3)

• We show how CE’s assessments facilitate
Transcend to identify suitable statistical thresholds
to detect decay of ML performance in realistic
settings (§ 4). In particular, we support our
findings with two case studies that show how
Transcend identifies concept drift in binary (§ 4.1)
and multi-class classification (§ 4.2) tasks.

2 Statistical Assessment: Why and How?

In this section we discuss the significance of statistical
techniques for decision assessment, which form the core
of conformal evaluator. A statistical approach to deci-
sion assessment considers each decision in the context of
previously made decisions. This is different to a proba-
bilistic assessment where the metric is indicative of how
likely a test object is to belong to a class. In contrast,
statistical techniques answer the question: how likely is
the test object to belong to a class compared to all of its
other members? The contextual evidence produced by
statistical evidence is a step beyond standard probabilis-
tic evidence and typically gives stronger guarantees on
the quality of the assessment. Our work dissects Con-
formal Predictor (CP) [24] and extracts its sound statisti-
cal foundations to build conformal evaluator (CE). In the
following section, we provide further details, while we
forward the reader to § 6 for a full comparison between
CP and CE.

2.1 Non-conformity Measure
Classification is usually based on a scoring function
which, given a test object z∗, outputs a prediction score
FD(l,z∗), where D is the dataset of training objects and
l is a label from the set of possible object labels L .

The scoring function can be used to measure the differ-
ence between a group of objects belonging to the same
class (e.g., malware belonging to the same family) and
a new object (i.e., a sample). In Transcend, the non-
conformity measure (NCM) is computed directly from
the scoring function of the algorithm. Thus, conformal

0.0 0.2 0.4 0.6 0.8 1.0
Threshold benign

0.0

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d
m

al
ici

ou
s

Element kept by p-values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Threshold benign

0.0

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d
m

al
ici

ou
s

Element kept by probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Elements above the threshold

0.0 0.2 0.4 0.6 0.8 1.0
Threshold benign

0.0

0.2

0.4

0.6

0.8

1.0

T
h
re

sh
o
ld

 m
a
lic

io
u
s

Performance by p-value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Threshold benign

0.0

0.2

0.4

0.6

0.8

1.0

T
h
re

sh
o
ld

 m
a
lic

io
u
s

Performance by probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Performance of elements above the threshold

0.0 0.2 0.4 0.6 0.8 1.0
Threshold benign

0.0

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d
m

al
ici

ou
s

Element discarded by p-value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Threshold benign

0.0

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d
m

al
ici

ou
s

Element discarded by probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Elements below the threshold

0.0 0.2 0.4 0.6 0.8 1.0
Threshold benign

0.0

0.2

0.4

0.6

0.8

1.0

T
h
re

sh
o
ld

 m
a
lic

io
u
s

Performance by p-value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Threshold benign

0.0

0.2

0.4

0.6

0.8

1.0

T
h
re

sh
o
ld

 m
a
lic

io
u
s

Performance by probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Performance of elements below the threshold

Figure 1: Performance comparison between p-value and probability for the objects above and below the threshold used
to accept the algorithm’s decision. The p-values are given by CE with SVM as non-conformity measure, the probabil-
ities are given directly by SVM. As we can see from the graph, p-values tend to contribute to a higher performance of
the classifier, identifying those (drifting) objects that would have been erroneously classified.

evaluation is agnostic to the algorithm, making it versa-
tile and compatible with multiple ML algorithms; it can
be applied on top of any classification or clustering algo-
rithm that uses a score for prediction.

We note that some algorithms already have built-in
quality measures (e.g., the distance of a sample from the
hyperplane in SVM). However, these are algorithm spe-
cific and cannot be directly compared with other algo-
rithms. On the other hand, Transcend unifies such quality
measures through uniform treatment of non-conformity
in an algorithm-agnostic manner.

2.2 P-values as a Similarity Metric

At the heart of conformal evaluation is the non-
conformity measure—a real-valued function AD(C\z,z),
which tells how different an object z is from a set C. The
set C is a subset of the data space of object D . Due to the
real-valued range of non-conformity measure, conformal
evaluator can be readily used with a variety of machine
learning methods such as support-vector machines, neu-
ral networks, decision trees and Bayesian prediction [20]
and others that use real-valued numbers (i.e., a similarity
function) to distinguish objects. Such flexibility enables
Transcend to assess a wide range of algorithms.

Conformal evaluation computes a notion of similarity
through p-values. For a set of objects K , the p-value
pC

z∗ for an object z∗ is the proportion of objects in class
K that are at least as dissimilar to other objects in C as
z∗. There are two standard techniques to compute the
p-values from K : Non-Label-Conditional (employed by
decision and alpha assessments outlined in § 3.1 and
§ 3.2), where K is equal to D , and Label-Conditional
(employed by the concept drift detection described in
§ 3.3), where K is the set of objects C with the same
label. The calculations for the non-conformity measures
for the test object and the set of objects in K is shown
in equation 1 and 2 respectively. The computation of p-
value for the test object is shown in equation 3.

αz∗ = AD(C,z∗) (1)
∀i ∈K .αi = AD(C \ zi,zi) (2)

pC
z∗ =

|{ j : α j ≥ αz∗}|
|K |

(3)

P-values compute an algorithm’s credibility and con-
fidence, crucial for decision assessments (§ 2.4).

2.3 P-values vs. Probabilities

One might question the utility of p-value over probability
of a test object belonging to a particular class. Probabil-
ities are computed by most learning algorithms as quali-
tative feedback for a decision. SVM uses Platt’s scaling
to compute probability scores of an object belonging to
a class while a random forest averages the decision of
individual trees to reach a final prediction [3]. In this
section, we discuss the shortcomings of using probabili-
ties for decision assessment as shown in §4.1.1 and §4.2.
Additionally, we also provide empirical evidence in favor
of p-values as a building block for decision assessment.

P-values offer a significant advantage over probabil-
ities when used for decision assessment. Let us as-
sume that the test object z∗ has p-values of p1

z∗ , p2
z∗ · · · pk

z∗

and probability of r1
z∗ ,r

2
z∗ · · ·rk

z∗ of belonging to classes
l1, l2 · · · lk (which is the set of all classes in L). In the
case of probabilities, Σiri

z∗ must sum to 1.0. Now, lets
consider a 2-class problem. If z∗ does not belong to either
of the classes, and the algorithm computes a low proba-
bility score r1

z∗ ∼ 0.0, then r2
z∗ would artificially tend to

1.0. In other words, if we use probabilities for decision
assessment it is likely that we might reach an incorrect
conclusion for previously unseen samples. P-values on
the other hand are not constrained by such limitations.
It is possible for both p1

z∗ and p2
z∗ to be a low value for

the case of a previously unseen sample. This is true also
when p-values are built using probability as NCM. To
calculate the probability of a test sample, only informa-
tion belonging to the test samples are used (e.g., distance
to the hyperplane in the case SVM or ratio of decisions
for one class in the case of random forest). Instead, a
p-value is computed comparing the scores of all the sam-
ples in a class (see equation 1 and 2).

We further elaborate on this by training an SVM clas-
sifier with Android malware objects from the Drebin
dataset [2] and by testing it using objects from a drifted
dataset (the Marvin dataset [14], see § 4 for details).
Then, we apply a threshold to accept the decision of the
classifier only if a certain level of certainty is achieved.
Figure 1 shows the average of F1-score for malicious and
benign classes after the application of the threshold for
the objects that fall above (Figure 1b) and below it (Fig-
ure 1d). Figure 1 also shows the ratio of objects retained
(Figure 1a) and rejected (Figure 1c). Figure 1b shows
that the use of p-values produces better performance as it
identifies more objects to reject than probabilities (Fig-
ure 1a). Here, filtering out a high number of objects
is correct as they are drifting from the trained model.
Keeping them would degrade the performance of the al-
gorithm (Figures 1c and 1d). The threshold is applied
to the testing objects; we present case studies in § 4.1,
which show how to derive it from the training dataset.

2.4 Statistical Decision Assessment

This section introduces and discusses CE metrics used
to assess the classification decisions. The techniques for
interpreting these metrics are discussed in § 3.

Algorithm Credibility. The first evaluation metric for
assessing classification decision on a test object is algo-
rithm credibility. ACred(z∗) is defined as the p-value for
the test object z∗ corresponding to the label chosen by the
algorithm under analysis. As discussed, the p-value mea-
sures the fraction of objects within K , that are at least as
different from the set of objects C as the new object z∗.
A high credibility value means that z∗ is very similar to
the objects in the class chosen by the classifier. Although
credibility is a useful measure of classification quality, it
only tells a partial story. There may potentially be high
p-values for multiple labels indicating multiple matching
labels for the test object which the classification algo-
rithm has ignored. On the other hand, a low credibility
value is an indicator of either z∗ being very different from
the objects in the class chosen by the classifier or the
object being poorly identified. These two observations
show that credibility alone is not sufficient for reliable
decision assessment. Hence, we introduce another mea-
sure to gauge the non-performance of the classification
algorithm—algorithm confidence.

Algorithm Confidence. For a given choice (e.g., assign-
ing z to a class li), confidence tells how certain or how
committed the evaluated algorithm is to the choice. For-
mally, it measures how distinguishable is the new ob-
ject z∗ ∈ li from other classes l j with j 6= i. We define
the algorithm confidence as 1.0 minus the maximum p-
value among all p-values except the p-value chosen by
the algorithm (i.e., algorithm credibility): ACon f (z∗) =
1−max(P(z∗)\ACred(z∗)) where, P(z∗) = {pli

z∗ : li ∈ L}
P(z∗) is the set of p-values associated to the possible

choices for the new object z∗. The highest value of con-
fidence is reached when the algorithm credibility is the
highest p-value. It may happen that the choice made
by the algorithm is not attached to the highest p-value,
suggesting that the confidence is sub-optimal. Results in
§ 4 show that this provides valuable insights, especially
when the method under assessment makes choices with
low values of confidence and credibility. Low algorithm
confidence indicates that the given object is similar to
other classes as well. Depending on the algorithm cred-
ibility, this indication may imply that the decision algo-
rithm is not able to uniquely identify the classes or, that
the new object looks similar to two or more classes.

Finally, we note that algorithm confidence and credi-
bility are not biased by the number of classes in a dataset
as popular measures, such as precision and recall [13].
Thus CE’s findings are more robust to dataset changes.

3 Framework Description

Previous section introduced conformal evaluation along
with the two metrics that we use for decision assess-
ment: algorithm confidence and algorithm credibility.
Transcend uses two techniques to evaluate the quality
of an algorithm employed on a given dataset: (i) De-
cision assessment—evaluates the robustness of the pre-
dictions made by the algorithm; and (ii) Alpha assess-
ment—evaluates the quality of the non-conformity mea-
sure. We combine these assessments to enable the detec-
tion of concept drift (§3.3).

3.1 Decision Assessment

Conformal evaluator qualitatively assesses an algo-
rithm’s decision by assigning a class l ∈ L as predicted
by the algorithm to each new object z∗ and computing its
algorithm credibility and confidence.

Hence, four possible scenarios unfold: (i) High algo-
rithm confidence, high algorithm credibility—the best
situation, the algorithm is able to correctly identify a
sample towards one class and one class only. (ii) High
algorithm confidence, low algorithm credibility—the al-
gorithm is not able to correctly associate the sample to
any of the classes present in the dataset. (iii) Low al-
gorithm confidence, low algorithm credibility—the algo-
rithm gives a label to the sample but it seems to be more
similar to another label. (iv) Low algorithm confidence,
high algorithm credibility—according to the algorithm, it
seems that the sample is similar to two or more classes.

The measures are then grouped into two sets —correct
or wrong— which represents values for correctly and
wrongly classified objects. Subsequently, values are av-
eraged and their standard deviation is also computed, this
is done for every class l ∈ L , to study whether the algo-
rithm works consistently for all classes or if there are dif-
ficult classes that the algorithm has trouble dealing with.
This assessment, performed during the design phase of
the algorithm, helps us to decide the cutoff threshold for
a deployed scenario to separate the samples with enough
statistical evidence of correctness.

Comparing the results obtained for correct and wrong
choices produces interesting results. For correct choices
it would be desirable to have high credibility and confi-
dence. Conversely, for wrong choices it would be desir-
able to have low credibility and high confidence. The di-
vergence from these scenarios helps understand whether
the algorithm takes strong decisions, meaning that there
is a strong statistical evidence to confirm its decisions,
or, in contrast, if the decisions taken are easily modified
with a minimal modification of the underlying data.

By looking at the outcome of decision assessment, it
is possible to understand whether the choices made by an

algorithm are supported with statistical evidence. Other-
wise, it is possible to get an indication where to look for
possible errors or improvements, i.e., which classes are
troublesome, and whether further analysis is needed, e.g.
by resorting to the alpha assessment.

3.2 Alpha Assessment

In addition to the decision assessment, which evaluates
the output of a similarity-based classification/clustering
algorithm, another important step in understanding the
inner workings and subtleties of the algorithm includes
analyzing the data distribution of the algorithm under
evaluation. Owing mainly to practical reasons, malware
similarity-based algorithms are developed around a spe-
cific dataset. Hence there is often the possibility of the
algorithm to over-fit its predictions to the dataset. Over-
fitting results in poor performance when the algorithm
analyses new or unknown datasets [13]. Despite em-
ploying techniques to avoid over-fitting, the best way to
answer this question is to try the algorithm against as
many datasets as possible. We show that conformal eval-
uator can help solve this problem, when no more than
one dataset is available.

The alpha assessment analysis takes into account how
appropriate is the similarity-based algorithm when ap-
plied to a dataset. It can detect if the final algorithm re-
sults still suffer from over-fitting issues despite the ef-
forts of minimizing it using common and well known
techniques (e.g., cross validation).

Furthermore, the assessment enables us to get insights
on classes (e.g., malware families), highlighting how
the similarity-based method works against them. Re-
searchers may gather new insights on the peculiarities of
each class, which may eventually help to improve feature
engineering and the algorithm’s performance, overall.

First, for each object z j ∈D, where l j is z j’s true class,
we compute its p-values against every possible l ∈L . We
then plot the boxplot [10], containing the p-values for
each decision. By aligning these boxplots and grouping
them by class/cluster, we can see how much an element
of class/cluster j resembles that of another one, allowing
for reasoning about the similarity-based algorithm itself.

In § 4 we present case studies where we statistically
evaluate the quality behind performances of algorithms
within the conformal evaluator framework.

3.3 Concept Drift

We now describe the core of Transcend’s concept drift
detection and object filtering mechanism. It must be
stressed here that we look at concept drift from the per-
spective of a malware analysis team. Consequently, the

severity of the drift is a subjective issue. For critical ap-
plications, even a few misclassifications can cause major
issues. Consequently, the malware analysis team would
have a high standard for abandoning an aging classifi-
cation model. Therefore, we make the concept drift de-
tection in Transcend parametric in two dimensions: the
desired performance level (ω) and the proportion of sam-
ples in an epoch that the malware analysis team is willing
to manually investigate (δ). The analyst selects ω and δ

as degrees of freedom and Transcend will detect the cor-
responding concept drift point constrained by the chosen
parameters. The goal is to find thresholds that best sep-
arate the correct decisions from the incorrect ones based
on the quality metrics introduced by our analysis. These
thresholds are computed on the training dataset but are
enforced on predictions during deployment (for which
we do not have labels). The rationale is very simple: pre-
dictions with p-values above such thresholds would iden-
tify objects that likely fit (from a statistical perspective)
in the model; such classifications should be trusted. Con-
versely, objects out of predictions with p-values smaller
than such thresholds should not be trusted as there is lack
of statistical evidence to support their fit in the model.

What happens to untrustworthy predictions (and re-
lated test—likely drifted—objects) is out of the scope
of this work. It is reasonable to envision a pipeline that
would label drifted objects to retrain the machine learn-
ing model, eventually. While this raises several chal-
lenges (e.g., how many objects need to be labeled, how
much resources can be invested in the process), we would
like to remark the fact that is only possible once con-
cept drift is detected: the goal of this research. Not only,
Transcend plays a fundamental role in the identification
of drifting objects and thus in the understanding of when
a prediction should be trusted or not, but its metrics can
also aid in selecting what drifted objects should be la-
beled first (e.g., those with low p-values as are the one
that have drifted the most from the trained model).

The following discussion assumes two classes of data,
malicious and benign, but it is straightforward to extend
it to a multiclass scenario.

We define the function f : B×M→Ω×∆ that maps a
pair of thresholds in the benign and malicious class and
outputs the performance achieved and the number of de-
cisions accepted. Here, the number of decisions accepted
refers to the percentage of the algorithm outputs with a
p-value (for benign or malicious classes, depending on
the output itself) greater than the corresponding thresh-
old; performance means the percentage of correct deci-
sions amongst the accepted ones. B, M, Ω and ∆ are
the domains of the possible thresholds on benign sam-
ples, malicious samples, desired performance and classi-
fication decisions accepted, respectively. During train-
ing of our classifier, we iterate over all values of the

benign threshold t ′b and the malicious threshold t ′m, at
a pre-specified level of granularity, in the domain of B
and M, respectively. Let us assume f gives the output
f : f (t ′b, t

′
m) = (ω′,δ′)

To detect concept drift during deployment with a pre-
specified threshold of either ω or δ, we need to define
an inverse of f which we call f−1 : Λ→ B×M where
Λ = Ω ∪ ∆. When supplied with either ω or δ, f−1

would give us two thresholds tb and tm which would help
Transcend decide when to accept the classifier’s decision
and when to ignore it. Notice that with a conjoined do-
main Λ, which only accepts either ω or δ, it is not trivial
to reconstruct the values of tb and tm. For every value
of ω, there could be multiple values for δ. Therefore, we
adopt a simple heuristic to compute tb and tm whereby we
maximize the second degree of freedom given the first.
For example, given ω, we find tb and tm for every possi-
ble value of δ and pick the tb and tm that maximizes δ.
The formulation is exactly the same when δ is used as an
input. The formal equations for the inverse functions are:

Γ = {x : x ∈ ∀t ′b∀t ′m. f (t ′b, t ′m))}
f−1(ω) = {(tb, tm) : δ ∈ f (tb, tm) = max(∀δ′ ∈ Γ)}
f−1(δ) = {(tb, tm) : ω ∈ f (tb, tm) = max(∀ω′ ∈ Γ)}

Comparison with Probability. The algorithm used as
inner non-conformity measure (NCM) in CE may have
a pre-defined quality metric to support its own decision-
making process (e.g., probability). Hence, we also com-
pare the ability of detecting concept drift of the algo-
rithm’s internal metric with CE metrics. The thresholds
are extracted from the true positive samples, because we
expect the misclassified samples to have a lower value of
the quality metric: it seems rather appropriate to select
a higher threshold to highlight decisions the algorithm
would likely make wrong. We compare our metrics with
probability metrics derived from two different algorithms
for our case studies. In the first case study (see, § 4.1),
we compare our metrics with SVM probabilities derived
from Platt’s scaling [17]; on the other hand, the second
case study (see, § 4.2) uses the probabilities extracted
from a random forest [3] model. This comparison shows
the general unsuitability of the probability metric to de-
tect concept drift. For example, the threshold obtained
from the first quartile of the true positive p-value distri-
bution is compared with that of the first quartile of the
true positive probability distribution, and so forth.

The reasoning outlined above still holds when a given
algorithm, adapted to represent the non-conformity mea-
sure, uses raw score as its decision-making criteria. For
instance, the transformation of a raw score to a proba-
bility value is often achieved through a monotonic trans-
formation (e.g., Platt’s scaling, for SVM) that does not
affect the p-value calculation. Such algorithms do not

provide a raw score for representing the likelihood of an
alternative hypothesis (e.g., that the test object does not
belong to any of the classes seen in the training). More-
over, a threshold built from a raw score lacks context
and meaning; conversely, combining raw scores to com-
pute p-values provides a clear statistical meaning, able
of quantifying the observed drift in a normalized scale
(from 0.0 to 1.0), even across different algorithms.

CE can also provide quality evaluation that allows
switching the underlying ML-based process to a more
computationally intensive one on classes with poor con-
fidence [4]. Our work details the CE metrics used by
Dash et al. [4] and extends it to identify concept drift.

4 Evaluation

To evaluate the effectiveness of Transcend, we introduce
two case studies: a binary classification to detect mali-
cious Android apps [2], and a multi-class classification
to classify malicious Windows binaries in their respec-
tive family [1]. The case studies were chosen to be rep-
resentative of common supervised learning settings (i.e.,
binary and multi-class classification), easy to reproduce2,
and of high quality3.

Binary Classification Case Study. In [2], Arp et al.
present a learning-based technique to detect malicious
Android apps. The approach, dubbed Drebin, relies on
statically extracting features, such as permissions, In-
tents, APIs, strings and IP addresses, from Android ap-
plications to fuel a linear SVM. Hold-out validation re-
sults (66-33% split in training-testing averaged over ten
runs) reported TPR of 94% at 1% FPR. The Drebin
dataset was collected from 2010 to 2012 and the authors
released the feature set to foster research in the field.

To properly evaluate a drifting scenario in such set-
tings, we also use Marvin [14], a dataset that includes
benign and malicious Android apps collected from 2010
and 2014. The rationale is to include samples drawn
from a timeline that overlaps with Drebin as well as
newer samples that are likely to drift from it (duplicated
samples were removed from the Marvin dataset to avoid
biasing the results of the classifier). Table 1 provides de-
tails of the datasets.

Section 4.1 outlines this experiment in detail; however,
without any loss of generality, we can say models are
trained using the Drebin dataset and tested against the
Marvin one. In addition, the non-conformity measure we

2The work in [2] released feature sets and details on the learning
algorithm, while we reached out to the authors of [1], which shared
datasets and the learning algorithm’s implementation with us.

3The work in [2] was published in a top-tier venue, while the work
in [1] scored similar to the winner of the Kaggle’s Microsoft Malware
Classification Challenge [11].

instantiate CE with is the distance of testing objects from
the SVM hyperplane, as further elaborated in § 4.1.1.

Multiclass Classification Case Study. Ahmadi et al. [1]
present a learning-based technique to classify Windows
malware in corresponding family of threats. The ap-
proach builds features out of machine instructions’ op-
codes of Windows binaries as provided by Microsoft and
released through the Microsoft Malware Classification
Challenge competition on Kaggle [11]—a well-known
platform that hosts a wide range of machine learning-
related challenges. Ahmadi et al. rely on eXtreme Gra-
dient Boosting (XGBoost) [21] for classification. It
is based on gradient boosting [18] and, like any other
boosting technique, it combines different weak predic-
tion models to create a stronger one. In particular, the
authors use XGBoost with decision trees.

Table 2 provides details of the Microsoft Windows
Malware Classification Challenge dataset. To properly
evaluate a drifting scenario we omit the family Tracur
from the training dataset, as further elaborated in § 4.2.
In this setting, a reasonable conformity measure that cap-
tures the likelihood of a test object o to belong to a given
family l ∈ L is represented by the probability p that o
belongs to l ∈ L , as provided by decision trees. We ini-
tialize conformal evaluator with −p as non-conformity
measure, because it captures the dissimilarities. Please
note we do not interpret −p as a probability anymore
(probability ranges from 0 to 1), but rather as a (non-
conformity) score CE builds p-values from (see § 2).

We would like to remark that these case studies are
chosen because they are general enough to show how
concept drift affects the performance of the models. This
is not a critique against the work presented in [1, 2].
Rather, we show that even models that perform well in
closed world settings (e.g., k-fold cross validation), even-
tually decay in the presence of non-stationary data (con-
cept drift). Transcend identifies when this happens in op-
erational settings, and provides indicators that allow to
establish whether one should trust a classifier decision or
not. In absence of retraining, which requires samples re-
labeling, the ideal net effect would then translate to hav-
ing high performance on non-drifting objects (i.e., those
that fit well into the trained model), and low performance
on drifting ones.

In a nutshell, our experiments aim to answer the fol-
lowing research questions:

RQ1: What insights do CE statistical metrics provide?
Intuitively, such metrics provide a quantifiable level of
quality of the predictions of a classifier.

RQ2: How can CE statistical metrics detect concept
drift in binary and multiclass classification? Intuitively,
we can interpret quality metrics as thresholds: predic-
tions of tested objects whose quality fall below such

DREBIN DATASET MARVIN DATASET

Type Samples Type Samples

Benign 123 435 Benign 9 592
Malware 5 560 Malware 9 179

Table 1: Binary classification case study datasets [2].

MICROSOFT MALWARE CLASSIFICATION CHALLENGE DATASET

Malware Samples Malware Samples

Ramnit 1 541 Obfuscator.ACY 1 228
Lollipop 2 478 Gatak 1 013

Kelihos˙ver3 2 942 Kelihos˙ver1 398
Vundo 4 75 Tracur 751

Table 2: Multiclass classification case study datasets [1].

thresholds should be marked as untrustworthy, as they
drift away from the trained model (see §3.3).

We elaborate this further in § 4.1 and § 4.2 for binary
and multiclass classification tasks, respectively.

4.1 Binary Classification Case Study

This section assesses the quality of the predictions of
Drebin4, the learning algorithm presented in [2]. We
reimplemented Drebin and achieved results in line with
those reported by Arp et al. in absence of concept
drift (0.95 precision and 0.92 recall, and 0.99 precision
and 0.99 recall for malicious and benign classes, re-
spectively on hold out validation with 66-33% training-
testing Drebin dataset split averaged on ten runs).

Figure 2a shows how CE’s decision assessment sup-
ports such results. In particular, the average algorithm
credibility and confidence for the correct choices are 0.5
and 0.9, respectively. This reflects a high prediction qual-
ity: correctly classified objects are very different (from
a statistical perspective) to the other class (and an aver-
age p-value of 0.5 as algorithm credibility is expected
due to mathematical properties of the conformal evalua-
tor). Similar reasoning applies for incorrect predictions,
which are affected by a poor statistical support (average
algorithm credibility of 0.2).

Figure 2b shows CE’s alpha assessment of Drebin. We
plot this assessment as a boxplot to show details of the p-
value distribution. The plot shows that the p-value distri-
bution for the wrong predictions (i.e., second and third
column) is concentrated in the lower part of the scale
(less than 0.1), with few outliers; this means that, on av-
erage, the p-value of the class which is not the correct
one, is much lower than the p-value of the correct predic-
tions. Benign samples (third and fourth columns) seem
more stable to data variation as the p-values for benign
and malicious classes are well separated. Conversely, the
p-value distribution of malicious samples (first and sec-
ond columns) is skewed towards the bottom of the plot;
this implies that the decision boundary is loosely defined,
which may affect the classifier results in the presence of
concept drift. A direct evaluation of the confusion matrix

4Unless otherwise stated, we refer to Drebin as both the learning
algorithm and the dataset outlined in [2].

and associated metrics does not provide the ability to see
decision boundaries nor predictions (statistical) quality.

4.1.1 Detecting Concept Drift

This section presents a number of experiments to show
how Transcend identifies concept drift and correctly
marks as untrustworthy the decisions the NCM-based
classifier predicts erroneously.

We first show how the performance of the learning
model introduced in [2] decays in the presence of con-
cept drift. To this end, we train a model with the Drebin
dataset [2] and we test it against 9,000 randomly selected
malicious and benign Android apps (with equal split)
drawn from the Marvin dataset [14]. The confusion ma-
trix in Table 3a clearly shows how the model is affected
by concept drift as it reports low precision and recall for
the positive class representing malicious objects5. This
is further outlined in Figure 3a, which shows how the p-
value distribution of malicious objects is pushed towards
low values (poor prediction quality).

Table 3b shows how enforcing cut-off quality thresh-
olds affect—by improving—the performance of the
same learning algorithm. For this experiment, we di-
vided the Drebin dataset in training and calibration sets
with a 90-10% averaged over 10 rounds. This ensures
that each object in the dataset has a p-value. We then
asked Transcend to identify suitable quality thresholds
(cfr § 3.3) with the aim to maximize the F1-score as de-
rived by the calibration dataset, subject to a minimum
F1-score of 0.99 and a minimum percentage of kept el-
ement of 0.766. It is worth noting that such thresholds
are derived from the calibration dataset but are enforced
to detect concept drift on a testing dataset. Results show
how flagging predictions of testing objects with p-values
below the cut-off thresholds as unreliable improves pre-
cision and recall for the positive (malicious) class, from
0.61 to 0.89 and from 0.36 to 0.76, respectively.

5Drebin spans the years 2010–2012 while Marvin covers from 2010
to 2014. Most of the Drebin’s features capture information (e.g., string
and IP addresses) that is likely to change over time, affecting the ability
of the classifier to identify non-stationary data.

6In [2], Arp et al. report a TPR of 94% at a FPR of 1%. Such
metrics do not rule out the possibility of having 0.99 as F1-score; if
that is a plausible constraint, Transcend’s parametric framework will
find a suitable solution.

Correct choices Incorrect choices0.0

0.2

0.4

0.6

0.8

1.0

Average algorithm credibility for correct choice
Average algorithm confidence for correct choice
Average algorithm credibility for incorrect choice
Average algorithm confidence for incorrect choice

(a) Decision assessment for the binary classification case study
(Drebin [2]) with the original dataset. Correct predictions are
supported by a high average algorithm credibility and confi-
dence, while incorrect ones have a low and a high algorithm
credibility and confidence, respectively. Overall, positive results
supported by a strong statistical evidence.

Given label: malicious Given label: benign
0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: p-value malicious

Given label malicious: p-value benign

Given label benign: p-values malicious

Given label benign: p-values benign

(b) Alpha assessment for the binary classification case study
(Drebin [2]) with the original dataset. Benign samples are well
separated from malicious ones, especially when the assigned la-
bel is benign; this provides a clear statistical support that posi-
tively affect the quality of predictions.

Figure 2: Binary Classification Case Study (Drebin [2]): Decision assessment and Alpha assessment.

Assigned label

Sample Benign Malicious Recall

Benign 4 498 2 1
Malicious 2 890 1 610 0.36

Precision 0.61 1

(a)

Assigned label

Sample Benign Malicious Recall

Benign 4 257 2 1
Malicious 504 1 610 0.76

Precision 0.89 1

(b)

Assigned label

Sample Benign Malicious Recall

Benign 4 413 87 0.98
Malicious 255 4 245 0.94

Precision 0.96 0.98

(c)

Table 3: Binary classification case study ([2]). Table 3a: confusion matrix when the model is trained on Drebin and
tested on Marvin. Table 3b: confusion matrix when the model is trained on Drebin and tested on Marvin with p-value-
driven threshold filtering. Table 3c: retraining simulation with training samples of Drebin as well as the filtered out
element of Marvin of Table 3b (2386 malicious samples and 241 benign) and testing samples coming from another
batch of Marvin samples (4500 malicious and 4500 benign samples). The fate of the drifting objects is out of scope
of this paper as that would require to solve a number of challenges that arise once concept drift is identified (e.g.,
randomly sampling untrustworthy samples according to their p-values, effort of relabeling depending on available
resources, model retraining). We nonetheless report the result of a realistic scenario in which objects drifting from a
given model, correctly identified by Transcend, represent important information to retrain the model and increase its
performance (assuming a proper labeling as briefly sketched above).

TPR FPR TPR FPR MALICIOUS BENIGN
of kept elements of kept elements of discarded elements of discarded elements kept elements kept elements

p-value probability p-value probability p-value probability p-value probability p-value probability p-value probability

1st quartile 0.9045 0.6654 0.0007 0.0 0.0000 0.3176 0.0000 0.0013 0.3956 0.1156 0.6480 0.6673
Median 0.8737 0.8061 0.0000 0.0 0.3080 0.3300 0.0008 0.0008 0.0880 0.0584 0.4136 0.4304
Mean 0.8737 0.4352 0.0000 0.0 0.3080 0.3433 0.0008 0.0018 0.0880 0.1578 0.4136 0.7513
3rd quartile 0.8723 0.6327 0.0000 0.0 0.3411 0.3548 0.0005 0.0005 0.0313 0.0109 0.1573 0.1629

Table 4: Binary classification case study ([2]): examples of thresholds. From the results we can see that increasing the
threshold will lead to keep only the sample where the algorithm is sure about. The number of discarded samples is
very subjective to the severity of the shift in the dataset, together with the performance of those sample it is clear the
advantage of the p-value metric compared to the probability one.

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: p-value malicious
Given label malicious: p-value benign
Given label benign: p-values malicious
Given label benign: p-values benign

(a)

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: p-value malicious
Given label malicious: p-value benign
Given label benign: p-values malicious
Given label benign: p-values benign

(b)

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: probability malicious
Given label malicious: probability benign
Given label benign: probability malicious
Given label benign: probability benign

(c)

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: probability malicious
Given label malicious: probability benign
Given label benign: probability malicious
Given label benign: probability benign

(d)

Figure 3: Binary Classification Case Study: p-value and probability distribution for true malicious and benign samples
when the model is trained on Drebin dataset and tested on Marvin. Graph (a): p-value distribution for true malicious
samples. Graph (b): p-value distribution of true benign samples. Graph (c): probability distribution of true malicious
samples. Graph (d): probability distribution of true benign samples.

We would like to remark that drifting objects are still
given a label as the output of a classifier prediction;
Transcend flags such predictions as untrustworthy, de-
facto limiting the mistakes the classifier would likely
make in the presence of concept drift. It is clear that one
needs to deal with such objects, eventually. Ideally, they
would represent an additional dataset that, once labeled
properly, would help retraining the classifier to predict
similar objects. This opens a number of challenges that
are out of the scope of this work; however, one could still
rely on CE’s metrics to prioritize objects that should be
labeled (e.g., those with low p-values as they are the one
the drift the most from the model). This might require
to randomly sample drifting objects once enough data is
available as well as understanding how much resources
one can rely on for data labeling. It is important to note
that Transcend plays a fundamental role in this pipeline:
it identifies concept drift (and, thus, untrustworthy pre-
dictions), which gives the possibility of start reasoning
on the open problems outlined above.

The previous paragraphs show the flexibility of the
parametric framework we outlined in § 3.3, on an arbi-
trary yet meaningful example, where statistical cut-off
thresholds are identified based on an objective function
to optimize, subject to specific constraints. Such goals
are however driven by business requirements (e.g., TPR
vs FPR) and resource availability (e.g., malware ana-
lysts available vs number of likely drifting samples—
either benign or malicious—for which we should not
trust a classifier decision) thus providing numerical ex-
ample might be challenging. To better outline the suit-
ability of CE’s statistical metrics (p-values) in detecting
concept drift, we provide a full comparison between p-
values and probabilities as produced by Platt’s scaling
applied to SVM. We summarize a similar argument (with
probabilities derived from decision trees) for multiclass
classification tasks in § 4.2.

Comparison with Probability. In the following, we
compare the distributions of p-values, as derived from
CE, and probabilities, as derived from Platt’s scaling for
SVM, in the context of [2] under the presence of con-
cept drift (i.e., training on Drebin, testing on Marvin as
outlined). The goal of this comparison is to understand
which metric is better-suited to identify concept drift.

Figure 3a shows the alpha assessment of the classifi-
cations shown in Table 3a. The figure shows the distribu-
tion of p-values when the true label of the samples is ma-
licious. Correct predictions (first and second columns),
reports p-values (first column) that are are slightly higher
than those corresponding to incorrect ones (second col-
umn), with a marginal yet well-marked separation as
compared to the values they have for the incorrect class
(third and fourth columns). Thus, when wrong predic-
tions refer to the benign class, the p-values are low and
show a poor fit to both classes. Regardless of the classi-
fier outcome, the p-value for each sample is very low, a
likely indication of concept drift.

Figure 3b depicts the distribution of p-values when
true label of the samples is benign. Wrong predictions
(first and second columns) report p-values representing
benign (second column) and malicious (first column)
classes to be low. Conversely, correct predictions (third
and fourth columns) represent correct decisions (fourth
column) and have high p-values, much higher compared
to the p-values of the incorrect class (third column). This
is unsurprising as benign samples have data distributions
that do not drift with respect to malicious ones.

A similar reasoning can be followed for Figures 3c
and 3d. Contrary to the distribution of p-values, prob-
abilities are constrained to sum up to 1.0 across all the
classes; what we observe is that probabilities tend to be
skewed towards high values even when predictions are
wrong. Intuitively, we expect to have poor quality on
all the classes of predictions in the presence of a drifting

scenario: while probabilities tend to be skewed, CE’s sta-
tistical metrics (p-values) seem better-suited at this task.

So far, we have seen how Transcend produces statisti-
cal thresholds to detect concept drift driven by predefined
goals under specific constraints. In addition, the analy-
sis of p-value and probability distributions highlighted
how the former seem to be better-suited than probabili-
ties to identify concept drift. In the following paragraphs,
we show how CE’s statistical metrics provide thresholds
that always outperform probabilities in detecting concept
drift. Figure 6 in Appendix 7 provides a thorough com-
parison. For simplicity, here, we focus the attention on
the 1st and 3rd quartile, the median and the average of
the distribution of p-values and probabilities as potential
cut-off thresholds, as shown in Table 4.

Intuitively speaking, a successful technique not only
would achieve high performances on correct predictions,
but it would also report poor performances on drifting
objects. This is evident from Table 4, where a cut-off
threshold at the 1st quartile reports a high performance
for the objects that fit the trained model (0.9045 TPR at
0.0007 FPR), and a poor performance for those drifting
away (0 TPR and 0 FPR); this means that at this thresh-
old, CE’s statistical metrics suggest to consider as un-
trustworthy only objects the classifier would have pre-
dicted incorrectly. Conversely, probabilities also tend
to be skewed when predictions are wrong, affecting the
ability to rely on such metrics to correctly identify con-
cept drift. Table 4 shows 0.6654 TPR and 0 FPR for
objects whose quality fall above the 1st quartile of the
probability distribution, and 0.3176 TPR and 0.0013 FPR
for those who fall below; this means that probabilities
marked as unreliable also make predictions that would
have been classified correctly.

As we move up towards more conservative thresh-
olds, CE’s statistical metrics start discarding objects that
would have been classified correctly. This is unsurpris-
ing as we have defined a threshold that is more selec-
tive of the desired quality. Regardless, at each point
p-values still outperform probabilities (higher TPR and
FPR of objects with a quality higher than the cut-off,
and lower for those below the threshold). These results
further show how relying on detecting concept drift is a
challenging problem that cannot be easily addressed by
relying on a prefixed 50% threshold [19].

Note that the number of untrustworthy predictions on
the testing dataset is a function of the number of drift-
ing objects. If the entire dataset drifts, we would expect
Transcend to flag as untrustworthy all (or most of) the
predicted objects that do not fit the trained model.

Adapting to Concept Drift. Once drifting objects are
identified, the next step would require data relabeling and
model retraining, as outlined throughout the paper. Ta-
ble 3c shows the results of these steps, which take preci-

sion for benign samples to 0.89 and recall for malicious
ones to 0.76. We would like to remark that this work fo-
cuses on the construction of statistical metrics to identify
concept drift as outlined so far. While relabeling is out
of scope for this work, it is clear that an approach that
identifies drifting objects is well-suited to address such a
challenge in the pipeline as resources can be focused on
analyzing samples that do not fit in the trained model.

4.2 Multiclass Classification Case Study
In this section we evaluate the algorithm proposed by
Ahmadi et al. [1] as a solution to Kaggle’s Microsoft
Malware Classification Challenge; the underlying ratio-
nale is similar to that outlined in the previous section,
thus, we only report insightful information and take-
aways. In this evaluation, we train the classifier with
seven out of eight available malware families; Trucur, the
excluded family, represents our drifting testing dataset.

The confusion matrix reports a perfect diagonal7; in
this case, the decision assessment gives us no additional
information because we cannot analyze the distribution
of p-values of incorrect choices. From a quality per-
spective, drawing upon the alpha assessment of Figure 4,
two families, Vundo and Ramnit, have significant differ-
ences. The Ramnit family has p-values that are much
higher than those of the interfering families. However,
for Vundo the p-values of interfering families are closer
to the correct ones. These details can be only be observed
through the alpha assessment, suggesting that the iden-
tification of the Ramnit samples would be more robust
when the data distribution changes.
Family Discovery. Below, we show how we identify a
new family based on CE’s statistical metrics.

The testing samples coming from Tracur are classified
as follows: 5 as Lollipop, 6 as Kelihos ver3, 358 as Vundo
and 140 as Kelihos ver1. Looking at the distribution of
probabilities and p-values it is easy to relate to the case
of binary classification, i.e., for each family there is only
one class with high p-values corresponding to the class of
the true label. For the test objects of Tracur, we observe
that the p-values for all the classes are close to 0. This
is a clear pattern which shows that the samples are com-
ing from an unknown distribution. In a scenario chang-
ing gradually, we will observe an initial concept drift (as
shown in the binary classification case study in § 4.1.1),
characterized by a gradual decrease of the p-values for
all the classes, which ends up in a situation where we
have p-values very close to 0 as observed here. These
results clearly show that even in multiclass classifica-
tion settings, CE provides metrics that are better-suited

7We reached out to the authors who provided us with the dataset
and the implementation of the learning algorithm to replicate the results
presented in [1].

to identify concept drift than probabilities8. The com-
parison between p-values and probabilities is reported in
Figures 7 to 10 in Appendix 7 and follow a reasoning
similar to that of the binary classification case study.

5 Discussion

Security community has grappled with the challenge of
concept drift for some time now [12, 23, 25]. The prob-
lem commonly manifests itself in most malware detec-
tion/classification algorithm tasks and models perform
poorly as they become dated. Literature [12, 15, 16]
recommends retraining the model periodically (see § 6)
to get around this. However, retraining periodicity is
loosely defined and is an expensive process that leads
to sub-optimal results. Consequently, there are periods
where the model performance cannot be trusted. The
problem is further exacerbated as concept drift is hard
to identify without manual intervention. If the model
is retrained too frequently, there will be little novelty
in information obtained through retraining to enrich the
model. Regardless of the periodicity, the retraining pro-
cess requires manual labeling of all the processed ob-
jects. Transcend selectively identifies the drifted ob-
jects with statistical significance9, thus is able to restrict

8The algorithm in [1] relies on probabilities (decision trees).
9The p-value for an object o with label l is the statistical support

of the null hypothesis H0, i.e., that o belongs to l. Transcend finds the
significance level (the per-class threshold) to reject H0 for the alterna-
tive hypothesis Ha, i.e., that o does not belong l (p-values for wrong
hypotheses are smaller than those for correct ones, e.g., Figure 2b).

the manual labeling process to the objects that are sub-
stantially different than the ones in the trained model
(see §3.3 and §4.1.1).

Adversarial ML and Model Fortification. Our work
aims to detect concept drift as it occurs in an existing
model. Concept drift can occur due to various reasons.
Common causes being malware polymorphism or eva-
sion but adversarial data manipulation (adversarial drift)
can also be a reason. Approaches have been proposed
to fortify models against drift [12, 15, 23], however such
solutions deal with specific domains and do not provide
a generalized solution. Transcend is agnostic to the ma-
chine learning algorithm under consideration. This let
us leverage the strength of the algorithm while detecting
concept drift. Therefore, if the algorithm is more resilient
to concept drift, drift will be detected later on in time. If
it is less resilient, drift will be detected as sooner.

Comparison with Probability. Probabilities have been
known to work well in some scenarios but as demon-
strated in § 4.1.1 and § 4.2 they are not as effective as
compared to p-values which are more versatile, espe-
cially in the presence of concept drift. When probabil-
ities are reported to be low it is difficult to understand if
the sample does not belong to any class or if the sam-
ple is actually just difficult to classify while still belong-
ing to one of the known classes. In other words, the
p-value metric offers a natural null option when the p-
values calculated for all the classes are low. Instead, as
shown in the case of SVM (see, § 4.1.1), the probabil-
ity metric is bounded to one of the options in the model.

Ramnit's
samples

Lollipop's
samples

Kelihos_ver3's
samples

Vundo's
samples

Kelihos_ver1's
samples

Obfuscator.ACY's
samples

Gatak's
samples

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
es

P-values: Ramnit
P-values: Lollipop
P-values: Kelihos_ver3

P-values: Vundo
P-values: Kelihos_ver1

P-values: Obfuscator.ACY
P-values: Gatak

Figure 4: Multiclass Classification Case Study: Alpha assessment for the Microsoft classification challenge showing
the quality of the decision taken by the algorithm. Although, perfect results are observed on the confusion matrix , the
quality of those results vary a lot across different families.

It does not matter if the probabilities are well calibrated
or not, the limitation is inherent to the metric. As dis-
cussed, the work by Rieck et al. [19] faces similar chal-
lenges when choosing the probability threshold. More-
over, the p-value metric provided by our framework, can
be calculated from algorithms that do not provide proba-
bilities, e.g., custom algorithms like [22], thus extending
the range of algorithms that can benefit from a statistical
evaluation.

Performance. Calculation of p-values is a computation-
ally intensive process—for each sample z in a class c∈C,
the calculation of a p-value requires computation of a
non-conformity measure for every element in the dataset.
This can be further exacerbated by non-conformity mea-
sures that rely on distances that are complex to compute.
The computational complexity in relation to the number
of the times that the non-conformity measure needs to be
computed is O(C ·N2), where N represents the total num-
ber of samples and C represent the number of classes.
Calculations can be sped up by computing a whole set of
non-conformity scores in one single algorithm run. For
example, SVM used in Drebin [2] can directly supply
the total non-conformity scores for the calculation of one
p-value in only one run of the algorithm, thus reducing
the complexity to O(C ·N). Further optimizations can
be made for algorithms that treat each class separately;
in such a scenario we can run the algorithm just for the
class under analysis.

6 Related Work

Solutions to detect concept drift, specific to security do-
mains, have been proposed [12, 15, 23], in contrast our
framework provides a generic solution which is algo-
rithm agnostic. On the other hand, solutions [6, 7] devel-
oped by the ML community have constrains that are not
suitable for security applications (e.g., retrospective de-
tection of concept drift when the classification decision
has already been made).

Thomas et al. [23] present Monarch a real-time system
that crawls URLs as they are submitted to web services
and determines whether the URLs direct to spam. The
system uses machine-learning to classify URLs as mali-
cious or benign. The authors suggest training the model
continuously to keep classification error low as the na-
ture of malicious URLs keeps evolving. Kantchelian et
al. [12] propose fusing human operators with the un-
derlying machine-learning based security system to ad-
dress concept drift in adversarial scenarios. Maggi et
al. [15] present a machine-learning based system to clas-
sify malicious web applications. They use techniques
specific to web application to detect concept drift and
thus retrain their model to reduce false positives. Mari-

conti et al. [16] show how models decay over time and
propose ways to resist longer. Our model unifies these
techniques as it generalizes to both the area of appli-
cation and machine-learning algorithm used. The pre-
sented model can not only accurately predict when to
retrain a model but also provides a quality estimate of
the decisions made. These results can reduce human in-
tervention and make it more meaningful thus decreasing
the cost of operation. Transcend can be plugged on top of
any such approach to provide a clear separation between
non-drifting and drifting objects.

Deo et al. [5] propose using Venn-Abers predictors
for assessing the quality of binary classification tasks
and identifying concept drift. The Venn-Abers predic-
tors offer automatically well calibrated and probabilistic
guidance to detect change in distribution of underlying
samples. Although useful, the approach has limitations
and cannot draw concrete conclusions on sample clusters
which are outliers. Also, Venn-Abers outputs multiple
probabilities of which one is perfectly calibrated but it
is not possible to know which. Our approach provides
a simple mechanism to compare predictions through p-
values and does not suffer from the discussed shortcom-
ings. CE also works on multi-class prediction tasks,
while this is not currently supported by Venn-Abers pre-
dictors.

Other works try to detect change point detection when
the underlying distribution of data samples changes sig-
nificantly, e.g., in case of evolving malware which is ob-
served as a disruption in ex-changeability [25]. Martin-
gales have often been used to detect drift of multidimen-
sional data sequences using ex-changeability [8, 9]. Prior
works [6, 7] use conformal prediction to detect deviation
of the data sequence from independent and identically
distributed (iid) assumption which could be caused by
concept drift. The drift is measured by creating a martin-
gale function. If the data is not iid, then the conformal
predictor outputs an invalid result. Some p-values as-
signed to the true hypotheses about data labels are too
small (or have another deviation from uniformity), and
this leads to high values of the martingale. However,
this martingale approach does not use p-values assigned
to wrong hypotheses, which is another cause of wrong
classification, e.g., malicious samples being classified as
benign. We consider this information to be important be-
cause in the case of malware evolution, malicious sam-
ples are often specially designed to be indistinguishable
from benign samples, therefore they tend to get high p-
values assigned to wrong hypotheses. Additionally, the
martingale approach uses true labels to study the drift of
data without making any predictions, in contrast our ap-
proach does not have access to true labels and analyses
the predictions made by a given model.

Comparison with Conformal Predictor. Although

conformal evaluator is built on top of conformal predic-
tor (CP), it does not share the same weaknesses as that of
other solutions based on it [6, 7]. Fern and Dietterich10

also show that CP is not suited for anomaly detection as
it outputs a set of labels and hence needs to be modified
to predict quality of predictions. We further highlight the
differences between CP and CE that makes CE better-
suited to the concept drift detection task.

Conformal Predictor [24] (CP) is a machine learning
classification algorithm. It relies on a non-conformity
measure (NCM) to compute p-values in a way similar to
CE. For each classification task, CP builds on such p-
values to introduce credibility—the class, in a classifica-
tion problem, with the highest p-value and confidence—
defined as one minus the class with the second highest
p-value (these metrics are different from CE metrics, see
§ 2.4). The CP algorithm then outputs either a single
class prediction with the identified credibility and con-
fidence, or, given a fixed confidence level 1− ε (where
ε represents the significance level), a prediction set that
includes classes that are above it. This set is proven to
cover the true class with probability not lower than 1−ε.

CE dissects CP metrics and to extract its p-values cal-
culation. The p-values are used together with the out-
put labels provided by the algorithm under evaluation,
to build CE metrics. CP ignores these labels as it tries
to predict them. Conversely, CE uses this information to
provide quality metrics to assess the quality of the encap-
sulated algorithm. This change is of paramount impor-
tance to derive the thresholds (computed by Transcend)
used to accept or reject a prediction.

The posterior use of the labels is a key feature that en-
ables CE to detect concept drift. On the contrary, CP is
designed as a predictive tool making only use of prior in-
formation. Since labels are important pieces of informa-
tion, CE uses them to build its metrics and assessments
(see, § 2.4 and § 3). The labels used by CE are the ones
of the training samples and not the labels of the testing
samples that are unavailable at the time of classification.

7 Conclusions

We presented Transcend—a fully tunable tool for sta-
tistically assessing the performance of a classifier and
filtering out unreliable classification decisions. At the
heart of Transcend, CE’s statistical confidence provides
evidence for better understanding model generalization
and class separation; for instance, CE has been suc-
cessfully adopted to selectively invoke computationally
expensive learning-based algorithms when predictions
choose classes with low confidence [4], trading off per-

10A. Fern and T. Dietterich. “Toward Explainable Uncertainty”.
https://intelligence.org/files/csrbai/fern-slides-1.pdf

formance for accuracy. Our work details the CE metrics
used in [4] and extend it to facilitate the identification of
concept drift, thus bridging a fundamental research gap
when dealing with evolving malicious software.

We present two case studies as representative use cases
of Transcend. Our approach provides sound results for
both binary and multi-class classification scenarios on
different datasets and algorithms using proper training,
calibration and validation, and testing datasets. The di-
versity of case studies presents compelling evidence in
favor of our framework being generalizable.

Availability

We encourage the adoption of Transcend in machine
learning-based security research and deployments; fur-
ther information is available at:

https://s2lab.isg.rhul.ac.uk/projects/ce

Acknowledgments

This research has been partially supported by the
UK EPSRC grants EP/K033344/1, EP/L022710/1 and
EP/K006266/1. We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the
Tesla K40 GPU used for this research. We are equally
thankful to the anonymous reviewers’ comments and
Roberto Perdisci, our shepherd, for their invaluable com-
ments and suggestions to improve the paper. Also,
we thanks Technology Integrated Health Management
(TIHM) project awarded to the School of Mathematics
and Information Security at Royal Holloway as part of
an initiative by NHS England supported by Innovate UK.
We also thank the authors of [2], for their public dataset
used in our evaluation, and Mansour Ahmadi for provid-
ing us the algorithm used in [1].

References
[1] AHMADI, M., ULYANOV, D., SEMENOV, S., TROFIMOV, M.,

AND GIACINTO, G. Novel feature extraction, selection and fu-
sion for effective malware family classification. In Proceedings
of the Sixth ACM Conference on Data and Application Security
and Privacy (New York, NY, USA, 2016), CODASPY ’16, ACM,
pp. 183–194.

[2] ARP, D., SPREITZENBARTH, M., HUBNER, M., GASCON, H.,
AND RIECK, K. DREBIN: effective and explainable detection
of android malware in your pocket. In 21st Annual Network and
Distributed System Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 2014 (2014).

[3] BREIMAN, L. Random Forests. Machine Learning 45, 1 (2001),
5–32.

[4] DASH, S. K., SUAREZ-TANGIL, G., KHAN, S. J., TAM, K.,
AHMADI, M., KINDER, J., AND CAVALLARO, L. Droidscribe:

Classifying android malware based on runtime behavior. In 2016
IEEE Security and Privacy Workshops, SP Workshops 2016, San
Jose, CA, USA, May 22-26, 2016 (2016), pp. 252–261.

[5] DEO, A., DASH, S. K., SUAREZ-TANGIL, G., VOVK, V., AND
CAVALLARO, L. Prescience: Probabilistic guidance on the re-
training conundrum for malware detection. In Proceedings of the
2016 ACM Workshop on Artificial Intelligence and Security (New
York, NY, USA, 2016), AISec ’16, ACM, pp. 71–82.

[6] FEDOROVA, V., GAMMERMAN, A. J., NOURETDINOV, I., AND
VOVK, V. Plug-in martingales for testing exchangeability on-
line. In Proceedings of the 29th International Conference on Ma-
chine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 -
July 1, 2012 (2012).

[7] HO, S. A martingale framework for concept change detection in
time-varying data streams. In Machine Learning, Proceedings of
the Twenty-Second International Conference (ICML 2005), Bonn,
Germany, August 7-11, 2005 (2005), pp. 321–327.

[8] HO, S., AND WECHSLER, H. Query by transduction. IEEE
Trans. Pattern Anal. Mach. Intell. 30, 9 (2008), 1557–1571.

[9] HO, S., AND WECHSLER, H. A martingale framework for de-
tecting changes in data streams by testing exchangeability. IEEE
Trans. Pattern Anal. Mach. Intell. 32, 12 (2010), 2113–2127.

[10] HUBERT, M., AND VANDERVIEREN, E. An adjusted boxplot for
skewed distributions. Computational Statistics and Data Analysis
52, 12 (2008), 5186 – 5201.

[11] KAGGLE INC. Microsoft Malware Classification Chal-
lenge (BIG 2015). https://www.kaggle.com/c/
malware-classification, 2015.

[12] KANTCHELIAN, A., AFROZ, S., HUANG, L., ISLAM, A. C.,
MILLER, B., TSCHANTZ, M. C., GREENSTADT, R., JOSEPH,
A. D., AND TYGAR, J. D. Approaches to adversarial drift.
In AISec’13, Proceedings of the 2013 ACM Workshop on Artifi-
cial Intelligence and Security, Co-located with CCS 2013, Berlin,
Germany, November 4, 2013 (2013), pp. 99–110.

[13] LI, P., LIU, L., GAO, D., AND REITER, M. K. On challenges in
evaluating malware clustering. In Recent Advances in Intrusion
Detection, 13th International Symposium, RAID 2010, Ottawa,
Ontario, Canada, September 15-17, 2010. Proceedings (2010),
pp. 238–255.

[14] LINDORFER, M., NEUGSCHWANDTNER, M., AND PLATZER,
C. MARVIN: efficient and comprehensive mobile app classifi-
cation through static and dynamic analysis. In 39th IEEE An-
nual Computer Software and Applications Conference, COMP-
SAC 2015, Taichung, Taiwan, July 1-5, 2015. Volume 2 (2015),
pp. 422–433.

[15] MAGGI, F., ROBERTSON, W. K., KRÜGEL, C., AND VIGNA,
G. Protecting a moving target: Addressing web application con-
cept drift. In Recent Advances in Intrusion Detection, 12th Inter-
national Symposium, RAID 2009, Saint-Malo, France, September
23-25, 2009. Proceedings (2009), pp. 21–40.

[16] MARICONTI, E., ONWUZURIKE, L., ANDRIOTIS, P.,
DE CRISTOFARO, E., ROSS, G., AND STRINGHINI, G.
Mamadroid: Detecting android malware by building markov
chains of behavioral models. arXiv preprint arXiv:1612.04433
(2016).

[17] PLATT, J., ET AL. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods. Ad-
vances in large margin classifiers 10, 3 (1999), 61–74.

[18] RIDGEWAY, G. The state of boosting. Computing Science and
Statistics (1999), 172–181.

[19] RIECK, K., HOLZ, T., WILLEMS, C., DÜSSEL, P., AND
LASKOV, P. Learning and classification of malware behavior. In
Detection of Intrusions and Malware, and Vulnerability Assess-
ment, 5th International Conference, DIMVA 2008, Paris, France,
July 10-11, 2008. Proceedings (2008), pp. 108–125.

[20] SHAFER, G., AND VOVK, V. A tutorial on conformal prediction.
The Journal of Machine Learning Research 9 (2008), 371–421.

[21] TANG, Y. extreme gradient boosting. https://github.com/
dmlc/xgboost.

[22] TEGELER, F., FU, X., VIGNA, G., AND KRUEGEL, C.
Botfinder: Finding bots in network traffic without deep packet
inspection. In In Proc. Co-NEXT 12 (2012), pp. 349–360.

[23] THOMAS, K., GRIER, C., MA, J., PAXSON, V., AND SONG, D.
Design and evaluation of a real-time URL spam filtering service.
In 32nd IEEE Symposium on Security and Privacy, S&P 2011,
22-25 May 2011, Berkeley, California, USA (2011), pp. 447–462.

[24] V. VOVK, A. G., AND SHAFER, G. Algorithmic learning in a
random world. Springer-Verlag New York, Inc., 2005.

[25] WECHSLER, H. Cyberspace security using adversarial learning
and conformal prediction. Intelligent Information Management
7, 04 (2015), 195.

Appendix A.

0.0 0.2 0.4 0.6 0.8 1.0

Element Kept threshold

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

th
re

sh
ol

d

P-value: Element kept of Unknown Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Multiclass Classification Case Study: Element
kept during the test of the new class. The test elements
belong to a new class so every samples kept will be miss-
classified. The net separation between good and bed per-
formance comes from the perfect classification of train-
ing samples used to derived the thresholds.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Performance above threshold
by P-value

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

(a) Performance of p-value driven threshold
for element above the threshold.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Performance above threshold
by Probability

0.72

0.75

0.78

0.81

0.84

0.87

0.90

0.93

0.96

(b) Performance of probability driven
threshold for element above the threshold.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Performance difference

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c) Performance difference between p-
value and probability for element above the
threshold.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Performance below threshold
by P-value

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.60

(d) Performance of p-value driven thresh-
old for element below the threshold.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Performance below threshold
by Probability

0.510

0.525

0.540

0.555

0.570

0.585

0.600

0.615

(e) Performance of probability driven
threshold for element below the threshold.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Performance difference below threshold

0.24

0.21

0.18

0.15

0.12

0.09

0.06

0.03

0.00

(f) Performance difference between p-value
and probability for element below the
threshold.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Element above threshold
by p-value

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(g) Number of element above the p-value
threshold.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Element above threshold
by probability

0.12

0.16

0.20

0.24

0.28

0.32

0.36

(h) Number of element above the probabil-
ity threshold.

1st QT 2nd QT 3rd QT
Threshold malicious

2n
d

QT
3r

d
QT

Th
re

sh
ol

d
be

ni
gn

Element above threshold difference

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(i) Difference between the number of ele-
ment above the threshold between p-value
and probability.

Figure 6: Binary Classification Case Study [2]: complete comparison between p-value and probability metrics. Across
all the threshold range we can see that the p-value based thresholding is providing better performance than the proba-
bility one, discarding the samples that would have been incorrectly classified if kept.

Prediction:
Ramnit

Prediction:
Lollipop

Prediction:
Kelihos_ver3

Prediction:
Vundo

Prediction:
Kelihos_ver1

Prediction:
Obfuscator.ACY

Prediction:
Gatak

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
es

P-values: Ramnit
P-values: Lollipop
P-values: Kelihos_ver3

P-values: Vundo
P-values: Kelihos_ver1

P-values: Obfuscator.ACY
P-values: Gatak

Figure 7: Multiclass Classification Case Study [1]: P-value distribution for samples of Tracur family omitted from the
training dataset; as expected, the values are all close to zero.

Prediction:
Ramnit

Prediction:
Lollipop

Prediction:
Kelihos_ver3

Prediction:
Vundo

Prediction:
Kelihos_ver1

Prediction:
Obfuscator.ACY

Prediction:
Gatak

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ti
e
s

Probabilities: Ramnit

Probabilities: Lollipop

Probabilities: Kelihos_ver3

Probabilities: Vundo

Probabilities: Kelihos_ver1

Probabilities: Obfuscator.ACY

Probabilities: Gatak

Figure 8: Multiclass Classification Case Study [1]: probability distribution for samples of Tracur family omitted from
the training dataset. Probabilities are higher then zero and not equally distributed across all the families, making the
classification difficult. It is worth noting some probabilities are skewed towards large values (i.e., greater than 0.5)
further hindering a correct classification result.

Ramnit's
 samples

Lollipop's
 samples

Kelihos_ver3's
 samples

Vundo's
 samples

Kelihos_ver1's
 samples

Obfuscator.ACY's
 samples

Gatak's
 samples

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
es

P-values: Ramnit
P-values: Lollipop
P-values: Kelihos_ver3

P-values: Vundo
P-values: Kelihos_ver1

P-values: Obfuscator.ACY
P-values: Gatak

Figure 9: Multiclass Classification Case Study [1]: a new family is discovered by relying on the p-value distribution
for known malware families. The figure shows the amount of conformity each sample has with its own family; for
each sample, there is only one family with high p-value.

Ramnit's
 samples

Lollipop's
 samples

Kelihos_ver3's
 samples

Vundo's
 samples

Kelihos_ver1's
 samples

Obfuscator.ACY's
 samples

Gatak's
 samples

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
es

P-values: Ramnit
P-values: Lollipop
P-values: Kelihos_ver3

P-values: Vundo
P-values: Kelihos_ver1

P-values: Obfuscator.ACY
P-values: Gatak

Figure 10: Multiclass Classification Case Study [1]: probability distribution for samples of families included in the
training dataset. High probabilities support the algorithm classification choice.

