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1 Introduction

1.1 Topic of the work

This paper is an extension of [1]. The topic of this
work is application of Conformal Prediction (CP)
framework of reliable machine learning to big data.
Conformal Prediction was developed in such works
as [2, 3]. Its main advantage is producing prediction
sets that are valid in weak (i.i.d./exchangeability) as-
sumptions. In the case of supervised learning (clas-
sification or regression) the idea of CP is in checking
each hypothesis about the new example’s label on ex-
changeability. This means that the exchangeability of
the whole data sequence extended by this example is
checked.

This has an interpretation in terms of anomaly de-
tection: whether the example (supplied with a hypo-
thetical label) is an anomaly with respect to the train-
ing ones, or not. As we will discuss, the most ques-
tions related to CP can be modelled for the task of
anomaly detection first, and then they will be natu-
rally extended to supervised learning or clustering.
Therefore in this work we concentrate on unsuper-
vised task of anomaly detection of unlabelled in-
stances. Amongst the previous works on conformal
anomaly detection we have to mention[4, 5, 6, 7, 8, 9].

These works did not specifically study the problem
of big data. Here we model the situation when the
data set is so big that CP algorithm can not be calcu-

lated directly, the data set has to split into parts. Fur-
thermore, we assume that different parts of the data
are collected in different places (’sources’), and these
sources are in general case heterogeneous (different in
their distribution), and only the mixture of all these
distributions is the ’true’ distribution that might gen-
erate a testing example. Extending Conformal Predic-
tion for this task is not straightforward because of the
risks to lose the validity and to informative efficiency
of the predictions.

1.2 Application area

Anomaly detection problem can be applied in may ar-
eas. In the context of conformal framework the ar-
eas mostly considered earlier were vessel trajectories
[4, 6, 7] and traces of bots [9].

As a model example, we use a question form the
area of energy engineering. Energy Demand Research
Project (EDRP) provides the data on customer be-
haviour (energy consumption) of gas/electricity using
households. A data instance here is a summary (pro-
file) of behaviour consumption during a large obser-
vation time for an individual household.

This is a kind of a more general problem where the
detection of anomalies is understood as an unusual or
suspicious behaviour of a complex system or its hu-
man users.
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1.3 Plan of the paper

In the background Section 2 we remind the basic no-
tions of Conformal Prediction, with concentration on
validity properties. We discuss both supervised learn-
ing and unsupervised learning (anomaly detection)
tasks and their connection to each other in more de-
tails than in our previous work [1].

In particular, we pay special attention to the choice
of Conformity Measure (CM) that is the core element
of a CP algorithm. It may be based on any machine
learning algorithm, and our preference is k Nearest
Neighbours (kNN) approach.

In Section 3 we address the challenge caused by
big data split to validity and informative efficiency of
Conformal Prediction. Theoretical justification of the
suggested solution is extended from [1] with an infor-
mal motivating example showing its principal idea.

Sections 4 describes organisation of experiments,
which aim to check how the idea works on a set of
real data. Here we mostly deal with the questions of
computational efficiency of experiments.

Section 5 includes brief description of the data set
and its splits, experimental output and its analysis.
There are three principal ways of data splits, different
in the level of modelled homogeneity/heterogeneity.
The part related to the analysis is expanded compared
to [1], including more complete series of experiments
(using versions of kNN CM with several values of k)
and their analysis in several aspects, including influ-
ence of different factors.

The paper is concluded with a discussion section
including plans for the future work. The most inter-
esting of them is related to potential supervised learn-
ing applications.

2 Machine learning background

2.1 Some machine learning problems

In general, the task of machine learning is to say (pre-
dict some property) of a new instance zl+1 based on
existing information about the previous (training) in-
stances z1, . . . , zl of the same nature. Learning means
that the quality (efficiency) of the predictions grows
as the experience (the number of examples analysed
during the training) grows. Usually an instance is rep-
resented as a vector of features and/or labels.

The most popular machine learning problem is
supervised classification. Assume that each instance
zi = (xi , yi) consists of an object (feature vector) x and
a label (usually a scalar) yi . Everything is known ex-
cept the label of a new example. So the task is to
predict a label for a example xl+1 from a given train-
ing set of object x1,x2, . . . ,xl ∈ X supplied with labels
y1, y2, . . . , yl ∈ Y .

Another large area is unsupervised learning with-
out any labels when there are no labels and zi = xi .
This includes such task as clustering and anomaly de-
tection. The clustering question is to assign some la-
bels to all the objects, based on their similarity to each

other. For a new example this will also give a clas-
sification, which of the clusters it is likely to belong
to. The question of anomaly detection is to detect
whether the example is similar to any group of train-
ing examples at all or it is a sort of abnormal one.
Anomaly detection and clustering tasks together or
independently on each other. It can be said that the
anomalies are object that remain after clustering of
the typical objects while anomaly is a thing such that
excluding it from the data set cleans the data makes
the clustering task easier. See [9] for more discussion
of their connection.

Classification an instance as an anomaly may have
several meanings according to the nature of a prob-
lem: new tendency in a data stream, some mistakes in
data collection, suspicious behaviour of an object or
human, reflected in the data. If a normal instance is
classified as anomaly, this is a sort of ’false alarm’ al-
though may reflect some unusual property of it. An-
other kind of error is missing a true anomaly (classi-
fying it as a normal instance).

Normally it is better to keep false alarm rate on
a decided significance level, and to try decrease the
number of second type error, making the method as
sensitive for real anomalies as possible. Limitation on
the false alarm level allows to talk about reliability of
the anomaly detection because otherwise classifying
an instance as an anomaly is not a responsible claim.

A reason why we focus our interest in this work
on anomaly detection is that the problem of anomaly
detection covers the problem of supervised learning
in the following sense. If we try to predict a label
yl+1 for a new example xl+1, this also means that we
would like to fill a gap in the data not in an abnormal
way. If (xl+1, ŷ) looks like an anomaly compared to the
training examples (x1, y1), . . . , (xl , yl), then it is unlikely
that yl+1 = ŷ where yl+1 is the true label. In the con-
text of supervised learning, the usual understanding
of anomaly is the following. A labelled example (a
pair (xi , yi)) is anomalous as far as yi is different from
the label predicted for xi by an (underlying) machine
learning algorithm.

2.2 Conformal Prediction framework

Conformal Prediction [2] is a framework that can
convert practically any machine learning algorithm
for classification or regression into a reliable multi-
prediction algorithm that produces prediction sets
valid in weak (i.i.d.(power) or exchangeability) as-
sumptions about the data generation mechanism.

Conformal anomaly detection was introduced in
[4]. Its principal scheme is given by the equations:

αi = A (zi , {z1, . . . , zi−1, zi+1, . . . , zl+1}) . (1)

p(zl+1) = p(z1, . . . , zl+1) =
card{i = 1, . . . , l + 1 : αi ≤ αl+1}

l + 1
(2)

The principal parameter of the algorithm is a Con-
formity Measure (CM) A that is a measure of informa-
tion distance of an object z and a set U . Its choice
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affects the efficiency of the algorithm which we will
discuss further. Then, p-values measures applicabil-
ity of i.i.d. assumption to the data by testing whether
z1, . . . , zl , zl+1 are likely to be generated by the same
distribution, or this is discarded by the last example
zl+1 being an anomaly.

In other literature such as [2, 6] there is also used
the term Non-Conformity Measure (NCM) which dif-
fers from Conformity Measure in the sign, and corre-
spondingly ≤ is replaced by ≥ in the equation 2. Usu-
ally the CM connects Conformal Prediction frame-
work to one of standard machine learning algorithms
such as Support Vector Machines (SVM), Neural Nets,
Nearest Neighbours, that is called the underlying algo-
rithm.

In the case of supervised learning, p-value is as-
signed to each possible hypothesis y ∈ Y about the la-
bel of the new object

p(y) = p(z1, . . . , zl , (xl+1, y)).

In particular, p-value assigned to the true label yl+1
measures exactly the abnormality of the example

zl+1 = (xl+1, yl+1).

The main advantage of Conformal Prediction is
ability to produce prediction sets with guaranteed
properties of validity in i.i.d. assumption.

For supervised learning, the prediction set is the
set of y such that p(y) is larger than a selected signif-
icance level ε. It is proven [2] to cover the true label
yl+1 with probability at least 1− ε.

In anomaly detection, it is possible to talk about
prediction set of all z such that p(z) = p(z1, . . . , zl) > ε.
It is also guaranteed to cover true zl+1 in case when it
is generated by the same distribution, i.e. it is not an
anomaly.

The size of the prediction set is the measure of ef-
ficiency: the smaller is the set the more informative
is the prediction. It is practically useful that these
predictions are individual, so for some examples they
may be small (more informative) even if for the ma-
jority of testing examples the predictions are not so
definite.

Below we will consider these notions in a more for-
mal way.

2.3 Validity

The validity property states the following. If the se-
quence of examples z1, . . . , zl , zl+1 is generated by an
exchangeable distribution then the probability that
p = p(zl+1) < ε is at most ε. for any significance level
ε. An exchangeable distribution means invariance on
the permutation of the order of examples. This in-
cludes the important case of i.i.d. (power) distribu-
tion meaning that the data examples were generated
independently by an identical mechanism.

The standard output of Conformal Prediction is in
the form of prediction set, where the validity has the

meaning that the prediction set is ’large enough’ in a
statistical sense.

The prediction set in unsupervised task is defined
as:

Rε = {z ∈ Z : p(z) = p(z1, . . . , zl , z) > ε}

Validity implies that Rε covers zl+1 with probabil-
ity at least 1−ε. So zl+1 can be reported as an anomaly
if p(zl+1) < ε because the probability of this event is
below the selected significance level ε. So the validity
property actually allows to set a desired bound on the
false alarm rate (number of mistakes within normal
examples).

In supervised task, the sequence zl+1 = (xl+1, yl+1)
is known partially, the task is to predict yl+1 by xl+1.
The prediction set

Rε = {y ∈ Y : p(y) = p (z1, . . . , zl , (xl+1, y)) > ε} .

Validity implies that this Rε covers the true label
yl+1 with probability at least 1 − ε. This makes the
prediction set reliable: probability of error is limited
by ε, if error is understood as a true label left outside
the prediction set.

2.4 Informative efficiency

In both supervised and unsupervised tasks informa-
tive efficiency is related to size of a prediction set. The
smaller it is, the more informative is the prediction.

In supervised case, it means that more hypothe-
ses about the label of a new data instance are rejected,
therefore the prediction is more definite. In particu-
lar, the prediction of size 1 is called certain, and the
complement to 1 of the smallest significance level for
which this is true is called individual confidence of the
prediction. This notion is applicable directly to con-
formal anomaly detection because the predictions test
are usually infinite.

In unsupervised case, informativeness means
higher sensitivity to abnormality, i.e. classifying more
examples as anomalies, (remind that the prediction
set includes the instances classified as normals).

In more details, efficiency of supervised learning
were discussed in [3] while efficiency of conformal
anomaly detection is discussed in detail in [6, 8].
Some ways to measure efficiency numerically were
presented in these works.

It this paper we will concentrate just on one as-
pect: harm to efficiency caused by parallelisation of
the framework for big data.

2.5 Deviations from validity

If the formula 2 of p-value calculation is modified or
generalised, the first challenge is to keep its validity
property, otherwise the outputs of Conformal Predic-
tion would not be reliable.

To measure validity empirically, one has to see
how much the empirical distribution of p-values devi-
ates from the uniform distribution on [0,1]. A martin-
gale on-line approach to such testing was presented
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in [10] but its focus was on checking exchangeability
of data sets.

Now we are focusing on testing the algorithms in-
stead of data sets. The difference form martingale
is that for us two kinds of deviations are principally
different for us now: if p-values are smaller than ex-
pected this leads to invalidity while having too large
p-values is a less harmful case of low efficiency.

We consider the probability that p ≤ ε. Ideally, it
should be very close to ε, and this is reached in on-
line smooth version of the standard Conformal Pre-
diction [2].

In general, for a fixed significance level ε there are
three practical possibilities:

• Invalidity: P rob{p ≤ ε} > ε, p-value is not a cor-
rect measure of significance.

• Exact validity: P rob{p ≤ ε} = ε, an ideal situa-
tion;

• Conservative validity: P rob{p ≤ ε} < ε, a cause of
undesirable damage to efficiency.

If probability of this event is significantly larger
than ε, this means that there is no actual reliability
of the results. If this probability is essentially smaller
than ε this means the results are reliable but conser-
vative.

Conservativeness is an indirect but important in-
dicator that prediction sets (of non-anomalous ob-
jects) are unnecessarily large. If the allowed level
ε of normal examples classified as anomalies is not
reached, this decreases false alarm level somewhere
below the allowed threshold, but it is very possible
that some true anomalies are also left undetected.

2.6 Conservativeness as lack of informa-
tive efficiency

Note that conservativeness is just one of the possible
causes of low information efficiency (too large predic-
tion sets). Another source of damage to informative
efficiency than a weak choice of the Conformity Mea-
sure (CM) mentioned before.

Studying influence of CM on the efficiency of the
prediction is a more complex question. There are
no definite answer in the case of anomaly detection,
which CM is better, without taking into account the
nature of the problem. It may be reflected in an-
other testing set consisting specially of anomalies, or
in defining a measure on the object space. See [6] for
an example of such comparison.

Another reasons to choice one or another CM may
be related to cluster structure of the prediction set
(number, purity of clusters), see [9] for details.

Therefore we concentrate on conservativeness now
leaving these questions aside this work.

2.7 Assessment of validity and conserva-
tiveness

Above we discussed validity and efficiency related to
a specific significance level ε. It is more convenient
to have a joint parameterless (ε-independent) mea-
sure of validity and conservativeness, aggregating in-
formation about different levels.

Let us observe the distribution of p-values as-
signed to testing examples. Ideally (in the case of
exact validity) it should be uniform. It was formally
proven to be for smoothed version of non-parallelised
Conformal Prediction [2]. Smoothing here means as-
signing a random weight to the cases αi = αl+1 instead
of 1. In this work we do not do special smoothing. For
the big data size there is usually no practical differ-
ence between smoothed and non-smoothed versions,
so it is convenient to get rid of this non-deterministic
element.

We would like here to assess practically how well
this closeness to uniformity is achieved by empirical
distribution of p-values of testing examples.

As the first criterion, we measure Average p-Value
(APV). Averaging of p-value can be understood as a
well as a form of mixing prediction set sizes over dif-
ferent significance levels. It was suggested in [6] as
an efficiency measure on a testing set or a measurable
space of testing feature vectors. We put it now in a
different context: in our check, the testing examples
come from the same distribution as the training ones
(unlike [6] with a testing set intentionally generated
another way). Therefore we know that valid p-values
are distributed uniformly, the expected average value
of APV is 1

2 .
APV criterion may be considered as a uniform av-

eraging of ε-dependent validity checks by ε. This may
be not the best way because in practice only its small
values are usually important. Significance levels typ-
ically used in statistics are no larger than 0.05, some-
times reaching 10−2 or 10−4. Therefore we also con-
sider a modified criterion that is Average Logarithm
p-Value (ALPV). It was suggested in [8] as an alterna-
tive to APV, applicable in same circumstances. This
criterion gives larger weight to small significance lev-
els.For example, if the p-values tend to concentrate
around 1

2 this is not reflected in APV but considered
conservative by ALPV. Its expected value of −1 for
uniform distribution.

2.8 Selection of Conformity Measure

In general, it is expected that CM approximates the
density function of the data distribution. In [3] this
principle was justified for supervised classification
but can be easily adopted to anomaly detection as
well. Further in Sec. 3.8 we will need this property
as well.

The problem of CM selection in the context of
conformal anomaly detection (not classification) was
studied in the paper [6]. In [6] two families of the den-
sity approximating functions were compared by their
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efficiency.

• A Conformity Measure can be based on kernel
density estimation (KDE) by creating a contin-
uous function from the empirical data distri-
bution; a kernel function has to be chosen for
smoothing it. Typically the kernel function is
the density function of a normal distribution.

• Alternatively, local density at a point can be ap-
proximated by nearest neighbours method that
shows how close a point is in average to some
amount of its nearest neighbours in the data set.
Conformity of an example is calculated as the
inverse value of the average distance to k near-
est neighbours (kNN).

Both methods are actually parametric: either the
kernel function needs to be supplied with variance
(’degree of smoothing’) , or the number of neighbours
has to be selected. Experimental comparison in [6]
have shown that with the best parameters both meth-
ods give the results of similar quality.

However, in the case of k nearest neighbours the
method is more robust: the damage to efficiency
caused by its imprecise selection is smaller. Therefore
we consider nearest neighbours method as the prefer-
able one.

Another intuitive reason is that in context of com-
paring conformities kNN k = 1 may be considered as
a ’limit’ case of density estimation as the variance pa-
rameter of the kernel fucntion tends to 0. At the same
time, kNN with k > 1 can not be easily explained in
terms of kernel density estimation. So this family is
in some sense a ’richer’ one.

3 Aggregating data sources

3.1 Big data challenges

Processing big data set a limitation caused by limited
memory or time does usually appear. This happens
because the required time/memory increases in a non-
linear way, therefore splitting the data into some parts
is the only way to fit it. Also there may be physical
or technical reasons requiring parallelisation such as
impossibility to collect all the data in the same place
simultaneously. Usually we can just assume that, for
a concrete algorithm, an upper limit on the data set
size processable at once, is somehow determined by
the power of one processor/storage, and can not be
enlarged.

Parallelising of an algorithm may be exact (pro-
ducing the same result) or approximate, which hap-
pens usually. Some algorithms of machine learn-
ing do have special modifications applicable to big
data. such as Cascade version of Support Vector Ma-
chines [11] which is approximate as well. The princi-
pal challenge is that underlying SVM is using a matrix
of inter-example similarities, so the load of memory is
proportional to the square of the number of training

examples, which puts an essential limit on the num-
ber of examples which may be processed together.

In our work we also model a situation when only
approximate calculation is possible. In the context
of conformal framework, the principal challenge is
caused by its core detail, calculation of Conformity
Measure function A. One of its two arguments is a
whole set which may make calculations much com-
plex. In the example which we prefer to consider,
CM is based on k Nearest Neighbour algorithm, which
also requires a storage of the distance matrix.

In the case of Conformal Prediction, we also wish
to see that reliability of results, guaranteed by valid-
ity properties, is not affected by parallelisation of the
algorithms.

3.2 Modelling of the challenge

In this consideration we try taking into account both
causes for data split. The number of data examples
processed at once is limited by a number h, and we
also assume that data collection was done indepen-
dently by different groups, and it even may be never
stored together. Each of the collecting group may have
its own specialising collecting data of a concrete sub-
type, or related to the collection place.

This means that:

1. in general case it is impossible to make a com-
pletely random split;

2. it would be unfair to restrict us just to one of
these sources, even as an approximation.

The second note is important. In our modelling we
assume that there is no possibility to avoid paralleli-
sation challenge just by using one source of informa-
tion and expectation that it is not a bad approximation
(which in many cases happens in reality).

Formally, we assume that:

• the training set U = {z1, . . . , zl} is split into two
parts of equal size called U1 and U2; this in gen-
eral case is not always a random split;

• the true data distribution P is a mixture of P1
and P2,

P =
P1 + P2

2
;

• the data source U1 is randomly generated by P1;

• the data source U2 is randomly generated by P2.

• the testing example zl+1 is generated by the
mixed distribution P ;

• simultaneous access to the sources U1 and U2 is
impossible.

The task is to estimate the p(zl+1) with respect to the
union of U1 and U2 as the training example.
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3.3 Averaging Tests for randomness (AT)

Assume that p1 and p2 are calculated for the same test-
ing example but for different training sets. So Equa-
tion 2 is replaced by two:

p1 =
card

{
i = 1, . . . , l2 , l + 1 : A (zi ,U1) ≤ A (zl+1,U1)

}
l
2 + 1

(3)

p2 =
card

{
i = l

2 + 1, . . . , l, l + 1 : A (zi ,U2) ≤ A (zl+1,U2)
}

l
2 + 1

(4)
The straightforward way is to approximate p-value

by the average of two:

pAT =
p1 + p2

2
. (5)

This method seems to be a natural way of distributed
calculation of p-value but it has no guarantees of va-
lidity.

If the split is heterogeneous, then the problem of
invalidity can appear as well. This can be shown
on the following example. Assume that the sources
are completely heterogeneous: P1 and P2 distributions
having non-overlapping support sets. We can also
imagine that they are so disjointed that each example
generated by P1 has the minimal possible p-value 1

l+1
with respect to the training set generated by P2 and
vice versa. This will lead to averaged p-value of a new
P -generated example being approximately uniformly
distributed on

(
0, 1

2

)
instead of (0,1) that is a strong

form of invalidity1.

3.4 Maximizing Tests for randomness
(MT)

The easy way to achieve guaranteed validity is to take
the maximum of ’partial’ p-value instead of the aver-
age:

pMT = max{p1,p2} (6)

It also has a natural meaning: a new example z is typ-
ical with respect to the union of two sources if is typi-
cal with respect to at least one of them.

However, it such approach is rough and p-values
produced this way are likely to be very conservative,
especially if the distributions are close to each other.
For example, in completely homogeneous case, when
each of p1 and p2 is lucky to be valid itself as an ap-
proximation of p, max{p1,p2} will be just larger than
p1 or p2 of without any use for validity.

3.5 Maximizing Conformities (MC)

The suggested solution is to correct the maximising
approach by moving the maximization procedure one

step back. Instead of maximizing the p-values them-
selves, let us maximize the estimates of new example’s
conformity.

The aggregated p-value is defined by the following
equations

pMC = p̃ = (p̃1 + p̃2)/2 (7)

p̃1 =
card

{
i = 1, . . . , l2 + 1 : A (zi ,U1}) ≤ A (z,U1,U2)

}
l
2 + 1

(8)

p̃2 =
card

{
i = 1, . . . , l2 + 1 : A (zi ,U2}) ≤ A (z,U1,U2)

}
l
2 + 1

(9)
where

A(z,U1,U2) = max {A(z,U1),A(z,U2)} .

A theoretical justification of this approach and is
presented further, including a more general from of
several sources.

For practical applications, we have to not that
this method is not memory-consuming, because it is
enough to store conformity scores, not the whole data
examples. Also, there is no need to keep them in the
original order, this can be replaced by storage of their
overall distribution.

3.6 Motivating example

Consider now the following space:

X = {1,2,3,4,5,6}

There are two big data sources U1 and U2 of equal
weight with the following data distributions:

P1 = (0.2,0.6,0.2,0.0,0.0,0.0)

P2 = (0.0,0.0,0.0,0.2,0.4,0.4)

The whole distribution is:

P = (0.1,0.3,0.1,0.1,0.2,0.2)

Assume that the new example is xn+1 = z = 3. If the
Conformity Measure corresponds to the local density,
the p-values with respect to U1 and U2 are

p1 = P1{x : A(x,U1) ≤ A(z,U1)} = P1{x : P1(x) ≤ P1(z)}

= 0.2 + 0.2 = 0.4

p2 = P2{x : A(x,U2) ≤ A(z,U2)} = P2{x : P1(x) ≤ P2(z)} = 0

and the true p-value with respect to the whole data set
is

p = P {x : P (x) ≤ P (z)} = 0.1 + 0.1 + 0.1 = 0.3

while its straightforward approximation is

p̂ = (p1 + p2)/2 = 0.2

which may lead to a falsely confident rejection of the
hypothesis that the new example is not an anomaly.

1In particular, it is limited from above by
1 + 1

l+1
2

=
1
2

+
1

2l + 2
which definitely contradicts the validity for any ε > 1

2 + 1
2l+2
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3.7 Idea of Correction

How to correct this? The idea is to replace the way of
approximation as follows:

p̃ = (p̃1 + p̃2)/2

where

p̃1 = P1{x : A(x,U1) ≤ A(z,U1,U2)}

p̃2 = P2{x : A(x,U2) ≤ A(z,U1,U2)}

and A(z,U1,U2) means the largest of A(z,U1) and
A(z,U2).

In the example above it would work as follows:

A(z,U1,U2) = max{0.2,0.0} = 0.2

p̃1 = 0.2 + 0.2 = 0.4

p̃2 = 0 + 0 + 0 + 0.2 = 0.2

p̃ = (0.4 + 0.2)/2 = 0.3

which is a correct approximation.

3.8 Justification of MC approach

In this section we assume that data U comes from
sources U1, . . . ,Uk with weights (contribution percent-
ages) w1, . . . ,wk .

Inspired by the logic of the work [3], we consider
true data distribution as a limit (asymptotical) case of
the empirical distribution, and the local density as a
limit case of (the optimal) conformal density. We are
analysing some asymptotical tendency, assuming that
the amount of data in each of the sources is represen-
tative enough, so the difference between true and em-
pirical distribution is low enough.

We assume that the ’full’ distribution is split into
sources by weighted formula:

P =
w1P1 + · · ·+wkPk
w1 + · · ·+wk

The data in a source Ui is generated by an i.i.d. distri-
bution P ∗i (the star means a power distribution here),
while testing examples are generated by P .

We also assume that conformity score A(x,Ui) is
an ’optimal’ one (in the sense of [3]) i.e. it is an
equivalent of the density function Pi(x). Note that CM
are equivalent if they are reducible to each other by
monotonic transformation. Therefore such methods
as k Nearest Neighbours and Kernel Density Estima-
tion are asymptotically suiTable because they are orig-
inally created in order to approximate a monotonic
transformation of the local density function.

Proposition 1. Assume that the space X is discrete
(finite). Each bag Ui is big and representative for Pi
and the Conformity Measure A(x,U ) is equivalent to
the local density so the difference between Pi and the
uniform distribution on Ui is negligible. Then a valid
p-value is

p̃(z) =
k∑
j=1

wj p̃j (z)

where

p̃j (z) = Pj
{
x : wjPj (x) ≤ k

max
i=1
{wiPi(z)}

}
.

3.9 Proof of Proposition 1

We will show that this p̃(z) can be obtained as the re-
sulting p-value of another Conformal Predictor.

We can sssume that an example x is generated in
two steps: first, i(x) ∈ {1, . . . , k} is generated accord-
ing to the distribution W = (w1, . . . ,wk), then x itself is
generated by Pi(x).

Set the Conformity Measure to

A((i,x),U ) = wiPi(x)

(using our assumption that Pi is recoverable from Ui
with required precision). In this case the correspond-
ing conformal p-value is calculated as:

p((i, z)) =
k∑
j=1

wjPj
{
x : wjPj (x) ≤ wiPi(z))

}

≤
k∑
j=1

wjPj

{
x : wjPj (x) ≤ k

max
i=1
{wiPi(z)}

}
= p̃(z)

The last estimate does not depend on i and can be
used as a valid p-value for z.

4 Experimental settings

4.1 Data collection

The data are taken from Energy Demand Research
Project (EDRP)2

representing behaviour (energy consumption) by
the customers (households).

We use data for 8,703 households using electricity
and gas. For each of the household some social pa-
rameters (such as number of rooms, tenants, level of
income) are provided. They are summarized by in-
cluding each of the households into one of 6 Acorn
categories. In a part of our experiments we will use
these Acorn categories as a way of data split, mod-
elling coming the data from heterogeneous sources.

2 The data were provided by: AECOM Building Engineering, Energy Demand Research Project: Early Smart Meter Trials, 2007-2010.
Colchester, Essex: UK Data Archive [distributor], November 2014. SN: 7591.
Energy Demand Research Project: Early Smart Meter Trials, 2007-2010, UKDA study number:7591.
Principal Investigator: AECOM Building Engineering
Data Collector: Centre for Sustainable Energy.
Sponsor: Department of Energy and Climate Change.
Distributed by: UK Data Archive, University of Essex, Colchester.
November 2014.
http://doc.ukdataservice.ac.uk/doc/7591/mrdoc/UKDA/UKDA_Study_7591_Information.htm
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The data set provides the consumption data in
two forms: detailed information about energy usage
in each half-hour during several months, and a brief
summary (so called metadata). For the aims of this
work, we use only the second representation. 8 nu-
merical features were taken from the metadata sum-
mary. They are listed below:

1. Inclusive number of days between first and last
advances

2. Lowest advance value

3. Highest advance value

4. Average advance value

5. Number of advances expected based on feature
1

6. Number of available advances

7. Ratio of features 5 and 6

8. Time of use identifier

We will use these features for learning, and in some
experiments for data splitting as well.

These features are preprocessed by converting into
logarithmic scale and standalising (linear rescaling to
equal average and variance).

4.2 Data split

We consider three ways of splitting the data, wish the
level of heterogeneity step wisely increasing:

1. Random (or homogeneous) split (Table 4).

2. Split by Acorn category (Table 5).

3. Split by one of the features, using its median
value as a threshold (Table 6). 3

The last way of splitting definitely introduces hetero-
geneity by splitting the object vector space into two
parts. As for Acorn categories, they are expected to
have different distributions, but the level of their over-
lapping is not known initially.

The original sizes of Acorn categories are: 1)2982
2)370 3)2855 4)1162 5)1316 6)18. Therefore some
of them are not used, others taken together to have
enough number of examples.

4.3 Inductive mode

To make calculations more efficient for big data, we
apply so called Inductive Conformal Predictor (ICP) [2].
Its scheme is given in Table 1. A part of data called
proper training set is left aside the learning. It is used
only in calculation conformities of the remaining cali-
bration examples. In an equivalent interpretation, in-
ductive mode may be considered as a sort of the stan-
dard (Transductive) CP where proper training set is

a sort of algorithm parameter, while the Conformity
Measure depends only on the example itself. How-
ever we still may need the limitation of its size. In this
version, the most time-consuming set is calculation of
the distance matrix, all the others are relatively small.

4.4 Distributed computing details

In our experiments we assume that the data set is split
into two sources of equal size. Each of them may have
its own distribution, however we assume within one
source the order of examples is random. A number h
is the limit on the training set size. For convenience,
we assume that this number is the limitation both for
the proper training set size, for the calibration set size,
and for the number of testing examples taken from
each of the sources. This setting is summarised in Ta-
ble 2.

We compare three approaches of aggregation:

1. Averaging Tests (AT), Sec. 3.3;

2. Maximizing Tests (MT), Sec. 3.4;

3. Maximizing Conformities (MC), Sec. 3.5.

In each of them, Inductive Confidence Machine (as
presented in Table 1) has to be run twice for each of
the testing examples.

4.5 Conformity Measure

For calculation of conformities we use k Nearest
Neighbours method (with a large number of neigh-
bours). This choice was discussed earlier in Sec-
tions 2.8,3.8.

We try the following values of the parameter k:
10,30,100,300. As mentioned before, the parame-
ter may reflect natural specific of the problem or an
aim of anomaly detection, therefore we consider all of
them as equally reasonable. Usually larger k in near-
est neighbours anomaly detections reflects more ’cen-
tralised’ understanding of what is normal (not anoma-
lous) data behaviour, expectation to have only few
typical patterns (clusters).

4.6 Measuring deviations from validity

For measuring deviations we use ε-free criteria earlier
presented in Section 2.5. Table 3 gives a short sum-
mary of how they should be interpreted.

Note that validity in sense of this Table does not
imply validity for any ε. It just means that invalidity
is invisible with this way of its measurement. There-
fore, if invalidity is shown just by one of two criteria
(APV, ALPV), it is still detected. However, one may
consider in this situation APV-invalidity more tolera-
ble, expecting that it is related to rarely used signifi-
cance levels ε.

Remind also that keeping validity is strictly the
first priority. Conservativeness is undesirable but it

3Splits by features 2 and 8 are not included because of impossibility of doing split the same way. This is due to their distribution (too
many equal values).
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does not affect the validity, so the goal is only in its
minimisation where possible.

5 Experimental results

5.1 Output

The data was selected according to Table 2. All the
subsets mentioned above are selected randomly, and
the results are averaged over 50 random seeds.

If the ’size’ is set to h (1000 or 500) this means that:

• the first ICP learns on h proper training and h
calibration examples form the first source;

• the second ICP learns on h proper training and
h calibration examples form the second source;

• h testing examples are taken from the first
source, and h testing examples are taken from
the second source;

• two ICPs assign p-values (p1 and p2 respectively)
to each of 2h testing examples;

• these p-values are aggregated to p by one of
three rules (AT, MT, MC).

The output of experiments is presented in Ta-
bles 4,5,6 and in Figure 1 in graphical form.

Below we analyse the experimental results from
these Tables.

5.2 Effect of data split

For homogeneous split (Table 4) AT approach is (up
to the precision) exactly valid in terms of APV. How-
ever AT-ALPV in all cases is slightly smaller than -1,
this still shows slight conservativeness concentrated
for small levels of significance. This may be the topic
of a future special study, concentrated on homoge-
neous case.

In the other experiments (Tables 5 and 6) we have
to analyse invalidity effects for AT. Recall that inva-
lidity means that AT-APVs are smaller than 1

2 or AT-
ALPVs are smaller than −1. In Table 6 these devia-
tions are much larger, because these splits was done
in a more radically way, forced to be heterogeneous,
while in Table 5 there are more natural, practical
splits.

Comparing the splits from Table 6 to each other,
we can see that for some of the features (1,2,5) the de-
viations are larger than for the others. This indirectly
shows the importance of these features in terms their
high influence on the other features. Features (4,7)
with relatively small deviation are more random and
isolated from the others.

5.3 Effect of merging approach

As it is seen from Table 4, in case of a purely homo-
geneous (random) split the best way of aggregating p-
values is just averaging them (AT), the two others are
more conservative.

Two other Tables 5 and 6) contain 36 comparisons
of AT, MT and MC approaches. They show is follow-
ing:

• AT is invalid in all the experiments. This is
caught by all 36 AT-APV being smaller than 0.5,
and in 31 experiments is also confirmed by AT-
ALPV being smaller than -1.

• MT and MC are conservatively valid in all the
experiments.

• the conservativeness of MC is smaller than MT
in 30 experiments, equal (up to the precision) in
2 experiments, and larger in 4 experiments (by
APV); smaller in 34 experiments and larger in 2
(by ALPV).

5.4 APV and ALPV criteria

As discussed above, ALPV criterion gives preference
to small values of the significance level, because such
values are usually applied in the practice. So devia-
tions according to ALPV are in principle more critical.

Let us summarise the points where the conclusions
slightly differ for these two criteria.

• In homogeneous case, ALPV was more sensitive
in catching conservativeness, while APV did not
catch any deviation from exact validity.

• On the other hand, in catching invalidity (as
seen in heterogeneous case) APV is stronger.

• Being more sensitive for conservativeness,
ALPV better shows advantages of MC over MT
in decreasing its level.

All this reflects that the damage from conserva-
tiveness is more concentrated in small significance
levels, when CP is distributed for big data.

5.5 Effect of CM choice

This work concentrates on the effects of conservative-
ness and does not aim to answer in general the ques-
tion which CM is better for the specific problem of
anomaly detection. As mentioned above, the full an-
swer actually can be done based either on an addi-
tional testing set of known anomalies, or on a measure
on the whole objects space, which may depend on the
physical meaning of the data.

Here we just make preliminary notes about influ-
ence of the parameter k (number of nearest neigh-
bours) on the conclusion. Usually the larger this num-
ber is, the more centered/unified is the notion of nor-
mal (not abnormal) behaviour, less splitter into sepa-
rate behaviour types.

• In homogeneous case (Table 4), conservativeness
(of AT) increases for the small values of neigh-
bour number k.

• In heterogeneous case (Tables 5-6), validity (of
AT) is also a larger problem for small k.
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• Conservativeness of MT is larger for small k
when the split is moderately heterogeneous (Ta-
ble 5) and for large k when the split is more het-
erogeneous (Table 6).

• Advantage of replacing MT by MC is smaller for
large k.

6 Discussion

6.1 Conclusion

In this work we suggest a MC way of aggregation of p-
values for Conformal Prediction that is the best mid-
dle way between invalid averaging and conservative
maximization of partial p-value obtained from differ-
ent data sources. This method is applicable on big and
heterogeneously split data.

It advantage was shown in Section 3 theoretically
in an asymptotical sense, and confirmed on the ex-
perimental part on real data. The validity property is
kept, while the conservativeness is essentially smaller
than for aggregating p-values by maximizing them in
most of the cases.

6.2 Future work

For the future work, we can mention the following
points.

First, the general case presented in Proposition 1
(see Section 3.8) is applicable as well to a more gen-
eral case of several sources of different size, this also
is interesting to be checked practically.

Second, the area of application used in this paper
was detection of anomalies behaviour of households.
An interesting related area where these ideas may be
applied in the future is growing area of internet of
things such as medical sensors. Anomaly behaviour
of users is an actual thing to be detected. The practice
shows that the alarm/alert criteria have to be based
on the analysis of essential data collections, otherwise
they may be too approximate in a specific patient’s sit-
uation.

Third, it was discussed in the work that this frame-
work is transferrable from anomaly detection to su-
pervised learning where validity of prediction sets is
important as well. This opens many more applica-
tions. But there is a challenge of the following type.
In a supervised learning task, the validity and con-
servativeness is determined by p-values assigned to
true hypotheses about the labels of new data exam-
ples. It can be measure by analogy to this paper, but
what about hypotheses assigned to wrong hypotheses?
The conformal supervised learning is the more effi-
cient the smaller are these p-values. The best situation
is when p-values for all hypotheses except the true
one are small (close to 0). This property may be also
affected on the aggregated stage, where the p-values
tend to increase, so theoretical and/or experimental
validation has to ensure that it is not lost.
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Average p-Value Average Logarithm p-Value Interpretation

< 1
2 < −1 invalid

= 1
2 = −1 valid and efficient

> 1
2 > −1 valid but conservative

Table 3: Understanding the results of evaluation
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Size Split CM AT MT MC
1000 Random k = 300 APV 0.500 0.509 0.511

Random kNN ALPV -0.992 -0.964 -0.965
1000 Random k = 100 APV 0.500 0.513 0.512

Random kNN ALPV -0.993 -0.958 -0.971
1000 Random k = 30 APV 0.500 0.520 0.519

Random kNN ALPV -0.993 -0.944 -0.953
1000 Random k = 10 APV 0.500 0.530 0.529

Random kNN ALPV -0.989 -0.918 -0.926

Table 4: Results: random (homogeneous) split

Size Split CM AT MT MC
500 Acorn category 1 k = 300 APV 0.494 0.524 0.525

Acorn category 3 kNN ALPV -0.992 -0.929 -0.942
500 Acorn category 1 k = 100 APV 0.495 0.524 0.524

Acorn category 3 kNN ALPV -0.991 -0.926 -0.935
500 Acorn category 1 k = 30 APV 0.491 0.532 0.530

Acorn category 3 kNN ALPV -0.998 -0.914 -0.929
500 Acorn category 1 k = 10 APV 0.489 0.536 0.534

Acorn category 3 kNN ALPV -1.004 -0.905 -0.917
1000 Acorn categories 1,5 k = 300 APV 0.498 0.516 0.517

Acorn categories 3,4 kNN ALPV -0.997 -0.956 -0.957
1000 Acorn categories 1,5 k = 100 APV 0.496 0.520 0.519

Acorn categories 3,4 kNN ALPV -1.001 -0.947 -0.961
1000 Acorn categories 1,5 k = 30 APV 0.495 0.525 0.523

Acorn categories 3,4 kNN ALPV -1.002 -0.936 -0.947
1000 Acorn categories 1,5 k = 10 APV 0.494 0.532 0.531

Acorn categories 3,4 kNN ALPV -0.999 -0.915 -0.924
1000 Acorn categories 1,4 k = 300 APV 0.495 0.522 0.522

Acorn categories 3,5 kNN ALPV -1.000 -0.941 -0.947
1000 Acorn categories 1,4 k = 100 APV 0.492 0.525 0.523

Acorn categories 3,5 kNN ALPV -1.005 -0.936 -0.950
1000 Acorn categories 1,4 k = 30 APV 0.491 0.528 0.527

Acorn categories 3,5 kNN ALPV -1.006 -0.928 -0.938
1000 Acorn categories 1,4 k = 10 APV 0.491 0.533 0.532

Acorn categories 3,5 kNN ALPV -1.004 -0.910 -0.918

Table 5: Results: split by categories
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Size Split CM AT MT MC
1000 Low feature 1 k = 300 APV 0.378 0.542 0.518

High feature 1 kNN ALPV -1.215 -0.812 -0.948
1000 Low feature 1 k = 100 APV 0.363 0.528 0.510

High feature 1 kNN ALPV -1.244 -0.840 -0.962
1000 Low feature 1 k = 30 APV 0.365 0.529 0.505

High feature 1 kNN ALPV -1.255 -0.848 -0.976
1000 Low feature 1 k = 10 APV 0.352 0.522 0.503

High feature 1 kNN ALPV -1.299 -0.879 -0.986
1000 Low feature 3 k = 300 APV 0.364 0.518 0.507

High feature 3 kNN ALPV -1.253 -0.888 -0.980
1000 Low feature 3 k = 100 APV 0.354 0.512 0.501

High feature 3 kNN ALPV -1.276 -0.902 -0.991
1000 Low feature 3 k = 30 APV 0.340 0.508 0.500

High feature 3 kNN ALPV -1.320 -0.925 -0.989
1000 Low feature 3 k = 10 APV 0.318 0.504 0.500

High feature 3 kNN ALPV -1.397 -0.954 -0.989
1000 Low feature 4 k = 300 APV 0.446 0.522 0.506

High feature 4 kNN ALPV -1.090 -0.895 -0.971
1000 Low feature 4 k = 100 APV 0.411 0.510 0.502

High feature 4 kNN ALPV -1.158 -0.924 -0.990
1000 Low feature 4 k = 30 APV 0.393 0.507 0.501

High feature 4 kNN ALPV -1.210 -0.945 -0.987
1000 Low feature 4 k = 10 APV 0.369 0.503 0.501

High feature 4 kNN ALPV -1.283 -0.971 -0.990
1000 Low feature 5 k = 300 APV 0.378 0.542 0.518

High feature 5 kNN ALPV -1.215 -0.812 -0.948
1000 Low feature 5 k = 100 APV 0.363 0.528 0.510

High feature 5 kNN ALPV -1.244 -0.840 -0.962
1000 Low feature 5 k = 30 APV 0.365 0.529 0.505

High feature 5 kNN ALPV -1.255 -0.848 -0.976
1000 Low feature 5 k = 10 APV 0.352 0.522 0.503

High feature 5 kNN ALPV -1.299 -0.879 -0.986
1000 Low feature 6 k = 300 APV 0.390 0.560 0.514

High feature 6 kNN ALPV -1.189 -0.769 -0.952
1000 Low feature 6 k = 100 APV 0.360 0.535 0.509

High feature 6 kNN ALPV -1.243 -0.815 -0.962
1000 Low feature 6 k = 30 APV 0.355 0.532 0.503

High feature 6 kNN ALPV -1.279 -0.827 -0.986
1000 Low feature 6 k = 10 APV 0.342 0.524 0.502

High feature 6 kNN ALPV -1.312 -0.856 -0.990
1000 Low feature 7 k = 300 APV 0.465 0.556 0.538

High feature 7 kNN ALPV -1.065 -0.861 -0.914
1000 Low feature 7 k = 100 APV 0.436 0.520 0.532

High feature 7 kNN ALPV -1.109 -0.922 -0.920
1000 Low feature 7 k = 30 APV 0.425 0.516 0.523

High feature 7 kNN ALPV -1.147 -0.940 -0.934
1000 Low feature 7 k = 10 APV 0.415 0.515 0.517

High feature 7 kNN ALPV -1.178 -0.942 -0.946

Table 6: Results: split by features
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Figure 1: Chart sorted by ALPV for MT conservativeness excess
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