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ABSTRACT
There has been a considerable amount of interest in recent years

in the problem of workflow satisfiability, which asks whether the

existence of constraints in a workflow specification means that it is

impossible to allocate authorized users to each step in the workflow.

Recent developments have seen the workflow satisfiability problem

(WSP) studied in the context of workflow specifications inwhich the

set of steps may vary from one instance of the workflow to another.

This, in turn, means that some constraints may only apply to certain

workflow instances. Inevitably, WSP becomes more complex for

suchworkflow specifications. In this paper, we present the first fixed

parameter algorithms to solve WSP for workflow specifications of

this type. Moreover, we significantly extend the range of constraints

that can be used in workflow specifications of this type.
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1 INTRODUCTION
Many businesses use computerized systems to manage their busi-

ness processes. A common example of such a system is a workflow

management system which is responsible for the co-ordination and

execution of steps in a business process. A business process may be

executed many times and by different users. However, the structure

of the process is fixed and may be defined by a set of steps that

must be performed in a particular sequence. In addition, we may

wish to impose some form of access control on the execution of a

business process, limiting which users may perform which steps.

This control may take the form of an authorization policy, which

defines which users are authorized to perform which steps, and au-

thorization constraints, which limit the combinations of users that

may perform certain sets of steps in the business process. A simple

form of constraint could prohibit the same user from performing

two (or more) particular security-sensitive steps.
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The structure of a business process or workflow need not be

linear. There may be subprocesses that can be performed in parallel,

or there may be subprocesses that are mutually exclusive (and only

one of the subprocesses is executed in a particular instance of the

workflow). Thus, the steps executed in a workflow may vary from

one instance to another. Moreover, there may be constraints that

only apply when certain subprocesses are executed. Basin, Burri

and Karjoth introduced a mechanism for modeling such constraints

using release points [3]. Informally, release points allow a constraint

to be “switched off” when some given points of an instance work-

flow are reached. In particular, when different release points are

located in different mutually exclusive subprocesses, it is possible

to encode conditional constraints.

Determining whether a workflow specification is satisfiable – in

the sense that there exists an allocation of authorized users to steps

such that all constraints are satisfied – is an important question. An

algorithm for deciding the so-called workflow satisfiability question

(WSP) is important from the point of view of static analysis of

workflow specifications and for workflow management systems in

which users select which steps to execute [10, Section 2.2]. However,

most work on WSP has assumed that the set of steps is the same

for all workflow instances. The exception is the work of Crampton

and Gutin [10], who introduced a simple language for workflow

composition, to model workflows with parallel and exclusive-or

branching. However, their work does not consider the effect of

release points on satisfiability. Conversely, the work of Basin et al.

does not provide an exact algorithm for solving the enforcement

process existence (EPE) problem, a problem essentially equivalent

to WSP in the presence of release points. The heuristic algorithm

developed by Basin et al. to solve the EPE problem produces good

results “when the set of users is large and the static authorizations

are equally distributed among them”. It is unclear whether the

requirement that static authorizations be equally distributed is

likely to hold in practical settings.

In this paper, we extend the work of Crampton and Gutin [10],

who introduced a simple language for composing workflows and

solving WSP for workflows specified using this language, to incor-

porate release points. We then extend the definition of constraint

satisfaction, relative to a particular execution of the steps in such

a workflow, in the presence of release points. Finally, we develop

fixed-parameter algorithms that solve WSP for workflows incor-

porating release points, thereby providing the first results in this

area. Moreover, our notion of constraints with release points is a

significant generalization of that used by Basin et al.

In the remainder of this section we introduce relevant notation,

terminology and background material. In Section 2, we define the

notion of a compositional workflow with release points, extending

the notion of constraint satisfaction accordingly. In Section 3, we

describe our method for solving WSP and provide an analysis of its
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complexity. We briefly discuss related work in Section 4. The paper

concludes with a summary of our contributions and our ideas for

future research in this area.

1.1 Notation and Terminology
A directed graph (digraph for short) is a pair G = (V ,E), where V
is the set of vertices, and E ⊆ V ×V is the set of edges. A directed

acyclic graph (DAG for short) is a digraph which does not contain

any directed cycle, i.e. no sequence (u0,u1 . . . ,uk−1,u0) such that

each pair of consecutive vertices belongs to E. For u ∈ V , we define

the in-neighborhood of u to be the set N− (u) = {t ∈ V |(t ,u) ∈ E};
the in-degree of u is the size of its in-neighborhood. Similarly, the

out-neighborhood of u is the set N+ (u) = {w ∈ V |(u,w ) ∈ E} and
the out-degree of u is the size of its out-neighborhood. A vertex

of in-degree 0 is called a source, while a vertex of out-degree 0 is

called a sink. For S ⊆ V , we denote by G[S] the induced subgraph
(S,E ∩ (S ×S )). By abuse of notation, we will sometimes writeG \S
as a shortcut for G[V \ S]. For more information about graphs and

DAGs, we refer the reader to [2, 13].

Sometimes, it is convenient to represent a DAG with a partial

order on its vertices. Indeed, we may write u ≤ v for u,v ∈ V
whenever u = v or there exists a directed path from u to v . By
extension, we may write u < v if u ≤ v and u , v .

For any positive integer n, let [n] = {1, . . . ,n}. An ordered se-

quence σ = (v1, . . . ,vq ) of distinct vertices of V is called a linear

subextension of G iff for every i, j ∈ [q], vi ≤ vj implies i ≤ j. If σ
contains all vertices ofV , then we say that σ is a linear extension of

G.
Many decision problems take several parameters as input. It

can be instructive to consider how the complexity of the problem

may change if we assume one or more of those parameters is small

relative to the others. The purpose of multivariate analysis of the

complexity of a problem is to obtain efficient algorithms when

the chosen parameters take small values in practice. We say that a

decision problem is fixed-parameter tractable (FPT) if there exists an

algorithm that decides if an instance is positive inO ( f (k )p (n)) time

for some computable function f and some polynomial p, where n
denotes the size of an instance, and k is a parameter of the instance.

Accordingly, we will call such an algorithm an FPT algorithm. For

more details about parameterized complexity, we refer the reader

to the monographs of Downey and Fellows [14] and Cygan et al.

[12].

1.2 The workflow satisfiability problem
A workflow specification is defined by a directed acyclic graphG =
(S,E), where S is the set of steps to be executed, and E ⊆ S × S
defines a partial ordering on the set of steps in the workflow, in the

sense that (s1, s2) ∈ E means that step s1 must be executed before

s2 in every instance of the workflow. Note that the order is not

required to be total, so the exact sequence of steps may vary from

instance to instance. In addition, we are also given a set of users

U and an authorization policy A ⊆ S ×U , where (s,u) ∈ Ameans

that user u is authorized to execute step s . A workflow specification

G = (S,E) together with an authorization policy is called aworkflow
schema. Throughout the paper, we will assume that for every step

s ∈ S , there exists some user u ∈ U such that (s,u) ∈ A.

A workflow constraint (T ,Θ) limits the users that are allowed

to perform a set of steps T in any execution of the workflow. In

particular, Θ identifies authorized (partial) assignments of users to

steps inT , i.e. Θ is a set of functions fromT toU . A (partial) plan is

a function π : S ′ → U , where S ′ ⊆ S . A plan π : S → U represents

an allocation of steps to users. The workflow satisfiability problem

(WSP) is concerned with the existence or otherwise of a plan that

is authorized and satisfies all constraints.

More formally, let π : S ′ → U , where S ′ ⊆ S , be a plan. Given
T ⊆ S ′, we write π |T to denote the function π restricted to domain

T ; that is π |T : T → U is defined by π |T (s ) = π (s ) for all s ∈ T .
Then we say π : S ′ → U satisfies a workflow constraint (T ,Θ) if
T ⊈ S ′ or π |T ∈ Θ.

In practice, we do not define a constraint by giving the fam-

ily of functions Θ extensionally, as the size of such set might be

exponential in the number of users and steps. Instead, we will as-

sume that constraints have “compact" descriptions, in the sense

that it takes polynomial time to test whether a given plan satisfies

a constraint. This is a reasonable assumption, as all constraints of

relevance in practice satisfy such a property. For instance, the two

most well-known constraints are perhaps binding-of-duty (BoD) and

separation-of-duty (SoD). The scope of these constraints is binary:

a plan π satisfies a BoD constraint ({s1, s2},=) iff π (s1) = π (s2);
and π satisfies an SoD constraint ({s1, s2},,) iff π (s1) , π (s2). A
natural generalization of these constraints are atmost and atleast
constraints, in which the scope may be of arbitrary size, and the

definition of such constraints includes an additional integer k .
Given T ⊆ S , a plan satisfies atmost(T ,k ) (resp. atleast(T ,k )) iff
|π (T ) | ≤ k (resp. |π (T ) | ≥ k).

User-independent constraints generalize all these forms of con-

straints [6]. Informally, such a constraint limits the execution of

steps in a workflow, but is indifferent to the particular users that exe-

cute the steps.More formally, a constraint (T ,Θ) is user-independent
if whenever θ ∈ Θ andψ : U → U is a permutation thenψ ◦ θ ∈ Θ
(where ◦ denotes function composition). A separation of duty con-

straint, on two steps for example, simply requires that two different

users execute the steps, not that, say, Alice and Bob (in particular)

must execute them. Similarly, a binding of duty constraint on two

steps only requires that the same user executes the steps. More

generally, atleast and atmost constraints are user-independent.

It appears most constraints that are useful in practice are user-

independent: all constraints defined in the ANSI-RBAC standard [1],

for example, are user-independent.

A constrained workflow authorization schema is a tuple (G =
(S,E),U ,A,C ), where (G,U ,A) is a workflow schema, and C is a

set of constraints. We say that a plan π : S → U is authorized

if (s,π (s )) ∈ A for every s ∈ S , and we say that π is valid if it is

authorized and if it satisfies all c ∈ C . We are now ready to introduce

the Workflow Satisfiability Problem, as defined by Wang and

Li [25]:

Workflow Satisfiability Problem (WSP)

Input: A constrained workflow authorization schema

W = (G = (S,E),U ,A,C )
Question: Is there a valid plan π : S → U ?

We present as a running example a simple purchase-order work-

flow [8] in Figure 1. We will extend this example in subsequent
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sections in order to illustrate the concepts introduced in this paper.

In the first step of this workflow, the purchase order is created and

approved (and then dispatched to the supplier). The supplier will

submit an invoice for the goods ordered, which is processed by the

create payment step. When the supplier delivers the goods, a goods

received note (GRN) must be signed and countersigned. Only then

may the payment be approved and sent to the supplier. Observe

that this workflow specification contains parallel branches, in the

sense that the processing of both s3 and s4 must occur before s6,
but the relative ordering of s3 and s4 is of no importance. We will

extend this example to include mutually exclusive branches.

The workflow specification also includes constraints (each hav-

ing binary scope), mainly in order to reduce the possibility of fraud.

Such constraints may be depicted as an undirected, labeled graph,

in which the vertices represent steps and edges denote constraints,

as illustrated in Figure 1(b). One requirement, for example, is that

the steps to create and approve a purchase order are executed by

different users. We will extend the example to include constraints

having release points.

s1 s2

s3

s4

s5

s6

(a) Ordering on steps

s1

s2

s3 s4s5 s6
=, ,

,

,

(b) Constraints

s1 create purchase order

s2 approve purchase order

s3 sign GRN

s4 create payment

s5 countersign GRN

s6 approve payment

, different users must perform steps

= same user must perform steps

(c) Legend

Figure 1: A simple constrained workflow for purchase order
processing

2 COMPOSITIONALWORKFLOWS AND
RELEASE POINTS

We now extend the definitions of workflow specification and work-

flow schema to a compositional variant. We also extend the con-

straints model to introduce release points.

2.1 Workflow composition
We now introduce a convenient way to represent situations where,

at some points of a workflow execution, one would like to branch

into several subworkflows independently, a notion also known

as OR-forks [23] or exclusive gateways [26]. To that end, we use

the model defined by Crampton and Gutin [10] called Workflow

Composition.

A compositional workflow specification is defined recursively us-

ing three operations: serial composition, parallel branching and

xor branching. Like a “classical" workflow specification, it can be

represented as a DAGG = (V ,E). However, in the case of a compo-

sitional workflow, not all vertices represent steps. In addition to the

set of (classical) steps, V also contains R, the set of release points,
and O , the set of orchestration points. Orchestration points will be

introduced shortly. Release points limit actions of constraints by re-

stricting their scopes and will be introduced in Section 2.3. We will

sometimes directly define a compositional workflow specification

as G = (S ∪ R ∪O,E).
The DAG of a compositional workflow always contains two

special orchestration points: a source vertex α , called input and a

sink vertex ω, called output. Moreover, an atomic compositional

workflow (i.e. the base case for constructing such a workflow) is

composed of a single step or release pointv , and can be represented

by the DAG G = ({α ,v,ω}, {(α ,v ), (v,ω)}). Given two composi-

tional workflows G1 = (V1,E1) and G2 = (V2,E2) with respective

input and output vertices α1,ω1 and α2,ω2, respectively, we may

construct new compositional workflows using serial composition,

and parallel and xor branchings, denoted by G1;G2, G1 ∥ G2 and

G1 ⊗ G2, respectively. We assume that V1 ∩V2 = ∅.
For serial composition, all the steps in G1 must be completed

before the steps in G2. Hence, the DAG of G1;G2 is formed by

taking the union of V1 and V2, the union of E1 and E2, and the

addition of a single edge from ω1 to α2. Thus, α1 (resp. ω2) is the

input (resp. output) vertex of G1;G2.

For parallel composition, the execution of the steps in G1 and G2

may be interleaved. Hence, the DAG ofG1 ∥ G2 is formed by taking

the union of V1 and V2, the union of E1 and E2, the addition of new

input and output vertices α ∥ and ω ∥ , and the addition of edges

(α ∥ ,α1), (α ∥ ,α2), (ω1,ω ∥ ) and (ω2,ω ∥ ). This form of composition

is sometimes known as an AND-fork [23] or a parallel gateway [26].

In both serial and parallel compositions, all steps inG1 and G2

are executed. In xor composition, either the steps inG1 are executed

or the steps in G2, but not both. In other words, xor composition

represents non-deterministic choice in a workflow specification.

The DAG G1 ⊗ G2 is formed by taking the union of V1 and V2, the
union of E1 and E2, the addition of new input and output vertices

α⊗ and ω⊗ , and the addition of edges (α⊗,α1), (α⊗,α2), (ω1,ω⊗ )
and (ω2,ω⊗ ). GivenG1 ⊗G2, we will say that every pair of vertices

(v,v ′) ∈ V1×V2 are exclusive. We say that a compositional workflow

is xor-free if it can be constructed with only serial and parallel

operations.

For the sake of readability, we will sometimes simplify the rep-

resentation of a compositional workflow by replacing an orchestra-

tion point having a single in-neighbor u and a single out-neighbor

v by the edge (u,v ) (for instance, a path (α1, s1,ω1,α2, s2,ω2) will
be replaced by (α1, s1, s2,ω2)).

A compositional workflow specification G = (V ,E) together
with an authorization policy A ⊆ S ×U will be called a composi-

tional workflow schema. An example of a compositional workflow
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α

s1

s2 α ∥

α⊗

s3 s5

s ′
3

ω⊗

s4

ω ∥ s6

ω

(a) Ordering on steps

s1

s2

s3 s4s5 s6

s ′
3

=, ,

,

,
=

(b) Constraints

s1 create purchase order

s2 approve purchase order

s3 sign GRN

s ′
3

sign GRN

s4 create payment

s5 countersign GRN

s6 approve payment

, different users must perform steps

= same user must perform steps

(c) Legend

Figure 2: Example of a compositional workflow specifica-
tion; vertices with no border represent orchestration points

specification is shown in Figure 2. It extends the example in Fig-

ure 1 by including orchestration steps and an xor branching. We

model the fact that orders below a certain value will not require a

countersignature on the GRN. Thus, one branch includes steps to

sign and countersign the GRN (which is taken when the value of

the order exceeds a certain value), while the other branch contains

only the sign GRN step.

2.2 Execution sequences
In a compositional workflow having an xor branching, there exists

more than one set of steps that could comprise a workflow instance.

And in a compositional workflow having only parallel branching,

two different workflow instances will contain the same steps but

they may occur in different orders. Here, we introduce the idea of

an execution sequence, which is an ordered sequence of steps and

release points. An execution sequence may be empty. For execution

sequences σ = (a1, . . . ,ak ) and σ
′ = (b1, . . . ,bk ), we define the

following two sets of execution sequences:

σ + σ ′ = {(a1, . . . ,ak ,b1, . . . ,bℓ )}

σ ∗ σ ′ = {(a1) + σ
′′
: σ ′′ ∈ (a2, . . . ,ak ) ∗ (b1, . . . ,bℓ )} ∪

{(b1) + σ
′′
: σ ′′ ∈ (a1, . . . ,ak ) ∗ (b2, . . . ,bℓ )}

σ ∗ () = () ∗ σ = σ

In other words, σ +σ ′ represents concatenation of σ and σ ′; and
σ ∗σ ′ represents all possible interleavings of σ and σ ′ that preserve
the ordering of elements in both σ and σ ′. Given sets of execution

sequences Σ and Σ′, we write Σ+Σ′ to denote {σ +σ ′ : σ ∈ Σ,σ ′ ∈
Σ′} and Σ ∗ Σ′ to denote {σ ∗ σ ′ : σ ∈ Σ,σ ′ ∈ Σ′}.

For a compositional workflow G, we write Σ(G ) to denote the

set of execution sequences for G. Then:

• for workflow specification G comprising a single step or

release point v , Σ(G ) = {(v )};
• Σ(G1;G2) = Σ(G1) + Σ(G2);
• Σ(G1 ∥ G2) = Σ(G1) ∗ Σ(G2); and
• Σ(G1 ⊗ G2) = Σ(G1) ∪ Σ(G2).

The possible execution sequences for the example in Figure 2

are:

• (s1, s2, s4, s3, s5, s6)
• (s1, s2, s3, s4, s5, s6)
• (s1, s2, s3, s5, s4, s6)
• (s1, s2, s4, s

′
3
, s6)

• (s1, s2, s
′
3
, s4, s6)

For an execution sequence σ , let σS and σR be the restriction of

σ to the set of steps and release points, respectively. Similarly, let

S (σ ) and R (σ ) be respectively the set of steps and release points

contained in σ .1

Given an execution sequence σ = (v1, . . . ,vn ) of G and i ∈ [n],
we define leftσ (vi ) = (v1, . . . ,vi−1), rightσ (vi ) = (vi+1, . . . ,vn ).
Also, if 1 ≤ i < j ≤ n, then define btwσ (vi ,vj ) = (vi+1, . . . ,vj−1).
We will omit the σ subscript from leftσ , rightσ and btwσ when it

is obvious from context.

2.3 Constraints with release points
Suppose we have a requirement that two steps s1 and s2 be per-
formed by the same user if a certain instance-specific condition

holds; and they should be performed by different users otherwise.

In other words, the constraint on the execution on s1 and s2 varies
depending on the instance.

Release points can be used to encode such requirements by po-

sitioning different release points in different, mutually-exclusive

branches of the workflow and specifying both constraints on the

two steps. Then passing through one branch “switches off” the

separation-of-duty constraint, while passing through the other

branch switches off the binding-of-duty constraint. In this section,

we introduce a formalism for modeling such constraints and their

satisfaction.

LetW = (S∪R∪O,E,U ,A) be a compositional workflow schema.

A constraint with release points has the form c = (T ,Θ, P ), where

1
Hence, the difference between σS and S (σ ) (resp. σR and R (σ )) is that the former

is an ordered sequence, while the latter is a set. In particular, it might be the case, for

two ordered sequences σ , σ ′, that, say, S (σ ) = S (σ ′) while σS , σ ′S , in the case

where σ and σ ′ are two different orderings of a same set of steps.
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T ⊆ S is the scope of the constraint, P ⊆ R represents the release

points of the constraints, andΘ is a family of functions with domain

T and rangeU . For Q ⊆ S , we denote by Θ|Q = { f |Q : f ∈ Θ} the
restriction of the family Θ to Q .

Let σ be an execution sequence ofW , and σP = (r1, . . . , rq ) be
the ordering of release points of P in σ . For every i ∈ {1, . . . ,q − 1},
define

T0 = T ∩ S (left(r1));

Ti = T ∩ S (btw(ri , ri+1)), for i ∈ [q − 1];

Tq = T ∩ S (right(rq )).

In other words, for i ∈ [q − 1], Ti is the set of steps of T occurring

between ri and ri+1 in σ .
Given a constraint c = (T ,Θ, P ) and an execution sequence σ ,

we define the restriction of c toTi to be the constraint ci = (Ti ,Θ|Ti ).
(That is, a constraint with scope limited toTi and having no release
points.) We say that a plan π : S (σ ) → U satisfies c iff for all

i ∈ {0, . . . ,q}, π |Ti satisfies ci , i.e. if π |Ti ∈ Θ|Ti . Informally, a plan

satisfies c iff its restriction to each subscope Ti , i ∈ {0, . . . ,q}, can
be extended to a valid tuple (i.e. a tuple which belongs to Θ). We

say σ satisfies c if there exists a plan π : S (σ ) → U that satisfies c .
For constraints with a binary scope, such as classical binding-of-

duty or separation-of-duty constraints, the addition of release points

is a natural generalization. Indeed, a separation-of-duty constraint

with two steps s1, s2 as scope and P as the set of release points will

be satisfied (i) by any plan π if some r ∈ P occurs between s1 and
s2, or (ii) by any plan π such that π (s1) , π (s2).

For constraints with a larger scope, the meaning of release

points is less transparent. Consider, for example, the constraint

atleast({s1, s2, s3, s4}, 3, {r }), where r is the release point, and the

following assignment:

π (s1) = π (s3) = u1, π (s2) = π (s4) = u2.

If r occurs before or after all steps in the scope of the constraint in

the execution sequence, then this assignment violates the constraint,

as only two different users are assigned to these steps. If, however,

the execution sequence is (s1, s2, s3, r , s4), then the constraint is

satisfied. Indeed, the restriction of this assignment to {s1, s2, s3}
can be extended to a valid assignment (by assigning, say, u3 to

s4). Similarly, the restriction of this assignment to {s4} can also be

extended to a valid assignment (assigning, say, u1 to s1, u3 to s2,
and any user to s3).

We extend our running example by modifying the SoD con-

straint defined between s1 and s4 in order to illustrate how exe-

cution sequences and release points might affect the satisfiability

of an instance. The resulting workflow specification is illustrated

in Figure 3.) Specifically, the constraint is released by r positioned
between ω⊗ and ω ∥ . The intuition is to prevent the same person

from creating the purchase order and the payment, except when

the GRN has been signed (and countersigned, if the upper branch

of the xor branching is chosen). Hence, if the “create payment” is

processed before the signature/countersignature of the GRN, then

the user which has created the purchase order cannot create the

payment. Otherwise, if the “create payment” is processed after the

signature/countersignature of the GRN, then the SoD constraint

is released. In the case where the authorization policy is such that

only one user is authorized to execute steps s1 and s4, then some

execution sequences will be satisfiable, whereas some others will

not be satisfiable.

α

s1

s2 α ∥

α⊗

s3 s5

s ′
3

ω⊗

s4

ω ∥ s6

ω

r

(a) Ordering on steps

s1

s2

s3 s4s5 s6

s ′
3

=, ,r

,

,
=

(b) Constraints

s1 create purchase order

s2 approve purchase order

s3 sign GRN

s ′
3

sign GRN

s4 create payment

s5 countersign GRN

s6 approve payment

r release point of the constraint blue (s1, s4, ,)
, different users must perform steps

= same user must perform steps

,r same as , but released by r

(c) Legend

Figure 3: A constrained compositional workflow specifica-
tion with release points; vertices bordered by a rectangle
(resp. circle) represent steps (resp. release points); vertices
with no border are orchestration points.

Notice that our definitions of constraints with release points

allow us to model the SoD and BoD constraints as defined by Basin

et al. [3]. In their work, a SoD constraint is defined by two sets

of steps T1 and T2 together with a set of release points P . Then,
whenever a user u executes some step s1 ∈ T1, this constraint
prohibits u from executing any step s2 ∈ T2 unless a release point
is reached. One can observe that this constraint can be transformed

into |T1 | · |T2 | binary SoD constraints with scope (s1, s2) ∈ T1 ×T2
and release points P . Basin et al. define a BoD constraint to be a set

of steps T and a set of release points P . Once a user u has executed

some step in T , u must execute the remaining steps in T unless

a release point is reached. Again, we may transform this into an

equivalent set of constraints with binary scope by specifying

(
|T |
2

)
binary BoD constraints with scope (s, s ′) ∈ T ×T (with s , s ′) and
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release points P . Thus our definition of constraints with release

points is considerably more general than existing ones.

A constrained compositional workflow schema (c.c.w.s. for short)

is a tuple (G = (S ∪ R ∪O,E),U ,A,C ), where (G,U ,A) is a compo-

sitional workflow schema, andC is a set of constraints with release

points. We assume the scope of a constraint does not contain two

exclusive steps. This is a reasonable assumption since two exclusive

steps never occur in the same execution sequence. We say con-

straint c = (T ,Θ, P ) is user-independent (UI) iff for every θ ∈ Θ
and every permutation ϕ : U → U , we have ϕ ◦ θ ∈ Θ.

2.4 WSP with release points
Given a constrained c.c.w.s.W = (S ∪R∪O,E,U ,A,C ), we say that
an execution sequence σ is satisfied if there exists an authorized

plan π : S (σ ) → U that satisfies all constraints in C . Observe that
authorization does not depend on the ordering of steps or release

points. We say thatW is strongly satisfiable (resp. weakly satisfiable)

iff every (resp. at least one) execution sequence ofW is satisfiable.

We are now able to define the following decision problem which is

the main subject of this paper:

WSP with Release Points

Input: A constrained compositional workflow schema

W = (S ∪ R ∪O,E,U ,A,C )
Question: IsW strongly satisfiable ?

There is a possibility that in practice weak rather than strong

satisfiability is of interest. It is not hard to modify the algorithm

described later in the paper to solve the weakly satisfiability version

of WSP with Release Points. Clearly WSP with Release Points

is a generalization of WSP (indeed, a WSP with Release Points

with no xor branching and whose all constraints have no release

point is equivalent to a WSP instance), and is thus NP-hard and

W [1]-hard when parameterized by k = |S | [25]. Moreover, it has

been shown that if all considered constraints are user-independent,

then WSP can be solved in timeO (2k log
2
k |W |O (1) ), where k is the

number of steps [18] (|W |O (1)
means a polynomial in the size of the

workflow instance), and that this is the best possible: WSP cannot

be solved in time O (ck log
2
k |W |O (1) ) for any constant c < 2 [15]

unless the Strong Exponential Time Hypothesis
2
is false, which is

unlikely. This lower bound directly transfers to WSP with Release

Points. Despite the seeming difficulty of the problem (since all

execution sequences have to be considered), we will be able to

show that WSP with Release Points is FPT parameterized by the

number of vertices of the DAG (i.e. number of steps, release points

and orchestration points) if only user-independent constraints are

considered.

3 SOLVING THE COMPOSITIONALWSP
WITH RELEASE POINTS

Our aim is thus to provide an algorithm to solve the WSP with

Release Points. Recall that the problem asks whether every execu-

tion sequence is satisfiable. Hence, a naive approach would be to

enumerate all execution sequences, and test whether each of them

is satisfiable. In the next section, we show that such an exhaustive

2
The Strong Exponential Time Hypothesis [16] states that a CNF SAT formula on n
variables cannot be solved in cn time for any c < 2.

enumeration is wasteful. More precisely, we define an equivalence

relation over execution sequences, and show that all execution se-

quences which belong to the same equivalence class behave the

same with respect to satisfiability.

3.1 Execution arrangements
Let ∼ be the following relation over the set of all execution se-

quences of a workflow: σ ∼ σ ′ iff (i) σR = σ ′R (ii) S (σ ) = S (σ ′)
and (iii) for all s ∈ S , R (rightσ (s )) = R (rightσ ′ (s )). It is easy to see

that ∼ defines an equivalence relation. Its equivalence classes are

called execution arrangements. Informally, all execution sequences

of an execution arrangement have the same set of steps and release

points, their release points are in the same order, and every step

occurs between the same pair of release points.

From this observation, it makes sense to define a “compact”

representation of an execution arrangement. More precisely,

we define an execution arrangement as an ordered sequence

(S1, r1, S2, r2, ..., rq−1, Sq ) which satisfies the following properties:

(1) {S1, ..., Sq } is a partition of S (we may have Si = ∅ for some

i ∈ [q]);
(2) (r1, ..., rq−1) is a linear subextension of G containing all

release points;

(3) for all (s1, . . . , sq ) ∈ S1 × · · · × Sq , (s1, r1, . . . , rq−1, sq ) is a
linear subextension of G.

Notice the abuse of notation in the last property if Si = ∅ for some

i ∈ [q]. In this case, we simply omit such steps si in the sequence

(s1, r1, . . . , rq−1, sq ). For instance, if S2 = ∅, then the sequence is

actually (s1, r1, r2, s3, . . . , rq−1, sq ).
The execution arrangements and the corresponding execution

sequences for the example in Figure 3 are tabulated below.

Arrangement Sequence
{s1, s2, s3, s5}, r , {s4, s6} (s1, s2, s3, s5, r , s4, s6)

{s1, s2, s3, s4, s5}, r , {s6} (s1, s2, s3, s5, s4, r , s6)
(s1, s2, s3, s4, s5, r , s6)
(s1, s2, s4, s3, s5, r , s6)

{s1, s2, s
′
3
}, r , {s4, s6} (s1, s2, s

′
3
, r , s4, s6)

{s1, s2, s
′
3
, s4}, r , {s6} (s1, s2, s

′
3
, s4, r , s6)

(s1, s2, s4, s
′
3
, r , s6)

As we can see, even with one xor branching and one release

point, the number of execution arrangements (4) is smaller than

the number of execution sequences (7). Naturally, this difference

increases with the number of xor branchings and release points.

The idea of defining this equivalence relation comes from the

fact that the ordering of steps between two release points is of no

importance for determining the satisfiability of a given execution

sequence. We will exploit this property and prove that the satisfia-

bility of two execution sequences of an execution arrangement are

equivalent, i.e. one is satisfiable iff the other is. This is formalized

by the following lemma.

Lemma 3.1. LetW = (G = (S ∪ R ∪ O,E),U ,A,C ) be a c.c.w.s..

Given two execution sequences σ , σ ′ ofW with σ ∼ σ ′, σ is satisfiable

if and only if σ ′ is.

Proof. Let c = (T ,Θ,R) ∈ C . By definition of ∼, we have σR =
σ ′R = (r1, . . . , rq ). Now, let i ∈ {1, . . . ,q−1}, and denote byTi the set
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T ∩S (btwσ (ri , ri+1)) and byT
′
i the setT ∩S (btwσ ′ (ri , ri+1)). Again

by definition of ∼, it holds that R (rightσ (s )) = R (rightσ ′ (s )) for ev-
ery s ∈ S (σ ), which implies S (btwσ (ri , ri+1)) = S (btwσ ′ (ri , ri+1)),
and thus Ti = T ′i . It proves that σ satisfies c iff σ ′ satisfies c . Fi-
nally, recall that authorization does not depend on the ordering of

steps or release points. Hence, since S (σ ) = S (σ ′) by definition, an

authorized plan for σ will also be an authorized plan for σ ′, and
conversely. □

Lemma 3.1 states that in order to test the satisfiability of a c.c.w.s.,

it is sufficient to test the satisfiability of only one execution sequence

per execution arrangement. Observe that the number of possible

execution sequences can be as large as ( |S |+ |R |)!, even with no xor

branching, while the number of execution arrangements is bounded

above by |R |!|R | |S | .
Thus, the main issue is now to enumerate all possible execution

arrangements of an instance, and, for each of them, to test its

satisfiability. The enumeration is itself a non-trivial question, not

least because of the possible interleaving of several xor and parallel

branchings. In particular, the presence of xor branchings implies

that the set of steps and release points might be different depending

on the executions. Hence, our approach can be decomposed into

three subtasks:

(1) elimination of xor branchings;

(2) enumeration of all execution arrangements of a xor-free

instance; and

(3) testing the satisfiability of an execution arrangement.

The next three subsections address these subtasks in turn. In Sec-

tion 3.2, we develop a method for decomposing a problem instance

into subproblems that do not contain any xor branching. Our al-

gorithm will run in FPT time parameterized by the number of xor

branchings of the instance, and polynomial space. In Section 3.3,

we describe an algorithm to enumerate execution arrangements

running in FPT time parameterized by the number of steps and

release points, and using polynomial space. Finally, in Section 3.4,

we show that each subproblem can be reduced to the classical WSP,

allowing us to use any known method for solving this problem in

order to terminate the algorithm.

Algorithm 1 summarizes the general procedure in an informal

manner. In Section 3.5, we provide a theoretical analysis of our

algorithm.

Algorithm 1 General algorithm

Input: W = (S,R,O,E,U ,A,C ) a c.c.w.s.
1: for all xor-free subinstanceW ′ do
2: for all execution arrangement Σ ofW ′ do
3: if Σ is unsatisfiable then
4: return UNSATISFIABLE INSTANCE

5: end if
6: end for
7: end for
8: return SATISFIABLE INSTANCE

3.2 Elimination of xor branchings
Recall that in an execution sequence σ of a compositional workflow

specification containing a xor branching of two subworkflowsG1 =

(V1,E1) and G2 = (V2,E2), either V1 ⊆ V (σ ) or V2 ⊆ V (σ ). Such
a branching is identified by its corresponding input and output

vertices α⊗ and ω⊗ , respectively. For such a pair x = (α⊗,ω⊗ ), we
construct the compositional workflow schemas Gx

1
and Gx

2
from G

by removing all vertices from G2 and G1, respectively. Now, given

a set X of pairs of xor input and output vertices, we define the set

of reduced compositional workflows as follows:

• if X = {x }, then redX (G ) = {Gx
1
,Gx

2
};

• otherwise, for an arbitrary x ∈ X whose branches do not

contain themselves another xor branching, redX (G ) =
redX \{x } (G

x
1
) ∪ redX \{x } (G

x
2
).

Figure 4 illustrates these definitions applied to our running example.

In the first workflow, steps s3 and s5 are removed, while in the

second one, step s ′
3
is removed (then both are simplified using rules

described in Section 2.1, allowing us to remove α⊗ and ω⊗).

α

s1

s2 α ∥

s ′
3

s4

ω ∥ s6

ω

r

(a) first xor-free workflow

α

s1

s2 α ∥

s3 s5

s4

ω ∥ s6

ω

r

(b) second xor-free workflow

Figure 4: The two workflows obtained after removing the
xor branching of Figure 3.

We denote by B be the set of all pairs of xor input and output

vertices of a given c.c.w.s. W = (G = (S ∪ R ∪ O,E),U ,A,C ).
Informally, redB (G ) contains all possible compositional workflows

obtained from G by removing, for every xor branching, one of

the two branches. Hence, any G ′ ∈ redB (G ) is xor-free, and, in
particular, does not contain two exclusive steps. ForG ′ = (V ′,E ′) ∈
redB (G ), letW [G ′] be the c.c.w.s. induced by G ′:W [G ′] = (G ′ =
(S ∩V ′,R∩V ′,O ∩V ′,E),U ,A∩ (V ′×U ),C ) (as mentioned earlier,

we may assume that constraints do not contain exclusive steps,

hence there is no need for restricting the scopes of constraints). We

now use this construction in the following result.

Lemma 3.2. Using the notation above,W is satisfiable if and only

ifW [G ′] is satisfiable for every G ′ ∈ redB (G ).
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Proof. Simply observe that every execution sequence ofW [G ′]
is also an execution sequence of W , and, conversely, for every

execution sequence σ ofW , there exists G ′ ∈ redB (G ) such that σ
is an execution sequence ofW [redB (G )]. □

3.3 Enumeration of execution arrangements
Throughout this subsection, we will assume we are given a c.c.w.s.

W = (G = (S,R,O,E),U ,A,C ) which does not contain any xor

branching. Our objective is to provide an algorithm enumerating

all execution arrangements ofW .

SinceW is assumed to be xor-free, we know that all execution

sequences (and thus all execution arrangements) that can be ob-

tained fromG have the same set of steps and release points, namely

S and R, respectively.
Let us recall the properties satisfied by an execution arrangement

(S1, r1, S2, r2, ..., rq−1, Sq ):

(1) {S1, ..., Sq } is a partition of S (we may have Si = ∅ for some

i ∈ [q]);
(2) (r1, ..., rq−1) is a linear subextension of G containing all

release points;

(3) for all (s1, . . . , sq ) ∈ S1 × · · · × Sq , (s1, r1, . . . , rq−1, sq ) is a
linear subextension of G.

The first step of the algorithm is to enumerate all linear subex-

tensions of release points. This is actually equivalent to the enumer-

ation of all topological orderings of the partial order restricted

to R, and can be done using a BFS-based recursive algorithm

(although more involved and efficient algorithms exist, see e.g.

[17, 20, 22, 24]). Hence, in the following, we fix such a linear exten-

sion
3 (r1, . . . , rq−1).

For the sake of readability, we will now restrict ourselves to

steps only: we first assume thatG does not contain release points,

by considering the restriction of the partial order to V \ R. In ad-

dition, we will consider orchestration points as normal steps. In

order to obtain execution arrangements containing “concrete" steps

only, simply remove the orchestration points once an execution

arrangement is returned. Hence, we now assume V = S .
Our procedure is described in detail in Algorithm 2, and consists

in constructing the partition S1, . . . Sq step by step. Also, it takes as

input a partial partition S1, . . . , Sq of a subset of S . It takes as input
the subset Srem ⊆ S of remaining steps that have to be assigned to

some set of the partition {S1, . . . , Sq } of S \ Srem. For the first call,
simply set Srem = S and Si = ∅ for all i ∈ [q].

Once a step s has been chosen (line 4), we need to decide to

which set it can belong to. To do so, we determine two indices imin

and imax such that for all i ∈ {imin, . . . , imax }, s can be put in Si .
Roughly speaking, we cannot put s to the left of a set Sj such that

s ′ < s for some s ′ ∈ Sj , or to the left of some release point r j such
that r j < s (and, similarly, to the right of a set Sj or a release point
r j such that s < r j or s < s ′ for some s ′ ∈ Sj ). This is illustrated in

Figure 5.

Lemma 3.3. Every output of Algorithm 2 is an execution arrange-

ment, and every execution arrangement is an output of Algorithm 2.

3
We could incorporate the enumeration of sequences of release points inside Algo-

rithm 2. However, for the sake of readability, we choose to separate this step.

Algorithm 2 Enumeration of execution arrangements given a lin-

ear extension (r1, . . . , rq−1) of release points

Input: Srem ⊆ S , {S1, . . . , Sq } partition of S \ Srem
1: if Srem = ∅ then
2: output (S1, r1, S2, r2, . . . , rq−1, Sq )
3: else
4: s ← source of G[Srem] (arbitrarily chosen)

5: imin ← max({i ∈ {2, . . . ,q} : ri−1 < s or s ′ < s for some

s ′ ∈ Si } ∪ {1})
6: imax ← min({i ∈ {1, . . . ,q − 1} : s < ri or s < s ′ for some

s ′ ∈ Si } ∪ {q})
7: for all i ∈ {imin, . . . , imax } do
8: make a recursive call with input Srem \ {s}, {S1, . . . , Si ∪

{s}, . . . , Sq }
9: end for
10: end if

S1 r1 S2 r2 S3 r3 S4 r4 S5

s

imin imax

1

Figure 5: Illustration of imax and imin. Arrows indicate that
s < r4 and that there exists s ′

1
∈ S1 and s ′

2
∈ S2 such that s ′

1
< s

and s ′
2
< s. Hence, s may belong to S2, S3 or S4.

Proof. Let Σ = (S∗
1
, r1, S

∗
2
, . . . , rq−1, S

∗
q ) be an output of our al-

gorithm, and let us show it is indeed an execution arrangement.

First, (r1, . . . , rq−1) is a fixed linear extension of R, and the algo-

rithm only stops when all steps have been assigned to a set Si ,
thus properties (2) and (1) are obviously satisfied. For all inputs

(S1, . . . , Sq ) of the algorithm, we prove that for all (s1, . . . , sq ) ∈
S1 × · · · × Sq , (s1, r1, . . . , rq−1, sq ) satisfies property 3, by induction

on |
⋃
i ∈[q] Si |. The property is obviously true at the first call since

(r1, . . . , rq−1) is a linear subextension of R. Then, let (S1, . . . , Sq )
be an input satisfying the property, and s chosen at line 4. Let

i ∈ {imin, . . . , imax }. For all j < i , by definition of imin, it holds that

s ≮ r j , and s ≮ s ′ for all s ′ ∈ Sj . Similarly, for all j ≥ i we have
r j ≮ s , and, for all j > i and all s ′ ∈ Sj , we have s ′ ≮ s . This
proves that (s1, r1, . . . , rq−1, sq ) is a linear subextension ofG for all

(s1, . . . , sq ) ∈ S1 × · · · × Si ∪ {s} × · · · × Sq .
Conversely, let Σ = (S∗

1
, r1, . . . , rq−1, S

∗
q ) be an execution ar-

rangement. We now show that Σ is an output of the algorithm.

To do so, assume that there is a call of the algorithm with input

{S1, . . . , Sq } such that Si ⊆ S∗i for all i ∈ [q] (this is obviously true

at the first call). Let s be the step chosen at line 4, and i∗ such that

s ∈ S∗i . We need to show that imin ≤ i∗ ≤ imax . If imin = 1 then the

first inequality obviously holds. Otherwise, the definition of imin

implies that we have rimin−1 < s or s ′ < s for some s ′ ∈ Simin
. In both

cases, having i∗ < imin would break property 3 and Σ would not be

an execution arrangement. Similarly, the second inequality holds
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trivially if imax = q, and imax < i∗ together with the definition of

imax would imply that Σ is not an execution arrangement. □

3.4 Reduction to WSP
It now remains to test the satisfiability of an execution arrange-

ment. Indeed, as we saw in Lemma 3.1, all execution sequences

of the same execution arrangement behave the same with respect

to satisfiability. To do so, we show that satisfiability of an execu-

tion arrangement reduces to the satisfiability of a finite number

of “classical" WSP instances. We recall the formal definition of

WSP [25].

Workflow Satisfiability Problem (WSP)

Input: A constrained workflow authorization schema

W = (G = (S,E),U ,A,C )
Question: Is there a valid plan π : S → U ?

Let Σ = (S1, r1, S2, r2, ..., rq−1, Sq ) be an execution arrangement

(i.e. an output of Algorithm, line 2), and c = (T ,Θ, P ) be a constraint
with release points P = {rp1 , . . . , rp |P | } (w.l.o.g. we assume pi ≤ pj
whenever i ≤ j, i.e. this ordering is a linear extension of R (Σ)).
As in Section 2.3, for all i ∈ {1, . . . , |P | − 1}, define Ti = T ∩
S (btw(rpi , rpi+1 )), T0 = T ∩ S (left(rp0 )), T |P | = T ∩ S (right(rp |P | )),
and the “classical" constraint ci = (Ti ,Θ|Ti ). Recall that c is satisfied
by an execution sequence σ iff there exists a plan π such that π |Ti
satisfies ci for every i ∈ {0, . . . ,q}. Thus, for each i ∈ [|P |], it makes

sense to define the WSP instanceWi = (Gi = (Si ,Ei ),U ,Ai ,Ci ),
which defines the partial order ofG restricted to Si ,Ai = A∩(Si×U )
and Ci = {ci |c ∈ C}. By the foregoing, we obtain the following

result:

Lemma 3.4. Σ is satisfiable (for WSP with Release Points) if and

only ifWi is satisfiable (for WSP) for every i ∈ [|P |].

Using this result, we are thus able to use any state-of-the-art

solver for WSP as a black box in order to obtain the general algo-

rithm. There are several papers describing the design and evaluation

of practical WSP algorithms, see, e.g., [7, 18, 19, 25]. Some of these

algorithms are bespoke, while others use SAT solvers.

3.5 Analysis of the algorithm
We now analyze the running time and space of our algorithm with

respect to the different parameters of an instance: the number of

users |U |, the number of constraints |C |, the number of steps |S |,
the number of release points |R | and the number of orchestration

points |O |. We denote by |W | the total size of an instance. First,

observe that we always have |O | = O ( |R | + |S |) by construction

(in practice, |O | will be much smaller than |S | + |R | because of the
simplification mentioned at the end of Section 2.1). We will also

consider the number |B| of xor branchings in a problem instance.

(Clearly |B| ≤ |O |.)
Most techniques we use in this algorithm are based on recursive

procedures. Given an input I , such a recursive procedure applies

various operations (dependent on I ), and then makes one or several

recursive calls with inputs I1, . . . , Iw . In order for such a procedure

to terminate, there must exist an integer-valuedmeasure ℓ(I ) which
strictly decreases with each recursive call, i.e. such that ℓ(Ij ) < ℓ(I )
for all j ∈ [w]. For instance, the measure of the recursive procedure

of Section 3.2 is the number of xor branchings in the input, which

decreases by one at each new call, while the measure of Algorithm 2

is the number of steps, which also decreases by one at each new

call.

The width of a recursive algorithm is the maximum number of

recursive calls at each step (i.e.w in the previous notation), while

the depth is the measure ℓ(I ) of the first input of the algorithm. Then

a recursive algorithm has a running time of O (wℓ(I )T (I )), where
T (I ) is the running time of a single call, and a space complexity of

O (ℓ(I )Sp (I )), where Sp (I ) is the space complexity of a single call.

The worst case complexity (time or space) of our algorithm is the

product of the respective complexity of the algorithms for solving

the three subproblems:

(1) enumeration of all xor-free subinstances;

(2) given a xor-free instance, enumeration of all execution

arrangements;

(3) given an execution arrangement, reduction to WSP and

satisfiability test.

The first step, described in Section 3.2, uses a recursive algo-

rithm. Its branching width is 2, its depth is |B| (the number of

xor-branchings of the instance), and every step takes polynomial

time and space, since it simply consists in removing some vertices

of the workflow specification. Thus, the algorithm uses polynomial

space and its running time is O (2 |B | · |W |O (1) ).
Given a xor-free instance of the previous step, the next task is to

enumerate all execution arrangements (Section 3.3). To do so, we

first enumerate all linear extensions of release points. This can be

done in time linear in the number of such linear extensions [22],

which is at most |R |!. Then, given a linear extension of the release

points, we can apply Algorithm 2, which is a recursive algorithm,

whose branching width is at most q, the number of release points

plus one (see line 7), and depth is |S | (since we remove an element

of Srem at each recursive call). Moreover, each call takes polynomial

time and space. Hence Algorithm 2 takes time O (q |S | · |W |O (1) ).
Thus subproblem 2 uses polynomial space and its running time is

O ( |R |!q |S | |W |O (1) ) = O ( |R |!( |R | + 1) |S | |W |O (1) ).

Finally, the last step contains a reduction to several instances of

WSP, and a satisfiability test for each of them. More precisely, given

an execution arrangement Σ, we construct, in polynomial time,

|R (Σ) | + 1 = O ( |R |) instances of WSP. Then, the running-time of

the satisfiability test of each WSP instance depends on the chosen

algorithm. Let wsp (α , β ,γ ) be the running time of an algorithm

solving a WSP instance with α users, β steps and γ constraints.

The running time of this step is thus O ( |R |)wsp ( |U |, |S |, |C |), while
the space complexity is the one of the chosen algorithm for WSP.

If all constraints are user-independent, then the algorithm of [18]

runs in timewsp ( |U |, |S |, |C |) = O (2 |S | log2 |S | |W |O (1) ) and polyno-

mial space. Thus, this step takes time O (2 |S | log2 |S | |W |O (1) ) and
polynomial space.

In total, the running-time of our algorithm is thus

O (2 |B | |R |!( |R | + 1) |S |wsp ( |U |, |S |, |C |) |W |O (1) ).

If all constraints are user-independent, this becomes

O (2 |B | |R |!( |R | + 1) |S |2 |S | log2 |S | |W |O (1) ),
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which is an FPT running time parameterized by the number of

vertices of the workflow specification. Moreover, the algorithm

uses polynomial space. Thus, we obtain the following result.

Theorem 3.5. If all constraints are user-independent, WSP with

Release Points can be solved in time

O (2 |B | |R |!( |R | + 1) |S |2 |S | log2 ( |S |) |W |O (1) )

and polynomial space.

As long as the values of |B| and |R | are small, our algorithm may

well be efficient in practice since the branch-and-bound algorithm

of [18] has proved to be very efficient in practice and was further

improved in [19]. For instance, in the particular case where |R | = 0,

we obtain the same running time as for WSP. Observe that this

algorithm scales polynomially with the number of users which is

likely to be, in practice, the largest parameter of a workflow. Finally,

our algorithm is deterministic, i.e. does not produce false positive

or false negative answers, contrary to the algorithm of Basin et

al. [3]. It also uses polynomial space, contrary to the algorithm of

Crampton and Gutin [10].

4 RELATEDWORK
Research on workflow satisfiability began with the seminal work of

Bertino, Ferrari and Atluri [4] and Crampton [8]. Wang and Li were

the first to demonstrate that WSP, subject to specific and limiting

restrictions, was fixed-parameter tractable [25]. A substantial body

of work now exists on the fixed-parameter tractability of WSP [6, 9,

11]. In particular, it is known that WSP is fixed-parameter tractable

(parameterized by the number of steps) when all constraints are

regular [11] or user-independent [6].

Basin, Burri and Karjoth introduced the notion of release

points [3] in order to model workflows in which the set of steps

that are executed may vary and for which constraints only apply

to certain sets of steps. They modeled workflows using a process

algebra and define the notion of an enforcement process, which

corresponds to a valid plan in our model of workflow satisfiability.

They showed that the enforcement process existence (EPE) problem,

which corresponds to the workflow satisfiability problem, is NP-

hard, and developed a polynomial-time heuristic to solve the EPE

problem. Their algorithm achieves good results under the assump-

tion that the user population is large and “the static authorizations

are equally distributed between them”.

We believe it is reasonable to assume the user population is

large, at least relative to the number of steps in the workflow. In-

deed, our FPT algorithms are of interest provided this assumption

holds. However, it is unclear whether it is reasonable to assume that

static authorizations are equally distributed. We adopt a different

approach by extending an existing model for compositional work-

flows, due to Crampton and Gutin [10], to accommodate release

points, and modifying the definition of constraint satisfaction and

workflow satisfiability accordingly. By making use of existing work

on WSP we are able to provide the first FPT algorithm for WSP

with release points. Moreover, this algorithm is exact and may be

used for any workflow specification containing user-independent

constraints. This is in contrast to the work by Basin et al., which

yields a non exact algorithm, in the sense that it may produce false

negatives (although it does run in polynomial time) and only ap-

plies to specific SoD and BoD constraints. However, it should also

be noted that the approach of Basin et al. can model more complex

workflow specifications, such as ones containing loops. In other

words, their approach is applicable to more workflow patterns than

ours, but to fewer types of workflow constraints.

On the other hand, there exists work on workflow satisfiability

with more complex control flow patterns that does not consider

release points [5, 10, 27], of which only the work of Crampton and

Gutin [10] considers fixed-parameter tractability of WSP. One con-

tribution of this paper is to extend the model due to Crampton and

Gutin [10], but we also introduce the notion of execution arrange-

ments and an algorithm which considers execution arrangements

(rather than execution sequences). Thus we provide techniques

that can usefully be applied to WSP for compositional workflows

without release points.

5 CONCLUDING REMARKS
In this paper, we have extended recent work on FPT algorithms for

the workflow satisfiability problem by introducing release points.

Release points allow constraints to be defined for a workflow speci-

fication in which the set of steps that is executed may vary from

one workflow instance to another. In particular, a constraint can

be “switched on” when certain steps are executed in a certain se-

quence and “switched off” otherwise. The typical use case is when

there is non-deterministic branching in the specification and the

constraint should apply when one branch is executed but not the

other. As such, this work allows us to further close the gap between

the workflow specifications that are required in practice and those

for which we can provide algorithms to solve the workflow satis-

fiability problem. In particular, our algorithms can be used as the

basis for an on-line reference monitor for workflows containing xor

branching (applying methods described by Crampton and Gutin [10,

Section 2.2]).

We plan to extend our model to include sub-workflows that

can be repeated. A purchase order workflow, for example, might

include a sub-workflow containing a single step that creates an

item in a purchase order. We expect that some care will be required

to integrate looping constructs and release points.

In Section 3.5 we noted that we reduce WSP with Release

Points to WSP and use existing WSP solvers. The performance of

such solvers has improved dramatically in recent years [7, 18, 19, 25].

We plan to use state-of-the-art solvers to test the hypothesis that

strong satisfiability for real-world workflow specifications with xor

branching and release points can be solved efficiently in practice.

It may also be interesting to consider the workflow satisfiability

problem when the authorization policy changes over the lifetime

of a workflow instance. Such changes might occur, for example,

if some users are unavailable at certain times. Some related prior

work exists on workflow resiliency [21, 25]. It is also possible to

model certain constraints with release points by modifying the

authorization policy. Indeed, this is essentially how Basin et al.

define enforcement processes for their SoD and BoD constraints [3].

Finally, recent work has shown that WSP is FPT for class-

independent constraints [9], a generalization of user-independent

constraints that allow for the specification of constraints over
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groups of users. Such constraints are useful for specifying require-

ments determined by organizational structures. It would be inter-

esting to investigate whether WSP with release points remains

FPT when we allow class-independent constraints in the workflow

specification.
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