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Abstract  

Cell cycle phase specific oscillation of gene transcription has long been recognized as an 

underlying principle for ordered processes during cell proliferation. The G1/S- and 

G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R 

transcription factors. Mutant analysis suggests that activator E2F functions might not be 

fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of 

positive feedback loops to drive the burst of mitotic gene expression, which is necessary 

at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time 

window during cell cycle progression, and are important for the shutdown of mitotic 

genes to impose quiescence in mature organs. The two distinct classes of E2Fs and 

MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein 

complexes that may be evolutionary related to what is known as DREAM complex in 

animals. In plants, there are multiple such complexes with distinct compositions and 

functions that may be involved in the coordinated cell cycle and developmental regulation 

of E2F targets and mitotic genes. 
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Introduction 

Plant growth and development are reliant on maintaining cell proliferation within 

meristematic zones, regulated by the perpetual transitions through cell cycle phases and 

the decision to enter into quiescence accompanied by cellular differentiation programs. 

The sequence of events through the cell cycle is underpinned by the oscillatory 

transcription of phase-specific genes, such as the cohort of early, G1/S-specific cell cycle 

genes, required for the entry into and progression through DNA synthesis, and late, G2/M-

specific cell cycle genes with mitotic functions [1]. Gene expression profiling during 

synchronized cell cycle demonstrated that a significant proportion of genes, around 

thousand, are cell cycle regulated in yeast [2], human [3] and plant cells [4,5]. How these 

waves of transcription are connected is best understood in yeast, where the transcription 

factors themselves are periodically transcribed during the cell cycle and function to 

activate oncoming and inhibit previous regulators in a fully connected regulatory circuit 

[6]. However, the identity of the transcription factors and their regulation in metazoans 

and plants are distinct from that in yeast [7,8]. In animal and plant cells, the expression 

of early cell cycle genes are thought to be induced by the activator-type E2F family 

transcription factors [8,9], but it is becoming apparent that these E2Fs are not required to 

drive cell proliferation [9,10]. In plants, the late cell cycle genes are regulated by 

R1R2R3-Myb (MYB3R) family transcription factors [11]. When cells exit cell 

proliferation, both the G1/S and G2/M cohorts of cell cycle genes must be repressed to 

allow differentiation programs to commence. The timing of this program is a key 

determinant of organ size [12]. A fundamental question is whether the developmental 

down-regulation of cell cycle genes is due to active repression, as cells become quiescent, 

or the consequence of the lack of transcriptional activation. Recent studies provided clear 

evidence that the active repression of late cell cycle genes is mediated by the repressor-

type MYB3Rs in differentiated cells and when this is abrogated, there is hyperplasia and 

larger organs; including seeds, roots and leaves [13]. The evolutionary conserved 

Retinoblastoma (Rb) protein, called RETINOBLASTOMA RELATED (RBR) in plants 

is another repressor that when silenced, the quiescence of plant cells is broken and cells 

over-proliferate [14,15]. 

Within the animal kingdom, the E2F, Myb and Rb are found to be part of a conserved 

protein complex, called DP, Rb-like, E2F, and MuvB (DREAM) in human, Drosophila 

RBF, E2f2 and Mip complex (dREAM) in fruit fly and DP, RB and MuvB complex 
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(DRM) in nematode [16-19] (for further details on DREAM complexes in different 

organisms; see Box 1). DREAM complexes have important roles in repressing cell cycle 

genes during quiescence and in the co-ordination of their phase-specific expression [17]. 

A recent work in Arabidopsis showed the participation of MYB3Rs, E2Fs and RBR in a 

common complex, suggesting that DREAM complexes are evolutionarily conserved 

between kingdoms [13,20]. Although the regulation of cell cycle genes by MYB3Rs and 

E2Fs have been studied and argued separately [8], the discovery of the large protein 

complexes containing both transcription factors give rise to the possibility of coordinated 

regulation of the early and late cell cycle genes during and as cells exit the cell cycle [21]. 

 

Activator E2F transcription factors might not be essential for cell cycle entry 

The E2F transcription factors are considered to be the main regulators of early cell cycle 

gene transcription, but it is becoming apparent that they have much broader targets, 

including mitotic and cell cycle independent functions [9]. E2Fs were classified as 

repressors that in association with RBR impose quiescence and activators that when 

released upon RBR phosphorylation drives the entry into proliferation by transcriptional 

activation of cell cycle genes [22]. Arabidopsis holds three different E2Fs, nominated 

E2FA, E2FB and E2FC. E2FC is considered to be a repressor, because its overexpression 

down-regulated the replication initiation gene, CDC6, while its silencing increased CDC6 

expression and led to ectopic cell proliferation [23,24]. E2FC silencing effects are 

reminiscent to RBR co-suppression phenotypes, supporting the notion that these two 

proteins act together in a repressor complex [25]. E2FA expression peaks during S-phase 

and when overexpressed it induced the expression of S-phase genes [26]. This would 

indicate that E2FA is an activator, but studies with the overexpression of a C-terminally 

truncated mutant E2FA form that lost the abilities both for transactivation and for binding 

to RBR, yet it is fully capable to drive the expression of S-phase genes and to induce 

endoreduplication question this [27].These experiments rather suggest that the release of 

E2FA from RBR repression is required for these functions. E2FB is uniformly expressed 

throughout the cell cycle, and when overexpressed it activates the expression of cell cycle 

genes, including the mitotic CDKB1;1 and it leads to sustained cell proliferation even in 

the absence of auxin in cultured tobacco cells, suggesting an activator function [28]. 

However, mutants in E2F genes individually, or in combinations, such as the e2fa/b 

double [29] or e2fa/b/c triple [10] mutants are viable and only compromised in cell cycle 



5 

 

unrelated functions, such as resistance to pathogens [10]. Thus, in accordance to fly and 

mouse studies [22,30], activator E2Fs are not universally required for cell proliferation. 

It is becoming apparent that E2Fs in association with RBR are important as repressors to 

maintain meristem functions, ensuring cell survival and imposing quiescence during cell 

cycle exit. RBR and E2Fs also have cell cycle independent functions. 

 

MYB3Rs shape the wave of G2/M-specific transcription 

In Arabidopsis, approximately 180 late cell cycle genes are coordinately expressed during 

late G2 and M phases [31]. The transcription of this cohort of mitotic genes is regulated 

by the cis-acting MITOSIS-SPECIFIC ACTIVATOR (MSA) element in their promoters, 

where MYB3R transcription factors bind [11,32,33]. The Arabidopsis genome contains 

five genes encoding MYB3R proteins. MYB3R1 and MYB3R4 are closely related, the 

former is constitutive, while the latter is mitotically expressed [34]. The combined 

mutations in these two genes diminished the expression of the late cell cycle genes, 

suggesting that these two MYB3Rs are redundantly required for their transcriptional 

activation [31,34]. Consistent with the regulation of mitotic functions is the frequent 

occurrence of incomplete cytokinesis in the myb3r1/4 double mutant that is largely due 

to the reduced expression of one of the targets, KNOLLE, involved in cell plate formation 

[34]. In tobacco cell culture, the mitotic MYB3R was shown to be activated through direct 

phosphorylation by CDKA in association with a mitotic cyclin [35, 36]. Mitotic cyclins 

are themselves transcriptionally activated by the activator MYB3R [35], thus constituting 

a positive feedback loop. The mitotically expressed MYB3R is also autoregulated 

through the MSA motifs in its own promoter [36]. These two amplifying mechanisms for 

the accumulation of activator MYB3Rs in turn triggers the burst of expression of 

downstream targets required for the entry and progression through mitosis (Figure 1). 

In contrast to MYB3R1 and MYB3R4, the other pair of highly similar MYB3R3 and 

MYB3R5, when mutated together, led to the upregulation of mitotic genes both in 

proliferating and in non-proliferating quiescent cells, suggesting repressive functions [13]. 

During the cell cycle progression, these repressive MYB3Rs may operate as a mask to 

reduce the basal expression of mitotic genes outside their normal time window and thus 

to reinforce the periodic expression of these genes [13] (Figure 1). Surprisingly, MYB3R1 

can synergize with MYB3R4 as an activator, while together with MYB3R3 and MYB3R5 

it acts as a repressor [13]. This may suggest that MYB3R1 is part of the switch that 
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determines repressor activity outside the G2/M phase while at the G2/M transition, when 

CDK activity rises, MYB3R1 may become activated for transactivation by CDK 

phosphorylation, leading to the early induction of mitotic genes (Figure 1). This initial 

switch acting on MYB3R1 might get further amplified by the mitotically expressed 

MYB3R4 to trigger the full G2/M transition through the burst of late cell cycle gene 

expression. 

 

Cell proliferation and differentiation, mutual exclusion? 

Cell cycle genes are normally repressed in mature organs. For mitotic genes, this 

developmental repression is dependent on the repressor MYB3Rs [13]. This was 

demonstrated by the widespread occurrence of the CYCB1;2 reporter in myb3r1/3/5 triple 

mutant even in terminally differentiated cells, such as trichomes and root hair cells [13]. 

This suggests that in plants an active repression of mitotic transcription operates not only 

in developmentally quiescent, but even in fully differentiated cells. Upregulation of 

CYCB1;1 was also observed when the E2FC transcription factor is silenced [24], but this 

needs to be confirmed in stable knockout mutant lines. Silencing of RBR delays [25], 

while overexpression instigate differentiation programs [37], suggesting that RBR is a 

key determinant for this transition. Therefore, RBR, E2Fs and MYB3Rs have similar 

roles in cell cycle exit and shared functiosn in the repression of cell cycle genes as cells 

differentiate. This is consistent with the finding that they are part of multiple repressor 

complexes (see below). 

RBR also forms a repressor complex with E2FA, but this happens in proliferating 

cells within the meristem [37]. The RBR-E2FA complex is not disrupted by elevated 

CYCD3;1 levels leading to increased RBR phosphorylation. It was suggested that the 

function of this RBR-E2FA complex is to repress differentiation genes, such as expansins 

and the endoreduplication-inducing CCS52A for the maintenance of cell proliferation in 

the meristems [37]. Whether the RBR-E2FA is part of a repressor complex is not yet 

known. 

 

DREAM complexes with conserved and species-specific attributes 

Using chromatin immunoprecipitation genome wide (ChIP-seq), it was shown that the 

repressor MYB3R3 not only associates with promoters of mitotic genes, but also with the 

early cell cycle genes that were previously defined as E2F targets [13]. Because these 
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early cell cycle genes show significant enrichment for E2F motifs, but not for MSA 

elements in their promoter regions, the DNA binding is not through MYB3R3. In 

agreement, co-immunoprecipitation experiments showed the association of MYB3R3 

with E2FC and RBR [13], that evoked the existence of larger protein complexes known 

to bring together these two classes of transcription factors and Rb for the repression of 

cell cycle genes, called dREAM in fly [38]. Similar protein complexes were found in 

human and nematode, suggesting evolutionary conserved assemblies and functions [16] 

(Table 1, Box1). Searches for Arabidopsis genes orthologous to the core components 

identified ALWAYS EARLY (ALY) genes (orthologous to LIN9/Mip130), genes coding 

for the Tesmin/TSO1-like CXC domain-containing (TCX) proteins (orthologous to 

LIN54/Mip120) and the MULTICOPY SUPRESSOR OF IRA1 (MSI1) [13] (Table 1). 

MSI1 is a histone binding protein that was shown to co-purify with HISTONE 

DEACETYLASE19 (HDA19)[39], and MSI1 together with RBR were found to be 

required for epigenetic regulation of imprinted genes [40]. However, there are no plant 

orthologues for the other core components, LIN37/Mip40 and LIN52 (Table 1). Thus, 

there is a convergence on some common DREAM complexes components in evolutionary 

divergent species, but there are important differences how these complexes assemble and 

function. In human cells, the common core complex (called MuvB core) either associates 

with E2F4/5 to impose G1 arrest or with the B-Myb or the mitotic forkhead class 

transcription factors, FoxM1 that function to induce the waves of S- and G2/M-specific 

gene expression [41]. In Arabidopsis, it appears that both the activator- and repressor-

type DREAM-like complexes contain RBR, but in meristematic cells, E2FB and the 

mitosis-specific MYB3R4 is recruited to activate late cell cycle genes, while in mature 

leaves the repressor MYB3R3 and E2FC are present (Table 1, Figure 2). 

 

The Arabidopsis DREAMs of cell cycle control 

The existence of repressor- and activator-types of Myb-related transcription factors and 

their co-recruitment with the repressor E2FC or activator E2FB to RBR-containing 

DREAM-like complexes is a plant-specific utilization of these transcriptional regulatory 

module. How these divergent RBR containing DREAM-like complexes attain activator 

or repressor functions, how their dynamic interchange is regulated are largely unresolved 

questions. CDKA;1 was found to be developmental-specifically recruited to both 

MYB3R4 and MYB3R3 containing DREAM-like complexes [13]. RBR is an ancient 
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signal-dependent scaffold for protein interactions, regulated by multisite 

phosphorylations governed by CDKs. These phosphorylation events not necessarily 

leading to the disassembly of the complex, as was found in Chlamydomonas [42]. In 

animal cells, it was shown that Rb phosphorylation at distinct sites can diversify RBR 

complexes towards different functions, e.g. to become activator on certain batteries of 

genes while repressor on others [43]. Such diversification of RBR functions upon 

phosphorylation may also exist in plants, as suggested by the distinct association of E2FA 

and E2FB to RBR upon phosphorylation by CYCD3;1 dependent CDK, induced by 

sucrose [27]. RBR can also be targeted by phosphorylation through other signalling 

pathways, such as the stress-induced mitogen activated protein kinase [44], MPK6 that 

when mutated leads to hyperplasia, larger seeds, roots [45]. The phosphorylation status 

of RBR, a common component of multiple DREAM-like complexes in Arabidopsis, 

might determine the biochemical properties of the complex as well as its assembly and 

disruption. 

 

Concluding remarks 

Plant-specific properties of the multiprotein complex containing both E2F and MYB3R 

may provide new insights for various unsolved phenomena unique to plants. In plants, 

even the fully differentiated somatic and generative cells can be readily reprogramed to 

become undifferentiated and capable of proliferating to allow organ regeneration or 

somatic embryogenesis [47]. A central part of this regeneration program is the de-

repression of cell cycle genes, which may be mediated by the DREAM-like complex in 

plants. Plants may employ the mechanisms different from animals for establishing and 

maintaining the repressed state for cell cycle genes, which are more readily de-repressible 

upon stimuli. Future study should be focused on the molecular basis of post-mitotic 

repression mediated by DREAM-like complexes that may explain the extraordinarily 

high plasticity of plant cells.  

Endoreduplication is integral to a number of plant developmental programs, which 

relies on the induction of early but repression of late cell cycle genes. This coordinated 

regulation of the cell cycle genes may require protein complexes where MYB3R and E2F 

may functionally interact with each other. It is known that E2F2 acts in opposition to Myb 

to repress some of the late cell cycle genes in fly dREAM complex [48]. 

Endoreduplication is also known to occur during pathogen infections in plants [46], for 
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instance it was reported that the mitotic MYB3R4 has an essential involvement in the 

induction of endoreduplication at the infection sites of the obligate biotrophic fungus, 

powdery mildew [47] suggesting that a DREAM-like complex may be integral for this 

cellular response caused by pathogens. Thus, there are accumulating evidence to suggest 

broader involvements of cell cycle regulators in plant responses to pathogens as well as 

to environmental factors [48][49]. The RBR-MYB3R-E2F complexes may provide 

convergence points to signaling mechanisms in biotic interaction, abiotic stresses, and 

development to coordinately regulate the expression of early and late cell cycle genes, 

thereby modulating cell proliferation, endoreduplication, or quiescence. Future research 

will have to address how these divergent DREAM complexes become hubs to regulate 

plant growth and development in tune with environmental conditions. 
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Figure legends 

 

Figure 1. 

Schematic model for transcriptional regulation of the late cell cycle genes by 

activator- and repressor-type MYB3Rs in Arabidopsis. 

In proliferating cells, the repressor-type MYB3Rs are responsible for keeping the late cell 

cycle genes suppressed outside of G2/M interval, until the transcriptional repression is 

lost concomitant with the activation of activator type-MYB3Rs. This switch-like 

transition triggers amplification of activator-type MYB3Rs through positive feedback 

loop mechanisms at transcriptional and post-transcriptional levels to enable the burst of 

target gene expression and irreversible entry into mitosis. In differentiated cells, the late 

cell cycle genes are stably maintained in a long-term silenced state by the function of 

repressor-type MYB3Rs. 

 

Figure 2. 

Regulation of cell cycle and quiescence by DREAM-like complexes in plants 

In proliferating cells, the early cell cycle genes are repressed by the E2FB-DPA/B-RBR 

complex during G1. Phosphorylation of RBR by CYCD-CDKA;1 induces the release of 

active E2F-DPA/B to induce the transcription of early cell cycle genes. Later, E2FC may 

have a role in repressing transcription of the early cell cycle genes. This repression may 

be also accompanied by the action of DEL transcription factors, known as atypical E2Fs, 

which act as monomer in an RBR and DP-independent manner [50]. During G1, S and 

early G2, the late cell cycle genes are transcriptionally suppressed by the protein complex 

containing repressor-type MYB3R, RBR and possibly MuvB-like core complex. During 

late G2, this repressive complex on the target promoters is replaced by the MYB3R-E2F 

activator complex (containing activator-type MYB3R, E2FB, RBR, and MuvB-like core 

complex), triggering its auto-activation through the positive feedback loops and allowing 

transcription of the late cell cycle genes. In post-mitotic cells, the late cell cycle genes are 

kept in silenced state by the separate MYB3R-E2F complex with a repressive function 

(containing repressor-type MYB3R, E2FC, RBR and MuvB-like complex). 

 

Box 1. DREAM complex 

The DREAM (DP, Rb-like, E2F, and MuvB) complex is known as a key regulator to 
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achieve and maintain cellular quiescence by repressing cell cycle-regulated genes (both 

early and late cell cycle genes) in mammalian cells [51]. The DREAM consists of an Rb-

related tumor suppressor family protein (p130 or p107), E2F family protein (E2F4 or 

E2F5) and its dimerizing partner DP, and a five-component MuvB core complex (LIN9, 

LIN37, LIN52, LIN54, and RBBP4). Interestingly, these DREAM components overlap 

with genetically-defined synthetic multivulval class B (MuvB) proteins in nematode [38], 

and shared with the evolutionarily conserved complexes that are biochemically identified 

from fly (dREAM) [17,38] and nematode (DRM) [52]. It should be noted that some of 

these complexes have synonyms when they were identified independently by the different 

groups, such as LINC (LIN complex) in human [53] and MMB (Myb-MuvB) in fruit fly 

[51], which are equivalent to DREAM and dREAM, respectively. The biochemical 

functions of these proteins are not known, with the exception of RBAP4 and LIN54, 

which have the abilities to bind histones and DNA, respectively. The mechanism of 

DREAM-mediated transcriptional regulation has not been well understood, but it is clear 

that its core complex recruits key cell cycle transcription factors, including E2F4/5, B-

Myb, and FoxM1. In some cases, the complex are co-purified with chromatin regulators 

such as histone deacetylases and L(3)mbt that binds modified histones for chromatin 

compaction [54], suggesting transcriptional regulation through chromatin status. 
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