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Abstract

This paper studies a market game under uncertainty in which agents may
submit multiple limit and market orders. When agents know their pref-
erences at all states, the competitive equilibrium can be supported as a
Nash equilibrium of the market game, that is, agents behave as if they
were price takers. Therefore, if the associated competitive economy has a
fully revealing rational expectations equilibrium, then so does the market
game. This resolves the puzzle that agents behave as if prices were given,
even though prices aggregate private information, at least for this “private
values” case. Necessary conditions for Nash equilibrium show that the re-
sulting allocation cannot deviate too far from a competitive equilibrium.
When agents do not know their preferences at some states, though, a
characterization result shows that the Nash equilibria of the market game
tend to be far from competitive.
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1 Introduction

When it comes to the analysis of markets there are two basic paradigms: At
a competitive equilibrium all agents take prices as given; strategic agents, on
the other hand, take into account the impact of their trades on market prices.
In the former approach prices are determined by an abstract market clearing
condition; in the latter they result from the traders’ interaction in a strategic
(Nash) equilibrium.

The reconciliation of these two concepts has been a longstanding concern
in economics and finance (see Subsection 1.1 for a literature review). This
endeavor becomes even more challenging when uncertainty is involved and prices
are supposed to reveal information. For, as Beja (1977) and Hellwig (1980)
observe, at a competitive equilibrium with uncertainty traders appear to behave
“schizophrenically,” taking prices as given when trading, even though they infer
information from them. Hence, private information must influence prices if it is
to be reflected by them.

This paper tackles the strategic foundations of competitive equilibrium by
a market game under uncertainty in which agents submit multiple limit and
market orders. Limit and market orders are the two dominant order types on
stock exchanges. A limit order is an ex-ante commitment to buy or sell up to a
specified limit quantity not above or not below a specified limit price. A market
order only specifies a limit quantity, but no limit price. Executable trades are
determined by ranking orders. That is, buy orders that bid a higher price obtain
priority over those that bid lower prices, and sell orders that ask a lower price
are given priority over those asking higher prices. The resulting supply and
demand schedules determine which orders are fulfilled.

The clearing mechanism requires that executed trades on the same side of the
market pay resp. receive the same price—executed purchases pay the market bid
price, and executed sales receive the market ask price. This is in deviation from
the literature, which typically assumes that the execution prices are the traders’
limit prices (see, e.g., Wilson, 1977; Dubey, 1982; Simon, 1984; Parlour, 1998;
Glosten, 1994, calls this a discriminatory limit order book). Empirically, on the
other hand, many markets have the obligation to treat orders symmetrically,
ruling out such discriminatory practices.1 In fact, the clearing mechanism is

1 This is also the spirit of Regulations ATS and NMS, as implemented by the U.S. Security
and Exchange Commission in 1998 and 2007, respectively (see Hendershott and Jones, 2005).
Roughly, those require that customers at one market platform are offered the best quote at
any other market nationwide.
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inspired by the electronic limit order books run on electronic communication
networks, like Island, BATS, Direct Edge, Instinet, IEX, Chi-X Europe, or
Archipelago.2 Those are the market platforms to which the bulk of trading in
stocks and exchange traded funds has migrated during the past two decades.
These financial markets are thus quantitatively important. Therefore, unlike
the literature, this paper studies an undiscriminatory limit order book (in the
terminology of Glosten, 1994).

The second novelty concerns information. While most of the literature has
focused on the case of certainty, this paper introduces uncertainty about the
state of the world. This is why multiple orders are allowed. Agents, who are
uncertain about which state obtains, may hedge by submitting several orders
that will execute in different events.

The results about the undiscriminatory limit order book with uncertainty
are as follows. When agents privately know their preferences, they justify the
concept of competitive equilibrium with uncertainty (or rational expectations
equilibrium), even though agents act strategically. First, there is always an
equilibrium that generates precisely the competitive allocation, irrespective of
how many agents there are (Theorem 1 below). Consequently, if the competitive
economy has a fully revealing rational expectations equilibrium, then the mar-
ket game has a Nash equilibrium that induces the same fully revealing prices.
Second, for all Nash equilibria the associated equilibrium prices stay in a vicin-
ity of the competitive prices in the following sense: They cannot deviate further
from competitive prices than the latter would (from their original values) if one
agent were removed from the economy (Theorem 2 below).

The undiscriminatory limit order book thus achieves two goals. First, it
provides a trading rule which allows for a Nash equilibrium that corresponds to
a competitive allocation, even if the number of traders is finite. A limit results
for the number of agents going to infinity (as, e.g., in Rustichini, Satterthwaite,
and Williams, 1994, or Forges and Minelli, 1997) is, therefore, not needed.
Instead, the impact of an individual agent on prices in a Nash equilibrium is
captured by how much her removal would change competitive prices. Second,
the limit order book resolves the puzzle that traders behave as if they were taking

2 Archipelago was acquired by the New York Stock Exchange (NYSE). A part of Instinet
was spun off, merged with Island into Inet, and acquired by Nasdaq. The remainder of
Instinet launched the electronic trading platform Chi-X Europe. Most Euronext markets,
which includes the NYSE as well as the exchanges in Amsterdam, Brussels, Lisbon, and
Paris, and the futures market in London, also operate electronic limit order books in addition
to floor trading.
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prices as given, yet take into account the information that is incorporated in
prices. That is, agents are aware of their influence on prices when planning their
trades, yet they end up behaving as if they were price takers. This also holds
under uncertainty, provided the agents know their preferences and can place
sufficiently many orders.

The intuition for this result is as follows. The very nature of limit orders
induces constraints on an individual trader that look like step functions (in
quantity-price space), because residual supply and demand are step functions.
(A price-taking agent would face a degenerate step function given by a sin-
gle fixed price for all quantities.) Hence, at most feasible allocations a trader
has to take a price as given—given by the limit price that some other market
participant chooses. Therefore, locally she optimally behaves as if she were a
price-taker who faces a globally infinite price elasticity.3

The only exception occurs when the trader has no competition on the same
side of the market at the price under scrutiny. This corresponds to a “market
corner”—and a feasible corner of the opportunity set. If each agent is small
compared to the aggregate, every trader will face competition on her side of the
market at the realized price and market corners cannot occur.

This intuition carries over to the case of uncertainty, provided multiple orders
are allowed. By placing an order for each event that she regards possible a trader
can hedge against all contingencies. This allows a trader to incorporate into her
orders the information that she anticipates for the various events. That is,
agents do not infer information from the price before they place an order, as in
the competitive model. Instead, they foresee for all possible contingencies what
the market will yield, inclusive of the prices in these events, and place optimal
orders for all event. After trades execute, traders learn which event has realized
(and the associated price) by observing which orders were executed. In this
sense prices are informative ex-post, but not ex-ante. Still, they do aggregate
private information.

Thus, whether or not uncertainty is involved, there are market organizations
that induce finitely many traders to act as if they were price takers, when in
fact they behave strategically. Hence, price taking behavior may be a reasonable
approximation to these market outcomes, provided agents are privately informed

3 That agents behave locally as if they were price-takers contrasts with models of com-
petition in supply functions. If one assumes that multiple orders give rise to a continuous
function, the slope of this residual demand function facing an individual trader is necessarily
bounded away from zero; hence, the key effect is lost.
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about their preferences. Further, under uncertainty private information can get
revealed by prices even though the equilibrium allocation is as if agents did not
recognize their influence on prices.

Yet, the results are comforting for the concept of competitive equilibrium
with uncertainty only to a certain extent. In particular, that each agent always
knows her preferences is (almost) necessary for these results. For, without this
condition monotonicity of demand functions is lost, i.e., an agent may demand
more at a higher price or less at a lower price without being able to distin-
guish between these two events based on her private information. Because the
limit order book ranks orders according to price priority, monotonicity of excess
demand schedules is crucial for its operation. In fact, this condition charac-
terizes when the Nash equilibria of the market game are close to competitive
outcomes (Theorem 3 below). Not surprisingly (see, e.g., Schmeidler and Postle-
waite, 1986; Palfrey and Srivastava, 1989; Blume and Easley, 1990), therefore,
asymmetric information that concerns a “common value” component may be
inconsistent with outcomes that resemble competitive behavior.

1.1 Relations to the Literature

There is an extensive literature on the strategic foundations of competitive equi-
librium á la Arrow and Debreu (1954), e.g., Shapley and Shubik (1977), Shubik
(1977), Wilson (1977, 1978, 1987), Schmeidler (1980), Dubey (1982, 1994), Si-
mon (1984), Sorin (1996), Dubey and Geanakoplos (2003), or Mertens (2003);
Giraud (2003) provides an overview. These papers study the case of certainty
in order to focus on the properties of the market mechanism.

Uncertainty and the ability of prices to aggregate information has been ad-
dressed by a related but distinct literature. For instance, within the framework
of competitive markets Hellwig (1982) and Blume and Easley (1984) study dy-
namic economies where traders condition on past information only. Kyle (1985)
and Glosten and Milgrom (1985) develop models of over-the-counter markets
where a market maker quotes prices and infers information from order flows.
Another literature, starting from Wilson (1977) and Milgrom (1981), studies
Vickrey-type auctions and how those aggregate information (see, e.g., Pesendor-
fer and Swinkels, 1997; Satterthwaite and Williams, 2002; Perry and Reny,
2006). Yet another approach considers competition in supply functions (see,
e.g., Grossman, 1981b; Kyle, 1989; Klemperer and Meyer, 1989; Biais, Marti-
mort, and Rochet, 2000). In finance the literature on market microstructure
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studies models where risk neutral traders arrive sequentially and repeatedly at
the market and trade indivisible units under limit prices (see, e.g., Parlour,
1998; Foucault, 1999; Goettler, Parlour, and Rajan, 2005).

The narrower branch of literature concerned with strategic market games has
by and large studied “competition in quantities”—á la Cournot, as it were—as
formalized by the trading-post model (Shapley and Shubik, 1977). In that, buy-
ers simultaneously deposit money and then receive quantities of the commodity
in proportion to their shares in aggregate deposits. This literature has largely fo-
cused on the case of certainty. The few exception that allow uncertainty include
Dubey, Geanakoplos, and Shubik (1987), who extend the trading-post model
to a multi-period setting in which information is revealed from one period to
the next, yet being better informed is still profitable. Forges and Minelli (1997)
consider both a one-shot and a repeated version of the (“sell-all”) trading-post
model, amended by a pre-play communication stage in the spirit of correlated
equilibrium (Aumann, 1974). Codognato and Ghosal (2003) extend this analysis
to Shapley’s “windows model” (see Sahi and Yao, 1989), also with an atomless
continuum of traders. Peck (2014) uses a trading-post model to study price
manipulation by informed “bulls” and “bears.”

Dubey (1982) and Simon (1984) are the seminal contributions that introduce
market games with price competition by allowing limit orders—á la Bertrand,
as it were. Both obtain a competitive allocation as the outcome of a Nash
equilibrium. Yet, once again these models are stated under certainty; and they
assume that the execution prices are the traders’ limit prices. The model by
Mertens (2003) also assumes certainty, but is set up in such a way that all
trades are executed at the same price. Yet, limit orders in Mertens’ model are
the supply functions of artificial agents with linear utility functions. Hence,
when such an agent sells at a price strictly above her limit price, the order must
be fully executed. Hence, no rationing can occur, while in the present model
rationing is possible (even though it does not occur in equilibrium).

As far as I can tell, there is no paper that applies market games with price
competition to the case of uncertainty. Similarly, an undiscriminatory limit
order book has not been studied so far. In particular, that a competitive equi-
librium under uncertainty is the outcome of a strategic market game with finitely
many players is a new result.

The remainder of the paper is organized as follows. Section 2 presents the
model, the benchmark competitive equilibrium, and the market game. Sec-

5

 by guest on July 23, 2015
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


tion 3 identifies necessary and sufficient conditions for the Nash equilibria of
the Bayesian market game with private values. Section 4 discusses economies,
where the agents’ utility functions are not necessarily measurable with respect
to private information, and characterizes when the market game has equilibria
close to a competitive allocation for this case. Section 5 concludes. All proofs
are relegated to the Appendix.

2 The Model

Consider an economy with two goods j = 1, 2 and a finite number of agents
i ∈ I = {1, ..., n} for n > 1. Two commodities are assumed for simplicity.4 The
agents’ preferences over their final holdings of the two goods are represented
by utility functions u : R2

+ → R that are continuously differentiable, strictly
increasing in both arguments, strictly quasi-concave, and are such that the (ex-
cess) demand functions for good 2 are strictly decreasing in the price of good
2. (A sufficient condition for this is that the two goods are gross substitutes.)
Let U denote the set of all utility functions with these properties. Differen-
tiability is assumed for convenience, and monotonicity means that both goods
are desirable. That demand is downward sloping in the price is assuming the
“law of demand,” which will be important in Section 3. Under expected utility
strict quasi-concavity will imply (strict) risk aversion. Without expected utility
(strict) risk aversion is assumed, i.e., for each non-degenerate lottery an agent
strictly prefers the associated expected allocation for sure over the lottery.

The economy can be in a number of states $ ∈ Ω that determine the agents’
characteristics. The latter consist of a utility function, an endowment vector,
and an information partition for each agent. That is, for each agent i ∈ I there
is a finite partition Ti of the state space Ω that summarizes player i’s private
information.5 The functions (random variables) f = (fi)i∈I : Ω→

(
U × R2

++

)n
assign to each agent i ∈ I a utility function fi1 ($) = ui (· |$ ) ∈ U and an
endowment vector fi2 ($) = wi ($) = (wi1 ($) , wi2 ($)) � 0 for each $ ∈ Ω.

4 The online appendix to this paper contains the game specification for the case of more than
two goods and a generalization of Theorem 1 to an arbitrary but finite number of commodities.
This is feasible because more goods will not affect what happens on the equilibrium path.
Difficulties would only arise off the equilibrium path. For, there the effects of and penalties
for bankruptcy (see below) render the system open; that is, outside of equilibrium resources
may leak out of the economy—but this is also the case in general equilibrium theory.

5 Whether the state space Ω is finite or not is immaterial. What counts is that the partition
Ti is finite for each i ∈ I. If Ω is infinite, then utility functions are to be interpreted as expected
utility functions with respect to a (possibly subjective) prior.
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(Clearly, that fi1 ∈ U is equivalent to state-dependent utility.) To specify a
prior probability measure on the state space Ω will not be necessary. For each
agent i ∈ I both coordinates of fi : Ω→ U ×R2

++ are assumed measurable with
respect to the partition Ti, that is, f−1

i (u,w) ∈ Ti for all (u,w) ∈ fi (Ω). In
line with the standard terminology in game theory a cell ti ∈ Ti of player i’s
information partition is referred to as a type of player i ∈ I, since each cell is
the preimage of a utility-endowment pair.

That fi2 = wi is measurable is merely the statement that agents observe
their endowments in each state. That fi1 = ui is measurable is a popular
assumption in the literature on economies with differential information. Still,
this is a strong assumption. It rules out asymmetric information in the sense
that an agent holds private information that is relevant to the preferences of
someone else, e.g., superior information about the return of an asset. The
assumption that fi is measurable with respect to Ti will be referred to as “private
values.”6 It captures a case, where the agents know the utility that they get
from each possible trade. Intuitively, the measurability assumption says that
agents always (for each trade) know what they want and what they own, but not
necessarily in which environment they live. Section 4 will discuss what happens
if measurability of fi1 = ui with respect to Ti is violated—the case of “common
values.”

With the measurability assumption it is justified to write wi ($) = wi (ti)

for all $ ∈ ti, all ti ∈ Ti, and all i ∈ I. Since utility functions ui (· |$ ) = fi1 ($)

are also measurable with respect to Ti, the notation ui (· |ti ) refers to the utility
of type ti ∈ Ti of agent i. In the definition of competitive equilibrium (below)
utility functions are not assumed measurable; in that case it is assumed that
agents are expected utility maximizers, and ui (· |π ) refers to the (conditional)
expected utility of agent i (with respect to some prior distribution on Ω) at an
event π from an information partition Πi that refines Ti. For instance, if type
ti of agent i also observes the market price and infers information from it, her
information partition Πi may be finer than Ti.

Denote by S =
∧
i∈I Ti =

{⋂
i∈I ti | ti ∈ Ti, ∀i ∈ I

}
the coarsest common

refinement of the partitions Ti. Then the partition S represents all the informa-
tion that is available in the economy. Since S incorporates all the information
there is, one may assume without loss of generality that S = {{$} | $ ∈ Ω}.

6 This terminology is borrowed from Forges and Minelli (1997, p. 401). Admittedly, this is
somewhat inappropriate. For, the term “private values” is used in the auction literature for
an independence assumption—that valuations are i.i.d.
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Still, the elements of S are called events. For each s ∈ S and every agent
i ∈ I let τi (s) ∈ Ti denote the unique type that satisfies s ⊆ τi (s), i.e., the
type of i that occurs at event s ∈ S. And, for each agent i ∈ I denote by
τ−1
i (ti) = {s ∈ S | s ⊆ ti} the events that type ti ∈ Ti regards possible.

2.1 Competitive Equilibrium

The benchmark for the economy are its competitive equilibria, or more pre-
cisely its competitive rational expectations equilibria (Radner, 1968, 1972; Lu-
cas, 1972; Grossman, 1977, 1981a). For those it is not assumed that utility func-
tions fi1 = ui are measurable, but the assumption that endowments fi2 = wi

are measurable is maintained.
To develop competitive equilibrium, normalize relative prices such that the

price of good j = 1 is 1, and start with a hypothetical economy in which all
agents have access to the pooled information (the partition S). A full commu-
nication equilibrium7 for the economy is an allocation function x = (xi)i∈I :

S → R2n
+ together with a price function p∗ : S → R+ such that, for each agent

i ∈ I, all events s ∈ S, and all consumption vectors x̂ ∈ R2
+,

(1, p∗ (s)) ·wi (τi (s)) ≥ (1, p∗ (s)) · x̂⇒ ui (xi (s) |s ) ≥ ui (x̂ |s ) , and∑
i∈I

xi (s) ≤
∑
i∈I

wi (τi (s)) . (1)

On the market, though, agents do not necessarily have access to the pooled
information. Yet, they may infer information from the price. In particular, for
a given price function p̂ : S → R+ let Πi (p̂) =

{
τi (s) ∩ p̂−1 (p̂ (s)) |s ∈ S

}
be the

partition generated by the types and (the preimages of) the price observations
for agent i ∈ I.

A competitive (rational expectations) equilibrium (x, p) is again an allocation
function x = (xi)i∈I : S → R2n

+ together with a price function p : S → R+ such
that, for each agent i ∈ I, all events s ∈ S, and all consumption vectors x̂ ∈ R2

+,

(1, p (s)) ·wi (τi (s)) ≥ (1, p (s)) · x̂⇒
ui
(
xi (s)

∣∣τi (s) ∩ p−1 (p (s))
)
≥ ui

(
x̂
∣∣τi (s) ∩ p−1 (p (s))

)
,

(2)

each function xi : S → R2
+ is measurable with respect to the partition Πi (p),

7 The term “full communication equilibrium” was coined by Radner (1979). Today it ap-
pears somewhat inappropriate, because communication is not explicitly modeled. A way to
introduce explicit communication was proposed later by Forges and Minelli (1997).
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and the market clearing condition (1) holds for all s ∈ S.
The information incorporated in Πi (p) may or may not be coarser than S

(resp. finer than Ti). To distinguish, a competitive equilibrium (x, p) is called
fully revealing if the price function p is one-to-one, i.e., if p (s) = p (s′) implies
s = s′ for all s, s′ ∈ S. That is, the price function in a competitive equilibrium
is fully revealing, if it distinguishes the occurrence of any two events that can
be distinguished by some agent. In that case Πi (p) = S for all i ∈ I. If the
competitive equilibrium is not fully revealing, then it is assumed that agents
use some (possibly subjective) prior distribution on Ω to evaluate their utility
functions. The above definition makes no statement about whether or not the
competitive equilibrium is fully revealing.

Radner (1979) and Allen (1981) have established generic existence of fully
revealing competitive equilibria. Universal existence of competitive equilibria
would require that utility functions are measurable with respect to private in-
formation (private values) and strictly concave (for details see de Castro, Pesce,
and Yannelis, 2011, Theorem 4.1 and Remark 4.2).8 If utility functions are
not measurable with respect to private information, Kreps (1977) gives a coun-
terexample to existence with state-dependent and unobserved expected utility.
A full communication equilibrium, on the other hand, always exists (see Hart,
1974, Theorem 3.3; and Jordan, 1983, Proposition 2.8). Clearly, a full commu-
nication equilibrium with an injective price function constitutes also a rational
expectations equilibrium.

It is assumed throughout that the competitive equilibrium, if it exists, in-
volves trade in at least some events. Furthermore, if a competitive equilibrium
exists, with prices p (s) = ps for all s ∈ S, then it involves no loss of generality
to assume that S = {1, ..., |S|} and p1 ≤ p2 ≤ ... ≤ p|S|. If it is fully revealing,
then the latter inequalities are all strict.

Because preferences are strictly increasing in both goods, the budget con-
straint (see (2)) must bind at a competitive equilibrium for all events and all
agents. Therefore, for any price p ∈ R++ and any information partition Πi that
(weakly) refines Ti, agent i’s excess demand function ξi : R++ × Πi → R+ (for
good j = 2) can be defined by

ξi (p, π) = arg max
−pwi2(ti)≤px≤wi1(ti)

ui (wi1 (ti)− px,wi2 (ti) + x |π ) . (3)

8 Existence of a rational expectations equilibrium is not an issue in this paper. This is so,
because for the existence of a Nash equilibrium of the market game it is sufficient that a full
communication equilibrium exists.
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for all π ∈ Πi with π ⊆ ti ∈ Ti. By standard arguments this is a continuous
function of p that is strictly decreasing in p by the assumption of the law of
demand, for any fixed π ∈ Πi. As long as −wi2 (ti) < ξi (p, ti) < wi1 (ti) /p , the
first-order condition,

∂ui (x1, x2 |π )

∂x2
= p

∂ui (x1, x2 |π )

∂x1
, (4)

must hold at x1 = wi1 (ti)− pξi (p, ti) and x2 = wi2 (ti) + ξi (p, ti).
Competitive equilibria only serve as a benchmark. The focus in this paper

is on the market game that is described in the following subsection.

2.2 Market Game

The market game is an idealized version of an electronic limit order book. The
idealization concerns three points. First, at real-world markets price increments
are finite, so-called “ticks,” and quantities are traded in discrete “lots” (see Has-
brouck, Sofianos, and Sosebee, 1993). By contrast, here price increments may
be infinitesimal and quantity is perfectly divisible, i.e., prices and quantities are
real numbers. The reason for this assumption is that without it a number of
results about competitive equilibrium, which are used in this paper, would not
apply. Second, in practice many platforms charge small proportional fees that
are assumed away in the model.9 Third, this paper considers a one-shot (static)
model. This rules out dynamic effects that are often considered important on
limit order markets. On the one hand the assumptions on utility functions are
general enough to interpret them as value functions of a dynamic optimization
problem. On the other hand such an interpretation would have to assume that
after each round of trading all unexecuted orders are canceled. Otherwise pri-
ority rules based on timing would kick in. Most electronic order books operate
a “first in-first out” principle that grants priority to limit orders (with the same
limit price) that arrived earlier. In high-frequency markets this may generate
queuing uncertainty (see Yueshen, 2014). Such effects cannot be captured by a
static model.

Formally, the game starts with a chance move that determines the state
$ ∈ Ω. After chance has determined the state, agents privately learn their types
and then the market opens. At the market all trades are made as exchanges of
good j = 1, which serves as the numeraire, against commodity j = 2. Thus,

9 These fees, that range from 0.1 to 2 cents per share, act like a distortive tax.
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every trade can be summarized by the quantity of good j = 2 traded and its
price in terms of good j = 1.

Trades are done by orders that all agents submit simultaneously. An order
may be a limit order or a market order. A limit buy order by agent i ∈ I is a pair
(pi, xi) ∈ R+ × R++. It constitutes a commitment on the part of agent i to buy
at any price below or equal to the bid price pi ≥ 0 any quantity smaller or equal
to xi > 0 of good j = 2. A limit sell order by i is a pair (pi, xi) ∈ R++ × R–.
It constitutes a commitment on the part of i to sell at any price above or equal
to the ask price pi > 0 any quantity not exceeding |xi| > 0 of good j = 2. A
market buy order by agent i, (∞, xi) with xi > 0, is a commitment to buy at
any non-negative price any quantity not exceeding xi > 0. A market sell order
by i, (0, xi) with xi < 0, is a commitment to sell at any non-negative price
any quantity smaller than or equal to |xi| > 0. That is, in contrast to Mertens
(2003), an order, as formalized here, does not force full execution of the quantity
if the relevant market price is strictly below or above the limit price.

Each agent i ∈ I may place up to m ≥ |S| orders. Under certainty agents
would only place a single order (xi = 0 for at least m − 1 orders). With
uncertainty it will be seen that agents have an incentive to place multiple orders.

When placing orders, agents must respect a budget and a short selling con-
straint. In particular, if agent i ∈ I is of type ti ∈ Ti, then all orders in her
order vector yi (ti) = ((pik, xik))

m
k=1 ∈ (R+ × R)

m must satisfy, for all prices
p ∈ R+,

wi2 (ti) +
∑
pik≥p

max {0, xik} ≥ −
∑
pik≤p

min {0, xik} and (5)

wi1 (ti)− p
∑
pik≤p

min {0, xik} ≥ p
∑
pik≥p

max {0, xik} . (6)

This is to be read as follows. If the market price p is below the smallest limit
price among ti’s sell orders, p < minxik<0 pik, but does not exceed the largest
limit price among ti’s buy orders, p ≤ maxxik>0 pik, then ti only buys. In that
case (5) is void, and (6) reduces to p

∑
pik≥p max {0, xik} ≤ wi1 (ti), a budget

constraint. If the price p is not below the smallest limit price among ti’s sell
orders, i.e. p ≥ minxik<0 pik, but exceeds the largest limit price among ti’s buy
orders, i.e. p > maxxik>0 pik, then ti only sells. In that case (6) is void, and (5)
reduces to wi2 (ti) +

∑
pik≤p min {0, xik} ≥ 0, a short selling constraint.

If minxik<0 pik ≤ p ≤ maxxik>0 pik, then ti may trade on both sides of the
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market. In that case (5) demands that ti’s endowment of good j = 2 plus what
she buys at p must be sufficient to cover all of ti’s sales at p; and (6) demands
that ti’s endowment of good j = 1 plus what she earns from sales must finance
her purchases. Clearly, if ti submits a market sell order, (0, xik) with xik < 0,
then the smallest limit price among ti’s sell orders is zero; and if she submits a
market buy order, (∞, xik) with xik > 0, no price p ∈ R+ exceeds the largest
limit price among ti’s buy orders.

Hence, (5) restricts short selling, as there is only one round of trading. And
(6) ensures that ti does not go bankrupt at a single price p by placing limit buy
orders. For all types ti ∈ Ti of agent i ∈ I denote by Bi (ti) the set of all order
vectors that satisfy (5) and (6), where pik ∈ R+∪{∞} so as to allow for market
buy orders. The set Bi (ti) is non-empty, because 0 ∈ Bi (ti) ⊆ (R+ × R)

m for
all ti ∈ Ti, and it does not depend on market prices, because (5) and (6) must
hold for all p ∈ R+.

The formulation of constraints (5) and (6) stipulate a single price p at which
sales and purchases are executed. If the market ask price a and the market
bid price b can be different—as they may be in the current model—an agent
may still go bankrupt. For instance, if type ti of agent i places one market buy
order (∞, x) and one market sell order (0,−x) with x > 0 (and xik = 0 for all
k = 3, ...,m), then the analogue of (6) is wi1 (ti) + ax ≥ bx with a < b. For
sufficiently large x this inequality must fail and ti is bankrupt. More generally,
say that type ti of agent i is bankrupt at the market ask price a and the market
bid price b if either

wi2 (ti) +
∑
pik≥b

max {0, xik} < −
∑
pik≤a

min {0, xik} or (7)

wi1 (ti)− a
∑
pik≤a

min {0, xik} < b
∑
pik≥b

max {0, xik} (8)

or both hold at (a, b). Note that, in contrast to (5) and (6), the inequalities
(7) and (8) refer to a market bid price b and a market ask price a (that may
be different, a < b), rather than to a single price p. If ti is bankrupt, her en-
dowments are confiscated, but her feasible trades are carried out by an external
agency. Any other bankruptcy penalty would also do, as long as agents have an
incentive to avoid bankruptcy.

Transactions are executed mechanically by a pricing rule. Given all agents’
orders, the clearing rule is as follows. First, the trades that maximize turnover in
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terms of good j = 2 are determined. Then a market bid price and a market ask
price for these trades are set such that their difference, the spread, is maximal.
These two steps fully specify the price determination, as will be shown below.

If the quantity demanded at the market bid price does not match the quan-
tity supplied at the market ask price, a random rationing mechanism becomes
effective. If there is excess demand, this mechanism rations buy orders that
bid the lowest price among executable buy orders such that each of those has
a nonzero chance of being rationed. Likewise, for excess supply all sell orders
that ask the highest price among executable orders are randomly rationed. In-
framarginal orders are not rationed.

More precisely, call a profile of order vectors y = (((pik, xik))
m
k=1)i∈I , one

order vector for each agent, an order book. Say that the market is active at the
order book y if there are i, j ∈ I and k, h ∈ M ≡ {1, ...,m} such that xik > 0,
xjh < 0, and pik ≥ pjh. If the market is active at y, define the functions

Dy (p) =
∑

(j,k)∈{(i,h)∈I×M |pih≥p}

max {0, xjk} and (9)

Sy (p) = −
∑

(j,k)∈{(i,h)∈I×M |pih≤p}

min {0, xjk} . (10)

By definition the aggregate demand function Dy in (9) is a nonincreasing step
function in p ∈ R+ that is continuous from below; and the aggregate supply func-
tion Sy in (10) is a nondecreasing step function in p ∈ R+ that is continuous from
above. Next, define the auxiliary prices b (y) = inf {p ∈ R+ | Dy (p) < Sy (p)}
and a (y) = sup {p ∈ R+ | Dy (p) > Sy (p)}. The bid price b (y) is the smallest
bid price among buy orders that will be executed under turnover maximiza-
tion. The ask price a (y) is the largest ask price among sell orders that will be
executed at a turnover maximum. Finally, define

b (y) = max {p ∈ R+ | Dy (p) = Dy (b (y))} and (11)

a (y) = min {p ∈ R+ | Sy (p) = Sy (a (y))} . (12)

The prices b (y) and a (y) in (11) and (12) are the market bid and ask prices
that maximize the spread, keeping turnover at its maximum.

Remark 1 All results in this paper continue to hold if the market bid and ask
prices as in (11) and (12) are replaced by λbb (y) + (1− λb) b (y) and λaa (y) +

(1− λa) a (y) for some constants λa, λb ∈ [0, 1]. This is a consequence of Lemma
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(a) a = a = b < b

(b) a < a < b < b

Figure 1: Two (active) order books.

2 below. Anecdotal evidence suggests that in practice λa = λb = 0 is actually
used (except for so-called “single-price auctions;” see Hendershott, 2003, p. 10).
More importantly, since λa = λb = 0 maximizes the spread, this specification
may be taken as a reduced form model of brokers or high-frequency traders front-
running their clients’ orders. Since front-running is a major concern for elec-
tronic limit order books (see The New York Times, April 6, 2014, p. MM27),
simplifying notation by assuming λa = λb = 0 seems worthwhile.

The mechanics of the definitions is encapsulated in the first auxiliary result
that applies to a fixed order book. (Under uncertainty the order book that
realizes depends on the event that obtains, of course.)

Lemma 1 For all order books y:
(a) b (y) ≥ b (y) ≥ a (y) ≥ a (y);
(b) if the market is active at y, then b (y) > a (y) implies Dy

(
b (y)

)
= Dy (b (y)) =

Dy (p) = Sy (p) = Sy (a (y)) = Sy (a (y)) for all p ∈ (a (y) , b (y));
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(c) if the market is active at y, then

a (y) < a (y)⇒ Dy (a (y)) > Sy (a (y)) and

b (y) > b (y)⇒ Dy (b (y)) < Sy (b (y)) .

Lemma 1(a) states that ask prices never exceed bid prices. Part (b) says,
first, that if there is no price p such that Dy (p) = Sy (p), then b (y) = a (y);
second, if b (y) > a (y), then there is a whole interval of prices for which demand
equals supply. Part (c) says that if Dy (a (y)) ≤ Sy (a (y)), then a (y) = a (y),
and if Dy (b (y)) ≥ Sy (b (y)), then b (y) = b (y). Figure 1 illustrates two
possible order book configurations.

With these definitions an allocation rule can now be defined for each order
book y. First, if the market is not active at y, then no transactions take place.
If the market is active at y, then:

1. If Dy (b (y)) = Sy (a (y)), then each order yik = (pik, xik) with pik ≥ b (y)

and xik > 0, or with pik ≤ a (y) and xik < 0, will fully be carried out
at the market bid price b (y) if xik > 0 or at the market ask price a (y)

if xik < 0. All other orders are canceled. Accordingly, the net trades
θi (y) ∈ R2 of agent i at the order book y are given by

θi1 (y) = −b (y)
∑

pik≥b(y)

max {0, xik} − a (y)
∑

pik≤a(y)

min {0, xik} , (13)

θi2 (y) =
∑

pik≤a(y)

min {0, xik}+
∑

pik≥b(y)

max {0, xik} . (14)

2. If b (y) = a (y), then either the former is applicable, or one side of the
market is longer than the other at this price, but trades are possible (see
Lemma 1). For concreteness suppose that Dy (b (y)) > Sy (a (y)). (The
rule for the reverse strict inequality is analogous.) Then b (y) = b (y)

by Lemma 1(c) and all buy orders (pik, xik), for which pik = b (y) and
xik > 0, will be rationed with positive probability so as to balance the
quantity demanded with the quantity supplied Sy (a (y)). (If only one
order satisfies that, this order is rationed with certainty.) The exact nature
of the random rationing mechanism is immaterial, because agents will
avoid being rationed by risk aversion. Buy orders (xik > 0) are executed
at the market bid price b (y) and sell orders (xik < 0) at the market ask
price a (y).
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3. If an active trader is bankrupt at
(
a (y) , b (y)

)
, as defined by (7) and (8),

her endowment is confiscated (so that she ends up with zero holdings of
both goods) and an external agency trades her executable orders.10

According to this allocation rule agents do not necessarily pay their limit prices,
but buyers pay the market bid price b (y) from (11) and sellers receive the market
ask price a (y) from (12) per unit traded. The idea is that (unmodeled) brokers
maximizes their profits by front-running, but they cannot not price-discriminate
among executable orders on the same side of the market. If they did, on real-
world markets this would cause litigation.

The allocation rule above translates each order book y into payoffs for all
agents and all types. Therefore, restricting agents’ choices to order vectors in
Bi (ti) for all ti ∈ Ti and all i ∈ I, this defines a Bayesian game in which agent
i ∈ I, when she is of type ti ∈ Ti, has the strategy set Bi (ti). More precisely, the
players in the game are the types ti ∈ Ti of the agents i ∈ I and their strategy
sets are Bi (ti). Thus, technically speaking the Bayesian game is analyzed in
Harsanyi form (Harsanyi, 1967-8). The solution concept is Nash equilibrium
(Nash, 1950, 1951) in pure strategies.

3 Equilibria of the Market Game

Existence of a Nash equilibrium for the market game is trivially established,
because inactivity is always an equilibrium. But autarky is not an interesting
equilibrium. The focus here is on active equilibria, that is, on equilibria that
involve trade.

The key to understanding active equilibria is the observation that agents
may use multiple orders to hedge against all contingencies that they regard
possible. If agent i ∈ I is of type ti ∈ Ti, she regards possible the events in
τ−1
i (ti) = {s ∈ S | s ⊆ ti}. Since she can place multiple orders (and m ≥ |S|),
she can perfectly hedge by placing a separate order for each s ∈ τ−1

i (ti). By
risk aversion it is optimal to do so. Therefore, in equilibrium type ti of agent
i submits an order vector yi (ti) = ((pis, xis))s⊆ti with one (nonzero) order for
each event that she regards possible. (The remaining orders have xik = 0.

10 This is the point where a generalization of the model to more than two goods could pose
difficulties. If a trader is bankrupt, this will affect all markets on which she placed orders
and the ensuing repercussions would have to be modeled (for a discussion see Dubey, 1982).
The assumption that the feasible trades of a bankrupt trader are carried out by an external
agency sterilizes this effect—at the cost that outside of equilibrium the system may not be
closed anymore, of course.
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Note that this kind of hedging would be impossible in a trading-post model á
la Shapley and Shubik, 1977.)

This is vaguely reminiscent of general equilibrium theory with complete mar-
kets. In that theory also all possible contingencies can be insured against, be-
cause there is a complete set of Arrow-Debreu securities. The difference here is
that the hedging is done on the same market, so that transactions are depen-
dent. In particular, all buy orders with bid prices not below the market bid will
be cleared, and all sell orders with asks not above the market ask also will.

If event s ∈ S materializes, then for each i ∈ I there is a unique type
τi (s) ∈ Ti such that s ⊆ τi (s). Therefore, the order book at event s ∈ S is
uniquely determined by y (s) = (yi (τi (s)))i∈I . And all agents rationally foresee
that the order book y (s) will obtain at event s. The ability to perfectly hedge
implies that the spread is zero in all active equilibria.

Lemma 2 In any active equilibrium of the market game a (y (s)) = a (y (s)) =

b (y (s)) = b (y (s)) for all s ∈ S.

Lemma 2 states that in an active equilibrium front-runners cannot profit
from a positive spread. Therefore, in equilibrium the system is closed in the
sense that no resources leak out. More importantly, the lemma implies that
at any active equilibrium each event s ∈ S is associated with an equilibrium
price ps = a (y (s)) = b (y (s)) that is both the market bid and the market ask
price at the event s. (This implies that using other market bid and ask prices,
as discussed in Remark 1, does not change the results.) Thus, henceforth, ps
denotes both the equilibrium market bid and market ask price.

Lemma 2 also implies that bankruptcy does not occur in equilibrium. For,
if the market bid and ask price both equal ps, then that agent i at event s ∈ S
has to choose from Bi (τi (s)) guarantees solvency by (5) and (6).

3.1 Sufficient Condition

This section considers existence of active Nash equilibria. Assuming that a full
communication equilibrium involves trade in at least some states, its existence
(Hart, 1974, Theorem 3.3; Jordan, 1983, Proposition 2.8) implies existence of
an active Nash equilibrium for the market game.

Theorem 1 An active pure strategy Nash equilibrium for the market game al-
ways exists. This Nash equilibrium induces precisely the same allocation as the
full communication equilibrium.
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Theorem 1 establishes that there is always an active equilibrium for the market
game at which agents behave as if they were price takers. Its proof is con-
structive, showing that competitive behavior indeed constitutes an equilibrium
of the market game. For, assume for a moment that there is no uncertainty,
|S| = 1, and let p∗ denote the market clearing price. If all buyers bid p∗, no
seller who asks a price above p∗ will be able to trade; likewise, if all sellers ask
p∗, no buyer who bids below p∗ will trade. Given that everybody else insists on
p∗, the optimal trade for an individual agent is precisely her competitive excess
demand at the price p∗.

Now add uncertainty; say, there are three elementary events, S = {1, 2, 3}.
For instance, one group of agents knows whether or not s = 1 obtains, T1 =

{{1} , {2, 3}}, the other whether or not s = 3 obtains, T2 = {{1, 2} , {3}}. Sup-
pose that at the full communication equilibrium p∗1 < p∗2 < p∗3. Types t1 = {1}
in the first group bid resp. ask p∗1, and types t2 = {3} in the second group bid
resp. ask p∗3. Types t1 = {2, 3} in the first group all place two limit orders,
one at p∗2 and one at p∗3; types t2 = {1, 2} in the second group also place two
orders, one at p∗1 and one at p∗2. All quantities in the orders correspond to the
associated competitive excess demands.11 If, say, s = 2 realizes, then the orders
at p∗2 precisely clear the market. Given that s = 2, there is excess demand at
p∗1, because the orders at that price lack their counterparts from types t1 = {1};
and at p∗3 there is excess supply, because the orders at p∗3 lack their counterparts
from t2 = {3}. The other events are similar. The rest of the proof establishes
individual optimality.

Theorem 1 has a further important implication. It claims that private infor-
mation gets aggregated by market prices.

Corollary 1 Suppose that the economy has a fully revealing competitive equi-
librium. Then the market game has a (pure strategy) Nash equilibrium which
induces the same allocation and the same prices.

For the case of private values this result resolves the problem raised by Beja
(1977) and Hellwig (1980), that traders act rationally with respect to informa-
tion, yet fail to recognize their influence on the price. In the present model
agents do recognize their influence on the price, and this is why the price re-
flects private information. Still they behave as if they were price takers, because
of the nature of order-driven markets. These markets generate incentives that

11 More precisely, they are the increments of competitive excess demands. For instance,
t1 = {2, 3} orders ξ1

(
p∗3, {2, 3}

)
at p∗3 and ξ1

(
p∗2, {2, 3}

)
− ξ1

(
p∗3, {2, 3}

)
at p∗2.
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locally act like given prices, because traders take as given the limit prices of
others.

Theorem 1 contrasts sharply with trading-post models (Shapley and Shubik,
1977), whose equilibria with finitely many agents do not include a competitive
allocation. This is because (very much like models of competition in supply
functions) the residual demand functions facing an individual have non-zero
slope. Hence, the first-order condition (4) fails for trading-post models, as
it contains a (non-zero) term that depends on the slope of residual demand.
Unlike trading-posts, the undiscriminatory limit order book implements the full
communication equilibrium as a Nash equilibrium of the associated Bayesian
game even if there is only a finite number of agents, irrespective of how large
or small these agents are. If the full communication equilibrium is a rational
expectations equilibrium, the same holds for the latter.

The driving forces of Theorem 1 are the law of demand and the “private
values” assumption. Theorem 3 below will show that private values are in fact
necessary. The reason is that with “common values” the law of demand is likely
to break down. For, if an agent wishes to buy at a high price and, say, sell at
a low price, in events that she cannot distinguish based on her private informa-
tion, her two orders may execute against each other. This make it impossible to
hedge and destroys the limit order book’s ability to implement a competitive al-
location. And this is likely to be the case without the measurability assumption,
as Theorem 3 below will show.

3.2 Necessary Condition

Even with private values the competitive allocation may be but one equilibrium
of the market game. Indeed the market game may have other active equilibria.
Yet, these will now be shown to stay in a vicinity of the competitive equilibrium,
provided agents are small compared to the market.

Since agents are risk averse, they will avoid being rationed: At a given price
they prefer trading the expected quantity for sure over a lottery that results
from rationing. Therefore, they will plan their orders for the events s ∈ τ−1

i (ti)

by considering which quantities can be bought or sold at the equilibrium prices
ps (from Lemma 2) without risking rationing. What these quantities are, given
an order book y, can be summarized by a correspondence Fy : R+ � R. This
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is constructed as follows. For an order book y let

A (y) = {p ∈ R+ | ∃ (i, k) ∈ I ×M : xik < 0, pik = p} and

B (y) = {p ∈ R+ | ∃ (i, k) ∈ I ×M : xik > 0, pik = p}

be the sets of ask and bid prices that occur in the order book y. Now consider
the opportunity to place one additional order. Which additional orders will be
executed without rationing? This is described by the correspondence Fy defined
by

Fy (p) =



[Sy (p)−Dy (p) , 0] if a (y) ≥ p /∈ A (y) ,

(limε↘0 Sy (p− ε)−Dy (p) , 0] if a (y) ≥ p ∈ A (y) ,

{0} if a (y) < p < b (y) ,

[0, Sy (p)− limε↘0Dy (p+ ε)) if b (y) ≤ p ∈ B (y) ,

[0, Sy (p)−Dy (p)] if b (y) ≤ p /∈ B (y) .

(15)

That is, by asking a price p that does not exceed a (y) and is not asked in any
existing sell order, p /∈ A (y), the quantity Sy (p)−Dy (p) can be sold at the price
p, which will be the new market ask price a. If the price p does not exceed a (y),
but is asked in some existing sell order, p ∈ A (y), then by asking a price p−ε for
some small ε > 0 the existing sell order is undercut, and any quantity strictly
larger than limε↘0 [Sy (p− ε)−Dy (p− ε)] = limε↘0 Sy (p− ε) − Dy (p) < 0

can be sold at the price p, because the existing sell order determines the market
ask price. (Note that limε↘0 Sy (p− ε) < Sy (p), because Sy is continuous from
above and at p an existing sell order becomes executable.)

At prices strictly between a (y) and b (y) nothing can be sold or bought.
By bidding a price p + ε > b (y), when p is bid in some existing buy order,
i.e. p ∈ B (y), any quantity strictly less than limε↘0 [Sy (p+ ε)−Dy (p+ ε)] =

Sy (p)−limε↘0Dy (p+ ε) > 0 can be bought at the price p, because the existing
buy order determines the market bid price (where limε↘0Dy (p+ ε) < Dy (p),
since Dy is continuous from below and at p an existing buy order becomes
effective). At a price p ≥ b (y) that is not bid in any existing buy order,
p /∈ B (y), any quantity not exceeding Sy (p) −Dy (p) can be bought, because
p will be the new market bid price b. Thus, every pair (x, p) in the intersection
of the graph of Fy with the budget set Bi (ti) of type ti of agent i is a feasible
trade with no risk of rationing.

The correspondence Fy satisfies that 0 > x ∈ Fy (p) and p ≤ a (y) imply
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Figure 2: Indifference curves in order space.

x ∈ Fy (q) for all q ≤ p, and 0 < x ∈ Fy (p) and p ≥ b (y) imply x ∈ Fy (q)

for all q ≥ p. Its boundary is like a step function, except that occasionally the
corner points are missing, i.e., the horizontal pieces may be closed or half-open
intervals. They are half-open when there is a competing order on the same side
of the market; and they are closed when the constraint comes from the other
side of the market. Whenever a trader’s optimal choice is located at a horizontal
segment of (the boundary of the graph of) Fy, then she locally faces an infinite
price elasticity—as if she were a price taker.

For what follows abbreviate ξi (ps, τi (s)) for an event s ∈ S by ξi (ps, s) for
all i ∈ I. Combining the correspondence Fy with the preferences of traders (as
illustrated in Figure 2) yields the following.

Proposition 1 In any active equilibrium of the market game, for all s ∈ S:
(a) the quantity traded by type τi (s) ∈ Ti of agent i ∈ I at event s ∈ S does not
exceed in absolute value her excess demand ξi (ps, s) at the equilibrium price ps;
(b) on each side of the market there is at most one agent for whom the quantity
traded is strictly smaller in absolute value than her excess demand ξi (ps, s) at
the equilibrium price ps;
(c) at most one order is rationed.

The essence of Proposition 1 is encapsulated in Figure 3.12 Because excess
demand is a step function, the opportunity set graph (Fy)∩Bi (ti) of type ti of
agent i at an equilibrium is an area bounded by a nondecreasing step function,

12 The better-direction for preferences is down-right and the opportunity set is the area to
the upper left of the step function.
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Figure 3: Opportunity set and indifference curves in order space.

that is, the boundary consists of vertical and horizontal pieces. The optimal
choice cannot lie on a vertical piece, as there the same quantity can be bought
at a lower price resp. sold at a higher price. Hence, it must be located at a
horizontal segment—or at a corner point. At a horizontal segment the agent is
precisely at her excess demand function, as if she were a price taker (see (4)).
The only subtlety arises at corner points, where the agent may be below her
competitive excess demand. But corner points can only be reached when the
bidder has no competitors on the same side of the market and the constraint
comes purely from the other side of the market. Therefore, this can apply to
at most one bidder. (The arguments on the supply side are analogous.) These
insights identify necessary conditions for active equilibria of the market game
for the private values case.

Theorem 2 If a pure strategy combination for the market game constitutes an
active equilibrium, then for each event s ∈ S there are an equilibrium price ps,
two agents i (s) , j (s) ∈ I with i (s) 6= j (s), and numbers θi(s), θj(s) ∈ R such
that

ξi(s) (ps, s) ≤ θi(s) ≤ 0 ≤ θj(s) ≤ ξj(s) (ps, s) and

θi(s) + θj(s) +
∑

k∈I\{i(s),j(s)}

ξk (ps, s) = 0,

where θi(s) and θj(s) denote the net trades of agents i (s) and j (s), and all other
agents’ net trades are equal to their excess demands ξk (ps, s) at ps.
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There is an alternative formulation of Theorem 2 that looks at how far equi-
librium prices can deviate from their competitive levels. In particular, for
each agent j ∈ I let Ps (j) denote the market clearing price at event s ∈ S
when agent j has been excluded from the economy, i.e., the price that solves∑
i∈I\{j} ξi (Ps (j) , s) = 0. Then, the prices ps at an equilibrium of the market

game satisfy
min
j∈I

Ps (j) ≤ ps ≤ max
j∈I

Ps (j) (16)

for all events s ∈ S. For, by Proposition 1(b) on each side of the market at most
one agent is short of her competitive (excess) demand. No agent will trade more
than her competitive (excess) demand either. Hence, the thought experiment
of removing one agent on each side of the market, fully or partially, gives the
possible range of equilibrium prices.

If the rational expectations equilibrium is fully revealing and the intervals
from (16) are disjoint across events s ∈ S, then all Nash equilibria of the market
game are also fully revealing. That, of course, requires that removing one agent
from the economy has very little effect on the full communication equilibrium.
Still, this observation yields a notion when all (of finitely many) agents are
small: If the intervals from (16) are small. (An example in the next subsection
illustrates what may happen if these intervals are large.)

Such a condition gives substance to the claim that small agents in a large
market have almost no influence on the price, even when the number of agents
is finite. While it is conceivable that an equilibrium of the market game may
not precisely result in a competitive allocation, the deviation from the latter is
bounded—by how much a single agent can move the market clearing price. In
particular, no seller can drive the price further up than what would result if she
withheld her whole supply; and no buyer can drive the price further down than
what would result if she withheld her whole demand.

There are other condition that would eliminate non-competitive Nash equi-
libria, of course. Replicating the economy, for instance, would eliminate non-
competitive equilibria in the limit. As an alternative, Simon (1984, p. 223)
proposes the condition that markets are “thick.” Translated to the case of un-
certainty and an undiscriminatory order book, markets are thick at a particular
strategy combination if at all events s ∈ S at least two buyers bid the market
bid price and at least two sellers ask the market ask price. This condition elim-
inates the corner points of the opportunity set (15) at the realized equilibrium
prices. Therefore, it immediately implies that every Nash equilibrium of the
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market game induces a competitive allocation. The no-surplus condition, as
introduced by Ostroy (1980) and Makowski (1980), has clearly the same effect,
by (16).

3.3 Discussion

On the other hand, if a seller, say, controls a large fraction of aggregate supply,
then by withholding supply she can drive the market price up significantly—
markets are “thin.” And in equilibrium buyers will shade their demands ac-
cordingly. Such a constellation is often called a market corner.13 The following
example illustrates that in the presence of large traders there may be Nash
equilibria—besides the fully revealing one from Theorem 1—at which prices do
not reveal information.

Example 1 Suppose there are three states Ω = {1, 2, 3} and four agents with
f1 = f2 and f3 = f4, T1 = T2 = {{1} , {2, 3}}, and T3 = T4 = {{1, 2} , {3}}.14

That is, agents 1 and 2 are identical, and so are agents 3 and 4. Assume
also that ξ1 (p, {1}) = ξ2 (p, {1}) > ξ1 (p, {2, 3}) = ξ2 (p, {2, 3}) ≥ 0 and 0 ≥
ξ3 (p, {1, 2}) = ξ4 (p, {1, 2}) > ξ3 (p, {3}) = ξ4 (p, {3}) for all p > 0. That is,
agents 1 and 2 are always buyers, but wish to buy more at s = 1 than at event
{2, 3}; agents 3 and 4 are always sellers, but supply less at event {1, 2} than
at s = 3, for all prices p. Therefore, if this economy has a fully revealing
competitive equilibrium with prices (ps)s=1,2,3, then p1 > p2 > p3. And this
can be supported by the same strategies as in the proof of Theorem 2. Observe
that by construction 2ξ1 (p2, {2, 3}) + 2ξ3 (p2, {1, 2}) = 0, but 2ξ1 (p2, {1}) +

2ξ3 (p2, {1, 2}) > 0 and 2ξ1 (p2, {2, 3}) + 2ξ3 (p2, {3}) < 0.
Assume that type {1} of agent 1 and type {3} of agent 3 are individually

large enough so that, by withholding their excess demands, they can turn the
sign of aggregate excess demand at the “middle” price p2, i.e., ξ1 (p2, {1}) +

2ξ3 (p2, {1, 2}) < 0 and 2ξ1 (p2, {2, 3}) + ξ3 (p2, {3}) > 0. (Hence, the intervals
from (16) are overlapping.) For further reference define the quantities z1 =

13 Historical examples include Cornelius Vanderbilt accumulating shares of Harlem Railroad
in 1863, James Fisk and Jay Gould cornering the gold market in 1869, Thomas F. Ryan
cornering stocks of Stutz Motor company in 1920, or Nelson B. and William H. Hunt’s attempt
to corner the silver market in the late 1970ties.

14 If $ = 1, then agents 1 and 2 know that, but agents 3 and 4 do not. At $ = 2 no agent
knows the true state. At state $ = 3 agents 3 and 4 know it, but 1 and 2 do not. The event
that 1 and 2 know the true state, therefore, is {1}, and the event that 3 and 4 know the true
state is {3}. Consequently, at $ = 1 agents 3 and 4 do not know that 1 and 2 know the true
state, and at $ = 3 agents 1 and 2 do not know that 3 and 4 know the true state.

24

 by guest on July 23, 2015
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


−ξ1 (p2, {1}) − 2ξ3 (p2, {1, 2}) and z3 = −2ξ1 (p2, {2, 3}) − ξ3 (p2, {3}), where
0 < z1 < ξ1 (p2, {1}) and ξ3 (p2, {3}) < z3 < 0.

Then consider the following strategy combination, which is such that each
type of every agent places only one nonzero order. Type {1} of agent 1 submits
a limit buy order (p2, z1) and type {2, 3} of agent 1 submits a limit buy order
(p2, ξ1 (p2, {2, 3})); type {1} of agent 2 places a market buy order (∞, ξ1 (p2, {1}))
and type {2, 3} of 2 submits a limit buy order (p2, ξ1 (p2, {2, 3})). Type {1, 2}
of agent 3 submits a limit sell order (p2, ξ3 (p2, {1, 2})) and type {3} of agent
3 submits a limit sell order (p2, z3); type {1, 2} of agent 4 submits a limit sell
order (p2, ξ3 (p2, {1, 2})) and type {3} of agent 4 submits a market sell order
(0, ξ3 (p2, {3})).

It is easily verified that this constitutes an equilibrium: At $ = 2 the types of
agents 1 and 2 is {2, 3} and the type of agents 3 and 4 is {1, 2}, so that two limit
orders with limit price p2 on each side of the market clear against each other;
all market participants are at their excess demand functions. At $ = 1 the type
of agents 1 and 2 is {1} and the type of agents 3 and 4 is {1, 2}; at the market
two limit sell orders with limit price p2 clear against one market buy order and
one limit buy order with limit price p2. Only the buyer type {1} of agent 1 is not
at her demand function, but she is constrained purely from the sell side of the
market. At $ = 3 the situation is similar, where two limit buy orders with limit
price p2 clear against one market sell order and one limit sell order with limit
price p2. Only the seller type {3} of agent 3 is not at her supply function, but
she is constrained from the other side of the market. In this equilibrium prices
reveal no information at all.

The example shows that in the presence of large traders an equilibrium may
not only deviate from a competitive allocation, but information revelation may
be distorted too. In the example type {1} of agent 1 and type {3} of agent
3 (partially) withhold their demand/supply so as to conceal information. And
this is possible, because they are large in the sense that the intervals from (16)
are overlapping.

4 Common Values

For this subsection the assumption, that preferences fi1 = ui are measurable
with respect to private information Ti, is dropped. Then an economy with
“common values” is obtained. There are common values cases, where the above
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market mechanism can also support a competitive allocation, at least approxi-
mately. Ironically this is the case, for instance, in Kreps’ (1977) example.

Example 2 Let there be two events, S = {1, 2} , and two agents with utility
functions u1 (x |s ) = sln (x1) + x2 and u2 (x |s ) = (3− s) ln (x2) + x1. Endow-
ments are w1 = w2 = (2, 3/2) for all s ∈ S. Types are T1 = {{1} , {2}} and
T2 = S, that is, agent 1 is fully informed and agent 2 not at all. It is not difficult
to see that prices in the full communication equilibrium are p∗ (1) = p∗ (2) = 1,
i.e., they are uninformative.

While no rational expectations equilibrium exists, the market game has a
Nash equilibrium that is arbitrarily close to the full communication equilibrium.
Let ε > 0 be small and suppose that type {1} of agent 1 places the single limit
sell order y1 ({1}) = (1− ε, (3ε− 1) / (2− 2ε))→ε↘0 (1,−1/2) and type {2} of
agent 1 the limit buy order y1 ({2}) = (1 + ε, (1− 3ε) / (2 + 2ε))→ε↘0 (1, 1/2).

If agent 2 puts herself into the shoes of event s = 1, her opportunity set
is determined by the single sell order y1 ({1}). Since the slope of 2’s indif-
ference curve at s = 1 through the point (p, ξ) = (1− ε, (1− 3ε) (2− 2ε) is
(1− ε)2

(4 + 6ε) /
(
4− 18ε+ 18ε2

)
> 0, it is optimal for agent 2 to place a limit

buy order y21 = (1− ε, (1− 3ε) / (2− 2ε)) for event s = 1. If she puts herself
into the shoes of s = 2, she faces the single buy order y1 ({2}). Since the slope of
2’s indifference curve at s = 2 through the point (p, ξ) = (1 + ε, (3ε− 1) / (2 + 2ε))

is 6ε (1 + ε)
2
/
(
1− 9ε2

)
> 0, it is optimal to place a limit sell order y22 =

(1 + ε, (3ε− 3) / (2 + 2ε)) for event s = 2.
Then both types of agent 1 will be faced with the two orders, the buy order

(1− ε, (1− 3ε) / (2− 2ε)) and the sell order (1 + ε, (3ε− 3) / (2 + 2ε)). Since
(1− ε, (3ε− 1) / (2− 2ε)) lies on the excess demand function for type {1} of
agent 1, and (1 + ε, (3− 3ε) / (2 + 2ε)) lies on the excess demand function for
type {2} of agent 1, agent 1’s orders are also optimal in both events. It follows
that an equilibrium has been constructed.

In this Nash equilibrium the uninformed agent 2 is slightly short of her excess
demands in both events, while both types of agent 1 are on their excess demand
functions. That is, in both events agent 2 is constrained from the opposite side
of the market. Since ε > 0 can be arbitrarily small, the Nash equilibrium approx-
imates the full communication equilibrium. That is, while this is a precise Nash
equilibrium (not an approximate ε-Nash equilibrium), it mimics an approximate
rational expectations equilibrium.
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The special feature of this example is the tie between prices in the full com-
munication equilibrium, p∗ (1) = p∗ (2). Even though the demand functions of
both agents vary with the event s ∈ S, this is inconsequential, as prices do
not vary at all. Therefore, Nash equilibria of the market game approximate a
competitive allocation, i.e., for every ε > 0 there is a Nash equilibrium within ε
from the full communication equilibrium.

4.1 A Characterization

The key property that makes the proof of Theorem 1 work is that for each
type ti ∈ Ti a strict inequality between full communication equilibrium prices,
p∗ (s) > p∗ (s′), for events that type ti cannot distinguish, s, s′ ⊆ ti, translates
into a reversed weak inequality for i’s excess demands at s and s′, or equivalently,

if p∗ (s) > p∗ (s′) and ξi (p∗ (s) , s) > ξi (p∗ (s′) , s′) , then τi (s) 6= τi (s′) , (17)

for all s, s′ ∈ S and all i ∈ I.15 In words, (17) says that any two states
s, s′ ∈ τ−1

i (ti) between which i’s (excess) demand is increasing in the (full
communication equilibrium) price must be distinguishable based on i’s private
information. In Kreps’ (1977) example (17) holds trivially, because the hypoth-
esis is void. It turns out, though, that condition (17) is not only sufficient for a
Nash equilibrium of the market game to support a competitive allocation—it is
also necessary.

Theorem 3 If utility functions fi1 = ui are not measurable with respect to
private information Ti, then the market game has a Nash equilibrium that ap-
proximates a full communication equilibrium if and only if condition (17) holds.

The striking part of Theorem 3 is the “only if.” For, this states that when
condition (17) fails, then every Nash equilibrium of the market game must be
bounded away from a full communication equilibrium. That is, without (17)
Nash equilibria of the market game are necessarily far from competitive.

The reason is that the limit order book ranks orders according to price
priority. If an agent submits two orders that violate (17), say, a sell order at a
low price and a buy order at a high price, then the two orders will execute against

15 Condition (17) corresponds to the assumption of convex transfer schedules, offered by
market makers, as adopted by Biais, Martimort, and Rochet (2000). Hence, what these
authors refer to as “common values” comprises the special case characterized in Theorem 3
below and illustrated by Example 2.
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each other (at least partially). Therefore, the market organization dictates that
agent i’s orders satisfy the constraints

(xik − xih) (pik − pih) ≤ 0 for all k, h ∈M (18)

for all i ∈ I. When (17) fails, the competitive excess demands at the full
communication equilibrium prices do not fulfill these conditions (18). Hence,
the Nash equilibria of the market game are bounded away from the competitive
equilibria.

Despite Example 2 condition (17) is, in fact, very restrictive. This is so,
because under common values excess demand functions will vary in the event
s ∈ S in general. And if they do, the only possibility for (17) to hold is that each
agent can distinguish all events between which her equilibrium excess demand
is increasing in the (full communication) equilibrium prices.

This can be seen as follows. Suppose that there are two events s, s′ ∈ S such
that for the full communication equilibrium p∗ (s) > p∗ (s′) and ξι (p∗ (s) , s) 6=
ξι (p∗ (s′) , s′) for some agent ι ∈ I. Then there must be an agent j ∈ I such
that ξj (p∗ (s) , s) > ξj (p∗ (s′) , s′). For, if ξi (p∗ (s) , s) ≤ ξi (p∗ (s′) , s′) for all
i ∈ I, then

∑
i∈I ξi (p∗ (s) , s) = 0 =

∑
i∈I ξi (p∗ (s′) , s′) implies ξi (p∗ (s) , s) =

ξi (p∗ (s′) , s′) for all i ∈ I, contradicting ξι (p∗ (s) , s) 6= ξι (p∗ (s′) , s′). Hence,
condition (17) can only be true if τj (s) 6= τj (s′), that is, if agent j can distin-
guish between s and s′ based on her private information.

4.2 Discussion

It seems conceivable that the constraint (18) could be finessed by allowing agents
to “sterilize” orders at specific prices. This may seem achievable by introducing
stop orders. A stop order is like a reverse limit order. More precisely, a simple
buy stop order, ((qi,∞] ;xi) with xi > 0, is a commitment of agent i ∈ I to buy
up to the specified quantity xi > 0 if the market price is above the stop price
qi ≥ 0. That is, a simple buy stop order becomes a market buy order, once the
market price is above the stop price qi. A simple sell stop order, ([0, qi) ;xi)

with xi < 0, is a commitment of agent i to sell up to the quantity |xi| > 0 if
the market price is below the stop price qi ≥ 0. That is, a simple sell stop order
becomes a market sell order, once the market price is below the stop price qi.

Stop orders may also be combined with price limits. A stop limit buy order,
((qi, pi] ;xi) with xi > 0, is the automatic placement of the limit buy order
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(pi, xi) in the event that the market price is above the stop price qi ≥ 0, where
xi > 0 ⇒ qi < pi. A stop limit sell order, ([pi, qi) ;xi) with xi < 0, is the
automatic placement of the limit sell order (pi, xi) in the event that the market
price is below the stop price qi ≥ 0, where xi < 0⇒ qi > pi.

Stop orders allow agents to “undo” other orders. Yet, the presence of stop
orders destroys the monotonicity of demand and supply functions derived from
the order book. They also destroy the continuity properties (continuity from
below for demand and continuity from above for supply) of the demand and
supply functions as derived from an order book. Consequently, the market may
not work properly in the presence of stop orders. This is illustrated by an
example that can be found in the online appendix.

5 Conclusions

This paper proposes a strategic market game under uncertainty in which traders
may place multiple limit and market orders. The pricing rule is as in electronic
limit order books. When utility functions are measurable with respect to private
information and individual demand functions are downward sloping in the price,
this mechanism generates incentives for traders to behave as if they were price
takers: Locally they face constraints with infinite price elasticity. Therefore,
there is always an equilibrium of the market game that supports a competitive
allocation. In fact, if agents are small relative to the market, the allocations
resulting from Nash equilibria of the market game cannot deviate too much from
competitive allocations.

Since agents may place multiple orders, under uncertainty they can hedge
against all possible contingencies. Consequently, if the competitive equilibrium
has fully revealing prices, then so does the corresponding Nash equilibrium of the
market game. Yet, if agents are large, Nash equilibria may not be competitive
and information revelation may be distorted, as shown by an example.

The paper thus resolves two issues. First, why finitely many agents behave as
if they were price takers, even though they are involved in strategic interaction,
provided each agent is small in the sense that her withdrawing from the economy
does not move market prices too much. Second, how private information gets
incorporated in prices even though the allocation is as if agents did not recognize
their influence on prices.

The caveat to these results is that they take private values, in the sense that
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preferences are measurable with respect to private information, and the law of
demand. With common values (when measurability fails), the picture changes.
Even though there are cases, where the market game has approximately com-
petitive Nash equilibria, these are rare. In many instances of asymmetric in-
formation economies the Nash equilibria of order-driven markets are far from
competitive, as shown by a characterization result. The reason is that with com-
mon values individual demand functions are typically not all downward sloping
in the price—and this conflicts with the limit order book’s price-priority rule.

A Appendix: Proofs

Proof of Lemma 1. (a) The first and the last inequality follow from the
definitions (11) and (12). To see the second inequality, note that by definition
Dy (p) < Sy (p) for all p > b (y) andDy (p) > Sy (p) for all p < a (y). Therefore,
b (y) < a (y) would imply that there is some p ∈ (b (y) , a (y)) such thatDy (p) <

Sy (p) and Dy (p) > Sy (p), which is clearly impossible.
(b) If b (y) > a (y), then from Dy (p) ≤ Sy (p) for all p > a (y) and Dy (p) ≥

Sy (p) for all p < b (y) it follows that Dy (p) = Sy (p) for all p ∈ (b (y) , a (y)).
Since Dy is continuous from below and Sy is continuous from above, and both
are step functions, also Dy (b (y)) = Dy (p) and Sy (a (y)) = Sy (p) for all
p ∈ (a (y) , b (y)). The remaining equalities follow from the definitions (11) and
(12).

(c) Suppose first that a (y) > a (y). Then the definition of a (y) implies that
Dy (p) > Sy (p) for all p < a (y). The definition of a (y) implies that Sy (p) =

Sy (a (y)) for all p ∈ [a (y) , a (y)]. Thus, the hypothesis, continuity of Dy from
below, and the definition of a (y) imply Dy (a (y)) > Sy (a (y)). Similarly, if
b (y) > b (y), then Dy (p) < Sy (p) for all p > b (y), Dy (p) = Dy (b (y)) for all
p ∈

[
b (y) , b (y)

]
, continuity of Sy from above, and the definition of b (y) imply

that Dy (b (y)) < Sy (b (y)). �

Proof of Lemma 2. Suppose that at some event s ∈ S the market bid price
b (y (s)) is strictly larger than b (y (s)). Then there must be an agent i ∈ I and a
type τi (s) ∈ Ti such that type τi (s) has placed an order with a bid price equal to
b (y (s)). This type of agent i can profitably deviate to bidding b (y (s)) without
the risk of being rationed, because by Lemma 1(c) Dy (b (y)) < Sy (b (y)).
Since this contradicts optimality, it must be the case that in any equilibrium
b (y (s)) = b (y (s)) for all events s ∈ S. An analogous argument on the supply
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side establishes that in equilibrium a (y (s)) = a (y (s)).
Next, suppose that at some event s ∈ S it is the case that a (y (s)) < b (y (s)).

Then by Lemma 1(b) supply equals demand at all prices between a (y (s)) and
b (y (s)). Therefore, the agent, who bids b (y (s)) (asks a (y (s))), can reduce
her bid price to a (y (s)) (increase her ask price to b (y (s))) without risking ra-
tioning. Since this contradicts optimality, in any equilibrium a (y (s)) = b (y (s))

must hold for all s ∈ S. �

Proof of Theorem 1. As mentioned, a full communication equilibrium al-
ways exists under the current assumptions (Hart, 1974, Theorem 3.3; Jordan,
1983, Proposition 2.8). That is, for each s ∈ S there is ps = p∗ (s) such that∑
i∈I ξi (ps, s) = 0. The proof now proceeds by constructing strategies that

support the full communication equilibrium, hence a rational expectations equi-
librium (if the latter exists).

If agent i ∈ I is of type ti ∈ Ti, she regards possible the events in τ−1
i (ti) =

{s ∈ S | s ⊆ ti}. Because the excess demand function ξi is strictly decreasing
in the price and continuous, and ξi (p, s) = ξi (p, s′) for all s, s′ ∈ τ−1

i (ti) and
all p ∈ R+ by measurability of utility functions, there is a unique p0 (ti) ∈ R++

such that ξi (p0 (ti) , s) = 0 for all s ∈ τ−1
i (ti). For all i ∈ I and each ti ∈ Ti let

α (ti) = min
{
ps | ps ≥ p0 (ti) , s ∈ τ−1

i (ti)
}
and

β (ti) = max
{
ps | ps ≤ p0 (ti) , s ∈ τ−1

i (ti)
}
,

when both sets are non-empty; otherwise only one of them is relevant. For each
event s ∈ τ−1

i (ti) such that the associated price ps satisfies ps ≤ p0 (ti) type ti
of agent i places a limit buy order

(pis, xis) =
(
ps, ξi (ps, s)− ξi

(
min

{
pr | ps < pr ≤ p0 (ti) , r ∈ τ−1

i (ti)
}
, s
))
,

if there is r ∈ τ−1
i (ti) with ps < pr ≤ p0 (ti), and (pis, xis) = (β (ti) , ξi (β (ti) , ti))

otherwise. For each event s ∈ τ−1
i (ti) such that the associated price ps satisfies

ps ≥ p0 (ti) type ti of agent i places a limit sell order

(pis, xis) =
(
ps, ξi (ps, s)− ξi

(
max

{
pr | ps > pr ≥ p0 (ti) , r ∈ τ−1

i (ti)
}
, s
))
,

if there is r ∈ τ−1
i (ti) with ps > pr ≥ p0 (ti), and (pis, xis) = (α (ti) , ξi (α (ti) , ti))

otherwise. (All remaining orders are with xik = 0.) Intuitively, strategies are
constructed by ordering the possible equilibrium prices in τ−1

i (ti) and bidding
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(or asking) the equilibrium prices together with limit quantities that correspond
to the increment of the excess demand (or supply) function over inframarginal
bids (or asks). Price ties, ps = ps+1, do not matter, because by measurability of
preferences the excess demand functions do not vary in the events s ∈ τ−1

1 (ti).
Suppose that event s ∈ S realizes, so that agent i ∈ I is of type τi (s) ∈ Ti.

Letting y (s) denote the associated order book under the above strategies, the
construction of strategies implies that

Dy(s) (ps) =
∑
i∈I

max {0, ξi (ps, s)} = Sy(s) (ps) = −
∑
i∈I

min {0, ξi (ps, s)} .

Therefore, a (y (s)) = a (y (s)) = b (y (s)) = b (y (s)) = ps by Lemma 1, because
excess demand functions are strictly decreasing in the price, so that at any
price p > ps we have Dy(s) (p) < Sy(s) (p) and at any price p < ps we have
Dy(s) (p) > Sy(s) (p). Hence, no active trader is rationed.

It remains to show that the above strategies are optimal. The opportunity
set at event s ∈ S and the equilibrium price ps for a buyer at her order is
given by Fy(s) (ps) =

[
0, Sy(s) (ps)− limε↘0Dy(s) (ps + ε)

)
, and for a seller by

Fy(s) (ps) =
(
limε↘0 Sy(s) (ps − ε)−Dy(s) (ps) , 0

]
. Because the limit price of

all (active) traders at s ∈ S equals ps, both these intervals are non-empty,
since limε↘0Dy (ps + ε) < Dy(s) (ps) = Sy(s) (ps) and limε↘0 Sy(s) (p− ε) <
Sy(s) (ps) = Dy(s) (ps). In fact, the upper bound for a buyer’s interval is at
least as large as the sum of all buy orders with limit prices ps, hence larger
than the increment of the buyer’s excess demand at ps over the sum of her
inframarginal orders. Therefore, the buyer obtains precisely her excess demand
at ps and her order is located at a horizontal piece of her opportunity set; hence
it is optimal. An analogous argument establishes that a seller’s order is optimal.
Thus, an equilibrium has been constructed. �

Proof of Proposition 1. (a) To see the first statement takes the correspon-
dence Fy, as defined by (15), the budget set Bi (τi (s)), as defined by (5) and
(6), and the shape of indifference curves in order space (p, x). The opportunity
set Fy (p) has been explained in the text. The budget set,

−wi2 (ti) ≤
∑
pik≥p

max {0, xik}+
∑
pik≤p

min {0, xik} ≤ wi1 (ti) /p,

corresponds to a fixed (negative) lower bound on supplies, and a downward
sloping hyperbola for demands. To understand indifference curves in the space

32

 by guest on July 23, 2015
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


of price and net trades, implicitly differentiate the equation

ui (wi1 (ti)− px,wi2 (ti) + x |s ) = c

for a constant c > ui (wi1 (ti) , wi2 (ti) |s ) at some x ∈ (−wi2 (ti) , wi1 (ti) /p).
This yields

dp

dx
=

1

x

(
∂ui/∂x2

∂ui/∂x1
− p
)
.

That is, for a net buyer (x > 0) that p is above the marginal rate of substitution
(MRS), (∂ui/∂x2) / (∂ui/∂x1), implies that the indifference curve (in (p, x)-
space) is downward sloping, and that p is below the MRS implies that the
indifference curve is upward sloping; for a net seller (x < 0) that p is above the
MRS implies that the indifference curve is upward sloping, and that p is below
the MRS implies that it is downward sloping. Clearly, utility is increasing in
the price p for a net seller and decreasing in the price for a net buyer. Thus,
indifference curves (for utility levels above the utility of inactivity) in (p, x)-
space are downward opening curves with a unique maximum at x = ξi (p, s)

for buyers, and upward opening curves with a unique minimum at x = ξi (p, s)

for sellers (see Figure 2). Quasi-concavity of utility functions implies that the
preferred sets for a fixed price p are convex (intervals).

For concreteness, consider an agent, who has placed a buy order (pis, xis)�
0 for event s ∈ S in some equilibrium. (The arguments for sell orders are
analogous.) If y denotes for the moment the order book exclusive of i’s buy
order, her opportunity set is given by the intersection of Bi (τi (s)) with the
graph of Fy. If the optimal choice is located at the boundary of Bi (τi (s)),
then the indifference curve through it must be (weakly) upward sloping and
the claim follows directly. Otherwise the optimal choice is interior and must be
located on the boundary of (the graph of) Fy, because any interior point allows
for an improvement by the shape of indifference curves. Lemma 2 implies that
there is ps ∈ R+ such that a (y (s)) = ps = b (y (s)). Therefore, the optimal
order must either be on a corner point, where xis = Sy (ps) − Dy (ps) and
pis ≥ b (y (s)) = ps, or it must satisfy

∂ui (wi1 − psxis, wi2 + xis |s )

∂x2
= ps

∂ui (wi1 − psxis, wi2 + xis |s )

∂x1
,

at wij = wij (τi (s)) for j = 1, 2 (see (4)). In the first case the indifference
curve through (ps, xis) must be upward sloping and, therefore, xis ≤ ξi (ps, s).
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In the second case clearly xis = ξi (ps, s); see Figure 3 for an illustration. This
demonstrates statement (a).

(b) Suppose that for some equilibrium there is an event s ∈ S at which
there are several bidders for whom the quantity bought is strictly smaller than
ξi (ps, s). (Again, the arguments on the supply side are analogous.) This can
only occur if the optimal buy order for each of these bidders sits on a corner
point of Fy(s) at ps. But then each of these bidders must bid precisely ps,
which contradicts the hypothesis that there is more than one bidder for whom
the quantity bought is strictly smaller than ξi (ps, s), as corner points are only
feasible if the constraint comes from the other side of the market. Hence, this
can hold only for at most one bidder.

(c) By the specification of the trading mechanism only traders on the same
side of the market can be rationed simultaneously. Suppose at some event
s ∈ S rationing occurs at the demand side, Dy(s) (ps) > Sy(s) (ps). (The ar-
guments on the supply side are analogous.) Since by Lemma 2 ps = b (y (s)),
at any price p > ps it must be the case that Dy(s) (p) < Sy(s) (p). Yet, if
more than one buyer is rationed, then several buyers must bid ps = a (y (s)) =

a (y (s)) = b (y (s)) = b (y (s)), because only marginal bidders are rationed.
But then each of those marginal bidders can, by slightly increasing her bid,
obtain with certainty every non-negative quantity strictly smaller than the ex-
cess supply at ps over inframarginal demands, Sy(s) (ps)− limε↘0Dy(s) (ps + ε)

(which corresponds to the fourth line in the definition of Fy(s), when y (s)

excludes the order under scrutiny). Since in equilibrium it cannot be prof-
itable to raise the market bid price above ps = b (y (s)), the optimal quan-
tity demanded at ps by a marginal bidder must be strictly less than z ≡
Sy(s) (ps)− limε↘0Dy(s) (ps + ε) = limε↘0

[
Sy(s) (ps + ε)−Dy(s) (ps + ε)

]
> 0.

Since z is precisely the quantity that will be distributed by the random ra-
tioning mechanism, by risk aversion each marginal bidder prefers to demand
the expected value of her share in z over the lottery induced by the rationing
mechanism. Since the expected values of the marginal (active) bidders’ shares
in z must add up to z, this contradicts equilibrium. �

Proof of Theorem 2. For each s ∈ S there is ps that constitutes both
the market bid and the market ask price by Lemma 2. By Proposition 1(a)
and (b) there are at most two agents, i (s) , j (s) ∈ I, on different sides of the
market, i (s) 6= j (s), who are not on their excess demand functions, ξi(s) (ps, s)

and ξj(s) (ps, s), at ps. Both of these must bid resp. ask the market price ps,
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because their optimal choice must sit on a corner point of Fy (see (15)), with
(the sums of executable) limit quantities not exceeding in absolute value their
excess demands (by Proposition 1(a)). Assume without loss of generality that
at ps agent i (s) is a net seller and j (s) a net buyer, let

zi(s) =
∑

pi(s)k≤ps

min
{

0, xi(s)k
}

+
∑

pi(s)k≥ps

max
{

0, xi(s)k
}
≤ 0 and

zj(s) =
∑

pj(s)k≥ps

max
{

0, xj(s)k
}

+
∑

pj(s)k≤ps

min
{

0, xj(s)k
}
≥ 0,

denote the “notional” net trades of i (s) and j (s) at ps and define

θi(s) = max

zi(s),− ∑
k∈I\{i(s)}

ξk (ps, s)

 and

θj(s) = min

zj(s),− ∑
k∈I\{j(s)}

ξk (ps, s)

 .

Then the equation claimed in the statement must hold. For, if Dy(s) (ps) <

Sy(s) (ps), then the seller i (s) is rationed. If θj(s) < ξj(s) (ps, s) would hold, the
buyer j (s) could profitably deviate to a higher limit quantity (at the same bid
price), taking up quantity supplied that the rationing cuts away from i (s)’s limit
quantity. Thus, θj(s) = ξj(s) (ps, s) must hold and θi(s) = −

∑
k∈I\{i(s)} ξk (ps, s).

Similarly, if Dy (ps) > Sy (ps) and the buyer is rationed, then θi(s) = ξi(s) (ps, s)

and θj(s) = −
∑
k∈I\{j(s)} ξk (ps, s). If Dy (ps) = Sy (ps), then no rationing

occurs, so that θi(s) = zi(s) and θj(s) = zj(s) verify the equation. �

Proof of Theorem 3. “if:” When condition (17) holds and the full commu-
nication equilibrium, with prices p∗ (s) = ps for all s ∈ S = {1, ..., |S|}, is fully
revealing, i.e. 0 < p1 < ... < p|S|, the proof of Theorem 1 carries over to the case
of common values. When condition (17) holds, but 0 < ps−1 < ps = ps+1 ≤ p|S|,
say, then the tie needs to be broken.16 This is done by starting with the lowest
full communication equilibrium price ps for which a tie (with ps+1) occurs and
working upwards, defining new candidate equilibrium prices p̃s with p̃s ≤ ps for
all s ∈ S.

More precisely, if ξi (ps, s) = ξi (ps+1, s+ 1) for all i ∈ I, then the same
limit orders for s and for s + 1 will do. (In fact, then s and s + 1 can be

16 This is not needed with private values, because excess demand functions are constant in
the events s ∈ τ−1

i (ti) for all i ∈ I.
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identified to a single event.) Therefore, assume without loss of generality that
ξj (ps, s) 6= ξj (ps+1, s+ 1) for some j ∈ I. Then, in particular, at least one of
the events s or s+ 1 must involve trade in equilibrium. Assume, again without
loss of generality, that s involves trade in the full communication equilibrium.
Then there is ι ∈ I such that

∑
i∈I ξi (ps, s) = 0 < ξι (ps, s). By continuity and

strict monotonicity of excess demand there is εs, with 0 < εs < ps − ps−1 if
s > 1 and 0 < εs < p1 otherwise, such that

0 <
∑
i∈I

ξi (ps − εs, s) < ξι (ps − εs, s) . (19)

(For all events s′ ∈ S for which ps′ < ps′+1 set εs′ = 0.) Construct strategies as
follows. For all i ∈ I and s ∈ S \ {1, |S|} define

Σ−i (s) = {s′ ⊆ τi (s) \ {s} |ps′ ≤ ps } and σ−i (s) = arg max
s′∈Σ−i (s)

ps′

Σ+
i (s) = {s′ ⊆ τi (s) \ {s} |ps′ ≥ ps } and σ+

i (s) = arg min
s′∈Σ+

i (s)
ps′

so that by condition (17) ps > pσ−i (s) ⇒ ξi (ps, s) ≤ ξi

(
pσ−i (s), σ

−
i (s)

)
and

pσ+
i (s) > ps ⇒ ξi

(
pσ+

i (s), σ
+
i (s)

)
≤ ξi (ps, s). For all j ∈ I with ξj (ps − εs, s) ≤

0 let
(pjs, xjs) =

(
ps − εs, ξj (ps − εs, s)− ξj

(
pσ−j (s), σ

−
j (s)

))
if Σ−j (s) 6= ∅, and (pjs, xjs) = (ps − εs, ξj (ps − εs, s)) if Σ−j (s) = ∅, be the
limit sell order that type τj (s) places for event s. For all j ∈ I \ {ι} for whom
ξj (ps − εs, s) > 0 let

(pjs, xjs) =
(
ps −

εs
2
, ξj (ps − εs, s)− ξj

(
pσ+

j (s), σ
+
j (s)

))
if Σ+

j (s) 6= ∅, and (pjs, xjs) = (ps − εs/2, ξj (ps − εs, s)) if Σ+
j (s) = ∅, be the

limit buy order that type τj (s) places for event s. Finally, let

(pιs, xιs) =

ps − εs,
− ∑

i∈I\{ι}

ξi (ps − εs, s)

− ξι (pσ+
ι (s), σ

+
ι (s)

)
if Σ+

ι (s) 6= ∅, and (pιs, xιs) =
(
ps − εs,−

∑
i∈I\{ι} ξi (ps − εs, s)

)
if Σ+

ι (s) = ∅,
be the limit sell order that type τι (s) of agent ι places for event s. Note that ι
bids a lower price than all other potential buyers, and

∑
i∈I\{ι} ξi (ps − εs, s) < 0
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by (19).
Set p̃s = ps − εs, and repeat this construction for all other price ties. This

gives new candidate equilibrium prices 0 < p̃1 < p̃2 < ... < p̃|S|, that are εs-close
to the full communication equilibrium prices, and associated strategies with the
following property: If no price tie (for full communication equilibrium prices)
occurred, all agents bid and ask the same price (p̃s = ps); if a price tie occurred
(p̃s = ps − εs), all potential sellers and the buyer ι ask resp. bid the price p̃s,
but all other potential buyers overbid (by εs/2).

If p̃s = ps, the proof that Dy(s) (p̃s) = Sy(s) (p̃s), a (y (s)) = b (y (s)) = p̃s,
and that strategies are optimal works as in the proof of Theorem 1. If p̃s =

ps− εs, then by construction Dy(s) (p̃s) = Sy(s) (p̃s), because agent ι is the only
buyer, who bids the price p̃s and she is constrained from the other side of the
market. By (19) ι’s limit quantity is below her excess demand at p̃s, thus, her
limit order is optimal. All other market participants are on their excess demand
functions for event s ∈ S, so that their limit orders are also optimal. It follows
that a Nash equilibrium has been constructed. Since the εss can be chosen
arbitrarily small, this Nash equilibrium approximates the full communication
equilibrium.

“only if:” Suppose that condition (17) fails, but that there is a Nash equi-
librium for the market game that is arbitrarily close to a full communication
equilibrium (with prices p∗ (s) = ps for all s ∈ S). Then there are a type ti ∈ Ti
for some agent i ∈ I and two events s, s′ ∈ τ−1

i (ti) such that ps > ps′ and
ξi (ps, s) > ξi (ps′ , s

′). Suppose first that ξi (ps, s) > 0. If the market game has
a Nash equilibrium close to the full communication equilibrium, with market
bid and ask prices equal to p̃s ≈ ps for all s ∈ S, then type ti must bid at least
p̃s for event s; yet, as p̃s > p̃s′ , an order with a limit price of at least p̃s will also
execute at event s′ and cannot be rationed at s′. Therefore, at event s′ type ti
cannot be close to her excess demand at p̃s′ , a contradiction. If ξi (ps, s) ≤ 0,
then ξi (ps′ , s

′) < 0, too. Then type ti cannot ask more than p̃s′ ≈ ps′ for event
s′; yet, as p̃s > p̃s′ , a sell order with a limit price not exceeding p̃s′ will also
execute at event s, where it cannot be rationed, since it is inframarginal. It
follows that at event s type ti cannot be close to her excess demand at p̃s, again
a contradiction. �
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