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Abstract 

The mechanical conditions for a volcanic eruption to occur are conceptually simple: a 

magma-driven fracture (normally a dyke) must be able to propagate from the source to the 

surface. The mechanics of small to moderate (eruptive volumes less than 10 km
3
) is 

reasonably well understood, whereas that of large eruptions (eruptive volumes of 10-1000 

km
3
) is poorly understood. Here I propose that, while both large and small eruptions are 

primarily driven by elastic energy and may come from the same magma chambers and 

reservoirs, the mechanisms by which the elastic energy is transformed or relaxed in these 

eruptions are different. More specifically, during small to moderate eruptions, the excess 

pressure in the source (the primary pressure driving the eruption) falls exponentially until it 

approaches zero, whereby the feeder-dyke closes at its contact with the source and the 

eruption comes to an end. Under normal conditions, the ratio of the eruptive and intrusive 

material of the eruption to the volume of a totally molten shallow basaltic crustal magma 

chamber (at the common depth of 1-5 km) is about 1400, and that of a partially molten deep-

seated basaltic magma reservoir (in the lower crust or upper mantle) is about 5000. Many 

magma chambers are partially molten, in which case the ratio could be close to that of 

reservoirs. Most magma chambers are estimated to be less than about 500 km
3
, for which the 

maximum eruptive volume would normally be about 0.4 km
3
. An eruptive volume of 1 km

3 

would require a totally molten chamber of about 1400 km
3
. While chambers of this size 

certainly exist, witness the volumes of the largest eruptions, large eruptions of 10-1000 km
3
 

clearly require a different mechanism, namely one whereby the excess pressure maintenance 

during the eruption. I suggest that the primary excess-pressure maintenance mechanism is 

through caldera subsidence for shallow magma chambers and graben subsidence for deep-

seated magma reservoirs. In this mechanism, it is the subsidence, of tectonic origin, and 

associated volume reduction (shrinkage) of the magma source that drives out an exceptionally 

large fraction of the magma in the source, thereby generating the large eruption. Most 

explosive eruptions that exceed volumes of about 25 km
3
, and many smaller, are associated 

with caldera collapses. The data presented suggest that many large effusive basaltic eruptions, 

in Iceland, in the United States, and elsewhere, are associated with large graben subsidences 

In terms of the present mechanism, successful forecasting large of eruptions requires 

understanding and monitoring of the volcanotectonic conditions that trigger large caldera and 

graben subsidences.  

Keywords: shallow magma chambers, deep magma reservoirs, excess pressure, caldera 

collapse, graben subsidence, eruption mechanics 
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1. Introduction 

Despite great progress in volcanology in the past decades, we still cannot make reliable 

forecasts either to the likely eruption site or to the eruption size (volume, mass) once the 

eruption has started. Empirical data collected from volcanoes worldwide indicate that the 

volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed (Fig. 1). This 

means that most of the volumes erupted from a given magma chamber (through a volcano) 

are comparatively small. Yet, the same magma chamber can, under certain conditions, 

squeeze out large volumes of magma. To know these conditions is of fundamental 

importance for reliable forecasting of the likely size of an imminent or beginning eruption. 

 

 
Fig. 1.  Size distribution of eruption volumes, in cubic kilometres, in relation to the number of 

eruptions with volumes above a certain size (modified from Pisarenko and Rodkin, 2010). The bi-

logarithmic (log-log) plot shows that a straight blue line fits much of the distribution, indicating that 

the eruptive volume distribution follows approximately a power law. Various methods exist for testing 

how well one or more power laws fit such a distribution in relation to other functions (Clauset et al., 

2009; Mohajeri and Gudmundsson, 2014; Gudmundsson and Mohajeri, 2013).  

 

  Given that the conditions for volcanic eruptions are conceptually simple - a magma-

driven fracture, a dyke, must be able to form a path from the source (the chamber/reservoir) 

to the surface – it is perhaps surprising that we cannot normally forecast the likely site of an 

eruption. If the crustal segment hosting a magma chamber behaved as a homogeneous and 

isotropic solid – an elastic half space – then all injected dykes whose magma density was 

similar to or less than the average density of the host rock above the chamber should reach 

the surface. However, crustal segments, and volcanoes in particular, do not behave as elastic 
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half spaces; instead they are composed of rock layers and units and contacts whose 

mechanical properties vary widely. As a consequence, the local stresses within the crustal 

segment and associate volcano show abrupt changes, resulting in complex dyke paths and 

many dykes becoming arrested (Gudmundsson, 2006; Galindo and Gudmundsson, 2012). 

The formation of a dyke path, moreover, requires energy – more specifically (fracture)  

 
Fig. 2. Typical magmatic plumbing system for a polygenetic or central volcano, here a stratovolcano. 

A deep-seated and large reservoir supplies magma to a shallow, and much smaller, magma chamber, 

which in turn feeds most of the eruptions of the stratovolcano. Many injected dykes from the chamber 

never make it to the surface but rather become arrested inside the volcano, commonly changing into 

sills at contacts between mechanically dissimilar rocks. Some dykes, however, supply magma to 

eruptions and are denoted as feeder-dykes. Magma accumulation in the deep-seated reservoir 

commonly results in slight doming of the crustal segment above and hosting the shallow chamber, as 

indicated. Such doming is one of the main mechanisms of collapse-caldera formation, particularly 

when the shallow magma chamber has a sill-like geometry (Gudmundsson, 2007). In addition to 

doming, polygenetic volcanoes may be located in fields or zones undergoing extension, such as at 

divergent plate boundaries, as indicated by the horizontal arrows. The crustal segment hosting the 

volcano is a thermodynamic system, primarily composed of the magmatic plumbing system, and its 

surroundings, that is, the rest of the crustal segment.   The magma chamber acts as a source for the 

volcano and as a sink for the deeper reservoir. In the notation used in this paper, heat received by the 

magma chamber and work done on the magma chamber (by the surroundings) are regarded as 

positive. 

 

surface energy – and if sufficient energy is not available, the dyke-propagation path comes to 

an end, becomes arrested, before the dyke has a chance of reaching the surface to erupt.   

 Thermodynamics provides the basis for understanding the energy available to (i) 

propagate an injected dyke from the source to the surface to feed an eruption, and (ii) squeeze 

magma out of the chamber during the dyke propagation and eruption (Fig. 2). This energy, 

stored in the volcano and available for the two processes (i and ii), is known as elastic energy. 

Here the elastic energy consists of two main parts: first, the strain energy stored in the 

volcano before magma-chamber rupture and dyke injection, and, second, the work done 
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through displacement of the flanks of the volcano (or the margins of a rift zone) and the 

expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - 

thermal, seismic, kinetic - are important (Yokoyama, 1957; Hedervari, 1963; Verhoogen, 

1989;  Pyle, 1995) but less so for forming dyke paths and squeezing magma out of a chamber 

during an eruption.   

 Here I suggest that for (basaltic) eruptions in a rift zone with a deep-seated reservoir the 

strain energy is partly related to minor doming (Fig. 2) above the reservoir, and partly to 

stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored 

strain energy before eruption. However, for the eruption to be really large, the strain energy 

has to accumulate in the entire crustal segment above the reservoir and there will be 

additional energy input into the system during the eruption because of the displacements of 

the boundary of the rift-zone segment (Fig. 2). This displacement is presumably one reason 

why feeder-dykes commonly propagate laterally at the surface following the initial fissure-

segment formation. The additional energy through work goes into increasing the length and 

opening of the volcanic fissure/feeder-dyke, thereby allowing more magma to flow out of the 

chamber before it closes and the eruptions comes to an end.  

 For crustal segments that contain, in addition to deep-seated reservoirs, shallow crustal 

chambers (Fig. 2), commonly feeding stratovolcanoes, additional strain energy is stored in 

during inflation (expansion) of the chamber. The amount of stored strain energy depends on 

the mechanical properties of the crustal segment and associated volcano. In particular, more 

strain energy can be stored before eruption if the volcano is composed of layers with widely 

different mechanical properties. Thus, a stratovolcano can normally store much more strain 

energy, for a given size of a magma chamber and crustal segment, than a basaltic edifice. It 

follows that when an eruption occurs in a stratovolcano, there is normally a higher proportion 

of its magma that is driven out than during an eruption in a basaltic volcano. For gas-rich 

magma, the great compressibility of the gas may also help to maintain the excess pressure in 

the chamber so as to squeeze out more magma. Generally, the greater the stored strain energy 

before eruption, the greater is the chance of the eruption becoming large. 

 Really large explosive and effusive eruptions require special energy and mechanical 

conditions. Here I propose that these conditions are basically the same for both types of 

eruptions, namely subsidence of a crustal segment into a comparatively large chamber or 

reservoir so as to maintain the excess pressure needed to squeeze out unusually large fraction 

of the magma in the chamber/reservoir. The principal aim of this paper is to explore the 

energy and mechanical consequences of these conditions and their implications for large or 

great eruptions.  

 While large eruptions of the order of tens or hundreds of cubic kilometres are well known 

– some reaching thousands of cubic kilometres – and have been widely discussed, little 

attempt has apparently been made to explain the mechanics of such eruptions. This paper 

discusses the mechanical conditions for large eruptions and compares and contrasts them with 

the conditions for small to moderate eruptions. The paper is partly review and partly 

presentation of new ideas. In particular, the proposed mechanical relation between collapse-

caldera formation and large explosive eruptions is partly review. By contrast, the proposed 

mechanical relation between graben formation or subsidence and large effusive eruptions is 



5 
 

new, but is shown here to be a logical extension of the mechanical ideas of collapse-driven 

large explosive eruptions.  

 

2. Mechanics of ‘ordinary’ eruptions 

To put the ideas on large eruptions, presented below, into a volcanotectonic framework, we 

first discuss the mechanics of small-to-medium (or moderate) eruptions. What is meant by 

small, moderate, or large eruptions is to some extent arbitrary. As indicated above, large 

eruptions are here defined as those that produce in excess of 10 km
3
 of eruptive materials. 

But eruptive volumes (m
3
 or km

3
) when translated into mass (kg) depend on the density of 

the material. Clearly, 1 km
3
 of primitive basaltic lava has much greater mass than 1 km

3
 of 

pumice, for example. We therefore use ‘magma volume equivalent’, that is, the estimated 

volume of magma that had to flow out of the chamber/reservoir in order to generate the 

combined volume of eruptive and intrusive (normally dyke) materials during the eruption. 

We call this ‘eruptive volume’ and denote by Ver, where ‘eruptive’ means the fluid volume 

that left the chamber during the eruption. Here eruptive volumes (Ver) of 0.1 km
3
 or less are 

regarded as small, those in the range of 0.1-10 km
3
 are regarded as moderate, and those larger 

than 10 km
3
 as large. It might be argued that any eruption exceeding 1 km

3
 should be called 

large. However, given that some eruptions reach volumes of the order of 1000 km
3
, I think it 

is better to classify eruptions of the order of 1 km
3
 as moderate. 

  

 
Fig. 3. Most shallow magma chambers are in the upper part of the crust whereas deep-seated 

reservoirs are in the lower part of the crust, or in the upper mantle. Compilation of magma-chamber 

depths from 15 plate-boundary regions (Chaussard and Amelung, 2014) indicates that most of the 
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shallow chambers are with roofs at depths of 0.1-5 km and mostly 1-5 km. The roofs of the deeper 

chambers or reservoirs, however, extend to depths of about at least 18 km. These estimates refer to 

chamber depths below the average regional elevation of the area or crustal segment within which the 

chamber is located; when referred to the depths below the tops of the associated polygenetic 

volcanoes themselves the depths would normally be greater, so that some reservoirs reach depths of 

more than 20 km below the associated volcanoes. The depths shown here are based on geodetic, 

seismological, and petrological/geochemical data and refer to chambers/reservoirs of 70 polygenetic 

volcanoes from subduction zones (arcs) in the North, Central, and South America, as well as in 

Sumatra and Java and Japan in Asia.  

 

 Other concepts that need definitions are those of shallow and deep-seated magma 

chambers. We define chambers as shallow if the uppermost contact between the host rock 

and the magma, that is, the roof is not deeper than 5 km. Magma chambers with roofs at 

greater depths, some as deep as tens of kilometres, are here classified as deep-seated and 

referred to as reservoirs. This classification is supported by a recent summary of magma-

chamber depth ranges from many volcanic areas (Fig. 3). This distinction is to some extent 

arbitrary, but it is useful, particularly since most shallow magma chambers are, in fact, at 

depths of about 5 km or less. A shallow chamber and its deep-seated source reservoir form a 

‘double magma chamber’. Generally, the source reservoir is much larger than the shallow 

chamber to which it supplies magma. While double magma chambers are presumably the 

most common configuration, particularly at divergent plate boundaries, in volcanic areas 

where the lithosphere is very thick, such as at some convergent boundaries, there may be 

triple magma chambers (Fig. 3). Here, however, the focus is on double magma chambers 

(Fig. 2).   

 The principles that control the volumes injected from shallow magma chambers during 

‘ordinary’ (mostly small and moderate) eruptions are well established. From these principles, 

the normal ratio between the volume of magma in the chamber and the erupted/injected 

magma (Ver) from the chamber during a particular eruption can be calculated, as is done 

below. First, however, we consider the volumetric flow from the chamber to the surface 

through the feeder-dyke (Figs. 2, 4).   

 The volumetric flow rate Q, in m
3
s

-1
, up through a feeder-dyke, supplying magma to an 

associated volcanic fissure, is normally calculated using the Navier-Stokes equation for 

laminar flow between parallel plates (e.g., Lamb, 1932; Milne-Thompson, 1996) as: 
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Fig. 4.  View north, part of the feeder-dyke to the 6-8000 year-old Sveinar-Randarholar crater row in 

North Iceland. The dyke cuts through Pleistocene lava flows with numerous columnar joints 

(indicated), some of which contribute to the path of the feeder, and supplied magma to spatter and 

cinder cones of the 75-km-long crater row. The view is across the canyon of the river Jokulsa a 

Fjollum, part of the river being seen in the lower left corner of the photograph. Next to the river the 

dyke thickness is 4.5 m but increases to 13 m where it dissects the surface (the Pleistocene lava flows) 

to feed the spatter cone. The magmatic overpressure of the dyke has reactivated a normal fault as a 

reverse fault, with a reverse slip of 5 m, located 40 m from the dyke (Gudmundsson, 2011). 

 

In this equation, u denotes the opening or aperture of the volcanic fissure or feeder-dyke, W 

the length or strike dimension of the fissure/feeder-dyke at the surface, m  the dynamic or 

absolute viscosity of the magma in Pa s, m  the density of the magma in kg m
-3 

(assumed 

constant), r  the average density of the crustal segment (which includes the volcano) 

through which the feeder-dyke propagates to the surface, g the acceleration due to gravity in 

m s
-2

, α the dip of the feeder-dyke in degrees, and Lpe  /  the vertical magmatic excess-

pressure gradient in the direction of the magma flow, that is, in the direction of the dip 

dimension of the dyke, L, in metres.  

 The pressure driving the magma up through the feeder and to the surface derives from 

two sources. One is the excess pressure (pe) in the chamber, that is, the pressure in the 

chamber in excess of the lithostatic pressure (or overburden pressure) in the host rock next to 

the chamber. At the time of magma-chamber rupture and dyke initiation, pe is normally 

roughly equal to the tensile strength of the host rock, generally in the range of 0.5-9 MPa, and 

most commonly 2-4 MPa (Haimson and Rummel, 1982; Schultz, 1995; Gudmundsson, 

2011). 

 The second source relates to buoyancy, that is, the density difference between the magma 

and the host rock through which the feeder-dyke propagates. Buoyancy is represented by the 
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term gmr )(   in Eq. (1). Buoyancy can be positive (when magma density is less than host 

rock density), zero (when magma density is equal to that of the host rock), or negative (when 

magma density is greater than that of the host rock). The last one is common for primitive 

basaltic magma injected from shallow magma chambers, whereas the first one is the rule for 

any magma from deep-seated reservoirs (Fig. 2). Both sources contribute to the general 

magma overpressure (po) in the feeder-dyke, which is also named driving pressure and net 

pressure. It is the pressure that drives the propagation of all dykes (including feeder dykes), 

inclined sheets, and sills, as well as magma flow through conduits of different shapes, such 

as, in plan view, cylindrical or ellipsoidal conduits. The overpressure is defined as the total 

pressure minus the minimum principal compressive (maximum tensile) stress σ3 acting on the 

potential dyke/sheet/sill path before magma emplacement. The overpressure may reach 

several tens of mega-pascals at some point along the dyke/sheet path although the excess 

pressure in the source magma chamber is roughly equal to the rock tensile strength and thus 

normally only several mega-pascals. 

 

3. Eruption from a shallow crustal chamber  

During a dyke-fed eruption, a certain volume of magma is transported from the chamber to 

the surface (Fig. 2). Within the framework of thermodynamics, the magma chamber may be 

regarded as an open thermodynamic system, whereas the crustal segment hosting the 

chamber, including the volcano that the chamber supplies magma to, is regarded as the 

surroundings of the system. Many chambers are likely to be only partially molten and behave 

as poroelastic bodies (e.g., Gudmundsson, 2012). Some shallow chambers, however, may be 

totally molten, at least for a while. Since we are interested in the maximum volume of 

eruptive materials that a magma chamber can produce during an ‘ordinary’ eruption, we shall 

here assume the chamber to be totally molten. In case of a partially molten chamber, the host-

rock compressibility ( r ) can be substituted with pore compressibility. The volume of 

magma Ver erupted or transported from a totally fluid magma chamber by a feeder-dyke to 

the surface (and including the volume of the feeder itself) during an eruption may be 

estimated as follows (e.g., Gudmundsson, 1987a):  

 

tmreer VpV )(                                                                                                             (2) 

 

Here ep  denotes the magma excess pressure (with the unit of Pa), m  the magma 

compressibility and r  the host-rock compressibility (both with the unit of Pa
-1

), and tV  the 

total volume of the chamber. Transport of magma out of the chamber—through the feeder-

dyke—stops and the eruption comes to an end when the excess pressure becomes so small (

ep    0) as to be unable to keep the dyke-fracture open (particularly for feeders of low-

viscosity basaltic magma) at its contact with the chamber (Fig. 2). 

 Let us now estimated the percentage of the magma that could leave the chamber in an 

eruption before the feeder-dyke would close at its contact with the chamber. Based on data 

from Murase and McBirney (1973), the static compressibility m  for tholeiite (basaltic) 

magma at 1100-1300ºC is estimated at around 1 × 10
-10

Pa
-1

 (Gudmundsson, 1987a). 
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Similarly, for a shallow chamber, the host-rock compressibility r is estimated at about 2.94 

× 10
-11

Pa
-1

, for a dynamic/static compressibility ratio of 2.0. For a shallow magma chamber 

located in a highly fractured crust, as is common, a more reasonable dynamic/static ratio 

might be 10 (Gudmundsson, 2011), in which case the compressibility r is estimated at 1.47 

× 10
-10

Pa
-1

. For an in-situ tensile strength of 0.5-9 MPa (Gudmundsson, 2011), taken as equal 

to pe, Eq. (2) gives the ratio of the eruptive volume Ver to the total volume of the chamber tV  

from about 2.45 × 10
-3

 (for pe = 9 MPa) to about 1.36 × 10
-4

 (for pe = 0.5 MPa). For a  

 

 
Fig. 5.  Many collapse calderas have close to vertical ring-faults. In plan view, however, most ring-

faults are not perfect circles but rather ellipses with the semi-major axis a somewhat larger than the 

semi-minor axis b. Some ring-faults are injected by ring-dykes, whereas others are not.  

 

common in tensile strength of 4 MPa (so that pe = 4 MPa), we get the approximate general 

ratio of: 

 

ter VV 4107                                                                                                                      (3) 

 

which implies that, typically, less than 0.1% (here, 0.07%) of the volume of a totally fluid 

basaltic magma chamber would be erupted/injected during an ordinary eruption.  

 Eruption volumes can basically be as small as one likes to record. However, typical 

‘small’ eruptions may be regarded as 0.01-0.1 km
3
 (Fig. 1). These are common values for 

small basaltic (to andesitic) eruptions in central volcanoes (stratovolcanoes and calderas) 

such as in Iceland (Gudmundsson, 1987a; Thordarson and Larsen, 2007; Thordarson and 

Höskuldsson, 2008) and elsewhere. For an eruption of 0.01 km
3
, assuming that the inflow of 

magma is so slow during the eruption itself that it can be neglected—as is usually justified 

(Gudmundsson, 2012)—then, from the approximate Eq. (3), the magma-chamber volume 

needed to supply magma to the eruption would be 10 km
3
. Similarly, for an eruptive volume 

of 0.1 km
3
, the volume of the source chamber would be 100 km

3
. 

 Caldera areas are a good indication of the plan-view (lateral cross-sectional) areas of the 

associated magma chambers at the time of caldera formation (Fig. 5). Normally, however, the 
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caldera area is somewhat smaller than the cross-sectional area of the magma chamber, 

particularly for outward-dipping ring faults (discussed below), but is nevertheless a good 

proxy to the chamber area when the caldera collapsed (Gudmundsson, 1998; Roche and 

Druitt, 2001; Holohan et al., 2005; Kusumoto and Takemura, 2005; Acocella, 2007; 

Gudmundsson, 2007, 2015; Kusumoto and Gudmundsson, 2009; Gregg et al., 2012; Geyer 

and Marti, 2014). This is particularly so because many ring-faults appear to be close to 

vertical (Fig. 5). A typical caldera in the neovolcanic zone in Iceland has an area of about 50 

km
2
, the largest reaching about 180 km

2
. For a totally molten 10 km

3
 magma chamber with a 

(assumed circular) cross-sectional area of 50 km
2
, the chamber thickness would be around 0.2 

km, or 200 m. Sills of similar thicknesses and with the potential of developing into magma 

chambers are well known in the lava pile in Iceland and elsewhere (Gudmundsson, 2012). 

For a totally molten 100 km
3
 magma chamber with a cross-sectional area of 50 km

2
, the 

chamber thickness would be around 2 km. Again, plutons of this and greater thicknesses are 

known or inferred from several deeply eroded, extinct central volcanoes in Iceland 

(Gudmundsson, 2012) and elsewhere. Perhaps the best-known sill-like (or somewhat 

laccolith-like) exposed magma chamber of this thickness, however, is the Torres del Paine 

fossil magma chamber in Chile (Michel et al., 2008). That chamber/pluton is primarily of 

granite, is formed in many magma injections, and has maximum thickness is about 2 km. 

Most magma shallow magma chambers appear to grow incrementally, that is, through many 

(often sill-like) magma injections (e.g., Gudmundsson, 1990; de Silva and Gosnold, 2007; 

Annen, 2011).  

 The overall compressibility of intermediate magma (Murase and McBirney, 1973) and 

acid magma (Kress and Carmichael, 1991; Dobran, 2001), including the effects of water and 

carbon dioxide in the magma, are not much different from that of basaltic magmas. Volatile 

content, however, can have significant effects on magma compressibility (Blake, 1984; Ochs 

and Lange, 1997; Woods and Huppert, 2003; Malfait et al., 2011; Guo, 2013; Seifert, 2013). 

Gas generally has much higher compressibility than either liquids or solids. Thus, gas 

bubbles in magma have a much higher compressibility than either the magmatic liquid itself 

or the solid host rock. The main volatiles are water, H2O, and carbon dioxide, CO2, whereas 

sulphur (as H2S and SO2) is also common (e.g., Gonnermann and Manga, 2013). Here we 

focus on water and carbon dioxide since these are the main volatiles. 

 The main difference between water and carbon dioxide as regards their mechanical 

effects in shallow magma chambers is that most of the CO2 exsolves to form bubbles at much 

greater depths (higher total pressure) than does H2O (Gonnermann and Manga, 2013). In 

particular, CO2 exsolution and bubble formation occurs in acid magma (rhyolite) at pressures 

up to and in excess of 100 MPa, and for basaltic magma at pressures up to and in excess of 25 

MPa. By contrast, H2O exsolves in acid magma at total pressures less than 100 MPa, and in 

basaltic magma at total pressures less than 25 MPa. In the uppermost part of volcanic zones 

worldwide the average crustal density is about 2500-2600 kg m
-3

, so that 25 MPa corresponds 

to roughly 1 km depth, and 100 MPa to about 4 km depth. Many, perhaps most, shallow 

magma chambers are in roughly this depth range (Fig. 3). Thus, generally, for many shallow 

chambers much of CO2 (and some H2O) in acid magmas is readily exsolved and forms 

bubbles. Since bubbles in acid magma have negligible mobility, they would remain in the 



11 
 

magma, except in the case of vigorous convection, in which case the gas could accumulate at 

the top of the acid magma and form a separate phase. 

 By contrast, exsolution and bubble formation is not expected in basaltic magmas at the 

depth of most shallow magma chambers. Thus, much of the gas exsolution in basaltic magma 

takes place at very shallow depths, particularly in feeder-dykes when the magma is on its path 

to the surface (Fig. 4). This agrees with field studies. In Hawaii, for example, studies indicate 

that most of the exsolution of gas in basaltic magmas occurs in the uppermost few hundred 

metres of the feeder/conduit (Greenland et al., 1985, 1988). Similar results are obtained 

through direct observations of dykes, sills, and inclined sheets in deeply eroded lava piles and 

central volcanoes. Most sheet-like intrusions show only small and rather infrequent vesicles 

(formed by expanding gas) at depths exceeding several hundred below the original surface of 

the volcanic zone/central volcano. By contrast, some feeder-dykes contain large vesicles 

close to the surface (Galindo and Gudmundsson, 2012).  

 The potential effects of exsolution in magma chambers on the compressibility of magma 

depend on the fraction of gas in the magma. The compressibility of the gas may be 10
2
-10

3
-

times the compressibility of liquid magma (Woods and Huppert, 2003; Malfait et al., 2011; 

Guo, 2013; Seifert, 2013). Thus, the gas bubbles are much more compressible than the liquid 

magma and the associated crystals. However, the overall compressibility of the magma plus 

gas depends on the gas fraction. For small volume-fraction of gas in the chamber, the 

compressibility of the liquid magma ( m ) dominates over the compressibility of gas ( g ), so 

that the effect of the bubbles on the overall compressibility of the magma (gas plus liquid) is 

small. By contrast, when the volume fraction of gas in the magma becomes larger than the 

mg  /  ratio then the high compressibility of the gas bubbles start to increase significantly 

the overall compressibility of the liquid magma plus gas in the chamber (Woods and Huppert, 

2003). Even when the volume fraction of gas becomes high, the bubble-rich and highly 

compressible parts of the magma chamber are likely to be confined to certain layers or 

compartments (Gudmundsson, 2012), rather than being uniformly distributed in the chamber. 

This implies that the compressibility of the magma chamber is likely to be highly 

heterogeneous, so that within the chamber there may be layers or compartments with high 

compressibility and others with much lower compressibility, resulting in uneven volume 

changes and overall response of different magma-chamber compartments to volume decrease 

during eruptions. In this paper, however, we consider only the compressibility of the magma 

in the chamber as a whole.  

 Based on the above considerations, a very gas-rich acid magma where the gas forms a 

separate phase in a shallow magma chamber would have a much higher compressibility than 

basaltic magma, perhaps by several orders of magnitude. Depending on the amount of acid 

magma in the chamber and the chamber configuration – for example, whether the chamber is 

layered with the evolved magma on the top of the mafic magma or composed of 

compartments with different gas content - the compressibility of gas-rich acid magma (gas 

plus liquid) can be at least 10 and possibly 100 times that of a chamber composed entirely of 

basaltic magma (cf. Woods and Huppert, 2003).  

 For such a high magma compressibility, we have rm   , in which case Eq. (2) 

reduces to: 
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tmeer VpV                                                                                                                            (4) 

 

Equation (4) has commonly been used (Machado, 1974; Blake, 1981; Wadge, 1981) and 

implies that the ratio of erupted/intruded magma from the chamber to the total magma 

volume in the chamber depends almost entirely on the magma compressibility m . For a 

purely acid bubble-rich magma in a chamber, using pe = 4 MPa and m  = 10
-8

 Pa
-1

 (100- 

times higher than for tholeiite magma) the ratio in Eq. (4) would then reach the maximum 

value of:  

 

ter VV 2104                                                                                                                        (5) 

 

 
 

Fig. 6. View northwest, part of the extinct Slaufrudalur shallow magma chamber (pluton), composed 

of granophyre, in Southeast Iceland. The pluton is 6.5–10 Ma, has an exposed area of 15 km
2
, and is 
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the second largest pluton/fossil magma chamber in Iceland. a) Part of the roof and a wall of the fossil 

magma chamber are exposed in the valley of Slaufrudalur, the peak to the left being Bleikitindur. The 

maximum depth of erosion is about 2 km below the initial top of the associated volcano to which the 

chamber acted as a source. b) Close-up of part of (a) showing many granophyre dykes (some 

indicated by arrows) dissecting the host-rock roof, composed of basaltic lava flows.  

 

so that as much as 4% of the magma in the acid chamber (or the bubble-rich acid 

compartment of a larger chamber) could leave the chamber (as intrusive and extrusive 

material) during an eruption.  

 If we compare this maximum percentage with the well-documented postglacial acid 

eruptions in Iceland, we can get a crude idea of the sizes of the acid source magma chambers 

(or acid compartments). For the 38 postglacial ‘dry’ explosive acid eruptions in Iceland, the 

volume range is from 0.1 km
3
 to about 3.3 km

3
 (Thordarson and Hoskuldsson, 2008). An 

eruptive volume of 0.1 km
3
 would, according to Eq. (5), require a magma chamber of only 

2.5 km
3
, whereas an eruptive volume of 3.3 km

3
 would require chamber of around 83 km

3
. 

Chambers, or acid compartments, of these sizes can certainly exist in the active volcanic zone 

of Iceland. For the typical chamber cross-sectional area (based on typical caldera areas) of 50 

km
2
, the 2.5 km

3
 chamber would need to be only 50 m thick, most likely a sill-like chamber. 

By contrast, the 83 km
3
 chamber would need to be about 1.7 km thick. While this would be 

thick for an acid magma chamber, it is only about double the thickness of the exposed part of 

the Slaufrudalur acid magma chamber in Southeast Iceland—a chamber/pluton with an 

exposed acid volume of about 10 km
3
 (Fig. 6).  

 

4. Eruption from a deep-seated magma reservoir  

Deep-seated reservoirs are magma sources located in the lower crust or upper mantle (Figs. 2 

and 3). The reservoirs supply magma (mostly basaltic or andesitic) either directly to the 

surface or, alternatively, to shallow magma chambers (Figs. 2, 5, and 6). Together a shallow 

magma chamber and its deep-seated source reservoir form a double magma chamber, of the 

type common at many plate boundaries (Gudmundsson, 2006).  

 Magma reservoirs are normally partially molten, that is, they behave as poroelastic 

media. They are deeper than 5 km, by definition, and mostly in the depth range of 6-20 km 

(Fig. 3), although some may be as deep as 25-30 km or more. Based on typical crustal-rock 

densities (e.g., Gudmundsson, 2011) the vertical stresses or total pressures at the location of 

the reservoirs are thus normally in excess of 150 MPa, and commonly 200-500 MPa. It 

follows that, generally, neither acid magma, which might be produced at the top of a 

reservoir, nor andesitic and basaltic magmas, which constitute their bulk magmas, would be 

subject to exsolution of CO2 or H2O.  The compressibility of the magma or melt in a typical 

deep-seated reservoir is thus normally not affected by bubble formation.  

 For a poroelastic magma reservoir filled with magma or melt, four compressibilities 

come into play (Bear, 1972; cf. Wang, 2000), here defined assuming isothermal conditions. 

The first one is the bulk compressibility b . A measure of the fractional change in the bulk 

volume bV  of the entire poroelastic reservoir due to change in magmatic excess pressure 

ep , bulk compressibility is defined as (Bear, 1972):  
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                                                                                                                           (6) 

 

where  bV  is the original volume of the poroelastic reservoir. When ep is positive, so that 

the excess pressure in the reservoir increases, then the reservoir expands, that is, its bulk 

volume change bV  is positive. The second is the solid matrix compressibility s . A 

measure of the fractional change in volume of the solid matrix sV of the reservoir (the 

crystal mush) when the excess pressure changes, the solid matrix compressibility is defined 

as (Bear, 1972): 

 

se

s
s

Vp

V




                                                                                                                           (7)  

 

where sV  is the original volume of the matrix of the reservoir. When ep is positive, so that 

the excess pressure in the reservoir increases, the matrix shrinks, that is, its volume decreases, 

hence the negative sign in Eq. (7). The third is the pore compressibility p . A measure of the 

fractional change in the pore volume pV  (the volume occupied by the magma) when the 

excess pressure changes, the pore compressibility is defined as (Bear, 1972): 

 

pe
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                                                                                                                            (8)   

 

where pV  is the original pore volume (magma volume) in the reservoir. When ep is 

positive, so that the excess pressure in the reservoir increases, the pores holding the magma 

expand and the pore volume increases. The fourth is magma (melt or fluid) compressibility

m . A measure of the fractional change in magma volume mV  (and inversely a measure of 

magma density) when the excess pressure changes, the magma compressibility is defined as 

(Bear, 1972): 
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                                                                                                                         (9) 

 

where mV  is the original magma volume in the reservoir. When new magma is added to the 

reservoir, so that the excess pressure ep  increases, part of the volume needed for the new 

magma is obtained by compressing (and increasing the density of) the existing (original) 

magma in the pore space of the reservoir, hence the negative sign in Eq. (9).  

 These compressibilities can now be combined to give the ratio of the reservoir volume to 

the eruptive volume during ‘ordinary’ poroelastic eruptions from reservoirs (Fig. 2). This is 
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done by noticing first that the bulk compressibility and the solid matrix compressibility are 

related as follows (Bear, 1972): 

 

psb   )1(                                                                                                              (10) 

 

where   is the porosity (magma or melt fraction) of the reservoir. Because the solid grains of 

the matrix are stiffer (have a higher effective Young’s modulus) than the pores, we have 

ps   )1( , in which case Eq. (10) reduces to: 

 

pb                                                                                                                                  (11) 

 

 As indicated above, when the reservoir receives new magma or melt from the mantle, 

part of the volume needed for the new magma is obtained by compressing the existing 

magma, and part by expanding the pores containing the magma. Which one dominates, pore 

expansion or magma compression, depends on the ratio of the respective compressibilities, 

that is,  the ratio ./ pm   More specifically, if magma or melt of volume mV  is added to the 

reservoir of original total pore or magma volume mV (= pV ), then the increase in excess 

pressure ep is given by: 
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Eq. (12) can then be simplified further, so as to obtain: 
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 Using the notation in Eqs. (2-5), the eruptive volume erV  denotes the magma volume 

leaving the reservoir and thus includes the intrusive material (dykes, inclined sheets) as well 

as the proper eruptive material (the material reaching the surface as lava flows, pyroclastics, 

etc). Making the reasonable assumption that the reservoir was in mechanical (lithostatic) 

equilibrium with its surrounding, so that 0ep  (the excess pressure is zero), before the 

addition of magma of volume mV  to the reservoir, we can then equate mV  with the 

eruptive volume, in which case erm VV  . Using   for reservoir porosity, we have: 

 

bpm VVV                                                                                                                        (14) 

 

From the considerations above and Eqs. (13, 14) the bulk volume of the reservoir bV  can be 

obtained from the following equation: 
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 We can now use Eq. (15) to obtain typical ratios between the bulk volume of a reservoir 

and its eruptive volume during an ordinary eruption. The condition for reservoir rupture and 

dyke (the potential feeder) injection is (Gudmundsson, 2011): 

 

03 Tpp el                                                                                                                     (16) 

 

where lp  is the lithostatic pressure (equal to overburden pressure or vertical stress when the 

reservoir is mechanical or lithostatic equilibrium with its surroundings), 3  is the minimum 

compressive (maximum tensile) principal stress, and 0T  is the in-situ tensile strength of the 

host rock of the reservoir. When the reservoir is in lithostatic equilibrium and before new 

magma enters it, we have 3lp . Thus, for rupture and dyke injection to occur (when 

magma of volume mV  is added to the reservoir), then 0Tpe  , that is, the excess pressure at 

rupture is roughly equal to the tensile strength of the host rock (more specifically the roof 

rock) of the reservoir.  

 While the in-situ tensile strength varies from 0.5 to 9 MPa (Gudmundsson, 2011), we 

shall here use the same typical (average) value as in Eqs. (2-5), namely 4 MPa. From the 

discussion above, and the results obtained by Murase and McBirney (1973), we estimate the 

magma compressibility m  for tholeiite (basaltic) magma at 1100-1300ºC the same as for the 

shallow chamber, namely as 1 × 10
-10

Pa
-1

. For a deep-seated reservoir associated with the 

volcanic zones of Iceland (Gudmundsson, 1987a), we estimate the pore compressibility as 

about 9 × 10
-11

 Pa
-1

 and the average porosity as 0.25 (25%). Both these values are poorly 

constrained and could easily vary by a factor of 2. In fact, it is possible that the topmost part 

of a reservoir is totally molten, but here we shall use the more general model where the 

reservoir is partially molten. Using these values, Eq. (15) gives the following ratio between 

the bulk volume of the reservoir bV  and the eruptive volume in an ordinary poroelastic 

eruption erV as: 

 

ber VV 4102                                                                                                                      (17) 

 



17 
 

 
 

Fig. 7. Map of Iceland showing the main volcanic zones and systems (modified from Gudmundsson, 

2006). The West, North, and East volcanic zones are shown (the zone on the peninsula to the west is 

the Snaefellsnes Zone, which is not referred to in the text). The volcanic systems are of Holocene age 

and composed of swarms of tectonic fractures (mostly normal faults and tension fractures) and 

volcanic fissures at the surface, and dykes and normal faults at greater depths. Most systems contain, 

in addition, a polygenetic volcano, a central volcano, which is either a stratovolcano or a collapse 

caldera. Also located are the grabens of Thingvellir, Heljargja, and Eldgja (Eldgja also being a 

volcanic fissure), the Laki volcanic fissure or crater row, the southernmost part of the Thjorsarhraun 

lava flow, the Hengill Volcano, and the Reykjanes Peninsula.  

 

 Let us now apply this to typical eruptions from deep-seated reservoirs, again using well-

documented results from Iceland. The Holocene volcanic fissures on the Reykjanes Peninsula 

(Fig. 7) in Southwest Iceland are mainly derived from deep-seated reservoirs (Fig. 8). This 

follows because there are no known shallow magma chambers on the peninsula (Andrew and 

Gudmundsson, 2007). These are mainly tholeiite basalts and have an average eruptive 

volume of about 0.11 km
3
 (Gudmundsson, 1986). The depth to the magma reservoirs beneath  
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Fig. 8. Cross-section through typical volcanic systems in rift zones (such as at divergent plate 

boundaries). Here only one of the systems has a shallow chamber and, consequently, a polygenetic 

(central) volcano. The volcanic fissures (and feeder-dykes) in the other systems are fed directly from 

deep-seated reservoirs. Some volcanic systems in Iceland (such as on the Reykjanes Peninsula, Fig. 

7), and apparently most systems at most slow-spreading ridges, lack shallow magma chambers and 

are thus supplied with magma directly from reservoirs in the lower crust or upper mantle.  

 

the Reykjanes Peninsula may be anywhere between 10 km and 20 km. The crustal thickness, 

however, is only 11-12 km (Brandsdottir and Menke, 2008), so that we take the reservoirs to 

be at 12 km depth. The average length of the volcanic fissures (the feeder-dykes at the 

surface) on the Reykjanes Peninsula is 2.2 km, and with the indicated depth to the reservoir 

the feeder-dyke height or dip dimension is 12 km. For a feeder-dyke of these dimensions, the 

classic fracture mechanics equations would indicate a surface thickness of about 4 m (cf. 

Gudmundsson, 2011; Becerril et al., 2013), a common thickness of dykes in regional swarms 

in Iceland (Gudmundsson, 2006).  

 For these dimensions, the dyke volume would be around 0.1 km
3
, so that the total volume 

of magma injected from the reservoir during the average eruption would be about 0.2 km
3
. 

From Eq. (17) the corresponding source reservoir would be around 1000 km
3
. The estimated 

average cross-sectional areas of the Holocene volcanic systems that supply magma to the 

fissure eruptions on the Reykjanes Peninsula (Figs. 7 and 8) is about 480 km
2
 (Gudmundsson, 

1986). The cross-sectional areas of the source reservoirs are likely to be similar, in which 

case a reservoir with thickness of just over 2 km would be sufficient to supply magma to the 

average volcanic fissure. Given the likely dimensions of the reservoirs, such a thickness is 

very reasonable, so that the fissure eruptions do not pose any reservoir volume problems as 

regards the ordinary poroelastic mechanism.  

 Holocene lava shields—(mostly) monogenetic ‘small’ shield volcanoes—are also 

common on the Reykjanes Peninsula and elsewhere in Iceland (Figs. 9 and 10). The shields 

all have very primitive composition (picrite basalt to olivine tholeiite) and known to come 

from deep-seated magma reservoirs, both on the Reykjanes Peninsula as well as elsewhere 

(Rossi, 1996; Andrew and Gudmundsson, 2007). If we consider first the shields on the 

Reykjanes Peninsula, then most of these are small – with volumes of less than 0.75 km
3
 



19 
 

(Gudmundsson, 1986). The feeder-dykes for the shields come from deeper (more primitive) 

parts of the reservoirs (Fig. 9) than the fissure eruptions (which mostly produce more evolved 

tholeiite). Using 15 km for the dyke dip dimension and the same dyke length and thickness as 

above, a feeder-dyke volume of about 0.13 km
3
 is added to the typical shield volume of 0.75 

km
3
, bringing the total to about 0.9 km

3
. From Eq. (17) the bulk volume of the corresponding 

reservoir would have to be about 4500 km
3
. For the reservoir of cross-sectional area of 480  

 

 
Fig. 9. Monogenetic lava shields (cf. Fig. 10) are of primitive basalts that are normally derived 

directly from deep-seated reservoirs, particularly their marginal parts. Depending on its depth, 

absence or presence of convection, and other conditions, a reservoir may become density stratified 

with the more evolved (and usually less dense) magmas collecting in the upper part and the more 

primitive magmas in the deeper and marginal parts of the reservoir. Together the caldera (a central 

volcano) and the fissure swarm constitute a volcanic system (Figs. 7 and 8). In a rift zone, such 

systems tend to be elongated, but outside rift zones (e.g., at many convergent boundaries) they may be 

more equidimensional, such as circular or square-shaped. 

 

km
2
, as used above, the thickness of the reservoir to produce 0.9 km

3
 would have to be about 

9.4 km (Figs. 8 and 9).  

 A thickness of 9 km for a deep-seated reservoir is quite possible, and some may in fact be 

thicker. Furthermore, most of the Holocene lava shields in Iceland formed early in Holocene 

when the glacial rebound effects very likely resulted in, temporarily, more extensive 

reservoirs and their higher melt fraction or porosity (Andrew and Gudmundsson, 2007). 

Thus, a thinner reservoir with a higher porosity could have generated shields of these 

volumes. 

 Much larger eruptions than those mentioned above have occurred in Iceland. Among 

large fissure eruptions, presumably fed by deep reservoirs, are the 934 Eldgja eruption (20 

km
3
), the 1783 Laki eruption (15 km

3
), as well as the Thjorsa lava eruption (25 km

3
), which 

occurred about 8600 years ago (Fig. 7; Thordarson and Höskuldsson, 2008). Similarly, 
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several of the Holocene lava shields reach tens of cubic kilometres, including Trölladyngja 

and Skjaldbreidur (Fig. 10), with estimated volumes of 15-20 km
3
 (Rossi, 1996). From Eq. 

(17) eruptive volumes in a single eruption of 20 km
3
 would require a reservoir of 100,000 

km
3
. The areas of the largest volcanic systems in Iceland are 2300-2500 km

2
 (Thordarson and 

Höskuldsson, 2008), and some of the large lava shields are associated with systems of this 

size. If the cross-sectional areas of the associated reservoirs are similar in size, then their 

thicknesses would have to reach some 40 km. This is a very great thickness, and generally 

unlikely for typical fissure-feeding reservoirs (Gudmundsson, 1986, 1987a). Glacial rebound 

effects and increased melt fraction may certainly have contributed to the formation of the 

large lava shields in early Holocene (Andrew and Gudmundsson, 2007), as well as to the 

generation of the Thorsa lava some 8600 years ago (Fig. 7). But there are no known rebound 

effects that could help explain the large volumes of the 934 Eldgja or the 1783 Laki lava 

flows (Fig. 7). The chemical differences between these lava flows indicate that they come 

from separate reservoirs (Thordarsson and Larsen, 2007).  

 

 
 

Fig. 10. View east, the lava shield Skjaldbreidur in the West Volcanic Zone of Iceland (Figs. 7 and 

16). Skjaldbreidur formed some 9,000 years ago and has an estimated volume of about 15 km
3
. 

 

5. Excess pressure change in a chamber/reservoir during an ordinary 

eruption 

Whether or not lava flows of 15-25 km
3
 could form in ordinary poroelastic eruptions through 

the mechanism discussed above depends on the size and melt fraction of the reservoir. For 

Iceland these are comparatively large eruptions, although common in the Pliocene and 

Pleistocene lava pile. There is of course plenty of magma beneath Iceland. The main problem 

as regards the ordinary mechanism is how to squeeze large volumes of magma out of the 
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reservoir/chamber in a single eruption before the excess pressure in the reservoir/chamber 

becomes zero and the feeder-dyke closes at its contact with the source.  

 For simplification, consider the transport of basaltic magma through a feeder (Eq. 1; Figs. 

2 and 4) whose source is a totally molten shallow magma chamber.  We consider the case 

where the host rock and magma densities are equal so that gLmr )(    = 0 in Eq. (1) and 

the magma is driven up through the feeder-dyke solely by the excess-pressure gradient, 

Lpe  /  in Eq. (1). This assumption can easily be relaxed, as well as the assumptions of a 

totally molten chamber (the analysis can be extended to a partially molten reservoir), but is 

made here because the main point is the excess-pressure variation in the chamber itself and 

its effect on closing the feeder at its contact with the source, thereby bringing the eruption to 

an end. How rapidly the excess pressure in the chamber becomes zero determines the 

duration of the eruption and, partly, its volume.  

 During dyke injection and magma transport to the surface (Figs. 2, 4 and 6), the excess 

pressure in the source chamber decreases if (a) there is not enough gas exsolution or other 

processes operating to maintain the excess pressure or (b) volumetric flow rate of new 

magma into the chamber is much lower than the flow rate out of the chamber/reservoir and to 

the surface. As indicated above, gas exsolution is unlikely to contribute significantly to 

excess pressure in shallow basaltic chambers, and certainly not in deep-seated basaltic  

 
Fig. 11.  Volumetric flow (effusion) rate as a function of time during the 1991 Hekla eruption in 

Iceland (cf. Galindo and Gudmundsson, 2012). There is an abrupt increase in the rate in February, 

which is here thought to be related to a small increase in the opening (aperture) of the feeder-dyke, in 

accordance with the cubic law (Eq. 1).  

reservoirs. Geodetic data indicate that during basaltic eruptions the volumetric flow rate into 

the source chamber is much lower than the rate of outflow through the feeder-dyke (e.g., 

Stasiuk et al., 1993; Woods and Hubbert, 2003).  

 From these considerations it follows that the excess pressure as a function of time, p(t),  

in the source chamber of the feeder-dyke at any instant is given by: 
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where pe is the excess pressure at the time of chamber rupture and feeder-dyke initiation, that 

is, at t = 0, and Q is the volumetric flow rate up through the feeder. Here ψ (with the unit of 

Pa m
-3

) is given (cf. Eq. 20) by: 
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where, as before, Ver is the volume of eruptive (including feeder-dyke) materials. The 

volumetric flow rate Q through the volcanic fissure (fed by a dyke), that is, the effusion rate, 

changes with time according to the equation (Machado, 1974): 

 

QdtCQtQ
t
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0

)(                                                                                                              (20) 

 

where Qi is the initial volumetric flow rate and C is a constant that depends on the excess 

pressure, compressibility and volume of the magma chamber, and the dimensions of the 

feeder-dyke. Eq. (20) has the solution (Machado, 1974; cf. Wadge, 1981): 
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which shows that the volumetric flow rate out of the chamber (through the feeder-dyke) 

declines exponentially with time from the instant of magma-chamber rupture and feeder-dyke 

injection (and subsequent eruption) until the end of the eruption. A roughly exponential 

decrease in the volumetric flow or effusion rates is common during eruptions (Machado, 

1974; Wadge, 1981; Stasiuk et al., 1993; Thordarson and Self, 1993; Thordarson and Larsen, 

2007; Neri et al., 2011). One such example (with irregularities, however) is provided in Fig. 

11.  

 Using similar arguments, it can be shown, based on the above assumptions and by 

analogy with Eq. (21), that the excess-pressure p(t) in the magma chamber during the 

eruption is also a negative exponential function of time and given by: 
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where Qt is the magma volume (in m
3
) that flows out of the chamber/reservoir during the 

time interval t.  The exponent has the units of m
3
/m

3
 and is thus dimensionless. Eq. (22) 

indicates an exponential decrease in excess pressure in the source chamber during the 

eruption until the excess pressure approaches zero, that is, 0)( tp , the bottom of the feeder-

dyke closes, and the eruption comes to an end (Fig. 11). For eruption forecasting, one of the 
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main points is therefore to understand and estimate how long time will it take for 0)( tp , 

that is, for the eruption to end.  

 As an example, consider a moderate eruption of eruptive and intrusive volume Ver = 2 

km
3
 and take the excess pressure in the chamber, pe, before rupture and dyke injection as the 

typical tensile strength of 4 MPa. We assume that the eruption comes to an end when 

0)( tp . Furthermore, we also assume that there is negligible inflow of new magma into 

the chamber in comparison with the rate of outflow of magma during the eruption. While the 

peak eruption rate may be thousands of cubic metres per second, the average rate in many 

moderate eruptions is of the order of a few hundred cubic metres per second, or less. If we 

use the common value of Q = 100 m
3
s

-1
, then Eq. (22) gives the duration of the eruption as 2 

× 10
7
s or 33 weeks. An eruption of 33 weeks, or close to 8 months, is much longer than the 

median duration of eruptions, which is 7 weeks, based on data on 3301 eruptions compiled by 

Simkin and Siebert (2000). It is, however, very similar to the duration of the 2014-2015 

eruption of Bardarbunga-Holuhraun in Iceland (Browning and Gudmundsson, 2015a). 

 The time for an eruption to come to an end as well as the total eruptive volume Ver 

leaving the chamber in that time (that is, Qt) depend on several factors but primarily on the 

total volume of the magma chamber (Eqs. 2-5). We have indicated above that reasonably 

large eruptions may need a special mechanism, that is, a mechanism different from the 

ordinary mechanism discussed above. Again, the exact eruptive volume for which such a 

special mechanism would be needed cannot be specified because it depends on the size of the 

source magma chamber or reservoir. However, it is known that all explosive eruptions 

exceeding about 25 km
3
 of eruptive materials are associated with collapse calderas (e.g., 

Lipman, 1984, 1997). Furthermore, most, perhaps all, large effusive eruptions in rift zones 

are associated with grabens, commonly large ones. It is often argued that collapse calderas, 

and perhaps grabens, are the consequence of large eruptions. Here we shall explore the other 

possibility, namely that large eruptions are the consequences of caldera collapses and graben 

subsidences.  

  

6. Mechanics of large eruptions 

For generating large eruptions, we discuss here a new mechanism, based on gradual reduction 

in the chamber or reservoir volume during the eruption so as to maintain the excess pressure. 

This implies that the exponential decrease in excess pressure, as indicated by Eq. (22), is 

delayed until very late in the eruption. Here we first derive the model for large explosive 

eruptions, and take the piston-like caldera collapse as a driving force for maintaining the 

excess pressure in the chamber, hence for generating the large eruption. Following this, we 

turn to large effusive eruptions where, we suggest, grabens commonly play an analogous role 

to collapse calderas.  

 

a. Large explosive eruptions 

No really large eruptions have been recorded instrumentally. The largest explosive caldera 

eruption in the 20
th

 century was the 1912 Novarupta eruption in Alaska (Wood and Kienle, 

1992; Hildreth and Fierstein, 2012). This eruption produced some 30 km
3
 of acid to 

intermedia tephra, calculated as equivalent to about 13 km
3
 of magma leaving the magma 
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chamber. The part of the chamber that generated the caldera collapse during the eruption, 

however, is beneath the nearby volcano Katmai. The caldera is 3-4 km in diameter and 0.6 

km deep, and with a volume of 5-6 km
3
, so that its volume is much less than that of the 

magma volume leaving the chamber, as is commonly the case. Associated with the eruption 

were 14 earthquakes exceeding M6. The magma came partly from the chamber, or part of the 

chamber (possibly the same chamber is beneath Katmai and Novarupta), beneath Katmai, 

which is at about 10 km lateral distance from Novarupta. The chamber was layered with the 

acid (rhyolite) on the top and less evolved andesite at the bottom. Layering of a similar kind 

is common in magma chambers and reservoirs (cf. Fig. 9).  

 The second, and much better documented, explosive caldera eruption in the 20
th

 century 

was the 1991 Pinatubo eruption in the Philippines (Newhall et al., 1997). The eruption 

produced an estimated 10 km
3
 of erupted materials, equivalent to about 4 km

3
 of magma 

leaving the chamber, while some estimates suggest 5.3 km
3
 (Stix and Kobayashi, 2008). The 

eruption was thus moderate in terms of volume. It was preceded by earthquakes—possibly as 

long as 8 months before the eruption, when a M7.8 earthquake occurred within 100 km of 

Pinatubo—and there were also earthquakes during the eruption. The associated collapse 

produced a caldera about 2.5 km in diameter. 

 Other medium to large explosive eruptions in the past centuries include the 1815 

Tambora eruption in Indonesia (Self et al., 1984; Rosi et al., 1999). The estimated volume of 

eruptive materials (mainly ash) is 160-170 km
3
, which is regarded as roughly equivalent to 

about 50 km
3
 of magma leaving the chamber, making it probably the largest eruption in 

historical time. A large caldera, 6-7 km in diameter and with a maximum depth of 1200 m, 

was generated during the eruption (Self et al., 1984; Stothers, 1984). Self et al. (1984) 

estimate the caldera volume at 36 km
3
, again smaller than the volume of eruptive materials. 

There was an unrest period with earthquakes for at least 3 years prior to the eruption.  

 The largest instrumentally recorded and historical explosive eruptions, however, are 

orders of magnitudes smaller than the largest known explosive eruptions (Pyle, 2000; Mason 

et al., 2004; Crosweller et al., 2012). The latter produced from many hundreds to several 

thousand cubic kilometres of eruptive materials. The most recent very large explosive 

eruption is the Toba eruption in Sumatra, some 74,000 years ago, which produced around 

2,800 km
3
 of eruptive materials (Chesner, 2012). Other eruptions on that scale include the La 

Garita Caldera eruption in Colorado (the United Stated), which generated the Fish Canyon 

Tuff some 27-28 million years ago, with an estimated volume of 4000-5000 km
3
 (Lipman, 

1997; Mason et al., 2004). The associated caldera itself is elongated with major and minor 

axes of 75 km and 35 km, respectively.  

 For explosive eruptions that happened long before historical time, as long as tens of 

millions of years ago or more, estimates of the volume of eruptive materials will always be 

inaccurate.  Part of the material in such eruptions presumably falls on the sea or lakes, is 

carried away by erosion, buried by later eruptions, or affected in other way that make 

accurate area (and therefore volume) estimates impossible. However, the volumes given for 

these old pyroclastic rocks, such as those associated with the Toba eruption and the La Garita 

eruption (the Fish Canyon Tuff), refer to the estimated ‘dry-rock-equivalent’ volumes (Mason 

et al., 2004), which are similar in density to their source magmas. Thus, these volumes are a 
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crude measure of the actual minimum magma volume that left the source chamber during the 

eruption. 

 Explosive eruptions that start as ‘ordinary’ may develop into large eruptions in 

connection with caldera collapse. In most reasonably well-documented caldera-collapse 

eruptions, the eruption intensity, that is, the volumetric flow rate, reaches its peak at a later 

stage than in ‘ordinary’ eruptions. Ordinary explosive eruptions (and effusive eruptions as 

well) usually peak very quickly - some 42% (of 252 documented explosive historical 

eruptions) within the first day, and 52% within the first week (Simkin and Siebert, 2000). By 

contrast, some of the largest historical caldera eruptions reached their peak intensity only 

after many months, and some after many years. Here I suggest that for many large explosive 

eruptions the late peak or plateau in the eruption is partly attributable to the maintenance of 

the excess pressure and the development or reactivation of the caldera ring fault.  

   

 
Fig. 12. When caldera subsidence (vertical arrow) occurs on an outward-dipping (reverse) ring-fault, 

the ring-fault opening gradually increases as the subsidence progresses (as indicated by the 

horizontal arrows). Consequently, the ring-fault would normally be injected by a ring-dyke, and as 

the opening increases the dyke is likely to reach the surface and feed an eruption. While the ring-dyke 

is fluid, as it is normally during the entire collapse, there is essentially no friction along the ring-fault 

and the caldera block may subside to the bottom of a totally fluid chamber. This is referred to as 

unstable caldera displacement (Gudmundsson, 2015). It follows that (1) the volumetric flow or 

effusion rate should increase greatly with as the subsidence of the caldera block progresses, and (2) 

most (or all) of the magma in the chamber may be squeezed out during the eruption. A typical 

chamber with volumes of hundreds of cubic kilometres may thus produce an eruption of equal volume, 

that is, a very large eruption.  

 

Of the instrumentally monitored eruptions discussed above, in the both the explosive ones, 

namely the 1912 Novarupta eruption and the 1991 Pinatubo eruption, a large part of the 

caldera collapse occurred during or after the middle period of the eruption (Stix and 

Kobayashi, 2008). The details of the 1912 Novarupta eruption and the associated Katmai 

caldera collapse are of course poorly known, with very little seismic instrumentation on site 

and very poor seismic network in the world as a whole at that time. Nevertheless, the seismic 
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energy release or transformation appears to have increased in the second half of the eruption 

duration. Similar results, but much better documented, were obtained during the 1991 

Pinatubo eruption, indicating that large part of the ring-fault displacement may have occurred 

during the middle part of the eruption duration. By contrast, in the three well-documented 

non-explosive caldera eruptions, that is, the 1968 Fernandina (Galapagos) eruption, the 2000 

Miyakejima eruption, and the 2007 Piton de la Fournaise (Reunion) eruption - all of which 

were small - the ring-fault displacement continued in small steeps during the eruption, so that 

the seismic energy transformation was essentially constant for the main period of the collapse 

(Kumagai et al., 2001; Geshi et al., 2002; Stix and Kobayahsi, 2008; Michon et al., 2011; 

Fontaine et al., 2014).   

 These conclusions all rest partly on the results of analyses of the seismic energy released 

or transformed as a function of time during the collapse and associated eruption. For the 

Novarupta/Katmai event, the seismic data is really all there is because no scientists observed 

or monitored the event itself. The 1968 collapse of Fernandina was also before the time of 

high-quality GPS and InSAR geodetic studies, so that, again, the main information about the 

ring-fault displacement is through earthquake monitoring (Filson et al., 1973). While the 

conclusion that the different style of ring-fault slips between the explosive and non-explosive 

eruptions is reflected in the associated earthquake-energy release is plausible, there are 

several possible mechanical reasons for this difference in behavior. Among the main factors 

affecting ring-fault slip is the attitude of the fault and the related effect of possible ring-dyke 

formation.  

 There are two primary models on the attitude of the ring-faults of collapse calderas, and 

their differences have important implications for caldera eruptions. One model assumes that 

the caldera faults are outward dipping (Fig. 12), the other that the faults are inward dipping 

(Fig. 13). The outward-dipping model is well established in the caldera literature, and is the 

original idea—dating back to Anderson’s (1936) model on ring-fault formation. This ring-

fault attitude is also suggested by many analogue experiments (Marti et al., 1994, 2008; 

Acocella, 2007; Geyer and Marti, 2014). Most observed well-exposed ring-faults, however, 

seem to be close to vertical or steeply inward dipping (e.g., Simkin and Howard, 1970; 

Macdonald, 1972; Filson et al., 1973; Fedotov et al., 1980; Aramaki, 1984; Lipman, 1984; 

Newhall and Dzurisin, 1988; Lipman, 1997; Gudmundsson, 1998; Geshi et al., 2002; 

Browning and Gudmundsson, 2015b). Yet, there is some field evidence for outward-dipping 

ring-faults (e.g., Williams et al., 1970; Branney, 1995; Cole et al., 2005; cf. Geyer and Marti, 

2008; Marti et al. 2009).  Many ring-faults are occupied by ring-dykes, many of which are 

vertical or dip steeply inward (Oftedahl, 1953; Almond, 1977), while some may be outward-

dipping (Anderson, 1936).  

 The outward-dipping model has several important implications for the course of the 

caldera-forming eruption, all of which relate to the gradual increase in the opening or  
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Fig. 13.  As a caldera block subsides on an inward-dipping normal ring-fault, the block becomes 

subject to gradually higher horizontal compression (compressive stress). So long as no ring-dyke is 

injected along the ring-fault, the friction together with the normal stress on the fault plane ensure that 

the fault remains closed and the caldera displacement stable (Gudmundsson, 2015). It follows that 

collapse on an inward-dipping normal ring-fault is less likely than collapse on an outward-dipping 

ring-fault to result in increasing volumetric flow or effusion rate through a ring-dyke as the 

subsidence increases (cf. Eq. 1). The normal-fault collapse is also unlikely to destroy the magma 

chamber. 

 

aperture of the ring-fault (the ‘gap’ between the piston-like caldera block and the walls of the 

host rock) as the caldera subsidence increases (Fig. 12). The implications are:  

1. A ring-dyke must form and act as a feeder to a part of the eruption. This follows 

because there is no way that such an opening, which reaches all the way to the 

surface, could be connected to the magma chamber and not be injected by magma. 

2. The volumetric flow rate through the ring-dyke should increase with increasing 

subsidence of the caldera floor. As the piston-like caldera block subsides into the 

magma chamber the opening between the host rock and the block gradually increases 

so that the aperture u in Eq. (1) increases. And since the volumetric flow rate 

through the feeder ring-dyke depends on 3u , that is, the aperture in the third power, 

the aperture increase with caldera subsidence should result in a great increase in the 

volumetric flow rate Q during the eruption so long as the caldera is subsiding.  

3. Since there is essentially no friction (only that related to the magma viscosity of the 

ring-dyke) and increasing ring-fracture opening with increasing caldera subsidence, 

there is nothing to stop the piston-like block from sinking to the bottom of the 

chamber. This means that for an outward-dipping ring fault, essentially the entire 

magma chamber could erupt so that little magma would be left in the chamber 

following the collapse.    

 The data available today provide only partial tests of these three implications. Briefly, the 

present data indicate as follows. As to the first point, many calderas, for example in Iceland, 

have very thin or non-existing ring-dykes (e.g., Gautneb et al., 1989; Browning and 

Gudmundsson, 2015b). As to the second point, it is not clear if the volumetric flow rate 

increases as the caldera subsidence continues, or if the caldera eruptions are primarily related 

to ring-dykes. In some cases the eruption is partly along a ring-dyke, in others the eruption 
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appears to be primarily in the central part—from the main conduit of the stratovolcano that 

subsequently collapses or from a central part of an already existing caldera. Of the five main 

documented caldera collapses during the past 100 years or so, there was no ring-dyke 

eruption in at least four, namely: Novarupta-Katmai, Alaska (1912), Fernandiana, Galapagos 

(1968), Miyakejima, Japan (2000), and Piton de la Fournaise, Reunion (2007). If we include 

the 1975-1976 collapse of the Plosky-Tolbachik pit crater as the sixth caldera collapse then 

there was also no ring-dyke eruption during its collapse (Fedotov et al., 1980). Part of the 

eruption during the collapse in Pinatubo, the Philippines (1991), may have been on a ring-

dyke, but the documentation indicates that much, perhaps most, of the eruption was along the 

central conduit (Stix and Kobayashi, 2008).  

 As for the Plosky Tolbachik volcano, it is a basaltic edifice (a shield volcano), and part of 

its summit collapsed during the 1975-1976 fissure eruption (Fedotov et al., 1980). The 

collapse, however, was associated with an existing pit crater. Also, the diameter of the floor 

of collapse was only about 700 m (Fedotov et al., 1980), and thus less than the minimum 

diameter of a typical caldera (often regarded as about 1 km). The maximum diameter at the  

rims (upper edge of the caldera), however, appears to have reached about 1300 m, in which 

case the collapse may be regarded as that of a caldera with a rather gently inward-dipping 

ring-fault. 

 As to the third point, some magma chambers are apparently destroyed by the caldera 

collapse. This follows since there is very little if any activity at the location of the caldera 

subsequent to its formation (e.g., Marti and Gudmundsson, 2000). Most calderas, however, 

are highly active after collapse (Newhall and Dzurisin, 1988), suggesting that the magma 

chamber is not destroyed during the collapse. As for the recent examples discussed above, 

there have been eruptions in Fernandina, Plosky-Tolbachik, Pinatubo, Miyakejima, and Piton 

de la Fournaise since their recent collapses, showing that the associated magma chambers are 

still there and active.  

 As for the inward-dipping model of collapse calderas (Fig. 13), the requirement for slip is 

extension across the ring fault. This extension can be generated either through cm-scale 

doming related to pressure increase in the deeper reservoir (Fig. 2), rift-related extension, 

gravity sliding resulting in volcano spreading, or any other similar mechanism that can 

produce extension (e.g., Gudmundsson, 2007). Because of the existing cavity-like shallow 

magma chamber, and particularly when the ring-fault starts do develop (or an existing one to 

slip), there will be tensile and shear stress concentration in and around the piston-like caldera 

block. The ring-fault development and subsidence of the piston-like block is also likely to 

generate further inflation. This follows for two reasons (Gudmundsson, 1998, 1999). (1) The 

subsidence of the caldera block reduces the effective thickness of the crustal plate or segment 

above the deeper source reservoir which contains the magma chamber and the caldera (Figs. 

9, 13, and 14). The reduction in the effective thickness diminishes the flexural rigidity of the 

plate, so that for a constant or even reduced magmatic excess pressure in the reservoir, the 

plate (and thus the caldera) becomes subject to further upward deflection or doming. (2) For 

an inward-dipping (normal-fault) caldera the footwalls (the flanks) rise as the caldera-block 

subsides, as is the rule for normal faults, particularly those extending down into magma 

chambers and reservoirs (Gudmundsson, 1998). Thus, while the magma under the subsiding 

caldera-block becomes subjected to increased or constant pressure during each ring-fault slip, 
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the magma located below a rising footwall is subject to reduced vertical stress. It follows that 

there may be explosive gas expansion of (particularly felsic) magma in the part of the 

chamber that is beneath the ring-fault footwall, thereby maintaining a high excess pressure. 

This excess pressure can be maintained for a while through repeated ring-fault slips, thereby 

contributing to squeezing out large fraction of the magma in the chamber and, because of the 

location of the excess-pressure maintenance, possibly contributing to the formation of a ring-

dyke. The ring-dyke, in turn, helps overcome the friction and promotes caldera subsidence.  

  

 
Fig. 14.  When a caldera block subsides – here denoted by the differential distance dx - into the 

associated shallow magma chamber, the volume of the chamber is reduced (the chamber shrinks). It 

follows that the excess pressure in the chamber is roughly maintained, thereby allowing much larger 

fraction of the magma to be squeezed out of the chamber than during an ordinary poroelastic 

eruption. The excess pressure ep  is related to the average force on the cross-sectional area of the 

subsiding caldera block A through ApF e   (Eq. 23). Commonly, the formation or reactivation of a 

collapse caldera is either due to an extension or a small uplift or doming of the crustal segment 

hosting the potential or existing caldera. 

 

 For a (close to) vertical ring fault and/or ring dyke injection (Fig. 5) there may be a total 

collapse, in which case the magma chamber is to a large degree emptied. For other 

conditions, the friction on an inward-dipping ring-fault (Fig. 13) limits the subsidence to a 

normal maximum of 1-2 km. Also, where the friction is highest, for example on parts where 

there is no ring-dyke or the dip of the ring-fault is unusually gentle, there may be little or no 

slip during the collapse, thereby generating trap-door calderas (Amelung et al., 2000). Thus, 

for inward-dipping ring-faults, the slips are more controlled than in the case of outward-

dipping faults. Both cases, however, reduce the volume of the magma chamber, thereby 

offering the possibility of maintaining the excess pressure at high or close to constant level 

for a longer time and squeezing out unusually large fraction of the magma in the chamber. 

Such an excess pressure maintenance implies that the exponential decrease in the magma-

chamber excess pressure (Eq. 22) occurs only comparatively late in the eruption.  For inward-
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dipping ring fault, the excess pressure may also be maintained through rise of the ring-fault 

footwalls during repeated slips. These processes offer a possible mechanism of generating 

large eruptions—eruptions of many tens or hundreds of cubic kilometers from typical-sized 

chambers, the latter being in excess of 5 km
3
 (except at some fast-spreading mid-ocean 

ridges, where they may be smaller) and normally in the range of 20-500 km
3
.  

 

6.2 Energy of caldera eruptions  

 For analysing the excess-pressure effect of piston-like caldera-block subsidence into a 

shallow chamber, consider the magma chamber in Fig. (14). Excess pressure times the cross-

sectional area of the caldera A is the force F, that is:  

 

ApF e                                                                                                                                 (23) 

 

As the piston-like caldera roof moves the differential distance dx (Fig. 14), the corresponding 

very small (infinitesimal) work dW done by the surroundings on the magma chamber system 

(Fig. 2) is:  

 

AdxpFdxdW e                                                                                                               (24) 

 

and the volume of the chamber changes by dVc , that is:  

 

AdxdVc                                                                                                                            (25) 

 

The minus sign in Eq. (25) is to indicate that chamber volume decreases during the piston-

like caldera subsidence. Here we follow the thermodynamic convention that work done on 

the system is regarded as positive. Combining Eqs. (24) and (25), and using the relation 

dUdW  (the first law of thermodynamics when no heat is added to the system), where dU 

is the change in internal energy of the magma chamber during its shrinkage or contraction, 

we get: 

 

cedVpdU                                                                                                                         (26) 

 

which is a measure of the elastic potential energy dU transformed during an caldera eruption 

as a function of the excess pressure pe  and the contraction or shrinkage of the chamber dVc. 

 As indicated above, the excess pressure pe at the time of magma chamber rupture and 

feeder-dyke injection is roughly equal to the in situ tensile strength, T0 (Eq. 16). The tensile 

strength, in turn, is almost a constant, mostly 2-6 MPa and typically around 4 MPa. It follows 

that the excess pressure pe at the time of chamber rupture is essentially constant, here about 4 

MPa, and in the present model this pressure is maintained until close to the end of the 

caldera-forming eruption, at which stage exponential pressure decline sets in (Eq. 22). It then 

follows from Eq. (26) that the elastic potential energy of the eruption is directly related to the 

contraction or shrinkage of the chamber during the eruption, that is, dVc, which corresponds 

roughly to the volume of material the leaves the chamber during the eruption. Feeder-dyke 
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volumes are normally fraction of a cubic kilometer, and maximum several cubic kilometers. 

For large eruptions (tens or hundreds of cubic kilometers or more) the feeder-dyke volume 

may be regarded as included in the estimated (and uncertain) eruptive volume Ver. 

 From these considerations it follows that we can identify Ver with -dVc to obtain the 

elastic potential energy Uer driving the caldera-forming eruption from the following equation:  

 

ereer VpU                                                                                                                             (27) 

 

From Eq. (27) the elastic energy driving an explosive eruption of a given volume can be 

estimated, as we shall do below. First, however, we shall extend this analysis to large effusive 

eruptions. 

 

6.3 Large effusive eruptions  

The volumes of numerous basaltic lava flows reach many tens and hundreds of cubic 

kilometres, and some reach thousands of cubic kilometres. Eq. (17) indicates that there are 

limits to how large lava flows can be generated in a single eruption by the ordinary  

 
Fig. 15. Subsidence of a graben block within an active volcanic zone or system during an eruption 

reduces the volume of the associated reservoir. The resulting reduction in reservoir volume, if rapid 

enough, may largely maintain the excess pressure in the reservoir. It follows that a much higher 

proportion of the magma can be squeezed out of the reservoir during the eruption than would be 

possible in ordinary eruptions in the absence of rapid graben subsidence. 

 

mechanism. For example, a lava flow of 100 km
3
 would, according to Eq. (17), require a 

reservoir with a volume of 5 × 10
5
 km

3
. To reach such a volume the reservoir that was as 

long as 1000 km and as wide as 20 km wide, would have to be 25 km thick. A magma body 

of these dimensions is perhaps not very likely to exist at any particular time and location to 

supply magma to a single eruption. Even effusive eruptions that reach tens of cubic 

kilometres would seem to require unusually large reservoirs or a different mechanism. And 
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the largest effusive eruptions, such as the comparatively recent (16-17 million year-old) 

Columbia River basalts, reach volumes of as much as several thousand cubic kilometres 

(Reidel et al., 1989; Tolan et al., 1989; Hooper et al., 2007). It is extremely unlikely that such 

volumes could be generated by the ordinary mechanism that results in the ratio given by Eq. 

(17). 

 Here I propose a new mechanism for generating large effusive eruptions, in particular 

basaltic lava flows with volumes from tens up to thousands of cubic kilometers. This 

mechanism is basically similar to the one for generating large explosive eruptions, namely 

subsidence of a crustal block into the reservoir during the eruption (Fig. 15), thereby 

maintaining the excess pressure and greatly increasing the Ver/Vb ratio (Eq. 17). As the crustal 

segment within the graben subsides, it maintains the excess pressure (and may occasionally 

increase the pressure during the subsidence process) in the reservoir (or, for a shallow graben, 

magma chamber) below in a manner outlined for the collapse calderas above (Eqs. 23-26).  

  

 
 

Fig. 16. Aerial view of the Thingvellir Graben, of Holocene age (here snow-covered in the winter). 

View northeast, the graben is about 5 km wide where the two main boundary faults enter Lake 

Thingvallavatn (dark blue). The lava shield Skjaldbreidur (Fig. 10) is seen in the northeast. 

 

While the mechanism is quite general, some specific examples may be discussed. The 

postglacial Skjaldbreidur lava shield in Iceland (Figs. 10 and 16) has estimated volumes 

ranging from 13.5 km
3
 (Sinton et al, 2005) to 17 km

3
 (Saemundsson, 1992), with an average 

estimate of about 15 km
3
 (Rossi, 1996). The exact age of Skaldbreidur is not known, but 

based on mapping it is in the range of 6000-9000 B.P., and probably closer to 9000 B.P. 

(Sinton et al., 2005). The northern part of the largest postglacial graben in Iceland, the 
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Thingvellir Graben (Figs. 7 and 16), is mostly located in an older lava flow, a pahoehoe flow 

referred to as the Thingvallahraun (Thingvellir Lava). It had previously been estimated to 

have formed at about 10,200 B.P. (Sinton et al., 2005), and thus perhaps as much as 1000 

years before the Skjaldbreidur shield.  

 There are indications that much of the faulting and tension-fracture formation in many 

fissure swarms in Iceland occurred in early postglacial time (Gudmundsson, 1986, 1987a,b). 

This is, to a degree, supported by recent GPS measurements which suggest that the current 

rate of extension in the entire West Volcanic Zone, including the Thingvellir Graben, is 

considerably less than the average dilation of about 10 mm/year since the Holocene lava flow 

Thingvallahraun was formed (Arnadottir et al., 2008). It is also supported by the lava shield 

itself being basically unfaulted and by general considerations of the tectonic evolution of the 

Thingvellir Graben (Sonnette et al., 2010).  Thus, no large normal faults and tension fractures 

dissect the main shield itself (Figs. 10 and 16), and this part of the West Volcanic Zone (Fig. 

7) is essentially free of tectonic fractures. Thus, tens of meters of subsidence along the 

Thingvellir Graben may have occurred in early Holocene. The graben extends into the lake 

(Fig. 16) and south to the Hengill Volcano (Fig. 7). There the boundary faults dissect 

Pleistocene rocks, some of which have displacements exceeding 200 m (Saemundsson, 

1992). The extension of the Thingvellir Graben to the south, through Lake Thingvallavatn 

and to the Hengill Volcano, is likely to have active during early Holocene at the same time as 

much of the Thingvellir graben itself formed. To the west, the graben structure extends to 

normal faults in Pleistocene rocks where the displacements reach about 400 m. It is not 

known if these faults participated in the postglacial subsidence. It is well known that part of 

the displacement on a normal fault is due to rise of its flanks, but the greater part is normally 

related to absolute subsidence. 

  If the extended Thingvellir Graben is taken as 50 km long and 7 km wide (Figs. 7 and 

16; Gudmundsson, 1987b), then its area is about 350 km
2
. An overall subsidence of 30-40 m 

for the extended graben as a whole corresponds to a volume of 10-14 km
3
, which is roughly 

the volume of the Skjaldbreidur lava shield. If the entire graben system of the West Volcanic 

Zone was involved, in which case Skjaldbreidur is roughly in the centre (Figs. 7 and 16), then 

the total length is about 85 km and the total width about 18 km, in which case the area is 

about 1500 km
2
. For such a graben system, a subsidence of mere 10 m would be sufficient to 

correspond to the entire volume of Skjaldbreidur, 15 km
3
.  For such a simple analysis, several 

factors must, however, be considered, namely: 

 Part of the subsidence of the graben must be younger than the formation of the 

Skjaldbreidur shield and thus cannot have contributed to the maintenance of the 

excess pressure in the reservoir. This follows because displacement occurred in 1789 

AD and presumably earlier. However, there is general agreement that a large fraction 

of the subsidence along the faults occurred in early Holocene (Gudmundsson, 1987b; 

Sonnette et al., 2010). 

 The maximum displacement on the Holocene faults is about 40 m, so that a general 

displacement of 30-40 m may look like an overestimate. However, the faults continue 

into Lake Thingvallavatn (Fig. 16; Bull et al., 2003) and south to the volcano Hengill 

(Fig. 7) where they reach displacements of at least 200 m. It is not known how large 

fraction of the 200 m displacement was generated during the formation of the 
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Skjaldbreidur lava shield, but it may be in excess of 40 m. Furthermore, the total 

subsidence of the Thingvellir Graben may be much larger; Tryggvason (1982) 

estimates the maximum Holocene subsidence in the graben as 70 m. 

 The eruption possibly took many decades. The volumetric flow rates are of course not 

known, but by analogy with other eruptions, Sinton et al. (2005) speculate that the 

eruption may have taken 40-80 years. If true, then inflow into the reservoir could also 

contribute to maintain its excess pressure during the eruption.  

 Large grabens are normally associated with flood basalt provinces or traps. There are, for 

example, very large grabens in the Columbia River Plateau, including the Oregon-Idaho 

Graben. This particular graben is 50-60 km wide and 100 km long (Cummings et al., 2000), 

and thus with an area of at least 5000-6000 km
2
. With maximum graben subsidence of as 

much as 800 m, there is a clear potential for squeezing out magma during the graben 

development that reaches the volumes of the large Columbia River lava flows. Indeed, the 

authors of this particular study of the Oregon-Idaho Graben conclude that its formation 

coincided with large eruptions, but consider that the flows were primarily of rhyolite and that 

the graben itself (of age 15.3-15.5 Ma) developed after the main basaltic lava flows of the 

Columbia River formed (Cummings et al., 2000). Further studies on the volcanotectonic 

relationship between grabens and flood basalts are clearly needed. In particular, since, in 

terms of the model proposed here, subsidences of grabens of sizes similar size would be 

candidates for squeezing out large volumes of magma from deep-seated reservoirs, such as 

occurs during flood-basalt eruptions.  

 

7. Elastic energy release in large eruptions 

Equations (26 and 27) have several implications for quantifying large eruptions. First, if we 

rewrite Eqs. (26) and (27) in the forms: 
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we see that the magmatic excess pressure may be viewed as energy per unit volume or as 

energy density. This interpretation, however, assumes that no heat is added to the system 

during an eruption. Within the framework of thermodynamics, this means that the first law, 

given in terms of very small (infinitesimal) changes in heat dQ and work , dW, of a system, 

namely:  

 

dWdQdU                                                                                                                      (30) 

 

becomes (with dQ = 0): 
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dWdU                                                                                                                                (31) 

 

where dU is infinitesimal change in the internal energy of the system. Here the system is the 

magma chamber, the reservoirs, and the hosting crustal segment (Fig. 2). Eq. (31) means that 

the change in internal energy dU equals the change in work dW done on the system. It should 

be noted that dQ and dW are path dependent and thus inexact differentials; that is, they are 

path (rather than state) functions, whereas dU is a state function and thus a proper or exact 

differential. The values of a state function are independent of its path from the initial to the 

final stage, and depend only on the state or conditions of the system. We do not denote dQ 

and dW by special symbols, as is sometimes done, since their path dependence is supposed to 

be known (cf. Sommerfeld, 1964).  

 The second implication is that, because pressure is analogous to stress, stress may be also 

interpreted as energy per unit volume or energy density. This implication can then be used for 

understanding better energy release rate during dyke and fault propagation and the associated 

material toughness, given as energy per unit volume or unit area. The energy release rate and 

material toughness both connect with the energy budget of volcanoes and volcanic 

zones/fields and also, in a different context, the energy budget of seismic zones 

(Gudmundsson, 2014).  

 The third implication relates to the contraction of the magma chamber; more specifically, 

that its shrinkage dVc corresponds roughly to the volume of material that leaves the chamber 

during an eruption. As indicated above, the volume that leaves the chamber includes not only 

the erupted material but also the intruded material, the latter being primarily the volume of 

the feeder-dyke. The feeder-dyke volume may be a large part of the volume that leaves the 

chamber for small to medium eruptions – and, of course, the entire part of unrest periods with 

dyke injections that do not result in eruptions.  For eruptions of the order of hundreds of cubic 

kilometres or more, however, the feeder-dyke volume is normally insignificant. For example, 

a very long feeder-dyke would be 25-30 km, such as the 27-km-long feeder of the 1783 Laki 

eruption in Iceland (Fig. 7). A feeder-dyke with a strike dimension (length) of 27 km, dip 

dimension (height) of 20 km, and a thickness of 10 m—all dimensions similar to those 

estimated for the Laki feeder-dyke (Thordarson and Self, 1993)—would have a volume of 

about 5 km
3
. While this is about 25% of the total volume leaving the reservoir that supplied 

magma to the Laki eruption (eruptive materials about 15 km
3
 and dyke material about 5 km

3
, 

based on this estimate), the dyke volume would be only 5% of a fissure eruption of 100 km
3
, 

and proportionally less for larger eruptive volumes. 

 Typical collapse calderas on Earth are about 10 km in diameter, even if the largest ones 

reach 90-100 km (Gudmundsson, 2008). A ring-dyke injected along the entire ring-fault 

(Figs. 5 and 12) of circular caldera 10 km in diameter and with a source chamber (chamber 

roof) at 5 km depth would have an area of A = 2πrh = 157 km
2
. Some ring-dykes are up to 

hundreds of metres in thickness, but are then presumably formed in many injections (except, 

possibly, if injected along rapidly formed outward-dipping faults, Fig. 12). Many, and 

perhaps most, ring-dykes are of the order of metres or tens of metres in thickness. For the 

ring-dyke with the above area (using the assumed maximum depth of a shallow chamber, 5 

km, as the source depth), the volume of a 10 m thick dyke would be about 1.6 km
3
 and the 

volume of a 100 m thick dyke 16 km
3
. Thus, even for a very thick ring-dyke, of the order of 
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100 m or more, and injected from comparatively great depth (for a shallow chamber), the 

ring-dyke volume is only a few percent (or less) of the volume of a very large explosive 

eruption of the order of hundreds or thousands of cubic kilometres. For such eruptions, as 

well as the similar-sized effusive eruptions discussed above, the feeder-dyke volume may be 

regarded as included in the total estimated eruptive volume (commonly with an uncertainty 

much larger than several cubic kilometers), as is done in the calculations below. 

 Consider first the very large explosive eruption of Toba in Sumatra, around 74,000 years 

ago, which produced some 2,800 km
3
 of eruptive materials (Chesner et al., 1991; Chesner, 

2012; Jaxybulatov et al., 2014). This is the estimated as solid-rock equivalent volume and 

includes the dyke material. Using the typical excess pressure of 5 MPa, Eq. (27) gives the 

elastic energy transformed during the eruption, by means of magma-chamber shrinkage, as 

1.4 × 10
19

 J.  The elastic energy is largely released thorough the shrinkage of the magma 

chamber, most of which was related to the associated caldera collapse (Figs. 5 and 15). We 

can thus also try to estimate the transformed elastic energy directly from the (crudely) 

estimated ring-fault size and displacement. 

 To do so we use basic results from fracture mechanics. A ring-fault has a free surface (a 

fluid surface) at its top (for example, the earth’s atmosphere or a caldera lake) and its bottom 

(the magma in the associated chamber). In terms of fracture mechanics, the ring-fault is thus 

a through-crack and the type of displacement (movement of the fault walls) is mode III 

(Gudmundsson, 2011). The energy transformed or released UIII during ring-fault slip is, in 

terms of stress drop or driving shear stress τd, given by: 
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                                                                                                                        (32) 

 

where ν and E are Poisson’s ratio and Young’s modulus (stiffness) of the host rock, 

respectively, a is half the strike dimension or rupture length (half the perimeter) of the 

slipping ring-fault, and A is the total slip or rupture area (slip surface) during the ring-fault 

displacement. Most ring-fault displacements occur in many slip events, each associated with 

a driving shear stress and energy release. The cumulative energy release can then be 

estimated as the total energy transformed during all the slips (Stix and Kobayashi, 2008; 

Michon et al., 2011). For ring-fault slips, particularly those that happened long before 

instrumental recording and monitoring, it is often more convenient to use the total or 

cumulative (strictly the maximum) ring-fault displacement ΔuIII during the collapse to 

estimate the energy transformed or released. Thus, in terms of total maximum ring-fault 

displacement the energy transformed is given by: 
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where all the symbols are as defined above.  

 Let us now calculate the cumulative or total energy released during the collapse 

associated with the Toba eruption 74,000 years ago. Lake Toba caldera is crudely elliptical in 
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plan view, with a semi-major axis of about 50 km and a semi-minor axis of about 15 km. The 

total area of the caldera is estimated at 2270 km
2
 (Chesner, 2012); if modelled as a pure 

ellipse with the above semi-axes, the corresponding area would be about 2356 km
2
.  While 

the Toba caldera as a whole formed in several large eruptions, dating back to about 1.2 Ma 

(Chesner, 2012), the youngest large eruption, namely the one 74,000 years ago, formed most 

or all of the caldera seen today. The parameters in Eq. (33) may be estimated as follows. We 

assume a shallow magma chamber with a top at about 5 km depth. There are indications that 

at the present chamber may be somewhat deeper (Jaxybulatov et al., 2014), but it is likely 

that the chamber just before the collapse 74,000 years ago had expanded and had a roof that 

was shallower than today. From this and the perimeter of the caldera, we estimate the rupture 

(slip, collapse) area as roughly 1 × 10
9
 m

2
. Because caldera collapse (ring-fault displacement) 

may take from days to months or more (Stix and Kobayashi, 2008; Michon et al., 2011) and 

is thus generally very slow in comparison with the velocities of seismic waves, we use the 

static Young’s modulus. For the uppermost 5 km of the crust in an active volcanic area, the 

average static Young’s modulus is likely to be around 30 GPa (Gudmundsson, 2011), 

although it may be lower in highly fractured rocks, or rocks with many soft pyroclastic and/or 

sedimentary layers. Poisson’s ratio is taken as 0.25, as is typical for most rocks.  

 The total vertical displacement during the collapse ΔuIII is not well constrained. The 

elevation difference between the present bottom of Lake Toba and the caldera rim is from 

900 m to 1700 m (Chesner, 2012). It does not follow, however, that the displacement was in 

this range, since the collapse 74,000 years ago partly followed existing earlier collapses. 

Also, there has been much deformation (resurgence) in the caldera since this last major 

collapse. If we use the caldera area, 2270 km
2
, and assume that the displacement of the 

piston-like caldera block was such as to squeeze out 2800 km
3
 of magma from the chamber, 

then the average vertical displacement on the ring-fault would be about 1230 m. It is known 

that caldera volumes are commonly different from the eruptive volumes, either larger or 

smaller. Nevertheless, in these crude estimates we take the vertical displacement at 1200 m. 

Using this value for the displacement, as well as the above estimates for Young’s modulus, 

Poisson’s ratio, and ring-fault area and perimeter, Eq. (33) yields UIII as about 6.8 × 10
19

 J. It 

follows that the ring-fault displacement elastic energy release is of the same order of 

magnitude as was obtained through direct calculation using the eruptive volume given by Eq. 

(27), that is, 1.4 × 10
19

J. 

  As indicated above, the eruptive volumes of the largest explosive and effusive eruptions 

are both estimated at about 5000 km
3
. Using Eq. (27) and the same excess pressure as above, 

5 MPa, the elastic energy released during these eruptions is of the order of 3 × 10
19

 J. Thus, 

whether calculated based on the largest caldera collapses known on Earth, or based on the 

largest eruptive volumes known on Earth, the maximum elastic energy released or 

transformed in the eruptions is of the order of 10
19 

J. For comparison, the elastic energy 

release in the largest instrumentally measured earthquake ever recorded, the M9.5 Chile 

(Valdivia) earthquake, is of the same order of a magnitude, namely 10
19 

J, while the seismic 

moment is estimated at 10
23

 J (Gudmundsson, 2014). Thus, the largest volcanic eruptions and 

the largest earthquakes release or transform elastic energy of the same order of magnitude, 

namely 10
19 

J. 
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Fig. 17. Number of eruptions in relation to their Volcanic Explosivity Index, VEI. The diagram shows 

the cumulative number of volcanic eruptions, for different intervals and normalised by 1000 years 

(that is, number of eruptions per 1000 years), for each VEI class. This bi-logarithmic plot has a clear 

break in the slope of the line (change in scaling exponent) at VEI magnitude 7, which is roughly 

where the eruptions become large in the present classification. Modified from Simkin and Siebert 

(2000).  

 

8. An elastic-energy magnitude scale for eruptions 

How should we quantify eruptions, particularly large eruptions? For many years, this has 

been done using a magnitude scale referred to as the Volcanic Explosive Index (VEI), 

initially proposed by Newhall and Self (1982). Basically, the scale classifies the eruption 

explosivity through a combination of eruptive volume, height of eruption column (plume), 

and various qualitative assessments. The magnitude scale was especially designed to estimate 

the explosive magnitudes of historical eruptions, particularly through the amount of tephra 

produced and plume height (Tsuya, 1955; Hedervari, 1963; Mason et al., 2004; Crosweller et 

al., 2012), but has also been extended to pre-historic eruptions – in fact to eruptions that 

happened millions of years ago (Fig. 17). For the pre-historic eruptions, the assigned 

magnitude relies much on the estimated volume of tephra/pyroclastic material produced, 

whereas the plume height is of great importance when estimating the magnitudes of 

documented historical explosive eruptions (Pyle, 2000). Thousands of eruptions have been 
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classified based on the VEI. As the name implies, however, VEI is primarily a measure of the 

explosivity of an eruption, and relates only marginally to other quantitative measures of 

eruption sizes. For example, large effusive eruptions, being mostly non-explosive, normally 

do not score as high on the VEI scale as they would in case the eruptive volume was the main 

criteria (Pyle, 2000).  

 Another measure of eruption size is eruption intensity, given as eruption rate. More 

specifically, eruption intensity measures mass-eruption rate, which is the mass of eruptive 

materials produced per unit time, and has the unit kg s
-1

 (Fedotov, 1985; Carey and 

Sigurdsson, 1989; Pyle, 2000). Both the eruption intensity and the eruption magnitude, as 

measured through the VEI, are logarithmic, using the common logarithm.  

 The third measure of eruption size is the only one that relates directly to energy release. 

This is the thermal energy released or transformed during the eruption (e.g., Yokoyama, 

1957; Pyle 1995, 2000). While the thermal energy released in an eruption may be several 

orders of magnitude larger than any other energy transformed during the eruption (e.g., Pyle, 

2000; Smil, 2008), the cumulative thermal energy released in eruptions each year is a very 

small fraction of the thermal energy released through the worldwide geothermal flux. The 

annual cumulative thermal energy released in eruptions may be somewhere between 0.5% 

and 2% of the energy released through the general cooling of the Earth (Elder, 1976; 

Verhoogen, 1980).  

 During an eruption, the thermal energy released can mainly be attributed to the 

solidification and cooling of the erupted materials. Solidification of magma and the 

subsequent cooling of the volcanic rock to ambient temperatures is a continuous process; it 

operates in all active volcanic areas and, in particular, in and around magma chambers of 

individual polygenetic volcanoes. Thermal energy, however, is ‘low-grade’ energy in the 

sense that only a fraction of it can be transformed into other types of energy – including 

elastic energy, electric energy, and (mechanical) work. During eruptions, part of the thermal 

energy may be transformed into work for driving the upward movement of fine particles in 

buoyant volcanic plumes (Sparks et al., 1997; Mason et al., 2004). Thermal energy, however, 

has normally little, if any, role to play in magma-chamber rupture, feeder-dyke formation, 

and squeezing magma out of the chamber - namely the processes that lead to and maintain an 

eruption.  

 Equations (26) and (27) suggest a new measure of the size of a volcanic eruption, namely 

the elastic energy released or transformed during the eruption. As we have seen, such a 

measure can be compared directly with the energy released in earthquakes. Indeed, as 

mentioned, the elastic energy released in the largest eruptions is of the same order of 

magnitude as the energy released in the largest earthquakes (Gudmundsson, 2014). While 

further development of this measure could include the thermal energy associated with 

eruptions and earthquakes, changes in the potential energy of the magma, and other forms of 

energy transformation, the focus here is on the elastic energy release itself. More specifically, 

Eq. (27) can now be used as the basis of a new magnitude scale for volcanic eruptions. 

 Because the volume change or shrinkage of the chamber is a measure of the elastic 

energy transformed (Eq. 27), it follows that, for this magnitude scale, the volume (m
3
) of the 

eruptive (plus intrusive) materials produced during an eruption should be used rather than the 

mass (kg) of the eruptive materials. The estimated eruptive volumes have of course an 
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uncertainty, particularly for eruptions that occurred millions of years ago. Yet, the uncertainty 

or error is normally within a factor of 2-3, so that the estimated volume may be regarded as of 

the correct order of a magnitude. And the order of magnitude of the elastic energy released in 

the eruption is normally all we need to know, and can hope to estimate, for large to great 

eruptions – which are of the greatest concern for mankind.  

 The general form of the proposed scale for elastic-energy magnitude Me for volcanic 

eruptions is: 

 

BUAM ere  log                                                                                                                (34)    

                                                                                                                  

Here, as above, Uer is the elastic potential energy of the eruption, log is the common 

logarithm (to the base of 10), and A and B are empirically determined constants. Once the 

constants have been determined from empirical data such as in Fig. (1), the magnitude scale 

can be fine-tuned and applied to all volcanic eruptions with estimated eruptive/intrusive 

volumes. This is important because for many pre-instrumental eruptions, that is, eruptions 

earlier than the past 100 years or so the only quantitative information available is (roughly) 

the volume of their erupted materials. For some caldera-driven eruptions, the caldera volumes 

are also known, and can be used, through Eq. (33), as an additional estimate of the elastic 

energy released in the eruption – as we did above for the Toba eruption which occurred 

74,000 years ago.  This eruption magnitude scale is thus directly connected to energy release 

and transformation and may be regarded as complementary to those that already exist.  

 

9. Discussion  

Very large eruptions are one of the greatest threats to the survival of mankind. The only other 

natural hazards of similar magnitudes are large meteoritic impacts. In the past 30 years, there 

has been considerable progress in understanding the mechanics of small to medium eruptions, 

that is, those that I refer to as ‘ordinary’ eruptions. Given the sizes of typical magma 

chambers, we know what sizes of ordinary eruptions they are capable of generating. These 

are mostly in the range of 10
-2

 km
3
 to 10 km

3
. While such eruptions can have large negative 

impact on their surroundings, including economic effects—such as the 2010 Eyjafjallajokull 

eruption in Iceland—they do not pose a hazard for the entire mankind. By contrast, very large 

eruptions—sometimes referred to as super-eruptions—pose a threat to the life and prosperity 

of humans as a species as well as many other animal species on Earth.  

 Large (and small) eruptions derive from magma chambers/reservoirs, whose formation 

and evolution has received much attention in the past decades. Research topics have included 

magma-chamber initiation, usually assumed to relate to accumulation of smaller intrusions 

(e.g., Gudmundsson, 1990; Burov et al., 2003; de Silva and Gosnold, 2007; Annen, 2011), 

stability and longevity (Kalstrom et al., 2010; Gelman et al., 2013; de Silva and Gregg, 

2014), and the conditions for rupture or dyke injection (e.g. Fialko and Rubin, 1998; Folch 

and Marti, 1998; Gudmundsson, 2006; Grosfils, 2007; Gerbault et al., 2012). While there is a 

general agreement as to the basic mechanism of magma-chamber formation through multiple 

magma injections (intrusions), there are widely different views as to the conditions for 

magma-chamber rupture. These divergent views are discussed in detail by Gudmundsson 
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(2012). Here the conditions used are those of standard rock physics, whereby rupture occurs 

when the excess pressure in the chamber reaches the tensile strength of the host rock (Eq. 16). 

As indicated above, the tensile strength values used to assess these conditions, and for related 

aspects of the theory presented here, namely 0.5-9 MPa (with the typical value of 4 MPa), 

derive from in-situ measurements (cf. Gudmundsson, 2011).   

 Caldera formation and eruptions have also been widely discussed and analysed through 

field observations, as well as analogue, analytical, and numerical models (e.g., Burov and 

Giullou-Frottier, 1999; Floch and Marti, 2004; Hughes and Mahood, 2011; de Silva and 

Gregg, 2014). Particular attention has also been given to the relation between calderas and 

regional tectonics (e.g., Acocella, 2007; Holohan et al., 2008).  

 Given the importance of understanding the conditions for large eruptions, many studies 

have focused on the relation between collapse calderas and large eruptions (e.g., Roche and 

Druitt, 2001; Burov et al., 2003; Hughes and Mahood, 2011; Gregg et al., 2012; de Silva et 

al., 2014; Gregg et al., 2015), while others have provided more general considerations of 

large eruptions with, or without, associated caldera collapses (e.g., Lavallee et al., 2006; 

Costa et al., 2011; Caricchi et al., 2014). Nearly all these studies, however, focus on the 

mechanisms of large explosive eruptions, rather than effusive eruptions. Also, almost all the 

studies on caldera formation in relation to large eruptions use the underpressure model 

(discussed in detail below) as a basis. More specifically, it is assumed that large explosive 

eruptions generate underpressure in the associated magma chamber which, eventually, 

reaches a critical value at which caldera collapse occurs. The caldera collapse is then the 

consequence of the eruption, whereas in the present model the large explosive eruption is the 

consequence of the caldera collapse (Gudmundsson, 1998, 1999). 

 In contrast to the well-explored relation between calderas and large explosive eruptions, 

the potential relation between grabens and large (primarily) effusive eruptions has received 

little attention. In the present model, excess pressure is maintained in the source reservoir 

(occasionally a chamber), thereby providing the potential for a large eruption, through graben 

subsidence. The graben subsidence itself is regarded as primarily of tectonic origin.    
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Fig. 18. In the present models, large volcanic eruptions are generally related to graben subsidence 

(primarily effusive eruptions) and caldera subsidence (primarily explosive eruptions). Grabens and 

collapse calderas are mechanically analogous structures. Both relate to (primarily) dip-slip faults 

along which subsidence or vertical displacement of the crustal block in-between the faults occurs. 

Both result in temporary or permanent rapid reduction in the volume of the associated 

chamber/reservoir and may thus contribute to squeezing out a high proportion (sometimes all) of its 

magma during an eruption, thereby producing large eruptions. 

  

 More specifically, in this paper I propose a new model for the generation of large to very 

large eruptions that is based on the principle of subsidence of a crustal block into the 

chamber/reservoir so as to maintain high excess pressure during the eruption. The model is 

basically the same for both explosive eruptions and effusive eruptions whereby the squeezing 

out of the magma is related to subsidence of a crustal block into the chamber/reservoir (Fig. 

18). For explosive eruptions, the subsidence is normally related to the displacement of a 

caldera block, whereas for effusive eruptions the subsidence is normally related to the 

displacement of a graben block. The basic ideas, as to the similarity between the subsidence 

of collapse calderas and grabens, was presented earlier (Gudmundsson, 1999), but this is the 

first paper to explore the mechanical consequences of these similarities as a mechanism for 

generating large and very large explosive and effusive eruptions.  

 

9.1 Explosive and effusive eruptions 

While large explosive eruptions are normally associated with caldera collapses and large 

effusive eruptions with graben subsidences (Fig. 18), the opposite relation is also known. 

Thus, a caldera subsidence may give rise to a large effusive eruption, and a graben 
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subsidence can give rise to a large explosive eruption. For example, there is strong evidence 

from the Sierra Madre Occidental volcanic province that many ignimbrite (explosive) 

eruptions were related to graben subsidences. This province is located in Mexico, just south 

of its boundary with the United States, formed mostly 23-38 million years ago and has a 

cumulative ignimbrite volume of 580,000 km
3
, making it the largest continuous ignimbrite 

province on Earth (Aguirre-Diaz et al., 2003, 2008). Also, rhyolite flows and acid tuffs were 

apparently erupted in connection with graben subsidence in Oregon (United States) about 

15.4 million years ago (Cummings et al., 2000). Similarly, a major incremental subsidence is 

reported from the Snake River basins in Idaho (United States) during 12 major explosive 

rhyolitic eruptions (related to the Yellowstone hot spot) during the period from 11.3 to 8.1 

Ma (Knott et al., 2016). In fact, the original volcanotectonic idea as to the formation of the 

Toba Caldera is that it forms the central, collapsed part of a very large dome-like structure. 

This structure, referred to as the Batak Tumor (van Bemmelen, 1939), is then supposed to be 

the result of magma accumulation beneath the large dome-like structure over a period of 

perhaps 1 Ma. In van Bemmelen’s conceptual model, the resulting Toba Caldera has an 

inward-dipping (normal) ring-fault whereas others considered the caldera itself (partly at 

least) as a volcanotectonic graben (Chesner, 2012).  

 In case a crustal magma chamber is primarily basaltic, caldera collapse may result in a 

large basaltic effusive eruption. It should be noted, though, that none of the caldera collapses 

in basaltic edifices during the past hundred years or so has given rise to large basaltic 

eruptions. Thus, none of the four collapses in basaltic edifices, discussed above, namely 

Fernandina in 1968, Plosky Tolbachik in 1975-1976, Miyakejima in 2000, and Piton de la 

Fournaise in 2007 gave rise to large eruptions. For large effusive eruptions, therefore, graben 

subsidences are probably more common associated mechanical process than caldera collapse, 

even though both processes may, in principle, generate such eruptions. 

 

9.2 Driving shear stress for fault slip 

One result mentioned here, and discussed in detail earlier (Gudmundsson, 2014), is that the 

elastic strain energy released in the largest eruptions is of the same order of a magnitude as in 

the largest earthquakes recorded so far. This may be an indication of certain limits as to the 

strain-energy storage capacity of the Earth’s crust before failure or, alternatively, the amount 

of strain energy that can be released from a crustal segment during a single event. Since the 

driving stresses (nominal stress drops) of earthquakes are very similar to the excess pressures 

of magma chambers before rupture and eruption, these similarities seem logical, although 

never demonstrated before. More specifically, the excess pressure at chamber rupture and the 

driving shear stress of an earthquake should, theoretically, differ by a factor of about 2. This 

is a consequence of the Modified Griffith Criterion for fault slip, namely (e.g., Gudmundsson, 

2011): 

 

nfd T   02                                                                                                                   (35) 

 

Here τd is the driving shear stress for the fault slip (roughly equal to the nominal stress drop 

associated with an earthquake), T0 is the in-situ tensile strength of the rock, μf is the 
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coefficient of internal friction, and σn is the normal stress on the fault (or earthquake rupture) 

plane. Equation (35) is commonly used when describing the conditions for fault slip in 

laboratory experiments on small specimens; it applies in the absence of fluids, that is, to dry 

conditions. All tectonically active crustal segments, however, contain fluids (e.g., 

groundwater or geothermal water), and it is widely thought that there are no major 

earthquakes without high fluid pressures in the associated fault zone. In particular, volcanoes 

with highly porous rocks are commonly the sites of geothermal and groundwater fields. 

Furthermore, many ring-faults are injected by ring-dykes formed under high magmatic (fluid) 

overpressure (Figs. 10 and 12). Denote the total fluid pressure in the fault zone at the site of 

the potential rupture plane by pt. Then Eq. (35) becomes: 

 

)(2 0 tnfd pT                                                                                                          (36) 

 

Except for very deep earthquakes, the driving shear stress τd in Eq. (36) is normally in the 

range of 1-10 MPa, and most commonly around 2-6 MPa (Kanamori and Anderson, 1975; 

Kanamori, 1977). This suggests that during most earthquakes, including those associated with 

slip on ring-faults, the term )( tnf p is close to or actually zero (and possibly negative, 

particularly during ring-dyke propagation, Fig. 12). Because μf is always positive, this implies 

that the term )( tn p is zero, so that the fluid pressure is equal to the normal stress σn on 

the rupture or fault plane (cf. Gudmundsson, 2011). It follows that for an earthquake rupture 

the driving shear stress is commonly equal to twice the in-situ tensile strength, or 2T0, 

whereas for the rupture of a magma chamber and dyke injection the excess pressure is equal 

to T0 (Eq. 16). Since the in-situ tensile strength of crustal rocks is most commonly a few 

mega-pascals, as indicated above, the excess pressure in the magma chamber and the driving 

shear stress are likely to be mostly in the range of about 2-6 MPa, as is, indeed, observed. 

 

9.3 Comparison with the underpressure model of collapse calderas  

It is important to recognise that in the model presented here, for both calderas and grabens 

(Fig. 18), the subsidence is not the consequence of the eruption but rather the provider of the 

energy that squeezes out the magma and thus largely drives the eruption. This follows from 

the following observations: 

 There is no known natural (spontaneous) mechanism whereby magma or other fluids 

flow from lower potential energy to higher potential energy. Thus, for example, there 

is no known way to generate large absolute ‘underpressure’ (pressure less than 

lithostatic) in a large part of a totally fluid magma chamber. Because in order to do so 

the magma would have to flow from a chamber at a lower total pressure into the host 

rock at a higher total pressure (Gudmundsson, 2008).  

 Similarly, there is no known way to generate a geologically large empty cavity at the 

depth of many kilometres in the crust—say half an empty magma chamber—into 

which a collapse caldera (or possibly a graben) could collapse or subside. As 

indicated above, the in-situ shear strength of rocks is generally similar to the nominal 

stress drop or driving shear stress in earthquakes, the highest values being about 30 

MPa (Scholz, 1990) and the most common values, except for very deep earthquakes, 
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1-10 MPa (Kanamori and Anderson, 1975; Kanamori, 1977). As indicated below, 

large stress differences (shear stresses) cannot normally be maintained at the margin 

of a totally fluid magma chamber (Gudmundsson, 2011). 

 At a contact with a fluid magma chamber, where the minimum principal stress σ3 is 

either zero or slightly negative (and thus negligible in comparison with the maximum 

principal compressive stress, σ1) the shear stress is roughly half the maximum 

principal stress σ1 (e.g., Gudmundsson, 2011). Already at 2 km depth the shear stress 

at the contact with the magma chamber would thus be around 25 MPa (assuming a 

crustal density of 2500 kg m
-3

), and would increase by some 13-15 MPa for each 

kilometre by which the depth to the roof of the shallow magma-chamber increases 

(Fig. 3). There is thus no way that an empty cavity on the size of a magma-chamber 

(dimensions reaching kilometres) could exist at such a depth; long before a large 

empty cavity could form, the rock would fail in shear or, for downward bending of the 

roof, in tension. 

 Models based on forced underpressure to generate collapse calderas estimate 

underpressures (negative excess pressures) as high as 205 MPa for the Katmai 1912 

collapse, 312 MPa for the Pinatubo 1991 collapse, and 290 MPa for the 1968 

Fernandina collapse (Stix and Kobayashi, 2008). The in-situ (field) shear strength of 

rocks is roughly double their tensile strength (Eq. 36). Numerous in-situ tensile 

strength measurements indicate a general range of 0.5 to 6 MPa; the highest in-situ 

value ever measured is 9 MPa (Gudmundsson, 2011). The in-situ shear strength is 

thus expected to be generally in the range of 1-12 MPa, which is very similar to the 

driving shear stress or nominal stress drop in earthquakes. As indicated above, the 

latter is normally in the range of 1-10 MPa (Kanamori and Anderson, 1975; 

Kanamori, 1977). Models that invoke underpressure of the order of tens or hundreds 

of mega-pascals to explain collapse calderas are thus assuming in-situ shear strengths 

of the rocks hosting the magma chambers that are 1-2 orders of magnitude larger than 

measured.  

 The underpressure model certainly gives rise to shear-stress concentration, but the 

location of the maximum shear stress is not suitable for typical ring-fault formation. 

For underpressure the maximum shear stress at the surface, both for a spherical 

(circular) magma chamber as well as for a sill-like (oblate ellipsoidal) magma 

chamber, is above the centre of the chamber – not above its margins (Gudmundsson, 

2007, 2008). Underpressure is probably a common mechanism for shallow pit craters, 

but, as indicated above, hardly for collapse calderas extending as crustal blocks to 

depths of many kilometres.  

 Thus, in contrast to the underpressure model, in the present model on subsidence-driven 

large eruptions it is the subsidence of the caldera or the graben block that maintains the 

excess pressure in the chamber/reservoir and thereby allows much larger proportion of the 

magma to flow out of the chamber/reservoir before the feeder-dyke closes at its bottom than 

is possible in ‘ordinary’ eruptions (Fig. 18). For the caldera/graben subsidence to take place, 

the most favourable mechanical condition (not needed for outward-dipping ring-faults, Fig. 

12) is extension across the potential or existing boundary fault of the caldera/graben. For 
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calderas, the energy source of the extension is commonly slight doming of the chamber as a 

result of magma accumulation in a large reservoir at the bottom of the hosting volcanic field 

or volcanic system (Fig. 14; Gudmundsson, 1998, 1999). Such a doming is common prior to 

ring-fault displacement – as was, for example, demonstrated through geodetic measurements 

prior to the 2014 displacement on the Bardarbunga Caldera in Iceland (Browning and 

Gudmundsson, 2015a). Similar ‘doming’ or inflation, related to a rather deep-seated reservoir 

(7-8 km below the summit of the volcano), was detected for several months prior to the Piton 

de la Fournaise collapse in 2007 – although in that case, deflation had set in again just before 

the collapse itself (Michon et al., 2011; Fontaine et al., 2014). For a graben, the energy source 

is normally associated with the driving forces of the divergent plate movements (Fig. 16). 

Other energy sources for grabens include pull-apart movements (along strike-slip faults, 

including transform faults), plate bending at subduction zones, gravity gliding (e.g., above 

mantle plumes), and volcano spreading.  

 

9.4 Sizes of fault displacements  

The fault displacements must normally be large (at least many hundreds of meters) for the 

caldera ring-faults to have a chance of triggering large explosive eruptions. Grabens are 

commonly with much larger areas than calderas, so that the displacement needed to trigger a 

similar-volume eruption as from a caldera is proportionally smaller (Fig. 18). As indicated 

above, displacements of tens of metres in reasonably large grabens may trigger eruptions with 

volumes of tens of cubic kilometres. However, for eruptions of the order of hundreds of cubic 

kilometres, not to speak of thousands of kilometres, very large grabens and displacements of 

the order of hundreds of metres or more are needed. 

 Large displacements during eruptions on the caldera ring-faults are well documented and 

commonly reach hundreds of meters and, occasionally, more than a kilometre. No really large 

caldera eruptions have been documented by modern instruments, but it is not difficult for 

large calderas to reach displacements of a kilometre or more in large eruptions. One reason 

why large slips are easy on caldera faults is that they are commonly close to vertical (Fig. 5). 

A second reason is that they are commonly occupied by magma during the slip, that is, the 

forming ring-dyke (Fig. 12). The friction along the ring-fault is then minimal, and very large 

slips are easy.  

 To generate tens or hundreds of metres of vertical slip on the normal boundary faults of 

grabens is primarily a question of the size of the fault. Because the fault is through-going and 

extends from one free surface (Earth’s surface) to another one (the magma reservoir, in case 

the top region below the graben is assumed fluid), we use mode III model (Figs. 15 and 18; 

cf. Gudmundsson, 2011). Then the length or strike-dimension is the controlling dimension. 

For reasonable values of static Young’s modulus, Poisson’s ratio, and stress drop (driving 

shear stress), a 50 km long fault could slip by as much as 30 m in a single event. Some large 

flood basalts took 5-15 years to form (e.g. Self et al., 1997), in which case many slips on the 

graben faults would be possible. For grabens that are 100-150 km long the displacement in a 

single slip could reach 60-90 m. This is similar to the estimated maximum slip on the 2011 

Tohoku (Japan) earthquake (Ito et al., 2011). Any pressure change in the associated magma 

reservoir would tend to concentrate stresses at the boundary faults (Fig. 15), particularly if, as 

is common, they have compliant cores and inner damage zones whose mechanical properties 
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are widely different from those of the host rocks (Gudmundsson, 2011). Under such 

conditions, the faults act as soft elastic inclusions.   

 No really large and well-monitored flood-basalt eruptions have occurred in historical 

time. Among the largest ones are the 934 Eldgja and the 1783 Laki eruptions in Iceland (Fig. 

7). It is not known for either if there were graben subsidences prior to or during the early 

stages of these eruptions, partly because such grabens would have been largely or entirely 

buried by the subsequent lava flows. Laki has a small graben in its central part, but only 

about 300 m wide and with vertical displacements of several metres. It is too small to have 

had a significant effect on excess pressure in a deep-seated reservoir. Eldgja has a much 

larger graben. It is as wide as 600 m, about 150 m deep, and its central part (the one usually 

referred to as Eldgja) is about 8.5 km long. However, Eldgja itself is only the middle one of a 

row of offset graben segments, extending for about 40 km. Eldgja is a mixture of a graben 

and explosive craters, and its formation is not entirely clear. Nevertheless, much of it has a 

clear graben structure, perhaps with a total subsidence volume of 1-2 km
3
. There are several 

other grabens in the areas of Eldgja and Laki that could have contributed to the excess 

pressures in the reservoirs, thereby generating comparatively large eruptive volumes.   

 It is remarkable that there are no lava shields in the East Volcanic Zone of Iceland (Fig. 

7). By contrast, the largest fissure-generated Holocene lava flows have come from that zone. 

We have already discussed the comparatively large lava flows of Laki and Eldgja, both of 

which are historical (which in Iceland means younger than 1100 years). The largest Holocene 

lava flow in Iceland, however, is the Thjorsarhraun lava flow (Fig. 7; cf. Hjartarson, 1988) 

which issued from a fissure in the northern part of the East Volcanic Zone at around 8600 

B.P. This site coincides with the largest graben in the East Volcanic Zone, namely the 

Heljargja Graben (Fig. 7). Strictly, Heljargja itself is primarily the graben that is located in 

Pleistocene rocks, mainly hyaloclastites, but it has been reactivated in Holocene lava flows, 

of different ages. The entire graben system, partly dissecting Pleistocene rocks and partly 

Holocene lava flows, is about 60 km long and as wide as 10 km. In places the subsidence is 

as great as 100 m (A.T. Gudmundsson, 2001). A graben system with an area of, say, 500 km
2
, 

with fault slip of 50 m would generate a subsidence volume of 25 km
3
. This is the same as the 

estimated volume of the Thorsarhraun lava, 25 km
3
 (Hjartarson, 1988). There is of course not 

a one-to-one correspondence between the graben subsidence and the associated volume of the 

erupted lava. The reservoir is partially molten, and part of the melt may flow away from the 

feeder-dyke rather than towards it. Also, elastic and brittle deformation mechanisms imply 

that part of the subsidence volume is taken up in ways different from that of the reservoir 

volume decrease. Nevertheless, the fact that the largest Holocene lava flow in Iceland 

originated close to one of the largest graben systems in the volcanic zones of Iceland may 

indicate a connection along the lines discussed here.  

 

10. Conclusions  

The main results of this work may be summarised as follows: 

 Common or ‘ordinary’ explosive and effusive eruptions are very small in comparison 

with the largest ones. Here eruptive volumes (Ver) of 0.1 km
3
 or less are regarded as 

small, those in the range of 0.1-10 km
3
 are regarded as moderate, and those larger 
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than 10 km
3
 as large, with the largest ones reaching 10

3
 km

3
. Magma chambers are 

regarded as shallow if their roofs are at depths of 5 km or less. Magma sources for 

volcanoes located at greater depths are referred to as magma reservoirs. These are 

commonly much larger than, and supply magma to (feed), the shallow chambers.  

 Typical orders of magnitudes of eruptive volumes in single eruptions are from 0.01 

km
3
 to 1 km

3
, that is, small to moderate. Eruptions of these volumes can normally be 

explained in terms of poroelasticity, a theory widely used in hydrogeology, reservoir 

engineering, soil mechanics, and related fields.  

 For a totally molten crustal magma chamber, the typical ratio between eruptive mafic 

materials and the volume of the chamber is ter VV 4107  . In extreme cases when 

the magma chamber is composed entirely of gas-rich acid magma this ratio may be as 

large as ter VV 2104  . However, both ratios assume a totally molten magma 

chamber, whereas many and presumably most chambers are partially molten, 

implying that the ratios are normally lower. Crustal magma chambers supplying 

magma to polygenetic volcanoes are generally thought to have volumes between 5 

and 500 km
3
, and commonly larger than 20 km

3
 (chambers at fast-spreading ocean 

ridges may be smaller, however). For the largest chamber, of 500 km
3
, the typical 

ratio for a totally molten mafic chamber would yield an eruptive volume of 0.35 km
3
. 

To reach an eruptive volume of 1 km
3
 would require a totally molten chamber of 

more than 1400 km
3
.   

 For large eruptions, of the order of 10
1
 or more, a different mechanism is normally 

needed. The mechanism proposed and discussed here is chamber/reservoir volume 

reduction or shrinkage during the eruption through caldera/graben subsidence. The 

basic idea is that volcanotectonic stresses generate a ring-fault/graben boundary 

faults. When large slips occur on these faults during an eruption, the subsiding crustal 

block reduces the volume of the underlying chamber/reservoir, thereby maintaining 

the excess pressure in the chamber for a much longer time than is possible in the 

ordinary poroelastic mechanism. As a consequence a much higher proportion of the 

magma in the chamber/reservoir is driven or squeezed out during an eruption 

associated with caldera or graben subsidence than is normally possible. It follows that 

the volume of eruptive materials, Ver, may approach the total volume of the 

chamber/reservoir, Vt that is, ter VV )11.0(  , resulting in a large to very large 

eruption.    

 This new mechanism for large eruptions implies that the basic physics of caldera 

subsidence and volcanotectonic graben subsidence is the same. The geometric 

difference in the surface expression of these structures is primarily related to cross-

sectional shape of the underlying magma body. In the case of a collapse caldera, the 

underlying body—usually a shallow magma chamber—has a cross section that is 

either close to circular or somewhat elliptical in plan view. In the case of a graben, the 

underlying magma body—usually a deep-seated magma reservoir—is normally 

highly elongated along the axis of the associated rift zone.  
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 In this new mechanism, the large eruption is the consequence—not the cause—of the 

subsidence of the caldera/graben block. Thus, once the conditions for large-scale 

subsidence of a caldera/graben block are established during a particular unrest/rifting 

episode, primarily using geodetic and seismic data, then the likelihood of a large to 

very large eruptions can be assessed and used for reliable forecasting. 
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